]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/brd.c
Merge remote-tracking branches 'asoc/topic/cx20442' and 'asoc/topic/davinci' into...
[mirror_ubuntu-zesty-kernel.git] / drivers / block / brd.c
1 /*
2 * Ram backed block device driver.
3 *
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
6 *
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22
23 #include <asm/uaccess.h>
24
25 #define SECTOR_SHIFT 9
26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
28
29 /*
30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31 * the pages containing the block device's contents. A brd page's ->index is
32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33 * with, the kernel's pagecache or buffer cache (which sit above our block
34 * device).
35 */
36 struct brd_device {
37 int brd_number;
38
39 struct request_queue *brd_queue;
40 struct gendisk *brd_disk;
41 struct list_head brd_list;
42
43 /*
44 * Backing store of pages and lock to protect it. This is the contents
45 * of the block device.
46 */
47 spinlock_t brd_lock;
48 struct radix_tree_root brd_pages;
49 };
50
51 /*
52 * Look up and return a brd's page for a given sector.
53 */
54 static DEFINE_MUTEX(brd_mutex);
55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
56 {
57 pgoff_t idx;
58 struct page *page;
59
60 /*
61 * The page lifetime is protected by the fact that we have opened the
62 * device node -- brd pages will never be deleted under us, so we
63 * don't need any further locking or refcounting.
64 *
65 * This is strictly true for the radix-tree nodes as well (ie. we
66 * don't actually need the rcu_read_lock()), however that is not a
67 * documented feature of the radix-tree API so it is better to be
68 * safe here (we don't have total exclusion from radix tree updates
69 * here, only deletes).
70 */
71 rcu_read_lock();
72 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 page = radix_tree_lookup(&brd->brd_pages, idx);
74 rcu_read_unlock();
75
76 BUG_ON(page && page->index != idx);
77
78 return page;
79 }
80
81 /*
82 * Look up and return a brd's page for a given sector.
83 * If one does not exist, allocate an empty page, and insert that. Then
84 * return it.
85 */
86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
87 {
88 pgoff_t idx;
89 struct page *page;
90 gfp_t gfp_flags;
91
92 page = brd_lookup_page(brd, sector);
93 if (page)
94 return page;
95
96 /*
97 * Must use NOIO because we don't want to recurse back into the
98 * block or filesystem layers from page reclaim.
99 *
100 * Cannot support DAX and highmem, because our ->direct_access
101 * routine for DAX must return memory that is always addressable.
102 * If DAX was reworked to use pfns and kmap throughout, this
103 * restriction might be able to be lifted.
104 */
105 gfp_flags = GFP_NOIO | __GFP_ZERO;
106 #ifndef CONFIG_BLK_DEV_RAM_DAX
107 gfp_flags |= __GFP_HIGHMEM;
108 #endif
109 page = alloc_page(gfp_flags);
110 if (!page)
111 return NULL;
112
113 if (radix_tree_preload(GFP_NOIO)) {
114 __free_page(page);
115 return NULL;
116 }
117
118 spin_lock(&brd->brd_lock);
119 idx = sector >> PAGE_SECTORS_SHIFT;
120 page->index = idx;
121 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
122 __free_page(page);
123 page = radix_tree_lookup(&brd->brd_pages, idx);
124 BUG_ON(!page);
125 BUG_ON(page->index != idx);
126 }
127 spin_unlock(&brd->brd_lock);
128
129 radix_tree_preload_end();
130
131 return page;
132 }
133
134 static void brd_free_page(struct brd_device *brd, sector_t sector)
135 {
136 struct page *page;
137 pgoff_t idx;
138
139 spin_lock(&brd->brd_lock);
140 idx = sector >> PAGE_SECTORS_SHIFT;
141 page = radix_tree_delete(&brd->brd_pages, idx);
142 spin_unlock(&brd->brd_lock);
143 if (page)
144 __free_page(page);
145 }
146
147 static void brd_zero_page(struct brd_device *brd, sector_t sector)
148 {
149 struct page *page;
150
151 page = brd_lookup_page(brd, sector);
152 if (page)
153 clear_highpage(page);
154 }
155
156 /*
157 * Free all backing store pages and radix tree. This must only be called when
158 * there are no other users of the device.
159 */
160 #define FREE_BATCH 16
161 static void brd_free_pages(struct brd_device *brd)
162 {
163 unsigned long pos = 0;
164 struct page *pages[FREE_BATCH];
165 int nr_pages;
166
167 do {
168 int i;
169
170 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
171 (void **)pages, pos, FREE_BATCH);
172
173 for (i = 0; i < nr_pages; i++) {
174 void *ret;
175
176 BUG_ON(pages[i]->index < pos);
177 pos = pages[i]->index;
178 ret = radix_tree_delete(&brd->brd_pages, pos);
179 BUG_ON(!ret || ret != pages[i]);
180 __free_page(pages[i]);
181 }
182
183 pos++;
184
185 /*
186 * This assumes radix_tree_gang_lookup always returns as
187 * many pages as possible. If the radix-tree code changes,
188 * so will this have to.
189 */
190 } while (nr_pages == FREE_BATCH);
191 }
192
193 /*
194 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
195 */
196 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
197 {
198 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
199 size_t copy;
200
201 copy = min_t(size_t, n, PAGE_SIZE - offset);
202 if (!brd_insert_page(brd, sector))
203 return -ENOSPC;
204 if (copy < n) {
205 sector += copy >> SECTOR_SHIFT;
206 if (!brd_insert_page(brd, sector))
207 return -ENOSPC;
208 }
209 return 0;
210 }
211
212 static void discard_from_brd(struct brd_device *brd,
213 sector_t sector, size_t n)
214 {
215 while (n >= PAGE_SIZE) {
216 /*
217 * Don't want to actually discard pages here because
218 * re-allocating the pages can result in writeback
219 * deadlocks under heavy load.
220 */
221 if (0)
222 brd_free_page(brd, sector);
223 else
224 brd_zero_page(brd, sector);
225 sector += PAGE_SIZE >> SECTOR_SHIFT;
226 n -= PAGE_SIZE;
227 }
228 }
229
230 /*
231 * Copy n bytes from src to the brd starting at sector. Does not sleep.
232 */
233 static void copy_to_brd(struct brd_device *brd, const void *src,
234 sector_t sector, size_t n)
235 {
236 struct page *page;
237 void *dst;
238 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239 size_t copy;
240
241 copy = min_t(size_t, n, PAGE_SIZE - offset);
242 page = brd_lookup_page(brd, sector);
243 BUG_ON(!page);
244
245 dst = kmap_atomic(page);
246 memcpy(dst + offset, src, copy);
247 kunmap_atomic(dst);
248
249 if (copy < n) {
250 src += copy;
251 sector += copy >> SECTOR_SHIFT;
252 copy = n - copy;
253 page = brd_lookup_page(brd, sector);
254 BUG_ON(!page);
255
256 dst = kmap_atomic(page);
257 memcpy(dst, src, copy);
258 kunmap_atomic(dst);
259 }
260 }
261
262 /*
263 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
264 */
265 static void copy_from_brd(void *dst, struct brd_device *brd,
266 sector_t sector, size_t n)
267 {
268 struct page *page;
269 void *src;
270 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
271 size_t copy;
272
273 copy = min_t(size_t, n, PAGE_SIZE - offset);
274 page = brd_lookup_page(brd, sector);
275 if (page) {
276 src = kmap_atomic(page);
277 memcpy(dst, src + offset, copy);
278 kunmap_atomic(src);
279 } else
280 memset(dst, 0, copy);
281
282 if (copy < n) {
283 dst += copy;
284 sector += copy >> SECTOR_SHIFT;
285 copy = n - copy;
286 page = brd_lookup_page(brd, sector);
287 if (page) {
288 src = kmap_atomic(page);
289 memcpy(dst, src, copy);
290 kunmap_atomic(src);
291 } else
292 memset(dst, 0, copy);
293 }
294 }
295
296 /*
297 * Process a single bvec of a bio.
298 */
299 static int brd_do_bvec(struct brd_device *brd, struct page *page,
300 unsigned int len, unsigned int off, int rw,
301 sector_t sector)
302 {
303 void *mem;
304 int err = 0;
305
306 if (rw != READ) {
307 err = copy_to_brd_setup(brd, sector, len);
308 if (err)
309 goto out;
310 }
311
312 mem = kmap_atomic(page);
313 if (rw == READ) {
314 copy_from_brd(mem + off, brd, sector, len);
315 flush_dcache_page(page);
316 } else {
317 flush_dcache_page(page);
318 copy_to_brd(brd, mem + off, sector, len);
319 }
320 kunmap_atomic(mem);
321
322 out:
323 return err;
324 }
325
326 static void brd_make_request(struct request_queue *q, struct bio *bio)
327 {
328 struct block_device *bdev = bio->bi_bdev;
329 struct brd_device *brd = bdev->bd_disk->private_data;
330 int rw;
331 struct bio_vec bvec;
332 sector_t sector;
333 struct bvec_iter iter;
334 int err = -EIO;
335
336 sector = bio->bi_iter.bi_sector;
337 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
338 goto out;
339
340 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
341 err = 0;
342 discard_from_brd(brd, sector, bio->bi_iter.bi_size);
343 goto out;
344 }
345
346 rw = bio_rw(bio);
347 if (rw == READA)
348 rw = READ;
349
350 bio_for_each_segment(bvec, bio, iter) {
351 unsigned int len = bvec.bv_len;
352 err = brd_do_bvec(brd, bvec.bv_page, len,
353 bvec.bv_offset, rw, sector);
354 if (err)
355 break;
356 sector += len >> SECTOR_SHIFT;
357 }
358
359 out:
360 bio_endio(bio, err);
361 }
362
363 static int brd_rw_page(struct block_device *bdev, sector_t sector,
364 struct page *page, int rw)
365 {
366 struct brd_device *brd = bdev->bd_disk->private_data;
367 int err = brd_do_bvec(brd, page, PAGE_CACHE_SIZE, 0, rw, sector);
368 page_endio(page, rw & WRITE, err);
369 return err;
370 }
371
372 #ifdef CONFIG_BLK_DEV_RAM_DAX
373 static long brd_direct_access(struct block_device *bdev, sector_t sector,
374 void **kaddr, unsigned long *pfn, long size)
375 {
376 struct brd_device *brd = bdev->bd_disk->private_data;
377 struct page *page;
378
379 if (!brd)
380 return -ENODEV;
381 page = brd_insert_page(brd, sector);
382 if (!page)
383 return -ENOSPC;
384 *kaddr = page_address(page);
385 *pfn = page_to_pfn(page);
386
387 /*
388 * TODO: If size > PAGE_SIZE, we could look to see if the next page in
389 * the file happens to be mapped to the next page of physical RAM.
390 */
391 return PAGE_SIZE;
392 }
393 #else
394 #define brd_direct_access NULL
395 #endif
396
397 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
398 unsigned int cmd, unsigned long arg)
399 {
400 int error;
401 struct brd_device *brd = bdev->bd_disk->private_data;
402
403 if (cmd != BLKFLSBUF)
404 return -ENOTTY;
405
406 /*
407 * ram device BLKFLSBUF has special semantics, we want to actually
408 * release and destroy the ramdisk data.
409 */
410 mutex_lock(&brd_mutex);
411 mutex_lock(&bdev->bd_mutex);
412 error = -EBUSY;
413 if (bdev->bd_openers <= 1) {
414 /*
415 * Kill the cache first, so it isn't written back to the
416 * device.
417 *
418 * Another thread might instantiate more buffercache here,
419 * but there is not much we can do to close that race.
420 */
421 kill_bdev(bdev);
422 brd_free_pages(brd);
423 error = 0;
424 }
425 mutex_unlock(&bdev->bd_mutex);
426 mutex_unlock(&brd_mutex);
427
428 return error;
429 }
430
431 static const struct block_device_operations brd_fops = {
432 .owner = THIS_MODULE,
433 .rw_page = brd_rw_page,
434 .ioctl = brd_ioctl,
435 .direct_access = brd_direct_access,
436 };
437
438 /*
439 * And now the modules code and kernel interface.
440 */
441 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
442 module_param(rd_nr, int, S_IRUGO);
443 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
444
445 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
446 module_param(rd_size, int, S_IRUGO);
447 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
448
449 static int max_part = 1;
450 module_param(max_part, int, S_IRUGO);
451 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
452
453 MODULE_LICENSE("GPL");
454 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
455 MODULE_ALIAS("rd");
456
457 #ifndef MODULE
458 /* Legacy boot options - nonmodular */
459 static int __init ramdisk_size(char *str)
460 {
461 rd_size = simple_strtol(str, NULL, 0);
462 return 1;
463 }
464 __setup("ramdisk_size=", ramdisk_size);
465 #endif
466
467 /*
468 * The device scheme is derived from loop.c. Keep them in synch where possible
469 * (should share code eventually).
470 */
471 static LIST_HEAD(brd_devices);
472 static DEFINE_MUTEX(brd_devices_mutex);
473
474 static struct brd_device *brd_alloc(int i)
475 {
476 struct brd_device *brd;
477 struct gendisk *disk;
478
479 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
480 if (!brd)
481 goto out;
482 brd->brd_number = i;
483 spin_lock_init(&brd->brd_lock);
484 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
485
486 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
487 if (!brd->brd_queue)
488 goto out_free_dev;
489
490 blk_queue_make_request(brd->brd_queue, brd_make_request);
491 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
492 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
493
494 /* This is so fdisk will align partitions on 4k, because of
495 * direct_access API needing 4k alignment, returning a PFN
496 * (This is only a problem on very small devices <= 4M,
497 * otherwise fdisk will align on 1M. Regardless this call
498 * is harmless)
499 */
500 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
501
502 brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
503 brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
504 brd->brd_queue->limits.discard_zeroes_data = 1;
505 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
506
507 disk = brd->brd_disk = alloc_disk(max_part);
508 if (!disk)
509 goto out_free_queue;
510 disk->major = RAMDISK_MAJOR;
511 disk->first_minor = i * max_part;
512 disk->fops = &brd_fops;
513 disk->private_data = brd;
514 disk->queue = brd->brd_queue;
515 disk->flags = GENHD_FL_EXT_DEVT;
516 sprintf(disk->disk_name, "ram%d", i);
517 set_capacity(disk, rd_size * 2);
518
519 return brd;
520
521 out_free_queue:
522 blk_cleanup_queue(brd->brd_queue);
523 out_free_dev:
524 kfree(brd);
525 out:
526 return NULL;
527 }
528
529 static void brd_free(struct brd_device *brd)
530 {
531 put_disk(brd->brd_disk);
532 blk_cleanup_queue(brd->brd_queue);
533 brd_free_pages(brd);
534 kfree(brd);
535 }
536
537 static struct brd_device *brd_init_one(int i, bool *new)
538 {
539 struct brd_device *brd;
540
541 *new = false;
542 list_for_each_entry(brd, &brd_devices, brd_list) {
543 if (brd->brd_number == i)
544 goto out;
545 }
546
547 brd = brd_alloc(i);
548 if (brd) {
549 add_disk(brd->brd_disk);
550 list_add_tail(&brd->brd_list, &brd_devices);
551 }
552 *new = true;
553 out:
554 return brd;
555 }
556
557 static void brd_del_one(struct brd_device *brd)
558 {
559 list_del(&brd->brd_list);
560 del_gendisk(brd->brd_disk);
561 brd_free(brd);
562 }
563
564 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
565 {
566 struct brd_device *brd;
567 struct kobject *kobj;
568 bool new;
569
570 mutex_lock(&brd_devices_mutex);
571 brd = brd_init_one(MINOR(dev) / max_part, &new);
572 kobj = brd ? get_disk(brd->brd_disk) : NULL;
573 mutex_unlock(&brd_devices_mutex);
574
575 if (new)
576 *part = 0;
577
578 return kobj;
579 }
580
581 static int __init brd_init(void)
582 {
583 struct brd_device *brd, *next;
584 int i;
585
586 /*
587 * brd module now has a feature to instantiate underlying device
588 * structure on-demand, provided that there is an access dev node.
589 *
590 * (1) if rd_nr is specified, create that many upfront. else
591 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
592 * (2) User can further extend brd devices by create dev node themselves
593 * and have kernel automatically instantiate actual device
594 * on-demand. Example:
595 * mknod /path/devnod_name b 1 X # 1 is the rd major
596 * fdisk -l /path/devnod_name
597 * If (X / max_part) was not already created it will be created
598 * dynamically.
599 */
600
601 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
602 return -EIO;
603
604 if (unlikely(!max_part))
605 max_part = 1;
606
607 for (i = 0; i < rd_nr; i++) {
608 brd = brd_alloc(i);
609 if (!brd)
610 goto out_free;
611 list_add_tail(&brd->brd_list, &brd_devices);
612 }
613
614 /* point of no return */
615
616 list_for_each_entry(brd, &brd_devices, brd_list)
617 add_disk(brd->brd_disk);
618
619 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
620 THIS_MODULE, brd_probe, NULL, NULL);
621
622 pr_info("brd: module loaded\n");
623 return 0;
624
625 out_free:
626 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
627 list_del(&brd->brd_list);
628 brd_free(brd);
629 }
630 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
631
632 pr_info("brd: module NOT loaded !!!\n");
633 return -ENOMEM;
634 }
635
636 static void __exit brd_exit(void)
637 {
638 struct brd_device *brd, *next;
639
640 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
641 brd_del_one(brd);
642
643 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
644 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
645
646 pr_info("brd: module unloaded\n");
647 }
648
649 module_init(brd_init);
650 module_exit(brd_exit);
651