]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/base/property.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / drivers / base / property.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20
21 struct property_set {
22 struct device *dev;
23 struct fwnode_handle fwnode;
24 const struct property_entry *properties;
25 };
26
27 static const struct fwnode_operations pset_fwnode_ops;
28
29 static inline bool is_pset_node(const struct fwnode_handle *fwnode)
30 {
31 return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
32 }
33
34 #define to_pset_node(__fwnode) \
35 ({ \
36 typeof(__fwnode) __to_pset_node_fwnode = __fwnode; \
37 \
38 is_pset_node(__to_pset_node_fwnode) ? \
39 container_of(__to_pset_node_fwnode, \
40 struct property_set, fwnode) : \
41 NULL; \
42 })
43
44 static const struct property_entry *
45 pset_prop_get(const struct property_set *pset, const char *name)
46 {
47 const struct property_entry *prop;
48
49 if (!pset || !pset->properties)
50 return NULL;
51
52 for (prop = pset->properties; prop->name; prop++)
53 if (!strcmp(name, prop->name))
54 return prop;
55
56 return NULL;
57 }
58
59 static const void *pset_prop_find(const struct property_set *pset,
60 const char *propname, size_t length)
61 {
62 const struct property_entry *prop;
63 const void *pointer;
64
65 prop = pset_prop_get(pset, propname);
66 if (!prop)
67 return ERR_PTR(-EINVAL);
68 if (prop->is_array)
69 pointer = prop->pointer.raw_data;
70 else
71 pointer = &prop->value.raw_data;
72 if (!pointer)
73 return ERR_PTR(-ENODATA);
74 if (length > prop->length)
75 return ERR_PTR(-EOVERFLOW);
76 return pointer;
77 }
78
79 static int pset_prop_read_u8_array(const struct property_set *pset,
80 const char *propname,
81 u8 *values, size_t nval)
82 {
83 const void *pointer;
84 size_t length = nval * sizeof(*values);
85
86 pointer = pset_prop_find(pset, propname, length);
87 if (IS_ERR(pointer))
88 return PTR_ERR(pointer);
89
90 memcpy(values, pointer, length);
91 return 0;
92 }
93
94 static int pset_prop_read_u16_array(const struct property_set *pset,
95 const char *propname,
96 u16 *values, size_t nval)
97 {
98 const void *pointer;
99 size_t length = nval * sizeof(*values);
100
101 pointer = pset_prop_find(pset, propname, length);
102 if (IS_ERR(pointer))
103 return PTR_ERR(pointer);
104
105 memcpy(values, pointer, length);
106 return 0;
107 }
108
109 static int pset_prop_read_u32_array(const struct property_set *pset,
110 const char *propname,
111 u32 *values, size_t nval)
112 {
113 const void *pointer;
114 size_t length = nval * sizeof(*values);
115
116 pointer = pset_prop_find(pset, propname, length);
117 if (IS_ERR(pointer))
118 return PTR_ERR(pointer);
119
120 memcpy(values, pointer, length);
121 return 0;
122 }
123
124 static int pset_prop_read_u64_array(const struct property_set *pset,
125 const char *propname,
126 u64 *values, size_t nval)
127 {
128 const void *pointer;
129 size_t length = nval * sizeof(*values);
130
131 pointer = pset_prop_find(pset, propname, length);
132 if (IS_ERR(pointer))
133 return PTR_ERR(pointer);
134
135 memcpy(values, pointer, length);
136 return 0;
137 }
138
139 static int pset_prop_count_elems_of_size(const struct property_set *pset,
140 const char *propname, size_t length)
141 {
142 const struct property_entry *prop;
143
144 prop = pset_prop_get(pset, propname);
145 if (!prop)
146 return -EINVAL;
147
148 return prop->length / length;
149 }
150
151 static int pset_prop_read_string_array(const struct property_set *pset,
152 const char *propname,
153 const char **strings, size_t nval)
154 {
155 const struct property_entry *prop;
156 const void *pointer;
157 size_t array_len, length;
158
159 /* Find out the array length. */
160 prop = pset_prop_get(pset, propname);
161 if (!prop)
162 return -EINVAL;
163
164 if (!prop->is_array)
165 /* The array length for a non-array string property is 1. */
166 array_len = 1;
167 else
168 /* Find the length of an array. */
169 array_len = pset_prop_count_elems_of_size(pset, propname,
170 sizeof(const char *));
171
172 /* Return how many there are if strings is NULL. */
173 if (!strings)
174 return array_len;
175
176 array_len = min(nval, array_len);
177 length = array_len * sizeof(*strings);
178
179 pointer = pset_prop_find(pset, propname, length);
180 if (IS_ERR(pointer))
181 return PTR_ERR(pointer);
182
183 memcpy(strings, pointer, length);
184
185 return array_len;
186 }
187
188 struct fwnode_handle *dev_fwnode(struct device *dev)
189 {
190 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
191 &dev->of_node->fwnode : dev->fwnode;
192 }
193 EXPORT_SYMBOL_GPL(dev_fwnode);
194
195 static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
196 const char *propname)
197 {
198 return !!pset_prop_get(to_pset_node(fwnode), propname);
199 }
200
201 static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
202 const char *propname,
203 unsigned int elem_size, void *val,
204 size_t nval)
205 {
206 const struct property_set *node = to_pset_node(fwnode);
207
208 if (!val)
209 return pset_prop_count_elems_of_size(node, propname, elem_size);
210
211 switch (elem_size) {
212 case sizeof(u8):
213 return pset_prop_read_u8_array(node, propname, val, nval);
214 case sizeof(u16):
215 return pset_prop_read_u16_array(node, propname, val, nval);
216 case sizeof(u32):
217 return pset_prop_read_u32_array(node, propname, val, nval);
218 case sizeof(u64):
219 return pset_prop_read_u64_array(node, propname, val, nval);
220 }
221
222 return -ENXIO;
223 }
224
225 static int
226 pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
227 const char *propname,
228 const char **val, size_t nval)
229 {
230 return pset_prop_read_string_array(to_pset_node(fwnode), propname,
231 val, nval);
232 }
233
234 static const struct fwnode_operations pset_fwnode_ops = {
235 .property_present = pset_fwnode_property_present,
236 .property_read_int_array = pset_fwnode_read_int_array,
237 .property_read_string_array = pset_fwnode_property_read_string_array,
238 };
239
240 /**
241 * device_property_present - check if a property of a device is present
242 * @dev: Device whose property is being checked
243 * @propname: Name of the property
244 *
245 * Check if property @propname is present in the device firmware description.
246 */
247 bool device_property_present(struct device *dev, const char *propname)
248 {
249 return fwnode_property_present(dev_fwnode(dev), propname);
250 }
251 EXPORT_SYMBOL_GPL(device_property_present);
252
253 /**
254 * fwnode_property_present - check if a property of a firmware node is present
255 * @fwnode: Firmware node whose property to check
256 * @propname: Name of the property
257 */
258 bool fwnode_property_present(const struct fwnode_handle *fwnode,
259 const char *propname)
260 {
261 bool ret;
262
263 ret = fwnode_call_bool_op(fwnode, property_present, propname);
264 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
265 !IS_ERR_OR_NULL(fwnode->secondary))
266 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
267 propname);
268 return ret;
269 }
270 EXPORT_SYMBOL_GPL(fwnode_property_present);
271
272 /**
273 * device_property_read_u8_array - return a u8 array property of a device
274 * @dev: Device to get the property of
275 * @propname: Name of the property
276 * @val: The values are stored here or %NULL to return the number of values
277 * @nval: Size of the @val array
278 *
279 * Function reads an array of u8 properties with @propname from the device
280 * firmware description and stores them to @val if found.
281 *
282 * Return: number of values if @val was %NULL,
283 * %0 if the property was found (success),
284 * %-EINVAL if given arguments are not valid,
285 * %-ENODATA if the property does not have a value,
286 * %-EPROTO if the property is not an array of numbers,
287 * %-EOVERFLOW if the size of the property is not as expected.
288 * %-ENXIO if no suitable firmware interface is present.
289 */
290 int device_property_read_u8_array(struct device *dev, const char *propname,
291 u8 *val, size_t nval)
292 {
293 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
294 }
295 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
296
297 /**
298 * device_property_read_u16_array - return a u16 array property of a device
299 * @dev: Device to get the property of
300 * @propname: Name of the property
301 * @val: The values are stored here or %NULL to return the number of values
302 * @nval: Size of the @val array
303 *
304 * Function reads an array of u16 properties with @propname from the device
305 * firmware description and stores them to @val if found.
306 *
307 * Return: number of values if @val was %NULL,
308 * %0 if the property was found (success),
309 * %-EINVAL if given arguments are not valid,
310 * %-ENODATA if the property does not have a value,
311 * %-EPROTO if the property is not an array of numbers,
312 * %-EOVERFLOW if the size of the property is not as expected.
313 * %-ENXIO if no suitable firmware interface is present.
314 */
315 int device_property_read_u16_array(struct device *dev, const char *propname,
316 u16 *val, size_t nval)
317 {
318 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
319 }
320 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
321
322 /**
323 * device_property_read_u32_array - return a u32 array property of a device
324 * @dev: Device to get the property of
325 * @propname: Name of the property
326 * @val: The values are stored here or %NULL to return the number of values
327 * @nval: Size of the @val array
328 *
329 * Function reads an array of u32 properties with @propname from the device
330 * firmware description and stores them to @val if found.
331 *
332 * Return: number of values if @val was %NULL,
333 * %0 if the property was found (success),
334 * %-EINVAL if given arguments are not valid,
335 * %-ENODATA if the property does not have a value,
336 * %-EPROTO if the property is not an array of numbers,
337 * %-EOVERFLOW if the size of the property is not as expected.
338 * %-ENXIO if no suitable firmware interface is present.
339 */
340 int device_property_read_u32_array(struct device *dev, const char *propname,
341 u32 *val, size_t nval)
342 {
343 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
344 }
345 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
346
347 /**
348 * device_property_read_u64_array - return a u64 array property of a device
349 * @dev: Device to get the property of
350 * @propname: Name of the property
351 * @val: The values are stored here or %NULL to return the number of values
352 * @nval: Size of the @val array
353 *
354 * Function reads an array of u64 properties with @propname from the device
355 * firmware description and stores them to @val if found.
356 *
357 * Return: number of values if @val was %NULL,
358 * %0 if the property was found (success),
359 * %-EINVAL if given arguments are not valid,
360 * %-ENODATA if the property does not have a value,
361 * %-EPROTO if the property is not an array of numbers,
362 * %-EOVERFLOW if the size of the property is not as expected.
363 * %-ENXIO if no suitable firmware interface is present.
364 */
365 int device_property_read_u64_array(struct device *dev, const char *propname,
366 u64 *val, size_t nval)
367 {
368 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
369 }
370 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
371
372 /**
373 * device_property_read_string_array - return a string array property of device
374 * @dev: Device to get the property of
375 * @propname: Name of the property
376 * @val: The values are stored here or %NULL to return the number of values
377 * @nval: Size of the @val array
378 *
379 * Function reads an array of string properties with @propname from the device
380 * firmware description and stores them to @val if found.
381 *
382 * Return: number of values read on success if @val is non-NULL,
383 * number of values available on success if @val is NULL,
384 * %-EINVAL if given arguments are not valid,
385 * %-ENODATA if the property does not have a value,
386 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
387 * %-EOVERFLOW if the size of the property is not as expected.
388 * %-ENXIO if no suitable firmware interface is present.
389 */
390 int device_property_read_string_array(struct device *dev, const char *propname,
391 const char **val, size_t nval)
392 {
393 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
394 }
395 EXPORT_SYMBOL_GPL(device_property_read_string_array);
396
397 /**
398 * device_property_read_string - return a string property of a device
399 * @dev: Device to get the property of
400 * @propname: Name of the property
401 * @val: The value is stored here
402 *
403 * Function reads property @propname from the device firmware description and
404 * stores the value into @val if found. The value is checked to be a string.
405 *
406 * Return: %0 if the property was found (success),
407 * %-EINVAL if given arguments are not valid,
408 * %-ENODATA if the property does not have a value,
409 * %-EPROTO or %-EILSEQ if the property type is not a string.
410 * %-ENXIO if no suitable firmware interface is present.
411 */
412 int device_property_read_string(struct device *dev, const char *propname,
413 const char **val)
414 {
415 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
416 }
417 EXPORT_SYMBOL_GPL(device_property_read_string);
418
419 /**
420 * device_property_match_string - find a string in an array and return index
421 * @dev: Device to get the property of
422 * @propname: Name of the property holding the array
423 * @string: String to look for
424 *
425 * Find a given string in a string array and if it is found return the
426 * index back.
427 *
428 * Return: %0 if the property was found (success),
429 * %-EINVAL if given arguments are not valid,
430 * %-ENODATA if the property does not have a value,
431 * %-EPROTO if the property is not an array of strings,
432 * %-ENXIO if no suitable firmware interface is present.
433 */
434 int device_property_match_string(struct device *dev, const char *propname,
435 const char *string)
436 {
437 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
438 }
439 EXPORT_SYMBOL_GPL(device_property_match_string);
440
441 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
442 const char *propname,
443 unsigned int elem_size, void *val,
444 size_t nval)
445 {
446 int ret;
447
448 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
449 elem_size, val, nval);
450 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
451 !IS_ERR_OR_NULL(fwnode->secondary))
452 ret = fwnode_call_int_op(
453 fwnode->secondary, property_read_int_array, propname,
454 elem_size, val, nval);
455
456 return ret;
457 }
458
459 /**
460 * fwnode_property_read_u8_array - return a u8 array property of firmware node
461 * @fwnode: Firmware node to get the property of
462 * @propname: Name of the property
463 * @val: The values are stored here or %NULL to return the number of values
464 * @nval: Size of the @val array
465 *
466 * Read an array of u8 properties with @propname from @fwnode and stores them to
467 * @val if found.
468 *
469 * Return: number of values if @val was %NULL,
470 * %0 if the property was found (success),
471 * %-EINVAL if given arguments are not valid,
472 * %-ENODATA if the property does not have a value,
473 * %-EPROTO if the property is not an array of numbers,
474 * %-EOVERFLOW if the size of the property is not as expected,
475 * %-ENXIO if no suitable firmware interface is present.
476 */
477 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
478 const char *propname, u8 *val, size_t nval)
479 {
480 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
481 val, nval);
482 }
483 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
484
485 /**
486 * fwnode_property_read_u16_array - return a u16 array property of firmware node
487 * @fwnode: Firmware node to get the property of
488 * @propname: Name of the property
489 * @val: The values are stored here or %NULL to return the number of values
490 * @nval: Size of the @val array
491 *
492 * Read an array of u16 properties with @propname from @fwnode and store them to
493 * @val if found.
494 *
495 * Return: number of values if @val was %NULL,
496 * %0 if the property was found (success),
497 * %-EINVAL if given arguments are not valid,
498 * %-ENODATA if the property does not have a value,
499 * %-EPROTO if the property is not an array of numbers,
500 * %-EOVERFLOW if the size of the property is not as expected,
501 * %-ENXIO if no suitable firmware interface is present.
502 */
503 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
504 const char *propname, u16 *val, size_t nval)
505 {
506 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
507 val, nval);
508 }
509 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
510
511 /**
512 * fwnode_property_read_u32_array - return a u32 array property of firmware node
513 * @fwnode: Firmware node to get the property of
514 * @propname: Name of the property
515 * @val: The values are stored here or %NULL to return the number of values
516 * @nval: Size of the @val array
517 *
518 * Read an array of u32 properties with @propname from @fwnode store them to
519 * @val if found.
520 *
521 * Return: number of values if @val was %NULL,
522 * %0 if the property was found (success),
523 * %-EINVAL if given arguments are not valid,
524 * %-ENODATA if the property does not have a value,
525 * %-EPROTO if the property is not an array of numbers,
526 * %-EOVERFLOW if the size of the property is not as expected,
527 * %-ENXIO if no suitable firmware interface is present.
528 */
529 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
530 const char *propname, u32 *val, size_t nval)
531 {
532 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
533 val, nval);
534 }
535 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
536
537 /**
538 * fwnode_property_read_u64_array - return a u64 array property firmware node
539 * @fwnode: Firmware node to get the property of
540 * @propname: Name of the property
541 * @val: The values are stored here or %NULL to return the number of values
542 * @nval: Size of the @val array
543 *
544 * Read an array of u64 properties with @propname from @fwnode and store them to
545 * @val if found.
546 *
547 * Return: number of values if @val was %NULL,
548 * %0 if the property was found (success),
549 * %-EINVAL if given arguments are not valid,
550 * %-ENODATA if the property does not have a value,
551 * %-EPROTO if the property is not an array of numbers,
552 * %-EOVERFLOW if the size of the property is not as expected,
553 * %-ENXIO if no suitable firmware interface is present.
554 */
555 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
556 const char *propname, u64 *val, size_t nval)
557 {
558 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
559 val, nval);
560 }
561 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
562
563 /**
564 * fwnode_property_read_string_array - return string array property of a node
565 * @fwnode: Firmware node to get the property of
566 * @propname: Name of the property
567 * @val: The values are stored here or %NULL to return the number of values
568 * @nval: Size of the @val array
569 *
570 * Read an string list property @propname from the given firmware node and store
571 * them to @val if found.
572 *
573 * Return: number of values read on success if @val is non-NULL,
574 * number of values available on success if @val is NULL,
575 * %-EINVAL if given arguments are not valid,
576 * %-ENODATA if the property does not have a value,
577 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
578 * %-EOVERFLOW if the size of the property is not as expected,
579 * %-ENXIO if no suitable firmware interface is present.
580 */
581 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
582 const char *propname, const char **val,
583 size_t nval)
584 {
585 int ret;
586
587 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
588 val, nval);
589 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
590 !IS_ERR_OR_NULL(fwnode->secondary))
591 ret = fwnode_call_int_op(fwnode->secondary,
592 property_read_string_array, propname,
593 val, nval);
594 return ret;
595 }
596 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
597
598 /**
599 * fwnode_property_read_string - return a string property of a firmware node
600 * @fwnode: Firmware node to get the property of
601 * @propname: Name of the property
602 * @val: The value is stored here
603 *
604 * Read property @propname from the given firmware node and store the value into
605 * @val if found. The value is checked to be a string.
606 *
607 * Return: %0 if the property was found (success),
608 * %-EINVAL if given arguments are not valid,
609 * %-ENODATA if the property does not have a value,
610 * %-EPROTO or %-EILSEQ if the property is not a string,
611 * %-ENXIO if no suitable firmware interface is present.
612 */
613 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
614 const char *propname, const char **val)
615 {
616 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
617
618 return ret < 0 ? ret : 0;
619 }
620 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
621
622 /**
623 * fwnode_property_match_string - find a string in an array and return index
624 * @fwnode: Firmware node to get the property of
625 * @propname: Name of the property holding the array
626 * @string: String to look for
627 *
628 * Find a given string in a string array and if it is found return the
629 * index back.
630 *
631 * Return: %0 if the property was found (success),
632 * %-EINVAL if given arguments are not valid,
633 * %-ENODATA if the property does not have a value,
634 * %-EPROTO if the property is not an array of strings,
635 * %-ENXIO if no suitable firmware interface is present.
636 */
637 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
638 const char *propname, const char *string)
639 {
640 const char **values;
641 int nval, ret;
642
643 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
644 if (nval < 0)
645 return nval;
646
647 if (nval == 0)
648 return -ENODATA;
649
650 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
651 if (!values)
652 return -ENOMEM;
653
654 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
655 if (ret < 0)
656 goto out;
657
658 ret = match_string(values, nval, string);
659 if (ret < 0)
660 ret = -ENODATA;
661 out:
662 kfree(values);
663 return ret;
664 }
665 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
666
667 /**
668 * fwnode_property_get_reference_args() - Find a reference with arguments
669 * @fwnode: Firmware node where to look for the reference
670 * @prop: The name of the property
671 * @nargs_prop: The name of the property telling the number of
672 * arguments in the referred node. NULL if @nargs is known,
673 * otherwise @nargs is ignored. Only relevant on OF.
674 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
675 * @index: Index of the reference, from zero onwards.
676 * @args: Result structure with reference and integer arguments.
677 *
678 * Obtain a reference based on a named property in an fwnode, with
679 * integer arguments.
680 *
681 * Caller is responsible to call fwnode_handle_put() on the returned
682 * args->fwnode pointer.
683 *
684 * Returns: %0 on success
685 * %-ENOENT when the index is out of bounds, the index has an empty
686 * reference or the property was not found
687 * %-EINVAL on parse error
688 */
689 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
690 const char *prop, const char *nargs_prop,
691 unsigned int nargs, unsigned int index,
692 struct fwnode_reference_args *args)
693 {
694 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
695 nargs, index, args);
696 }
697 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
698
699 static void property_entry_free_data(const struct property_entry *p)
700 {
701 size_t i, nval;
702
703 if (p->is_array) {
704 if (p->is_string && p->pointer.str) {
705 nval = p->length / sizeof(const char *);
706 for (i = 0; i < nval; i++)
707 kfree(p->pointer.str[i]);
708 }
709 kfree(p->pointer.raw_data);
710 } else if (p->is_string) {
711 kfree(p->value.str);
712 }
713 kfree(p->name);
714 }
715
716 static int property_copy_string_array(struct property_entry *dst,
717 const struct property_entry *src)
718 {
719 char **d;
720 size_t nval = src->length / sizeof(*d);
721 int i;
722
723 d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
724 if (!d)
725 return -ENOMEM;
726
727 for (i = 0; i < nval; i++) {
728 d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
729 if (!d[i] && src->pointer.str[i]) {
730 while (--i >= 0)
731 kfree(d[i]);
732 kfree(d);
733 return -ENOMEM;
734 }
735 }
736
737 dst->pointer.raw_data = d;
738 return 0;
739 }
740
741 static int property_entry_copy_data(struct property_entry *dst,
742 const struct property_entry *src)
743 {
744 int error;
745
746 if (src->is_array) {
747 if (!src->length)
748 return -ENODATA;
749
750 if (src->is_string) {
751 error = property_copy_string_array(dst, src);
752 if (error)
753 return error;
754 } else {
755 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
756 src->length, GFP_KERNEL);
757 if (!dst->pointer.raw_data)
758 return -ENOMEM;
759 }
760 } else if (src->is_string) {
761 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
762 if (!dst->value.str && src->value.str)
763 return -ENOMEM;
764 } else {
765 dst->value.raw_data = src->value.raw_data;
766 }
767
768 dst->length = src->length;
769 dst->is_array = src->is_array;
770 dst->is_string = src->is_string;
771
772 dst->name = kstrdup(src->name, GFP_KERNEL);
773 if (!dst->name)
774 goto out_free_data;
775
776 return 0;
777
778 out_free_data:
779 property_entry_free_data(dst);
780 return -ENOMEM;
781 }
782
783 /**
784 * property_entries_dup - duplicate array of properties
785 * @properties: array of properties to copy
786 *
787 * This function creates a deep copy of the given NULL-terminated array
788 * of property entries.
789 */
790 struct property_entry *
791 property_entries_dup(const struct property_entry *properties)
792 {
793 struct property_entry *p;
794 int i, n = 0;
795
796 while (properties[n].name)
797 n++;
798
799 p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
800 if (!p)
801 return ERR_PTR(-ENOMEM);
802
803 for (i = 0; i < n; i++) {
804 int ret = property_entry_copy_data(&p[i], &properties[i]);
805 if (ret) {
806 while (--i >= 0)
807 property_entry_free_data(&p[i]);
808 kfree(p);
809 return ERR_PTR(ret);
810 }
811 }
812
813 return p;
814 }
815 EXPORT_SYMBOL_GPL(property_entries_dup);
816
817 /**
818 * property_entries_free - free previously allocated array of properties
819 * @properties: array of properties to destroy
820 *
821 * This function frees given NULL-terminated array of property entries,
822 * along with their data.
823 */
824 void property_entries_free(const struct property_entry *properties)
825 {
826 const struct property_entry *p;
827
828 for (p = properties; p->name; p++)
829 property_entry_free_data(p);
830
831 kfree(properties);
832 }
833 EXPORT_SYMBOL_GPL(property_entries_free);
834
835 /**
836 * pset_free_set - releases memory allocated for copied property set
837 * @pset: Property set to release
838 *
839 * Function takes previously copied property set and releases all the
840 * memory allocated to it.
841 */
842 static void pset_free_set(struct property_set *pset)
843 {
844 if (!pset)
845 return;
846
847 property_entries_free(pset->properties);
848 kfree(pset);
849 }
850
851 /**
852 * pset_copy_set - copies property set
853 * @pset: Property set to copy
854 *
855 * This function takes a deep copy of the given property set and returns
856 * pointer to the copy. Call device_free_property_set() to free resources
857 * allocated in this function.
858 *
859 * Return: Pointer to the new property set or error pointer.
860 */
861 static struct property_set *pset_copy_set(const struct property_set *pset)
862 {
863 struct property_entry *properties;
864 struct property_set *p;
865
866 p = kzalloc(sizeof(*p), GFP_KERNEL);
867 if (!p)
868 return ERR_PTR(-ENOMEM);
869
870 properties = property_entries_dup(pset->properties);
871 if (IS_ERR(properties)) {
872 kfree(p);
873 return ERR_CAST(properties);
874 }
875
876 p->properties = properties;
877 return p;
878 }
879
880 /**
881 * device_remove_properties - Remove properties from a device object.
882 * @dev: Device whose properties to remove.
883 *
884 * The function removes properties previously associated to the device
885 * secondary firmware node with device_add_properties(). Memory allocated
886 * to the properties will also be released.
887 */
888 void device_remove_properties(struct device *dev)
889 {
890 struct fwnode_handle *fwnode;
891 struct property_set *pset;
892
893 fwnode = dev_fwnode(dev);
894 if (!fwnode)
895 return;
896 /*
897 * Pick either primary or secondary node depending which one holds
898 * the pset. If there is no real firmware node (ACPI/DT) primary
899 * will hold the pset.
900 */
901 pset = to_pset_node(fwnode);
902 if (pset) {
903 set_primary_fwnode(dev, NULL);
904 } else {
905 pset = to_pset_node(fwnode->secondary);
906 if (pset && dev == pset->dev)
907 set_secondary_fwnode(dev, NULL);
908 }
909 if (pset && dev == pset->dev)
910 pset_free_set(pset);
911 }
912 EXPORT_SYMBOL_GPL(device_remove_properties);
913
914 /**
915 * device_add_properties - Add a collection of properties to a device object.
916 * @dev: Device to add properties to.
917 * @properties: Collection of properties to add.
918 *
919 * Associate a collection of device properties represented by @properties with
920 * @dev as its secondary firmware node. The function takes a copy of
921 * @properties.
922 */
923 int device_add_properties(struct device *dev,
924 const struct property_entry *properties)
925 {
926 struct property_set *p, pset;
927
928 if (!properties)
929 return -EINVAL;
930
931 pset.properties = properties;
932
933 p = pset_copy_set(&pset);
934 if (IS_ERR(p))
935 return PTR_ERR(p);
936
937 p->fwnode.ops = &pset_fwnode_ops;
938 set_secondary_fwnode(dev, &p->fwnode);
939 p->dev = dev;
940 return 0;
941 }
942 EXPORT_SYMBOL_GPL(device_add_properties);
943
944 /**
945 * fwnode_get_next_parent - Iterate to the node's parent
946 * @fwnode: Firmware whose parent is retrieved
947 *
948 * This is like fwnode_get_parent() except that it drops the refcount
949 * on the passed node, making it suitable for iterating through a
950 * node's parents.
951 *
952 * Returns a node pointer with refcount incremented, use
953 * fwnode_handle_node() on it when done.
954 */
955 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
956 {
957 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
958
959 fwnode_handle_put(fwnode);
960
961 return parent;
962 }
963 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
964
965 /**
966 * fwnode_get_parent - Return parent firwmare node
967 * @fwnode: Firmware whose parent is retrieved
968 *
969 * Return parent firmware node of the given node if possible or %NULL if no
970 * parent was available.
971 */
972 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
973 {
974 return fwnode_call_ptr_op(fwnode, get_parent);
975 }
976 EXPORT_SYMBOL_GPL(fwnode_get_parent);
977
978 /**
979 * fwnode_get_next_child_node - Return the next child node handle for a node
980 * @fwnode: Firmware node to find the next child node for.
981 * @child: Handle to one of the node's child nodes or a %NULL handle.
982 */
983 struct fwnode_handle *
984 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
985 struct fwnode_handle *child)
986 {
987 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
988 }
989 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
990
991 /**
992 * fwnode_get_next_available_child_node - Return the next
993 * available child node handle for a node
994 * @fwnode: Firmware node to find the next child node for.
995 * @child: Handle to one of the node's child nodes or a %NULL handle.
996 */
997 struct fwnode_handle *
998 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
999 struct fwnode_handle *child)
1000 {
1001 struct fwnode_handle *next_child = child;
1002
1003 if (!fwnode)
1004 return NULL;
1005
1006 do {
1007 next_child = fwnode_get_next_child_node(fwnode, next_child);
1008
1009 if (!next_child || fwnode_device_is_available(next_child))
1010 break;
1011 } while (next_child);
1012
1013 return next_child;
1014 }
1015 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
1016
1017 /**
1018 * device_get_next_child_node - Return the next child node handle for a device
1019 * @dev: Device to find the next child node for.
1020 * @child: Handle to one of the device's child nodes or a null handle.
1021 */
1022 struct fwnode_handle *device_get_next_child_node(struct device *dev,
1023 struct fwnode_handle *child)
1024 {
1025 struct acpi_device *adev = ACPI_COMPANION(dev);
1026 struct fwnode_handle *fwnode = NULL;
1027
1028 if (dev->of_node)
1029 fwnode = &dev->of_node->fwnode;
1030 else if (adev)
1031 fwnode = acpi_fwnode_handle(adev);
1032
1033 return fwnode_get_next_child_node(fwnode, child);
1034 }
1035 EXPORT_SYMBOL_GPL(device_get_next_child_node);
1036
1037 /**
1038 * fwnode_get_named_child_node - Return first matching named child node handle
1039 * @fwnode: Firmware node to find the named child node for.
1040 * @childname: String to match child node name against.
1041 */
1042 struct fwnode_handle *
1043 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1044 const char *childname)
1045 {
1046 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1047 }
1048 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
1049
1050 /**
1051 * device_get_named_child_node - Return first matching named child node handle
1052 * @dev: Device to find the named child node for.
1053 * @childname: String to match child node name against.
1054 */
1055 struct fwnode_handle *device_get_named_child_node(struct device *dev,
1056 const char *childname)
1057 {
1058 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
1059 }
1060 EXPORT_SYMBOL_GPL(device_get_named_child_node);
1061
1062 /**
1063 * fwnode_handle_get - Obtain a reference to a device node
1064 * @fwnode: Pointer to the device node to obtain the reference to.
1065 *
1066 * Returns the fwnode handle.
1067 */
1068 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1069 {
1070 if (!fwnode_has_op(fwnode, get))
1071 return fwnode;
1072
1073 return fwnode_call_ptr_op(fwnode, get);
1074 }
1075 EXPORT_SYMBOL_GPL(fwnode_handle_get);
1076
1077 /**
1078 * fwnode_handle_put - Drop reference to a device node
1079 * @fwnode: Pointer to the device node to drop the reference to.
1080 *
1081 * This has to be used when terminating device_for_each_child_node() iteration
1082 * with break or return to prevent stale device node references from being left
1083 * behind.
1084 */
1085 void fwnode_handle_put(struct fwnode_handle *fwnode)
1086 {
1087 fwnode_call_void_op(fwnode, put);
1088 }
1089 EXPORT_SYMBOL_GPL(fwnode_handle_put);
1090
1091 /**
1092 * fwnode_device_is_available - check if a device is available for use
1093 * @fwnode: Pointer to the fwnode of the device.
1094 */
1095 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1096 {
1097 return fwnode_call_bool_op(fwnode, device_is_available);
1098 }
1099 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1100
1101 /**
1102 * device_get_child_node_count - return the number of child nodes for device
1103 * @dev: Device to cound the child nodes for
1104 */
1105 unsigned int device_get_child_node_count(struct device *dev)
1106 {
1107 struct fwnode_handle *child;
1108 unsigned int count = 0;
1109
1110 device_for_each_child_node(dev, child)
1111 count++;
1112
1113 return count;
1114 }
1115 EXPORT_SYMBOL_GPL(device_get_child_node_count);
1116
1117 bool device_dma_supported(struct device *dev)
1118 {
1119 /* For DT, this is always supported.
1120 * For ACPI, this depends on CCA, which
1121 * is determined by the acpi_dma_supported().
1122 */
1123 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1124 return true;
1125
1126 return acpi_dma_supported(ACPI_COMPANION(dev));
1127 }
1128 EXPORT_SYMBOL_GPL(device_dma_supported);
1129
1130 enum dev_dma_attr device_get_dma_attr(struct device *dev)
1131 {
1132 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1133
1134 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1135 if (of_dma_is_coherent(dev->of_node))
1136 attr = DEV_DMA_COHERENT;
1137 else
1138 attr = DEV_DMA_NON_COHERENT;
1139 } else
1140 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1141
1142 return attr;
1143 }
1144 EXPORT_SYMBOL_GPL(device_get_dma_attr);
1145
1146 /**
1147 * fwnode_get_phy_mode - Get phy mode for given firmware node
1148 * @fwnode: Pointer to the given node
1149 *
1150 * The function gets phy interface string from property 'phy-mode' or
1151 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1152 * error case.
1153 */
1154 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1155 {
1156 const char *pm;
1157 int err, i;
1158
1159 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1160 if (err < 0)
1161 err = fwnode_property_read_string(fwnode,
1162 "phy-connection-type", &pm);
1163 if (err < 0)
1164 return err;
1165
1166 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1167 if (!strcasecmp(pm, phy_modes(i)))
1168 return i;
1169
1170 return -ENODEV;
1171 }
1172 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1173
1174 /**
1175 * device_get_phy_mode - Get phy mode for given device
1176 * @dev: Pointer to the given device
1177 *
1178 * The function gets phy interface string from property 'phy-mode' or
1179 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1180 * error case.
1181 */
1182 int device_get_phy_mode(struct device *dev)
1183 {
1184 return fwnode_get_phy_mode(dev_fwnode(dev));
1185 }
1186 EXPORT_SYMBOL_GPL(device_get_phy_mode);
1187
1188 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1189 const char *name, char *addr,
1190 int alen)
1191 {
1192 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1193
1194 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1195 return addr;
1196 return NULL;
1197 }
1198
1199 /**
1200 * fwnode_get_mac_address - Get the MAC from the firmware node
1201 * @fwnode: Pointer to the firmware node
1202 * @addr: Address of buffer to store the MAC in
1203 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1204 *
1205 * Search the firmware node for the best MAC address to use. 'mac-address' is
1206 * checked first, because that is supposed to contain to "most recent" MAC
1207 * address. If that isn't set, then 'local-mac-address' is checked next,
1208 * because that is the default address. If that isn't set, then the obsolete
1209 * 'address' is checked, just in case we're using an old device tree.
1210 *
1211 * Note that the 'address' property is supposed to contain a virtual address of
1212 * the register set, but some DTS files have redefined that property to be the
1213 * MAC address.
1214 *
1215 * All-zero MAC addresses are rejected, because those could be properties that
1216 * exist in the firmware tables, but were not updated by the firmware. For
1217 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1218 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
1219 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1220 * exists but is all zeros.
1221 */
1222 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1223 {
1224 char *res;
1225
1226 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1227 if (res)
1228 return res;
1229
1230 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1231 if (res)
1232 return res;
1233
1234 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1235 }
1236 EXPORT_SYMBOL(fwnode_get_mac_address);
1237
1238 /**
1239 * device_get_mac_address - Get the MAC for a given device
1240 * @dev: Pointer to the device
1241 * @addr: Address of buffer to store the MAC in
1242 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1243 */
1244 void *device_get_mac_address(struct device *dev, char *addr, int alen)
1245 {
1246 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1247 }
1248 EXPORT_SYMBOL(device_get_mac_address);
1249
1250 /**
1251 * fwnode_irq_get - Get IRQ directly from a fwnode
1252 * @fwnode: Pointer to the firmware node
1253 * @index: Zero-based index of the IRQ
1254 *
1255 * Returns Linux IRQ number on success. Other values are determined
1256 * accordingly to acpi_/of_ irq_get() operation.
1257 */
1258 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1259 {
1260 struct device_node *of_node = to_of_node(fwnode);
1261 struct resource res;
1262 int ret;
1263
1264 if (IS_ENABLED(CONFIG_OF) && of_node)
1265 return of_irq_get(of_node, index);
1266
1267 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1268 if (ret)
1269 return ret;
1270
1271 return res.start;
1272 }
1273 EXPORT_SYMBOL(fwnode_irq_get);
1274
1275 /**
1276 * device_graph_get_next_endpoint - Get next endpoint firmware node
1277 * @fwnode: Pointer to the parent firmware node
1278 * @prev: Previous endpoint node or %NULL to get the first
1279 *
1280 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1281 * are available.
1282 */
1283 struct fwnode_handle *
1284 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1285 struct fwnode_handle *prev)
1286 {
1287 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1288 }
1289 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1290
1291 /**
1292 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1293 * @endpoint: Endpoint firmware node of the port
1294 *
1295 * Return: the firmware node of the device the @endpoint belongs to.
1296 */
1297 struct fwnode_handle *
1298 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1299 {
1300 struct fwnode_handle *port, *parent;
1301
1302 port = fwnode_get_parent(endpoint);
1303 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1304
1305 fwnode_handle_put(port);
1306
1307 return parent;
1308 }
1309 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1310
1311 /**
1312 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1313 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1314 *
1315 * Extracts firmware node of a remote device the @fwnode points to.
1316 */
1317 struct fwnode_handle *
1318 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1319 {
1320 struct fwnode_handle *endpoint, *parent;
1321
1322 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1323 parent = fwnode_graph_get_port_parent(endpoint);
1324
1325 fwnode_handle_put(endpoint);
1326
1327 return parent;
1328 }
1329 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1330
1331 /**
1332 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1333 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1334 *
1335 * Extracts firmware node of a remote port the @fwnode points to.
1336 */
1337 struct fwnode_handle *
1338 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1339 {
1340 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1341 }
1342 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1343
1344 /**
1345 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1346 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1347 *
1348 * Extracts firmware node of a remote endpoint the @fwnode points to.
1349 */
1350 struct fwnode_handle *
1351 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1352 {
1353 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1354 }
1355 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1356
1357 /**
1358 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1359 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1360 * @port_id: identifier of the parent port node
1361 * @endpoint_id: identifier of the endpoint node
1362 *
1363 * Return: Remote fwnode handle associated with remote endpoint node linked
1364 * to @node. Use fwnode_node_put() on it when done.
1365 */
1366 struct fwnode_handle *
1367 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1368 u32 endpoint_id)
1369 {
1370 struct fwnode_handle *endpoint = NULL;
1371
1372 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1373 struct fwnode_endpoint fwnode_ep;
1374 struct fwnode_handle *remote;
1375 int ret;
1376
1377 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1378 if (ret < 0)
1379 continue;
1380
1381 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1382 continue;
1383
1384 remote = fwnode_graph_get_remote_port_parent(endpoint);
1385 if (!remote)
1386 return NULL;
1387
1388 return fwnode_device_is_available(remote) ? remote : NULL;
1389 }
1390
1391 return NULL;
1392 }
1393 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1394
1395 /**
1396 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1397 * @fwnode: pointer to endpoint fwnode_handle
1398 * @endpoint: pointer to the fwnode endpoint data structure
1399 *
1400 * Parse @fwnode representing a graph endpoint node and store the
1401 * information in @endpoint. The caller must hold a reference to
1402 * @fwnode.
1403 */
1404 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1405 struct fwnode_endpoint *endpoint)
1406 {
1407 memset(endpoint, 0, sizeof(*endpoint));
1408
1409 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1410 }
1411 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1412
1413 const void *device_get_match_data(struct device *dev)
1414 {
1415 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1416 }
1417 EXPORT_SYMBOL_GPL(device_get_match_data);