]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/base/property.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-eoan-kernel.git] / drivers / base / property.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20
21 struct fwnode_handle *dev_fwnode(struct device *dev)
22 {
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 &dev->of_node->fwnode : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(dev_fwnode);
27
28 /**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
35 bool device_property_present(struct device *dev, const char *propname)
36 {
37 return fwnode_property_present(dev_fwnode(dev), propname);
38 }
39 EXPORT_SYMBOL_GPL(device_property_present);
40
41 /**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
46 bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48 {
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57 }
58 EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60 /**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
78 int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80 {
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82 }
83 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85 /**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
103 int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105 {
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107 }
108 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110 /**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
128 int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130 {
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132 }
133 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135 /**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
153 int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155 {
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157 }
158 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160 /**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178 int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180 {
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182 }
183 EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185 /**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
200 int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202 {
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204 }
205 EXPORT_SYMBOL_GPL(device_property_read_string);
206
207 /**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
222 int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224 {
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226 }
227 EXPORT_SYMBOL_GPL(device_property_match_string);
228
229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233 {
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245 }
246
247 /**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267 {
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270 }
271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273 /**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293 {
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296 }
297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299 /**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319 {
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322 }
323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325 /**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345 {
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348 }
349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351 /**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372 {
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383 }
384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386 /**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
401 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403 {
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407 }
408 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410 /**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
425 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427 {
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449 out:
450 kfree(values);
451 return ret;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455 /**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481 {
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484 }
485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487 /**
488 * device_remove_properties - Remove properties from a device object.
489 * @dev: Device whose properties to remove.
490 *
491 * The function removes properties previously associated to the device
492 * firmware node with device_add_properties(). Memory allocated to the
493 * properties will also be released.
494 */
495 void device_remove_properties(struct device *dev)
496 {
497 struct fwnode_handle *fwnode = dev_fwnode(dev);
498
499 if (!fwnode)
500 return;
501
502 if (is_software_node(fwnode->secondary)) {
503 fwnode_remove_software_node(fwnode->secondary);
504 set_secondary_fwnode(dev, NULL);
505 }
506 }
507 EXPORT_SYMBOL_GPL(device_remove_properties);
508
509 /**
510 * device_add_properties - Add a collection of properties to a device object.
511 * @dev: Device to add properties to.
512 * @properties: Collection of properties to add.
513 *
514 * Associate a collection of device properties represented by @properties with
515 * @dev. The function takes a copy of @properties.
516 *
517 * WARNING: The callers should not use this function if it is known that there
518 * is no real firmware node associated with @dev! In that case the callers
519 * should create a software node and assign it to @dev directly.
520 */
521 int device_add_properties(struct device *dev,
522 const struct property_entry *properties)
523 {
524 struct fwnode_handle *fwnode;
525
526 fwnode = fwnode_create_software_node(properties, NULL);
527 if (IS_ERR(fwnode))
528 return PTR_ERR(fwnode);
529
530 set_secondary_fwnode(dev, fwnode);
531 return 0;
532 }
533 EXPORT_SYMBOL_GPL(device_add_properties);
534
535 /**
536 * fwnode_get_next_parent - Iterate to the node's parent
537 * @fwnode: Firmware whose parent is retrieved
538 *
539 * This is like fwnode_get_parent() except that it drops the refcount
540 * on the passed node, making it suitable for iterating through a
541 * node's parents.
542 *
543 * Returns a node pointer with refcount incremented, use
544 * fwnode_handle_node() on it when done.
545 */
546 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
547 {
548 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
549
550 fwnode_handle_put(fwnode);
551
552 return parent;
553 }
554 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
555
556 /**
557 * fwnode_get_parent - Return parent firwmare node
558 * @fwnode: Firmware whose parent is retrieved
559 *
560 * Return parent firmware node of the given node if possible or %NULL if no
561 * parent was available.
562 */
563 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
564 {
565 return fwnode_call_ptr_op(fwnode, get_parent);
566 }
567 EXPORT_SYMBOL_GPL(fwnode_get_parent);
568
569 /**
570 * fwnode_get_next_child_node - Return the next child node handle for a node
571 * @fwnode: Firmware node to find the next child node for.
572 * @child: Handle to one of the node's child nodes or a %NULL handle.
573 */
574 struct fwnode_handle *
575 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
576 struct fwnode_handle *child)
577 {
578 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
579 }
580 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
581
582 /**
583 * fwnode_get_next_available_child_node - Return the next
584 * available child node handle for a node
585 * @fwnode: Firmware node to find the next child node for.
586 * @child: Handle to one of the node's child nodes or a %NULL handle.
587 */
588 struct fwnode_handle *
589 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
590 struct fwnode_handle *child)
591 {
592 struct fwnode_handle *next_child = child;
593
594 if (!fwnode)
595 return NULL;
596
597 do {
598 next_child = fwnode_get_next_child_node(fwnode, next_child);
599
600 if (!next_child || fwnode_device_is_available(next_child))
601 break;
602 } while (next_child);
603
604 return next_child;
605 }
606 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
607
608 /**
609 * device_get_next_child_node - Return the next child node handle for a device
610 * @dev: Device to find the next child node for.
611 * @child: Handle to one of the device's child nodes or a null handle.
612 */
613 struct fwnode_handle *device_get_next_child_node(struct device *dev,
614 struct fwnode_handle *child)
615 {
616 struct acpi_device *adev = ACPI_COMPANION(dev);
617 struct fwnode_handle *fwnode = NULL;
618
619 if (dev->of_node)
620 fwnode = &dev->of_node->fwnode;
621 else if (adev)
622 fwnode = acpi_fwnode_handle(adev);
623
624 return fwnode_get_next_child_node(fwnode, child);
625 }
626 EXPORT_SYMBOL_GPL(device_get_next_child_node);
627
628 /**
629 * fwnode_get_named_child_node - Return first matching named child node handle
630 * @fwnode: Firmware node to find the named child node for.
631 * @childname: String to match child node name against.
632 */
633 struct fwnode_handle *
634 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
635 const char *childname)
636 {
637 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
638 }
639 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
640
641 /**
642 * device_get_named_child_node - Return first matching named child node handle
643 * @dev: Device to find the named child node for.
644 * @childname: String to match child node name against.
645 */
646 struct fwnode_handle *device_get_named_child_node(struct device *dev,
647 const char *childname)
648 {
649 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
650 }
651 EXPORT_SYMBOL_GPL(device_get_named_child_node);
652
653 /**
654 * fwnode_handle_get - Obtain a reference to a device node
655 * @fwnode: Pointer to the device node to obtain the reference to.
656 *
657 * Returns the fwnode handle.
658 */
659 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
660 {
661 if (!fwnode_has_op(fwnode, get))
662 return fwnode;
663
664 return fwnode_call_ptr_op(fwnode, get);
665 }
666 EXPORT_SYMBOL_GPL(fwnode_handle_get);
667
668 /**
669 * fwnode_handle_put - Drop reference to a device node
670 * @fwnode: Pointer to the device node to drop the reference to.
671 *
672 * This has to be used when terminating device_for_each_child_node() iteration
673 * with break or return to prevent stale device node references from being left
674 * behind.
675 */
676 void fwnode_handle_put(struct fwnode_handle *fwnode)
677 {
678 fwnode_call_void_op(fwnode, put);
679 }
680 EXPORT_SYMBOL_GPL(fwnode_handle_put);
681
682 /**
683 * fwnode_device_is_available - check if a device is available for use
684 * @fwnode: Pointer to the fwnode of the device.
685 */
686 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
687 {
688 return fwnode_call_bool_op(fwnode, device_is_available);
689 }
690 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
691
692 /**
693 * device_get_child_node_count - return the number of child nodes for device
694 * @dev: Device to cound the child nodes for
695 */
696 unsigned int device_get_child_node_count(struct device *dev)
697 {
698 struct fwnode_handle *child;
699 unsigned int count = 0;
700
701 device_for_each_child_node(dev, child)
702 count++;
703
704 return count;
705 }
706 EXPORT_SYMBOL_GPL(device_get_child_node_count);
707
708 bool device_dma_supported(struct device *dev)
709 {
710 /* For DT, this is always supported.
711 * For ACPI, this depends on CCA, which
712 * is determined by the acpi_dma_supported().
713 */
714 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
715 return true;
716
717 return acpi_dma_supported(ACPI_COMPANION(dev));
718 }
719 EXPORT_SYMBOL_GPL(device_dma_supported);
720
721 enum dev_dma_attr device_get_dma_attr(struct device *dev)
722 {
723 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
724
725 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
726 if (of_dma_is_coherent(dev->of_node))
727 attr = DEV_DMA_COHERENT;
728 else
729 attr = DEV_DMA_NON_COHERENT;
730 } else
731 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
732
733 return attr;
734 }
735 EXPORT_SYMBOL_GPL(device_get_dma_attr);
736
737 /**
738 * fwnode_get_phy_mode - Get phy mode for given firmware node
739 * @fwnode: Pointer to the given node
740 *
741 * The function gets phy interface string from property 'phy-mode' or
742 * 'phy-connection-type', and return its index in phy_modes table, or errno in
743 * error case.
744 */
745 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
746 {
747 const char *pm;
748 int err, i;
749
750 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
751 if (err < 0)
752 err = fwnode_property_read_string(fwnode,
753 "phy-connection-type", &pm);
754 if (err < 0)
755 return err;
756
757 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
758 if (!strcasecmp(pm, phy_modes(i)))
759 return i;
760
761 return -ENODEV;
762 }
763 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
764
765 /**
766 * device_get_phy_mode - Get phy mode for given device
767 * @dev: Pointer to the given device
768 *
769 * The function gets phy interface string from property 'phy-mode' or
770 * 'phy-connection-type', and return its index in phy_modes table, or errno in
771 * error case.
772 */
773 int device_get_phy_mode(struct device *dev)
774 {
775 return fwnode_get_phy_mode(dev_fwnode(dev));
776 }
777 EXPORT_SYMBOL_GPL(device_get_phy_mode);
778
779 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
780 const char *name, char *addr,
781 int alen)
782 {
783 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
784
785 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
786 return addr;
787 return NULL;
788 }
789
790 /**
791 * fwnode_get_mac_address - Get the MAC from the firmware node
792 * @fwnode: Pointer to the firmware node
793 * @addr: Address of buffer to store the MAC in
794 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
795 *
796 * Search the firmware node for the best MAC address to use. 'mac-address' is
797 * checked first, because that is supposed to contain to "most recent" MAC
798 * address. If that isn't set, then 'local-mac-address' is checked next,
799 * because that is the default address. If that isn't set, then the obsolete
800 * 'address' is checked, just in case we're using an old device tree.
801 *
802 * Note that the 'address' property is supposed to contain a virtual address of
803 * the register set, but some DTS files have redefined that property to be the
804 * MAC address.
805 *
806 * All-zero MAC addresses are rejected, because those could be properties that
807 * exist in the firmware tables, but were not updated by the firmware. For
808 * example, the DTS could define 'mac-address' and 'local-mac-address', with
809 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
810 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
811 * exists but is all zeros.
812 */
813 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
814 {
815 char *res;
816
817 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
818 if (res)
819 return res;
820
821 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
822 if (res)
823 return res;
824
825 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
826 }
827 EXPORT_SYMBOL(fwnode_get_mac_address);
828
829 /**
830 * device_get_mac_address - Get the MAC for a given device
831 * @dev: Pointer to the device
832 * @addr: Address of buffer to store the MAC in
833 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
834 */
835 void *device_get_mac_address(struct device *dev, char *addr, int alen)
836 {
837 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
838 }
839 EXPORT_SYMBOL(device_get_mac_address);
840
841 /**
842 * fwnode_irq_get - Get IRQ directly from a fwnode
843 * @fwnode: Pointer to the firmware node
844 * @index: Zero-based index of the IRQ
845 *
846 * Returns Linux IRQ number on success. Other values are determined
847 * accordingly to acpi_/of_ irq_get() operation.
848 */
849 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
850 {
851 struct device_node *of_node = to_of_node(fwnode);
852 struct resource res;
853 int ret;
854
855 if (IS_ENABLED(CONFIG_OF) && of_node)
856 return of_irq_get(of_node, index);
857
858 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
859 if (ret)
860 return ret;
861
862 return res.start;
863 }
864 EXPORT_SYMBOL(fwnode_irq_get);
865
866 /**
867 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
868 * @fwnode: Pointer to the parent firmware node
869 * @prev: Previous endpoint node or %NULL to get the first
870 *
871 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
872 * are available.
873 */
874 struct fwnode_handle *
875 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
876 struct fwnode_handle *prev)
877 {
878 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
879 }
880 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
881
882 /**
883 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
884 * @endpoint: Endpoint firmware node of the port
885 *
886 * Return: the firmware node of the device the @endpoint belongs to.
887 */
888 struct fwnode_handle *
889 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
890 {
891 struct fwnode_handle *port, *parent;
892
893 port = fwnode_get_parent(endpoint);
894 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
895
896 fwnode_handle_put(port);
897
898 return parent;
899 }
900 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
901
902 /**
903 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
904 * @fwnode: Endpoint firmware node pointing to the remote endpoint
905 *
906 * Extracts firmware node of a remote device the @fwnode points to.
907 */
908 struct fwnode_handle *
909 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
910 {
911 struct fwnode_handle *endpoint, *parent;
912
913 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
914 parent = fwnode_graph_get_port_parent(endpoint);
915
916 fwnode_handle_put(endpoint);
917
918 return parent;
919 }
920 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
921
922 /**
923 * fwnode_graph_get_remote_port - Return fwnode of a remote port
924 * @fwnode: Endpoint firmware node pointing to the remote endpoint
925 *
926 * Extracts firmware node of a remote port the @fwnode points to.
927 */
928 struct fwnode_handle *
929 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
930 {
931 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
932 }
933 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
934
935 /**
936 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
937 * @fwnode: Endpoint firmware node pointing to the remote endpoint
938 *
939 * Extracts firmware node of a remote endpoint the @fwnode points to.
940 */
941 struct fwnode_handle *
942 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
943 {
944 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
945 }
946 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
947
948 /**
949 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
950 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
951 * @port_id: identifier of the parent port node
952 * @endpoint_id: identifier of the endpoint node
953 *
954 * Return: Remote fwnode handle associated with remote endpoint node linked
955 * to @node. Use fwnode_node_put() on it when done.
956 */
957 struct fwnode_handle *
958 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
959 u32 endpoint_id)
960 {
961 struct fwnode_handle *endpoint = NULL;
962
963 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
964 struct fwnode_endpoint fwnode_ep;
965 struct fwnode_handle *remote;
966 int ret;
967
968 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
969 if (ret < 0)
970 continue;
971
972 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
973 continue;
974
975 remote = fwnode_graph_get_remote_port_parent(endpoint);
976 if (!remote)
977 return NULL;
978
979 return fwnode_device_is_available(remote) ? remote : NULL;
980 }
981
982 return NULL;
983 }
984 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
985
986 /**
987 * fwnode_graph_parse_endpoint - parse common endpoint node properties
988 * @fwnode: pointer to endpoint fwnode_handle
989 * @endpoint: pointer to the fwnode endpoint data structure
990 *
991 * Parse @fwnode representing a graph endpoint node and store the
992 * information in @endpoint. The caller must hold a reference to
993 * @fwnode.
994 */
995 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
996 struct fwnode_endpoint *endpoint)
997 {
998 memset(endpoint, 0, sizeof(*endpoint));
999
1000 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1001 }
1002 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1003
1004 const void *device_get_match_data(struct device *dev)
1005 {
1006 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1007 }
1008 EXPORT_SYMBOL_GPL(device_get_match_data);