]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/property.c
ACPI / property: Add fwnode_get_next_child_node()
[mirror_ubuntu-bionic-kernel.git] / drivers / base / property.c
1 /*
2 * property.c - Unified device property interface.
3 *
4 * Copyright (C) 2014, Intel Corporation
5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6 * Mika Westerberg <mika.westerberg@linux.intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/acpi.h>
14 #include <linux/export.h>
15 #include <linux/kernel.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/property.h>
19 #include <linux/etherdevice.h>
20 #include <linux/phy.h>
21
22 struct property_set {
23 struct fwnode_handle fwnode;
24 const struct property_entry *properties;
25 };
26
27 static inline bool is_pset_node(struct fwnode_handle *fwnode)
28 {
29 return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
30 }
31
32 static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
33 {
34 return is_pset_node(fwnode) ?
35 container_of(fwnode, struct property_set, fwnode) : NULL;
36 }
37
38 static const struct property_entry *pset_prop_get(struct property_set *pset,
39 const char *name)
40 {
41 const struct property_entry *prop;
42
43 if (!pset || !pset->properties)
44 return NULL;
45
46 for (prop = pset->properties; prop->name; prop++)
47 if (!strcmp(name, prop->name))
48 return prop;
49
50 return NULL;
51 }
52
53 static const void *pset_prop_find(struct property_set *pset,
54 const char *propname, size_t length)
55 {
56 const struct property_entry *prop;
57 const void *pointer;
58
59 prop = pset_prop_get(pset, propname);
60 if (!prop)
61 return ERR_PTR(-EINVAL);
62 if (prop->is_array)
63 pointer = prop->pointer.raw_data;
64 else
65 pointer = &prop->value.raw_data;
66 if (!pointer)
67 return ERR_PTR(-ENODATA);
68 if (length > prop->length)
69 return ERR_PTR(-EOVERFLOW);
70 return pointer;
71 }
72
73 static int pset_prop_read_u8_array(struct property_set *pset,
74 const char *propname,
75 u8 *values, size_t nval)
76 {
77 const void *pointer;
78 size_t length = nval * sizeof(*values);
79
80 pointer = pset_prop_find(pset, propname, length);
81 if (IS_ERR(pointer))
82 return PTR_ERR(pointer);
83
84 memcpy(values, pointer, length);
85 return 0;
86 }
87
88 static int pset_prop_read_u16_array(struct property_set *pset,
89 const char *propname,
90 u16 *values, size_t nval)
91 {
92 const void *pointer;
93 size_t length = nval * sizeof(*values);
94
95 pointer = pset_prop_find(pset, propname, length);
96 if (IS_ERR(pointer))
97 return PTR_ERR(pointer);
98
99 memcpy(values, pointer, length);
100 return 0;
101 }
102
103 static int pset_prop_read_u32_array(struct property_set *pset,
104 const char *propname,
105 u32 *values, size_t nval)
106 {
107 const void *pointer;
108 size_t length = nval * sizeof(*values);
109
110 pointer = pset_prop_find(pset, propname, length);
111 if (IS_ERR(pointer))
112 return PTR_ERR(pointer);
113
114 memcpy(values, pointer, length);
115 return 0;
116 }
117
118 static int pset_prop_read_u64_array(struct property_set *pset,
119 const char *propname,
120 u64 *values, size_t nval)
121 {
122 const void *pointer;
123 size_t length = nval * sizeof(*values);
124
125 pointer = pset_prop_find(pset, propname, length);
126 if (IS_ERR(pointer))
127 return PTR_ERR(pointer);
128
129 memcpy(values, pointer, length);
130 return 0;
131 }
132
133 static int pset_prop_count_elems_of_size(struct property_set *pset,
134 const char *propname, size_t length)
135 {
136 const struct property_entry *prop;
137
138 prop = pset_prop_get(pset, propname);
139 if (!prop)
140 return -EINVAL;
141
142 return prop->length / length;
143 }
144
145 static int pset_prop_read_string_array(struct property_set *pset,
146 const char *propname,
147 const char **strings, size_t nval)
148 {
149 const void *pointer;
150 size_t length = nval * sizeof(*strings);
151
152 pointer = pset_prop_find(pset, propname, length);
153 if (IS_ERR(pointer))
154 return PTR_ERR(pointer);
155
156 memcpy(strings, pointer, length);
157 return 0;
158 }
159
160 static int pset_prop_read_string(struct property_set *pset,
161 const char *propname, const char **strings)
162 {
163 const struct property_entry *prop;
164 const char * const *pointer;
165
166 prop = pset_prop_get(pset, propname);
167 if (!prop)
168 return -EINVAL;
169 if (!prop->is_string)
170 return -EILSEQ;
171 if (prop->is_array) {
172 pointer = prop->pointer.str;
173 if (!pointer)
174 return -ENODATA;
175 } else {
176 pointer = &prop->value.str;
177 if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
178 return -EILSEQ;
179 }
180
181 *strings = *pointer;
182 return 0;
183 }
184
185 static inline struct fwnode_handle *dev_fwnode(struct device *dev)
186 {
187 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
188 &dev->of_node->fwnode : dev->fwnode;
189 }
190
191 /**
192 * device_property_present - check if a property of a device is present
193 * @dev: Device whose property is being checked
194 * @propname: Name of the property
195 *
196 * Check if property @propname is present in the device firmware description.
197 */
198 bool device_property_present(struct device *dev, const char *propname)
199 {
200 return fwnode_property_present(dev_fwnode(dev), propname);
201 }
202 EXPORT_SYMBOL_GPL(device_property_present);
203
204 static bool __fwnode_property_present(struct fwnode_handle *fwnode,
205 const char *propname)
206 {
207 if (is_of_node(fwnode))
208 return of_property_read_bool(to_of_node(fwnode), propname);
209 else if (is_acpi_node(fwnode))
210 return !acpi_node_prop_get(fwnode, propname, NULL);
211 else if (is_pset_node(fwnode))
212 return !!pset_prop_get(to_pset_node(fwnode), propname);
213 return false;
214 }
215
216 /**
217 * fwnode_property_present - check if a property of a firmware node is present
218 * @fwnode: Firmware node whose property to check
219 * @propname: Name of the property
220 */
221 bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
222 {
223 bool ret;
224
225 ret = __fwnode_property_present(fwnode, propname);
226 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
227 !IS_ERR_OR_NULL(fwnode->secondary))
228 ret = __fwnode_property_present(fwnode->secondary, propname);
229 return ret;
230 }
231 EXPORT_SYMBOL_GPL(fwnode_property_present);
232
233 /**
234 * device_property_read_u8_array - return a u8 array property of a device
235 * @dev: Device to get the property of
236 * @propname: Name of the property
237 * @val: The values are stored here or %NULL to return the number of values
238 * @nval: Size of the @val array
239 *
240 * Function reads an array of u8 properties with @propname from the device
241 * firmware description and stores them to @val if found.
242 *
243 * Return: number of values if @val was %NULL,
244 * %0 if the property was found (success),
245 * %-EINVAL if given arguments are not valid,
246 * %-ENODATA if the property does not have a value,
247 * %-EPROTO if the property is not an array of numbers,
248 * %-EOVERFLOW if the size of the property is not as expected.
249 * %-ENXIO if no suitable firmware interface is present.
250 */
251 int device_property_read_u8_array(struct device *dev, const char *propname,
252 u8 *val, size_t nval)
253 {
254 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
255 }
256 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
257
258 /**
259 * device_property_read_u16_array - return a u16 array property of a device
260 * @dev: Device to get the property of
261 * @propname: Name of the property
262 * @val: The values are stored here or %NULL to return the number of values
263 * @nval: Size of the @val array
264 *
265 * Function reads an array of u16 properties with @propname from the device
266 * firmware description and stores them to @val if found.
267 *
268 * Return: number of values if @val was %NULL,
269 * %0 if the property was found (success),
270 * %-EINVAL if given arguments are not valid,
271 * %-ENODATA if the property does not have a value,
272 * %-EPROTO if the property is not an array of numbers,
273 * %-EOVERFLOW if the size of the property is not as expected.
274 * %-ENXIO if no suitable firmware interface is present.
275 */
276 int device_property_read_u16_array(struct device *dev, const char *propname,
277 u16 *val, size_t nval)
278 {
279 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
280 }
281 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
282
283 /**
284 * device_property_read_u32_array - return a u32 array property of a device
285 * @dev: Device to get the property of
286 * @propname: Name of the property
287 * @val: The values are stored here or %NULL to return the number of values
288 * @nval: Size of the @val array
289 *
290 * Function reads an array of u32 properties with @propname from the device
291 * firmware description and stores them to @val if found.
292 *
293 * Return: number of values if @val was %NULL,
294 * %0 if the property was found (success),
295 * %-EINVAL if given arguments are not valid,
296 * %-ENODATA if the property does not have a value,
297 * %-EPROTO if the property is not an array of numbers,
298 * %-EOVERFLOW if the size of the property is not as expected.
299 * %-ENXIO if no suitable firmware interface is present.
300 */
301 int device_property_read_u32_array(struct device *dev, const char *propname,
302 u32 *val, size_t nval)
303 {
304 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
305 }
306 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
307
308 /**
309 * device_property_read_u64_array - return a u64 array property of a device
310 * @dev: Device to get the property of
311 * @propname: Name of the property
312 * @val: The values are stored here or %NULL to return the number of values
313 * @nval: Size of the @val array
314 *
315 * Function reads an array of u64 properties with @propname from the device
316 * firmware description and stores them to @val if found.
317 *
318 * Return: number of values if @val was %NULL,
319 * %0 if the property was found (success),
320 * %-EINVAL if given arguments are not valid,
321 * %-ENODATA if the property does not have a value,
322 * %-EPROTO if the property is not an array of numbers,
323 * %-EOVERFLOW if the size of the property is not as expected.
324 * %-ENXIO if no suitable firmware interface is present.
325 */
326 int device_property_read_u64_array(struct device *dev, const char *propname,
327 u64 *val, size_t nval)
328 {
329 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
330 }
331 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
332
333 /**
334 * device_property_read_string_array - return a string array property of device
335 * @dev: Device to get the property of
336 * @propname: Name of the property
337 * @val: The values are stored here or %NULL to return the number of values
338 * @nval: Size of the @val array
339 *
340 * Function reads an array of string properties with @propname from the device
341 * firmware description and stores them to @val if found.
342 *
343 * Return: number of values if @val was %NULL,
344 * %0 if the property was found (success),
345 * %-EINVAL if given arguments are not valid,
346 * %-ENODATA if the property does not have a value,
347 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
348 * %-EOVERFLOW if the size of the property is not as expected.
349 * %-ENXIO if no suitable firmware interface is present.
350 */
351 int device_property_read_string_array(struct device *dev, const char *propname,
352 const char **val, size_t nval)
353 {
354 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
355 }
356 EXPORT_SYMBOL_GPL(device_property_read_string_array);
357
358 /**
359 * device_property_read_string - return a string property of a device
360 * @dev: Device to get the property of
361 * @propname: Name of the property
362 * @val: The value is stored here
363 *
364 * Function reads property @propname from the device firmware description and
365 * stores the value into @val if found. The value is checked to be a string.
366 *
367 * Return: %0 if the property was found (success),
368 * %-EINVAL if given arguments are not valid,
369 * %-ENODATA if the property does not have a value,
370 * %-EPROTO or %-EILSEQ if the property type is not a string.
371 * %-ENXIO if no suitable firmware interface is present.
372 */
373 int device_property_read_string(struct device *dev, const char *propname,
374 const char **val)
375 {
376 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
377 }
378 EXPORT_SYMBOL_GPL(device_property_read_string);
379
380 /**
381 * device_property_match_string - find a string in an array and return index
382 * @dev: Device to get the property of
383 * @propname: Name of the property holding the array
384 * @string: String to look for
385 *
386 * Find a given string in a string array and if it is found return the
387 * index back.
388 *
389 * Return: %0 if the property was found (success),
390 * %-EINVAL if given arguments are not valid,
391 * %-ENODATA if the property does not have a value,
392 * %-EPROTO if the property is not an array of strings,
393 * %-ENXIO if no suitable firmware interface is present.
394 */
395 int device_property_match_string(struct device *dev, const char *propname,
396 const char *string)
397 {
398 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
399 }
400 EXPORT_SYMBOL_GPL(device_property_match_string);
401
402 #define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval) \
403 (val) ? of_property_read_##type##_array((node), (propname), (val), (nval)) \
404 : of_property_count_elems_of_size((node), (propname), sizeof(type))
405
406 #define PSET_PROP_READ_ARRAY(node, propname, type, val, nval) \
407 (val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval)) \
408 : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
409
410 #define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
411 ({ \
412 int _ret_; \
413 if (is_of_node(_fwnode_)) \
414 _ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_, \
415 _type_, _val_, _nval_); \
416 else if (is_acpi_node(_fwnode_)) \
417 _ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_, \
418 _val_, _nval_); \
419 else if (is_pset_node(_fwnode_)) \
420 _ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_, \
421 _type_, _val_, _nval_); \
422 else \
423 _ret_ = -ENXIO; \
424 _ret_; \
425 })
426
427 #define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
428 ({ \
429 int _ret_; \
430 _ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, \
431 _val_, _nval_); \
432 if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) && \
433 !IS_ERR_OR_NULL(_fwnode_->secondary)) \
434 _ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_, \
435 _proptype_, _val_, _nval_); \
436 _ret_; \
437 })
438
439 /**
440 * fwnode_property_read_u8_array - return a u8 array property of firmware node
441 * @fwnode: Firmware node to get the property of
442 * @propname: Name of the property
443 * @val: The values are stored here or %NULL to return the number of values
444 * @nval: Size of the @val array
445 *
446 * Read an array of u8 properties with @propname from @fwnode and stores them to
447 * @val if found.
448 *
449 * Return: number of values if @val was %NULL,
450 * %0 if the property was found (success),
451 * %-EINVAL if given arguments are not valid,
452 * %-ENODATA if the property does not have a value,
453 * %-EPROTO if the property is not an array of numbers,
454 * %-EOVERFLOW if the size of the property is not as expected,
455 * %-ENXIO if no suitable firmware interface is present.
456 */
457 int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
458 const char *propname, u8 *val, size_t nval)
459 {
460 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
461 val, nval);
462 }
463 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
464
465 /**
466 * fwnode_property_read_u16_array - return a u16 array property of firmware node
467 * @fwnode: Firmware node to get the property of
468 * @propname: Name of the property
469 * @val: The values are stored here or %NULL to return the number of values
470 * @nval: Size of the @val array
471 *
472 * Read an array of u16 properties with @propname from @fwnode and store them to
473 * @val if found.
474 *
475 * Return: number of values if @val was %NULL,
476 * %0 if the property was found (success),
477 * %-EINVAL if given arguments are not valid,
478 * %-ENODATA if the property does not have a value,
479 * %-EPROTO if the property is not an array of numbers,
480 * %-EOVERFLOW if the size of the property is not as expected,
481 * %-ENXIO if no suitable firmware interface is present.
482 */
483 int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
484 const char *propname, u16 *val, size_t nval)
485 {
486 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
487 val, nval);
488 }
489 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
490
491 /**
492 * fwnode_property_read_u32_array - return a u32 array property of firmware node
493 * @fwnode: Firmware node to get the property of
494 * @propname: Name of the property
495 * @val: The values are stored here or %NULL to return the number of values
496 * @nval: Size of the @val array
497 *
498 * Read an array of u32 properties with @propname from @fwnode store them to
499 * @val if found.
500 *
501 * Return: number of values if @val was %NULL,
502 * %0 if the property was found (success),
503 * %-EINVAL if given arguments are not valid,
504 * %-ENODATA if the property does not have a value,
505 * %-EPROTO if the property is not an array of numbers,
506 * %-EOVERFLOW if the size of the property is not as expected,
507 * %-ENXIO if no suitable firmware interface is present.
508 */
509 int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
510 const char *propname, u32 *val, size_t nval)
511 {
512 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
513 val, nval);
514 }
515 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
516
517 /**
518 * fwnode_property_read_u64_array - return a u64 array property firmware node
519 * @fwnode: Firmware node to get the property of
520 * @propname: Name of the property
521 * @val: The values are stored here or %NULL to return the number of values
522 * @nval: Size of the @val array
523 *
524 * Read an array of u64 properties with @propname from @fwnode and store them to
525 * @val if found.
526 *
527 * Return: number of values if @val was %NULL,
528 * %0 if the property was found (success),
529 * %-EINVAL if given arguments are not valid,
530 * %-ENODATA if the property does not have a value,
531 * %-EPROTO if the property is not an array of numbers,
532 * %-EOVERFLOW if the size of the property is not as expected,
533 * %-ENXIO if no suitable firmware interface is present.
534 */
535 int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
536 const char *propname, u64 *val, size_t nval)
537 {
538 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
539 val, nval);
540 }
541 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
542
543 static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
544 const char *propname,
545 const char **val, size_t nval)
546 {
547 if (is_of_node(fwnode))
548 return val ?
549 of_property_read_string_array(to_of_node(fwnode),
550 propname, val, nval) :
551 of_property_count_strings(to_of_node(fwnode), propname);
552 else if (is_acpi_node(fwnode))
553 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
554 val, nval);
555 else if (is_pset_node(fwnode))
556 return val ?
557 pset_prop_read_string_array(to_pset_node(fwnode),
558 propname, val, nval) :
559 pset_prop_count_elems_of_size(to_pset_node(fwnode),
560 propname,
561 sizeof(const char *));
562 return -ENXIO;
563 }
564
565 static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
566 const char *propname, const char **val)
567 {
568 if (is_of_node(fwnode))
569 return of_property_read_string(to_of_node(fwnode), propname, val);
570 else if (is_acpi_node(fwnode))
571 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
572 val, 1);
573 else if (is_pset_node(fwnode))
574 return pset_prop_read_string(to_pset_node(fwnode), propname, val);
575 return -ENXIO;
576 }
577
578 /**
579 * fwnode_property_read_string_array - return string array property of a node
580 * @fwnode: Firmware node to get the property of
581 * @propname: Name of the property
582 * @val: The values are stored here or %NULL to return the number of values
583 * @nval: Size of the @val array
584 *
585 * Read an string list property @propname from the given firmware node and store
586 * them to @val if found.
587 *
588 * Return: number of values if @val was %NULL,
589 * %0 if the property was found (success),
590 * %-EINVAL if given arguments are not valid,
591 * %-ENODATA if the property does not have a value,
592 * %-EPROTO if the property is not an array of strings,
593 * %-EOVERFLOW if the size of the property is not as expected,
594 * %-ENXIO if no suitable firmware interface is present.
595 */
596 int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
597 const char *propname, const char **val,
598 size_t nval)
599 {
600 int ret;
601
602 ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
603 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
604 !IS_ERR_OR_NULL(fwnode->secondary))
605 ret = __fwnode_property_read_string_array(fwnode->secondary,
606 propname, val, nval);
607 return ret;
608 }
609 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
610
611 /**
612 * fwnode_property_read_string - return a string property of a firmware node
613 * @fwnode: Firmware node to get the property of
614 * @propname: Name of the property
615 * @val: The value is stored here
616 *
617 * Read property @propname from the given firmware node and store the value into
618 * @val if found. The value is checked to be a string.
619 *
620 * Return: %0 if the property was found (success),
621 * %-EINVAL if given arguments are not valid,
622 * %-ENODATA if the property does not have a value,
623 * %-EPROTO or %-EILSEQ if the property is not a string,
624 * %-ENXIO if no suitable firmware interface is present.
625 */
626 int fwnode_property_read_string(struct fwnode_handle *fwnode,
627 const char *propname, const char **val)
628 {
629 int ret;
630
631 ret = __fwnode_property_read_string(fwnode, propname, val);
632 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
633 !IS_ERR_OR_NULL(fwnode->secondary))
634 ret = __fwnode_property_read_string(fwnode->secondary,
635 propname, val);
636 return ret;
637 }
638 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
639
640 /**
641 * fwnode_property_match_string - find a string in an array and return index
642 * @fwnode: Firmware node to get the property of
643 * @propname: Name of the property holding the array
644 * @string: String to look for
645 *
646 * Find a given string in a string array and if it is found return the
647 * index back.
648 *
649 * Return: %0 if the property was found (success),
650 * %-EINVAL if given arguments are not valid,
651 * %-ENODATA if the property does not have a value,
652 * %-EPROTO if the property is not an array of strings,
653 * %-ENXIO if no suitable firmware interface is present.
654 */
655 int fwnode_property_match_string(struct fwnode_handle *fwnode,
656 const char *propname, const char *string)
657 {
658 const char **values;
659 int nval, ret;
660
661 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
662 if (nval < 0)
663 return nval;
664
665 if (nval == 0)
666 return -ENODATA;
667
668 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
669 if (!values)
670 return -ENOMEM;
671
672 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
673 if (ret < 0)
674 goto out;
675
676 ret = match_string(values, nval, string);
677 if (ret < 0)
678 ret = -ENODATA;
679 out:
680 kfree(values);
681 return ret;
682 }
683 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
684
685 static int property_copy_string_array(struct property_entry *dst,
686 const struct property_entry *src)
687 {
688 char **d;
689 size_t nval = src->length / sizeof(*d);
690 int i;
691
692 d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
693 if (!d)
694 return -ENOMEM;
695
696 for (i = 0; i < nval; i++) {
697 d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
698 if (!d[i] && src->pointer.str[i]) {
699 while (--i >= 0)
700 kfree(d[i]);
701 kfree(d);
702 return -ENOMEM;
703 }
704 }
705
706 dst->pointer.raw_data = d;
707 return 0;
708 }
709
710 static int property_entry_copy_data(struct property_entry *dst,
711 const struct property_entry *src)
712 {
713 int error;
714
715 dst->name = kstrdup(src->name, GFP_KERNEL);
716 if (!dst->name)
717 return -ENOMEM;
718
719 if (src->is_array) {
720 if (!src->length) {
721 error = -ENODATA;
722 goto out_free_name;
723 }
724
725 if (src->is_string) {
726 error = property_copy_string_array(dst, src);
727 if (error)
728 goto out_free_name;
729 } else {
730 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
731 src->length, GFP_KERNEL);
732 if (!dst->pointer.raw_data) {
733 error = -ENOMEM;
734 goto out_free_name;
735 }
736 }
737 } else if (src->is_string) {
738 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
739 if (!dst->value.str && src->value.str) {
740 error = -ENOMEM;
741 goto out_free_name;
742 }
743 } else {
744 dst->value.raw_data = src->value.raw_data;
745 }
746
747 dst->length = src->length;
748 dst->is_array = src->is_array;
749 dst->is_string = src->is_string;
750
751 return 0;
752
753 out_free_name:
754 kfree(dst->name);
755 return error;
756 }
757
758 static void property_entry_free_data(const struct property_entry *p)
759 {
760 size_t i, nval;
761
762 if (p->is_array) {
763 if (p->is_string && p->pointer.str) {
764 nval = p->length / sizeof(const char *);
765 for (i = 0; i < nval; i++)
766 kfree(p->pointer.str[i]);
767 }
768 kfree(p->pointer.raw_data);
769 } else if (p->is_string) {
770 kfree(p->value.str);
771 }
772 kfree(p->name);
773 }
774
775 /**
776 * property_entries_dup - duplicate array of properties
777 * @properties: array of properties to copy
778 *
779 * This function creates a deep copy of the given NULL-terminated array
780 * of property entries.
781 */
782 struct property_entry *
783 property_entries_dup(const struct property_entry *properties)
784 {
785 struct property_entry *p;
786 int i, n = 0;
787
788 while (properties[n].name)
789 n++;
790
791 p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
792 if (!p)
793 return ERR_PTR(-ENOMEM);
794
795 for (i = 0; i < n; i++) {
796 int ret = property_entry_copy_data(&p[i], &properties[i]);
797 if (ret) {
798 while (--i >= 0)
799 property_entry_free_data(&p[i]);
800 kfree(p);
801 return ERR_PTR(ret);
802 }
803 }
804
805 return p;
806 }
807 EXPORT_SYMBOL_GPL(property_entries_dup);
808
809 /**
810 * property_entries_free - free previously allocated array of properties
811 * @properties: array of properties to destroy
812 *
813 * This function frees given NULL-terminated array of property entries,
814 * along with their data.
815 */
816 void property_entries_free(const struct property_entry *properties)
817 {
818 const struct property_entry *p;
819
820 for (p = properties; p->name; p++)
821 property_entry_free_data(p);
822
823 kfree(properties);
824 }
825 EXPORT_SYMBOL_GPL(property_entries_free);
826
827 /**
828 * pset_free_set - releases memory allocated for copied property set
829 * @pset: Property set to release
830 *
831 * Function takes previously copied property set and releases all the
832 * memory allocated to it.
833 */
834 static void pset_free_set(struct property_set *pset)
835 {
836 if (!pset)
837 return;
838
839 property_entries_free(pset->properties);
840 kfree(pset);
841 }
842
843 /**
844 * pset_copy_set - copies property set
845 * @pset: Property set to copy
846 *
847 * This function takes a deep copy of the given property set and returns
848 * pointer to the copy. Call device_free_property_set() to free resources
849 * allocated in this function.
850 *
851 * Return: Pointer to the new property set or error pointer.
852 */
853 static struct property_set *pset_copy_set(const struct property_set *pset)
854 {
855 struct property_entry *properties;
856 struct property_set *p;
857
858 p = kzalloc(sizeof(*p), GFP_KERNEL);
859 if (!p)
860 return ERR_PTR(-ENOMEM);
861
862 properties = property_entries_dup(pset->properties);
863 if (IS_ERR(properties)) {
864 kfree(p);
865 return ERR_CAST(properties);
866 }
867
868 p->properties = properties;
869 return p;
870 }
871
872 /**
873 * device_remove_properties - Remove properties from a device object.
874 * @dev: Device whose properties to remove.
875 *
876 * The function removes properties previously associated to the device
877 * secondary firmware node with device_add_properties(). Memory allocated
878 * to the properties will also be released.
879 */
880 void device_remove_properties(struct device *dev)
881 {
882 struct fwnode_handle *fwnode;
883
884 fwnode = dev_fwnode(dev);
885 if (!fwnode)
886 return;
887 /*
888 * Pick either primary or secondary node depending which one holds
889 * the pset. If there is no real firmware node (ACPI/DT) primary
890 * will hold the pset.
891 */
892 if (is_pset_node(fwnode)) {
893 set_primary_fwnode(dev, NULL);
894 pset_free_set(to_pset_node(fwnode));
895 } else {
896 fwnode = fwnode->secondary;
897 if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
898 set_secondary_fwnode(dev, NULL);
899 pset_free_set(to_pset_node(fwnode));
900 }
901 }
902 }
903 EXPORT_SYMBOL_GPL(device_remove_properties);
904
905 /**
906 * device_add_properties - Add a collection of properties to a device object.
907 * @dev: Device to add properties to.
908 * @properties: Collection of properties to add.
909 *
910 * Associate a collection of device properties represented by @properties with
911 * @dev as its secondary firmware node. The function takes a copy of
912 * @properties.
913 */
914 int device_add_properties(struct device *dev,
915 const struct property_entry *properties)
916 {
917 struct property_set *p, pset;
918
919 if (!properties)
920 return -EINVAL;
921
922 pset.properties = properties;
923
924 p = pset_copy_set(&pset);
925 if (IS_ERR(p))
926 return PTR_ERR(p);
927
928 p->fwnode.type = FWNODE_PDATA;
929 set_secondary_fwnode(dev, &p->fwnode);
930 return 0;
931 }
932 EXPORT_SYMBOL_GPL(device_add_properties);
933
934 /**
935 * fwnode_get_parent - Return parent firwmare node
936 * @fwnode: Firmware whose parent is retrieved
937 *
938 * Return parent firmware node of the given node if possible or %NULL if no
939 * parent was available.
940 */
941 struct fwnode_handle *fwnode_get_parent(struct fwnode_handle *fwnode)
942 {
943 struct fwnode_handle *parent = NULL;
944
945 if (is_of_node(fwnode)) {
946 struct device_node *node;
947
948 node = of_get_parent(to_of_node(fwnode));
949 if (node)
950 parent = &node->fwnode;
951 } else if (is_acpi_node(fwnode)) {
952 parent = acpi_node_get_parent(fwnode);
953 }
954
955 return parent;
956 }
957 EXPORT_SYMBOL_GPL(fwnode_get_parent);
958
959 /**
960 * fwnode_get_next_child_node - Return the next child node handle for a node
961 * @fwnode: Firmware node to find the next child node for.
962 * @child: Handle to one of the node's child nodes or a %NULL handle.
963 */
964 struct fwnode_handle *fwnode_get_next_child_node(struct fwnode_handle *fwnode,
965 struct fwnode_handle *child)
966 {
967 if (is_of_node(fwnode)) {
968 struct device_node *node;
969
970 node = of_get_next_available_child(to_of_node(fwnode),
971 to_of_node(child));
972 if (node)
973 return &node->fwnode;
974 } else if (is_acpi_node(fwnode)) {
975 return acpi_get_next_subnode(fwnode, child);
976 }
977
978 return NULL;
979 }
980 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
981
982 /**
983 * device_get_next_child_node - Return the next child node handle for a device
984 * @dev: Device to find the next child node for.
985 * @child: Handle to one of the device's child nodes or a null handle.
986 */
987 struct fwnode_handle *device_get_next_child_node(struct device *dev,
988 struct fwnode_handle *child)
989 {
990 struct acpi_device *adev = ACPI_COMPANION(dev);
991 struct fwnode_handle *fwnode = NULL;
992
993 if (dev->of_node)
994 fwnode = &dev->of_node->fwnode;
995 else if (adev)
996 fwnode = acpi_fwnode_handle(adev);
997
998 return fwnode_get_next_child_node(fwnode, child);
999 }
1000 EXPORT_SYMBOL_GPL(device_get_next_child_node);
1001
1002 /**
1003 * device_get_named_child_node - Return first matching named child node handle
1004 * @dev: Device to find the named child node for.
1005 * @childname: String to match child node name against.
1006 */
1007 struct fwnode_handle *device_get_named_child_node(struct device *dev,
1008 const char *childname)
1009 {
1010 struct fwnode_handle *child;
1011
1012 /*
1013 * Find first matching named child node of this device.
1014 * For ACPI this will be a data only sub-node.
1015 */
1016 device_for_each_child_node(dev, child) {
1017 if (is_of_node(child)) {
1018 if (!of_node_cmp(to_of_node(child)->name, childname))
1019 return child;
1020 } else if (is_acpi_data_node(child)) {
1021 if (acpi_data_node_match(child, childname))
1022 return child;
1023 }
1024 }
1025
1026 return NULL;
1027 }
1028 EXPORT_SYMBOL_GPL(device_get_named_child_node);
1029
1030 /**
1031 * fwnode_handle_put - Drop reference to a device node
1032 * @fwnode: Pointer to the device node to drop the reference to.
1033 *
1034 * This has to be used when terminating device_for_each_child_node() iteration
1035 * with break or return to prevent stale device node references from being left
1036 * behind.
1037 */
1038 void fwnode_handle_put(struct fwnode_handle *fwnode)
1039 {
1040 if (is_of_node(fwnode))
1041 of_node_put(to_of_node(fwnode));
1042 }
1043 EXPORT_SYMBOL_GPL(fwnode_handle_put);
1044
1045 /**
1046 * device_get_child_node_count - return the number of child nodes for device
1047 * @dev: Device to cound the child nodes for
1048 */
1049 unsigned int device_get_child_node_count(struct device *dev)
1050 {
1051 struct fwnode_handle *child;
1052 unsigned int count = 0;
1053
1054 device_for_each_child_node(dev, child)
1055 count++;
1056
1057 return count;
1058 }
1059 EXPORT_SYMBOL_GPL(device_get_child_node_count);
1060
1061 bool device_dma_supported(struct device *dev)
1062 {
1063 /* For DT, this is always supported.
1064 * For ACPI, this depends on CCA, which
1065 * is determined by the acpi_dma_supported().
1066 */
1067 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1068 return true;
1069
1070 return acpi_dma_supported(ACPI_COMPANION(dev));
1071 }
1072 EXPORT_SYMBOL_GPL(device_dma_supported);
1073
1074 enum dev_dma_attr device_get_dma_attr(struct device *dev)
1075 {
1076 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1077
1078 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1079 if (of_dma_is_coherent(dev->of_node))
1080 attr = DEV_DMA_COHERENT;
1081 else
1082 attr = DEV_DMA_NON_COHERENT;
1083 } else
1084 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1085
1086 return attr;
1087 }
1088 EXPORT_SYMBOL_GPL(device_get_dma_attr);
1089
1090 /**
1091 * device_get_phy_mode - Get phy mode for given device
1092 * @dev: Pointer to the given device
1093 *
1094 * The function gets phy interface string from property 'phy-mode' or
1095 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1096 * error case.
1097 */
1098 int device_get_phy_mode(struct device *dev)
1099 {
1100 const char *pm;
1101 int err, i;
1102
1103 err = device_property_read_string(dev, "phy-mode", &pm);
1104 if (err < 0)
1105 err = device_property_read_string(dev,
1106 "phy-connection-type", &pm);
1107 if (err < 0)
1108 return err;
1109
1110 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1111 if (!strcasecmp(pm, phy_modes(i)))
1112 return i;
1113
1114 return -ENODEV;
1115 }
1116 EXPORT_SYMBOL_GPL(device_get_phy_mode);
1117
1118 static void *device_get_mac_addr(struct device *dev,
1119 const char *name, char *addr,
1120 int alen)
1121 {
1122 int ret = device_property_read_u8_array(dev, name, addr, alen);
1123
1124 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1125 return addr;
1126 return NULL;
1127 }
1128
1129 /**
1130 * device_get_mac_address - Get the MAC for a given device
1131 * @dev: Pointer to the device
1132 * @addr: Address of buffer to store the MAC in
1133 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1134 *
1135 * Search the firmware node for the best MAC address to use. 'mac-address' is
1136 * checked first, because that is supposed to contain to "most recent" MAC
1137 * address. If that isn't set, then 'local-mac-address' is checked next,
1138 * because that is the default address. If that isn't set, then the obsolete
1139 * 'address' is checked, just in case we're using an old device tree.
1140 *
1141 * Note that the 'address' property is supposed to contain a virtual address of
1142 * the register set, but some DTS files have redefined that property to be the
1143 * MAC address.
1144 *
1145 * All-zero MAC addresses are rejected, because those could be properties that
1146 * exist in the firmware tables, but were not updated by the firmware. For
1147 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1148 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
1149 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1150 * exists but is all zeros.
1151 */
1152 void *device_get_mac_address(struct device *dev, char *addr, int alen)
1153 {
1154 char *res;
1155
1156 res = device_get_mac_addr(dev, "mac-address", addr, alen);
1157 if (res)
1158 return res;
1159
1160 res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1161 if (res)
1162 return res;
1163
1164 return device_get_mac_addr(dev, "address", addr, alen);
1165 }
1166 EXPORT_SYMBOL(device_get_mac_address);