]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/brd.c
block: Introduce BLK_MQ_REQ_PREEMPT
[mirror_ubuntu-bionic-kernel.git] / drivers / block / brd.c
1 /*
2 * Ram backed block device driver.
3 *
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
6 *
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
10
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/major.h>
16 #include <linux/blkdev.h>
17 #include <linux/bio.h>
18 #include <linux/highmem.h>
19 #include <linux/mutex.h>
20 #include <linux/radix-tree.h>
21 #include <linux/fs.h>
22 #include <linux/slab.h>
23 #ifdef CONFIG_BLK_DEV_RAM_DAX
24 #include <linux/pfn_t.h>
25 #include <linux/dax.h>
26 #include <linux/uio.h>
27 #endif
28
29 #include <linux/uaccess.h>
30
31 #define SECTOR_SHIFT 9
32 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
33 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
34
35 /*
36 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
37 * the pages containing the block device's contents. A brd page's ->index is
38 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
39 * with, the kernel's pagecache or buffer cache (which sit above our block
40 * device).
41 */
42 struct brd_device {
43 int brd_number;
44
45 struct request_queue *brd_queue;
46 struct gendisk *brd_disk;
47 #ifdef CONFIG_BLK_DEV_RAM_DAX
48 struct dax_device *dax_dev;
49 #endif
50 struct list_head brd_list;
51
52 /*
53 * Backing store of pages and lock to protect it. This is the contents
54 * of the block device.
55 */
56 spinlock_t brd_lock;
57 struct radix_tree_root brd_pages;
58 };
59
60 /*
61 * Look up and return a brd's page for a given sector.
62 */
63 static DEFINE_MUTEX(brd_mutex);
64 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
65 {
66 pgoff_t idx;
67 struct page *page;
68
69 /*
70 * The page lifetime is protected by the fact that we have opened the
71 * device node -- brd pages will never be deleted under us, so we
72 * don't need any further locking or refcounting.
73 *
74 * This is strictly true for the radix-tree nodes as well (ie. we
75 * don't actually need the rcu_read_lock()), however that is not a
76 * documented feature of the radix-tree API so it is better to be
77 * safe here (we don't have total exclusion from radix tree updates
78 * here, only deletes).
79 */
80 rcu_read_lock();
81 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
82 page = radix_tree_lookup(&brd->brd_pages, idx);
83 rcu_read_unlock();
84
85 BUG_ON(page && page->index != idx);
86
87 return page;
88 }
89
90 /*
91 * Look up and return a brd's page for a given sector.
92 * If one does not exist, allocate an empty page, and insert that. Then
93 * return it.
94 */
95 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
96 {
97 pgoff_t idx;
98 struct page *page;
99 gfp_t gfp_flags;
100
101 page = brd_lookup_page(brd, sector);
102 if (page)
103 return page;
104
105 /*
106 * Must use NOIO because we don't want to recurse back into the
107 * block or filesystem layers from page reclaim.
108 *
109 * Cannot support DAX and highmem, because our ->direct_access
110 * routine for DAX must return memory that is always addressable.
111 * If DAX was reworked to use pfns and kmap throughout, this
112 * restriction might be able to be lifted.
113 */
114 gfp_flags = GFP_NOIO | __GFP_ZERO;
115 #ifndef CONFIG_BLK_DEV_RAM_DAX
116 gfp_flags |= __GFP_HIGHMEM;
117 #endif
118 page = alloc_page(gfp_flags);
119 if (!page)
120 return NULL;
121
122 if (radix_tree_preload(GFP_NOIO)) {
123 __free_page(page);
124 return NULL;
125 }
126
127 spin_lock(&brd->brd_lock);
128 idx = sector >> PAGE_SECTORS_SHIFT;
129 page->index = idx;
130 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
131 __free_page(page);
132 page = radix_tree_lookup(&brd->brd_pages, idx);
133 BUG_ON(!page);
134 BUG_ON(page->index != idx);
135 }
136 spin_unlock(&brd->brd_lock);
137
138 radix_tree_preload_end();
139
140 return page;
141 }
142
143 /*
144 * Free all backing store pages and radix tree. This must only be called when
145 * there are no other users of the device.
146 */
147 #define FREE_BATCH 16
148 static void brd_free_pages(struct brd_device *brd)
149 {
150 unsigned long pos = 0;
151 struct page *pages[FREE_BATCH];
152 int nr_pages;
153
154 do {
155 int i;
156
157 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
158 (void **)pages, pos, FREE_BATCH);
159
160 for (i = 0; i < nr_pages; i++) {
161 void *ret;
162
163 BUG_ON(pages[i]->index < pos);
164 pos = pages[i]->index;
165 ret = radix_tree_delete(&brd->brd_pages, pos);
166 BUG_ON(!ret || ret != pages[i]);
167 __free_page(pages[i]);
168 }
169
170 pos++;
171
172 /*
173 * This assumes radix_tree_gang_lookup always returns as
174 * many pages as possible. If the radix-tree code changes,
175 * so will this have to.
176 */
177 } while (nr_pages == FREE_BATCH);
178 }
179
180 /*
181 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
182 */
183 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
184 {
185 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
186 size_t copy;
187
188 copy = min_t(size_t, n, PAGE_SIZE - offset);
189 if (!brd_insert_page(brd, sector))
190 return -ENOSPC;
191 if (copy < n) {
192 sector += copy >> SECTOR_SHIFT;
193 if (!brd_insert_page(brd, sector))
194 return -ENOSPC;
195 }
196 return 0;
197 }
198
199 /*
200 * Copy n bytes from src to the brd starting at sector. Does not sleep.
201 */
202 static void copy_to_brd(struct brd_device *brd, const void *src,
203 sector_t sector, size_t n)
204 {
205 struct page *page;
206 void *dst;
207 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
208 size_t copy;
209
210 copy = min_t(size_t, n, PAGE_SIZE - offset);
211 page = brd_lookup_page(brd, sector);
212 BUG_ON(!page);
213
214 dst = kmap_atomic(page);
215 memcpy(dst + offset, src, copy);
216 kunmap_atomic(dst);
217
218 if (copy < n) {
219 src += copy;
220 sector += copy >> SECTOR_SHIFT;
221 copy = n - copy;
222 page = brd_lookup_page(brd, sector);
223 BUG_ON(!page);
224
225 dst = kmap_atomic(page);
226 memcpy(dst, src, copy);
227 kunmap_atomic(dst);
228 }
229 }
230
231 /*
232 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
233 */
234 static void copy_from_brd(void *dst, struct brd_device *brd,
235 sector_t sector, size_t n)
236 {
237 struct page *page;
238 void *src;
239 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
240 size_t copy;
241
242 copy = min_t(size_t, n, PAGE_SIZE - offset);
243 page = brd_lookup_page(brd, sector);
244 if (page) {
245 src = kmap_atomic(page);
246 memcpy(dst, src + offset, copy);
247 kunmap_atomic(src);
248 } else
249 memset(dst, 0, copy);
250
251 if (copy < n) {
252 dst += copy;
253 sector += copy >> SECTOR_SHIFT;
254 copy = n - copy;
255 page = brd_lookup_page(brd, sector);
256 if (page) {
257 src = kmap_atomic(page);
258 memcpy(dst, src, copy);
259 kunmap_atomic(src);
260 } else
261 memset(dst, 0, copy);
262 }
263 }
264
265 /*
266 * Process a single bvec of a bio.
267 */
268 static int brd_do_bvec(struct brd_device *brd, struct page *page,
269 unsigned int len, unsigned int off, bool is_write,
270 sector_t sector)
271 {
272 void *mem;
273 int err = 0;
274
275 if (is_write) {
276 err = copy_to_brd_setup(brd, sector, len);
277 if (err)
278 goto out;
279 }
280
281 mem = kmap_atomic(page);
282 if (!is_write) {
283 copy_from_brd(mem + off, brd, sector, len);
284 flush_dcache_page(page);
285 } else {
286 flush_dcache_page(page);
287 copy_to_brd(brd, mem + off, sector, len);
288 }
289 kunmap_atomic(mem);
290
291 out:
292 return err;
293 }
294
295 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
296 {
297 struct brd_device *brd = bio->bi_disk->private_data;
298 struct bio_vec bvec;
299 sector_t sector;
300 struct bvec_iter iter;
301
302 sector = bio->bi_iter.bi_sector;
303 if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
304 goto io_error;
305
306 bio_for_each_segment(bvec, bio, iter) {
307 unsigned int len = bvec.bv_len;
308 int err;
309
310 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
311 op_is_write(bio_op(bio)), sector);
312 if (err)
313 goto io_error;
314 sector += len >> SECTOR_SHIFT;
315 }
316
317 bio_endio(bio);
318 return BLK_QC_T_NONE;
319 io_error:
320 bio_io_error(bio);
321 return BLK_QC_T_NONE;
322 }
323
324 static int brd_rw_page(struct block_device *bdev, sector_t sector,
325 struct page *page, bool is_write)
326 {
327 struct brd_device *brd = bdev->bd_disk->private_data;
328 int err;
329
330 if (PageTransHuge(page))
331 return -ENOTSUPP;
332 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
333 page_endio(page, is_write, err);
334 return err;
335 }
336
337 #ifdef CONFIG_BLK_DEV_RAM_DAX
338 static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
339 long nr_pages, void **kaddr, pfn_t *pfn)
340 {
341 struct page *page;
342
343 if (!brd)
344 return -ENODEV;
345 page = brd_insert_page(brd, (sector_t)pgoff << PAGE_SECTORS_SHIFT);
346 if (!page)
347 return -ENOSPC;
348 *kaddr = page_address(page);
349 *pfn = page_to_pfn_t(page);
350
351 return 1;
352 }
353
354 static long brd_dax_direct_access(struct dax_device *dax_dev,
355 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
356 {
357 struct brd_device *brd = dax_get_private(dax_dev);
358
359 return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
360 }
361
362 static size_t brd_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
363 void *addr, size_t bytes, struct iov_iter *i)
364 {
365 return copy_from_iter(addr, bytes, i);
366 }
367
368 static const struct dax_operations brd_dax_ops = {
369 .direct_access = brd_dax_direct_access,
370 .copy_from_iter = brd_dax_copy_from_iter,
371 };
372 #endif
373
374 static const struct block_device_operations brd_fops = {
375 .owner = THIS_MODULE,
376 .rw_page = brd_rw_page,
377 };
378
379 /*
380 * And now the modules code and kernel interface.
381 */
382 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
383 module_param(rd_nr, int, S_IRUGO);
384 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
385
386 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
387 module_param(rd_size, ulong, S_IRUGO);
388 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
389
390 static int max_part = 1;
391 module_param(max_part, int, S_IRUGO);
392 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
393
394 MODULE_LICENSE("GPL");
395 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
396 MODULE_ALIAS("rd");
397
398 #ifndef MODULE
399 /* Legacy boot options - nonmodular */
400 static int __init ramdisk_size(char *str)
401 {
402 rd_size = simple_strtol(str, NULL, 0);
403 return 1;
404 }
405 __setup("ramdisk_size=", ramdisk_size);
406 #endif
407
408 /*
409 * The device scheme is derived from loop.c. Keep them in synch where possible
410 * (should share code eventually).
411 */
412 static LIST_HEAD(brd_devices);
413 static DEFINE_MUTEX(brd_devices_mutex);
414
415 static struct brd_device *brd_alloc(int i)
416 {
417 struct brd_device *brd;
418 struct gendisk *disk;
419
420 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
421 if (!brd)
422 goto out;
423 brd->brd_number = i;
424 spin_lock_init(&brd->brd_lock);
425 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
426
427 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
428 if (!brd->brd_queue)
429 goto out_free_dev;
430
431 blk_queue_make_request(brd->brd_queue, brd_make_request);
432 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
433
434 /* This is so fdisk will align partitions on 4k, because of
435 * direct_access API needing 4k alignment, returning a PFN
436 * (This is only a problem on very small devices <= 4M,
437 * otherwise fdisk will align on 1M. Regardless this call
438 * is harmless)
439 */
440 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
441 disk = brd->brd_disk = alloc_disk(max_part);
442 if (!disk)
443 goto out_free_queue;
444 disk->major = RAMDISK_MAJOR;
445 disk->first_minor = i * max_part;
446 disk->fops = &brd_fops;
447 disk->private_data = brd;
448 disk->queue = brd->brd_queue;
449 disk->flags = GENHD_FL_EXT_DEVT;
450 sprintf(disk->disk_name, "ram%d", i);
451 set_capacity(disk, rd_size * 2);
452
453 #ifdef CONFIG_BLK_DEV_RAM_DAX
454 queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
455 brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
456 if (!brd->dax_dev)
457 goto out_free_inode;
458 #endif
459
460
461 return brd;
462
463 #ifdef CONFIG_BLK_DEV_RAM_DAX
464 out_free_inode:
465 kill_dax(brd->dax_dev);
466 put_dax(brd->dax_dev);
467 #endif
468 out_free_queue:
469 blk_cleanup_queue(brd->brd_queue);
470 out_free_dev:
471 kfree(brd);
472 out:
473 return NULL;
474 }
475
476 static void brd_free(struct brd_device *brd)
477 {
478 put_disk(brd->brd_disk);
479 blk_cleanup_queue(brd->brd_queue);
480 brd_free_pages(brd);
481 kfree(brd);
482 }
483
484 static struct brd_device *brd_init_one(int i, bool *new)
485 {
486 struct brd_device *brd;
487
488 *new = false;
489 list_for_each_entry(brd, &brd_devices, brd_list) {
490 if (brd->brd_number == i)
491 goto out;
492 }
493
494 brd = brd_alloc(i);
495 if (brd) {
496 add_disk(brd->brd_disk);
497 list_add_tail(&brd->brd_list, &brd_devices);
498 }
499 *new = true;
500 out:
501 return brd;
502 }
503
504 static void brd_del_one(struct brd_device *brd)
505 {
506 list_del(&brd->brd_list);
507 #ifdef CONFIG_BLK_DEV_RAM_DAX
508 kill_dax(brd->dax_dev);
509 put_dax(brd->dax_dev);
510 #endif
511 del_gendisk(brd->brd_disk);
512 brd_free(brd);
513 }
514
515 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
516 {
517 struct brd_device *brd;
518 struct kobject *kobj;
519 bool new;
520
521 mutex_lock(&brd_devices_mutex);
522 brd = brd_init_one(MINOR(dev) / max_part, &new);
523 kobj = brd ? get_disk(brd->brd_disk) : NULL;
524 mutex_unlock(&brd_devices_mutex);
525
526 if (new)
527 *part = 0;
528
529 return kobj;
530 }
531
532 static int __init brd_init(void)
533 {
534 struct brd_device *brd, *next;
535 int i;
536
537 /*
538 * brd module now has a feature to instantiate underlying device
539 * structure on-demand, provided that there is an access dev node.
540 *
541 * (1) if rd_nr is specified, create that many upfront. else
542 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
543 * (2) User can further extend brd devices by create dev node themselves
544 * and have kernel automatically instantiate actual device
545 * on-demand. Example:
546 * mknod /path/devnod_name b 1 X # 1 is the rd major
547 * fdisk -l /path/devnod_name
548 * If (X / max_part) was not already created it will be created
549 * dynamically.
550 */
551
552 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
553 return -EIO;
554
555 if (unlikely(!max_part))
556 max_part = 1;
557
558 for (i = 0; i < rd_nr; i++) {
559 brd = brd_alloc(i);
560 if (!brd)
561 goto out_free;
562 list_add_tail(&brd->brd_list, &brd_devices);
563 }
564
565 /* point of no return */
566
567 list_for_each_entry(brd, &brd_devices, brd_list)
568 add_disk(brd->brd_disk);
569
570 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
571 THIS_MODULE, brd_probe, NULL, NULL);
572
573 pr_info("brd: module loaded\n");
574 return 0;
575
576 out_free:
577 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
578 list_del(&brd->brd_list);
579 brd_free(brd);
580 }
581 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
582
583 pr_info("brd: module NOT loaded !!!\n");
584 return -ENOMEM;
585 }
586
587 static void __exit brd_exit(void)
588 {
589 struct brd_device *brd, *next;
590
591 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
592 brd_del_one(brd);
593
594 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
595 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
596
597 pr_info("brd: module unloaded\n");
598 }
599
600 module_init(brd_init);
601 module_exit(brd_exit);
602