]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/regmap/regmap.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26
27 #include "internal.h"
28
29 /*
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
34 */
35 #undef LOG_DEVICE
36
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 unsigned int mask, unsigned int val,
39 bool *change, bool force_write);
40
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44 unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 unsigned int val);
51
52 bool regmap_reg_in_ranges(unsigned int reg,
53 const struct regmap_range *ranges,
54 unsigned int nranges)
55 {
56 const struct regmap_range *r;
57 int i;
58
59 for (i = 0, r = ranges; i < nranges; i++, r++)
60 if (regmap_reg_in_range(reg, r))
61 return true;
62 return false;
63 }
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 const struct regmap_access_table *table)
68 {
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 return false;
72
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table->n_yes_ranges)
75 return true;
76
77 return regmap_reg_in_ranges(reg, table->yes_ranges,
78 table->n_yes_ranges);
79 }
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 {
84 if (map->max_register && reg > map->max_register)
85 return false;
86
87 if (map->writeable_reg)
88 return map->writeable_reg(map->dev, reg);
89
90 if (map->wr_table)
91 return regmap_check_range_table(map, reg, map->wr_table);
92
93 return true;
94 }
95
96 bool regmap_readable(struct regmap *map, unsigned int reg)
97 {
98 if (!map->reg_read)
99 return false;
100
101 if (map->max_register && reg > map->max_register)
102 return false;
103
104 if (map->format.format_write)
105 return false;
106
107 if (map->readable_reg)
108 return map->readable_reg(map->dev, reg);
109
110 if (map->rd_table)
111 return regmap_check_range_table(map, reg, map->rd_table);
112
113 return true;
114 }
115
116 bool regmap_volatile(struct regmap *map, unsigned int reg)
117 {
118 if (!map->format.format_write && !regmap_readable(map, reg))
119 return false;
120
121 if (map->volatile_reg)
122 return map->volatile_reg(map->dev, reg);
123
124 if (map->volatile_table)
125 return regmap_check_range_table(map, reg, map->volatile_table);
126
127 if (map->cache_ops)
128 return false;
129 else
130 return true;
131 }
132
133 bool regmap_precious(struct regmap *map, unsigned int reg)
134 {
135 if (!regmap_readable(map, reg))
136 return false;
137
138 if (map->precious_reg)
139 return map->precious_reg(map->dev, reg);
140
141 if (map->precious_table)
142 return regmap_check_range_table(map, reg, map->precious_table);
143
144 return false;
145 }
146
147 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
148 size_t num)
149 {
150 unsigned int i;
151
152 for (i = 0; i < num; i++)
153 if (!regmap_volatile(map, reg + i))
154 return false;
155
156 return true;
157 }
158
159 static void regmap_format_2_6_write(struct regmap *map,
160 unsigned int reg, unsigned int val)
161 {
162 u8 *out = map->work_buf;
163
164 *out = (reg << 6) | val;
165 }
166
167 static void regmap_format_4_12_write(struct regmap *map,
168 unsigned int reg, unsigned int val)
169 {
170 __be16 *out = map->work_buf;
171 *out = cpu_to_be16((reg << 12) | val);
172 }
173
174 static void regmap_format_7_9_write(struct regmap *map,
175 unsigned int reg, unsigned int val)
176 {
177 __be16 *out = map->work_buf;
178 *out = cpu_to_be16((reg << 9) | val);
179 }
180
181 static void regmap_format_10_14_write(struct regmap *map,
182 unsigned int reg, unsigned int val)
183 {
184 u8 *out = map->work_buf;
185
186 out[2] = val;
187 out[1] = (val >> 8) | (reg << 6);
188 out[0] = reg >> 2;
189 }
190
191 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
192 {
193 u8 *b = buf;
194
195 b[0] = val << shift;
196 }
197
198 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
199 {
200 __be16 *b = buf;
201
202 b[0] = cpu_to_be16(val << shift);
203 }
204
205 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
206 {
207 __le16 *b = buf;
208
209 b[0] = cpu_to_le16(val << shift);
210 }
211
212 static void regmap_format_16_native(void *buf, unsigned int val,
213 unsigned int shift)
214 {
215 *(u16 *)buf = val << shift;
216 }
217
218 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
219 {
220 u8 *b = buf;
221
222 val <<= shift;
223
224 b[0] = val >> 16;
225 b[1] = val >> 8;
226 b[2] = val;
227 }
228
229 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
230 {
231 __be32 *b = buf;
232
233 b[0] = cpu_to_be32(val << shift);
234 }
235
236 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
237 {
238 __le32 *b = buf;
239
240 b[0] = cpu_to_le32(val << shift);
241 }
242
243 static void regmap_format_32_native(void *buf, unsigned int val,
244 unsigned int shift)
245 {
246 *(u32 *)buf = val << shift;
247 }
248
249 #ifdef CONFIG_64BIT
250 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
251 {
252 __be64 *b = buf;
253
254 b[0] = cpu_to_be64((u64)val << shift);
255 }
256
257 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
258 {
259 __le64 *b = buf;
260
261 b[0] = cpu_to_le64((u64)val << shift);
262 }
263
264 static void regmap_format_64_native(void *buf, unsigned int val,
265 unsigned int shift)
266 {
267 *(u64 *)buf = (u64)val << shift;
268 }
269 #endif
270
271 static void regmap_parse_inplace_noop(void *buf)
272 {
273 }
274
275 static unsigned int regmap_parse_8(const void *buf)
276 {
277 const u8 *b = buf;
278
279 return b[0];
280 }
281
282 static unsigned int regmap_parse_16_be(const void *buf)
283 {
284 const __be16 *b = buf;
285
286 return be16_to_cpu(b[0]);
287 }
288
289 static unsigned int regmap_parse_16_le(const void *buf)
290 {
291 const __le16 *b = buf;
292
293 return le16_to_cpu(b[0]);
294 }
295
296 static void regmap_parse_16_be_inplace(void *buf)
297 {
298 __be16 *b = buf;
299
300 b[0] = be16_to_cpu(b[0]);
301 }
302
303 static void regmap_parse_16_le_inplace(void *buf)
304 {
305 __le16 *b = buf;
306
307 b[0] = le16_to_cpu(b[0]);
308 }
309
310 static unsigned int regmap_parse_16_native(const void *buf)
311 {
312 return *(u16 *)buf;
313 }
314
315 static unsigned int regmap_parse_24(const void *buf)
316 {
317 const u8 *b = buf;
318 unsigned int ret = b[2];
319 ret |= ((unsigned int)b[1]) << 8;
320 ret |= ((unsigned int)b[0]) << 16;
321
322 return ret;
323 }
324
325 static unsigned int regmap_parse_32_be(const void *buf)
326 {
327 const __be32 *b = buf;
328
329 return be32_to_cpu(b[0]);
330 }
331
332 static unsigned int regmap_parse_32_le(const void *buf)
333 {
334 const __le32 *b = buf;
335
336 return le32_to_cpu(b[0]);
337 }
338
339 static void regmap_parse_32_be_inplace(void *buf)
340 {
341 __be32 *b = buf;
342
343 b[0] = be32_to_cpu(b[0]);
344 }
345
346 static void regmap_parse_32_le_inplace(void *buf)
347 {
348 __le32 *b = buf;
349
350 b[0] = le32_to_cpu(b[0]);
351 }
352
353 static unsigned int regmap_parse_32_native(const void *buf)
354 {
355 return *(u32 *)buf;
356 }
357
358 #ifdef CONFIG_64BIT
359 static unsigned int regmap_parse_64_be(const void *buf)
360 {
361 const __be64 *b = buf;
362
363 return be64_to_cpu(b[0]);
364 }
365
366 static unsigned int regmap_parse_64_le(const void *buf)
367 {
368 const __le64 *b = buf;
369
370 return le64_to_cpu(b[0]);
371 }
372
373 static void regmap_parse_64_be_inplace(void *buf)
374 {
375 __be64 *b = buf;
376
377 b[0] = be64_to_cpu(b[0]);
378 }
379
380 static void regmap_parse_64_le_inplace(void *buf)
381 {
382 __le64 *b = buf;
383
384 b[0] = le64_to_cpu(b[0]);
385 }
386
387 static unsigned int regmap_parse_64_native(const void *buf)
388 {
389 return *(u64 *)buf;
390 }
391 #endif
392
393 static void regmap_lock_mutex(void *__map)
394 {
395 struct regmap *map = __map;
396 mutex_lock(&map->mutex);
397 }
398
399 static void regmap_unlock_mutex(void *__map)
400 {
401 struct regmap *map = __map;
402 mutex_unlock(&map->mutex);
403 }
404
405 static void regmap_lock_spinlock(void *__map)
406 __acquires(&map->spinlock)
407 {
408 struct regmap *map = __map;
409 unsigned long flags;
410
411 spin_lock_irqsave(&map->spinlock, flags);
412 map->spinlock_flags = flags;
413 }
414
415 static void regmap_unlock_spinlock(void *__map)
416 __releases(&map->spinlock)
417 {
418 struct regmap *map = __map;
419 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
420 }
421
422 static void dev_get_regmap_release(struct device *dev, void *res)
423 {
424 /*
425 * We don't actually have anything to do here; the goal here
426 * is not to manage the regmap but to provide a simple way to
427 * get the regmap back given a struct device.
428 */
429 }
430
431 static bool _regmap_range_add(struct regmap *map,
432 struct regmap_range_node *data)
433 {
434 struct rb_root *root = &map->range_tree;
435 struct rb_node **new = &(root->rb_node), *parent = NULL;
436
437 while (*new) {
438 struct regmap_range_node *this =
439 container_of(*new, struct regmap_range_node, node);
440
441 parent = *new;
442 if (data->range_max < this->range_min)
443 new = &((*new)->rb_left);
444 else if (data->range_min > this->range_max)
445 new = &((*new)->rb_right);
446 else
447 return false;
448 }
449
450 rb_link_node(&data->node, parent, new);
451 rb_insert_color(&data->node, root);
452
453 return true;
454 }
455
456 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
457 unsigned int reg)
458 {
459 struct rb_node *node = map->range_tree.rb_node;
460
461 while (node) {
462 struct regmap_range_node *this =
463 container_of(node, struct regmap_range_node, node);
464
465 if (reg < this->range_min)
466 node = node->rb_left;
467 else if (reg > this->range_max)
468 node = node->rb_right;
469 else
470 return this;
471 }
472
473 return NULL;
474 }
475
476 static void regmap_range_exit(struct regmap *map)
477 {
478 struct rb_node *next;
479 struct regmap_range_node *range_node;
480
481 next = rb_first(&map->range_tree);
482 while (next) {
483 range_node = rb_entry(next, struct regmap_range_node, node);
484 next = rb_next(&range_node->node);
485 rb_erase(&range_node->node, &map->range_tree);
486 kfree(range_node);
487 }
488
489 kfree(map->selector_work_buf);
490 }
491
492 int regmap_attach_dev(struct device *dev, struct regmap *map,
493 const struct regmap_config *config)
494 {
495 struct regmap **m;
496
497 map->dev = dev;
498
499 regmap_debugfs_init(map, config->name);
500
501 /* Add a devres resource for dev_get_regmap() */
502 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
503 if (!m) {
504 regmap_debugfs_exit(map);
505 return -ENOMEM;
506 }
507 *m = map;
508 devres_add(dev, m);
509
510 return 0;
511 }
512 EXPORT_SYMBOL_GPL(regmap_attach_dev);
513
514 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
515 const struct regmap_config *config)
516 {
517 enum regmap_endian endian;
518
519 /* Retrieve the endianness specification from the regmap config */
520 endian = config->reg_format_endian;
521
522 /* If the regmap config specified a non-default value, use that */
523 if (endian != REGMAP_ENDIAN_DEFAULT)
524 return endian;
525
526 /* Retrieve the endianness specification from the bus config */
527 if (bus && bus->reg_format_endian_default)
528 endian = bus->reg_format_endian_default;
529
530 /* If the bus specified a non-default value, use that */
531 if (endian != REGMAP_ENDIAN_DEFAULT)
532 return endian;
533
534 /* Use this if no other value was found */
535 return REGMAP_ENDIAN_BIG;
536 }
537
538 enum regmap_endian regmap_get_val_endian(struct device *dev,
539 const struct regmap_bus *bus,
540 const struct regmap_config *config)
541 {
542 struct device_node *np;
543 enum regmap_endian endian;
544
545 /* Retrieve the endianness specification from the regmap config */
546 endian = config->val_format_endian;
547
548 /* If the regmap config specified a non-default value, use that */
549 if (endian != REGMAP_ENDIAN_DEFAULT)
550 return endian;
551
552 /* If the dev and dev->of_node exist try to get endianness from DT */
553 if (dev && dev->of_node) {
554 np = dev->of_node;
555
556 /* Parse the device's DT node for an endianness specification */
557 if (of_property_read_bool(np, "big-endian"))
558 endian = REGMAP_ENDIAN_BIG;
559 else if (of_property_read_bool(np, "little-endian"))
560 endian = REGMAP_ENDIAN_LITTLE;
561 else if (of_property_read_bool(np, "native-endian"))
562 endian = REGMAP_ENDIAN_NATIVE;
563
564 /* If the endianness was specified in DT, use that */
565 if (endian != REGMAP_ENDIAN_DEFAULT)
566 return endian;
567 }
568
569 /* Retrieve the endianness specification from the bus config */
570 if (bus && bus->val_format_endian_default)
571 endian = bus->val_format_endian_default;
572
573 /* If the bus specified a non-default value, use that */
574 if (endian != REGMAP_ENDIAN_DEFAULT)
575 return endian;
576
577 /* Use this if no other value was found */
578 return REGMAP_ENDIAN_BIG;
579 }
580 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
581
582 struct regmap *__regmap_init(struct device *dev,
583 const struct regmap_bus *bus,
584 void *bus_context,
585 const struct regmap_config *config,
586 struct lock_class_key *lock_key,
587 const char *lock_name)
588 {
589 struct regmap *map;
590 int ret = -EINVAL;
591 enum regmap_endian reg_endian, val_endian;
592 int i, j;
593
594 if (!config)
595 goto err;
596
597 map = kzalloc(sizeof(*map), GFP_KERNEL);
598 if (map == NULL) {
599 ret = -ENOMEM;
600 goto err;
601 }
602
603 if (config->lock && config->unlock) {
604 map->lock = config->lock;
605 map->unlock = config->unlock;
606 map->lock_arg = config->lock_arg;
607 } else {
608 if ((bus && bus->fast_io) ||
609 config->fast_io) {
610 spin_lock_init(&map->spinlock);
611 map->lock = regmap_lock_spinlock;
612 map->unlock = regmap_unlock_spinlock;
613 lockdep_set_class_and_name(&map->spinlock,
614 lock_key, lock_name);
615 } else {
616 mutex_init(&map->mutex);
617 map->lock = regmap_lock_mutex;
618 map->unlock = regmap_unlock_mutex;
619 lockdep_set_class_and_name(&map->mutex,
620 lock_key, lock_name);
621 }
622 map->lock_arg = map;
623 }
624
625 /*
626 * When we write in fast-paths with regmap_bulk_write() don't allocate
627 * scratch buffers with sleeping allocations.
628 */
629 if ((bus && bus->fast_io) || config->fast_io)
630 map->alloc_flags = GFP_ATOMIC;
631 else
632 map->alloc_flags = GFP_KERNEL;
633
634 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
635 map->format.pad_bytes = config->pad_bits / 8;
636 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
637 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
638 config->val_bits + config->pad_bits, 8);
639 map->reg_shift = config->pad_bits % 8;
640 if (config->reg_stride)
641 map->reg_stride = config->reg_stride;
642 else
643 map->reg_stride = 1;
644 if (is_power_of_2(map->reg_stride))
645 map->reg_stride_order = ilog2(map->reg_stride);
646 else
647 map->reg_stride_order = -1;
648 map->use_single_read = config->use_single_rw || !bus || !bus->read;
649 map->use_single_write = config->use_single_rw || !bus || !bus->write;
650 map->can_multi_write = config->can_multi_write && bus && bus->write;
651 if (bus) {
652 map->max_raw_read = bus->max_raw_read;
653 map->max_raw_write = bus->max_raw_write;
654 }
655 map->dev = dev;
656 map->bus = bus;
657 map->bus_context = bus_context;
658 map->max_register = config->max_register;
659 map->wr_table = config->wr_table;
660 map->rd_table = config->rd_table;
661 map->volatile_table = config->volatile_table;
662 map->precious_table = config->precious_table;
663 map->writeable_reg = config->writeable_reg;
664 map->readable_reg = config->readable_reg;
665 map->volatile_reg = config->volatile_reg;
666 map->precious_reg = config->precious_reg;
667 map->cache_type = config->cache_type;
668 map->name = config->name;
669
670 spin_lock_init(&map->async_lock);
671 INIT_LIST_HEAD(&map->async_list);
672 INIT_LIST_HEAD(&map->async_free);
673 init_waitqueue_head(&map->async_waitq);
674
675 if (config->read_flag_mask || config->write_flag_mask) {
676 map->read_flag_mask = config->read_flag_mask;
677 map->write_flag_mask = config->write_flag_mask;
678 } else if (bus) {
679 map->read_flag_mask = bus->read_flag_mask;
680 }
681
682 if (!bus) {
683 map->reg_read = config->reg_read;
684 map->reg_write = config->reg_write;
685
686 map->defer_caching = false;
687 goto skip_format_initialization;
688 } else if (!bus->read || !bus->write) {
689 map->reg_read = _regmap_bus_reg_read;
690 map->reg_write = _regmap_bus_reg_write;
691
692 map->defer_caching = false;
693 goto skip_format_initialization;
694 } else {
695 map->reg_read = _regmap_bus_read;
696 map->reg_update_bits = bus->reg_update_bits;
697 }
698
699 reg_endian = regmap_get_reg_endian(bus, config);
700 val_endian = regmap_get_val_endian(dev, bus, config);
701
702 switch (config->reg_bits + map->reg_shift) {
703 case 2:
704 switch (config->val_bits) {
705 case 6:
706 map->format.format_write = regmap_format_2_6_write;
707 break;
708 default:
709 goto err_map;
710 }
711 break;
712
713 case 4:
714 switch (config->val_bits) {
715 case 12:
716 map->format.format_write = regmap_format_4_12_write;
717 break;
718 default:
719 goto err_map;
720 }
721 break;
722
723 case 7:
724 switch (config->val_bits) {
725 case 9:
726 map->format.format_write = regmap_format_7_9_write;
727 break;
728 default:
729 goto err_map;
730 }
731 break;
732
733 case 10:
734 switch (config->val_bits) {
735 case 14:
736 map->format.format_write = regmap_format_10_14_write;
737 break;
738 default:
739 goto err_map;
740 }
741 break;
742
743 case 8:
744 map->format.format_reg = regmap_format_8;
745 break;
746
747 case 16:
748 switch (reg_endian) {
749 case REGMAP_ENDIAN_BIG:
750 map->format.format_reg = regmap_format_16_be;
751 break;
752 case REGMAP_ENDIAN_NATIVE:
753 map->format.format_reg = regmap_format_16_native;
754 break;
755 default:
756 goto err_map;
757 }
758 break;
759
760 case 24:
761 if (reg_endian != REGMAP_ENDIAN_BIG)
762 goto err_map;
763 map->format.format_reg = regmap_format_24;
764 break;
765
766 case 32:
767 switch (reg_endian) {
768 case REGMAP_ENDIAN_BIG:
769 map->format.format_reg = regmap_format_32_be;
770 break;
771 case REGMAP_ENDIAN_NATIVE:
772 map->format.format_reg = regmap_format_32_native;
773 break;
774 default:
775 goto err_map;
776 }
777 break;
778
779 #ifdef CONFIG_64BIT
780 case 64:
781 switch (reg_endian) {
782 case REGMAP_ENDIAN_BIG:
783 map->format.format_reg = regmap_format_64_be;
784 break;
785 case REGMAP_ENDIAN_NATIVE:
786 map->format.format_reg = regmap_format_64_native;
787 break;
788 default:
789 goto err_map;
790 }
791 break;
792 #endif
793
794 default:
795 goto err_map;
796 }
797
798 if (val_endian == REGMAP_ENDIAN_NATIVE)
799 map->format.parse_inplace = regmap_parse_inplace_noop;
800
801 switch (config->val_bits) {
802 case 8:
803 map->format.format_val = regmap_format_8;
804 map->format.parse_val = regmap_parse_8;
805 map->format.parse_inplace = regmap_parse_inplace_noop;
806 break;
807 case 16:
808 switch (val_endian) {
809 case REGMAP_ENDIAN_BIG:
810 map->format.format_val = regmap_format_16_be;
811 map->format.parse_val = regmap_parse_16_be;
812 map->format.parse_inplace = regmap_parse_16_be_inplace;
813 break;
814 case REGMAP_ENDIAN_LITTLE:
815 map->format.format_val = regmap_format_16_le;
816 map->format.parse_val = regmap_parse_16_le;
817 map->format.parse_inplace = regmap_parse_16_le_inplace;
818 break;
819 case REGMAP_ENDIAN_NATIVE:
820 map->format.format_val = regmap_format_16_native;
821 map->format.parse_val = regmap_parse_16_native;
822 break;
823 default:
824 goto err_map;
825 }
826 break;
827 case 24:
828 if (val_endian != REGMAP_ENDIAN_BIG)
829 goto err_map;
830 map->format.format_val = regmap_format_24;
831 map->format.parse_val = regmap_parse_24;
832 break;
833 case 32:
834 switch (val_endian) {
835 case REGMAP_ENDIAN_BIG:
836 map->format.format_val = regmap_format_32_be;
837 map->format.parse_val = regmap_parse_32_be;
838 map->format.parse_inplace = regmap_parse_32_be_inplace;
839 break;
840 case REGMAP_ENDIAN_LITTLE:
841 map->format.format_val = regmap_format_32_le;
842 map->format.parse_val = regmap_parse_32_le;
843 map->format.parse_inplace = regmap_parse_32_le_inplace;
844 break;
845 case REGMAP_ENDIAN_NATIVE:
846 map->format.format_val = regmap_format_32_native;
847 map->format.parse_val = regmap_parse_32_native;
848 break;
849 default:
850 goto err_map;
851 }
852 break;
853 #ifdef CONFIG_64BIT
854 case 64:
855 switch (val_endian) {
856 case REGMAP_ENDIAN_BIG:
857 map->format.format_val = regmap_format_64_be;
858 map->format.parse_val = regmap_parse_64_be;
859 map->format.parse_inplace = regmap_parse_64_be_inplace;
860 break;
861 case REGMAP_ENDIAN_LITTLE:
862 map->format.format_val = regmap_format_64_le;
863 map->format.parse_val = regmap_parse_64_le;
864 map->format.parse_inplace = regmap_parse_64_le_inplace;
865 break;
866 case REGMAP_ENDIAN_NATIVE:
867 map->format.format_val = regmap_format_64_native;
868 map->format.parse_val = regmap_parse_64_native;
869 break;
870 default:
871 goto err_map;
872 }
873 break;
874 #endif
875 }
876
877 if (map->format.format_write) {
878 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
879 (val_endian != REGMAP_ENDIAN_BIG))
880 goto err_map;
881 map->use_single_write = true;
882 }
883
884 if (!map->format.format_write &&
885 !(map->format.format_reg && map->format.format_val))
886 goto err_map;
887
888 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
889 if (map->work_buf == NULL) {
890 ret = -ENOMEM;
891 goto err_map;
892 }
893
894 if (map->format.format_write) {
895 map->defer_caching = false;
896 map->reg_write = _regmap_bus_formatted_write;
897 } else if (map->format.format_val) {
898 map->defer_caching = true;
899 map->reg_write = _regmap_bus_raw_write;
900 }
901
902 skip_format_initialization:
903
904 map->range_tree = RB_ROOT;
905 for (i = 0; i < config->num_ranges; i++) {
906 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
907 struct regmap_range_node *new;
908
909 /* Sanity check */
910 if (range_cfg->range_max < range_cfg->range_min) {
911 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
912 range_cfg->range_max, range_cfg->range_min);
913 goto err_range;
914 }
915
916 if (range_cfg->range_max > map->max_register) {
917 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
918 range_cfg->range_max, map->max_register);
919 goto err_range;
920 }
921
922 if (range_cfg->selector_reg > map->max_register) {
923 dev_err(map->dev,
924 "Invalid range %d: selector out of map\n", i);
925 goto err_range;
926 }
927
928 if (range_cfg->window_len == 0) {
929 dev_err(map->dev, "Invalid range %d: window_len 0\n",
930 i);
931 goto err_range;
932 }
933
934 /* Make sure, that this register range has no selector
935 or data window within its boundary */
936 for (j = 0; j < config->num_ranges; j++) {
937 unsigned sel_reg = config->ranges[j].selector_reg;
938 unsigned win_min = config->ranges[j].window_start;
939 unsigned win_max = win_min +
940 config->ranges[j].window_len - 1;
941
942 /* Allow data window inside its own virtual range */
943 if (j == i)
944 continue;
945
946 if (range_cfg->range_min <= sel_reg &&
947 sel_reg <= range_cfg->range_max) {
948 dev_err(map->dev,
949 "Range %d: selector for %d in window\n",
950 i, j);
951 goto err_range;
952 }
953
954 if (!(win_max < range_cfg->range_min ||
955 win_min > range_cfg->range_max)) {
956 dev_err(map->dev,
957 "Range %d: window for %d in window\n",
958 i, j);
959 goto err_range;
960 }
961 }
962
963 new = kzalloc(sizeof(*new), GFP_KERNEL);
964 if (new == NULL) {
965 ret = -ENOMEM;
966 goto err_range;
967 }
968
969 new->map = map;
970 new->name = range_cfg->name;
971 new->range_min = range_cfg->range_min;
972 new->range_max = range_cfg->range_max;
973 new->selector_reg = range_cfg->selector_reg;
974 new->selector_mask = range_cfg->selector_mask;
975 new->selector_shift = range_cfg->selector_shift;
976 new->window_start = range_cfg->window_start;
977 new->window_len = range_cfg->window_len;
978
979 if (!_regmap_range_add(map, new)) {
980 dev_err(map->dev, "Failed to add range %d\n", i);
981 kfree(new);
982 goto err_range;
983 }
984
985 if (map->selector_work_buf == NULL) {
986 map->selector_work_buf =
987 kzalloc(map->format.buf_size, GFP_KERNEL);
988 if (map->selector_work_buf == NULL) {
989 ret = -ENOMEM;
990 goto err_range;
991 }
992 }
993 }
994
995 ret = regcache_init(map, config);
996 if (ret != 0)
997 goto err_range;
998
999 if (dev) {
1000 ret = regmap_attach_dev(dev, map, config);
1001 if (ret != 0)
1002 goto err_regcache;
1003 }
1004
1005 return map;
1006
1007 err_regcache:
1008 regcache_exit(map);
1009 err_range:
1010 regmap_range_exit(map);
1011 kfree(map->work_buf);
1012 err_map:
1013 kfree(map);
1014 err:
1015 return ERR_PTR(ret);
1016 }
1017 EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019 static void devm_regmap_release(struct device *dev, void *res)
1020 {
1021 regmap_exit(*(struct regmap **)res);
1022 }
1023
1024 struct regmap *__devm_regmap_init(struct device *dev,
1025 const struct regmap_bus *bus,
1026 void *bus_context,
1027 const struct regmap_config *config,
1028 struct lock_class_key *lock_key,
1029 const char *lock_name)
1030 {
1031 struct regmap **ptr, *regmap;
1032
1033 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034 if (!ptr)
1035 return ERR_PTR(-ENOMEM);
1036
1037 regmap = __regmap_init(dev, bus, bus_context, config,
1038 lock_key, lock_name);
1039 if (!IS_ERR(regmap)) {
1040 *ptr = regmap;
1041 devres_add(dev, ptr);
1042 } else {
1043 devres_free(ptr);
1044 }
1045
1046 return regmap;
1047 }
1048 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050 static void regmap_field_init(struct regmap_field *rm_field,
1051 struct regmap *regmap, struct reg_field reg_field)
1052 {
1053 rm_field->regmap = regmap;
1054 rm_field->reg = reg_field.reg;
1055 rm_field->shift = reg_field.lsb;
1056 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057 rm_field->id_size = reg_field.id_size;
1058 rm_field->id_offset = reg_field.id_offset;
1059 }
1060
1061 /**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074 struct regmap *regmap, struct reg_field reg_field)
1075 {
1076 struct regmap_field *rm_field = devm_kzalloc(dev,
1077 sizeof(*rm_field), GFP_KERNEL);
1078 if (!rm_field)
1079 return ERR_PTR(-ENOMEM);
1080
1081 regmap_field_init(rm_field, regmap, reg_field);
1082
1083 return rm_field;
1084
1085 }
1086 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
1088 /**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
1096 */
1097 void devm_regmap_field_free(struct device *dev,
1098 struct regmap_field *field)
1099 {
1100 devm_kfree(dev, field);
1101 }
1102 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104 /**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116 struct reg_field reg_field)
1117 {
1118 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120 if (!rm_field)
1121 return ERR_PTR(-ENOMEM);
1122
1123 regmap_field_init(rm_field, regmap, reg_field);
1124
1125 return rm_field;
1126 }
1127 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129 /**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134 void regmap_field_free(struct regmap_field *field)
1135 {
1136 kfree(field);
1137 }
1138 EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140 /**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration. Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache. This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1153 */
1154 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155 {
1156 regcache_exit(map);
1157 regmap_debugfs_exit(map);
1158
1159 map->max_register = config->max_register;
1160 map->writeable_reg = config->writeable_reg;
1161 map->readable_reg = config->readable_reg;
1162 map->volatile_reg = config->volatile_reg;
1163 map->precious_reg = config->precious_reg;
1164 map->cache_type = config->cache_type;
1165
1166 regmap_debugfs_init(map, config->name);
1167
1168 map->cache_bypass = false;
1169 map->cache_only = false;
1170
1171 return regcache_init(map, config);
1172 }
1173 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175 /**
1176 * regmap_exit(): Free a previously allocated register map
1177 */
1178 void regmap_exit(struct regmap *map)
1179 {
1180 struct regmap_async *async;
1181
1182 regcache_exit(map);
1183 regmap_debugfs_exit(map);
1184 regmap_range_exit(map);
1185 if (map->bus && map->bus->free_context)
1186 map->bus->free_context(map->bus_context);
1187 kfree(map->work_buf);
1188 while (!list_empty(&map->async_free)) {
1189 async = list_first_entry_or_null(&map->async_free,
1190 struct regmap_async,
1191 list);
1192 list_del(&async->list);
1193 kfree(async->work_buf);
1194 kfree(async);
1195 }
1196 kfree(map);
1197 }
1198 EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201 {
1202 struct regmap **r = res;
1203 if (!r || !*r) {
1204 WARN_ON(!r || !*r);
1205 return 0;
1206 }
1207
1208 /* If the user didn't specify a name match any */
1209 if (data)
1210 return (*r)->name == data;
1211 else
1212 return 1;
1213 }
1214
1215 /**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL. If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used. Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228 {
1229 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230 dev_get_regmap_match, (void *)name);
1231
1232 if (!r)
1233 return NULL;
1234 return *r;
1235 }
1236 EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238 /**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245 struct device *regmap_get_device(struct regmap *map)
1246 {
1247 return map->dev;
1248 }
1249 EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252 struct regmap_range_node *range,
1253 unsigned int val_num)
1254 {
1255 void *orig_work_buf;
1256 unsigned int win_offset;
1257 unsigned int win_page;
1258 bool page_chg;
1259 int ret;
1260
1261 win_offset = (*reg - range->range_min) % range->window_len;
1262 win_page = (*reg - range->range_min) / range->window_len;
1263
1264 if (val_num > 1) {
1265 /* Bulk write shouldn't cross range boundary */
1266 if (*reg + val_num - 1 > range->range_max)
1267 return -EINVAL;
1268
1269 /* ... or single page boundary */
1270 if (val_num > range->window_len - win_offset)
1271 return -EINVAL;
1272 }
1273
1274 /* It is possible to have selector register inside data window.
1275 In that case, selector register is located on every page and
1276 it needs no page switching, when accessed alone. */
1277 if (val_num > 1 ||
1278 range->window_start + win_offset != range->selector_reg) {
1279 /* Use separate work_buf during page switching */
1280 orig_work_buf = map->work_buf;
1281 map->work_buf = map->selector_work_buf;
1282
1283 ret = _regmap_update_bits(map, range->selector_reg,
1284 range->selector_mask,
1285 win_page << range->selector_shift,
1286 &page_chg, false);
1287
1288 map->work_buf = orig_work_buf;
1289
1290 if (ret != 0)
1291 return ret;
1292 }
1293
1294 *reg = range->window_start + win_offset;
1295
1296 return 0;
1297 }
1298
1299 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300 const void *val, size_t val_len)
1301 {
1302 struct regmap_range_node *range;
1303 unsigned long flags;
1304 u8 *u8 = map->work_buf;
1305 void *work_val = map->work_buf + map->format.reg_bytes +
1306 map->format.pad_bytes;
1307 void *buf;
1308 int ret = -ENOTSUPP;
1309 size_t len;
1310 int i;
1311
1312 WARN_ON(!map->bus);
1313
1314 /* Check for unwritable registers before we start */
1315 if (map->writeable_reg)
1316 for (i = 0; i < val_len / map->format.val_bytes; i++)
1317 if (!map->writeable_reg(map->dev,
1318 reg + regmap_get_offset(map, i)))
1319 return -EINVAL;
1320
1321 if (!map->cache_bypass && map->format.parse_val) {
1322 unsigned int ival;
1323 int val_bytes = map->format.val_bytes;
1324 for (i = 0; i < val_len / val_bytes; i++) {
1325 ival = map->format.parse_val(val + (i * val_bytes));
1326 ret = regcache_write(map,
1327 reg + regmap_get_offset(map, i),
1328 ival);
1329 if (ret) {
1330 dev_err(map->dev,
1331 "Error in caching of register: %x ret: %d\n",
1332 reg + i, ret);
1333 return ret;
1334 }
1335 }
1336 if (map->cache_only) {
1337 map->cache_dirty = true;
1338 return 0;
1339 }
1340 }
1341
1342 range = _regmap_range_lookup(map, reg);
1343 if (range) {
1344 int val_num = val_len / map->format.val_bytes;
1345 int win_offset = (reg - range->range_min) % range->window_len;
1346 int win_residue = range->window_len - win_offset;
1347
1348 /* If the write goes beyond the end of the window split it */
1349 while (val_num > win_residue) {
1350 dev_dbg(map->dev, "Writing window %d/%zu\n",
1351 win_residue, val_len / map->format.val_bytes);
1352 ret = _regmap_raw_write(map, reg, val, win_residue *
1353 map->format.val_bytes);
1354 if (ret != 0)
1355 return ret;
1356
1357 reg += win_residue;
1358 val_num -= win_residue;
1359 val += win_residue * map->format.val_bytes;
1360 val_len -= win_residue * map->format.val_bytes;
1361
1362 win_offset = (reg - range->range_min) %
1363 range->window_len;
1364 win_residue = range->window_len - win_offset;
1365 }
1366
1367 ret = _regmap_select_page(map, &reg, range, val_num);
1368 if (ret != 0)
1369 return ret;
1370 }
1371
1372 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374 u8[0] |= map->write_flag_mask;
1375
1376 /*
1377 * Essentially all I/O mechanisms will be faster with a single
1378 * buffer to write. Since register syncs often generate raw
1379 * writes of single registers optimise that case.
1380 */
1381 if (val != work_val && val_len == map->format.val_bytes) {
1382 memcpy(work_val, val, map->format.val_bytes);
1383 val = work_val;
1384 }
1385
1386 if (map->async && map->bus->async_write) {
1387 struct regmap_async *async;
1388
1389 trace_regmap_async_write_start(map, reg, val_len);
1390
1391 spin_lock_irqsave(&map->async_lock, flags);
1392 async = list_first_entry_or_null(&map->async_free,
1393 struct regmap_async,
1394 list);
1395 if (async)
1396 list_del(&async->list);
1397 spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399 if (!async) {
1400 async = map->bus->async_alloc();
1401 if (!async)
1402 return -ENOMEM;
1403
1404 async->work_buf = kzalloc(map->format.buf_size,
1405 GFP_KERNEL | GFP_DMA);
1406 if (!async->work_buf) {
1407 kfree(async);
1408 return -ENOMEM;
1409 }
1410 }
1411
1412 async->map = map;
1413
1414 /* If the caller supplied the value we can use it safely. */
1415 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416 map->format.reg_bytes + map->format.val_bytes);
1417
1418 spin_lock_irqsave(&map->async_lock, flags);
1419 list_add_tail(&async->list, &map->async_list);
1420 spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422 if (val != work_val)
1423 ret = map->bus->async_write(map->bus_context,
1424 async->work_buf,
1425 map->format.reg_bytes +
1426 map->format.pad_bytes,
1427 val, val_len, async);
1428 else
1429 ret = map->bus->async_write(map->bus_context,
1430 async->work_buf,
1431 map->format.reg_bytes +
1432 map->format.pad_bytes +
1433 val_len, NULL, 0, async);
1434
1435 if (ret != 0) {
1436 dev_err(map->dev, "Failed to schedule write: %d\n",
1437 ret);
1438
1439 spin_lock_irqsave(&map->async_lock, flags);
1440 list_move(&async->list, &map->async_free);
1441 spin_unlock_irqrestore(&map->async_lock, flags);
1442 }
1443
1444 return ret;
1445 }
1446
1447 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449 /* If we're doing a single register write we can probably just
1450 * send the work_buf directly, otherwise try to do a gather
1451 * write.
1452 */
1453 if (val == work_val)
1454 ret = map->bus->write(map->bus_context, map->work_buf,
1455 map->format.reg_bytes +
1456 map->format.pad_bytes +
1457 val_len);
1458 else if (map->bus->gather_write)
1459 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460 map->format.reg_bytes +
1461 map->format.pad_bytes,
1462 val, val_len);
1463
1464 /* If that didn't work fall back on linearising by hand. */
1465 if (ret == -ENOTSUPP) {
1466 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467 buf = kzalloc(len, GFP_KERNEL);
1468 if (!buf)
1469 return -ENOMEM;
1470
1471 memcpy(buf, map->work_buf, map->format.reg_bytes);
1472 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473 val, val_len);
1474 ret = map->bus->write(map->bus_context, buf, len);
1475
1476 kfree(buf);
1477 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1478 /* regcache_drop_region() takes lock that we already have,
1479 * thus call map->cache_ops->drop() directly
1480 */
1481 if (map->cache_ops && map->cache_ops->drop)
1482 map->cache_ops->drop(map, reg, reg + 1);
1483 }
1484
1485 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1486
1487 return ret;
1488 }
1489
1490 /**
1491 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1492 *
1493 * @map: Map to check.
1494 */
1495 bool regmap_can_raw_write(struct regmap *map)
1496 {
1497 return map->bus && map->bus->write && map->format.format_val &&
1498 map->format.format_reg;
1499 }
1500 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1501
1502 /**
1503 * regmap_get_raw_read_max - Get the maximum size we can read
1504 *
1505 * @map: Map to check.
1506 */
1507 size_t regmap_get_raw_read_max(struct regmap *map)
1508 {
1509 return map->max_raw_read;
1510 }
1511 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1512
1513 /**
1514 * regmap_get_raw_write_max - Get the maximum size we can read
1515 *
1516 * @map: Map to check.
1517 */
1518 size_t regmap_get_raw_write_max(struct regmap *map)
1519 {
1520 return map->max_raw_write;
1521 }
1522 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1523
1524 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1525 unsigned int val)
1526 {
1527 int ret;
1528 struct regmap_range_node *range;
1529 struct regmap *map = context;
1530
1531 WARN_ON(!map->bus || !map->format.format_write);
1532
1533 range = _regmap_range_lookup(map, reg);
1534 if (range) {
1535 ret = _regmap_select_page(map, &reg, range, 1);
1536 if (ret != 0)
1537 return ret;
1538 }
1539
1540 map->format.format_write(map, reg, val);
1541
1542 trace_regmap_hw_write_start(map, reg, 1);
1543
1544 ret = map->bus->write(map->bus_context, map->work_buf,
1545 map->format.buf_size);
1546
1547 trace_regmap_hw_write_done(map, reg, 1);
1548
1549 return ret;
1550 }
1551
1552 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1553 unsigned int val)
1554 {
1555 struct regmap *map = context;
1556
1557 return map->bus->reg_write(map->bus_context, reg, val);
1558 }
1559
1560 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1561 unsigned int val)
1562 {
1563 struct regmap *map = context;
1564
1565 WARN_ON(!map->bus || !map->format.format_val);
1566
1567 map->format.format_val(map->work_buf + map->format.reg_bytes
1568 + map->format.pad_bytes, val, 0);
1569 return _regmap_raw_write(map, reg,
1570 map->work_buf +
1571 map->format.reg_bytes +
1572 map->format.pad_bytes,
1573 map->format.val_bytes);
1574 }
1575
1576 static inline void *_regmap_map_get_context(struct regmap *map)
1577 {
1578 return (map->bus) ? map : map->bus_context;
1579 }
1580
1581 int _regmap_write(struct regmap *map, unsigned int reg,
1582 unsigned int val)
1583 {
1584 int ret;
1585 void *context = _regmap_map_get_context(map);
1586
1587 if (!regmap_writeable(map, reg))
1588 return -EIO;
1589
1590 if (!map->cache_bypass && !map->defer_caching) {
1591 ret = regcache_write(map, reg, val);
1592 if (ret != 0)
1593 return ret;
1594 if (map->cache_only) {
1595 map->cache_dirty = true;
1596 return 0;
1597 }
1598 }
1599
1600 #ifdef LOG_DEVICE
1601 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1602 dev_info(map->dev, "%x <= %x\n", reg, val);
1603 #endif
1604
1605 trace_regmap_reg_write(map, reg, val);
1606
1607 return map->reg_write(context, reg, val);
1608 }
1609
1610 /**
1611 * regmap_write(): Write a value to a single register
1612 *
1613 * @map: Register map to write to
1614 * @reg: Register to write to
1615 * @val: Value to be written
1616 *
1617 * A value of zero will be returned on success, a negative errno will
1618 * be returned in error cases.
1619 */
1620 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1621 {
1622 int ret;
1623
1624 if (!IS_ALIGNED(reg, map->reg_stride))
1625 return -EINVAL;
1626
1627 map->lock(map->lock_arg);
1628
1629 ret = _regmap_write(map, reg, val);
1630
1631 map->unlock(map->lock_arg);
1632
1633 return ret;
1634 }
1635 EXPORT_SYMBOL_GPL(regmap_write);
1636
1637 /**
1638 * regmap_write_async(): Write a value to a single register asynchronously
1639 *
1640 * @map: Register map to write to
1641 * @reg: Register to write to
1642 * @val: Value to be written
1643 *
1644 * A value of zero will be returned on success, a negative errno will
1645 * be returned in error cases.
1646 */
1647 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1648 {
1649 int ret;
1650
1651 if (!IS_ALIGNED(reg, map->reg_stride))
1652 return -EINVAL;
1653
1654 map->lock(map->lock_arg);
1655
1656 map->async = true;
1657
1658 ret = _regmap_write(map, reg, val);
1659
1660 map->async = false;
1661
1662 map->unlock(map->lock_arg);
1663
1664 return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(regmap_write_async);
1667
1668 /**
1669 * regmap_raw_write(): Write raw values to one or more registers
1670 *
1671 * @map: Register map to write to
1672 * @reg: Initial register to write to
1673 * @val: Block of data to be written, laid out for direct transmission to the
1674 * device
1675 * @val_len: Length of data pointed to by val.
1676 *
1677 * This function is intended to be used for things like firmware
1678 * download where a large block of data needs to be transferred to the
1679 * device. No formatting will be done on the data provided.
1680 *
1681 * A value of zero will be returned on success, a negative errno will
1682 * be returned in error cases.
1683 */
1684 int regmap_raw_write(struct regmap *map, unsigned int reg,
1685 const void *val, size_t val_len)
1686 {
1687 int ret;
1688
1689 if (!regmap_can_raw_write(map))
1690 return -EINVAL;
1691 if (val_len % map->format.val_bytes)
1692 return -EINVAL;
1693 if (map->max_raw_write && map->max_raw_write > val_len)
1694 return -E2BIG;
1695
1696 map->lock(map->lock_arg);
1697
1698 ret = _regmap_raw_write(map, reg, val, val_len);
1699
1700 map->unlock(map->lock_arg);
1701
1702 return ret;
1703 }
1704 EXPORT_SYMBOL_GPL(regmap_raw_write);
1705
1706 /**
1707 * regmap_field_update_bits_base():
1708 * Perform a read/modify/write cycle on the register field
1709 * with change, async, force option
1710 *
1711 * @field: Register field to write to
1712 * @mask: Bitmask to change
1713 * @val: Value to be written
1714 * @change: Boolean indicating if a write was done
1715 * @async: Boolean indicating asynchronously
1716 * @force: Boolean indicating use force update
1717 *
1718 * A value of zero will be returned on success, a negative errno will
1719 * be returned in error cases.
1720 */
1721 int regmap_field_update_bits_base(struct regmap_field *field,
1722 unsigned int mask, unsigned int val,
1723 bool *change, bool async, bool force)
1724 {
1725 mask = (mask << field->shift) & field->mask;
1726
1727 return regmap_update_bits_base(field->regmap, field->reg,
1728 mask, val << field->shift,
1729 change, async, force);
1730 }
1731 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1732
1733 /**
1734 * regmap_fields_update_bits_base():
1735 * Perform a read/modify/write cycle on the register field
1736 * with change, async, force option
1737 *
1738 * @field: Register field to write to
1739 * @id: port ID
1740 * @mask: Bitmask to change
1741 * @val: Value to be written
1742 * @change: Boolean indicating if a write was done
1743 * @async: Boolean indicating asynchronously
1744 * @force: Boolean indicating use force update
1745 *
1746 * A value of zero will be returned on success, a negative errno will
1747 * be returned in error cases.
1748 */
1749 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1750 unsigned int mask, unsigned int val,
1751 bool *change, bool async, bool force)
1752 {
1753 if (id >= field->id_size)
1754 return -EINVAL;
1755
1756 mask = (mask << field->shift) & field->mask;
1757
1758 return regmap_update_bits_base(field->regmap,
1759 field->reg + (field->id_offset * id),
1760 mask, val << field->shift,
1761 change, async, force);
1762 }
1763 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1764
1765 /*
1766 * regmap_bulk_write(): Write multiple registers to the device
1767 *
1768 * @map: Register map to write to
1769 * @reg: First register to be write from
1770 * @val: Block of data to be written, in native register size for device
1771 * @val_count: Number of registers to write
1772 *
1773 * This function is intended to be used for writing a large block of
1774 * data to the device either in single transfer or multiple transfer.
1775 *
1776 * A value of zero will be returned on success, a negative errno will
1777 * be returned in error cases.
1778 */
1779 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1780 size_t val_count)
1781 {
1782 int ret = 0, i;
1783 size_t val_bytes = map->format.val_bytes;
1784 size_t total_size = val_bytes * val_count;
1785
1786 if (!IS_ALIGNED(reg, map->reg_stride))
1787 return -EINVAL;
1788
1789 /*
1790 * Some devices don't support bulk write, for
1791 * them we have a series of single write operations in the first two if
1792 * blocks.
1793 *
1794 * The first if block is used for memory mapped io. It does not allow
1795 * val_bytes of 3 for example.
1796 * The second one is for busses that do not provide raw I/O.
1797 * The third one is used for busses which do not have these limitations
1798 * and can write arbitrary value lengths.
1799 */
1800 if (!map->bus) {
1801 map->lock(map->lock_arg);
1802 for (i = 0; i < val_count; i++) {
1803 unsigned int ival;
1804
1805 switch (val_bytes) {
1806 case 1:
1807 ival = *(u8 *)(val + (i * val_bytes));
1808 break;
1809 case 2:
1810 ival = *(u16 *)(val + (i * val_bytes));
1811 break;
1812 case 4:
1813 ival = *(u32 *)(val + (i * val_bytes));
1814 break;
1815 #ifdef CONFIG_64BIT
1816 case 8:
1817 ival = *(u64 *)(val + (i * val_bytes));
1818 break;
1819 #endif
1820 default:
1821 ret = -EINVAL;
1822 goto out;
1823 }
1824
1825 ret = _regmap_write(map,
1826 reg + regmap_get_offset(map, i),
1827 ival);
1828 if (ret != 0)
1829 goto out;
1830 }
1831 out:
1832 map->unlock(map->lock_arg);
1833 } else if (map->bus && !map->format.parse_inplace) {
1834 const u8 *u8 = val;
1835 const u16 *u16 = val;
1836 const u32 *u32 = val;
1837 unsigned int ival;
1838
1839 for (i = 0; i < val_count; i++) {
1840 switch (map->format.val_bytes) {
1841 case 4:
1842 ival = u32[i];
1843 break;
1844 case 2:
1845 ival = u16[i];
1846 break;
1847 case 1:
1848 ival = u8[i];
1849 break;
1850 default:
1851 return -EINVAL;
1852 }
1853
1854 ret = regmap_write(map, reg + (i * map->reg_stride),
1855 ival);
1856 if (ret)
1857 return ret;
1858 }
1859 } else if (map->use_single_write ||
1860 (map->max_raw_write && map->max_raw_write < total_size)) {
1861 int chunk_stride = map->reg_stride;
1862 size_t chunk_size = val_bytes;
1863 size_t chunk_count = val_count;
1864
1865 if (!map->use_single_write) {
1866 chunk_size = map->max_raw_write;
1867 if (chunk_size % val_bytes)
1868 chunk_size -= chunk_size % val_bytes;
1869 chunk_count = total_size / chunk_size;
1870 chunk_stride *= chunk_size / val_bytes;
1871 }
1872
1873 map->lock(map->lock_arg);
1874 /* Write as many bytes as possible with chunk_size */
1875 for (i = 0; i < chunk_count; i++) {
1876 ret = _regmap_raw_write(map,
1877 reg + (i * chunk_stride),
1878 val + (i * chunk_size),
1879 chunk_size);
1880 if (ret)
1881 break;
1882 }
1883
1884 /* Write remaining bytes */
1885 if (!ret && chunk_size * i < total_size) {
1886 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1887 val + (i * chunk_size),
1888 total_size - i * chunk_size);
1889 }
1890 map->unlock(map->lock_arg);
1891 } else {
1892 void *wval;
1893
1894 if (!val_count)
1895 return -EINVAL;
1896
1897 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1898 if (!wval) {
1899 dev_err(map->dev, "Error in memory allocation\n");
1900 return -ENOMEM;
1901 }
1902 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1903 map->format.parse_inplace(wval + i);
1904
1905 map->lock(map->lock_arg);
1906 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1907 map->unlock(map->lock_arg);
1908
1909 kfree(wval);
1910 }
1911 return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1914
1915 /*
1916 * _regmap_raw_multi_reg_write()
1917 *
1918 * the (register,newvalue) pairs in regs have not been formatted, but
1919 * they are all in the same page and have been changed to being page
1920 * relative. The page register has been written if that was necessary.
1921 */
1922 static int _regmap_raw_multi_reg_write(struct regmap *map,
1923 const struct reg_sequence *regs,
1924 size_t num_regs)
1925 {
1926 int ret;
1927 void *buf;
1928 int i;
1929 u8 *u8;
1930 size_t val_bytes = map->format.val_bytes;
1931 size_t reg_bytes = map->format.reg_bytes;
1932 size_t pad_bytes = map->format.pad_bytes;
1933 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1934 size_t len = pair_size * num_regs;
1935
1936 if (!len)
1937 return -EINVAL;
1938
1939 buf = kzalloc(len, GFP_KERNEL);
1940 if (!buf)
1941 return -ENOMEM;
1942
1943 /* We have to linearise by hand. */
1944
1945 u8 = buf;
1946
1947 for (i = 0; i < num_regs; i++) {
1948 unsigned int reg = regs[i].reg;
1949 unsigned int val = regs[i].def;
1950 trace_regmap_hw_write_start(map, reg, 1);
1951 map->format.format_reg(u8, reg, map->reg_shift);
1952 u8 += reg_bytes + pad_bytes;
1953 map->format.format_val(u8, val, 0);
1954 u8 += val_bytes;
1955 }
1956 u8 = buf;
1957 *u8 |= map->write_flag_mask;
1958
1959 ret = map->bus->write(map->bus_context, buf, len);
1960
1961 kfree(buf);
1962
1963 for (i = 0; i < num_regs; i++) {
1964 int reg = regs[i].reg;
1965 trace_regmap_hw_write_done(map, reg, 1);
1966 }
1967 return ret;
1968 }
1969
1970 static unsigned int _regmap_register_page(struct regmap *map,
1971 unsigned int reg,
1972 struct regmap_range_node *range)
1973 {
1974 unsigned int win_page = (reg - range->range_min) / range->window_len;
1975
1976 return win_page;
1977 }
1978
1979 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1980 struct reg_sequence *regs,
1981 size_t num_regs)
1982 {
1983 int ret;
1984 int i, n;
1985 struct reg_sequence *base;
1986 unsigned int this_page = 0;
1987 unsigned int page_change = 0;
1988 /*
1989 * the set of registers are not neccessarily in order, but
1990 * since the order of write must be preserved this algorithm
1991 * chops the set each time the page changes. This also applies
1992 * if there is a delay required at any point in the sequence.
1993 */
1994 base = regs;
1995 for (i = 0, n = 0; i < num_regs; i++, n++) {
1996 unsigned int reg = regs[i].reg;
1997 struct regmap_range_node *range;
1998
1999 range = _regmap_range_lookup(map, reg);
2000 if (range) {
2001 unsigned int win_page = _regmap_register_page(map, reg,
2002 range);
2003
2004 if (i == 0)
2005 this_page = win_page;
2006 if (win_page != this_page) {
2007 this_page = win_page;
2008 page_change = 1;
2009 }
2010 }
2011
2012 /* If we have both a page change and a delay make sure to
2013 * write the regs and apply the delay before we change the
2014 * page.
2015 */
2016
2017 if (page_change || regs[i].delay_us) {
2018
2019 /* For situations where the first write requires
2020 * a delay we need to make sure we don't call
2021 * raw_multi_reg_write with n=0
2022 * This can't occur with page breaks as we
2023 * never write on the first iteration
2024 */
2025 if (regs[i].delay_us && i == 0)
2026 n = 1;
2027
2028 ret = _regmap_raw_multi_reg_write(map, base, n);
2029 if (ret != 0)
2030 return ret;
2031
2032 if (regs[i].delay_us)
2033 udelay(regs[i].delay_us);
2034
2035 base += n;
2036 n = 0;
2037
2038 if (page_change) {
2039 ret = _regmap_select_page(map,
2040 &base[n].reg,
2041 range, 1);
2042 if (ret != 0)
2043 return ret;
2044
2045 page_change = 0;
2046 }
2047
2048 }
2049
2050 }
2051 if (n > 0)
2052 return _regmap_raw_multi_reg_write(map, base, n);
2053 return 0;
2054 }
2055
2056 static int _regmap_multi_reg_write(struct regmap *map,
2057 const struct reg_sequence *regs,
2058 size_t num_regs)
2059 {
2060 int i;
2061 int ret;
2062
2063 if (!map->can_multi_write) {
2064 for (i = 0; i < num_regs; i++) {
2065 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2066 if (ret != 0)
2067 return ret;
2068
2069 if (regs[i].delay_us)
2070 udelay(regs[i].delay_us);
2071 }
2072 return 0;
2073 }
2074
2075 if (!map->format.parse_inplace)
2076 return -EINVAL;
2077
2078 if (map->writeable_reg)
2079 for (i = 0; i < num_regs; i++) {
2080 int reg = regs[i].reg;
2081 if (!map->writeable_reg(map->dev, reg))
2082 return -EINVAL;
2083 if (!IS_ALIGNED(reg, map->reg_stride))
2084 return -EINVAL;
2085 }
2086
2087 if (!map->cache_bypass) {
2088 for (i = 0; i < num_regs; i++) {
2089 unsigned int val = regs[i].def;
2090 unsigned int reg = regs[i].reg;
2091 ret = regcache_write(map, reg, val);
2092 if (ret) {
2093 dev_err(map->dev,
2094 "Error in caching of register: %x ret: %d\n",
2095 reg, ret);
2096 return ret;
2097 }
2098 }
2099 if (map->cache_only) {
2100 map->cache_dirty = true;
2101 return 0;
2102 }
2103 }
2104
2105 WARN_ON(!map->bus);
2106
2107 for (i = 0; i < num_regs; i++) {
2108 unsigned int reg = regs[i].reg;
2109 struct regmap_range_node *range;
2110
2111 /* Coalesce all the writes between a page break or a delay
2112 * in a sequence
2113 */
2114 range = _regmap_range_lookup(map, reg);
2115 if (range || regs[i].delay_us) {
2116 size_t len = sizeof(struct reg_sequence)*num_regs;
2117 struct reg_sequence *base = kmemdup(regs, len,
2118 GFP_KERNEL);
2119 if (!base)
2120 return -ENOMEM;
2121 ret = _regmap_range_multi_paged_reg_write(map, base,
2122 num_regs);
2123 kfree(base);
2124
2125 return ret;
2126 }
2127 }
2128 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2129 }
2130
2131 /*
2132 * regmap_multi_reg_write(): Write multiple registers to the device
2133 *
2134 * where the set of register,value pairs are supplied in any order,
2135 * possibly not all in a single range.
2136 *
2137 * @map: Register map to write to
2138 * @regs: Array of structures containing register,value to be written
2139 * @num_regs: Number of registers to write
2140 *
2141 * The 'normal' block write mode will send ultimately send data on the
2142 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2143 * addressed. However, this alternative block multi write mode will send
2144 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2145 * must of course support the mode.
2146 *
2147 * A value of zero will be returned on success, a negative errno will be
2148 * returned in error cases.
2149 */
2150 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2151 int num_regs)
2152 {
2153 int ret;
2154
2155 map->lock(map->lock_arg);
2156
2157 ret = _regmap_multi_reg_write(map, regs, num_regs);
2158
2159 map->unlock(map->lock_arg);
2160
2161 return ret;
2162 }
2163 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2164
2165 /*
2166 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2167 * device but not the cache
2168 *
2169 * where the set of register are supplied in any order
2170 *
2171 * @map: Register map to write to
2172 * @regs: Array of structures containing register,value to be written
2173 * @num_regs: Number of registers to write
2174 *
2175 * This function is intended to be used for writing a large block of data
2176 * atomically to the device in single transfer for those I2C client devices
2177 * that implement this alternative block write mode.
2178 *
2179 * A value of zero will be returned on success, a negative errno will
2180 * be returned in error cases.
2181 */
2182 int regmap_multi_reg_write_bypassed(struct regmap *map,
2183 const struct reg_sequence *regs,
2184 int num_regs)
2185 {
2186 int ret;
2187 bool bypass;
2188
2189 map->lock(map->lock_arg);
2190
2191 bypass = map->cache_bypass;
2192 map->cache_bypass = true;
2193
2194 ret = _regmap_multi_reg_write(map, regs, num_regs);
2195
2196 map->cache_bypass = bypass;
2197
2198 map->unlock(map->lock_arg);
2199
2200 return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2203
2204 /**
2205 * regmap_raw_write_async(): Write raw values to one or more registers
2206 * asynchronously
2207 *
2208 * @map: Register map to write to
2209 * @reg: Initial register to write to
2210 * @val: Block of data to be written, laid out for direct transmission to the
2211 * device. Must be valid until regmap_async_complete() is called.
2212 * @val_len: Length of data pointed to by val.
2213 *
2214 * This function is intended to be used for things like firmware
2215 * download where a large block of data needs to be transferred to the
2216 * device. No formatting will be done on the data provided.
2217 *
2218 * If supported by the underlying bus the write will be scheduled
2219 * asynchronously, helping maximise I/O speed on higher speed buses
2220 * like SPI. regmap_async_complete() can be called to ensure that all
2221 * asynchrnous writes have been completed.
2222 *
2223 * A value of zero will be returned on success, a negative errno will
2224 * be returned in error cases.
2225 */
2226 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2227 const void *val, size_t val_len)
2228 {
2229 int ret;
2230
2231 if (val_len % map->format.val_bytes)
2232 return -EINVAL;
2233 if (!IS_ALIGNED(reg, map->reg_stride))
2234 return -EINVAL;
2235
2236 map->lock(map->lock_arg);
2237
2238 map->async = true;
2239
2240 ret = _regmap_raw_write(map, reg, val, val_len);
2241
2242 map->async = false;
2243
2244 map->unlock(map->lock_arg);
2245
2246 return ret;
2247 }
2248 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2249
2250 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2251 unsigned int val_len)
2252 {
2253 struct regmap_range_node *range;
2254 u8 *u8 = map->work_buf;
2255 int ret;
2256
2257 WARN_ON(!map->bus);
2258
2259 if (!map->bus || !map->bus->read)
2260 return -EINVAL;
2261
2262 range = _regmap_range_lookup(map, reg);
2263 if (range) {
2264 ret = _regmap_select_page(map, &reg, range,
2265 val_len / map->format.val_bytes);
2266 if (ret != 0)
2267 return ret;
2268 }
2269
2270 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2271
2272 /*
2273 * Some buses or devices flag reads by setting the high bits in the
2274 * register address; since it's always the high bits for all
2275 * current formats we can do this here rather than in
2276 * formatting. This may break if we get interesting formats.
2277 */
2278 u8[0] |= map->read_flag_mask;
2279
2280 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2281
2282 ret = map->bus->read(map->bus_context, map->work_buf,
2283 map->format.reg_bytes + map->format.pad_bytes,
2284 val, val_len);
2285
2286 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2287
2288 return ret;
2289 }
2290
2291 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2292 unsigned int *val)
2293 {
2294 struct regmap *map = context;
2295
2296 return map->bus->reg_read(map->bus_context, reg, val);
2297 }
2298
2299 static int _regmap_bus_read(void *context, unsigned int reg,
2300 unsigned int *val)
2301 {
2302 int ret;
2303 struct regmap *map = context;
2304
2305 if (!map->format.parse_val)
2306 return -EINVAL;
2307
2308 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2309 if (ret == 0)
2310 *val = map->format.parse_val(map->work_buf);
2311
2312 return ret;
2313 }
2314
2315 static int _regmap_read(struct regmap *map, unsigned int reg,
2316 unsigned int *val)
2317 {
2318 int ret;
2319 void *context = _regmap_map_get_context(map);
2320
2321 if (!map->cache_bypass) {
2322 ret = regcache_read(map, reg, val);
2323 if (ret == 0)
2324 return 0;
2325 }
2326
2327 if (map->cache_only)
2328 return -EBUSY;
2329
2330 if (!regmap_readable(map, reg))
2331 return -EIO;
2332
2333 ret = map->reg_read(context, reg, val);
2334 if (ret == 0) {
2335 #ifdef LOG_DEVICE
2336 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2337 dev_info(map->dev, "%x => %x\n", reg, *val);
2338 #endif
2339
2340 trace_regmap_reg_read(map, reg, *val);
2341
2342 if (!map->cache_bypass)
2343 regcache_write(map, reg, *val);
2344 }
2345
2346 return ret;
2347 }
2348
2349 /**
2350 * regmap_read(): Read a value from a single register
2351 *
2352 * @map: Register map to read from
2353 * @reg: Register to be read from
2354 * @val: Pointer to store read value
2355 *
2356 * A value of zero will be returned on success, a negative errno will
2357 * be returned in error cases.
2358 */
2359 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2360 {
2361 int ret;
2362
2363 if (!IS_ALIGNED(reg, map->reg_stride))
2364 return -EINVAL;
2365
2366 map->lock(map->lock_arg);
2367
2368 ret = _regmap_read(map, reg, val);
2369
2370 map->unlock(map->lock_arg);
2371
2372 return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(regmap_read);
2375
2376 /**
2377 * regmap_raw_read(): Read raw data from the device
2378 *
2379 * @map: Register map to read from
2380 * @reg: First register to be read from
2381 * @val: Pointer to store read value
2382 * @val_len: Size of data to read
2383 *
2384 * A value of zero will be returned on success, a negative errno will
2385 * be returned in error cases.
2386 */
2387 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2388 size_t val_len)
2389 {
2390 size_t val_bytes = map->format.val_bytes;
2391 size_t val_count = val_len / val_bytes;
2392 unsigned int v;
2393 int ret, i;
2394
2395 if (!map->bus)
2396 return -EINVAL;
2397 if (val_len % map->format.val_bytes)
2398 return -EINVAL;
2399 if (!IS_ALIGNED(reg, map->reg_stride))
2400 return -EINVAL;
2401 if (val_count == 0)
2402 return -EINVAL;
2403
2404 map->lock(map->lock_arg);
2405
2406 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2407 map->cache_type == REGCACHE_NONE) {
2408 if (!map->bus->read) {
2409 ret = -ENOTSUPP;
2410 goto out;
2411 }
2412 if (map->max_raw_read && map->max_raw_read < val_len) {
2413 ret = -E2BIG;
2414 goto out;
2415 }
2416
2417 /* Physical block read if there's no cache involved */
2418 ret = _regmap_raw_read(map, reg, val, val_len);
2419
2420 } else {
2421 /* Otherwise go word by word for the cache; should be low
2422 * cost as we expect to hit the cache.
2423 */
2424 for (i = 0; i < val_count; i++) {
2425 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2426 &v);
2427 if (ret != 0)
2428 goto out;
2429
2430 map->format.format_val(val + (i * val_bytes), v, 0);
2431 }
2432 }
2433
2434 out:
2435 map->unlock(map->lock_arg);
2436
2437 return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(regmap_raw_read);
2440
2441 /**
2442 * regmap_field_read(): Read a value to a single register field
2443 *
2444 * @field: Register field to read from
2445 * @val: Pointer to store read value
2446 *
2447 * A value of zero will be returned on success, a negative errno will
2448 * be returned in error cases.
2449 */
2450 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2451 {
2452 int ret;
2453 unsigned int reg_val;
2454 ret = regmap_read(field->regmap, field->reg, &reg_val);
2455 if (ret != 0)
2456 return ret;
2457
2458 reg_val &= field->mask;
2459 reg_val >>= field->shift;
2460 *val = reg_val;
2461
2462 return ret;
2463 }
2464 EXPORT_SYMBOL_GPL(regmap_field_read);
2465
2466 /**
2467 * regmap_fields_read(): Read a value to a single register field with port ID
2468 *
2469 * @field: Register field to read from
2470 * @id: port ID
2471 * @val: Pointer to store read value
2472 *
2473 * A value of zero will be returned on success, a negative errno will
2474 * be returned in error cases.
2475 */
2476 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2477 unsigned int *val)
2478 {
2479 int ret;
2480 unsigned int reg_val;
2481
2482 if (id >= field->id_size)
2483 return -EINVAL;
2484
2485 ret = regmap_read(field->regmap,
2486 field->reg + (field->id_offset * id),
2487 &reg_val);
2488 if (ret != 0)
2489 return ret;
2490
2491 reg_val &= field->mask;
2492 reg_val >>= field->shift;
2493 *val = reg_val;
2494
2495 return ret;
2496 }
2497 EXPORT_SYMBOL_GPL(regmap_fields_read);
2498
2499 /**
2500 * regmap_bulk_read(): Read multiple registers from the device
2501 *
2502 * @map: Register map to read from
2503 * @reg: First register to be read from
2504 * @val: Pointer to store read value, in native register size for device
2505 * @val_count: Number of registers to read
2506 *
2507 * A value of zero will be returned on success, a negative errno will
2508 * be returned in error cases.
2509 */
2510 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2511 size_t val_count)
2512 {
2513 int ret, i;
2514 size_t val_bytes = map->format.val_bytes;
2515 bool vol = regmap_volatile_range(map, reg, val_count);
2516
2517 if (!IS_ALIGNED(reg, map->reg_stride))
2518 return -EINVAL;
2519
2520 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2521 /*
2522 * Some devices does not support bulk read, for
2523 * them we have a series of single read operations.
2524 */
2525 size_t total_size = val_bytes * val_count;
2526
2527 if (!map->use_single_read &&
2528 (!map->max_raw_read || map->max_raw_read > total_size)) {
2529 ret = regmap_raw_read(map, reg, val,
2530 val_bytes * val_count);
2531 if (ret != 0)
2532 return ret;
2533 } else {
2534 /*
2535 * Some devices do not support bulk read or do not
2536 * support large bulk reads, for them we have a series
2537 * of read operations.
2538 */
2539 int chunk_stride = map->reg_stride;
2540 size_t chunk_size = val_bytes;
2541 size_t chunk_count = val_count;
2542
2543 if (!map->use_single_read) {
2544 chunk_size = map->max_raw_read;
2545 if (chunk_size % val_bytes)
2546 chunk_size -= chunk_size % val_bytes;
2547 chunk_count = total_size / chunk_size;
2548 chunk_stride *= chunk_size / val_bytes;
2549 }
2550
2551 /* Read bytes that fit into a multiple of chunk_size */
2552 for (i = 0; i < chunk_count; i++) {
2553 ret = regmap_raw_read(map,
2554 reg + (i * chunk_stride),
2555 val + (i * chunk_size),
2556 chunk_size);
2557 if (ret != 0)
2558 return ret;
2559 }
2560
2561 /* Read remaining bytes */
2562 if (chunk_size * i < total_size) {
2563 ret = regmap_raw_read(map,
2564 reg + (i * chunk_stride),
2565 val + (i * chunk_size),
2566 total_size - i * chunk_size);
2567 if (ret != 0)
2568 return ret;
2569 }
2570 }
2571
2572 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2573 map->format.parse_inplace(val + i);
2574 } else {
2575 for (i = 0; i < val_count; i++) {
2576 unsigned int ival;
2577 ret = regmap_read(map, reg + regmap_get_offset(map, i),
2578 &ival);
2579 if (ret != 0)
2580 return ret;
2581
2582 if (map->format.format_val) {
2583 map->format.format_val(val + (i * val_bytes), ival, 0);
2584 } else {
2585 /* Devices providing read and write
2586 * operations can use the bulk I/O
2587 * functions if they define a val_bytes,
2588 * we assume that the values are native
2589 * endian.
2590 */
2591 #ifdef CONFIG_64BIT
2592 u64 *u64 = val;
2593 #endif
2594 u32 *u32 = val;
2595 u16 *u16 = val;
2596 u8 *u8 = val;
2597
2598 switch (map->format.val_bytes) {
2599 #ifdef CONFIG_64BIT
2600 case 8:
2601 u64[i] = ival;
2602 break;
2603 #endif
2604 case 4:
2605 u32[i] = ival;
2606 break;
2607 case 2:
2608 u16[i] = ival;
2609 break;
2610 case 1:
2611 u8[i] = ival;
2612 break;
2613 default:
2614 return -EINVAL;
2615 }
2616 }
2617 }
2618 }
2619
2620 return 0;
2621 }
2622 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2623
2624 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2625 unsigned int mask, unsigned int val,
2626 bool *change, bool force_write)
2627 {
2628 int ret;
2629 unsigned int tmp, orig;
2630
2631 if (change)
2632 *change = false;
2633
2634 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2635 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2636 if (ret == 0 && change)
2637 *change = true;
2638 } else {
2639 ret = _regmap_read(map, reg, &orig);
2640 if (ret != 0)
2641 return ret;
2642
2643 tmp = orig & ~mask;
2644 tmp |= val & mask;
2645
2646 if (force_write || (tmp != orig)) {
2647 ret = _regmap_write(map, reg, tmp);
2648 if (ret == 0 && change)
2649 *change = true;
2650 }
2651 }
2652
2653 return ret;
2654 }
2655
2656 /**
2657 * regmap_update_bits_base:
2658 * Perform a read/modify/write cycle on the
2659 * register map with change, async, force option
2660 *
2661 * @map: Register map to update
2662 * @reg: Register to update
2663 * @mask: Bitmask to change
2664 * @val: New value for bitmask
2665 * @change: Boolean indicating if a write was done
2666 * @async: Boolean indicating asynchronously
2667 * @force: Boolean indicating use force update
2668 *
2669 * if async was true,
2670 * With most buses the read must be done synchronously so this is most
2671 * useful for devices with a cache which do not need to interact with
2672 * the hardware to determine the current register value.
2673 *
2674 * Returns zero for success, a negative number on error.
2675 */
2676 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2677 unsigned int mask, unsigned int val,
2678 bool *change, bool async, bool force)
2679 {
2680 int ret;
2681
2682 map->lock(map->lock_arg);
2683
2684 map->async = async;
2685
2686 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2687
2688 map->async = false;
2689
2690 map->unlock(map->lock_arg);
2691
2692 return ret;
2693 }
2694 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2695
2696 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2697 {
2698 struct regmap *map = async->map;
2699 bool wake;
2700
2701 trace_regmap_async_io_complete(map);
2702
2703 spin_lock(&map->async_lock);
2704 list_move(&async->list, &map->async_free);
2705 wake = list_empty(&map->async_list);
2706
2707 if (ret != 0)
2708 map->async_ret = ret;
2709
2710 spin_unlock(&map->async_lock);
2711
2712 if (wake)
2713 wake_up(&map->async_waitq);
2714 }
2715 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2716
2717 static int regmap_async_is_done(struct regmap *map)
2718 {
2719 unsigned long flags;
2720 int ret;
2721
2722 spin_lock_irqsave(&map->async_lock, flags);
2723 ret = list_empty(&map->async_list);
2724 spin_unlock_irqrestore(&map->async_lock, flags);
2725
2726 return ret;
2727 }
2728
2729 /**
2730 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2731 *
2732 * @map: Map to operate on.
2733 *
2734 * Blocks until any pending asynchronous I/O has completed. Returns
2735 * an error code for any failed I/O operations.
2736 */
2737 int regmap_async_complete(struct regmap *map)
2738 {
2739 unsigned long flags;
2740 int ret;
2741
2742 /* Nothing to do with no async support */
2743 if (!map->bus || !map->bus->async_write)
2744 return 0;
2745
2746 trace_regmap_async_complete_start(map);
2747
2748 wait_event(map->async_waitq, regmap_async_is_done(map));
2749
2750 spin_lock_irqsave(&map->async_lock, flags);
2751 ret = map->async_ret;
2752 map->async_ret = 0;
2753 spin_unlock_irqrestore(&map->async_lock, flags);
2754
2755 trace_regmap_async_complete_done(map);
2756
2757 return ret;
2758 }
2759 EXPORT_SYMBOL_GPL(regmap_async_complete);
2760
2761 /**
2762 * regmap_register_patch: Register and apply register updates to be applied
2763 * on device initialistion
2764 *
2765 * @map: Register map to apply updates to.
2766 * @regs: Values to update.
2767 * @num_regs: Number of entries in regs.
2768 *
2769 * Register a set of register updates to be applied to the device
2770 * whenever the device registers are synchronised with the cache and
2771 * apply them immediately. Typically this is used to apply
2772 * corrections to be applied to the device defaults on startup, such
2773 * as the updates some vendors provide to undocumented registers.
2774 *
2775 * The caller must ensure that this function cannot be called
2776 * concurrently with either itself or regcache_sync().
2777 */
2778 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2779 int num_regs)
2780 {
2781 struct reg_sequence *p;
2782 int ret;
2783 bool bypass;
2784
2785 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2786 num_regs))
2787 return 0;
2788
2789 p = krealloc(map->patch,
2790 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2791 GFP_KERNEL);
2792 if (p) {
2793 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2794 map->patch = p;
2795 map->patch_regs += num_regs;
2796 } else {
2797 return -ENOMEM;
2798 }
2799
2800 map->lock(map->lock_arg);
2801
2802 bypass = map->cache_bypass;
2803
2804 map->cache_bypass = true;
2805 map->async = true;
2806
2807 ret = _regmap_multi_reg_write(map, regs, num_regs);
2808
2809 map->async = false;
2810 map->cache_bypass = bypass;
2811
2812 map->unlock(map->lock_arg);
2813
2814 regmap_async_complete(map);
2815
2816 return ret;
2817 }
2818 EXPORT_SYMBOL_GPL(regmap_register_patch);
2819
2820 /*
2821 * regmap_get_val_bytes(): Report the size of a register value
2822 *
2823 * Report the size of a register value, mainly intended to for use by
2824 * generic infrastructure built on top of regmap.
2825 */
2826 int regmap_get_val_bytes(struct regmap *map)
2827 {
2828 if (map->format.format_write)
2829 return -EINVAL;
2830
2831 return map->format.val_bytes;
2832 }
2833 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2834
2835 /**
2836 * regmap_get_max_register(): Report the max register value
2837 *
2838 * Report the max register value, mainly intended to for use by
2839 * generic infrastructure built on top of regmap.
2840 */
2841 int regmap_get_max_register(struct regmap *map)
2842 {
2843 return map->max_register ? map->max_register : -EINVAL;
2844 }
2845 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2846
2847 /**
2848 * regmap_get_reg_stride(): Report the register address stride
2849 *
2850 * Report the register address stride, mainly intended to for use by
2851 * generic infrastructure built on top of regmap.
2852 */
2853 int regmap_get_reg_stride(struct regmap *map)
2854 {
2855 return map->reg_stride;
2856 }
2857 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2858
2859 int regmap_parse_val(struct regmap *map, const void *buf,
2860 unsigned int *val)
2861 {
2862 if (!map->format.parse_val)
2863 return -EINVAL;
2864
2865 *val = map->format.parse_val(buf);
2866
2867 return 0;
2868 }
2869 EXPORT_SYMBOL_GPL(regmap_parse_val);
2870
2871 static int __init regmap_initcall(void)
2872 {
2873 regmap_debugfs_initcall();
2874
2875 return 0;
2876 }
2877 postcore_initcall(regmap_initcall);