]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/as-iosched.c
Merge branch 'upstream' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / block / as-iosched.c
1 /*
2 * linux/drivers/block/as-iosched.c
3 *
4 * Anticipatory & deadline i/o scheduler.
5 *
6 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
7 * Nick Piggin <piggin@cyberone.com.au>
8 *
9 */
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/bio.h>
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/compiler.h>
20 #include <linux/hash.h>
21 #include <linux/rbtree.h>
22 #include <linux/interrupt.h>
23
24 #define REQ_SYNC 1
25 #define REQ_ASYNC 0
26
27 /*
28 * See Documentation/block/as-iosched.txt
29 */
30
31 /*
32 * max time before a read is submitted.
33 */
34 #define default_read_expire (HZ / 8)
35
36 /*
37 * ditto for writes, these limits are not hard, even
38 * if the disk is capable of satisfying them.
39 */
40 #define default_write_expire (HZ / 4)
41
42 /*
43 * read_batch_expire describes how long we will allow a stream of reads to
44 * persist before looking to see whether it is time to switch over to writes.
45 */
46 #define default_read_batch_expire (HZ / 2)
47
48 /*
49 * write_batch_expire describes how long we want a stream of writes to run for.
50 * This is not a hard limit, but a target we set for the auto-tuning thingy.
51 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
52 * a short amount of time...
53 */
54 #define default_write_batch_expire (HZ / 8)
55
56 /*
57 * max time we may wait to anticipate a read (default around 6ms)
58 */
59 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
60
61 /*
62 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
63 * however huge values tend to interfere and not decay fast enough. A program
64 * might be in a non-io phase of operation. Waiting on user input for example,
65 * or doing a lengthy computation. A small penalty can be justified there, and
66 * will still catch out those processes that constantly have large thinktimes.
67 */
68 #define MAX_THINKTIME (HZ/50UL)
69
70 /* Bits in as_io_context.state */
71 enum as_io_states {
72 AS_TASK_RUNNING=0, /* Process has not exitted */
73 AS_TASK_IOSTARTED, /* Process has started some IO */
74 AS_TASK_IORUNNING, /* Process has completed some IO */
75 };
76
77 enum anticipation_status {
78 ANTIC_OFF=0, /* Not anticipating (normal operation) */
79 ANTIC_WAIT_REQ, /* The last read has not yet completed */
80 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
81 last read (which has completed) */
82 ANTIC_FINISHED, /* Anticipating but have found a candidate
83 * or timed out */
84 };
85
86 struct as_data {
87 /*
88 * run time data
89 */
90
91 struct request_queue *q; /* the "owner" queue */
92
93 /*
94 * requests (as_rq s) are present on both sort_list and fifo_list
95 */
96 struct rb_root sort_list[2];
97 struct list_head fifo_list[2];
98
99 struct as_rq *next_arq[2]; /* next in sort order */
100 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
101 struct list_head *hash; /* request hash */
102
103 unsigned long exit_prob; /* probability a task will exit while
104 being waited on */
105 unsigned long new_ttime_total; /* mean thinktime on new proc */
106 unsigned long new_ttime_mean;
107 u64 new_seek_total; /* mean seek on new proc */
108 sector_t new_seek_mean;
109
110 unsigned long current_batch_expires;
111 unsigned long last_check_fifo[2];
112 int changed_batch; /* 1: waiting for old batch to end */
113 int new_batch; /* 1: waiting on first read complete */
114 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
115 int write_batch_count; /* max # of reqs in a write batch */
116 int current_write_count; /* how many requests left this batch */
117 int write_batch_idled; /* has the write batch gone idle? */
118 mempool_t *arq_pool;
119
120 enum anticipation_status antic_status;
121 unsigned long antic_start; /* jiffies: when it started */
122 struct timer_list antic_timer; /* anticipatory scheduling timer */
123 struct work_struct antic_work; /* Deferred unplugging */
124 struct io_context *io_context; /* Identify the expected process */
125 int ioc_finished; /* IO associated with io_context is finished */
126 int nr_dispatched;
127
128 /*
129 * settings that change how the i/o scheduler behaves
130 */
131 unsigned long fifo_expire[2];
132 unsigned long batch_expire[2];
133 unsigned long antic_expire;
134 };
135
136 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
137
138 /*
139 * per-request data.
140 */
141 enum arq_state {
142 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
143 AS_RQ_QUEUED, /* In the request queue. It belongs to the
144 scheduler */
145 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
146 driver now */
147 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
148 AS_RQ_REMOVED,
149 AS_RQ_MERGED,
150 AS_RQ_POSTSCHED, /* when they shouldn't be */
151 };
152
153 struct as_rq {
154 /*
155 * rbtree index, key is the starting offset
156 */
157 struct rb_node rb_node;
158 sector_t rb_key;
159
160 struct request *request;
161
162 struct io_context *io_context; /* The submitting task */
163
164 /*
165 * request hash, key is the ending offset (for back merge lookup)
166 */
167 struct list_head hash;
168 unsigned int on_hash;
169
170 /*
171 * expire fifo
172 */
173 struct list_head fifo;
174 unsigned long expires;
175
176 unsigned int is_sync;
177 enum arq_state state;
178 };
179
180 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
181
182 static kmem_cache_t *arq_pool;
183
184 /*
185 * IO Context helper functions
186 */
187
188 /* Called to deallocate the as_io_context */
189 static void free_as_io_context(struct as_io_context *aic)
190 {
191 kfree(aic);
192 }
193
194 /* Called when the task exits */
195 static void exit_as_io_context(struct as_io_context *aic)
196 {
197 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
198 clear_bit(AS_TASK_RUNNING, &aic->state);
199 }
200
201 static struct as_io_context *alloc_as_io_context(void)
202 {
203 struct as_io_context *ret;
204
205 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
206 if (ret) {
207 ret->dtor = free_as_io_context;
208 ret->exit = exit_as_io_context;
209 ret->state = 1 << AS_TASK_RUNNING;
210 atomic_set(&ret->nr_queued, 0);
211 atomic_set(&ret->nr_dispatched, 0);
212 spin_lock_init(&ret->lock);
213 ret->ttime_total = 0;
214 ret->ttime_samples = 0;
215 ret->ttime_mean = 0;
216 ret->seek_total = 0;
217 ret->seek_samples = 0;
218 ret->seek_mean = 0;
219 }
220
221 return ret;
222 }
223
224 /*
225 * If the current task has no AS IO context then create one and initialise it.
226 * Then take a ref on the task's io context and return it.
227 */
228 static struct io_context *as_get_io_context(void)
229 {
230 struct io_context *ioc = get_io_context(GFP_ATOMIC);
231 if (ioc && !ioc->aic) {
232 ioc->aic = alloc_as_io_context();
233 if (!ioc->aic) {
234 put_io_context(ioc);
235 ioc = NULL;
236 }
237 }
238 return ioc;
239 }
240
241 static void as_put_io_context(struct as_rq *arq)
242 {
243 struct as_io_context *aic;
244
245 if (unlikely(!arq->io_context))
246 return;
247
248 aic = arq->io_context->aic;
249
250 if (arq->is_sync == REQ_SYNC && aic) {
251 spin_lock(&aic->lock);
252 set_bit(AS_TASK_IORUNNING, &aic->state);
253 aic->last_end_request = jiffies;
254 spin_unlock(&aic->lock);
255 }
256
257 put_io_context(arq->io_context);
258 }
259
260 /*
261 * the back merge hash support functions
262 */
263 static const int as_hash_shift = 6;
264 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
265 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
266 #define AS_HASH_ENTRIES (1 << as_hash_shift)
267 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
268 #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash)
269
270 static inline void __as_del_arq_hash(struct as_rq *arq)
271 {
272 arq->on_hash = 0;
273 list_del_init(&arq->hash);
274 }
275
276 static inline void as_del_arq_hash(struct as_rq *arq)
277 {
278 if (arq->on_hash)
279 __as_del_arq_hash(arq);
280 }
281
282 static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
283 {
284 struct request *rq = arq->request;
285
286 BUG_ON(arq->on_hash);
287
288 arq->on_hash = 1;
289 list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
290 }
291
292 /*
293 * move hot entry to front of chain
294 */
295 static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq)
296 {
297 struct request *rq = arq->request;
298 struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))];
299
300 if (!arq->on_hash) {
301 WARN_ON(1);
302 return;
303 }
304
305 if (arq->hash.prev != head) {
306 list_del(&arq->hash);
307 list_add(&arq->hash, head);
308 }
309 }
310
311 static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
312 {
313 struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
314 struct list_head *entry, *next = hash_list->next;
315
316 while ((entry = next) != hash_list) {
317 struct as_rq *arq = list_entry_hash(entry);
318 struct request *__rq = arq->request;
319
320 next = entry->next;
321
322 BUG_ON(!arq->on_hash);
323
324 if (!rq_mergeable(__rq)) {
325 as_del_arq_hash(arq);
326 continue;
327 }
328
329 if (rq_hash_key(__rq) == offset)
330 return __rq;
331 }
332
333 return NULL;
334 }
335
336 /*
337 * rb tree support functions
338 */
339 #define RB_NONE (2)
340 #define RB_EMPTY(root) ((root)->rb_node == NULL)
341 #define ON_RB(node) ((node)->rb_color != RB_NONE)
342 #define RB_CLEAR(node) ((node)->rb_color = RB_NONE)
343 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
344 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
345 #define rq_rb_key(rq) (rq)->sector
346
347 /*
348 * as_find_first_arq finds the first (lowest sector numbered) request
349 * for the specified data_dir. Used to sweep back to the start of the disk
350 * (1-way elevator) after we process the last (highest sector) request.
351 */
352 static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
353 {
354 struct rb_node *n = ad->sort_list[data_dir].rb_node;
355
356 if (n == NULL)
357 return NULL;
358
359 for (;;) {
360 if (n->rb_left == NULL)
361 return rb_entry_arq(n);
362
363 n = n->rb_left;
364 }
365 }
366
367 /*
368 * Add the request to the rb tree if it is unique. If there is an alias (an
369 * existing request against the same sector), which can happen when using
370 * direct IO, then return the alias.
371 */
372 static struct as_rq *as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
373 {
374 struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
375 struct rb_node *parent = NULL;
376 struct as_rq *__arq;
377 struct request *rq = arq->request;
378
379 arq->rb_key = rq_rb_key(rq);
380
381 while (*p) {
382 parent = *p;
383 __arq = rb_entry_arq(parent);
384
385 if (arq->rb_key < __arq->rb_key)
386 p = &(*p)->rb_left;
387 else if (arq->rb_key > __arq->rb_key)
388 p = &(*p)->rb_right;
389 else
390 return __arq;
391 }
392
393 rb_link_node(&arq->rb_node, parent, p);
394 rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
395
396 return NULL;
397 }
398
399 static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
400 {
401 if (!ON_RB(&arq->rb_node)) {
402 WARN_ON(1);
403 return;
404 }
405
406 rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
407 RB_CLEAR(&arq->rb_node);
408 }
409
410 static struct request *
411 as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
412 {
413 struct rb_node *n = ad->sort_list[data_dir].rb_node;
414 struct as_rq *arq;
415
416 while (n) {
417 arq = rb_entry_arq(n);
418
419 if (sector < arq->rb_key)
420 n = n->rb_left;
421 else if (sector > arq->rb_key)
422 n = n->rb_right;
423 else
424 return arq->request;
425 }
426
427 return NULL;
428 }
429
430 /*
431 * IO Scheduler proper
432 */
433
434 #define MAXBACK (1024 * 1024) /*
435 * Maximum distance the disk will go backward
436 * for a request.
437 */
438
439 #define BACK_PENALTY 2
440
441 /*
442 * as_choose_req selects the preferred one of two requests of the same data_dir
443 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
444 */
445 static struct as_rq *
446 as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
447 {
448 int data_dir;
449 sector_t last, s1, s2, d1, d2;
450 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
451 const sector_t maxback = MAXBACK;
452
453 if (arq1 == NULL || arq1 == arq2)
454 return arq2;
455 if (arq2 == NULL)
456 return arq1;
457
458 data_dir = arq1->is_sync;
459
460 last = ad->last_sector[data_dir];
461 s1 = arq1->request->sector;
462 s2 = arq2->request->sector;
463
464 BUG_ON(data_dir != arq2->is_sync);
465
466 /*
467 * Strict one way elevator _except_ in the case where we allow
468 * short backward seeks which are biased as twice the cost of a
469 * similar forward seek.
470 */
471 if (s1 >= last)
472 d1 = s1 - last;
473 else if (s1+maxback >= last)
474 d1 = (last - s1)*BACK_PENALTY;
475 else {
476 r1_wrap = 1;
477 d1 = 0; /* shut up, gcc */
478 }
479
480 if (s2 >= last)
481 d2 = s2 - last;
482 else if (s2+maxback >= last)
483 d2 = (last - s2)*BACK_PENALTY;
484 else {
485 r2_wrap = 1;
486 d2 = 0;
487 }
488
489 /* Found required data */
490 if (!r1_wrap && r2_wrap)
491 return arq1;
492 else if (!r2_wrap && r1_wrap)
493 return arq2;
494 else if (r1_wrap && r2_wrap) {
495 /* both behind the head */
496 if (s1 <= s2)
497 return arq1;
498 else
499 return arq2;
500 }
501
502 /* Both requests in front of the head */
503 if (d1 < d2)
504 return arq1;
505 else if (d2 < d1)
506 return arq2;
507 else {
508 if (s1 >= s2)
509 return arq1;
510 else
511 return arq2;
512 }
513 }
514
515 /*
516 * as_find_next_arq finds the next request after @prev in elevator order.
517 * this with as_choose_req form the basis for how the scheduler chooses
518 * what request to process next. Anticipation works on top of this.
519 */
520 static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
521 {
522 const int data_dir = last->is_sync;
523 struct as_rq *ret;
524 struct rb_node *rbnext = rb_next(&last->rb_node);
525 struct rb_node *rbprev = rb_prev(&last->rb_node);
526 struct as_rq *arq_next, *arq_prev;
527
528 BUG_ON(!ON_RB(&last->rb_node));
529
530 if (rbprev)
531 arq_prev = rb_entry_arq(rbprev);
532 else
533 arq_prev = NULL;
534
535 if (rbnext)
536 arq_next = rb_entry_arq(rbnext);
537 else {
538 arq_next = as_find_first_arq(ad, data_dir);
539 if (arq_next == last)
540 arq_next = NULL;
541 }
542
543 ret = as_choose_req(ad, arq_next, arq_prev);
544
545 return ret;
546 }
547
548 /*
549 * anticipatory scheduling functions follow
550 */
551
552 /*
553 * as_antic_expired tells us when we have anticipated too long.
554 * The funny "absolute difference" math on the elapsed time is to handle
555 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
556 */
557 static int as_antic_expired(struct as_data *ad)
558 {
559 long delta_jif;
560
561 delta_jif = jiffies - ad->antic_start;
562 if (unlikely(delta_jif < 0))
563 delta_jif = -delta_jif;
564 if (delta_jif < ad->antic_expire)
565 return 0;
566
567 return 1;
568 }
569
570 /*
571 * as_antic_waitnext starts anticipating that a nice request will soon be
572 * submitted. See also as_antic_waitreq
573 */
574 static void as_antic_waitnext(struct as_data *ad)
575 {
576 unsigned long timeout;
577
578 BUG_ON(ad->antic_status != ANTIC_OFF
579 && ad->antic_status != ANTIC_WAIT_REQ);
580
581 timeout = ad->antic_start + ad->antic_expire;
582
583 mod_timer(&ad->antic_timer, timeout);
584
585 ad->antic_status = ANTIC_WAIT_NEXT;
586 }
587
588 /*
589 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
590 * until the request that we're anticipating on has finished. This means we
591 * are timing from when the candidate process wakes up hopefully.
592 */
593 static void as_antic_waitreq(struct as_data *ad)
594 {
595 BUG_ON(ad->antic_status == ANTIC_FINISHED);
596 if (ad->antic_status == ANTIC_OFF) {
597 if (!ad->io_context || ad->ioc_finished)
598 as_antic_waitnext(ad);
599 else
600 ad->antic_status = ANTIC_WAIT_REQ;
601 }
602 }
603
604 /*
605 * This is called directly by the functions in this file to stop anticipation.
606 * We kill the timer and schedule a call to the request_fn asap.
607 */
608 static void as_antic_stop(struct as_data *ad)
609 {
610 int status = ad->antic_status;
611
612 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
613 if (status == ANTIC_WAIT_NEXT)
614 del_timer(&ad->antic_timer);
615 ad->antic_status = ANTIC_FINISHED;
616 /* see as_work_handler */
617 kblockd_schedule_work(&ad->antic_work);
618 }
619 }
620
621 /*
622 * as_antic_timeout is the timer function set by as_antic_waitnext.
623 */
624 static void as_antic_timeout(unsigned long data)
625 {
626 struct request_queue *q = (struct request_queue *)data;
627 struct as_data *ad = q->elevator->elevator_data;
628 unsigned long flags;
629
630 spin_lock_irqsave(q->queue_lock, flags);
631 if (ad->antic_status == ANTIC_WAIT_REQ
632 || ad->antic_status == ANTIC_WAIT_NEXT) {
633 struct as_io_context *aic = ad->io_context->aic;
634
635 ad->antic_status = ANTIC_FINISHED;
636 kblockd_schedule_work(&ad->antic_work);
637
638 if (aic->ttime_samples == 0) {
639 /* process anticipated on has exitted or timed out*/
640 ad->exit_prob = (7*ad->exit_prob + 256)/8;
641 }
642 }
643 spin_unlock_irqrestore(q->queue_lock, flags);
644 }
645
646 /*
647 * as_close_req decides if one request is considered "close" to the
648 * previous one issued.
649 */
650 static int as_close_req(struct as_data *ad, struct as_rq *arq)
651 {
652 unsigned long delay; /* milliseconds */
653 sector_t last = ad->last_sector[ad->batch_data_dir];
654 sector_t next = arq->request->sector;
655 sector_t delta; /* acceptable close offset (in sectors) */
656
657 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
658 delay = 0;
659 else
660 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
661
662 if (delay <= 1)
663 delta = 64;
664 else if (delay <= 20 && delay <= ad->antic_expire)
665 delta = 64 << (delay-1);
666 else
667 return 1;
668
669 return (last - (delta>>1) <= next) && (next <= last + delta);
670 }
671
672 /*
673 * as_can_break_anticipation returns true if we have been anticipating this
674 * request.
675 *
676 * It also returns true if the process against which we are anticipating
677 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
678 * dispatch it ASAP, because we know that application will not be submitting
679 * any new reads.
680 *
681 * If the task which has submitted the request has exitted, break anticipation.
682 *
683 * If this task has queued some other IO, do not enter enticipation.
684 */
685 static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
686 {
687 struct io_context *ioc;
688 struct as_io_context *aic;
689 sector_t s;
690
691 ioc = ad->io_context;
692 BUG_ON(!ioc);
693
694 if (arq && ioc == arq->io_context) {
695 /* request from same process */
696 return 1;
697 }
698
699 if (ad->ioc_finished && as_antic_expired(ad)) {
700 /*
701 * In this situation status should really be FINISHED,
702 * however the timer hasn't had the chance to run yet.
703 */
704 return 1;
705 }
706
707 aic = ioc->aic;
708 if (!aic)
709 return 0;
710
711 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
712 /* process anticipated on has exitted */
713 if (aic->ttime_samples == 0)
714 ad->exit_prob = (7*ad->exit_prob + 256)/8;
715 return 1;
716 }
717
718 if (atomic_read(&aic->nr_queued) > 0) {
719 /* process has more requests queued */
720 return 1;
721 }
722
723 if (atomic_read(&aic->nr_dispatched) > 0) {
724 /* process has more requests dispatched */
725 return 1;
726 }
727
728 if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, arq)) {
729 /*
730 * Found a close request that is not one of ours.
731 *
732 * This makes close requests from another process reset
733 * our thinktime delay. Is generally useful when there are
734 * two or more cooperating processes working in the same
735 * area.
736 */
737 spin_lock(&aic->lock);
738 aic->last_end_request = jiffies;
739 spin_unlock(&aic->lock);
740 return 1;
741 }
742
743
744 if (aic->ttime_samples == 0) {
745 if (ad->new_ttime_mean > ad->antic_expire)
746 return 1;
747 if (ad->exit_prob > 128)
748 return 1;
749 } else if (aic->ttime_mean > ad->antic_expire) {
750 /* the process thinks too much between requests */
751 return 1;
752 }
753
754 if (!arq)
755 return 0;
756
757 if (ad->last_sector[REQ_SYNC] < arq->request->sector)
758 s = arq->request->sector - ad->last_sector[REQ_SYNC];
759 else
760 s = ad->last_sector[REQ_SYNC] - arq->request->sector;
761
762 if (aic->seek_samples == 0) {
763 /*
764 * Process has just started IO. Use past statistics to
765 * guage success possibility
766 */
767 if (ad->new_seek_mean > s) {
768 /* this request is better than what we're expecting */
769 return 1;
770 }
771
772 } else {
773 if (aic->seek_mean > s) {
774 /* this request is better than what we're expecting */
775 return 1;
776 }
777 }
778
779 return 0;
780 }
781
782 /*
783 * as_can_anticipate indicates weather we should either run arq
784 * or keep anticipating a better request.
785 */
786 static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
787 {
788 if (!ad->io_context)
789 /*
790 * Last request submitted was a write
791 */
792 return 0;
793
794 if (ad->antic_status == ANTIC_FINISHED)
795 /*
796 * Don't restart if we have just finished. Run the next request
797 */
798 return 0;
799
800 if (as_can_break_anticipation(ad, arq))
801 /*
802 * This request is a good candidate. Don't keep anticipating,
803 * run it.
804 */
805 return 0;
806
807 /*
808 * OK from here, we haven't finished, and don't have a decent request!
809 * Status is either ANTIC_OFF so start waiting,
810 * ANTIC_WAIT_REQ so continue waiting for request to finish
811 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
812 *
813 */
814
815 return 1;
816 }
817
818 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, unsigned long ttime)
819 {
820 /* fixed point: 1.0 == 1<<8 */
821 if (aic->ttime_samples == 0) {
822 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
823 ad->new_ttime_mean = ad->new_ttime_total / 256;
824
825 ad->exit_prob = (7*ad->exit_prob)/8;
826 }
827 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
828 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
829 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
830 }
831
832 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, sector_t sdist)
833 {
834 u64 total;
835
836 if (aic->seek_samples == 0) {
837 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
838 ad->new_seek_mean = ad->new_seek_total / 256;
839 }
840
841 /*
842 * Don't allow the seek distance to get too large from the
843 * odd fragment, pagein, etc
844 */
845 if (aic->seek_samples <= 60) /* second&third seek */
846 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
847 else
848 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
849
850 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
851 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
852 total = aic->seek_total + (aic->seek_samples/2);
853 do_div(total, aic->seek_samples);
854 aic->seek_mean = (sector_t)total;
855 }
856
857 /*
858 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
859 * updates @aic->ttime_mean based on that. It is called when a new
860 * request is queued.
861 */
862 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, struct request *rq)
863 {
864 struct as_rq *arq = RQ_DATA(rq);
865 int data_dir = arq->is_sync;
866 unsigned long thinktime;
867 sector_t seek_dist;
868
869 if (aic == NULL)
870 return;
871
872 if (data_dir == REQ_SYNC) {
873 unsigned long in_flight = atomic_read(&aic->nr_queued)
874 + atomic_read(&aic->nr_dispatched);
875 spin_lock(&aic->lock);
876 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
877 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
878 /* Calculate read -> read thinktime */
879 if (test_bit(AS_TASK_IORUNNING, &aic->state)
880 && in_flight == 0) {
881 thinktime = jiffies - aic->last_end_request;
882 thinktime = min(thinktime, MAX_THINKTIME-1);
883 } else
884 thinktime = 0;
885 as_update_thinktime(ad, aic, thinktime);
886
887 /* Calculate read -> read seek distance */
888 if (aic->last_request_pos < rq->sector)
889 seek_dist = rq->sector - aic->last_request_pos;
890 else
891 seek_dist = aic->last_request_pos - rq->sector;
892 as_update_seekdist(ad, aic, seek_dist);
893 }
894 aic->last_request_pos = rq->sector + rq->nr_sectors;
895 set_bit(AS_TASK_IOSTARTED, &aic->state);
896 spin_unlock(&aic->lock);
897 }
898 }
899
900 /*
901 * as_update_arq must be called whenever a request (arq) is added to
902 * the sort_list. This function keeps caches up to date, and checks if the
903 * request might be one we are "anticipating"
904 */
905 static void as_update_arq(struct as_data *ad, struct as_rq *arq)
906 {
907 const int data_dir = arq->is_sync;
908
909 /* keep the next_arq cache up to date */
910 ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
911
912 /*
913 * have we been anticipating this request?
914 * or does it come from the same process as the one we are anticipating
915 * for?
916 */
917 if (ad->antic_status == ANTIC_WAIT_REQ
918 || ad->antic_status == ANTIC_WAIT_NEXT) {
919 if (as_can_break_anticipation(ad, arq))
920 as_antic_stop(ad);
921 }
922 }
923
924 /*
925 * Gathers timings and resizes the write batch automatically
926 */
927 static void update_write_batch(struct as_data *ad)
928 {
929 unsigned long batch = ad->batch_expire[REQ_ASYNC];
930 long write_time;
931
932 write_time = (jiffies - ad->current_batch_expires) + batch;
933 if (write_time < 0)
934 write_time = 0;
935
936 if (write_time > batch && !ad->write_batch_idled) {
937 if (write_time > batch * 3)
938 ad->write_batch_count /= 2;
939 else
940 ad->write_batch_count--;
941 } else if (write_time < batch && ad->current_write_count == 0) {
942 if (batch > write_time * 3)
943 ad->write_batch_count *= 2;
944 else
945 ad->write_batch_count++;
946 }
947
948 if (ad->write_batch_count < 1)
949 ad->write_batch_count = 1;
950 }
951
952 /*
953 * as_completed_request is to be called when a request has completed and
954 * returned something to the requesting process, be it an error or data.
955 */
956 static void as_completed_request(request_queue_t *q, struct request *rq)
957 {
958 struct as_data *ad = q->elevator->elevator_data;
959 struct as_rq *arq = RQ_DATA(rq);
960
961 WARN_ON(!list_empty(&rq->queuelist));
962
963 if (arq->state != AS_RQ_REMOVED) {
964 printk("arq->state %d\n", arq->state);
965 WARN_ON(1);
966 goto out;
967 }
968
969 if (ad->changed_batch && ad->nr_dispatched == 1) {
970 kblockd_schedule_work(&ad->antic_work);
971 ad->changed_batch = 0;
972
973 if (ad->batch_data_dir == REQ_SYNC)
974 ad->new_batch = 1;
975 }
976 WARN_ON(ad->nr_dispatched == 0);
977 ad->nr_dispatched--;
978
979 /*
980 * Start counting the batch from when a request of that direction is
981 * actually serviced. This should help devices with big TCQ windows
982 * and writeback caches
983 */
984 if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
985 update_write_batch(ad);
986 ad->current_batch_expires = jiffies +
987 ad->batch_expire[REQ_SYNC];
988 ad->new_batch = 0;
989 }
990
991 if (ad->io_context == arq->io_context && ad->io_context) {
992 ad->antic_start = jiffies;
993 ad->ioc_finished = 1;
994 if (ad->antic_status == ANTIC_WAIT_REQ) {
995 /*
996 * We were waiting on this request, now anticipate
997 * the next one
998 */
999 as_antic_waitnext(ad);
1000 }
1001 }
1002
1003 as_put_io_context(arq);
1004 out:
1005 arq->state = AS_RQ_POSTSCHED;
1006 }
1007
1008 /*
1009 * as_remove_queued_request removes a request from the pre dispatch queue
1010 * without updating refcounts. It is expected the caller will drop the
1011 * reference unless it replaces the request at somepart of the elevator
1012 * (ie. the dispatch queue)
1013 */
1014 static void as_remove_queued_request(request_queue_t *q, struct request *rq)
1015 {
1016 struct as_rq *arq = RQ_DATA(rq);
1017 const int data_dir = arq->is_sync;
1018 struct as_data *ad = q->elevator->elevator_data;
1019
1020 WARN_ON(arq->state != AS_RQ_QUEUED);
1021
1022 if (arq->io_context && arq->io_context->aic) {
1023 BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
1024 atomic_dec(&arq->io_context->aic->nr_queued);
1025 }
1026
1027 /*
1028 * Update the "next_arq" cache if we are about to remove its
1029 * entry
1030 */
1031 if (ad->next_arq[data_dir] == arq)
1032 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1033
1034 list_del_init(&arq->fifo);
1035 as_del_arq_hash(arq);
1036 as_del_arq_rb(ad, arq);
1037 }
1038
1039 /*
1040 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1041 * 1 otherwise. It is ratelimited so that we only perform the check once per
1042 * `fifo_expire' interval. Otherwise a large number of expired requests
1043 * would create a hopeless seekstorm.
1044 *
1045 * See as_antic_expired comment.
1046 */
1047 static int as_fifo_expired(struct as_data *ad, int adir)
1048 {
1049 struct as_rq *arq;
1050 long delta_jif;
1051
1052 delta_jif = jiffies - ad->last_check_fifo[adir];
1053 if (unlikely(delta_jif < 0))
1054 delta_jif = -delta_jif;
1055 if (delta_jif < ad->fifo_expire[adir])
1056 return 0;
1057
1058 ad->last_check_fifo[adir] = jiffies;
1059
1060 if (list_empty(&ad->fifo_list[adir]))
1061 return 0;
1062
1063 arq = list_entry_fifo(ad->fifo_list[adir].next);
1064
1065 return time_after(jiffies, arq->expires);
1066 }
1067
1068 /*
1069 * as_batch_expired returns true if the current batch has expired. A batch
1070 * is a set of reads or a set of writes.
1071 */
1072 static inline int as_batch_expired(struct as_data *ad)
1073 {
1074 if (ad->changed_batch || ad->new_batch)
1075 return 0;
1076
1077 if (ad->batch_data_dir == REQ_SYNC)
1078 /* TODO! add a check so a complete fifo gets written? */
1079 return time_after(jiffies, ad->current_batch_expires);
1080
1081 return time_after(jiffies, ad->current_batch_expires)
1082 || ad->current_write_count == 0;
1083 }
1084
1085 /*
1086 * move an entry to dispatch queue
1087 */
1088 static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
1089 {
1090 struct request *rq = arq->request;
1091 const int data_dir = arq->is_sync;
1092
1093 BUG_ON(!ON_RB(&arq->rb_node));
1094
1095 as_antic_stop(ad);
1096 ad->antic_status = ANTIC_OFF;
1097
1098 /*
1099 * This has to be set in order to be correctly updated by
1100 * as_find_next_arq
1101 */
1102 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
1103
1104 if (data_dir == REQ_SYNC) {
1105 /* In case we have to anticipate after this */
1106 copy_io_context(&ad->io_context, &arq->io_context);
1107 } else {
1108 if (ad->io_context) {
1109 put_io_context(ad->io_context);
1110 ad->io_context = NULL;
1111 }
1112
1113 if (ad->current_write_count != 0)
1114 ad->current_write_count--;
1115 }
1116 ad->ioc_finished = 0;
1117
1118 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1119
1120 /*
1121 * take it off the sort and fifo list, add to dispatch queue
1122 */
1123 while (!list_empty(&rq->queuelist)) {
1124 struct request *__rq = list_entry_rq(rq->queuelist.next);
1125 struct as_rq *__arq = RQ_DATA(__rq);
1126
1127 list_del(&__rq->queuelist);
1128
1129 elv_dispatch_add_tail(ad->q, __rq);
1130
1131 if (__arq->io_context && __arq->io_context->aic)
1132 atomic_inc(&__arq->io_context->aic->nr_dispatched);
1133
1134 WARN_ON(__arq->state != AS_RQ_QUEUED);
1135 __arq->state = AS_RQ_DISPATCHED;
1136
1137 ad->nr_dispatched++;
1138 }
1139
1140 as_remove_queued_request(ad->q, rq);
1141 WARN_ON(arq->state != AS_RQ_QUEUED);
1142
1143 elv_dispatch_sort(ad->q, rq);
1144
1145 arq->state = AS_RQ_DISPATCHED;
1146 if (arq->io_context && arq->io_context->aic)
1147 atomic_inc(&arq->io_context->aic->nr_dispatched);
1148 ad->nr_dispatched++;
1149 }
1150
1151 /*
1152 * as_dispatch_request selects the best request according to
1153 * read/write expire, batch expire, etc, and moves it to the dispatch
1154 * queue. Returns 1 if a request was found, 0 otherwise.
1155 */
1156 static int as_dispatch_request(request_queue_t *q, int force)
1157 {
1158 struct as_data *ad = q->elevator->elevator_data;
1159 struct as_rq *arq;
1160 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1161 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1162
1163 if (unlikely(force)) {
1164 /*
1165 * Forced dispatch, accounting is useless. Reset
1166 * accounting states and dump fifo_lists. Note that
1167 * batch_data_dir is reset to REQ_SYNC to avoid
1168 * screwing write batch accounting as write batch
1169 * accounting occurs on W->R transition.
1170 */
1171 int dispatched = 0;
1172
1173 ad->batch_data_dir = REQ_SYNC;
1174 ad->changed_batch = 0;
1175 ad->new_batch = 0;
1176
1177 while (ad->next_arq[REQ_SYNC]) {
1178 as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
1179 dispatched++;
1180 }
1181 ad->last_check_fifo[REQ_SYNC] = jiffies;
1182
1183 while (ad->next_arq[REQ_ASYNC]) {
1184 as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
1185 dispatched++;
1186 }
1187 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1188
1189 return dispatched;
1190 }
1191
1192 /* Signal that the write batch was uncontended, so we can't time it */
1193 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1194 if (ad->current_write_count == 0 || !writes)
1195 ad->write_batch_idled = 1;
1196 }
1197
1198 if (!(reads || writes)
1199 || ad->antic_status == ANTIC_WAIT_REQ
1200 || ad->antic_status == ANTIC_WAIT_NEXT
1201 || ad->changed_batch)
1202 return 0;
1203
1204 if (!(reads && writes && as_batch_expired(ad)) ) {
1205 /*
1206 * batch is still running or no reads or no writes
1207 */
1208 arq = ad->next_arq[ad->batch_data_dir];
1209
1210 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1211 if (as_fifo_expired(ad, REQ_SYNC))
1212 goto fifo_expired;
1213
1214 if (as_can_anticipate(ad, arq)) {
1215 as_antic_waitreq(ad);
1216 return 0;
1217 }
1218 }
1219
1220 if (arq) {
1221 /* we have a "next request" */
1222 if (reads && !writes)
1223 ad->current_batch_expires =
1224 jiffies + ad->batch_expire[REQ_SYNC];
1225 goto dispatch_request;
1226 }
1227 }
1228
1229 /*
1230 * at this point we are not running a batch. select the appropriate
1231 * data direction (read / write)
1232 */
1233
1234 if (reads) {
1235 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC]));
1236
1237 if (writes && ad->batch_data_dir == REQ_SYNC)
1238 /*
1239 * Last batch was a read, switch to writes
1240 */
1241 goto dispatch_writes;
1242
1243 if (ad->batch_data_dir == REQ_ASYNC) {
1244 WARN_ON(ad->new_batch);
1245 ad->changed_batch = 1;
1246 }
1247 ad->batch_data_dir = REQ_SYNC;
1248 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1249 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1250 goto dispatch_request;
1251 }
1252
1253 /*
1254 * the last batch was a read
1255 */
1256
1257 if (writes) {
1258 dispatch_writes:
1259 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC]));
1260
1261 if (ad->batch_data_dir == REQ_SYNC) {
1262 ad->changed_batch = 1;
1263
1264 /*
1265 * new_batch might be 1 when the queue runs out of
1266 * reads. A subsequent submission of a write might
1267 * cause a change of batch before the read is finished.
1268 */
1269 ad->new_batch = 0;
1270 }
1271 ad->batch_data_dir = REQ_ASYNC;
1272 ad->current_write_count = ad->write_batch_count;
1273 ad->write_batch_idled = 0;
1274 arq = ad->next_arq[ad->batch_data_dir];
1275 goto dispatch_request;
1276 }
1277
1278 BUG();
1279 return 0;
1280
1281 dispatch_request:
1282 /*
1283 * If a request has expired, service it.
1284 */
1285
1286 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1287 fifo_expired:
1288 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1289 BUG_ON(arq == NULL);
1290 }
1291
1292 if (ad->changed_batch) {
1293 WARN_ON(ad->new_batch);
1294
1295 if (ad->nr_dispatched)
1296 return 0;
1297
1298 if (ad->batch_data_dir == REQ_ASYNC)
1299 ad->current_batch_expires = jiffies +
1300 ad->batch_expire[REQ_ASYNC];
1301 else
1302 ad->new_batch = 1;
1303
1304 ad->changed_batch = 0;
1305 }
1306
1307 /*
1308 * arq is the selected appropriate request.
1309 */
1310 as_move_to_dispatch(ad, arq);
1311
1312 return 1;
1313 }
1314
1315 /*
1316 * Add arq to a list behind alias
1317 */
1318 static inline void
1319 as_add_aliased_request(struct as_data *ad, struct as_rq *arq, struct as_rq *alias)
1320 {
1321 struct request *req = arq->request;
1322 struct list_head *insert = alias->request->queuelist.prev;
1323
1324 /*
1325 * Transfer list of aliases
1326 */
1327 while (!list_empty(&req->queuelist)) {
1328 struct request *__rq = list_entry_rq(req->queuelist.next);
1329 struct as_rq *__arq = RQ_DATA(__rq);
1330
1331 list_move_tail(&__rq->queuelist, &alias->request->queuelist);
1332
1333 WARN_ON(__arq->state != AS_RQ_QUEUED);
1334 }
1335
1336 /*
1337 * Another request with the same start sector on the rbtree.
1338 * Link this request to that sector. They are untangled in
1339 * as_move_to_dispatch
1340 */
1341 list_add(&arq->request->queuelist, insert);
1342
1343 /*
1344 * Don't want to have to handle merges.
1345 */
1346 as_del_arq_hash(arq);
1347 }
1348
1349 /*
1350 * add arq to rbtree and fifo
1351 */
1352 static void as_add_request(request_queue_t *q, struct request *rq)
1353 {
1354 struct as_data *ad = q->elevator->elevator_data;
1355 struct as_rq *arq = RQ_DATA(rq);
1356 struct as_rq *alias;
1357 int data_dir;
1358
1359 if (arq->state != AS_RQ_PRESCHED) {
1360 printk("arq->state: %d\n", arq->state);
1361 WARN_ON(1);
1362 }
1363 arq->state = AS_RQ_NEW;
1364
1365 if (rq_data_dir(arq->request) == READ
1366 || current->flags&PF_SYNCWRITE)
1367 arq->is_sync = 1;
1368 else
1369 arq->is_sync = 0;
1370 data_dir = arq->is_sync;
1371
1372 arq->io_context = as_get_io_context();
1373
1374 if (arq->io_context) {
1375 as_update_iohist(ad, arq->io_context->aic, arq->request);
1376 atomic_inc(&arq->io_context->aic->nr_queued);
1377 }
1378
1379 alias = as_add_arq_rb(ad, arq);
1380 if (!alias) {
1381 /*
1382 * set expire time (only used for reads) and add to fifo list
1383 */
1384 arq->expires = jiffies + ad->fifo_expire[data_dir];
1385 list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
1386
1387 if (rq_mergeable(arq->request))
1388 as_add_arq_hash(ad, arq);
1389 as_update_arq(ad, arq); /* keep state machine up to date */
1390
1391 } else {
1392 as_add_aliased_request(ad, arq, alias);
1393
1394 /*
1395 * have we been anticipating this request?
1396 * or does it come from the same process as the one we are
1397 * anticipating for?
1398 */
1399 if (ad->antic_status == ANTIC_WAIT_REQ
1400 || ad->antic_status == ANTIC_WAIT_NEXT) {
1401 if (as_can_break_anticipation(ad, arq))
1402 as_antic_stop(ad);
1403 }
1404 }
1405
1406 arq->state = AS_RQ_QUEUED;
1407 }
1408
1409 static void as_activate_request(request_queue_t *q, struct request *rq)
1410 {
1411 struct as_rq *arq = RQ_DATA(rq);
1412
1413 WARN_ON(arq->state != AS_RQ_DISPATCHED);
1414 arq->state = AS_RQ_REMOVED;
1415 if (arq->io_context && arq->io_context->aic)
1416 atomic_dec(&arq->io_context->aic->nr_dispatched);
1417 }
1418
1419 static void as_deactivate_request(request_queue_t *q, struct request *rq)
1420 {
1421 struct as_rq *arq = RQ_DATA(rq);
1422
1423 WARN_ON(arq->state != AS_RQ_REMOVED);
1424 arq->state = AS_RQ_DISPATCHED;
1425 if (arq->io_context && arq->io_context->aic)
1426 atomic_inc(&arq->io_context->aic->nr_dispatched);
1427 }
1428
1429 /*
1430 * as_queue_empty tells us if there are requests left in the device. It may
1431 * not be the case that a driver can get the next request even if the queue
1432 * is not empty - it is used in the block layer to check for plugging and
1433 * merging opportunities
1434 */
1435 static int as_queue_empty(request_queue_t *q)
1436 {
1437 struct as_data *ad = q->elevator->elevator_data;
1438
1439 return list_empty(&ad->fifo_list[REQ_ASYNC])
1440 && list_empty(&ad->fifo_list[REQ_SYNC]);
1441 }
1442
1443 static struct request *
1444 as_former_request(request_queue_t *q, struct request *rq)
1445 {
1446 struct as_rq *arq = RQ_DATA(rq);
1447 struct rb_node *rbprev = rb_prev(&arq->rb_node);
1448 struct request *ret = NULL;
1449
1450 if (rbprev)
1451 ret = rb_entry_arq(rbprev)->request;
1452
1453 return ret;
1454 }
1455
1456 static struct request *
1457 as_latter_request(request_queue_t *q, struct request *rq)
1458 {
1459 struct as_rq *arq = RQ_DATA(rq);
1460 struct rb_node *rbnext = rb_next(&arq->rb_node);
1461 struct request *ret = NULL;
1462
1463 if (rbnext)
1464 ret = rb_entry_arq(rbnext)->request;
1465
1466 return ret;
1467 }
1468
1469 static int
1470 as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1471 {
1472 struct as_data *ad = q->elevator->elevator_data;
1473 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1474 struct request *__rq;
1475 int ret;
1476
1477 /*
1478 * see if the merge hash can satisfy a back merge
1479 */
1480 __rq = as_find_arq_hash(ad, bio->bi_sector);
1481 if (__rq) {
1482 BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
1483
1484 if (elv_rq_merge_ok(__rq, bio)) {
1485 ret = ELEVATOR_BACK_MERGE;
1486 goto out;
1487 }
1488 }
1489
1490 /*
1491 * check for front merge
1492 */
1493 __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
1494 if (__rq) {
1495 BUG_ON(rb_key != rq_rb_key(__rq));
1496
1497 if (elv_rq_merge_ok(__rq, bio)) {
1498 ret = ELEVATOR_FRONT_MERGE;
1499 goto out;
1500 }
1501 }
1502
1503 return ELEVATOR_NO_MERGE;
1504 out:
1505 if (ret) {
1506 if (rq_mergeable(__rq))
1507 as_hot_arq_hash(ad, RQ_DATA(__rq));
1508 }
1509 *req = __rq;
1510 return ret;
1511 }
1512
1513 static void as_merged_request(request_queue_t *q, struct request *req)
1514 {
1515 struct as_data *ad = q->elevator->elevator_data;
1516 struct as_rq *arq = RQ_DATA(req);
1517
1518 /*
1519 * hash always needs to be repositioned, key is end sector
1520 */
1521 as_del_arq_hash(arq);
1522 as_add_arq_hash(ad, arq);
1523
1524 /*
1525 * if the merge was a front merge, we need to reposition request
1526 */
1527 if (rq_rb_key(req) != arq->rb_key) {
1528 struct as_rq *alias, *next_arq = NULL;
1529
1530 if (ad->next_arq[arq->is_sync] == arq)
1531 next_arq = as_find_next_arq(ad, arq);
1532
1533 /*
1534 * Note! We should really be moving any old aliased requests
1535 * off this request and try to insert them into the rbtree. We
1536 * currently don't bother. Ditto the next function.
1537 */
1538 as_del_arq_rb(ad, arq);
1539 if ((alias = as_add_arq_rb(ad, arq)) ) {
1540 list_del_init(&arq->fifo);
1541 as_add_aliased_request(ad, arq, alias);
1542 if (next_arq)
1543 ad->next_arq[arq->is_sync] = next_arq;
1544 }
1545 /*
1546 * Note! At this stage of this and the next function, our next
1547 * request may not be optimal - eg the request may have "grown"
1548 * behind the disk head. We currently don't bother adjusting.
1549 */
1550 }
1551 }
1552
1553 static void
1554 as_merged_requests(request_queue_t *q, struct request *req,
1555 struct request *next)
1556 {
1557 struct as_data *ad = q->elevator->elevator_data;
1558 struct as_rq *arq = RQ_DATA(req);
1559 struct as_rq *anext = RQ_DATA(next);
1560
1561 BUG_ON(!arq);
1562 BUG_ON(!anext);
1563
1564 /*
1565 * reposition arq (this is the merged request) in hash, and in rbtree
1566 * in case of a front merge
1567 */
1568 as_del_arq_hash(arq);
1569 as_add_arq_hash(ad, arq);
1570
1571 if (rq_rb_key(req) != arq->rb_key) {
1572 struct as_rq *alias, *next_arq = NULL;
1573
1574 if (ad->next_arq[arq->is_sync] == arq)
1575 next_arq = as_find_next_arq(ad, arq);
1576
1577 as_del_arq_rb(ad, arq);
1578 if ((alias = as_add_arq_rb(ad, arq)) ) {
1579 list_del_init(&arq->fifo);
1580 as_add_aliased_request(ad, arq, alias);
1581 if (next_arq)
1582 ad->next_arq[arq->is_sync] = next_arq;
1583 }
1584 }
1585
1586 /*
1587 * if anext expires before arq, assign its expire time to arq
1588 * and move into anext position (anext will be deleted) in fifo
1589 */
1590 if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
1591 if (time_before(anext->expires, arq->expires)) {
1592 list_move(&arq->fifo, &anext->fifo);
1593 arq->expires = anext->expires;
1594 /*
1595 * Don't copy here but swap, because when anext is
1596 * removed below, it must contain the unused context
1597 */
1598 swap_io_context(&arq->io_context, &anext->io_context);
1599 }
1600 }
1601
1602 /*
1603 * Transfer list of aliases
1604 */
1605 while (!list_empty(&next->queuelist)) {
1606 struct request *__rq = list_entry_rq(next->queuelist.next);
1607 struct as_rq *__arq = RQ_DATA(__rq);
1608
1609 list_move_tail(&__rq->queuelist, &req->queuelist);
1610
1611 WARN_ON(__arq->state != AS_RQ_QUEUED);
1612 }
1613
1614 /*
1615 * kill knowledge of next, this one is a goner
1616 */
1617 as_remove_queued_request(q, next);
1618 as_put_io_context(anext);
1619
1620 anext->state = AS_RQ_MERGED;
1621 }
1622
1623 /*
1624 * This is executed in a "deferred" process context, by kblockd. It calls the
1625 * driver's request_fn so the driver can submit that request.
1626 *
1627 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1628 * state before calling, and don't rely on any state over calls.
1629 *
1630 * FIXME! dispatch queue is not a queue at all!
1631 */
1632 static void as_work_handler(void *data)
1633 {
1634 struct request_queue *q = data;
1635 unsigned long flags;
1636
1637 spin_lock_irqsave(q->queue_lock, flags);
1638 if (!as_queue_empty(q))
1639 q->request_fn(q);
1640 spin_unlock_irqrestore(q->queue_lock, flags);
1641 }
1642
1643 static void as_put_request(request_queue_t *q, struct request *rq)
1644 {
1645 struct as_data *ad = q->elevator->elevator_data;
1646 struct as_rq *arq = RQ_DATA(rq);
1647
1648 if (!arq) {
1649 WARN_ON(1);
1650 return;
1651 }
1652
1653 if (unlikely(arq->state != AS_RQ_POSTSCHED &&
1654 arq->state != AS_RQ_PRESCHED &&
1655 arq->state != AS_RQ_MERGED)) {
1656 printk("arq->state %d\n", arq->state);
1657 WARN_ON(1);
1658 }
1659
1660 mempool_free(arq, ad->arq_pool);
1661 rq->elevator_private = NULL;
1662 }
1663
1664 static int as_set_request(request_queue_t *q, struct request *rq,
1665 struct bio *bio, gfp_t gfp_mask)
1666 {
1667 struct as_data *ad = q->elevator->elevator_data;
1668 struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);
1669
1670 if (arq) {
1671 memset(arq, 0, sizeof(*arq));
1672 RB_CLEAR(&arq->rb_node);
1673 arq->request = rq;
1674 arq->state = AS_RQ_PRESCHED;
1675 arq->io_context = NULL;
1676 INIT_LIST_HEAD(&arq->hash);
1677 arq->on_hash = 0;
1678 INIT_LIST_HEAD(&arq->fifo);
1679 rq->elevator_private = arq;
1680 return 0;
1681 }
1682
1683 return 1;
1684 }
1685
1686 static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
1687 {
1688 int ret = ELV_MQUEUE_MAY;
1689 struct as_data *ad = q->elevator->elevator_data;
1690 struct io_context *ioc;
1691 if (ad->antic_status == ANTIC_WAIT_REQ ||
1692 ad->antic_status == ANTIC_WAIT_NEXT) {
1693 ioc = as_get_io_context();
1694 if (ad->io_context == ioc)
1695 ret = ELV_MQUEUE_MUST;
1696 put_io_context(ioc);
1697 }
1698
1699 return ret;
1700 }
1701
1702 static void as_exit_queue(elevator_t *e)
1703 {
1704 struct as_data *ad = e->elevator_data;
1705
1706 del_timer_sync(&ad->antic_timer);
1707 kblockd_flush();
1708
1709 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1710 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1711
1712 mempool_destroy(ad->arq_pool);
1713 put_io_context(ad->io_context);
1714 kfree(ad->hash);
1715 kfree(ad);
1716 }
1717
1718 /*
1719 * initialize elevator private data (as_data), and alloc a arq for
1720 * each request on the free lists
1721 */
1722 static int as_init_queue(request_queue_t *q, elevator_t *e)
1723 {
1724 struct as_data *ad;
1725 int i;
1726
1727 if (!arq_pool)
1728 return -ENOMEM;
1729
1730 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1731 if (!ad)
1732 return -ENOMEM;
1733 memset(ad, 0, sizeof(*ad));
1734
1735 ad->q = q; /* Identify what queue the data belongs to */
1736
1737 ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES,
1738 GFP_KERNEL, q->node);
1739 if (!ad->hash) {
1740 kfree(ad);
1741 return -ENOMEM;
1742 }
1743
1744 ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1745 mempool_free_slab, arq_pool, q->node);
1746 if (!ad->arq_pool) {
1747 kfree(ad->hash);
1748 kfree(ad);
1749 return -ENOMEM;
1750 }
1751
1752 /* anticipatory scheduling helpers */
1753 ad->antic_timer.function = as_antic_timeout;
1754 ad->antic_timer.data = (unsigned long)q;
1755 init_timer(&ad->antic_timer);
1756 INIT_WORK(&ad->antic_work, as_work_handler, q);
1757
1758 for (i = 0; i < AS_HASH_ENTRIES; i++)
1759 INIT_LIST_HEAD(&ad->hash[i]);
1760
1761 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1762 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1763 ad->sort_list[REQ_SYNC] = RB_ROOT;
1764 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1765 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1766 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1767 ad->antic_expire = default_antic_expire;
1768 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1769 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1770 e->elevator_data = ad;
1771
1772 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1773 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1774 if (ad->write_batch_count < 2)
1775 ad->write_batch_count = 2;
1776
1777 return 0;
1778 }
1779
1780 /*
1781 * sysfs parts below
1782 */
1783 struct as_fs_entry {
1784 struct attribute attr;
1785 ssize_t (*show)(struct as_data *, char *);
1786 ssize_t (*store)(struct as_data *, const char *, size_t);
1787 };
1788
1789 static ssize_t
1790 as_var_show(unsigned int var, char *page)
1791 {
1792 return sprintf(page, "%d\n", var);
1793 }
1794
1795 static ssize_t
1796 as_var_store(unsigned long *var, const char *page, size_t count)
1797 {
1798 char *p = (char *) page;
1799
1800 *var = simple_strtoul(p, &p, 10);
1801 return count;
1802 }
1803
1804 static ssize_t as_est_show(struct as_data *ad, char *page)
1805 {
1806 int pos = 0;
1807
1808 pos += sprintf(page+pos, "%lu %% exit probability\n", 100*ad->exit_prob/256);
1809 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1810 pos += sprintf(page+pos, "%llu sectors new seek distance\n", (unsigned long long)ad->new_seek_mean);
1811
1812 return pos;
1813 }
1814
1815 #define SHOW_FUNCTION(__FUNC, __VAR) \
1816 static ssize_t __FUNC(struct as_data *ad, char *page) \
1817 { \
1818 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1819 }
1820 SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[REQ_SYNC]);
1821 SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[REQ_ASYNC]);
1822 SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire);
1823 SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[REQ_SYNC]);
1824 SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[REQ_ASYNC]);
1825 #undef SHOW_FUNCTION
1826
1827 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1828 static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \
1829 { \
1830 int ret = as_var_store(__PTR, (page), count); \
1831 if (*(__PTR) < (MIN)) \
1832 *(__PTR) = (MIN); \
1833 else if (*(__PTR) > (MAX)) \
1834 *(__PTR) = (MAX); \
1835 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1836 return ret; \
1837 }
1838 STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1839 STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1840 STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX);
1841 STORE_FUNCTION(as_read_batchexpire_store,
1842 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1843 STORE_FUNCTION(as_write_batchexpire_store,
1844 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1845 #undef STORE_FUNCTION
1846
1847 static struct as_fs_entry as_est_entry = {
1848 .attr = {.name = "est_time", .mode = S_IRUGO },
1849 .show = as_est_show,
1850 };
1851 static struct as_fs_entry as_readexpire_entry = {
1852 .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR },
1853 .show = as_readexpire_show,
1854 .store = as_readexpire_store,
1855 };
1856 static struct as_fs_entry as_writeexpire_entry = {
1857 .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR },
1858 .show = as_writeexpire_show,
1859 .store = as_writeexpire_store,
1860 };
1861 static struct as_fs_entry as_anticexpire_entry = {
1862 .attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR },
1863 .show = as_anticexpire_show,
1864 .store = as_anticexpire_store,
1865 };
1866 static struct as_fs_entry as_read_batchexpire_entry = {
1867 .attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR },
1868 .show = as_read_batchexpire_show,
1869 .store = as_read_batchexpire_store,
1870 };
1871 static struct as_fs_entry as_write_batchexpire_entry = {
1872 .attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR },
1873 .show = as_write_batchexpire_show,
1874 .store = as_write_batchexpire_store,
1875 };
1876
1877 static struct attribute *default_attrs[] = {
1878 &as_est_entry.attr,
1879 &as_readexpire_entry.attr,
1880 &as_writeexpire_entry.attr,
1881 &as_anticexpire_entry.attr,
1882 &as_read_batchexpire_entry.attr,
1883 &as_write_batchexpire_entry.attr,
1884 NULL,
1885 };
1886
1887 #define to_as(atr) container_of((atr), struct as_fs_entry, attr)
1888
1889 static ssize_t
1890 as_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1891 {
1892 elevator_t *e = container_of(kobj, elevator_t, kobj);
1893 struct as_fs_entry *entry = to_as(attr);
1894
1895 if (!entry->show)
1896 return -EIO;
1897
1898 return entry->show(e->elevator_data, page);
1899 }
1900
1901 static ssize_t
1902 as_attr_store(struct kobject *kobj, struct attribute *attr,
1903 const char *page, size_t length)
1904 {
1905 elevator_t *e = container_of(kobj, elevator_t, kobj);
1906 struct as_fs_entry *entry = to_as(attr);
1907
1908 if (!entry->store)
1909 return -EIO;
1910
1911 return entry->store(e->elevator_data, page, length);
1912 }
1913
1914 static struct sysfs_ops as_sysfs_ops = {
1915 .show = as_attr_show,
1916 .store = as_attr_store,
1917 };
1918
1919 static struct kobj_type as_ktype = {
1920 .sysfs_ops = &as_sysfs_ops,
1921 .default_attrs = default_attrs,
1922 };
1923
1924 static struct elevator_type iosched_as = {
1925 .ops = {
1926 .elevator_merge_fn = as_merge,
1927 .elevator_merged_fn = as_merged_request,
1928 .elevator_merge_req_fn = as_merged_requests,
1929 .elevator_dispatch_fn = as_dispatch_request,
1930 .elevator_add_req_fn = as_add_request,
1931 .elevator_activate_req_fn = as_activate_request,
1932 .elevator_deactivate_req_fn = as_deactivate_request,
1933 .elevator_queue_empty_fn = as_queue_empty,
1934 .elevator_completed_req_fn = as_completed_request,
1935 .elevator_former_req_fn = as_former_request,
1936 .elevator_latter_req_fn = as_latter_request,
1937 .elevator_set_req_fn = as_set_request,
1938 .elevator_put_req_fn = as_put_request,
1939 .elevator_may_queue_fn = as_may_queue,
1940 .elevator_init_fn = as_init_queue,
1941 .elevator_exit_fn = as_exit_queue,
1942 },
1943
1944 .elevator_ktype = &as_ktype,
1945 .elevator_name = "anticipatory",
1946 .elevator_owner = THIS_MODULE,
1947 };
1948
1949 static int __init as_init(void)
1950 {
1951 int ret;
1952
1953 arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
1954 0, 0, NULL, NULL);
1955 if (!arq_pool)
1956 return -ENOMEM;
1957
1958 ret = elv_register(&iosched_as);
1959 if (!ret) {
1960 /*
1961 * don't allow AS to get unregistered, since we would have
1962 * to browse all tasks in the system and release their
1963 * as_io_context first
1964 */
1965 __module_get(THIS_MODULE);
1966 return 0;
1967 }
1968
1969 kmem_cache_destroy(arq_pool);
1970 return ret;
1971 }
1972
1973 static void __exit as_exit(void)
1974 {
1975 kmem_cache_destroy(arq_pool);
1976 elv_unregister(&iosched_as);
1977 }
1978
1979 module_init(as_init);
1980 module_exit(as_exit);
1981
1982 MODULE_AUTHOR("Nick Piggin");
1983 MODULE_LICENSE("GPL");
1984 MODULE_DESCRIPTION("anticipatory IO scheduler");