]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/base/property.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[mirror_ubuntu-zesty-kernel.git] / drivers / base / property.c
1 /*
2 * property.c - Unified device property interface.
3 *
4 * Copyright (C) 2014, Intel Corporation
5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6 * Mika Westerberg <mika.westerberg@linux.intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/acpi.h>
14 #include <linux/export.h>
15 #include <linux/kernel.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/property.h>
19 #include <linux/etherdevice.h>
20 #include <linux/phy.h>
21
22 static inline bool is_pset_node(struct fwnode_handle *fwnode)
23 {
24 return fwnode && fwnode->type == FWNODE_PDATA;
25 }
26
27 static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
28 {
29 return is_pset_node(fwnode) ?
30 container_of(fwnode, struct property_set, fwnode) : NULL;
31 }
32
33 static struct property_entry *pset_prop_get(struct property_set *pset,
34 const char *name)
35 {
36 struct property_entry *prop;
37
38 if (!pset || !pset->properties)
39 return NULL;
40
41 for (prop = pset->properties; prop->name; prop++)
42 if (!strcmp(name, prop->name))
43 return prop;
44
45 return NULL;
46 }
47
48 static void *pset_prop_find(struct property_set *pset, const char *propname,
49 size_t length)
50 {
51 struct property_entry *prop;
52 void *pointer;
53
54 prop = pset_prop_get(pset, propname);
55 if (!prop)
56 return ERR_PTR(-EINVAL);
57 if (prop->is_array)
58 pointer = prop->pointer.raw_data;
59 else
60 pointer = &prop->value.raw_data;
61 if (!pointer)
62 return ERR_PTR(-ENODATA);
63 if (length > prop->length)
64 return ERR_PTR(-EOVERFLOW);
65 return pointer;
66 }
67
68 static int pset_prop_read_u8_array(struct property_set *pset,
69 const char *propname,
70 u8 *values, size_t nval)
71 {
72 void *pointer;
73 size_t length = nval * sizeof(*values);
74
75 pointer = pset_prop_find(pset, propname, length);
76 if (IS_ERR(pointer))
77 return PTR_ERR(pointer);
78
79 memcpy(values, pointer, length);
80 return 0;
81 }
82
83 static int pset_prop_read_u16_array(struct property_set *pset,
84 const char *propname,
85 u16 *values, size_t nval)
86 {
87 void *pointer;
88 size_t length = nval * sizeof(*values);
89
90 pointer = pset_prop_find(pset, propname, length);
91 if (IS_ERR(pointer))
92 return PTR_ERR(pointer);
93
94 memcpy(values, pointer, length);
95 return 0;
96 }
97
98 static int pset_prop_read_u32_array(struct property_set *pset,
99 const char *propname,
100 u32 *values, size_t nval)
101 {
102 void *pointer;
103 size_t length = nval * sizeof(*values);
104
105 pointer = pset_prop_find(pset, propname, length);
106 if (IS_ERR(pointer))
107 return PTR_ERR(pointer);
108
109 memcpy(values, pointer, length);
110 return 0;
111 }
112
113 static int pset_prop_read_u64_array(struct property_set *pset,
114 const char *propname,
115 u64 *values, size_t nval)
116 {
117 void *pointer;
118 size_t length = nval * sizeof(*values);
119
120 pointer = pset_prop_find(pset, propname, length);
121 if (IS_ERR(pointer))
122 return PTR_ERR(pointer);
123
124 memcpy(values, pointer, length);
125 return 0;
126 }
127
128 static int pset_prop_count_elems_of_size(struct property_set *pset,
129 const char *propname, size_t length)
130 {
131 struct property_entry *prop;
132
133 prop = pset_prop_get(pset, propname);
134 if (!prop)
135 return -EINVAL;
136
137 return prop->length / length;
138 }
139
140 static int pset_prop_read_string_array(struct property_set *pset,
141 const char *propname,
142 const char **strings, size_t nval)
143 {
144 void *pointer;
145 size_t length = nval * sizeof(*strings);
146
147 pointer = pset_prop_find(pset, propname, length);
148 if (IS_ERR(pointer))
149 return PTR_ERR(pointer);
150
151 memcpy(strings, pointer, length);
152 return 0;
153 }
154
155 static int pset_prop_read_string(struct property_set *pset,
156 const char *propname, const char **strings)
157 {
158 struct property_entry *prop;
159 const char **pointer;
160
161 prop = pset_prop_get(pset, propname);
162 if (!prop)
163 return -EINVAL;
164 if (!prop->is_string)
165 return -EILSEQ;
166 if (prop->is_array) {
167 pointer = prop->pointer.str;
168 if (!pointer)
169 return -ENODATA;
170 } else {
171 pointer = &prop->value.str;
172 if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
173 return -EILSEQ;
174 }
175
176 *strings = *pointer;
177 return 0;
178 }
179
180 static inline struct fwnode_handle *dev_fwnode(struct device *dev)
181 {
182 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
183 &dev->of_node->fwnode : dev->fwnode;
184 }
185
186 /**
187 * device_property_present - check if a property of a device is present
188 * @dev: Device whose property is being checked
189 * @propname: Name of the property
190 *
191 * Check if property @propname is present in the device firmware description.
192 */
193 bool device_property_present(struct device *dev, const char *propname)
194 {
195 return fwnode_property_present(dev_fwnode(dev), propname);
196 }
197 EXPORT_SYMBOL_GPL(device_property_present);
198
199 static bool __fwnode_property_present(struct fwnode_handle *fwnode,
200 const char *propname)
201 {
202 if (is_of_node(fwnode))
203 return of_property_read_bool(to_of_node(fwnode), propname);
204 else if (is_acpi_node(fwnode))
205 return !acpi_node_prop_get(fwnode, propname, NULL);
206 else if (is_pset_node(fwnode))
207 return !!pset_prop_get(to_pset_node(fwnode), propname);
208 return false;
209 }
210
211 /**
212 * fwnode_property_present - check if a property of a firmware node is present
213 * @fwnode: Firmware node whose property to check
214 * @propname: Name of the property
215 */
216 bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
217 {
218 bool ret;
219
220 ret = __fwnode_property_present(fwnode, propname);
221 if (ret == false && fwnode && fwnode->secondary)
222 ret = __fwnode_property_present(fwnode->secondary, propname);
223 return ret;
224 }
225 EXPORT_SYMBOL_GPL(fwnode_property_present);
226
227 /**
228 * device_property_read_u8_array - return a u8 array property of a device
229 * @dev: Device to get the property of
230 * @propname: Name of the property
231 * @val: The values are stored here or %NULL to return the number of values
232 * @nval: Size of the @val array
233 *
234 * Function reads an array of u8 properties with @propname from the device
235 * firmware description and stores them to @val if found.
236 *
237 * Return: number of values if @val was %NULL,
238 * %0 if the property was found (success),
239 * %-EINVAL if given arguments are not valid,
240 * %-ENODATA if the property does not have a value,
241 * %-EPROTO if the property is not an array of numbers,
242 * %-EOVERFLOW if the size of the property is not as expected.
243 * %-ENXIO if no suitable firmware interface is present.
244 */
245 int device_property_read_u8_array(struct device *dev, const char *propname,
246 u8 *val, size_t nval)
247 {
248 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
249 }
250 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
251
252 /**
253 * device_property_read_u16_array - return a u16 array property of a device
254 * @dev: Device to get the property of
255 * @propname: Name of the property
256 * @val: The values are stored here or %NULL to return the number of values
257 * @nval: Size of the @val array
258 *
259 * Function reads an array of u16 properties with @propname from the device
260 * firmware description and stores them to @val if found.
261 *
262 * Return: number of values if @val was %NULL,
263 * %0 if the property was found (success),
264 * %-EINVAL if given arguments are not valid,
265 * %-ENODATA if the property does not have a value,
266 * %-EPROTO if the property is not an array of numbers,
267 * %-EOVERFLOW if the size of the property is not as expected.
268 * %-ENXIO if no suitable firmware interface is present.
269 */
270 int device_property_read_u16_array(struct device *dev, const char *propname,
271 u16 *val, size_t nval)
272 {
273 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
274 }
275 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
276
277 /**
278 * device_property_read_u32_array - return a u32 array property of a device
279 * @dev: Device to get the property of
280 * @propname: Name of the property
281 * @val: The values are stored here or %NULL to return the number of values
282 * @nval: Size of the @val array
283 *
284 * Function reads an array of u32 properties with @propname from the device
285 * firmware description and stores them to @val if found.
286 *
287 * Return: number of values if @val was %NULL,
288 * %0 if the property was found (success),
289 * %-EINVAL if given arguments are not valid,
290 * %-ENODATA if the property does not have a value,
291 * %-EPROTO if the property is not an array of numbers,
292 * %-EOVERFLOW if the size of the property is not as expected.
293 * %-ENXIO if no suitable firmware interface is present.
294 */
295 int device_property_read_u32_array(struct device *dev, const char *propname,
296 u32 *val, size_t nval)
297 {
298 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
299 }
300 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
301
302 /**
303 * device_property_read_u64_array - return a u64 array property of a device
304 * @dev: Device to get the property of
305 * @propname: Name of the property
306 * @val: The values are stored here or %NULL to return the number of values
307 * @nval: Size of the @val array
308 *
309 * Function reads an array of u64 properties with @propname from the device
310 * firmware description and stores them to @val if found.
311 *
312 * Return: number of values if @val was %NULL,
313 * %0 if the property was found (success),
314 * %-EINVAL if given arguments are not valid,
315 * %-ENODATA if the property does not have a value,
316 * %-EPROTO if the property is not an array of numbers,
317 * %-EOVERFLOW if the size of the property is not as expected.
318 * %-ENXIO if no suitable firmware interface is present.
319 */
320 int device_property_read_u64_array(struct device *dev, const char *propname,
321 u64 *val, size_t nval)
322 {
323 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
324 }
325 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
326
327 /**
328 * device_property_read_string_array - return a string array property of device
329 * @dev: Device to get the property of
330 * @propname: Name of the property
331 * @val: The values are stored here or %NULL to return the number of values
332 * @nval: Size of the @val array
333 *
334 * Function reads an array of string properties with @propname from the device
335 * firmware description and stores them to @val if found.
336 *
337 * Return: number of values if @val was %NULL,
338 * %0 if the property was found (success),
339 * %-EINVAL if given arguments are not valid,
340 * %-ENODATA if the property does not have a value,
341 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
342 * %-EOVERFLOW if the size of the property is not as expected.
343 * %-ENXIO if no suitable firmware interface is present.
344 */
345 int device_property_read_string_array(struct device *dev, const char *propname,
346 const char **val, size_t nval)
347 {
348 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
349 }
350 EXPORT_SYMBOL_GPL(device_property_read_string_array);
351
352 /**
353 * device_property_read_string - return a string property of a device
354 * @dev: Device to get the property of
355 * @propname: Name of the property
356 * @val: The value is stored here
357 *
358 * Function reads property @propname from the device firmware description and
359 * stores the value into @val if found. The value is checked to be a string.
360 *
361 * Return: %0 if the property was found (success),
362 * %-EINVAL if given arguments are not valid,
363 * %-ENODATA if the property does not have a value,
364 * %-EPROTO or %-EILSEQ if the property type is not a string.
365 * %-ENXIO if no suitable firmware interface is present.
366 */
367 int device_property_read_string(struct device *dev, const char *propname,
368 const char **val)
369 {
370 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
371 }
372 EXPORT_SYMBOL_GPL(device_property_read_string);
373
374 /**
375 * device_property_match_string - find a string in an array and return index
376 * @dev: Device to get the property of
377 * @propname: Name of the property holding the array
378 * @string: String to look for
379 *
380 * Find a given string in a string array and if it is found return the
381 * index back.
382 *
383 * Return: %0 if the property was found (success),
384 * %-EINVAL if given arguments are not valid,
385 * %-ENODATA if the property does not have a value,
386 * %-EPROTO if the property is not an array of strings,
387 * %-ENXIO if no suitable firmware interface is present.
388 */
389 int device_property_match_string(struct device *dev, const char *propname,
390 const char *string)
391 {
392 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
393 }
394 EXPORT_SYMBOL_GPL(device_property_match_string);
395
396 #define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval) \
397 (val) ? of_property_read_##type##_array((node), (propname), (val), (nval)) \
398 : of_property_count_elems_of_size((node), (propname), sizeof(type))
399
400 #define PSET_PROP_READ_ARRAY(node, propname, type, val, nval) \
401 (val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval)) \
402 : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
403
404 #define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
405 ({ \
406 int _ret_; \
407 if (is_of_node(_fwnode_)) \
408 _ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_, \
409 _type_, _val_, _nval_); \
410 else if (is_acpi_node(_fwnode_)) \
411 _ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_, \
412 _val_, _nval_); \
413 else if (is_pset_node(_fwnode_)) \
414 _ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_, \
415 _type_, _val_, _nval_); \
416 else \
417 _ret_ = -ENXIO; \
418 _ret_; \
419 })
420
421 #define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
422 ({ \
423 int _ret_; \
424 _ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, \
425 _val_, _nval_); \
426 if (_ret_ == -EINVAL && _fwnode_ && _fwnode_->secondary) \
427 _ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_, \
428 _proptype_, _val_, _nval_); \
429 _ret_; \
430 })
431
432 /**
433 * fwnode_property_read_u8_array - return a u8 array property of firmware node
434 * @fwnode: Firmware node to get the property of
435 * @propname: Name of the property
436 * @val: The values are stored here or %NULL to return the number of values
437 * @nval: Size of the @val array
438 *
439 * Read an array of u8 properties with @propname from @fwnode and stores them to
440 * @val if found.
441 *
442 * Return: number of values if @val was %NULL,
443 * %0 if the property was found (success),
444 * %-EINVAL if given arguments are not valid,
445 * %-ENODATA if the property does not have a value,
446 * %-EPROTO if the property is not an array of numbers,
447 * %-EOVERFLOW if the size of the property is not as expected,
448 * %-ENXIO if no suitable firmware interface is present.
449 */
450 int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
451 const char *propname, u8 *val, size_t nval)
452 {
453 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
454 val, nval);
455 }
456 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
457
458 /**
459 * fwnode_property_read_u16_array - return a u16 array property of firmware node
460 * @fwnode: Firmware node to get the property of
461 * @propname: Name of the property
462 * @val: The values are stored here or %NULL to return the number of values
463 * @nval: Size of the @val array
464 *
465 * Read an array of u16 properties with @propname from @fwnode and store them to
466 * @val if found.
467 *
468 * Return: number of values if @val was %NULL,
469 * %0 if the property was found (success),
470 * %-EINVAL if given arguments are not valid,
471 * %-ENODATA if the property does not have a value,
472 * %-EPROTO if the property is not an array of numbers,
473 * %-EOVERFLOW if the size of the property is not as expected,
474 * %-ENXIO if no suitable firmware interface is present.
475 */
476 int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
477 const char *propname, u16 *val, size_t nval)
478 {
479 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
480 val, nval);
481 }
482 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
483
484 /**
485 * fwnode_property_read_u32_array - return a u32 array property of firmware node
486 * @fwnode: Firmware node to get the property of
487 * @propname: Name of the property
488 * @val: The values are stored here or %NULL to return the number of values
489 * @nval: Size of the @val array
490 *
491 * Read an array of u32 properties with @propname from @fwnode store them to
492 * @val if found.
493 *
494 * Return: number of values if @val was %NULL,
495 * %0 if the property was found (success),
496 * %-EINVAL if given arguments are not valid,
497 * %-ENODATA if the property does not have a value,
498 * %-EPROTO if the property is not an array of numbers,
499 * %-EOVERFLOW if the size of the property is not as expected,
500 * %-ENXIO if no suitable firmware interface is present.
501 */
502 int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
503 const char *propname, u32 *val, size_t nval)
504 {
505 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
506 val, nval);
507 }
508 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
509
510 /**
511 * fwnode_property_read_u64_array - return a u64 array property firmware node
512 * @fwnode: Firmware node to get the property of
513 * @propname: Name of the property
514 * @val: The values are stored here or %NULL to return the number of values
515 * @nval: Size of the @val array
516 *
517 * Read an array of u64 properties with @propname from @fwnode and store them to
518 * @val if found.
519 *
520 * Return: number of values if @val was %NULL,
521 * %0 if the property was found (success),
522 * %-EINVAL if given arguments are not valid,
523 * %-ENODATA if the property does not have a value,
524 * %-EPROTO if the property is not an array of numbers,
525 * %-EOVERFLOW if the size of the property is not as expected,
526 * %-ENXIO if no suitable firmware interface is present.
527 */
528 int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
529 const char *propname, u64 *val, size_t nval)
530 {
531 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
532 val, nval);
533 }
534 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
535
536 static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
537 const char *propname,
538 const char **val, size_t nval)
539 {
540 if (is_of_node(fwnode))
541 return val ?
542 of_property_read_string_array(to_of_node(fwnode),
543 propname, val, nval) :
544 of_property_count_strings(to_of_node(fwnode), propname);
545 else if (is_acpi_node(fwnode))
546 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
547 val, nval);
548 else if (is_pset_node(fwnode))
549 return val ?
550 pset_prop_read_string_array(to_pset_node(fwnode),
551 propname, val, nval) :
552 pset_prop_count_elems_of_size(to_pset_node(fwnode),
553 propname,
554 sizeof(const char *));
555 return -ENXIO;
556 }
557
558 static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
559 const char *propname, const char **val)
560 {
561 if (is_of_node(fwnode))
562 return of_property_read_string(to_of_node(fwnode), propname, val);
563 else if (is_acpi_node(fwnode))
564 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
565 val, 1);
566 else if (is_pset_node(fwnode))
567 return pset_prop_read_string(to_pset_node(fwnode), propname, val);
568 return -ENXIO;
569 }
570
571 /**
572 * fwnode_property_read_string_array - return string array property of a node
573 * @fwnode: Firmware node to get the property of
574 * @propname: Name of the property
575 * @val: The values are stored here or %NULL to return the number of values
576 * @nval: Size of the @val array
577 *
578 * Read an string list property @propname from the given firmware node and store
579 * them to @val if found.
580 *
581 * Return: number of values if @val was %NULL,
582 * %0 if the property was found (success),
583 * %-EINVAL if given arguments are not valid,
584 * %-ENODATA if the property does not have a value,
585 * %-EPROTO if the property is not an array of strings,
586 * %-EOVERFLOW if the size of the property is not as expected,
587 * %-ENXIO if no suitable firmware interface is present.
588 */
589 int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
590 const char *propname, const char **val,
591 size_t nval)
592 {
593 int ret;
594
595 ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
596 if (ret == -EINVAL && fwnode && fwnode->secondary)
597 ret = __fwnode_property_read_string_array(fwnode->secondary,
598 propname, val, nval);
599 return ret;
600 }
601 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
602
603 /**
604 * fwnode_property_read_string - return a string property of a firmware node
605 * @fwnode: Firmware node to get the property of
606 * @propname: Name of the property
607 * @val: The value is stored here
608 *
609 * Read property @propname from the given firmware node and store the value into
610 * @val if found. The value is checked to be a string.
611 *
612 * Return: %0 if the property was found (success),
613 * %-EINVAL if given arguments are not valid,
614 * %-ENODATA if the property does not have a value,
615 * %-EPROTO or %-EILSEQ if the property is not a string,
616 * %-ENXIO if no suitable firmware interface is present.
617 */
618 int fwnode_property_read_string(struct fwnode_handle *fwnode,
619 const char *propname, const char **val)
620 {
621 int ret;
622
623 ret = __fwnode_property_read_string(fwnode, propname, val);
624 if (ret == -EINVAL && fwnode && fwnode->secondary)
625 ret = __fwnode_property_read_string(fwnode->secondary,
626 propname, val);
627 return ret;
628 }
629 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
630
631 /**
632 * fwnode_property_match_string - find a string in an array and return index
633 * @fwnode: Firmware node to get the property of
634 * @propname: Name of the property holding the array
635 * @string: String to look for
636 *
637 * Find a given string in a string array and if it is found return the
638 * index back.
639 *
640 * Return: %0 if the property was found (success),
641 * %-EINVAL if given arguments are not valid,
642 * %-ENODATA if the property does not have a value,
643 * %-EPROTO if the property is not an array of strings,
644 * %-ENXIO if no suitable firmware interface is present.
645 */
646 int fwnode_property_match_string(struct fwnode_handle *fwnode,
647 const char *propname, const char *string)
648 {
649 const char **values;
650 int nval, ret, i;
651
652 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
653 if (nval < 0)
654 return nval;
655
656 if (nval == 0)
657 return -ENODATA;
658
659 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
660 if (!values)
661 return -ENOMEM;
662
663 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
664 if (ret < 0)
665 goto out;
666
667 ret = -ENODATA;
668 for (i = 0; i < nval; i++) {
669 if (!strcmp(values[i], string)) {
670 ret = i;
671 break;
672 }
673 }
674 out:
675 kfree(values);
676 return ret;
677 }
678 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
679
680 /**
681 * pset_free_set - releases memory allocated for copied property set
682 * @pset: Property set to release
683 *
684 * Function takes previously copied property set and releases all the
685 * memory allocated to it.
686 */
687 static void pset_free_set(struct property_set *pset)
688 {
689 const struct property_entry *prop;
690 size_t i, nval;
691
692 if (!pset)
693 return;
694
695 for (prop = pset->properties; prop->name; prop++) {
696 if (prop->is_array) {
697 if (prop->is_string && prop->pointer.str) {
698 nval = prop->length / sizeof(const char *);
699 for (i = 0; i < nval; i++)
700 kfree(prop->pointer.str[i]);
701 }
702 kfree(prop->pointer.raw_data);
703 } else if (prop->is_string) {
704 kfree(prop->value.str);
705 }
706 kfree(prop->name);
707 }
708
709 kfree(pset->properties);
710 kfree(pset);
711 }
712
713 static int pset_copy_entry(struct property_entry *dst,
714 const struct property_entry *src)
715 {
716 const char **d, **s;
717 size_t i, nval;
718
719 dst->name = kstrdup(src->name, GFP_KERNEL);
720 if (!dst->name)
721 return -ENOMEM;
722
723 if (src->is_array) {
724 if (!src->length)
725 return -ENODATA;
726
727 if (src->is_string) {
728 nval = src->length / sizeof(const char *);
729 dst->pointer.str = kcalloc(nval, sizeof(const char *),
730 GFP_KERNEL);
731 if (!dst->pointer.str)
732 return -ENOMEM;
733
734 d = dst->pointer.str;
735 s = src->pointer.str;
736 for (i = 0; i < nval; i++) {
737 d[i] = kstrdup(s[i], GFP_KERNEL);
738 if (!d[i] && s[i])
739 return -ENOMEM;
740 }
741 } else {
742 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
743 src->length, GFP_KERNEL);
744 if (!dst->pointer.raw_data)
745 return -ENOMEM;
746 }
747 } else if (src->is_string) {
748 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
749 if (!dst->value.str && src->value.str)
750 return -ENOMEM;
751 } else {
752 dst->value.raw_data = src->value.raw_data;
753 }
754
755 dst->length = src->length;
756 dst->is_array = src->is_array;
757 dst->is_string = src->is_string;
758
759 return 0;
760 }
761
762 /**
763 * pset_copy_set - copies property set
764 * @pset: Property set to copy
765 *
766 * This function takes a deep copy of the given property set and returns
767 * pointer to the copy. Call device_free_property_set() to free resources
768 * allocated in this function.
769 *
770 * Return: Pointer to the new property set or error pointer.
771 */
772 static struct property_set *pset_copy_set(const struct property_set *pset)
773 {
774 const struct property_entry *entry;
775 struct property_set *p;
776 size_t i, n = 0;
777
778 p = kzalloc(sizeof(*p), GFP_KERNEL);
779 if (!p)
780 return ERR_PTR(-ENOMEM);
781
782 while (pset->properties[n].name)
783 n++;
784
785 p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
786 if (!p->properties) {
787 kfree(p);
788 return ERR_PTR(-ENOMEM);
789 }
790
791 for (i = 0; i < n; i++) {
792 int ret = pset_copy_entry(&p->properties[i],
793 &pset->properties[i]);
794 if (ret) {
795 pset_free_set(p);
796 return ERR_PTR(ret);
797 }
798 }
799
800 return p;
801 }
802
803 /**
804 * device_remove_property_set - Remove properties from a device object.
805 * @dev: Device whose properties to remove.
806 *
807 * The function removes properties previously associated to the device
808 * secondary firmware node with device_add_property_set(). Memory allocated
809 * to the properties will also be released.
810 */
811 void device_remove_property_set(struct device *dev)
812 {
813 struct fwnode_handle *fwnode;
814
815 fwnode = dev_fwnode(dev);
816 if (!fwnode)
817 return;
818 /*
819 * Pick either primary or secondary node depending which one holds
820 * the pset. If there is no real firmware node (ACPI/DT) primary
821 * will hold the pset.
822 */
823 if (!is_pset_node(fwnode))
824 fwnode = fwnode->secondary;
825 if (!IS_ERR(fwnode) && is_pset_node(fwnode))
826 pset_free_set(to_pset_node(fwnode));
827 set_secondary_fwnode(dev, NULL);
828 }
829 EXPORT_SYMBOL_GPL(device_remove_property_set);
830
831 /**
832 * device_add_property_set - Add a collection of properties to a device object.
833 * @dev: Device to add properties to.
834 * @pset: Collection of properties to add.
835 *
836 * Associate a collection of device properties represented by @pset with @dev
837 * as its secondary firmware node. The function takes a copy of @pset.
838 */
839 int device_add_property_set(struct device *dev, const struct property_set *pset)
840 {
841 struct property_set *p;
842
843 if (!pset)
844 return -EINVAL;
845
846 p = pset_copy_set(pset);
847 if (IS_ERR(p))
848 return PTR_ERR(p);
849
850 p->fwnode.type = FWNODE_PDATA;
851 set_secondary_fwnode(dev, &p->fwnode);
852 return 0;
853 }
854 EXPORT_SYMBOL_GPL(device_add_property_set);
855
856 /**
857 * device_get_next_child_node - Return the next child node handle for a device
858 * @dev: Device to find the next child node for.
859 * @child: Handle to one of the device's child nodes or a null handle.
860 */
861 struct fwnode_handle *device_get_next_child_node(struct device *dev,
862 struct fwnode_handle *child)
863 {
864 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
865 struct device_node *node;
866
867 node = of_get_next_available_child(dev->of_node, to_of_node(child));
868 if (node)
869 return &node->fwnode;
870 } else if (IS_ENABLED(CONFIG_ACPI)) {
871 return acpi_get_next_subnode(dev, child);
872 }
873 return NULL;
874 }
875 EXPORT_SYMBOL_GPL(device_get_next_child_node);
876
877 /**
878 * fwnode_handle_put - Drop reference to a device node
879 * @fwnode: Pointer to the device node to drop the reference to.
880 *
881 * This has to be used when terminating device_for_each_child_node() iteration
882 * with break or return to prevent stale device node references from being left
883 * behind.
884 */
885 void fwnode_handle_put(struct fwnode_handle *fwnode)
886 {
887 if (is_of_node(fwnode))
888 of_node_put(to_of_node(fwnode));
889 }
890 EXPORT_SYMBOL_GPL(fwnode_handle_put);
891
892 /**
893 * device_get_child_node_count - return the number of child nodes for device
894 * @dev: Device to cound the child nodes for
895 */
896 unsigned int device_get_child_node_count(struct device *dev)
897 {
898 struct fwnode_handle *child;
899 unsigned int count = 0;
900
901 device_for_each_child_node(dev, child)
902 count++;
903
904 return count;
905 }
906 EXPORT_SYMBOL_GPL(device_get_child_node_count);
907
908 bool device_dma_supported(struct device *dev)
909 {
910 /* For DT, this is always supported.
911 * For ACPI, this depends on CCA, which
912 * is determined by the acpi_dma_supported().
913 */
914 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
915 return true;
916
917 return acpi_dma_supported(ACPI_COMPANION(dev));
918 }
919 EXPORT_SYMBOL_GPL(device_dma_supported);
920
921 enum dev_dma_attr device_get_dma_attr(struct device *dev)
922 {
923 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
924
925 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
926 if (of_dma_is_coherent(dev->of_node))
927 attr = DEV_DMA_COHERENT;
928 else
929 attr = DEV_DMA_NON_COHERENT;
930 } else
931 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
932
933 return attr;
934 }
935 EXPORT_SYMBOL_GPL(device_get_dma_attr);
936
937 /**
938 * device_get_phy_mode - Get phy mode for given device
939 * @dev: Pointer to the given device
940 *
941 * The function gets phy interface string from property 'phy-mode' or
942 * 'phy-connection-type', and return its index in phy_modes table, or errno in
943 * error case.
944 */
945 int device_get_phy_mode(struct device *dev)
946 {
947 const char *pm;
948 int err, i;
949
950 err = device_property_read_string(dev, "phy-mode", &pm);
951 if (err < 0)
952 err = device_property_read_string(dev,
953 "phy-connection-type", &pm);
954 if (err < 0)
955 return err;
956
957 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
958 if (!strcasecmp(pm, phy_modes(i)))
959 return i;
960
961 return -ENODEV;
962 }
963 EXPORT_SYMBOL_GPL(device_get_phy_mode);
964
965 static void *device_get_mac_addr(struct device *dev,
966 const char *name, char *addr,
967 int alen)
968 {
969 int ret = device_property_read_u8_array(dev, name, addr, alen);
970
971 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
972 return addr;
973 return NULL;
974 }
975
976 /**
977 * device_get_mac_address - Get the MAC for a given device
978 * @dev: Pointer to the device
979 * @addr: Address of buffer to store the MAC in
980 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
981 *
982 * Search the firmware node for the best MAC address to use. 'mac-address' is
983 * checked first, because that is supposed to contain to "most recent" MAC
984 * address. If that isn't set, then 'local-mac-address' is checked next,
985 * because that is the default address. If that isn't set, then the obsolete
986 * 'address' is checked, just in case we're using an old device tree.
987 *
988 * Note that the 'address' property is supposed to contain a virtual address of
989 * the register set, but some DTS files have redefined that property to be the
990 * MAC address.
991 *
992 * All-zero MAC addresses are rejected, because those could be properties that
993 * exist in the firmware tables, but were not updated by the firmware. For
994 * example, the DTS could define 'mac-address' and 'local-mac-address', with
995 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
996 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
997 * exists but is all zeros.
998 */
999 void *device_get_mac_address(struct device *dev, char *addr, int alen)
1000 {
1001 char *res;
1002
1003 res = device_get_mac_addr(dev, "mac-address", addr, alen);
1004 if (res)
1005 return res;
1006
1007 res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1008 if (res)
1009 return res;
1010
1011 return device_get_mac_addr(dev, "address", addr, alen);
1012 }
1013 EXPORT_SYMBOL(device_get_mac_address);