]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/regmap/regmap.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-bionic-kernel.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23
24 #include "internal.h"
25
26 /*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32 #undef LOG_DEVICE
33
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 unsigned int val);
44
45 bool regmap_reg_in_ranges(unsigned int reg,
46 const struct regmap_range *ranges,
47 unsigned int nranges)
48 {
49 const struct regmap_range *r;
50 int i;
51
52 for (i = 0, r = ranges; i < nranges; i++, r++)
53 if (regmap_reg_in_range(reg, r))
54 return true;
55 return false;
56 }
57 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
58
59 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 const struct regmap_access_table *table)
61 {
62 /* Check "no ranges" first */
63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
64 return false;
65
66 /* In case zero "yes ranges" are supplied, any reg is OK */
67 if (!table->n_yes_ranges)
68 return true;
69
70 return regmap_reg_in_ranges(reg, table->yes_ranges,
71 table->n_yes_ranges);
72 }
73 EXPORT_SYMBOL_GPL(regmap_check_range_table);
74
75 bool regmap_writeable(struct regmap *map, unsigned int reg)
76 {
77 if (map->max_register && reg > map->max_register)
78 return false;
79
80 if (map->writeable_reg)
81 return map->writeable_reg(map->dev, reg);
82
83 if (map->wr_table)
84 return regmap_check_range_table(map, reg, map->wr_table);
85
86 return true;
87 }
88
89 bool regmap_readable(struct regmap *map, unsigned int reg)
90 {
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->format.format_write)
95 return false;
96
97 if (map->readable_reg)
98 return map->readable_reg(map->dev, reg);
99
100 if (map->rd_table)
101 return regmap_check_range_table(map, reg, map->rd_table);
102
103 return true;
104 }
105
106 bool regmap_volatile(struct regmap *map, unsigned int reg)
107 {
108 if (!regmap_readable(map, reg))
109 return false;
110
111 if (map->volatile_reg)
112 return map->volatile_reg(map->dev, reg);
113
114 if (map->volatile_table)
115 return regmap_check_range_table(map, reg, map->volatile_table);
116
117 if (map->cache_ops)
118 return false;
119 else
120 return true;
121 }
122
123 bool regmap_precious(struct regmap *map, unsigned int reg)
124 {
125 if (!regmap_readable(map, reg))
126 return false;
127
128 if (map->precious_reg)
129 return map->precious_reg(map->dev, reg);
130
131 if (map->precious_table)
132 return regmap_check_range_table(map, reg, map->precious_table);
133
134 return false;
135 }
136
137 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
138 size_t num)
139 {
140 unsigned int i;
141
142 for (i = 0; i < num; i++)
143 if (!regmap_volatile(map, reg + i))
144 return false;
145
146 return true;
147 }
148
149 static void regmap_format_2_6_write(struct regmap *map,
150 unsigned int reg, unsigned int val)
151 {
152 u8 *out = map->work_buf;
153
154 *out = (reg << 6) | val;
155 }
156
157 static void regmap_format_4_12_write(struct regmap *map,
158 unsigned int reg, unsigned int val)
159 {
160 __be16 *out = map->work_buf;
161 *out = cpu_to_be16((reg << 12) | val);
162 }
163
164 static void regmap_format_7_9_write(struct regmap *map,
165 unsigned int reg, unsigned int val)
166 {
167 __be16 *out = map->work_buf;
168 *out = cpu_to_be16((reg << 9) | val);
169 }
170
171 static void regmap_format_10_14_write(struct regmap *map,
172 unsigned int reg, unsigned int val)
173 {
174 u8 *out = map->work_buf;
175
176 out[2] = val;
177 out[1] = (val >> 8) | (reg << 6);
178 out[0] = reg >> 2;
179 }
180
181 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 {
183 u8 *b = buf;
184
185 b[0] = val << shift;
186 }
187
188 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 {
190 __be16 *b = buf;
191
192 b[0] = cpu_to_be16(val << shift);
193 }
194
195 static void regmap_format_16_native(void *buf, unsigned int val,
196 unsigned int shift)
197 {
198 *(u16 *)buf = val << shift;
199 }
200
201 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202 {
203 u8 *b = buf;
204
205 val <<= shift;
206
207 b[0] = val >> 16;
208 b[1] = val >> 8;
209 b[2] = val;
210 }
211
212 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213 {
214 __be32 *b = buf;
215
216 b[0] = cpu_to_be32(val << shift);
217 }
218
219 static void regmap_format_32_native(void *buf, unsigned int val,
220 unsigned int shift)
221 {
222 *(u32 *)buf = val << shift;
223 }
224
225 static void regmap_parse_inplace_noop(void *buf)
226 {
227 }
228
229 static unsigned int regmap_parse_8(const void *buf)
230 {
231 const u8 *b = buf;
232
233 return b[0];
234 }
235
236 static unsigned int regmap_parse_16_be(const void *buf)
237 {
238 const __be16 *b = buf;
239
240 return be16_to_cpu(b[0]);
241 }
242
243 static void regmap_parse_16_be_inplace(void *buf)
244 {
245 __be16 *b = buf;
246
247 b[0] = be16_to_cpu(b[0]);
248 }
249
250 static unsigned int regmap_parse_16_native(const void *buf)
251 {
252 return *(u16 *)buf;
253 }
254
255 static unsigned int regmap_parse_24(const void *buf)
256 {
257 const u8 *b = buf;
258 unsigned int ret = b[2];
259 ret |= ((unsigned int)b[1]) << 8;
260 ret |= ((unsigned int)b[0]) << 16;
261
262 return ret;
263 }
264
265 static unsigned int regmap_parse_32_be(const void *buf)
266 {
267 const __be32 *b = buf;
268
269 return be32_to_cpu(b[0]);
270 }
271
272 static void regmap_parse_32_be_inplace(void *buf)
273 {
274 __be32 *b = buf;
275
276 b[0] = be32_to_cpu(b[0]);
277 }
278
279 static unsigned int regmap_parse_32_native(const void *buf)
280 {
281 return *(u32 *)buf;
282 }
283
284 static void regmap_lock_mutex(void *__map)
285 {
286 struct regmap *map = __map;
287 mutex_lock(&map->mutex);
288 }
289
290 static void regmap_unlock_mutex(void *__map)
291 {
292 struct regmap *map = __map;
293 mutex_unlock(&map->mutex);
294 }
295
296 static void regmap_lock_spinlock(void *__map)
297 __acquires(&map->spinlock)
298 {
299 struct regmap *map = __map;
300 unsigned long flags;
301
302 spin_lock_irqsave(&map->spinlock, flags);
303 map->spinlock_flags = flags;
304 }
305
306 static void regmap_unlock_spinlock(void *__map)
307 __releases(&map->spinlock)
308 {
309 struct regmap *map = __map;
310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311 }
312
313 static void dev_get_regmap_release(struct device *dev, void *res)
314 {
315 /*
316 * We don't actually have anything to do here; the goal here
317 * is not to manage the regmap but to provide a simple way to
318 * get the regmap back given a struct device.
319 */
320 }
321
322 static bool _regmap_range_add(struct regmap *map,
323 struct regmap_range_node *data)
324 {
325 struct rb_root *root = &map->range_tree;
326 struct rb_node **new = &(root->rb_node), *parent = NULL;
327
328 while (*new) {
329 struct regmap_range_node *this =
330 container_of(*new, struct regmap_range_node, node);
331
332 parent = *new;
333 if (data->range_max < this->range_min)
334 new = &((*new)->rb_left);
335 else if (data->range_min > this->range_max)
336 new = &((*new)->rb_right);
337 else
338 return false;
339 }
340
341 rb_link_node(&data->node, parent, new);
342 rb_insert_color(&data->node, root);
343
344 return true;
345 }
346
347 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
348 unsigned int reg)
349 {
350 struct rb_node *node = map->range_tree.rb_node;
351
352 while (node) {
353 struct regmap_range_node *this =
354 container_of(node, struct regmap_range_node, node);
355
356 if (reg < this->range_min)
357 node = node->rb_left;
358 else if (reg > this->range_max)
359 node = node->rb_right;
360 else
361 return this;
362 }
363
364 return NULL;
365 }
366
367 static void regmap_range_exit(struct regmap *map)
368 {
369 struct rb_node *next;
370 struct regmap_range_node *range_node;
371
372 next = rb_first(&map->range_tree);
373 while (next) {
374 range_node = rb_entry(next, struct regmap_range_node, node);
375 next = rb_next(&range_node->node);
376 rb_erase(&range_node->node, &map->range_tree);
377 kfree(range_node);
378 }
379
380 kfree(map->selector_work_buf);
381 }
382
383 int regmap_attach_dev(struct device *dev, struct regmap *map,
384 const struct regmap_config *config)
385 {
386 struct regmap **m;
387
388 map->dev = dev;
389
390 regmap_debugfs_init(map, config->name);
391
392 /* Add a devres resource for dev_get_regmap() */
393 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
394 if (!m) {
395 regmap_debugfs_exit(map);
396 return -ENOMEM;
397 }
398 *m = map;
399 devres_add(dev, m);
400
401 return 0;
402 }
403 EXPORT_SYMBOL_GPL(regmap_attach_dev);
404
405 /**
406 * regmap_init(): Initialise register map
407 *
408 * @dev: Device that will be interacted with
409 * @bus: Bus-specific callbacks to use with device
410 * @bus_context: Data passed to bus-specific callbacks
411 * @config: Configuration for register map
412 *
413 * The return value will be an ERR_PTR() on error or a valid pointer to
414 * a struct regmap. This function should generally not be called
415 * directly, it should be called by bus-specific init functions.
416 */
417 struct regmap *regmap_init(struct device *dev,
418 const struct regmap_bus *bus,
419 void *bus_context,
420 const struct regmap_config *config)
421 {
422 struct regmap *map;
423 int ret = -EINVAL;
424 enum regmap_endian reg_endian, val_endian;
425 int i, j;
426
427 if (!config)
428 goto err;
429
430 map = kzalloc(sizeof(*map), GFP_KERNEL);
431 if (map == NULL) {
432 ret = -ENOMEM;
433 goto err;
434 }
435
436 if (config->lock && config->unlock) {
437 map->lock = config->lock;
438 map->unlock = config->unlock;
439 map->lock_arg = config->lock_arg;
440 } else {
441 if ((bus && bus->fast_io) ||
442 config->fast_io) {
443 spin_lock_init(&map->spinlock);
444 map->lock = regmap_lock_spinlock;
445 map->unlock = regmap_unlock_spinlock;
446 } else {
447 mutex_init(&map->mutex);
448 map->lock = regmap_lock_mutex;
449 map->unlock = regmap_unlock_mutex;
450 }
451 map->lock_arg = map;
452 }
453 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
454 map->format.pad_bytes = config->pad_bits / 8;
455 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
456 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
457 config->val_bits + config->pad_bits, 8);
458 map->reg_shift = config->pad_bits % 8;
459 if (config->reg_stride)
460 map->reg_stride = config->reg_stride;
461 else
462 map->reg_stride = 1;
463 map->use_single_rw = config->use_single_rw;
464 map->can_multi_write = config->can_multi_write;
465 map->dev = dev;
466 map->bus = bus;
467 map->bus_context = bus_context;
468 map->max_register = config->max_register;
469 map->wr_table = config->wr_table;
470 map->rd_table = config->rd_table;
471 map->volatile_table = config->volatile_table;
472 map->precious_table = config->precious_table;
473 map->writeable_reg = config->writeable_reg;
474 map->readable_reg = config->readable_reg;
475 map->volatile_reg = config->volatile_reg;
476 map->precious_reg = config->precious_reg;
477 map->cache_type = config->cache_type;
478 map->name = config->name;
479
480 spin_lock_init(&map->async_lock);
481 INIT_LIST_HEAD(&map->async_list);
482 INIT_LIST_HEAD(&map->async_free);
483 init_waitqueue_head(&map->async_waitq);
484
485 if (config->read_flag_mask || config->write_flag_mask) {
486 map->read_flag_mask = config->read_flag_mask;
487 map->write_flag_mask = config->write_flag_mask;
488 } else if (bus) {
489 map->read_flag_mask = bus->read_flag_mask;
490 }
491
492 if (!bus) {
493 map->reg_read = config->reg_read;
494 map->reg_write = config->reg_write;
495
496 map->defer_caching = false;
497 goto skip_format_initialization;
498 } else {
499 map->reg_read = _regmap_bus_read;
500 }
501
502 reg_endian = config->reg_format_endian;
503 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
504 reg_endian = bus->reg_format_endian_default;
505 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
506 reg_endian = REGMAP_ENDIAN_BIG;
507
508 val_endian = config->val_format_endian;
509 if (val_endian == REGMAP_ENDIAN_DEFAULT)
510 val_endian = bus->val_format_endian_default;
511 if (val_endian == REGMAP_ENDIAN_DEFAULT)
512 val_endian = REGMAP_ENDIAN_BIG;
513
514 switch (config->reg_bits + map->reg_shift) {
515 case 2:
516 switch (config->val_bits) {
517 case 6:
518 map->format.format_write = regmap_format_2_6_write;
519 break;
520 default:
521 goto err_map;
522 }
523 break;
524
525 case 4:
526 switch (config->val_bits) {
527 case 12:
528 map->format.format_write = regmap_format_4_12_write;
529 break;
530 default:
531 goto err_map;
532 }
533 break;
534
535 case 7:
536 switch (config->val_bits) {
537 case 9:
538 map->format.format_write = regmap_format_7_9_write;
539 break;
540 default:
541 goto err_map;
542 }
543 break;
544
545 case 10:
546 switch (config->val_bits) {
547 case 14:
548 map->format.format_write = regmap_format_10_14_write;
549 break;
550 default:
551 goto err_map;
552 }
553 break;
554
555 case 8:
556 map->format.format_reg = regmap_format_8;
557 break;
558
559 case 16:
560 switch (reg_endian) {
561 case REGMAP_ENDIAN_BIG:
562 map->format.format_reg = regmap_format_16_be;
563 break;
564 case REGMAP_ENDIAN_NATIVE:
565 map->format.format_reg = regmap_format_16_native;
566 break;
567 default:
568 goto err_map;
569 }
570 break;
571
572 case 24:
573 if (reg_endian != REGMAP_ENDIAN_BIG)
574 goto err_map;
575 map->format.format_reg = regmap_format_24;
576 break;
577
578 case 32:
579 switch (reg_endian) {
580 case REGMAP_ENDIAN_BIG:
581 map->format.format_reg = regmap_format_32_be;
582 break;
583 case REGMAP_ENDIAN_NATIVE:
584 map->format.format_reg = regmap_format_32_native;
585 break;
586 default:
587 goto err_map;
588 }
589 break;
590
591 default:
592 goto err_map;
593 }
594
595 if (val_endian == REGMAP_ENDIAN_NATIVE)
596 map->format.parse_inplace = regmap_parse_inplace_noop;
597
598 switch (config->val_bits) {
599 case 8:
600 map->format.format_val = regmap_format_8;
601 map->format.parse_val = regmap_parse_8;
602 map->format.parse_inplace = regmap_parse_inplace_noop;
603 break;
604 case 16:
605 switch (val_endian) {
606 case REGMAP_ENDIAN_BIG:
607 map->format.format_val = regmap_format_16_be;
608 map->format.parse_val = regmap_parse_16_be;
609 map->format.parse_inplace = regmap_parse_16_be_inplace;
610 break;
611 case REGMAP_ENDIAN_NATIVE:
612 map->format.format_val = regmap_format_16_native;
613 map->format.parse_val = regmap_parse_16_native;
614 break;
615 default:
616 goto err_map;
617 }
618 break;
619 case 24:
620 if (val_endian != REGMAP_ENDIAN_BIG)
621 goto err_map;
622 map->format.format_val = regmap_format_24;
623 map->format.parse_val = regmap_parse_24;
624 break;
625 case 32:
626 switch (val_endian) {
627 case REGMAP_ENDIAN_BIG:
628 map->format.format_val = regmap_format_32_be;
629 map->format.parse_val = regmap_parse_32_be;
630 map->format.parse_inplace = regmap_parse_32_be_inplace;
631 break;
632 case REGMAP_ENDIAN_NATIVE:
633 map->format.format_val = regmap_format_32_native;
634 map->format.parse_val = regmap_parse_32_native;
635 break;
636 default:
637 goto err_map;
638 }
639 break;
640 }
641
642 if (map->format.format_write) {
643 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
644 (val_endian != REGMAP_ENDIAN_BIG))
645 goto err_map;
646 map->use_single_rw = true;
647 }
648
649 if (!map->format.format_write &&
650 !(map->format.format_reg && map->format.format_val))
651 goto err_map;
652
653 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
654 if (map->work_buf == NULL) {
655 ret = -ENOMEM;
656 goto err_map;
657 }
658
659 if (map->format.format_write) {
660 map->defer_caching = false;
661 map->reg_write = _regmap_bus_formatted_write;
662 } else if (map->format.format_val) {
663 map->defer_caching = true;
664 map->reg_write = _regmap_bus_raw_write;
665 }
666
667 skip_format_initialization:
668
669 map->range_tree = RB_ROOT;
670 for (i = 0; i < config->num_ranges; i++) {
671 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
672 struct regmap_range_node *new;
673
674 /* Sanity check */
675 if (range_cfg->range_max < range_cfg->range_min) {
676 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
677 range_cfg->range_max, range_cfg->range_min);
678 goto err_range;
679 }
680
681 if (range_cfg->range_max > map->max_register) {
682 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
683 range_cfg->range_max, map->max_register);
684 goto err_range;
685 }
686
687 if (range_cfg->selector_reg > map->max_register) {
688 dev_err(map->dev,
689 "Invalid range %d: selector out of map\n", i);
690 goto err_range;
691 }
692
693 if (range_cfg->window_len == 0) {
694 dev_err(map->dev, "Invalid range %d: window_len 0\n",
695 i);
696 goto err_range;
697 }
698
699 /* Make sure, that this register range has no selector
700 or data window within its boundary */
701 for (j = 0; j < config->num_ranges; j++) {
702 unsigned sel_reg = config->ranges[j].selector_reg;
703 unsigned win_min = config->ranges[j].window_start;
704 unsigned win_max = win_min +
705 config->ranges[j].window_len - 1;
706
707 /* Allow data window inside its own virtual range */
708 if (j == i)
709 continue;
710
711 if (range_cfg->range_min <= sel_reg &&
712 sel_reg <= range_cfg->range_max) {
713 dev_err(map->dev,
714 "Range %d: selector for %d in window\n",
715 i, j);
716 goto err_range;
717 }
718
719 if (!(win_max < range_cfg->range_min ||
720 win_min > range_cfg->range_max)) {
721 dev_err(map->dev,
722 "Range %d: window for %d in window\n",
723 i, j);
724 goto err_range;
725 }
726 }
727
728 new = kzalloc(sizeof(*new), GFP_KERNEL);
729 if (new == NULL) {
730 ret = -ENOMEM;
731 goto err_range;
732 }
733
734 new->map = map;
735 new->name = range_cfg->name;
736 new->range_min = range_cfg->range_min;
737 new->range_max = range_cfg->range_max;
738 new->selector_reg = range_cfg->selector_reg;
739 new->selector_mask = range_cfg->selector_mask;
740 new->selector_shift = range_cfg->selector_shift;
741 new->window_start = range_cfg->window_start;
742 new->window_len = range_cfg->window_len;
743
744 if (!_regmap_range_add(map, new)) {
745 dev_err(map->dev, "Failed to add range %d\n", i);
746 kfree(new);
747 goto err_range;
748 }
749
750 if (map->selector_work_buf == NULL) {
751 map->selector_work_buf =
752 kzalloc(map->format.buf_size, GFP_KERNEL);
753 if (map->selector_work_buf == NULL) {
754 ret = -ENOMEM;
755 goto err_range;
756 }
757 }
758 }
759
760 ret = regcache_init(map, config);
761 if (ret != 0)
762 goto err_range;
763
764 if (dev)
765 ret = regmap_attach_dev(dev, map, config);
766 if (ret != 0)
767 goto err_regcache;
768
769 return map;
770
771 err_regcache:
772 regcache_exit(map);
773 err_range:
774 regmap_range_exit(map);
775 kfree(map->work_buf);
776 err_map:
777 kfree(map);
778 err:
779 return ERR_PTR(ret);
780 }
781 EXPORT_SYMBOL_GPL(regmap_init);
782
783 static void devm_regmap_release(struct device *dev, void *res)
784 {
785 regmap_exit(*(struct regmap **)res);
786 }
787
788 /**
789 * devm_regmap_init(): Initialise managed register map
790 *
791 * @dev: Device that will be interacted with
792 * @bus: Bus-specific callbacks to use with device
793 * @bus_context: Data passed to bus-specific callbacks
794 * @config: Configuration for register map
795 *
796 * The return value will be an ERR_PTR() on error or a valid pointer
797 * to a struct regmap. This function should generally not be called
798 * directly, it should be called by bus-specific init functions. The
799 * map will be automatically freed by the device management code.
800 */
801 struct regmap *devm_regmap_init(struct device *dev,
802 const struct regmap_bus *bus,
803 void *bus_context,
804 const struct regmap_config *config)
805 {
806 struct regmap **ptr, *regmap;
807
808 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
809 if (!ptr)
810 return ERR_PTR(-ENOMEM);
811
812 regmap = regmap_init(dev, bus, bus_context, config);
813 if (!IS_ERR(regmap)) {
814 *ptr = regmap;
815 devres_add(dev, ptr);
816 } else {
817 devres_free(ptr);
818 }
819
820 return regmap;
821 }
822 EXPORT_SYMBOL_GPL(devm_regmap_init);
823
824 static void regmap_field_init(struct regmap_field *rm_field,
825 struct regmap *regmap, struct reg_field reg_field)
826 {
827 int field_bits = reg_field.msb - reg_field.lsb + 1;
828 rm_field->regmap = regmap;
829 rm_field->reg = reg_field.reg;
830 rm_field->shift = reg_field.lsb;
831 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
832 rm_field->id_size = reg_field.id_size;
833 rm_field->id_offset = reg_field.id_offset;
834 }
835
836 /**
837 * devm_regmap_field_alloc(): Allocate and initialise a register field
838 * in a register map.
839 *
840 * @dev: Device that will be interacted with
841 * @regmap: regmap bank in which this register field is located.
842 * @reg_field: Register field with in the bank.
843 *
844 * The return value will be an ERR_PTR() on error or a valid pointer
845 * to a struct regmap_field. The regmap_field will be automatically freed
846 * by the device management code.
847 */
848 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
849 struct regmap *regmap, struct reg_field reg_field)
850 {
851 struct regmap_field *rm_field = devm_kzalloc(dev,
852 sizeof(*rm_field), GFP_KERNEL);
853 if (!rm_field)
854 return ERR_PTR(-ENOMEM);
855
856 regmap_field_init(rm_field, regmap, reg_field);
857
858 return rm_field;
859
860 }
861 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
862
863 /**
864 * devm_regmap_field_free(): Free register field allocated using
865 * devm_regmap_field_alloc. Usally drivers need not call this function,
866 * as the memory allocated via devm will be freed as per device-driver
867 * life-cyle.
868 *
869 * @dev: Device that will be interacted with
870 * @field: regmap field which should be freed.
871 */
872 void devm_regmap_field_free(struct device *dev,
873 struct regmap_field *field)
874 {
875 devm_kfree(dev, field);
876 }
877 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
878
879 /**
880 * regmap_field_alloc(): Allocate and initialise a register field
881 * in a register map.
882 *
883 * @regmap: regmap bank in which this register field is located.
884 * @reg_field: Register field with in the bank.
885 *
886 * The return value will be an ERR_PTR() on error or a valid pointer
887 * to a struct regmap_field. The regmap_field should be freed by the
888 * user once its finished working with it using regmap_field_free().
889 */
890 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
891 struct reg_field reg_field)
892 {
893 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
894
895 if (!rm_field)
896 return ERR_PTR(-ENOMEM);
897
898 regmap_field_init(rm_field, regmap, reg_field);
899
900 return rm_field;
901 }
902 EXPORT_SYMBOL_GPL(regmap_field_alloc);
903
904 /**
905 * regmap_field_free(): Free register field allocated using regmap_field_alloc
906 *
907 * @field: regmap field which should be freed.
908 */
909 void regmap_field_free(struct regmap_field *field)
910 {
911 kfree(field);
912 }
913 EXPORT_SYMBOL_GPL(regmap_field_free);
914
915 /**
916 * regmap_reinit_cache(): Reinitialise the current register cache
917 *
918 * @map: Register map to operate on.
919 * @config: New configuration. Only the cache data will be used.
920 *
921 * Discard any existing register cache for the map and initialize a
922 * new cache. This can be used to restore the cache to defaults or to
923 * update the cache configuration to reflect runtime discovery of the
924 * hardware.
925 *
926 * No explicit locking is done here, the user needs to ensure that
927 * this function will not race with other calls to regmap.
928 */
929 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
930 {
931 regcache_exit(map);
932 regmap_debugfs_exit(map);
933
934 map->max_register = config->max_register;
935 map->writeable_reg = config->writeable_reg;
936 map->readable_reg = config->readable_reg;
937 map->volatile_reg = config->volatile_reg;
938 map->precious_reg = config->precious_reg;
939 map->cache_type = config->cache_type;
940
941 regmap_debugfs_init(map, config->name);
942
943 map->cache_bypass = false;
944 map->cache_only = false;
945
946 return regcache_init(map, config);
947 }
948 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
949
950 /**
951 * regmap_exit(): Free a previously allocated register map
952 */
953 void regmap_exit(struct regmap *map)
954 {
955 struct regmap_async *async;
956
957 regcache_exit(map);
958 regmap_debugfs_exit(map);
959 regmap_range_exit(map);
960 if (map->bus && map->bus->free_context)
961 map->bus->free_context(map->bus_context);
962 kfree(map->work_buf);
963 while (!list_empty(&map->async_free)) {
964 async = list_first_entry_or_null(&map->async_free,
965 struct regmap_async,
966 list);
967 list_del(&async->list);
968 kfree(async->work_buf);
969 kfree(async);
970 }
971 kfree(map);
972 }
973 EXPORT_SYMBOL_GPL(regmap_exit);
974
975 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
976 {
977 struct regmap **r = res;
978 if (!r || !*r) {
979 WARN_ON(!r || !*r);
980 return 0;
981 }
982
983 /* If the user didn't specify a name match any */
984 if (data)
985 return (*r)->name == data;
986 else
987 return 1;
988 }
989
990 /**
991 * dev_get_regmap(): Obtain the regmap (if any) for a device
992 *
993 * @dev: Device to retrieve the map for
994 * @name: Optional name for the register map, usually NULL.
995 *
996 * Returns the regmap for the device if one is present, or NULL. If
997 * name is specified then it must match the name specified when
998 * registering the device, if it is NULL then the first regmap found
999 * will be used. Devices with multiple register maps are very rare,
1000 * generic code should normally not need to specify a name.
1001 */
1002 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1003 {
1004 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1005 dev_get_regmap_match, (void *)name);
1006
1007 if (!r)
1008 return NULL;
1009 return *r;
1010 }
1011 EXPORT_SYMBOL_GPL(dev_get_regmap);
1012
1013 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1014 struct regmap_range_node *range,
1015 unsigned int val_num)
1016 {
1017 void *orig_work_buf;
1018 unsigned int win_offset;
1019 unsigned int win_page;
1020 bool page_chg;
1021 int ret;
1022
1023 win_offset = (*reg - range->range_min) % range->window_len;
1024 win_page = (*reg - range->range_min) / range->window_len;
1025
1026 if (val_num > 1) {
1027 /* Bulk write shouldn't cross range boundary */
1028 if (*reg + val_num - 1 > range->range_max)
1029 return -EINVAL;
1030
1031 /* ... or single page boundary */
1032 if (val_num > range->window_len - win_offset)
1033 return -EINVAL;
1034 }
1035
1036 /* It is possible to have selector register inside data window.
1037 In that case, selector register is located on every page and
1038 it needs no page switching, when accessed alone. */
1039 if (val_num > 1 ||
1040 range->window_start + win_offset != range->selector_reg) {
1041 /* Use separate work_buf during page switching */
1042 orig_work_buf = map->work_buf;
1043 map->work_buf = map->selector_work_buf;
1044
1045 ret = _regmap_update_bits(map, range->selector_reg,
1046 range->selector_mask,
1047 win_page << range->selector_shift,
1048 &page_chg);
1049
1050 map->work_buf = orig_work_buf;
1051
1052 if (ret != 0)
1053 return ret;
1054 }
1055
1056 *reg = range->window_start + win_offset;
1057
1058 return 0;
1059 }
1060
1061 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1062 const void *val, size_t val_len)
1063 {
1064 struct regmap_range_node *range;
1065 unsigned long flags;
1066 u8 *u8 = map->work_buf;
1067 void *work_val = map->work_buf + map->format.reg_bytes +
1068 map->format.pad_bytes;
1069 void *buf;
1070 int ret = -ENOTSUPP;
1071 size_t len;
1072 int i;
1073
1074 WARN_ON(!map->bus);
1075
1076 /* Check for unwritable registers before we start */
1077 if (map->writeable_reg)
1078 for (i = 0; i < val_len / map->format.val_bytes; i++)
1079 if (!map->writeable_reg(map->dev,
1080 reg + (i * map->reg_stride)))
1081 return -EINVAL;
1082
1083 if (!map->cache_bypass && map->format.parse_val) {
1084 unsigned int ival;
1085 int val_bytes = map->format.val_bytes;
1086 for (i = 0; i < val_len / val_bytes; i++) {
1087 ival = map->format.parse_val(val + (i * val_bytes));
1088 ret = regcache_write(map, reg + (i * map->reg_stride),
1089 ival);
1090 if (ret) {
1091 dev_err(map->dev,
1092 "Error in caching of register: %x ret: %d\n",
1093 reg + i, ret);
1094 return ret;
1095 }
1096 }
1097 if (map->cache_only) {
1098 map->cache_dirty = true;
1099 return 0;
1100 }
1101 }
1102
1103 range = _regmap_range_lookup(map, reg);
1104 if (range) {
1105 int val_num = val_len / map->format.val_bytes;
1106 int win_offset = (reg - range->range_min) % range->window_len;
1107 int win_residue = range->window_len - win_offset;
1108
1109 /* If the write goes beyond the end of the window split it */
1110 while (val_num > win_residue) {
1111 dev_dbg(map->dev, "Writing window %d/%zu\n",
1112 win_residue, val_len / map->format.val_bytes);
1113 ret = _regmap_raw_write(map, reg, val, win_residue *
1114 map->format.val_bytes);
1115 if (ret != 0)
1116 return ret;
1117
1118 reg += win_residue;
1119 val_num -= win_residue;
1120 val += win_residue * map->format.val_bytes;
1121 val_len -= win_residue * map->format.val_bytes;
1122
1123 win_offset = (reg - range->range_min) %
1124 range->window_len;
1125 win_residue = range->window_len - win_offset;
1126 }
1127
1128 ret = _regmap_select_page(map, &reg, range, val_num);
1129 if (ret != 0)
1130 return ret;
1131 }
1132
1133 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1134
1135 u8[0] |= map->write_flag_mask;
1136
1137 /*
1138 * Essentially all I/O mechanisms will be faster with a single
1139 * buffer to write. Since register syncs often generate raw
1140 * writes of single registers optimise that case.
1141 */
1142 if (val != work_val && val_len == map->format.val_bytes) {
1143 memcpy(work_val, val, map->format.val_bytes);
1144 val = work_val;
1145 }
1146
1147 if (map->async && map->bus->async_write) {
1148 struct regmap_async *async;
1149
1150 trace_regmap_async_write_start(map->dev, reg, val_len);
1151
1152 spin_lock_irqsave(&map->async_lock, flags);
1153 async = list_first_entry_or_null(&map->async_free,
1154 struct regmap_async,
1155 list);
1156 if (async)
1157 list_del(&async->list);
1158 spin_unlock_irqrestore(&map->async_lock, flags);
1159
1160 if (!async) {
1161 async = map->bus->async_alloc();
1162 if (!async)
1163 return -ENOMEM;
1164
1165 async->work_buf = kzalloc(map->format.buf_size,
1166 GFP_KERNEL | GFP_DMA);
1167 if (!async->work_buf) {
1168 kfree(async);
1169 return -ENOMEM;
1170 }
1171 }
1172
1173 async->map = map;
1174
1175 /* If the caller supplied the value we can use it safely. */
1176 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1177 map->format.reg_bytes + map->format.val_bytes);
1178
1179 spin_lock_irqsave(&map->async_lock, flags);
1180 list_add_tail(&async->list, &map->async_list);
1181 spin_unlock_irqrestore(&map->async_lock, flags);
1182
1183 if (val != work_val)
1184 ret = map->bus->async_write(map->bus_context,
1185 async->work_buf,
1186 map->format.reg_bytes +
1187 map->format.pad_bytes,
1188 val, val_len, async);
1189 else
1190 ret = map->bus->async_write(map->bus_context,
1191 async->work_buf,
1192 map->format.reg_bytes +
1193 map->format.pad_bytes +
1194 val_len, NULL, 0, async);
1195
1196 if (ret != 0) {
1197 dev_err(map->dev, "Failed to schedule write: %d\n",
1198 ret);
1199
1200 spin_lock_irqsave(&map->async_lock, flags);
1201 list_move(&async->list, &map->async_free);
1202 spin_unlock_irqrestore(&map->async_lock, flags);
1203 }
1204
1205 return ret;
1206 }
1207
1208 trace_regmap_hw_write_start(map->dev, reg,
1209 val_len / map->format.val_bytes);
1210
1211 /* If we're doing a single register write we can probably just
1212 * send the work_buf directly, otherwise try to do a gather
1213 * write.
1214 */
1215 if (val == work_val)
1216 ret = map->bus->write(map->bus_context, map->work_buf,
1217 map->format.reg_bytes +
1218 map->format.pad_bytes +
1219 val_len);
1220 else if (map->bus->gather_write)
1221 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1222 map->format.reg_bytes +
1223 map->format.pad_bytes,
1224 val, val_len);
1225
1226 /* If that didn't work fall back on linearising by hand. */
1227 if (ret == -ENOTSUPP) {
1228 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1229 buf = kzalloc(len, GFP_KERNEL);
1230 if (!buf)
1231 return -ENOMEM;
1232
1233 memcpy(buf, map->work_buf, map->format.reg_bytes);
1234 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1235 val, val_len);
1236 ret = map->bus->write(map->bus_context, buf, len);
1237
1238 kfree(buf);
1239 }
1240
1241 trace_regmap_hw_write_done(map->dev, reg,
1242 val_len / map->format.val_bytes);
1243
1244 return ret;
1245 }
1246
1247 /**
1248 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1249 *
1250 * @map: Map to check.
1251 */
1252 bool regmap_can_raw_write(struct regmap *map)
1253 {
1254 return map->bus && map->format.format_val && map->format.format_reg;
1255 }
1256 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1257
1258 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1259 unsigned int val)
1260 {
1261 int ret;
1262 struct regmap_range_node *range;
1263 struct regmap *map = context;
1264
1265 WARN_ON(!map->bus || !map->format.format_write);
1266
1267 range = _regmap_range_lookup(map, reg);
1268 if (range) {
1269 ret = _regmap_select_page(map, &reg, range, 1);
1270 if (ret != 0)
1271 return ret;
1272 }
1273
1274 map->format.format_write(map, reg, val);
1275
1276 trace_regmap_hw_write_start(map->dev, reg, 1);
1277
1278 ret = map->bus->write(map->bus_context, map->work_buf,
1279 map->format.buf_size);
1280
1281 trace_regmap_hw_write_done(map->dev, reg, 1);
1282
1283 return ret;
1284 }
1285
1286 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1287 unsigned int val)
1288 {
1289 struct regmap *map = context;
1290
1291 WARN_ON(!map->bus || !map->format.format_val);
1292
1293 map->format.format_val(map->work_buf + map->format.reg_bytes
1294 + map->format.pad_bytes, val, 0);
1295 return _regmap_raw_write(map, reg,
1296 map->work_buf +
1297 map->format.reg_bytes +
1298 map->format.pad_bytes,
1299 map->format.val_bytes);
1300 }
1301
1302 static inline void *_regmap_map_get_context(struct regmap *map)
1303 {
1304 return (map->bus) ? map : map->bus_context;
1305 }
1306
1307 int _regmap_write(struct regmap *map, unsigned int reg,
1308 unsigned int val)
1309 {
1310 int ret;
1311 void *context = _regmap_map_get_context(map);
1312
1313 if (!regmap_writeable(map, reg))
1314 return -EIO;
1315
1316 if (!map->cache_bypass && !map->defer_caching) {
1317 ret = regcache_write(map, reg, val);
1318 if (ret != 0)
1319 return ret;
1320 if (map->cache_only) {
1321 map->cache_dirty = true;
1322 return 0;
1323 }
1324 }
1325
1326 #ifdef LOG_DEVICE
1327 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1328 dev_info(map->dev, "%x <= %x\n", reg, val);
1329 #endif
1330
1331 trace_regmap_reg_write(map->dev, reg, val);
1332
1333 return map->reg_write(context, reg, val);
1334 }
1335
1336 /**
1337 * regmap_write(): Write a value to a single register
1338 *
1339 * @map: Register map to write to
1340 * @reg: Register to write to
1341 * @val: Value to be written
1342 *
1343 * A value of zero will be returned on success, a negative errno will
1344 * be returned in error cases.
1345 */
1346 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1347 {
1348 int ret;
1349
1350 if (reg % map->reg_stride)
1351 return -EINVAL;
1352
1353 map->lock(map->lock_arg);
1354
1355 ret = _regmap_write(map, reg, val);
1356
1357 map->unlock(map->lock_arg);
1358
1359 return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(regmap_write);
1362
1363 /**
1364 * regmap_write_async(): Write a value to a single register asynchronously
1365 *
1366 * @map: Register map to write to
1367 * @reg: Register to write to
1368 * @val: Value to be written
1369 *
1370 * A value of zero will be returned on success, a negative errno will
1371 * be returned in error cases.
1372 */
1373 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1374 {
1375 int ret;
1376
1377 if (reg % map->reg_stride)
1378 return -EINVAL;
1379
1380 map->lock(map->lock_arg);
1381
1382 map->async = true;
1383
1384 ret = _regmap_write(map, reg, val);
1385
1386 map->async = false;
1387
1388 map->unlock(map->lock_arg);
1389
1390 return ret;
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_write_async);
1393
1394 /**
1395 * regmap_raw_write(): Write raw values to one or more registers
1396 *
1397 * @map: Register map to write to
1398 * @reg: Initial register to write to
1399 * @val: Block of data to be written, laid out for direct transmission to the
1400 * device
1401 * @val_len: Length of data pointed to by val.
1402 *
1403 * This function is intended to be used for things like firmware
1404 * download where a large block of data needs to be transferred to the
1405 * device. No formatting will be done on the data provided.
1406 *
1407 * A value of zero will be returned on success, a negative errno will
1408 * be returned in error cases.
1409 */
1410 int regmap_raw_write(struct regmap *map, unsigned int reg,
1411 const void *val, size_t val_len)
1412 {
1413 int ret;
1414
1415 if (!regmap_can_raw_write(map))
1416 return -EINVAL;
1417 if (val_len % map->format.val_bytes)
1418 return -EINVAL;
1419
1420 map->lock(map->lock_arg);
1421
1422 ret = _regmap_raw_write(map, reg, val, val_len);
1423
1424 map->unlock(map->lock_arg);
1425
1426 return ret;
1427 }
1428 EXPORT_SYMBOL_GPL(regmap_raw_write);
1429
1430 /**
1431 * regmap_field_write(): Write a value to a single register field
1432 *
1433 * @field: Register field to write to
1434 * @val: Value to be written
1435 *
1436 * A value of zero will be returned on success, a negative errno will
1437 * be returned in error cases.
1438 */
1439 int regmap_field_write(struct regmap_field *field, unsigned int val)
1440 {
1441 return regmap_update_bits(field->regmap, field->reg,
1442 field->mask, val << field->shift);
1443 }
1444 EXPORT_SYMBOL_GPL(regmap_field_write);
1445
1446 /**
1447 * regmap_field_update_bits(): Perform a read/modify/write cycle
1448 * on the register field
1449 *
1450 * @field: Register field to write to
1451 * @mask: Bitmask to change
1452 * @val: Value to be written
1453 *
1454 * A value of zero will be returned on success, a negative errno will
1455 * be returned in error cases.
1456 */
1457 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1458 {
1459 mask = (mask << field->shift) & field->mask;
1460
1461 return regmap_update_bits(field->regmap, field->reg,
1462 mask, val << field->shift);
1463 }
1464 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1465
1466 /**
1467 * regmap_fields_write(): Write a value to a single register field with port ID
1468 *
1469 * @field: Register field to write to
1470 * @id: port ID
1471 * @val: Value to be written
1472 *
1473 * A value of zero will be returned on success, a negative errno will
1474 * be returned in error cases.
1475 */
1476 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1477 unsigned int val)
1478 {
1479 if (id >= field->id_size)
1480 return -EINVAL;
1481
1482 return regmap_update_bits(field->regmap,
1483 field->reg + (field->id_offset * id),
1484 field->mask, val << field->shift);
1485 }
1486 EXPORT_SYMBOL_GPL(regmap_fields_write);
1487
1488 /**
1489 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1490 * on the register field
1491 *
1492 * @field: Register field to write to
1493 * @id: port ID
1494 * @mask: Bitmask to change
1495 * @val: Value to be written
1496 *
1497 * A value of zero will be returned on success, a negative errno will
1498 * be returned in error cases.
1499 */
1500 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1501 unsigned int mask, unsigned int val)
1502 {
1503 if (id >= field->id_size)
1504 return -EINVAL;
1505
1506 mask = (mask << field->shift) & field->mask;
1507
1508 return regmap_update_bits(field->regmap,
1509 field->reg + (field->id_offset * id),
1510 mask, val << field->shift);
1511 }
1512 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1513
1514 /*
1515 * regmap_bulk_write(): Write multiple registers to the device
1516 *
1517 * @map: Register map to write to
1518 * @reg: First register to be write from
1519 * @val: Block of data to be written, in native register size for device
1520 * @val_count: Number of registers to write
1521 *
1522 * This function is intended to be used for writing a large block of
1523 * data to the device either in single transfer or multiple transfer.
1524 *
1525 * A value of zero will be returned on success, a negative errno will
1526 * be returned in error cases.
1527 */
1528 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1529 size_t val_count)
1530 {
1531 int ret = 0, i;
1532 size_t val_bytes = map->format.val_bytes;
1533
1534 if (map->bus && !map->format.parse_inplace)
1535 return -EINVAL;
1536 if (reg % map->reg_stride)
1537 return -EINVAL;
1538
1539 /*
1540 * Some devices don't support bulk write, for
1541 * them we have a series of single write operations.
1542 */
1543 if (!map->bus || map->use_single_rw) {
1544 map->lock(map->lock_arg);
1545 for (i = 0; i < val_count; i++) {
1546 unsigned int ival;
1547
1548 switch (val_bytes) {
1549 case 1:
1550 ival = *(u8 *)(val + (i * val_bytes));
1551 break;
1552 case 2:
1553 ival = *(u16 *)(val + (i * val_bytes));
1554 break;
1555 case 4:
1556 ival = *(u32 *)(val + (i * val_bytes));
1557 break;
1558 #ifdef CONFIG_64BIT
1559 case 8:
1560 ival = *(u64 *)(val + (i * val_bytes));
1561 break;
1562 #endif
1563 default:
1564 ret = -EINVAL;
1565 goto out;
1566 }
1567
1568 ret = _regmap_write(map, reg + (i * map->reg_stride),
1569 ival);
1570 if (ret != 0)
1571 goto out;
1572 }
1573 out:
1574 map->unlock(map->lock_arg);
1575 } else {
1576 void *wval;
1577
1578 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1579 if (!wval) {
1580 dev_err(map->dev, "Error in memory allocation\n");
1581 return -ENOMEM;
1582 }
1583 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1584 map->format.parse_inplace(wval + i);
1585
1586 map->lock(map->lock_arg);
1587 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1588 map->unlock(map->lock_arg);
1589
1590 kfree(wval);
1591 }
1592 return ret;
1593 }
1594 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1595
1596 /*
1597 * _regmap_raw_multi_reg_write()
1598 *
1599 * the (register,newvalue) pairs in regs have not been formatted, but
1600 * they are all in the same page and have been changed to being page
1601 * relative. The page register has been written if that was neccessary.
1602 */
1603 static int _regmap_raw_multi_reg_write(struct regmap *map,
1604 const struct reg_default *regs,
1605 size_t num_regs)
1606 {
1607 int ret;
1608 void *buf;
1609 int i;
1610 u8 *u8;
1611 size_t val_bytes = map->format.val_bytes;
1612 size_t reg_bytes = map->format.reg_bytes;
1613 size_t pad_bytes = map->format.pad_bytes;
1614 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1615 size_t len = pair_size * num_regs;
1616
1617 buf = kzalloc(len, GFP_KERNEL);
1618 if (!buf)
1619 return -ENOMEM;
1620
1621 /* We have to linearise by hand. */
1622
1623 u8 = buf;
1624
1625 for (i = 0; i < num_regs; i++) {
1626 int reg = regs[i].reg;
1627 int val = regs[i].def;
1628 trace_regmap_hw_write_start(map->dev, reg, 1);
1629 map->format.format_reg(u8, reg, map->reg_shift);
1630 u8 += reg_bytes + pad_bytes;
1631 map->format.format_val(u8, val, 0);
1632 u8 += val_bytes;
1633 }
1634 u8 = buf;
1635 *u8 |= map->write_flag_mask;
1636
1637 ret = map->bus->write(map->bus_context, buf, len);
1638
1639 kfree(buf);
1640
1641 for (i = 0; i < num_regs; i++) {
1642 int reg = regs[i].reg;
1643 trace_regmap_hw_write_done(map->dev, reg, 1);
1644 }
1645 return ret;
1646 }
1647
1648 static unsigned int _regmap_register_page(struct regmap *map,
1649 unsigned int reg,
1650 struct regmap_range_node *range)
1651 {
1652 unsigned int win_page = (reg - range->range_min) / range->window_len;
1653
1654 return win_page;
1655 }
1656
1657 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1658 struct reg_default *regs,
1659 size_t num_regs)
1660 {
1661 int ret;
1662 int i, n;
1663 struct reg_default *base;
1664 unsigned int this_page;
1665 /*
1666 * the set of registers are not neccessarily in order, but
1667 * since the order of write must be preserved this algorithm
1668 * chops the set each time the page changes
1669 */
1670 base = regs;
1671 for (i = 0, n = 0; i < num_regs; i++, n++) {
1672 unsigned int reg = regs[i].reg;
1673 struct regmap_range_node *range;
1674
1675 range = _regmap_range_lookup(map, reg);
1676 if (range) {
1677 unsigned int win_page = _regmap_register_page(map, reg,
1678 range);
1679
1680 if (i == 0)
1681 this_page = win_page;
1682 if (win_page != this_page) {
1683 this_page = win_page;
1684 ret = _regmap_raw_multi_reg_write(map, base, n);
1685 if (ret != 0)
1686 return ret;
1687 base += n;
1688 n = 0;
1689 }
1690 ret = _regmap_select_page(map, &base[n].reg, range, 1);
1691 if (ret != 0)
1692 return ret;
1693 }
1694 }
1695 if (n > 0)
1696 return _regmap_raw_multi_reg_write(map, base, n);
1697 return 0;
1698 }
1699
1700 static int _regmap_multi_reg_write(struct regmap *map,
1701 const struct reg_default *regs,
1702 size_t num_regs)
1703 {
1704 int i;
1705 int ret;
1706
1707 if (!map->can_multi_write) {
1708 for (i = 0; i < num_regs; i++) {
1709 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1710 if (ret != 0)
1711 return ret;
1712 }
1713 return 0;
1714 }
1715
1716 if (!map->format.parse_inplace)
1717 return -EINVAL;
1718
1719 if (map->writeable_reg)
1720 for (i = 0; i < num_regs; i++) {
1721 int reg = regs[i].reg;
1722 if (!map->writeable_reg(map->dev, reg))
1723 return -EINVAL;
1724 if (reg % map->reg_stride)
1725 return -EINVAL;
1726 }
1727
1728 if (!map->cache_bypass) {
1729 for (i = 0; i < num_regs; i++) {
1730 unsigned int val = regs[i].def;
1731 unsigned int reg = regs[i].reg;
1732 ret = regcache_write(map, reg, val);
1733 if (ret) {
1734 dev_err(map->dev,
1735 "Error in caching of register: %x ret: %d\n",
1736 reg, ret);
1737 return ret;
1738 }
1739 }
1740 if (map->cache_only) {
1741 map->cache_dirty = true;
1742 return 0;
1743 }
1744 }
1745
1746 WARN_ON(!map->bus);
1747
1748 for (i = 0; i < num_regs; i++) {
1749 unsigned int reg = regs[i].reg;
1750 struct regmap_range_node *range;
1751 range = _regmap_range_lookup(map, reg);
1752 if (range) {
1753 size_t len = sizeof(struct reg_default)*num_regs;
1754 struct reg_default *base = kmemdup(regs, len,
1755 GFP_KERNEL);
1756 if (!base)
1757 return -ENOMEM;
1758 ret = _regmap_range_multi_paged_reg_write(map, base,
1759 num_regs);
1760 kfree(base);
1761
1762 return ret;
1763 }
1764 }
1765 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1766 }
1767
1768 /*
1769 * regmap_multi_reg_write(): Write multiple registers to the device
1770 *
1771 * where the set of register,value pairs are supplied in any order,
1772 * possibly not all in a single range.
1773 *
1774 * @map: Register map to write to
1775 * @regs: Array of structures containing register,value to be written
1776 * @num_regs: Number of registers to write
1777 *
1778 * The 'normal' block write mode will send ultimately send data on the
1779 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1780 * addressed. However, this alternative block multi write mode will send
1781 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1782 * must of course support the mode.
1783 *
1784 * A value of zero will be returned on success, a negative errno will be
1785 * returned in error cases.
1786 */
1787 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1788 int num_regs)
1789 {
1790 int ret;
1791
1792 map->lock(map->lock_arg);
1793
1794 ret = _regmap_multi_reg_write(map, regs, num_regs);
1795
1796 map->unlock(map->lock_arg);
1797
1798 return ret;
1799 }
1800 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1801
1802 /*
1803 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1804 * device but not the cache
1805 *
1806 * where the set of register are supplied in any order
1807 *
1808 * @map: Register map to write to
1809 * @regs: Array of structures containing register,value to be written
1810 * @num_regs: Number of registers to write
1811 *
1812 * This function is intended to be used for writing a large block of data
1813 * atomically to the device in single transfer for those I2C client devices
1814 * that implement this alternative block write mode.
1815 *
1816 * A value of zero will be returned on success, a negative errno will
1817 * be returned in error cases.
1818 */
1819 int regmap_multi_reg_write_bypassed(struct regmap *map,
1820 const struct reg_default *regs,
1821 int num_regs)
1822 {
1823 int ret;
1824 bool bypass;
1825
1826 map->lock(map->lock_arg);
1827
1828 bypass = map->cache_bypass;
1829 map->cache_bypass = true;
1830
1831 ret = _regmap_multi_reg_write(map, regs, num_regs);
1832
1833 map->cache_bypass = bypass;
1834
1835 map->unlock(map->lock_arg);
1836
1837 return ret;
1838 }
1839 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1840
1841 /**
1842 * regmap_raw_write_async(): Write raw values to one or more registers
1843 * asynchronously
1844 *
1845 * @map: Register map to write to
1846 * @reg: Initial register to write to
1847 * @val: Block of data to be written, laid out for direct transmission to the
1848 * device. Must be valid until regmap_async_complete() is called.
1849 * @val_len: Length of data pointed to by val.
1850 *
1851 * This function is intended to be used for things like firmware
1852 * download where a large block of data needs to be transferred to the
1853 * device. No formatting will be done on the data provided.
1854 *
1855 * If supported by the underlying bus the write will be scheduled
1856 * asynchronously, helping maximise I/O speed on higher speed buses
1857 * like SPI. regmap_async_complete() can be called to ensure that all
1858 * asynchrnous writes have been completed.
1859 *
1860 * A value of zero will be returned on success, a negative errno will
1861 * be returned in error cases.
1862 */
1863 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1864 const void *val, size_t val_len)
1865 {
1866 int ret;
1867
1868 if (val_len % map->format.val_bytes)
1869 return -EINVAL;
1870 if (reg % map->reg_stride)
1871 return -EINVAL;
1872
1873 map->lock(map->lock_arg);
1874
1875 map->async = true;
1876
1877 ret = _regmap_raw_write(map, reg, val, val_len);
1878
1879 map->async = false;
1880
1881 map->unlock(map->lock_arg);
1882
1883 return ret;
1884 }
1885 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1886
1887 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1888 unsigned int val_len)
1889 {
1890 struct regmap_range_node *range;
1891 u8 *u8 = map->work_buf;
1892 int ret;
1893
1894 WARN_ON(!map->bus);
1895
1896 range = _regmap_range_lookup(map, reg);
1897 if (range) {
1898 ret = _regmap_select_page(map, &reg, range,
1899 val_len / map->format.val_bytes);
1900 if (ret != 0)
1901 return ret;
1902 }
1903
1904 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1905
1906 /*
1907 * Some buses or devices flag reads by setting the high bits in the
1908 * register addresss; since it's always the high bits for all
1909 * current formats we can do this here rather than in
1910 * formatting. This may break if we get interesting formats.
1911 */
1912 u8[0] |= map->read_flag_mask;
1913
1914 trace_regmap_hw_read_start(map->dev, reg,
1915 val_len / map->format.val_bytes);
1916
1917 ret = map->bus->read(map->bus_context, map->work_buf,
1918 map->format.reg_bytes + map->format.pad_bytes,
1919 val, val_len);
1920
1921 trace_regmap_hw_read_done(map->dev, reg,
1922 val_len / map->format.val_bytes);
1923
1924 return ret;
1925 }
1926
1927 static int _regmap_bus_read(void *context, unsigned int reg,
1928 unsigned int *val)
1929 {
1930 int ret;
1931 struct regmap *map = context;
1932
1933 if (!map->format.parse_val)
1934 return -EINVAL;
1935
1936 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1937 if (ret == 0)
1938 *val = map->format.parse_val(map->work_buf);
1939
1940 return ret;
1941 }
1942
1943 static int _regmap_read(struct regmap *map, unsigned int reg,
1944 unsigned int *val)
1945 {
1946 int ret;
1947 void *context = _regmap_map_get_context(map);
1948
1949 WARN_ON(!map->reg_read);
1950
1951 if (!map->cache_bypass) {
1952 ret = regcache_read(map, reg, val);
1953 if (ret == 0)
1954 return 0;
1955 }
1956
1957 if (map->cache_only)
1958 return -EBUSY;
1959
1960 if (!regmap_readable(map, reg))
1961 return -EIO;
1962
1963 ret = map->reg_read(context, reg, val);
1964 if (ret == 0) {
1965 #ifdef LOG_DEVICE
1966 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1967 dev_info(map->dev, "%x => %x\n", reg, *val);
1968 #endif
1969
1970 trace_regmap_reg_read(map->dev, reg, *val);
1971
1972 if (!map->cache_bypass)
1973 regcache_write(map, reg, *val);
1974 }
1975
1976 return ret;
1977 }
1978
1979 /**
1980 * regmap_read(): Read a value from a single register
1981 *
1982 * @map: Register map to read from
1983 * @reg: Register to be read from
1984 * @val: Pointer to store read value
1985 *
1986 * A value of zero will be returned on success, a negative errno will
1987 * be returned in error cases.
1988 */
1989 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1990 {
1991 int ret;
1992
1993 if (reg % map->reg_stride)
1994 return -EINVAL;
1995
1996 map->lock(map->lock_arg);
1997
1998 ret = _regmap_read(map, reg, val);
1999
2000 map->unlock(map->lock_arg);
2001
2002 return ret;
2003 }
2004 EXPORT_SYMBOL_GPL(regmap_read);
2005
2006 /**
2007 * regmap_raw_read(): Read raw data from the device
2008 *
2009 * @map: Register map to read from
2010 * @reg: First register to be read from
2011 * @val: Pointer to store read value
2012 * @val_len: Size of data to read
2013 *
2014 * A value of zero will be returned on success, a negative errno will
2015 * be returned in error cases.
2016 */
2017 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2018 size_t val_len)
2019 {
2020 size_t val_bytes = map->format.val_bytes;
2021 size_t val_count = val_len / val_bytes;
2022 unsigned int v;
2023 int ret, i;
2024
2025 if (!map->bus)
2026 return -EINVAL;
2027 if (val_len % map->format.val_bytes)
2028 return -EINVAL;
2029 if (reg % map->reg_stride)
2030 return -EINVAL;
2031
2032 map->lock(map->lock_arg);
2033
2034 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2035 map->cache_type == REGCACHE_NONE) {
2036 /* Physical block read if there's no cache involved */
2037 ret = _regmap_raw_read(map, reg, val, val_len);
2038
2039 } else {
2040 /* Otherwise go word by word for the cache; should be low
2041 * cost as we expect to hit the cache.
2042 */
2043 for (i = 0; i < val_count; i++) {
2044 ret = _regmap_read(map, reg + (i * map->reg_stride),
2045 &v);
2046 if (ret != 0)
2047 goto out;
2048
2049 map->format.format_val(val + (i * val_bytes), v, 0);
2050 }
2051 }
2052
2053 out:
2054 map->unlock(map->lock_arg);
2055
2056 return ret;
2057 }
2058 EXPORT_SYMBOL_GPL(regmap_raw_read);
2059
2060 /**
2061 * regmap_field_read(): Read a value to a single register field
2062 *
2063 * @field: Register field to read from
2064 * @val: Pointer to store read value
2065 *
2066 * A value of zero will be returned on success, a negative errno will
2067 * be returned in error cases.
2068 */
2069 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2070 {
2071 int ret;
2072 unsigned int reg_val;
2073 ret = regmap_read(field->regmap, field->reg, &reg_val);
2074 if (ret != 0)
2075 return ret;
2076
2077 reg_val &= field->mask;
2078 reg_val >>= field->shift;
2079 *val = reg_val;
2080
2081 return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(regmap_field_read);
2084
2085 /**
2086 * regmap_fields_read(): Read a value to a single register field with port ID
2087 *
2088 * @field: Register field to read from
2089 * @id: port ID
2090 * @val: Pointer to store read value
2091 *
2092 * A value of zero will be returned on success, a negative errno will
2093 * be returned in error cases.
2094 */
2095 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2096 unsigned int *val)
2097 {
2098 int ret;
2099 unsigned int reg_val;
2100
2101 if (id >= field->id_size)
2102 return -EINVAL;
2103
2104 ret = regmap_read(field->regmap,
2105 field->reg + (field->id_offset * id),
2106 &reg_val);
2107 if (ret != 0)
2108 return ret;
2109
2110 reg_val &= field->mask;
2111 reg_val >>= field->shift;
2112 *val = reg_val;
2113
2114 return ret;
2115 }
2116 EXPORT_SYMBOL_GPL(regmap_fields_read);
2117
2118 /**
2119 * regmap_bulk_read(): Read multiple registers from the device
2120 *
2121 * @map: Register map to read from
2122 * @reg: First register to be read from
2123 * @val: Pointer to store read value, in native register size for device
2124 * @val_count: Number of registers to read
2125 *
2126 * A value of zero will be returned on success, a negative errno will
2127 * be returned in error cases.
2128 */
2129 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2130 size_t val_count)
2131 {
2132 int ret, i;
2133 size_t val_bytes = map->format.val_bytes;
2134 bool vol = regmap_volatile_range(map, reg, val_count);
2135
2136 if (reg % map->reg_stride)
2137 return -EINVAL;
2138
2139 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2140 /*
2141 * Some devices does not support bulk read, for
2142 * them we have a series of single read operations.
2143 */
2144 if (map->use_single_rw) {
2145 for (i = 0; i < val_count; i++) {
2146 ret = regmap_raw_read(map,
2147 reg + (i * map->reg_stride),
2148 val + (i * val_bytes),
2149 val_bytes);
2150 if (ret != 0)
2151 return ret;
2152 }
2153 } else {
2154 ret = regmap_raw_read(map, reg, val,
2155 val_bytes * val_count);
2156 if (ret != 0)
2157 return ret;
2158 }
2159
2160 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2161 map->format.parse_inplace(val + i);
2162 } else {
2163 for (i = 0; i < val_count; i++) {
2164 unsigned int ival;
2165 ret = regmap_read(map, reg + (i * map->reg_stride),
2166 &ival);
2167 if (ret != 0)
2168 return ret;
2169 memcpy(val + (i * val_bytes), &ival, val_bytes);
2170 }
2171 }
2172
2173 return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2176
2177 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2178 unsigned int mask, unsigned int val,
2179 bool *change)
2180 {
2181 int ret;
2182 unsigned int tmp, orig;
2183
2184 ret = _regmap_read(map, reg, &orig);
2185 if (ret != 0)
2186 return ret;
2187
2188 tmp = orig & ~mask;
2189 tmp |= val & mask;
2190
2191 if (tmp != orig) {
2192 ret = _regmap_write(map, reg, tmp);
2193 if (change)
2194 *change = true;
2195 } else {
2196 if (change)
2197 *change = false;
2198 }
2199
2200 return ret;
2201 }
2202
2203 /**
2204 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2205 *
2206 * @map: Register map to update
2207 * @reg: Register to update
2208 * @mask: Bitmask to change
2209 * @val: New value for bitmask
2210 *
2211 * Returns zero for success, a negative number on error.
2212 */
2213 int regmap_update_bits(struct regmap *map, unsigned int reg,
2214 unsigned int mask, unsigned int val)
2215 {
2216 int ret;
2217
2218 map->lock(map->lock_arg);
2219 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2220 map->unlock(map->lock_arg);
2221
2222 return ret;
2223 }
2224 EXPORT_SYMBOL_GPL(regmap_update_bits);
2225
2226 /**
2227 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2228 * map asynchronously
2229 *
2230 * @map: Register map to update
2231 * @reg: Register to update
2232 * @mask: Bitmask to change
2233 * @val: New value for bitmask
2234 *
2235 * With most buses the read must be done synchronously so this is most
2236 * useful for devices with a cache which do not need to interact with
2237 * the hardware to determine the current register value.
2238 *
2239 * Returns zero for success, a negative number on error.
2240 */
2241 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2242 unsigned int mask, unsigned int val)
2243 {
2244 int ret;
2245
2246 map->lock(map->lock_arg);
2247
2248 map->async = true;
2249
2250 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2251
2252 map->async = false;
2253
2254 map->unlock(map->lock_arg);
2255
2256 return ret;
2257 }
2258 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2259
2260 /**
2261 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2262 * register map and report if updated
2263 *
2264 * @map: Register map to update
2265 * @reg: Register to update
2266 * @mask: Bitmask to change
2267 * @val: New value for bitmask
2268 * @change: Boolean indicating if a write was done
2269 *
2270 * Returns zero for success, a negative number on error.
2271 */
2272 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2273 unsigned int mask, unsigned int val,
2274 bool *change)
2275 {
2276 int ret;
2277
2278 map->lock(map->lock_arg);
2279 ret = _regmap_update_bits(map, reg, mask, val, change);
2280 map->unlock(map->lock_arg);
2281 return ret;
2282 }
2283 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2284
2285 /**
2286 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2287 * register map asynchronously and report if
2288 * updated
2289 *
2290 * @map: Register map to update
2291 * @reg: Register to update
2292 * @mask: Bitmask to change
2293 * @val: New value for bitmask
2294 * @change: Boolean indicating if a write was done
2295 *
2296 * With most buses the read must be done synchronously so this is most
2297 * useful for devices with a cache which do not need to interact with
2298 * the hardware to determine the current register value.
2299 *
2300 * Returns zero for success, a negative number on error.
2301 */
2302 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2303 unsigned int mask, unsigned int val,
2304 bool *change)
2305 {
2306 int ret;
2307
2308 map->lock(map->lock_arg);
2309
2310 map->async = true;
2311
2312 ret = _regmap_update_bits(map, reg, mask, val, change);
2313
2314 map->async = false;
2315
2316 map->unlock(map->lock_arg);
2317
2318 return ret;
2319 }
2320 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2321
2322 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2323 {
2324 struct regmap *map = async->map;
2325 bool wake;
2326
2327 trace_regmap_async_io_complete(map->dev);
2328
2329 spin_lock(&map->async_lock);
2330 list_move(&async->list, &map->async_free);
2331 wake = list_empty(&map->async_list);
2332
2333 if (ret != 0)
2334 map->async_ret = ret;
2335
2336 spin_unlock(&map->async_lock);
2337
2338 if (wake)
2339 wake_up(&map->async_waitq);
2340 }
2341 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2342
2343 static int regmap_async_is_done(struct regmap *map)
2344 {
2345 unsigned long flags;
2346 int ret;
2347
2348 spin_lock_irqsave(&map->async_lock, flags);
2349 ret = list_empty(&map->async_list);
2350 spin_unlock_irqrestore(&map->async_lock, flags);
2351
2352 return ret;
2353 }
2354
2355 /**
2356 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2357 *
2358 * @map: Map to operate on.
2359 *
2360 * Blocks until any pending asynchronous I/O has completed. Returns
2361 * an error code for any failed I/O operations.
2362 */
2363 int regmap_async_complete(struct regmap *map)
2364 {
2365 unsigned long flags;
2366 int ret;
2367
2368 /* Nothing to do with no async support */
2369 if (!map->bus || !map->bus->async_write)
2370 return 0;
2371
2372 trace_regmap_async_complete_start(map->dev);
2373
2374 wait_event(map->async_waitq, regmap_async_is_done(map));
2375
2376 spin_lock_irqsave(&map->async_lock, flags);
2377 ret = map->async_ret;
2378 map->async_ret = 0;
2379 spin_unlock_irqrestore(&map->async_lock, flags);
2380
2381 trace_regmap_async_complete_done(map->dev);
2382
2383 return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(regmap_async_complete);
2386
2387 /**
2388 * regmap_register_patch: Register and apply register updates to be applied
2389 * on device initialistion
2390 *
2391 * @map: Register map to apply updates to.
2392 * @regs: Values to update.
2393 * @num_regs: Number of entries in regs.
2394 *
2395 * Register a set of register updates to be applied to the device
2396 * whenever the device registers are synchronised with the cache and
2397 * apply them immediately. Typically this is used to apply
2398 * corrections to be applied to the device defaults on startup, such
2399 * as the updates some vendors provide to undocumented registers.
2400 *
2401 * The caller must ensure that this function cannot be called
2402 * concurrently with either itself or regcache_sync().
2403 */
2404 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2405 int num_regs)
2406 {
2407 struct reg_default *p;
2408 int ret;
2409 bool bypass;
2410
2411 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2412 num_regs))
2413 return 0;
2414
2415 p = krealloc(map->patch,
2416 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2417 GFP_KERNEL);
2418 if (p) {
2419 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2420 map->patch = p;
2421 map->patch_regs += num_regs;
2422 } else {
2423 return -ENOMEM;
2424 }
2425
2426 map->lock(map->lock_arg);
2427
2428 bypass = map->cache_bypass;
2429
2430 map->cache_bypass = true;
2431 map->async = true;
2432
2433 ret = _regmap_multi_reg_write(map, regs, num_regs);
2434 if (ret != 0)
2435 goto out;
2436
2437 out:
2438 map->async = false;
2439 map->cache_bypass = bypass;
2440
2441 map->unlock(map->lock_arg);
2442
2443 regmap_async_complete(map);
2444
2445 return ret;
2446 }
2447 EXPORT_SYMBOL_GPL(regmap_register_patch);
2448
2449 /*
2450 * regmap_get_val_bytes(): Report the size of a register value
2451 *
2452 * Report the size of a register value, mainly intended to for use by
2453 * generic infrastructure built on top of regmap.
2454 */
2455 int regmap_get_val_bytes(struct regmap *map)
2456 {
2457 if (map->format.format_write)
2458 return -EINVAL;
2459
2460 return map->format.val_bytes;
2461 }
2462 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2463
2464 int regmap_parse_val(struct regmap *map, const void *buf,
2465 unsigned int *val)
2466 {
2467 if (!map->format.parse_val)
2468 return -EINVAL;
2469
2470 *val = map->format.parse_val(buf);
2471
2472 return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(regmap_parse_val);
2475
2476 static int __init regmap_initcall(void)
2477 {
2478 regmap_debugfs_initcall();
2479
2480 return 0;
2481 }
2482 postcore_initcall(regmap_initcall);