]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/brd.c
Merge tag 'libnvdimm-for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[mirror_ubuntu-artful-kernel.git] / drivers / block / brd.c
1 /*
2 * Ram backed block device driver.
3 *
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
6 *
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #ifdef CONFIG_BLK_DEV_RAM_DAX
23 #include <linux/pfn_t.h>
24 #include <linux/dax.h>
25 #endif
26
27 #include <linux/uaccess.h>
28
29 #define SECTOR_SHIFT 9
30 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
31 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
32
33 /*
34 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
35 * the pages containing the block device's contents. A brd page's ->index is
36 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
37 * with, the kernel's pagecache or buffer cache (which sit above our block
38 * device).
39 */
40 struct brd_device {
41 int brd_number;
42
43 struct request_queue *brd_queue;
44 struct gendisk *brd_disk;
45 #ifdef CONFIG_BLK_DEV_RAM_DAX
46 struct dax_device *dax_dev;
47 #endif
48 struct list_head brd_list;
49
50 /*
51 * Backing store of pages and lock to protect it. This is the contents
52 * of the block device.
53 */
54 spinlock_t brd_lock;
55 struct radix_tree_root brd_pages;
56 };
57
58 /*
59 * Look up and return a brd's page for a given sector.
60 */
61 static DEFINE_MUTEX(brd_mutex);
62 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
63 {
64 pgoff_t idx;
65 struct page *page;
66
67 /*
68 * The page lifetime is protected by the fact that we have opened the
69 * device node -- brd pages will never be deleted under us, so we
70 * don't need any further locking or refcounting.
71 *
72 * This is strictly true for the radix-tree nodes as well (ie. we
73 * don't actually need the rcu_read_lock()), however that is not a
74 * documented feature of the radix-tree API so it is better to be
75 * safe here (we don't have total exclusion from radix tree updates
76 * here, only deletes).
77 */
78 rcu_read_lock();
79 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
80 page = radix_tree_lookup(&brd->brd_pages, idx);
81 rcu_read_unlock();
82
83 BUG_ON(page && page->index != idx);
84
85 return page;
86 }
87
88 /*
89 * Look up and return a brd's page for a given sector.
90 * If one does not exist, allocate an empty page, and insert that. Then
91 * return it.
92 */
93 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
94 {
95 pgoff_t idx;
96 struct page *page;
97 gfp_t gfp_flags;
98
99 page = brd_lookup_page(brd, sector);
100 if (page)
101 return page;
102
103 /*
104 * Must use NOIO because we don't want to recurse back into the
105 * block or filesystem layers from page reclaim.
106 *
107 * Cannot support DAX and highmem, because our ->direct_access
108 * routine for DAX must return memory that is always addressable.
109 * If DAX was reworked to use pfns and kmap throughout, this
110 * restriction might be able to be lifted.
111 */
112 gfp_flags = GFP_NOIO | __GFP_ZERO;
113 #ifndef CONFIG_BLK_DEV_RAM_DAX
114 gfp_flags |= __GFP_HIGHMEM;
115 #endif
116 page = alloc_page(gfp_flags);
117 if (!page)
118 return NULL;
119
120 if (radix_tree_preload(GFP_NOIO)) {
121 __free_page(page);
122 return NULL;
123 }
124
125 spin_lock(&brd->brd_lock);
126 idx = sector >> PAGE_SECTORS_SHIFT;
127 page->index = idx;
128 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
129 __free_page(page);
130 page = radix_tree_lookup(&brd->brd_pages, idx);
131 BUG_ON(!page);
132 BUG_ON(page->index != idx);
133 }
134 spin_unlock(&brd->brd_lock);
135
136 radix_tree_preload_end();
137
138 return page;
139 }
140
141 /*
142 * Free all backing store pages and radix tree. This must only be called when
143 * there are no other users of the device.
144 */
145 #define FREE_BATCH 16
146 static void brd_free_pages(struct brd_device *brd)
147 {
148 unsigned long pos = 0;
149 struct page *pages[FREE_BATCH];
150 int nr_pages;
151
152 do {
153 int i;
154
155 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
156 (void **)pages, pos, FREE_BATCH);
157
158 for (i = 0; i < nr_pages; i++) {
159 void *ret;
160
161 BUG_ON(pages[i]->index < pos);
162 pos = pages[i]->index;
163 ret = radix_tree_delete(&brd->brd_pages, pos);
164 BUG_ON(!ret || ret != pages[i]);
165 __free_page(pages[i]);
166 }
167
168 pos++;
169
170 /*
171 * This assumes radix_tree_gang_lookup always returns as
172 * many pages as possible. If the radix-tree code changes,
173 * so will this have to.
174 */
175 } while (nr_pages == FREE_BATCH);
176 }
177
178 /*
179 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
180 */
181 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
182 {
183 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
184 size_t copy;
185
186 copy = min_t(size_t, n, PAGE_SIZE - offset);
187 if (!brd_insert_page(brd, sector))
188 return -ENOSPC;
189 if (copy < n) {
190 sector += copy >> SECTOR_SHIFT;
191 if (!brd_insert_page(brd, sector))
192 return -ENOSPC;
193 }
194 return 0;
195 }
196
197 /*
198 * Copy n bytes from src to the brd starting at sector. Does not sleep.
199 */
200 static void copy_to_brd(struct brd_device *brd, const void *src,
201 sector_t sector, size_t n)
202 {
203 struct page *page;
204 void *dst;
205 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
206 size_t copy;
207
208 copy = min_t(size_t, n, PAGE_SIZE - offset);
209 page = brd_lookup_page(brd, sector);
210 BUG_ON(!page);
211
212 dst = kmap_atomic(page);
213 memcpy(dst + offset, src, copy);
214 kunmap_atomic(dst);
215
216 if (copy < n) {
217 src += copy;
218 sector += copy >> SECTOR_SHIFT;
219 copy = n - copy;
220 page = brd_lookup_page(brd, sector);
221 BUG_ON(!page);
222
223 dst = kmap_atomic(page);
224 memcpy(dst, src, copy);
225 kunmap_atomic(dst);
226 }
227 }
228
229 /*
230 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
231 */
232 static void copy_from_brd(void *dst, struct brd_device *brd,
233 sector_t sector, size_t n)
234 {
235 struct page *page;
236 void *src;
237 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
238 size_t copy;
239
240 copy = min_t(size_t, n, PAGE_SIZE - offset);
241 page = brd_lookup_page(brd, sector);
242 if (page) {
243 src = kmap_atomic(page);
244 memcpy(dst, src + offset, copy);
245 kunmap_atomic(src);
246 } else
247 memset(dst, 0, copy);
248
249 if (copy < n) {
250 dst += copy;
251 sector += copy >> SECTOR_SHIFT;
252 copy = n - copy;
253 page = brd_lookup_page(brd, sector);
254 if (page) {
255 src = kmap_atomic(page);
256 memcpy(dst, src, copy);
257 kunmap_atomic(src);
258 } else
259 memset(dst, 0, copy);
260 }
261 }
262
263 /*
264 * Process a single bvec of a bio.
265 */
266 static int brd_do_bvec(struct brd_device *brd, struct page *page,
267 unsigned int len, unsigned int off, bool is_write,
268 sector_t sector)
269 {
270 void *mem;
271 int err = 0;
272
273 if (is_write) {
274 err = copy_to_brd_setup(brd, sector, len);
275 if (err)
276 goto out;
277 }
278
279 mem = kmap_atomic(page);
280 if (!is_write) {
281 copy_from_brd(mem + off, brd, sector, len);
282 flush_dcache_page(page);
283 } else {
284 flush_dcache_page(page);
285 copy_to_brd(brd, mem + off, sector, len);
286 }
287 kunmap_atomic(mem);
288
289 out:
290 return err;
291 }
292
293 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
294 {
295 struct block_device *bdev = bio->bi_bdev;
296 struct brd_device *brd = bdev->bd_disk->private_data;
297 struct bio_vec bvec;
298 sector_t sector;
299 struct bvec_iter iter;
300
301 sector = bio->bi_iter.bi_sector;
302 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
303 goto io_error;
304
305 bio_for_each_segment(bvec, bio, iter) {
306 unsigned int len = bvec.bv_len;
307 int err;
308
309 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
310 op_is_write(bio_op(bio)), sector);
311 if (err)
312 goto io_error;
313 sector += len >> SECTOR_SHIFT;
314 }
315
316 bio_endio(bio);
317 return BLK_QC_T_NONE;
318 io_error:
319 bio_io_error(bio);
320 return BLK_QC_T_NONE;
321 }
322
323 static int brd_rw_page(struct block_device *bdev, sector_t sector,
324 struct page *page, bool is_write)
325 {
326 struct brd_device *brd = bdev->bd_disk->private_data;
327 int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
328 page_endio(page, is_write, err);
329 return err;
330 }
331
332 #ifdef CONFIG_BLK_DEV_RAM_DAX
333 static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
334 long nr_pages, void **kaddr, pfn_t *pfn)
335 {
336 struct page *page;
337
338 if (!brd)
339 return -ENODEV;
340 page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512);
341 if (!page)
342 return -ENOSPC;
343 *kaddr = page_address(page);
344 *pfn = page_to_pfn_t(page);
345
346 return 1;
347 }
348
349 static long brd_dax_direct_access(struct dax_device *dax_dev,
350 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
351 {
352 struct brd_device *brd = dax_get_private(dax_dev);
353
354 return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
355 }
356
357 static const struct dax_operations brd_dax_ops = {
358 .direct_access = brd_dax_direct_access,
359 };
360 #endif
361
362 static const struct block_device_operations brd_fops = {
363 .owner = THIS_MODULE,
364 .rw_page = brd_rw_page,
365 };
366
367 /*
368 * And now the modules code and kernel interface.
369 */
370 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
371 module_param(rd_nr, int, S_IRUGO);
372 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
373
374 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
375 module_param(rd_size, ulong, S_IRUGO);
376 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
377
378 static int max_part = 1;
379 module_param(max_part, int, S_IRUGO);
380 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
381
382 MODULE_LICENSE("GPL");
383 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
384 MODULE_ALIAS("rd");
385
386 #ifndef MODULE
387 /* Legacy boot options - nonmodular */
388 static int __init ramdisk_size(char *str)
389 {
390 rd_size = simple_strtol(str, NULL, 0);
391 return 1;
392 }
393 __setup("ramdisk_size=", ramdisk_size);
394 #endif
395
396 /*
397 * The device scheme is derived from loop.c. Keep them in synch where possible
398 * (should share code eventually).
399 */
400 static LIST_HEAD(brd_devices);
401 static DEFINE_MUTEX(brd_devices_mutex);
402
403 static struct brd_device *brd_alloc(int i)
404 {
405 struct brd_device *brd;
406 struct gendisk *disk;
407
408 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
409 if (!brd)
410 goto out;
411 brd->brd_number = i;
412 spin_lock_init(&brd->brd_lock);
413 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
414
415 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
416 if (!brd->brd_queue)
417 goto out_free_dev;
418
419 blk_queue_make_request(brd->brd_queue, brd_make_request);
420 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
421 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
422
423 /* This is so fdisk will align partitions on 4k, because of
424 * direct_access API needing 4k alignment, returning a PFN
425 * (This is only a problem on very small devices <= 4M,
426 * otherwise fdisk will align on 1M. Regardless this call
427 * is harmless)
428 */
429 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
430 disk = brd->brd_disk = alloc_disk(max_part);
431 if (!disk)
432 goto out_free_queue;
433 disk->major = RAMDISK_MAJOR;
434 disk->first_minor = i * max_part;
435 disk->fops = &brd_fops;
436 disk->private_data = brd;
437 disk->queue = brd->brd_queue;
438 disk->flags = GENHD_FL_EXT_DEVT;
439 sprintf(disk->disk_name, "ram%d", i);
440 set_capacity(disk, rd_size * 2);
441
442 #ifdef CONFIG_BLK_DEV_RAM_DAX
443 queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
444 brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
445 if (!brd->dax_dev)
446 goto out_free_inode;
447 #endif
448
449
450 return brd;
451
452 #ifdef CONFIG_BLK_DEV_RAM_DAX
453 out_free_inode:
454 kill_dax(brd->dax_dev);
455 put_dax(brd->dax_dev);
456 #endif
457 out_free_queue:
458 blk_cleanup_queue(brd->brd_queue);
459 out_free_dev:
460 kfree(brd);
461 out:
462 return NULL;
463 }
464
465 static void brd_free(struct brd_device *brd)
466 {
467 put_disk(brd->brd_disk);
468 blk_cleanup_queue(brd->brd_queue);
469 brd_free_pages(brd);
470 kfree(brd);
471 }
472
473 static struct brd_device *brd_init_one(int i, bool *new)
474 {
475 struct brd_device *brd;
476
477 *new = false;
478 list_for_each_entry(brd, &brd_devices, brd_list) {
479 if (brd->brd_number == i)
480 goto out;
481 }
482
483 brd = brd_alloc(i);
484 if (brd) {
485 add_disk(brd->brd_disk);
486 list_add_tail(&brd->brd_list, &brd_devices);
487 }
488 *new = true;
489 out:
490 return brd;
491 }
492
493 static void brd_del_one(struct brd_device *brd)
494 {
495 list_del(&brd->brd_list);
496 #ifdef CONFIG_BLK_DEV_RAM_DAX
497 kill_dax(brd->dax_dev);
498 put_dax(brd->dax_dev);
499 #endif
500 del_gendisk(brd->brd_disk);
501 brd_free(brd);
502 }
503
504 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
505 {
506 struct brd_device *brd;
507 struct kobject *kobj;
508 bool new;
509
510 mutex_lock(&brd_devices_mutex);
511 brd = brd_init_one(MINOR(dev) / max_part, &new);
512 kobj = brd ? get_disk(brd->brd_disk) : NULL;
513 mutex_unlock(&brd_devices_mutex);
514
515 if (new)
516 *part = 0;
517
518 return kobj;
519 }
520
521 static int __init brd_init(void)
522 {
523 struct brd_device *brd, *next;
524 int i;
525
526 /*
527 * brd module now has a feature to instantiate underlying device
528 * structure on-demand, provided that there is an access dev node.
529 *
530 * (1) if rd_nr is specified, create that many upfront. else
531 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
532 * (2) User can further extend brd devices by create dev node themselves
533 * and have kernel automatically instantiate actual device
534 * on-demand. Example:
535 * mknod /path/devnod_name b 1 X # 1 is the rd major
536 * fdisk -l /path/devnod_name
537 * If (X / max_part) was not already created it will be created
538 * dynamically.
539 */
540
541 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
542 return -EIO;
543
544 if (unlikely(!max_part))
545 max_part = 1;
546
547 for (i = 0; i < rd_nr; i++) {
548 brd = brd_alloc(i);
549 if (!brd)
550 goto out_free;
551 list_add_tail(&brd->brd_list, &brd_devices);
552 }
553
554 /* point of no return */
555
556 list_for_each_entry(brd, &brd_devices, brd_list)
557 add_disk(brd->brd_disk);
558
559 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
560 THIS_MODULE, brd_probe, NULL, NULL);
561
562 pr_info("brd: module loaded\n");
563 return 0;
564
565 out_free:
566 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
567 list_del(&brd->brd_list);
568 brd_free(brd);
569 }
570 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
571
572 pr_info("brd: module NOT loaded !!!\n");
573 return -ENOMEM;
574 }
575
576 static void __exit brd_exit(void)
577 {
578 struct brd_device *brd, *next;
579
580 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
581 brd_del_one(brd);
582
583 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
584 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
585
586 pr_info("brd: module unloaded\n");
587 }
588
589 module_init(brd_init);
590 module_exit(brd_exit);
591