]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/cciss.c
block: Rename blk_queue_max_sectors to blk_queue_max_hw_sectors
[mirror_ubuntu-artful-kernel.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
70
71 static int cciss_allow_hpsa;
72 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
73 MODULE_PARM_DESC(cciss_allow_hpsa,
74 "Prevent cciss driver from accessing hardware known to be "
75 " supported by the hpsa driver");
76
77 #include "cciss_cmd.h"
78 #include "cciss.h"
79 #include <linux/cciss_ioctl.h>
80
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id[] = {
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
110 {0,}
111 };
112
113 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
114
115 /* board_id = Subsystem Device ID & Vendor ID
116 * product = Marketing Name for the board
117 * access = Address of the struct of function pointers
118 */
119 static struct board_type products[] = {
120 {0x40700E11, "Smart Array 5300", &SA5_access},
121 {0x40800E11, "Smart Array 5i", &SA5B_access},
122 {0x40820E11, "Smart Array 532", &SA5B_access},
123 {0x40830E11, "Smart Array 5312", &SA5B_access},
124 {0x409A0E11, "Smart Array 641", &SA5_access},
125 {0x409B0E11, "Smart Array 642", &SA5_access},
126 {0x409C0E11, "Smart Array 6400", &SA5_access},
127 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
128 {0x40910E11, "Smart Array 6i", &SA5_access},
129 {0x3225103C, "Smart Array P600", &SA5_access},
130 {0x3235103C, "Smart Array P400i", &SA5_access},
131 {0x3211103C, "Smart Array E200i", &SA5_access},
132 {0x3212103C, "Smart Array E200", &SA5_access},
133 {0x3213103C, "Smart Array E200i", &SA5_access},
134 {0x3214103C, "Smart Array E200i", &SA5_access},
135 {0x3215103C, "Smart Array E200i", &SA5_access},
136 {0x3237103C, "Smart Array E500", &SA5_access},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139 {0x3223103C, "Smart Array P800", &SA5_access},
140 {0x3234103C, "Smart Array P400", &SA5_access},
141 {0x323D103C, "Smart Array P700m", &SA5_access},
142 {0x3241103C, "Smart Array P212", &SA5_access},
143 {0x3243103C, "Smart Array P410", &SA5_access},
144 {0x3245103C, "Smart Array P410i", &SA5_access},
145 {0x3247103C, "Smart Array P411", &SA5_access},
146 {0x3249103C, "Smart Array P812", &SA5_access},
147 {0x324A103C, "Smart Array P712m", &SA5_access},
148 {0x324B103C, "Smart Array P711m", &SA5_access},
149 };
150
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
154
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
157
158 #define MAX_CTLR 32
159
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG 8
162
163 static ctlr_info_t *hba[MAX_CTLR];
164
165 static struct task_struct *cciss_scan_thread;
166 static DEFINE_MUTEX(scan_mutex);
167 static LIST_HEAD(scan_q);
168
169 static void do_cciss_request(struct request_queue *q);
170 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
171 static int cciss_open(struct block_device *bdev, fmode_t mode);
172 static int cciss_release(struct gendisk *disk, fmode_t mode);
173 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
174 unsigned int cmd, unsigned long arg);
175 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
176
177 static int cciss_revalidate(struct gendisk *disk);
178 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
179 static int deregister_disk(ctlr_info_t *h, int drv_index,
180 int clear_all, int via_ioctl);
181
182 static void cciss_read_capacity(int ctlr, int logvol,
183 sector_t *total_size, unsigned int *block_size);
184 static void cciss_read_capacity_16(int ctlr, int logvol,
185 sector_t *total_size, unsigned int *block_size);
186 static void cciss_geometry_inquiry(int ctlr, int logvol,
187 sector_t total_size,
188 unsigned int block_size, InquiryData_struct *inq_buff,
189 drive_info_struct *drv);
190 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
191 __u32);
192 static void start_io(ctlr_info_t *h);
193 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
194 __u8 page_code, unsigned char scsi3addr[],
195 int cmd_type);
196 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
197 int attempt_retry);
198 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
199
200 static void fail_all_cmds(unsigned long ctlr);
201 static int add_to_scan_list(struct ctlr_info *h);
202 static int scan_thread(void *data);
203 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
204 static void cciss_hba_release(struct device *dev);
205 static void cciss_device_release(struct device *dev);
206 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
207 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
208
209 #ifdef CONFIG_PROC_FS
210 static void cciss_procinit(int i);
211 #else
212 static void cciss_procinit(int i)
213 {
214 }
215 #endif /* CONFIG_PROC_FS */
216
217 #ifdef CONFIG_COMPAT
218 static int cciss_compat_ioctl(struct block_device *, fmode_t,
219 unsigned, unsigned long);
220 #endif
221
222 static const struct block_device_operations cciss_fops = {
223 .owner = THIS_MODULE,
224 .open = cciss_open,
225 .release = cciss_release,
226 .locked_ioctl = cciss_ioctl,
227 .getgeo = cciss_getgeo,
228 #ifdef CONFIG_COMPAT
229 .compat_ioctl = cciss_compat_ioctl,
230 #endif
231 .revalidate_disk = cciss_revalidate,
232 };
233
234 /*
235 * Enqueuing and dequeuing functions for cmdlists.
236 */
237 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
238 {
239 hlist_add_head(&c->list, list);
240 }
241
242 static inline void removeQ(CommandList_struct *c)
243 {
244 /*
245 * After kexec/dump some commands might still
246 * be in flight, which the firmware will try
247 * to complete. Resetting the firmware doesn't work
248 * with old fw revisions, so we have to mark
249 * them off as 'stale' to prevent the driver from
250 * falling over.
251 */
252 if (WARN_ON(hlist_unhashed(&c->list))) {
253 c->cmd_type = CMD_MSG_STALE;
254 return;
255 }
256
257 hlist_del_init(&c->list);
258 }
259
260 #include "cciss_scsi.c" /* For SCSI tape support */
261
262 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
263 "UNKNOWN"
264 };
265 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
266
267 #ifdef CONFIG_PROC_FS
268
269 /*
270 * Report information about this controller.
271 */
272 #define ENG_GIG 1000000000
273 #define ENG_GIG_FACTOR (ENG_GIG/512)
274 #define ENGAGE_SCSI "engage scsi"
275
276 static struct proc_dir_entry *proc_cciss;
277
278 static void cciss_seq_show_header(struct seq_file *seq)
279 {
280 ctlr_info_t *h = seq->private;
281
282 seq_printf(seq, "%s: HP %s Controller\n"
283 "Board ID: 0x%08lx\n"
284 "Firmware Version: %c%c%c%c\n"
285 "IRQ: %d\n"
286 "Logical drives: %d\n"
287 "Current Q depth: %d\n"
288 "Current # commands on controller: %d\n"
289 "Max Q depth since init: %d\n"
290 "Max # commands on controller since init: %d\n"
291 "Max SG entries since init: %d\n",
292 h->devname,
293 h->product_name,
294 (unsigned long)h->board_id,
295 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
296 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
297 h->num_luns,
298 h->Qdepth, h->commands_outstanding,
299 h->maxQsinceinit, h->max_outstanding, h->maxSG);
300
301 #ifdef CONFIG_CISS_SCSI_TAPE
302 cciss_seq_tape_report(seq, h->ctlr);
303 #endif /* CONFIG_CISS_SCSI_TAPE */
304 }
305
306 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
307 {
308 ctlr_info_t *h = seq->private;
309 unsigned ctlr = h->ctlr;
310 unsigned long flags;
311
312 /* prevent displaying bogus info during configuration
313 * or deconfiguration of a logical volume
314 */
315 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
316 if (h->busy_configuring) {
317 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
318 return ERR_PTR(-EBUSY);
319 }
320 h->busy_configuring = 1;
321 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
322
323 if (*pos == 0)
324 cciss_seq_show_header(seq);
325
326 return pos;
327 }
328
329 static int cciss_seq_show(struct seq_file *seq, void *v)
330 {
331 sector_t vol_sz, vol_sz_frac;
332 ctlr_info_t *h = seq->private;
333 unsigned ctlr = h->ctlr;
334 loff_t *pos = v;
335 drive_info_struct *drv = h->drv[*pos];
336
337 if (*pos > h->highest_lun)
338 return 0;
339
340 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
341 return 0;
342
343 if (drv->heads == 0)
344 return 0;
345
346 vol_sz = drv->nr_blocks;
347 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
348 vol_sz_frac *= 100;
349 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
350
351 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
352 drv->raid_level = RAID_UNKNOWN;
353 seq_printf(seq, "cciss/c%dd%d:"
354 "\t%4u.%02uGB\tRAID %s\n",
355 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
356 raid_label[drv->raid_level]);
357 return 0;
358 }
359
360 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
361 {
362 ctlr_info_t *h = seq->private;
363
364 if (*pos > h->highest_lun)
365 return NULL;
366 *pos += 1;
367
368 return pos;
369 }
370
371 static void cciss_seq_stop(struct seq_file *seq, void *v)
372 {
373 ctlr_info_t *h = seq->private;
374
375 /* Only reset h->busy_configuring if we succeeded in setting
376 * it during cciss_seq_start. */
377 if (v == ERR_PTR(-EBUSY))
378 return;
379
380 h->busy_configuring = 0;
381 }
382
383 static const struct seq_operations cciss_seq_ops = {
384 .start = cciss_seq_start,
385 .show = cciss_seq_show,
386 .next = cciss_seq_next,
387 .stop = cciss_seq_stop,
388 };
389
390 static int cciss_seq_open(struct inode *inode, struct file *file)
391 {
392 int ret = seq_open(file, &cciss_seq_ops);
393 struct seq_file *seq = file->private_data;
394
395 if (!ret)
396 seq->private = PDE(inode)->data;
397
398 return ret;
399 }
400
401 static ssize_t
402 cciss_proc_write(struct file *file, const char __user *buf,
403 size_t length, loff_t *ppos)
404 {
405 int err;
406 char *buffer;
407
408 #ifndef CONFIG_CISS_SCSI_TAPE
409 return -EINVAL;
410 #endif
411
412 if (!buf || length > PAGE_SIZE - 1)
413 return -EINVAL;
414
415 buffer = (char *)__get_free_page(GFP_KERNEL);
416 if (!buffer)
417 return -ENOMEM;
418
419 err = -EFAULT;
420 if (copy_from_user(buffer, buf, length))
421 goto out;
422 buffer[length] = '\0';
423
424 #ifdef CONFIG_CISS_SCSI_TAPE
425 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
426 struct seq_file *seq = file->private_data;
427 ctlr_info_t *h = seq->private;
428
429 err = cciss_engage_scsi(h->ctlr);
430 if (err == 0)
431 err = length;
432 } else
433 #endif /* CONFIG_CISS_SCSI_TAPE */
434 err = -EINVAL;
435 /* might be nice to have "disengage" too, but it's not
436 safely possible. (only 1 module use count, lock issues.) */
437
438 out:
439 free_page((unsigned long)buffer);
440 return err;
441 }
442
443 static const struct file_operations cciss_proc_fops = {
444 .owner = THIS_MODULE,
445 .open = cciss_seq_open,
446 .read = seq_read,
447 .llseek = seq_lseek,
448 .release = seq_release,
449 .write = cciss_proc_write,
450 };
451
452 static void __devinit cciss_procinit(int i)
453 {
454 struct proc_dir_entry *pde;
455
456 if (proc_cciss == NULL)
457 proc_cciss = proc_mkdir("driver/cciss", NULL);
458 if (!proc_cciss)
459 return;
460 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
461 S_IROTH, proc_cciss,
462 &cciss_proc_fops, hba[i]);
463 }
464 #endif /* CONFIG_PROC_FS */
465
466 #define MAX_PRODUCT_NAME_LEN 19
467
468 #define to_hba(n) container_of(n, struct ctlr_info, dev)
469 #define to_drv(n) container_of(n, drive_info_struct, dev)
470
471 static ssize_t host_store_rescan(struct device *dev,
472 struct device_attribute *attr,
473 const char *buf, size_t count)
474 {
475 struct ctlr_info *h = to_hba(dev);
476
477 add_to_scan_list(h);
478 wake_up_process(cciss_scan_thread);
479 wait_for_completion_interruptible(&h->scan_wait);
480
481 return count;
482 }
483 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
484
485 static ssize_t dev_show_unique_id(struct device *dev,
486 struct device_attribute *attr,
487 char *buf)
488 {
489 drive_info_struct *drv = to_drv(dev);
490 struct ctlr_info *h = to_hba(drv->dev.parent);
491 __u8 sn[16];
492 unsigned long flags;
493 int ret = 0;
494
495 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
496 if (h->busy_configuring)
497 ret = -EBUSY;
498 else
499 memcpy(sn, drv->serial_no, sizeof(sn));
500 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
501
502 if (ret)
503 return ret;
504 else
505 return snprintf(buf, 16 * 2 + 2,
506 "%02X%02X%02X%02X%02X%02X%02X%02X"
507 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
508 sn[0], sn[1], sn[2], sn[3],
509 sn[4], sn[5], sn[6], sn[7],
510 sn[8], sn[9], sn[10], sn[11],
511 sn[12], sn[13], sn[14], sn[15]);
512 }
513 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
514
515 static ssize_t dev_show_vendor(struct device *dev,
516 struct device_attribute *attr,
517 char *buf)
518 {
519 drive_info_struct *drv = to_drv(dev);
520 struct ctlr_info *h = to_hba(drv->dev.parent);
521 char vendor[VENDOR_LEN + 1];
522 unsigned long flags;
523 int ret = 0;
524
525 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
526 if (h->busy_configuring)
527 ret = -EBUSY;
528 else
529 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
530 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
531
532 if (ret)
533 return ret;
534 else
535 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
536 }
537 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
538
539 static ssize_t dev_show_model(struct device *dev,
540 struct device_attribute *attr,
541 char *buf)
542 {
543 drive_info_struct *drv = to_drv(dev);
544 struct ctlr_info *h = to_hba(drv->dev.parent);
545 char model[MODEL_LEN + 1];
546 unsigned long flags;
547 int ret = 0;
548
549 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
550 if (h->busy_configuring)
551 ret = -EBUSY;
552 else
553 memcpy(model, drv->model, MODEL_LEN + 1);
554 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
555
556 if (ret)
557 return ret;
558 else
559 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
560 }
561 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
562
563 static ssize_t dev_show_rev(struct device *dev,
564 struct device_attribute *attr,
565 char *buf)
566 {
567 drive_info_struct *drv = to_drv(dev);
568 struct ctlr_info *h = to_hba(drv->dev.parent);
569 char rev[REV_LEN + 1];
570 unsigned long flags;
571 int ret = 0;
572
573 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
574 if (h->busy_configuring)
575 ret = -EBUSY;
576 else
577 memcpy(rev, drv->rev, REV_LEN + 1);
578 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
579
580 if (ret)
581 return ret;
582 else
583 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
584 }
585 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
586
587 static ssize_t cciss_show_lunid(struct device *dev,
588 struct device_attribute *attr, char *buf)
589 {
590 drive_info_struct *drv = to_drv(dev);
591 struct ctlr_info *h = to_hba(drv->dev.parent);
592 unsigned long flags;
593 unsigned char lunid[8];
594
595 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
596 if (h->busy_configuring) {
597 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
598 return -EBUSY;
599 }
600 if (!drv->heads) {
601 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
602 return -ENOTTY;
603 }
604 memcpy(lunid, drv->LunID, sizeof(lunid));
605 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
606 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
607 lunid[0], lunid[1], lunid[2], lunid[3],
608 lunid[4], lunid[5], lunid[6], lunid[7]);
609 }
610 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
611
612 static ssize_t cciss_show_raid_level(struct device *dev,
613 struct device_attribute *attr, char *buf)
614 {
615 drive_info_struct *drv = to_drv(dev);
616 struct ctlr_info *h = to_hba(drv->dev.parent);
617 int raid;
618 unsigned long flags;
619
620 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
621 if (h->busy_configuring) {
622 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
623 return -EBUSY;
624 }
625 raid = drv->raid_level;
626 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
627 if (raid < 0 || raid > RAID_UNKNOWN)
628 raid = RAID_UNKNOWN;
629
630 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
631 raid_label[raid]);
632 }
633 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
634
635 static ssize_t cciss_show_usage_count(struct device *dev,
636 struct device_attribute *attr, char *buf)
637 {
638 drive_info_struct *drv = to_drv(dev);
639 struct ctlr_info *h = to_hba(drv->dev.parent);
640 unsigned long flags;
641 int count;
642
643 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
644 if (h->busy_configuring) {
645 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
646 return -EBUSY;
647 }
648 count = drv->usage_count;
649 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
650 return snprintf(buf, 20, "%d\n", count);
651 }
652 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
653
654 static struct attribute *cciss_host_attrs[] = {
655 &dev_attr_rescan.attr,
656 NULL
657 };
658
659 static struct attribute_group cciss_host_attr_group = {
660 .attrs = cciss_host_attrs,
661 };
662
663 static const struct attribute_group *cciss_host_attr_groups[] = {
664 &cciss_host_attr_group,
665 NULL
666 };
667
668 static struct device_type cciss_host_type = {
669 .name = "cciss_host",
670 .groups = cciss_host_attr_groups,
671 .release = cciss_hba_release,
672 };
673
674 static struct attribute *cciss_dev_attrs[] = {
675 &dev_attr_unique_id.attr,
676 &dev_attr_model.attr,
677 &dev_attr_vendor.attr,
678 &dev_attr_rev.attr,
679 &dev_attr_lunid.attr,
680 &dev_attr_raid_level.attr,
681 &dev_attr_usage_count.attr,
682 NULL
683 };
684
685 static struct attribute_group cciss_dev_attr_group = {
686 .attrs = cciss_dev_attrs,
687 };
688
689 static const struct attribute_group *cciss_dev_attr_groups[] = {
690 &cciss_dev_attr_group,
691 NULL
692 };
693
694 static struct device_type cciss_dev_type = {
695 .name = "cciss_device",
696 .groups = cciss_dev_attr_groups,
697 .release = cciss_device_release,
698 };
699
700 static struct bus_type cciss_bus_type = {
701 .name = "cciss",
702 };
703
704 /*
705 * cciss_hba_release is called when the reference count
706 * of h->dev goes to zero.
707 */
708 static void cciss_hba_release(struct device *dev)
709 {
710 /*
711 * nothing to do, but need this to avoid a warning
712 * about not having a release handler from lib/kref.c.
713 */
714 }
715
716 /*
717 * Initialize sysfs entry for each controller. This sets up and registers
718 * the 'cciss#' directory for each individual controller under
719 * /sys/bus/pci/devices/<dev>/.
720 */
721 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
722 {
723 device_initialize(&h->dev);
724 h->dev.type = &cciss_host_type;
725 h->dev.bus = &cciss_bus_type;
726 dev_set_name(&h->dev, "%s", h->devname);
727 h->dev.parent = &h->pdev->dev;
728
729 return device_add(&h->dev);
730 }
731
732 /*
733 * Remove sysfs entries for an hba.
734 */
735 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
736 {
737 device_del(&h->dev);
738 put_device(&h->dev); /* final put. */
739 }
740
741 /* cciss_device_release is called when the reference count
742 * of h->drv[x]dev goes to zero.
743 */
744 static void cciss_device_release(struct device *dev)
745 {
746 drive_info_struct *drv = to_drv(dev);
747 kfree(drv);
748 }
749
750 /*
751 * Initialize sysfs for each logical drive. This sets up and registers
752 * the 'c#d#' directory for each individual logical drive under
753 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
754 * /sys/block/cciss!c#d# to this entry.
755 */
756 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
757 int drv_index)
758 {
759 struct device *dev;
760
761 if (h->drv[drv_index]->device_initialized)
762 return 0;
763
764 dev = &h->drv[drv_index]->dev;
765 device_initialize(dev);
766 dev->type = &cciss_dev_type;
767 dev->bus = &cciss_bus_type;
768 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
769 dev->parent = &h->dev;
770 h->drv[drv_index]->device_initialized = 1;
771 return device_add(dev);
772 }
773
774 /*
775 * Remove sysfs entries for a logical drive.
776 */
777 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
778 int ctlr_exiting)
779 {
780 struct device *dev = &h->drv[drv_index]->dev;
781
782 /* special case for c*d0, we only destroy it on controller exit */
783 if (drv_index == 0 && !ctlr_exiting)
784 return;
785
786 device_del(dev);
787 put_device(dev); /* the "final" put. */
788 h->drv[drv_index] = NULL;
789 }
790
791 /*
792 * For operations that cannot sleep, a command block is allocated at init,
793 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
794 * which ones are free or in use. For operations that can wait for kmalloc
795 * to possible sleep, this routine can be called with get_from_pool set to 0.
796 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
797 */
798 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
799 {
800 CommandList_struct *c;
801 int i;
802 u64bit temp64;
803 dma_addr_t cmd_dma_handle, err_dma_handle;
804
805 if (!get_from_pool) {
806 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
807 sizeof(CommandList_struct), &cmd_dma_handle);
808 if (c == NULL)
809 return NULL;
810 memset(c, 0, sizeof(CommandList_struct));
811
812 c->cmdindex = -1;
813
814 c->err_info = (ErrorInfo_struct *)
815 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
816 &err_dma_handle);
817
818 if (c->err_info == NULL) {
819 pci_free_consistent(h->pdev,
820 sizeof(CommandList_struct), c, cmd_dma_handle);
821 return NULL;
822 }
823 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
824 } else { /* get it out of the controllers pool */
825
826 do {
827 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
828 if (i == h->nr_cmds)
829 return NULL;
830 } while (test_and_set_bit
831 (i & (BITS_PER_LONG - 1),
832 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
833 #ifdef CCISS_DEBUG
834 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
835 #endif
836 c = h->cmd_pool + i;
837 memset(c, 0, sizeof(CommandList_struct));
838 cmd_dma_handle = h->cmd_pool_dhandle
839 + i * sizeof(CommandList_struct);
840 c->err_info = h->errinfo_pool + i;
841 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
842 err_dma_handle = h->errinfo_pool_dhandle
843 + i * sizeof(ErrorInfo_struct);
844 h->nr_allocs++;
845
846 c->cmdindex = i;
847 }
848
849 INIT_HLIST_NODE(&c->list);
850 c->busaddr = (__u32) cmd_dma_handle;
851 temp64.val = (__u64) err_dma_handle;
852 c->ErrDesc.Addr.lower = temp64.val32.lower;
853 c->ErrDesc.Addr.upper = temp64.val32.upper;
854 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
855
856 c->ctlr = h->ctlr;
857 return c;
858 }
859
860 /*
861 * Frees a command block that was previously allocated with cmd_alloc().
862 */
863 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
864 {
865 int i;
866 u64bit temp64;
867
868 if (!got_from_pool) {
869 temp64.val32.lower = c->ErrDesc.Addr.lower;
870 temp64.val32.upper = c->ErrDesc.Addr.upper;
871 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
872 c->err_info, (dma_addr_t) temp64.val);
873 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
874 c, (dma_addr_t) c->busaddr);
875 } else {
876 i = c - h->cmd_pool;
877 clear_bit(i & (BITS_PER_LONG - 1),
878 h->cmd_pool_bits + (i / BITS_PER_LONG));
879 h->nr_frees++;
880 }
881 }
882
883 static inline ctlr_info_t *get_host(struct gendisk *disk)
884 {
885 return disk->queue->queuedata;
886 }
887
888 static inline drive_info_struct *get_drv(struct gendisk *disk)
889 {
890 return disk->private_data;
891 }
892
893 /*
894 * Open. Make sure the device is really there.
895 */
896 static int cciss_open(struct block_device *bdev, fmode_t mode)
897 {
898 ctlr_info_t *host = get_host(bdev->bd_disk);
899 drive_info_struct *drv = get_drv(bdev->bd_disk);
900
901 #ifdef CCISS_DEBUG
902 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
903 #endif /* CCISS_DEBUG */
904
905 if (drv->busy_configuring)
906 return -EBUSY;
907 /*
908 * Root is allowed to open raw volume zero even if it's not configured
909 * so array config can still work. Root is also allowed to open any
910 * volume that has a LUN ID, so it can issue IOCTL to reread the
911 * disk information. I don't think I really like this
912 * but I'm already using way to many device nodes to claim another one
913 * for "raw controller".
914 */
915 if (drv->heads == 0) {
916 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
917 /* if not node 0 make sure it is a partition = 0 */
918 if (MINOR(bdev->bd_dev) & 0x0f) {
919 return -ENXIO;
920 /* if it is, make sure we have a LUN ID */
921 } else if (memcmp(drv->LunID, CTLR_LUNID,
922 sizeof(drv->LunID))) {
923 return -ENXIO;
924 }
925 }
926 if (!capable(CAP_SYS_ADMIN))
927 return -EPERM;
928 }
929 drv->usage_count++;
930 host->usage_count++;
931 return 0;
932 }
933
934 /*
935 * Close. Sync first.
936 */
937 static int cciss_release(struct gendisk *disk, fmode_t mode)
938 {
939 ctlr_info_t *host = get_host(disk);
940 drive_info_struct *drv = get_drv(disk);
941
942 #ifdef CCISS_DEBUG
943 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
944 #endif /* CCISS_DEBUG */
945
946 drv->usage_count--;
947 host->usage_count--;
948 return 0;
949 }
950
951 #ifdef CONFIG_COMPAT
952
953 static int do_ioctl(struct block_device *bdev, fmode_t mode,
954 unsigned cmd, unsigned long arg)
955 {
956 int ret;
957 lock_kernel();
958 ret = cciss_ioctl(bdev, mode, cmd, arg);
959 unlock_kernel();
960 return ret;
961 }
962
963 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
964 unsigned cmd, unsigned long arg);
965 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
966 unsigned cmd, unsigned long arg);
967
968 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
969 unsigned cmd, unsigned long arg)
970 {
971 switch (cmd) {
972 case CCISS_GETPCIINFO:
973 case CCISS_GETINTINFO:
974 case CCISS_SETINTINFO:
975 case CCISS_GETNODENAME:
976 case CCISS_SETNODENAME:
977 case CCISS_GETHEARTBEAT:
978 case CCISS_GETBUSTYPES:
979 case CCISS_GETFIRMVER:
980 case CCISS_GETDRIVVER:
981 case CCISS_REVALIDVOLS:
982 case CCISS_DEREGDISK:
983 case CCISS_REGNEWDISK:
984 case CCISS_REGNEWD:
985 case CCISS_RESCANDISK:
986 case CCISS_GETLUNINFO:
987 return do_ioctl(bdev, mode, cmd, arg);
988
989 case CCISS_PASSTHRU32:
990 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
991 case CCISS_BIG_PASSTHRU32:
992 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
993
994 default:
995 return -ENOIOCTLCMD;
996 }
997 }
998
999 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1000 unsigned cmd, unsigned long arg)
1001 {
1002 IOCTL32_Command_struct __user *arg32 =
1003 (IOCTL32_Command_struct __user *) arg;
1004 IOCTL_Command_struct arg64;
1005 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1006 int err;
1007 u32 cp;
1008
1009 err = 0;
1010 err |=
1011 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1012 sizeof(arg64.LUN_info));
1013 err |=
1014 copy_from_user(&arg64.Request, &arg32->Request,
1015 sizeof(arg64.Request));
1016 err |=
1017 copy_from_user(&arg64.error_info, &arg32->error_info,
1018 sizeof(arg64.error_info));
1019 err |= get_user(arg64.buf_size, &arg32->buf_size);
1020 err |= get_user(cp, &arg32->buf);
1021 arg64.buf = compat_ptr(cp);
1022 err |= copy_to_user(p, &arg64, sizeof(arg64));
1023
1024 if (err)
1025 return -EFAULT;
1026
1027 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1028 if (err)
1029 return err;
1030 err |=
1031 copy_in_user(&arg32->error_info, &p->error_info,
1032 sizeof(arg32->error_info));
1033 if (err)
1034 return -EFAULT;
1035 return err;
1036 }
1037
1038 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1039 unsigned cmd, unsigned long arg)
1040 {
1041 BIG_IOCTL32_Command_struct __user *arg32 =
1042 (BIG_IOCTL32_Command_struct __user *) arg;
1043 BIG_IOCTL_Command_struct arg64;
1044 BIG_IOCTL_Command_struct __user *p =
1045 compat_alloc_user_space(sizeof(arg64));
1046 int err;
1047 u32 cp;
1048
1049 err = 0;
1050 err |=
1051 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1052 sizeof(arg64.LUN_info));
1053 err |=
1054 copy_from_user(&arg64.Request, &arg32->Request,
1055 sizeof(arg64.Request));
1056 err |=
1057 copy_from_user(&arg64.error_info, &arg32->error_info,
1058 sizeof(arg64.error_info));
1059 err |= get_user(arg64.buf_size, &arg32->buf_size);
1060 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1061 err |= get_user(cp, &arg32->buf);
1062 arg64.buf = compat_ptr(cp);
1063 err |= copy_to_user(p, &arg64, sizeof(arg64));
1064
1065 if (err)
1066 return -EFAULT;
1067
1068 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1069 if (err)
1070 return err;
1071 err |=
1072 copy_in_user(&arg32->error_info, &p->error_info,
1073 sizeof(arg32->error_info));
1074 if (err)
1075 return -EFAULT;
1076 return err;
1077 }
1078 #endif
1079
1080 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1081 {
1082 drive_info_struct *drv = get_drv(bdev->bd_disk);
1083
1084 if (!drv->cylinders)
1085 return -ENXIO;
1086
1087 geo->heads = drv->heads;
1088 geo->sectors = drv->sectors;
1089 geo->cylinders = drv->cylinders;
1090 return 0;
1091 }
1092
1093 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1094 {
1095 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1096 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1097 (void)check_for_unit_attention(host, c);
1098 }
1099 /*
1100 * ioctl
1101 */
1102 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1103 unsigned int cmd, unsigned long arg)
1104 {
1105 struct gendisk *disk = bdev->bd_disk;
1106 ctlr_info_t *host = get_host(disk);
1107 drive_info_struct *drv = get_drv(disk);
1108 int ctlr = host->ctlr;
1109 void __user *argp = (void __user *)arg;
1110
1111 #ifdef CCISS_DEBUG
1112 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1113 #endif /* CCISS_DEBUG */
1114
1115 switch (cmd) {
1116 case CCISS_GETPCIINFO:
1117 {
1118 cciss_pci_info_struct pciinfo;
1119
1120 if (!arg)
1121 return -EINVAL;
1122 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1123 pciinfo.bus = host->pdev->bus->number;
1124 pciinfo.dev_fn = host->pdev->devfn;
1125 pciinfo.board_id = host->board_id;
1126 if (copy_to_user
1127 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1128 return -EFAULT;
1129 return 0;
1130 }
1131 case CCISS_GETINTINFO:
1132 {
1133 cciss_coalint_struct intinfo;
1134 if (!arg)
1135 return -EINVAL;
1136 intinfo.delay =
1137 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1138 intinfo.count =
1139 readl(&host->cfgtable->HostWrite.CoalIntCount);
1140 if (copy_to_user
1141 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1142 return -EFAULT;
1143 return 0;
1144 }
1145 case CCISS_SETINTINFO:
1146 {
1147 cciss_coalint_struct intinfo;
1148 unsigned long flags;
1149 int i;
1150
1151 if (!arg)
1152 return -EINVAL;
1153 if (!capable(CAP_SYS_ADMIN))
1154 return -EPERM;
1155 if (copy_from_user
1156 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1157 return -EFAULT;
1158 if ((intinfo.delay == 0) && (intinfo.count == 0))
1159 {
1160 // printk("cciss_ioctl: delay and count cannot be 0\n");
1161 return -EINVAL;
1162 }
1163 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1164 /* Update the field, and then ring the doorbell */
1165 writel(intinfo.delay,
1166 &(host->cfgtable->HostWrite.CoalIntDelay));
1167 writel(intinfo.count,
1168 &(host->cfgtable->HostWrite.CoalIntCount));
1169 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1170
1171 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1172 if (!(readl(host->vaddr + SA5_DOORBELL)
1173 & CFGTBL_ChangeReq))
1174 break;
1175 /* delay and try again */
1176 udelay(1000);
1177 }
1178 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1179 if (i >= MAX_IOCTL_CONFIG_WAIT)
1180 return -EAGAIN;
1181 return 0;
1182 }
1183 case CCISS_GETNODENAME:
1184 {
1185 NodeName_type NodeName;
1186 int i;
1187
1188 if (!arg)
1189 return -EINVAL;
1190 for (i = 0; i < 16; i++)
1191 NodeName[i] =
1192 readb(&host->cfgtable->ServerName[i]);
1193 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1194 return -EFAULT;
1195 return 0;
1196 }
1197 case CCISS_SETNODENAME:
1198 {
1199 NodeName_type NodeName;
1200 unsigned long flags;
1201 int i;
1202
1203 if (!arg)
1204 return -EINVAL;
1205 if (!capable(CAP_SYS_ADMIN))
1206 return -EPERM;
1207
1208 if (copy_from_user
1209 (NodeName, argp, sizeof(NodeName_type)))
1210 return -EFAULT;
1211
1212 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1213
1214 /* Update the field, and then ring the doorbell */
1215 for (i = 0; i < 16; i++)
1216 writeb(NodeName[i],
1217 &host->cfgtable->ServerName[i]);
1218
1219 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1220
1221 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1222 if (!(readl(host->vaddr + SA5_DOORBELL)
1223 & CFGTBL_ChangeReq))
1224 break;
1225 /* delay and try again */
1226 udelay(1000);
1227 }
1228 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1229 if (i >= MAX_IOCTL_CONFIG_WAIT)
1230 return -EAGAIN;
1231 return 0;
1232 }
1233
1234 case CCISS_GETHEARTBEAT:
1235 {
1236 Heartbeat_type heartbeat;
1237
1238 if (!arg)
1239 return -EINVAL;
1240 heartbeat = readl(&host->cfgtable->HeartBeat);
1241 if (copy_to_user
1242 (argp, &heartbeat, sizeof(Heartbeat_type)))
1243 return -EFAULT;
1244 return 0;
1245 }
1246 case CCISS_GETBUSTYPES:
1247 {
1248 BusTypes_type BusTypes;
1249
1250 if (!arg)
1251 return -EINVAL;
1252 BusTypes = readl(&host->cfgtable->BusTypes);
1253 if (copy_to_user
1254 (argp, &BusTypes, sizeof(BusTypes_type)))
1255 return -EFAULT;
1256 return 0;
1257 }
1258 case CCISS_GETFIRMVER:
1259 {
1260 FirmwareVer_type firmware;
1261
1262 if (!arg)
1263 return -EINVAL;
1264 memcpy(firmware, host->firm_ver, 4);
1265
1266 if (copy_to_user
1267 (argp, firmware, sizeof(FirmwareVer_type)))
1268 return -EFAULT;
1269 return 0;
1270 }
1271 case CCISS_GETDRIVVER:
1272 {
1273 DriverVer_type DriverVer = DRIVER_VERSION;
1274
1275 if (!arg)
1276 return -EINVAL;
1277
1278 if (copy_to_user
1279 (argp, &DriverVer, sizeof(DriverVer_type)))
1280 return -EFAULT;
1281 return 0;
1282 }
1283
1284 case CCISS_DEREGDISK:
1285 case CCISS_REGNEWD:
1286 case CCISS_REVALIDVOLS:
1287 return rebuild_lun_table(host, 0, 1);
1288
1289 case CCISS_GETLUNINFO:{
1290 LogvolInfo_struct luninfo;
1291
1292 memcpy(&luninfo.LunID, drv->LunID,
1293 sizeof(luninfo.LunID));
1294 luninfo.num_opens = drv->usage_count;
1295 luninfo.num_parts = 0;
1296 if (copy_to_user(argp, &luninfo,
1297 sizeof(LogvolInfo_struct)))
1298 return -EFAULT;
1299 return 0;
1300 }
1301 case CCISS_PASSTHRU:
1302 {
1303 IOCTL_Command_struct iocommand;
1304 CommandList_struct *c;
1305 char *buff = NULL;
1306 u64bit temp64;
1307 unsigned long flags;
1308 DECLARE_COMPLETION_ONSTACK(wait);
1309
1310 if (!arg)
1311 return -EINVAL;
1312
1313 if (!capable(CAP_SYS_RAWIO))
1314 return -EPERM;
1315
1316 if (copy_from_user
1317 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1318 return -EFAULT;
1319 if ((iocommand.buf_size < 1) &&
1320 (iocommand.Request.Type.Direction != XFER_NONE)) {
1321 return -EINVAL;
1322 }
1323 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1324 /* Check kmalloc limits */
1325 if (iocommand.buf_size > 128000)
1326 return -EINVAL;
1327 #endif
1328 if (iocommand.buf_size > 0) {
1329 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1330 if (buff == NULL)
1331 return -EFAULT;
1332 }
1333 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1334 /* Copy the data into the buffer we created */
1335 if (copy_from_user
1336 (buff, iocommand.buf, iocommand.buf_size)) {
1337 kfree(buff);
1338 return -EFAULT;
1339 }
1340 } else {
1341 memset(buff, 0, iocommand.buf_size);
1342 }
1343 if ((c = cmd_alloc(host, 0)) == NULL) {
1344 kfree(buff);
1345 return -ENOMEM;
1346 }
1347 /* Fill in the command type */
1348 c->cmd_type = CMD_IOCTL_PEND;
1349 /* Fill in Command Header */
1350 c->Header.ReplyQueue = 0; /* unused in simple mode */
1351 if (iocommand.buf_size > 0) /* buffer to fill */
1352 {
1353 c->Header.SGList = 1;
1354 c->Header.SGTotal = 1;
1355 } else /* no buffers to fill */
1356 {
1357 c->Header.SGList = 0;
1358 c->Header.SGTotal = 0;
1359 }
1360 c->Header.LUN = iocommand.LUN_info;
1361 /* use the kernel address the cmd block for tag */
1362 c->Header.Tag.lower = c->busaddr;
1363
1364 /* Fill in Request block */
1365 c->Request = iocommand.Request;
1366
1367 /* Fill in the scatter gather information */
1368 if (iocommand.buf_size > 0) {
1369 temp64.val = pci_map_single(host->pdev, buff,
1370 iocommand.buf_size,
1371 PCI_DMA_BIDIRECTIONAL);
1372 c->SG[0].Addr.lower = temp64.val32.lower;
1373 c->SG[0].Addr.upper = temp64.val32.upper;
1374 c->SG[0].Len = iocommand.buf_size;
1375 c->SG[0].Ext = 0; /* we are not chaining */
1376 }
1377 c->waiting = &wait;
1378
1379 /* Put the request on the tail of the request queue */
1380 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1381 addQ(&host->reqQ, c);
1382 host->Qdepth++;
1383 start_io(host);
1384 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1385
1386 wait_for_completion(&wait);
1387
1388 /* unlock the buffers from DMA */
1389 temp64.val32.lower = c->SG[0].Addr.lower;
1390 temp64.val32.upper = c->SG[0].Addr.upper;
1391 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1392 iocommand.buf_size,
1393 PCI_DMA_BIDIRECTIONAL);
1394
1395 check_ioctl_unit_attention(host, c);
1396
1397 /* Copy the error information out */
1398 iocommand.error_info = *(c->err_info);
1399 if (copy_to_user
1400 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1401 kfree(buff);
1402 cmd_free(host, c, 0);
1403 return -EFAULT;
1404 }
1405
1406 if (iocommand.Request.Type.Direction == XFER_READ) {
1407 /* Copy the data out of the buffer we created */
1408 if (copy_to_user
1409 (iocommand.buf, buff, iocommand.buf_size)) {
1410 kfree(buff);
1411 cmd_free(host, c, 0);
1412 return -EFAULT;
1413 }
1414 }
1415 kfree(buff);
1416 cmd_free(host, c, 0);
1417 return 0;
1418 }
1419 case CCISS_BIG_PASSTHRU:{
1420 BIG_IOCTL_Command_struct *ioc;
1421 CommandList_struct *c;
1422 unsigned char **buff = NULL;
1423 int *buff_size = NULL;
1424 u64bit temp64;
1425 unsigned long flags;
1426 BYTE sg_used = 0;
1427 int status = 0;
1428 int i;
1429 DECLARE_COMPLETION_ONSTACK(wait);
1430 __u32 left;
1431 __u32 sz;
1432 BYTE __user *data_ptr;
1433
1434 if (!arg)
1435 return -EINVAL;
1436 if (!capable(CAP_SYS_RAWIO))
1437 return -EPERM;
1438 ioc = (BIG_IOCTL_Command_struct *)
1439 kmalloc(sizeof(*ioc), GFP_KERNEL);
1440 if (!ioc) {
1441 status = -ENOMEM;
1442 goto cleanup1;
1443 }
1444 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1445 status = -EFAULT;
1446 goto cleanup1;
1447 }
1448 if ((ioc->buf_size < 1) &&
1449 (ioc->Request.Type.Direction != XFER_NONE)) {
1450 status = -EINVAL;
1451 goto cleanup1;
1452 }
1453 /* Check kmalloc limits using all SGs */
1454 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1455 status = -EINVAL;
1456 goto cleanup1;
1457 }
1458 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1459 status = -EINVAL;
1460 goto cleanup1;
1461 }
1462 buff =
1463 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1464 if (!buff) {
1465 status = -ENOMEM;
1466 goto cleanup1;
1467 }
1468 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1469 GFP_KERNEL);
1470 if (!buff_size) {
1471 status = -ENOMEM;
1472 goto cleanup1;
1473 }
1474 left = ioc->buf_size;
1475 data_ptr = ioc->buf;
1476 while (left) {
1477 sz = (left >
1478 ioc->malloc_size) ? ioc->
1479 malloc_size : left;
1480 buff_size[sg_used] = sz;
1481 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1482 if (buff[sg_used] == NULL) {
1483 status = -ENOMEM;
1484 goto cleanup1;
1485 }
1486 if (ioc->Request.Type.Direction == XFER_WRITE) {
1487 if (copy_from_user
1488 (buff[sg_used], data_ptr, sz)) {
1489 status = -EFAULT;
1490 goto cleanup1;
1491 }
1492 } else {
1493 memset(buff[sg_used], 0, sz);
1494 }
1495 left -= sz;
1496 data_ptr += sz;
1497 sg_used++;
1498 }
1499 if ((c = cmd_alloc(host, 0)) == NULL) {
1500 status = -ENOMEM;
1501 goto cleanup1;
1502 }
1503 c->cmd_type = CMD_IOCTL_PEND;
1504 c->Header.ReplyQueue = 0;
1505
1506 if (ioc->buf_size > 0) {
1507 c->Header.SGList = sg_used;
1508 c->Header.SGTotal = sg_used;
1509 } else {
1510 c->Header.SGList = 0;
1511 c->Header.SGTotal = 0;
1512 }
1513 c->Header.LUN = ioc->LUN_info;
1514 c->Header.Tag.lower = c->busaddr;
1515
1516 c->Request = ioc->Request;
1517 if (ioc->buf_size > 0) {
1518 int i;
1519 for (i = 0; i < sg_used; i++) {
1520 temp64.val =
1521 pci_map_single(host->pdev, buff[i],
1522 buff_size[i],
1523 PCI_DMA_BIDIRECTIONAL);
1524 c->SG[i].Addr.lower =
1525 temp64.val32.lower;
1526 c->SG[i].Addr.upper =
1527 temp64.val32.upper;
1528 c->SG[i].Len = buff_size[i];
1529 c->SG[i].Ext = 0; /* we are not chaining */
1530 }
1531 }
1532 c->waiting = &wait;
1533 /* Put the request on the tail of the request queue */
1534 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1535 addQ(&host->reqQ, c);
1536 host->Qdepth++;
1537 start_io(host);
1538 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1539 wait_for_completion(&wait);
1540 /* unlock the buffers from DMA */
1541 for (i = 0; i < sg_used; i++) {
1542 temp64.val32.lower = c->SG[i].Addr.lower;
1543 temp64.val32.upper = c->SG[i].Addr.upper;
1544 pci_unmap_single(host->pdev,
1545 (dma_addr_t) temp64.val, buff_size[i],
1546 PCI_DMA_BIDIRECTIONAL);
1547 }
1548 check_ioctl_unit_attention(host, c);
1549 /* Copy the error information out */
1550 ioc->error_info = *(c->err_info);
1551 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1552 cmd_free(host, c, 0);
1553 status = -EFAULT;
1554 goto cleanup1;
1555 }
1556 if (ioc->Request.Type.Direction == XFER_READ) {
1557 /* Copy the data out of the buffer we created */
1558 BYTE __user *ptr = ioc->buf;
1559 for (i = 0; i < sg_used; i++) {
1560 if (copy_to_user
1561 (ptr, buff[i], buff_size[i])) {
1562 cmd_free(host, c, 0);
1563 status = -EFAULT;
1564 goto cleanup1;
1565 }
1566 ptr += buff_size[i];
1567 }
1568 }
1569 cmd_free(host, c, 0);
1570 status = 0;
1571 cleanup1:
1572 if (buff) {
1573 for (i = 0; i < sg_used; i++)
1574 kfree(buff[i]);
1575 kfree(buff);
1576 }
1577 kfree(buff_size);
1578 kfree(ioc);
1579 return status;
1580 }
1581
1582 /* scsi_cmd_ioctl handles these, below, though some are not */
1583 /* very meaningful for cciss. SG_IO is the main one people want. */
1584
1585 case SG_GET_VERSION_NUM:
1586 case SG_SET_TIMEOUT:
1587 case SG_GET_TIMEOUT:
1588 case SG_GET_RESERVED_SIZE:
1589 case SG_SET_RESERVED_SIZE:
1590 case SG_EMULATED_HOST:
1591 case SG_IO:
1592 case SCSI_IOCTL_SEND_COMMAND:
1593 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1594
1595 /* scsi_cmd_ioctl would normally handle these, below, but */
1596 /* they aren't a good fit for cciss, as CD-ROMs are */
1597 /* not supported, and we don't have any bus/target/lun */
1598 /* which we present to the kernel. */
1599
1600 case CDROM_SEND_PACKET:
1601 case CDROMCLOSETRAY:
1602 case CDROMEJECT:
1603 case SCSI_IOCTL_GET_IDLUN:
1604 case SCSI_IOCTL_GET_BUS_NUMBER:
1605 default:
1606 return -ENOTTY;
1607 }
1608 }
1609
1610 static void cciss_check_queues(ctlr_info_t *h)
1611 {
1612 int start_queue = h->next_to_run;
1613 int i;
1614
1615 /* check to see if we have maxed out the number of commands that can
1616 * be placed on the queue. If so then exit. We do this check here
1617 * in case the interrupt we serviced was from an ioctl and did not
1618 * free any new commands.
1619 */
1620 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1621 return;
1622
1623 /* We have room on the queue for more commands. Now we need to queue
1624 * them up. We will also keep track of the next queue to run so
1625 * that every queue gets a chance to be started first.
1626 */
1627 for (i = 0; i < h->highest_lun + 1; i++) {
1628 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1629 /* make sure the disk has been added and the drive is real
1630 * because this can be called from the middle of init_one.
1631 */
1632 if (!h->drv[curr_queue])
1633 continue;
1634 if (!(h->drv[curr_queue]->queue) ||
1635 !(h->drv[curr_queue]->heads))
1636 continue;
1637 blk_start_queue(h->gendisk[curr_queue]->queue);
1638
1639 /* check to see if we have maxed out the number of commands
1640 * that can be placed on the queue.
1641 */
1642 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1643 if (curr_queue == start_queue) {
1644 h->next_to_run =
1645 (start_queue + 1) % (h->highest_lun + 1);
1646 break;
1647 } else {
1648 h->next_to_run = curr_queue;
1649 break;
1650 }
1651 }
1652 }
1653 }
1654
1655 static void cciss_softirq_done(struct request *rq)
1656 {
1657 CommandList_struct *cmd = rq->completion_data;
1658 ctlr_info_t *h = hba[cmd->ctlr];
1659 SGDescriptor_struct *curr_sg = cmd->SG;
1660 unsigned long flags;
1661 u64bit temp64;
1662 int i, ddir;
1663 int sg_index = 0;
1664
1665 if (cmd->Request.Type.Direction == XFER_READ)
1666 ddir = PCI_DMA_FROMDEVICE;
1667 else
1668 ddir = PCI_DMA_TODEVICE;
1669
1670 /* command did not need to be retried */
1671 /* unmap the DMA mapping for all the scatter gather elements */
1672 for (i = 0; i < cmd->Header.SGList; i++) {
1673 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1674 temp64.val32.lower = cmd->SG[i].Addr.lower;
1675 temp64.val32.upper = cmd->SG[i].Addr.upper;
1676 pci_dma_sync_single_for_cpu(h->pdev, temp64.val,
1677 cmd->SG[i].Len, ddir);
1678 pci_unmap_single(h->pdev, temp64.val,
1679 cmd->SG[i].Len, ddir);
1680 /* Point to the next block */
1681 curr_sg = h->cmd_sg_list[cmd->cmdindex]->sgchain;
1682 sg_index = 0;
1683 }
1684 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1685 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1686 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1687 ddir);
1688 ++sg_index;
1689 }
1690
1691 #ifdef CCISS_DEBUG
1692 printk("Done with %p\n", rq);
1693 #endif /* CCISS_DEBUG */
1694
1695 /* set the residual count for pc requests */
1696 if (blk_pc_request(rq))
1697 rq->resid_len = cmd->err_info->ResidualCnt;
1698
1699 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1700
1701 spin_lock_irqsave(&h->lock, flags);
1702 cmd_free(h, cmd, 1);
1703 cciss_check_queues(h);
1704 spin_unlock_irqrestore(&h->lock, flags);
1705 }
1706
1707 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1708 unsigned char scsi3addr[], uint32_t log_unit)
1709 {
1710 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1711 sizeof(h->drv[log_unit]->LunID));
1712 }
1713
1714 /* This function gets the SCSI vendor, model, and revision of a logical drive
1715 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1716 * they cannot be read.
1717 */
1718 static void cciss_get_device_descr(int ctlr, int logvol,
1719 char *vendor, char *model, char *rev)
1720 {
1721 int rc;
1722 InquiryData_struct *inq_buf;
1723 unsigned char scsi3addr[8];
1724
1725 *vendor = '\0';
1726 *model = '\0';
1727 *rev = '\0';
1728
1729 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1730 if (!inq_buf)
1731 return;
1732
1733 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1734 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1735 scsi3addr, TYPE_CMD);
1736 if (rc == IO_OK) {
1737 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1738 vendor[VENDOR_LEN] = '\0';
1739 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1740 model[MODEL_LEN] = '\0';
1741 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1742 rev[REV_LEN] = '\0';
1743 }
1744
1745 kfree(inq_buf);
1746 return;
1747 }
1748
1749 /* This function gets the serial number of a logical drive via
1750 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1751 * number cannot be had, for whatever reason, 16 bytes of 0xff
1752 * are returned instead.
1753 */
1754 static void cciss_get_serial_no(int ctlr, int logvol,
1755 unsigned char *serial_no, int buflen)
1756 {
1757 #define PAGE_83_INQ_BYTES 64
1758 int rc;
1759 unsigned char *buf;
1760 unsigned char scsi3addr[8];
1761
1762 if (buflen > 16)
1763 buflen = 16;
1764 memset(serial_no, 0xff, buflen);
1765 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1766 if (!buf)
1767 return;
1768 memset(serial_no, 0, buflen);
1769 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1770 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1771 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1772 if (rc == IO_OK)
1773 memcpy(serial_no, &buf[8], buflen);
1774 kfree(buf);
1775 return;
1776 }
1777
1778 /*
1779 * cciss_add_disk sets up the block device queue for a logical drive
1780 */
1781 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1782 int drv_index)
1783 {
1784 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1785 if (!disk->queue)
1786 goto init_queue_failure;
1787 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1788 disk->major = h->major;
1789 disk->first_minor = drv_index << NWD_SHIFT;
1790 disk->fops = &cciss_fops;
1791 if (cciss_create_ld_sysfs_entry(h, drv_index))
1792 goto cleanup_queue;
1793 disk->private_data = h->drv[drv_index];
1794 disk->driverfs_dev = &h->drv[drv_index]->dev;
1795
1796 /* Set up queue information */
1797 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1798
1799 /* This is a hardware imposed limit. */
1800 blk_queue_max_hw_segments(disk->queue, h->maxsgentries);
1801
1802 /* This is a limit in the driver and could be eliminated. */
1803 blk_queue_max_phys_segments(disk->queue, h->maxsgentries);
1804
1805 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1806
1807 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1808
1809 disk->queue->queuedata = h;
1810
1811 blk_queue_logical_block_size(disk->queue,
1812 h->drv[drv_index]->block_size);
1813
1814 /* Make sure all queue data is written out before */
1815 /* setting h->drv[drv_index]->queue, as setting this */
1816 /* allows the interrupt handler to start the queue */
1817 wmb();
1818 h->drv[drv_index]->queue = disk->queue;
1819 add_disk(disk);
1820 return 0;
1821
1822 cleanup_queue:
1823 blk_cleanup_queue(disk->queue);
1824 disk->queue = NULL;
1825 init_queue_failure:
1826 return -1;
1827 }
1828
1829 /* This function will check the usage_count of the drive to be updated/added.
1830 * If the usage_count is zero and it is a heretofore unknown drive, or,
1831 * the drive's capacity, geometry, or serial number has changed,
1832 * then the drive information will be updated and the disk will be
1833 * re-registered with the kernel. If these conditions don't hold,
1834 * then it will be left alone for the next reboot. The exception to this
1835 * is disk 0 which will always be left registered with the kernel since it
1836 * is also the controller node. Any changes to disk 0 will show up on
1837 * the next reboot.
1838 */
1839 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1840 int via_ioctl)
1841 {
1842 ctlr_info_t *h = hba[ctlr];
1843 struct gendisk *disk;
1844 InquiryData_struct *inq_buff = NULL;
1845 unsigned int block_size;
1846 sector_t total_size;
1847 unsigned long flags = 0;
1848 int ret = 0;
1849 drive_info_struct *drvinfo;
1850
1851 /* Get information about the disk and modify the driver structure */
1852 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1853 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1854 if (inq_buff == NULL || drvinfo == NULL)
1855 goto mem_msg;
1856
1857 /* testing to see if 16-byte CDBs are already being used */
1858 if (h->cciss_read == CCISS_READ_16) {
1859 cciss_read_capacity_16(h->ctlr, drv_index,
1860 &total_size, &block_size);
1861
1862 } else {
1863 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1864 /* if read_capacity returns all F's this volume is >2TB */
1865 /* in size so we switch to 16-byte CDB's for all */
1866 /* read/write ops */
1867 if (total_size == 0xFFFFFFFFULL) {
1868 cciss_read_capacity_16(ctlr, drv_index,
1869 &total_size, &block_size);
1870 h->cciss_read = CCISS_READ_16;
1871 h->cciss_write = CCISS_WRITE_16;
1872 } else {
1873 h->cciss_read = CCISS_READ_10;
1874 h->cciss_write = CCISS_WRITE_10;
1875 }
1876 }
1877
1878 cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1879 inq_buff, drvinfo);
1880 drvinfo->block_size = block_size;
1881 drvinfo->nr_blocks = total_size + 1;
1882
1883 cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1884 drvinfo->model, drvinfo->rev);
1885 cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1886 sizeof(drvinfo->serial_no));
1887 /* Save the lunid in case we deregister the disk, below. */
1888 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1889 sizeof(drvinfo->LunID));
1890
1891 /* Is it the same disk we already know, and nothing's changed? */
1892 if (h->drv[drv_index]->raid_level != -1 &&
1893 ((memcmp(drvinfo->serial_no,
1894 h->drv[drv_index]->serial_no, 16) == 0) &&
1895 drvinfo->block_size == h->drv[drv_index]->block_size &&
1896 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1897 drvinfo->heads == h->drv[drv_index]->heads &&
1898 drvinfo->sectors == h->drv[drv_index]->sectors &&
1899 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1900 /* The disk is unchanged, nothing to update */
1901 goto freeret;
1902
1903 /* If we get here it's not the same disk, or something's changed,
1904 * so we need to * deregister it, and re-register it, if it's not
1905 * in use.
1906 * If the disk already exists then deregister it before proceeding
1907 * (unless it's the first disk (for the controller node).
1908 */
1909 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1910 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1911 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1912 h->drv[drv_index]->busy_configuring = 1;
1913 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1914
1915 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1916 * which keeps the interrupt handler from starting
1917 * the queue.
1918 */
1919 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1920 }
1921
1922 /* If the disk is in use return */
1923 if (ret)
1924 goto freeret;
1925
1926 /* Save the new information from cciss_geometry_inquiry
1927 * and serial number inquiry. If the disk was deregistered
1928 * above, then h->drv[drv_index] will be NULL.
1929 */
1930 if (h->drv[drv_index] == NULL) {
1931 drvinfo->device_initialized = 0;
1932 h->drv[drv_index] = drvinfo;
1933 drvinfo = NULL; /* so it won't be freed below. */
1934 } else {
1935 /* special case for cxd0 */
1936 h->drv[drv_index]->block_size = drvinfo->block_size;
1937 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1938 h->drv[drv_index]->heads = drvinfo->heads;
1939 h->drv[drv_index]->sectors = drvinfo->sectors;
1940 h->drv[drv_index]->cylinders = drvinfo->cylinders;
1941 h->drv[drv_index]->raid_level = drvinfo->raid_level;
1942 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1943 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1944 VENDOR_LEN + 1);
1945 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1946 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1947 }
1948
1949 ++h->num_luns;
1950 disk = h->gendisk[drv_index];
1951 set_capacity(disk, h->drv[drv_index]->nr_blocks);
1952
1953 /* If it's not disk 0 (drv_index != 0)
1954 * or if it was disk 0, but there was previously
1955 * no actual corresponding configured logical drive
1956 * (raid_leve == -1) then we want to update the
1957 * logical drive's information.
1958 */
1959 if (drv_index || first_time) {
1960 if (cciss_add_disk(h, disk, drv_index) != 0) {
1961 cciss_free_gendisk(h, drv_index);
1962 cciss_free_drive_info(h, drv_index);
1963 printk(KERN_WARNING "cciss:%d could not update "
1964 "disk %d\n", h->ctlr, drv_index);
1965 --h->num_luns;
1966 }
1967 }
1968
1969 freeret:
1970 kfree(inq_buff);
1971 kfree(drvinfo);
1972 return;
1973 mem_msg:
1974 printk(KERN_ERR "cciss: out of memory\n");
1975 goto freeret;
1976 }
1977
1978 /* This function will find the first index of the controllers drive array
1979 * that has a null drv pointer and allocate the drive info struct and
1980 * will return that index This is where new drives will be added.
1981 * If the index to be returned is greater than the highest_lun index for
1982 * the controller then highest_lun is set * to this new index.
1983 * If there are no available indexes or if tha allocation fails, then -1
1984 * is returned. * "controller_node" is used to know if this is a real
1985 * logical drive, or just the controller node, which determines if this
1986 * counts towards highest_lun.
1987 */
1988 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
1989 {
1990 int i;
1991 drive_info_struct *drv;
1992
1993 /* Search for an empty slot for our drive info */
1994 for (i = 0; i < CISS_MAX_LUN; i++) {
1995
1996 /* if not cxd0 case, and it's occupied, skip it. */
1997 if (h->drv[i] && i != 0)
1998 continue;
1999 /*
2000 * If it's cxd0 case, and drv is alloc'ed already, and a
2001 * disk is configured there, skip it.
2002 */
2003 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2004 continue;
2005
2006 /*
2007 * We've found an empty slot. Update highest_lun
2008 * provided this isn't just the fake cxd0 controller node.
2009 */
2010 if (i > h->highest_lun && !controller_node)
2011 h->highest_lun = i;
2012
2013 /* If adding a real disk at cxd0, and it's already alloc'ed */
2014 if (i == 0 && h->drv[i] != NULL)
2015 return i;
2016
2017 /*
2018 * Found an empty slot, not already alloc'ed. Allocate it.
2019 * Mark it with raid_level == -1, so we know it's new later on.
2020 */
2021 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2022 if (!drv)
2023 return -1;
2024 drv->raid_level = -1; /* so we know it's new */
2025 h->drv[i] = drv;
2026 return i;
2027 }
2028 return -1;
2029 }
2030
2031 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2032 {
2033 kfree(h->drv[drv_index]);
2034 h->drv[drv_index] = NULL;
2035 }
2036
2037 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2038 {
2039 put_disk(h->gendisk[drv_index]);
2040 h->gendisk[drv_index] = NULL;
2041 }
2042
2043 /* cciss_add_gendisk finds a free hba[]->drv structure
2044 * and allocates a gendisk if needed, and sets the lunid
2045 * in the drvinfo structure. It returns the index into
2046 * the ->drv[] array, or -1 if none are free.
2047 * is_controller_node indicates whether highest_lun should
2048 * count this disk, or if it's only being added to provide
2049 * a means to talk to the controller in case no logical
2050 * drives have yet been configured.
2051 */
2052 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2053 int controller_node)
2054 {
2055 int drv_index;
2056
2057 drv_index = cciss_alloc_drive_info(h, controller_node);
2058 if (drv_index == -1)
2059 return -1;
2060
2061 /*Check if the gendisk needs to be allocated */
2062 if (!h->gendisk[drv_index]) {
2063 h->gendisk[drv_index] =
2064 alloc_disk(1 << NWD_SHIFT);
2065 if (!h->gendisk[drv_index]) {
2066 printk(KERN_ERR "cciss%d: could not "
2067 "allocate a new disk %d\n",
2068 h->ctlr, drv_index);
2069 goto err_free_drive_info;
2070 }
2071 }
2072 memcpy(h->drv[drv_index]->LunID, lunid,
2073 sizeof(h->drv[drv_index]->LunID));
2074 if (cciss_create_ld_sysfs_entry(h, drv_index))
2075 goto err_free_disk;
2076 /* Don't need to mark this busy because nobody */
2077 /* else knows about this disk yet to contend */
2078 /* for access to it. */
2079 h->drv[drv_index]->busy_configuring = 0;
2080 wmb();
2081 return drv_index;
2082
2083 err_free_disk:
2084 cciss_free_gendisk(h, drv_index);
2085 err_free_drive_info:
2086 cciss_free_drive_info(h, drv_index);
2087 return -1;
2088 }
2089
2090 /* This is for the special case of a controller which
2091 * has no logical drives. In this case, we still need
2092 * to register a disk so the controller can be accessed
2093 * by the Array Config Utility.
2094 */
2095 static void cciss_add_controller_node(ctlr_info_t *h)
2096 {
2097 struct gendisk *disk;
2098 int drv_index;
2099
2100 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2101 return;
2102
2103 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2104 if (drv_index == -1)
2105 goto error;
2106 h->drv[drv_index]->block_size = 512;
2107 h->drv[drv_index]->nr_blocks = 0;
2108 h->drv[drv_index]->heads = 0;
2109 h->drv[drv_index]->sectors = 0;
2110 h->drv[drv_index]->cylinders = 0;
2111 h->drv[drv_index]->raid_level = -1;
2112 memset(h->drv[drv_index]->serial_no, 0, 16);
2113 disk = h->gendisk[drv_index];
2114 if (cciss_add_disk(h, disk, drv_index) == 0)
2115 return;
2116 cciss_free_gendisk(h, drv_index);
2117 cciss_free_drive_info(h, drv_index);
2118 error:
2119 printk(KERN_WARNING "cciss%d: could not "
2120 "add disk 0.\n", h->ctlr);
2121 return;
2122 }
2123
2124 /* This function will add and remove logical drives from the Logical
2125 * drive array of the controller and maintain persistency of ordering
2126 * so that mount points are preserved until the next reboot. This allows
2127 * for the removal of logical drives in the middle of the drive array
2128 * without a re-ordering of those drives.
2129 * INPUT
2130 * h = The controller to perform the operations on
2131 */
2132 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2133 int via_ioctl)
2134 {
2135 int ctlr = h->ctlr;
2136 int num_luns;
2137 ReportLunData_struct *ld_buff = NULL;
2138 int return_code;
2139 int listlength = 0;
2140 int i;
2141 int drv_found;
2142 int drv_index = 0;
2143 unsigned char lunid[8] = CTLR_LUNID;
2144 unsigned long flags;
2145
2146 if (!capable(CAP_SYS_RAWIO))
2147 return -EPERM;
2148
2149 /* Set busy_configuring flag for this operation */
2150 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2151 if (h->busy_configuring) {
2152 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2153 return -EBUSY;
2154 }
2155 h->busy_configuring = 1;
2156 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2157
2158 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2159 if (ld_buff == NULL)
2160 goto mem_msg;
2161
2162 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2163 sizeof(ReportLunData_struct),
2164 0, CTLR_LUNID, TYPE_CMD);
2165
2166 if (return_code == IO_OK)
2167 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2168 else { /* reading number of logical volumes failed */
2169 printk(KERN_WARNING "cciss: report logical volume"
2170 " command failed\n");
2171 listlength = 0;
2172 goto freeret;
2173 }
2174
2175 num_luns = listlength / 8; /* 8 bytes per entry */
2176 if (num_luns > CISS_MAX_LUN) {
2177 num_luns = CISS_MAX_LUN;
2178 printk(KERN_WARNING "cciss: more luns configured"
2179 " on controller than can be handled by"
2180 " this driver.\n");
2181 }
2182
2183 if (num_luns == 0)
2184 cciss_add_controller_node(h);
2185
2186 /* Compare controller drive array to driver's drive array
2187 * to see if any drives are missing on the controller due
2188 * to action of Array Config Utility (user deletes drive)
2189 * and deregister logical drives which have disappeared.
2190 */
2191 for (i = 0; i <= h->highest_lun; i++) {
2192 int j;
2193 drv_found = 0;
2194
2195 /* skip holes in the array from already deleted drives */
2196 if (h->drv[i] == NULL)
2197 continue;
2198
2199 for (j = 0; j < num_luns; j++) {
2200 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2201 if (memcmp(h->drv[i]->LunID, lunid,
2202 sizeof(lunid)) == 0) {
2203 drv_found = 1;
2204 break;
2205 }
2206 }
2207 if (!drv_found) {
2208 /* Deregister it from the OS, it's gone. */
2209 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2210 h->drv[i]->busy_configuring = 1;
2211 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2212 return_code = deregister_disk(h, i, 1, via_ioctl);
2213 if (h->drv[i] != NULL)
2214 h->drv[i]->busy_configuring = 0;
2215 }
2216 }
2217
2218 /* Compare controller drive array to driver's drive array.
2219 * Check for updates in the drive information and any new drives
2220 * on the controller due to ACU adding logical drives, or changing
2221 * a logical drive's size, etc. Reregister any new/changed drives
2222 */
2223 for (i = 0; i < num_luns; i++) {
2224 int j;
2225
2226 drv_found = 0;
2227
2228 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2229 /* Find if the LUN is already in the drive array
2230 * of the driver. If so then update its info
2231 * if not in use. If it does not exist then find
2232 * the first free index and add it.
2233 */
2234 for (j = 0; j <= h->highest_lun; j++) {
2235 if (h->drv[j] != NULL &&
2236 memcmp(h->drv[j]->LunID, lunid,
2237 sizeof(h->drv[j]->LunID)) == 0) {
2238 drv_index = j;
2239 drv_found = 1;
2240 break;
2241 }
2242 }
2243
2244 /* check if the drive was found already in the array */
2245 if (!drv_found) {
2246 drv_index = cciss_add_gendisk(h, lunid, 0);
2247 if (drv_index == -1)
2248 goto freeret;
2249 }
2250 cciss_update_drive_info(ctlr, drv_index, first_time,
2251 via_ioctl);
2252 } /* end for */
2253
2254 freeret:
2255 kfree(ld_buff);
2256 h->busy_configuring = 0;
2257 /* We return -1 here to tell the ACU that we have registered/updated
2258 * all of the drives that we can and to keep it from calling us
2259 * additional times.
2260 */
2261 return -1;
2262 mem_msg:
2263 printk(KERN_ERR "cciss: out of memory\n");
2264 h->busy_configuring = 0;
2265 goto freeret;
2266 }
2267
2268 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2269 {
2270 /* zero out the disk size info */
2271 drive_info->nr_blocks = 0;
2272 drive_info->block_size = 0;
2273 drive_info->heads = 0;
2274 drive_info->sectors = 0;
2275 drive_info->cylinders = 0;
2276 drive_info->raid_level = -1;
2277 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2278 memset(drive_info->model, 0, sizeof(drive_info->model));
2279 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2280 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2281 /*
2282 * don't clear the LUNID though, we need to remember which
2283 * one this one is.
2284 */
2285 }
2286
2287 /* This function will deregister the disk and it's queue from the
2288 * kernel. It must be called with the controller lock held and the
2289 * drv structures busy_configuring flag set. It's parameters are:
2290 *
2291 * disk = This is the disk to be deregistered
2292 * drv = This is the drive_info_struct associated with the disk to be
2293 * deregistered. It contains information about the disk used
2294 * by the driver.
2295 * clear_all = This flag determines whether or not the disk information
2296 * is going to be completely cleared out and the highest_lun
2297 * reset. Sometimes we want to clear out information about
2298 * the disk in preparation for re-adding it. In this case
2299 * the highest_lun should be left unchanged and the LunID
2300 * should not be cleared.
2301 * via_ioctl
2302 * This indicates whether we've reached this path via ioctl.
2303 * This affects the maximum usage count allowed for c0d0 to be messed with.
2304 * If this path is reached via ioctl(), then the max_usage_count will
2305 * be 1, as the process calling ioctl() has got to have the device open.
2306 * If we get here via sysfs, then the max usage count will be zero.
2307 */
2308 static int deregister_disk(ctlr_info_t *h, int drv_index,
2309 int clear_all, int via_ioctl)
2310 {
2311 int i;
2312 struct gendisk *disk;
2313 drive_info_struct *drv;
2314 int recalculate_highest_lun;
2315
2316 if (!capable(CAP_SYS_RAWIO))
2317 return -EPERM;
2318
2319 drv = h->drv[drv_index];
2320 disk = h->gendisk[drv_index];
2321
2322 /* make sure logical volume is NOT is use */
2323 if (clear_all || (h->gendisk[0] == disk)) {
2324 if (drv->usage_count > via_ioctl)
2325 return -EBUSY;
2326 } else if (drv->usage_count > 0)
2327 return -EBUSY;
2328
2329 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2330
2331 /* invalidate the devices and deregister the disk. If it is disk
2332 * zero do not deregister it but just zero out it's values. This
2333 * allows us to delete disk zero but keep the controller registered.
2334 */
2335 if (h->gendisk[0] != disk) {
2336 struct request_queue *q = disk->queue;
2337 if (disk->flags & GENHD_FL_UP) {
2338 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2339 del_gendisk(disk);
2340 }
2341 if (q)
2342 blk_cleanup_queue(q);
2343 /* If clear_all is set then we are deleting the logical
2344 * drive, not just refreshing its info. For drives
2345 * other than disk 0 we will call put_disk. We do not
2346 * do this for disk 0 as we need it to be able to
2347 * configure the controller.
2348 */
2349 if (clear_all){
2350 /* This isn't pretty, but we need to find the
2351 * disk in our array and NULL our the pointer.
2352 * This is so that we will call alloc_disk if
2353 * this index is used again later.
2354 */
2355 for (i=0; i < CISS_MAX_LUN; i++){
2356 if (h->gendisk[i] == disk) {
2357 h->gendisk[i] = NULL;
2358 break;
2359 }
2360 }
2361 put_disk(disk);
2362 }
2363 } else {
2364 set_capacity(disk, 0);
2365 cciss_clear_drive_info(drv);
2366 }
2367
2368 --h->num_luns;
2369
2370 /* if it was the last disk, find the new hightest lun */
2371 if (clear_all && recalculate_highest_lun) {
2372 int i, newhighest = -1;
2373 for (i = 0; i <= h->highest_lun; i++) {
2374 /* if the disk has size > 0, it is available */
2375 if (h->drv[i] && h->drv[i]->heads)
2376 newhighest = i;
2377 }
2378 h->highest_lun = newhighest;
2379 }
2380 return 0;
2381 }
2382
2383 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2384 size_t size, __u8 page_code, unsigned char *scsi3addr,
2385 int cmd_type)
2386 {
2387 ctlr_info_t *h = hba[ctlr];
2388 u64bit buff_dma_handle;
2389 int status = IO_OK;
2390
2391 c->cmd_type = CMD_IOCTL_PEND;
2392 c->Header.ReplyQueue = 0;
2393 if (buff != NULL) {
2394 c->Header.SGList = 1;
2395 c->Header.SGTotal = 1;
2396 } else {
2397 c->Header.SGList = 0;
2398 c->Header.SGTotal = 0;
2399 }
2400 c->Header.Tag.lower = c->busaddr;
2401 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2402
2403 c->Request.Type.Type = cmd_type;
2404 if (cmd_type == TYPE_CMD) {
2405 switch (cmd) {
2406 case CISS_INQUIRY:
2407 /* are we trying to read a vital product page */
2408 if (page_code != 0) {
2409 c->Request.CDB[1] = 0x01;
2410 c->Request.CDB[2] = page_code;
2411 }
2412 c->Request.CDBLen = 6;
2413 c->Request.Type.Attribute = ATTR_SIMPLE;
2414 c->Request.Type.Direction = XFER_READ;
2415 c->Request.Timeout = 0;
2416 c->Request.CDB[0] = CISS_INQUIRY;
2417 c->Request.CDB[4] = size & 0xFF;
2418 break;
2419 case CISS_REPORT_LOG:
2420 case CISS_REPORT_PHYS:
2421 /* Talking to controller so It's a physical command
2422 mode = 00 target = 0. Nothing to write.
2423 */
2424 c->Request.CDBLen = 12;
2425 c->Request.Type.Attribute = ATTR_SIMPLE;
2426 c->Request.Type.Direction = XFER_READ;
2427 c->Request.Timeout = 0;
2428 c->Request.CDB[0] = cmd;
2429 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2430 c->Request.CDB[7] = (size >> 16) & 0xFF;
2431 c->Request.CDB[8] = (size >> 8) & 0xFF;
2432 c->Request.CDB[9] = size & 0xFF;
2433 break;
2434
2435 case CCISS_READ_CAPACITY:
2436 c->Request.CDBLen = 10;
2437 c->Request.Type.Attribute = ATTR_SIMPLE;
2438 c->Request.Type.Direction = XFER_READ;
2439 c->Request.Timeout = 0;
2440 c->Request.CDB[0] = cmd;
2441 break;
2442 case CCISS_READ_CAPACITY_16:
2443 c->Request.CDBLen = 16;
2444 c->Request.Type.Attribute = ATTR_SIMPLE;
2445 c->Request.Type.Direction = XFER_READ;
2446 c->Request.Timeout = 0;
2447 c->Request.CDB[0] = cmd;
2448 c->Request.CDB[1] = 0x10;
2449 c->Request.CDB[10] = (size >> 24) & 0xFF;
2450 c->Request.CDB[11] = (size >> 16) & 0xFF;
2451 c->Request.CDB[12] = (size >> 8) & 0xFF;
2452 c->Request.CDB[13] = size & 0xFF;
2453 c->Request.Timeout = 0;
2454 c->Request.CDB[0] = cmd;
2455 break;
2456 case CCISS_CACHE_FLUSH:
2457 c->Request.CDBLen = 12;
2458 c->Request.Type.Attribute = ATTR_SIMPLE;
2459 c->Request.Type.Direction = XFER_WRITE;
2460 c->Request.Timeout = 0;
2461 c->Request.CDB[0] = BMIC_WRITE;
2462 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2463 break;
2464 case TEST_UNIT_READY:
2465 c->Request.CDBLen = 6;
2466 c->Request.Type.Attribute = ATTR_SIMPLE;
2467 c->Request.Type.Direction = XFER_NONE;
2468 c->Request.Timeout = 0;
2469 break;
2470 default:
2471 printk(KERN_WARNING
2472 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2473 return IO_ERROR;
2474 }
2475 } else if (cmd_type == TYPE_MSG) {
2476 switch (cmd) {
2477 case 0: /* ABORT message */
2478 c->Request.CDBLen = 12;
2479 c->Request.Type.Attribute = ATTR_SIMPLE;
2480 c->Request.Type.Direction = XFER_WRITE;
2481 c->Request.Timeout = 0;
2482 c->Request.CDB[0] = cmd; /* abort */
2483 c->Request.CDB[1] = 0; /* abort a command */
2484 /* buff contains the tag of the command to abort */
2485 memcpy(&c->Request.CDB[4], buff, 8);
2486 break;
2487 case 1: /* RESET message */
2488 c->Request.CDBLen = 16;
2489 c->Request.Type.Attribute = ATTR_SIMPLE;
2490 c->Request.Type.Direction = XFER_NONE;
2491 c->Request.Timeout = 0;
2492 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2493 c->Request.CDB[0] = cmd; /* reset */
2494 c->Request.CDB[1] = 0x03; /* reset a target */
2495 break;
2496 case 3: /* No-Op message */
2497 c->Request.CDBLen = 1;
2498 c->Request.Type.Attribute = ATTR_SIMPLE;
2499 c->Request.Type.Direction = XFER_WRITE;
2500 c->Request.Timeout = 0;
2501 c->Request.CDB[0] = cmd;
2502 break;
2503 default:
2504 printk(KERN_WARNING
2505 "cciss%d: unknown message type %d\n", ctlr, cmd);
2506 return IO_ERROR;
2507 }
2508 } else {
2509 printk(KERN_WARNING
2510 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2511 return IO_ERROR;
2512 }
2513 /* Fill in the scatter gather information */
2514 if (size > 0) {
2515 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2516 buff, size,
2517 PCI_DMA_BIDIRECTIONAL);
2518 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2519 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2520 c->SG[0].Len = size;
2521 c->SG[0].Ext = 0; /* we are not chaining */
2522 }
2523 return status;
2524 }
2525
2526 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2527 {
2528 switch (c->err_info->ScsiStatus) {
2529 case SAM_STAT_GOOD:
2530 return IO_OK;
2531 case SAM_STAT_CHECK_CONDITION:
2532 switch (0xf & c->err_info->SenseInfo[2]) {
2533 case 0: return IO_OK; /* no sense */
2534 case 1: return IO_OK; /* recovered error */
2535 default:
2536 if (check_for_unit_attention(h, c))
2537 return IO_NEEDS_RETRY;
2538 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2539 "check condition, sense key = 0x%02x\n",
2540 h->ctlr, c->Request.CDB[0],
2541 c->err_info->SenseInfo[2]);
2542 }
2543 break;
2544 default:
2545 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2546 "scsi status = 0x%02x\n", h->ctlr,
2547 c->Request.CDB[0], c->err_info->ScsiStatus);
2548 break;
2549 }
2550 return IO_ERROR;
2551 }
2552
2553 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2554 {
2555 int return_status = IO_OK;
2556
2557 if (c->err_info->CommandStatus == CMD_SUCCESS)
2558 return IO_OK;
2559
2560 switch (c->err_info->CommandStatus) {
2561 case CMD_TARGET_STATUS:
2562 return_status = check_target_status(h, c);
2563 break;
2564 case CMD_DATA_UNDERRUN:
2565 case CMD_DATA_OVERRUN:
2566 /* expected for inquiry and report lun commands */
2567 break;
2568 case CMD_INVALID:
2569 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2570 "reported invalid\n", c->Request.CDB[0]);
2571 return_status = IO_ERROR;
2572 break;
2573 case CMD_PROTOCOL_ERR:
2574 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2575 "protocol error \n", c->Request.CDB[0]);
2576 return_status = IO_ERROR;
2577 break;
2578 case CMD_HARDWARE_ERR:
2579 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2580 " hardware error\n", c->Request.CDB[0]);
2581 return_status = IO_ERROR;
2582 break;
2583 case CMD_CONNECTION_LOST:
2584 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2585 "connection lost\n", c->Request.CDB[0]);
2586 return_status = IO_ERROR;
2587 break;
2588 case CMD_ABORTED:
2589 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2590 "aborted\n", c->Request.CDB[0]);
2591 return_status = IO_ERROR;
2592 break;
2593 case CMD_ABORT_FAILED:
2594 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2595 "abort failed\n", c->Request.CDB[0]);
2596 return_status = IO_ERROR;
2597 break;
2598 case CMD_UNSOLICITED_ABORT:
2599 printk(KERN_WARNING
2600 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2601 c->Request.CDB[0]);
2602 return_status = IO_NEEDS_RETRY;
2603 break;
2604 default:
2605 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2606 "unknown status %x\n", c->Request.CDB[0],
2607 c->err_info->CommandStatus);
2608 return_status = IO_ERROR;
2609 }
2610 return return_status;
2611 }
2612
2613 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2614 int attempt_retry)
2615 {
2616 DECLARE_COMPLETION_ONSTACK(wait);
2617 u64bit buff_dma_handle;
2618 unsigned long flags;
2619 int return_status = IO_OK;
2620
2621 resend_cmd2:
2622 c->waiting = &wait;
2623 /* Put the request on the tail of the queue and send it */
2624 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2625 addQ(&h->reqQ, c);
2626 h->Qdepth++;
2627 start_io(h);
2628 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2629
2630 wait_for_completion(&wait);
2631
2632 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2633 goto command_done;
2634
2635 return_status = process_sendcmd_error(h, c);
2636
2637 if (return_status == IO_NEEDS_RETRY &&
2638 c->retry_count < MAX_CMD_RETRIES) {
2639 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2640 c->Request.CDB[0]);
2641 c->retry_count++;
2642 /* erase the old error information */
2643 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2644 return_status = IO_OK;
2645 INIT_COMPLETION(wait);
2646 goto resend_cmd2;
2647 }
2648
2649 command_done:
2650 /* unlock the buffers from DMA */
2651 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2652 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2653 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2654 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2655 return return_status;
2656 }
2657
2658 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2659 __u8 page_code, unsigned char scsi3addr[],
2660 int cmd_type)
2661 {
2662 ctlr_info_t *h = hba[ctlr];
2663 CommandList_struct *c;
2664 int return_status;
2665
2666 c = cmd_alloc(h, 0);
2667 if (!c)
2668 return -ENOMEM;
2669 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2670 scsi3addr, cmd_type);
2671 if (return_status == IO_OK)
2672 return_status = sendcmd_withirq_core(h, c, 1);
2673
2674 cmd_free(h, c, 0);
2675 return return_status;
2676 }
2677
2678 static void cciss_geometry_inquiry(int ctlr, int logvol,
2679 sector_t total_size,
2680 unsigned int block_size,
2681 InquiryData_struct *inq_buff,
2682 drive_info_struct *drv)
2683 {
2684 int return_code;
2685 unsigned long t;
2686 unsigned char scsi3addr[8];
2687
2688 memset(inq_buff, 0, sizeof(InquiryData_struct));
2689 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2690 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2691 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2692 if (return_code == IO_OK) {
2693 if (inq_buff->data_byte[8] == 0xFF) {
2694 printk(KERN_WARNING
2695 "cciss: reading geometry failed, volume "
2696 "does not support reading geometry\n");
2697 drv->heads = 255;
2698 drv->sectors = 32; /* Sectors per track */
2699 drv->cylinders = total_size + 1;
2700 drv->raid_level = RAID_UNKNOWN;
2701 } else {
2702 drv->heads = inq_buff->data_byte[6];
2703 drv->sectors = inq_buff->data_byte[7];
2704 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2705 drv->cylinders += inq_buff->data_byte[5];
2706 drv->raid_level = inq_buff->data_byte[8];
2707 }
2708 drv->block_size = block_size;
2709 drv->nr_blocks = total_size + 1;
2710 t = drv->heads * drv->sectors;
2711 if (t > 1) {
2712 sector_t real_size = total_size + 1;
2713 unsigned long rem = sector_div(real_size, t);
2714 if (rem)
2715 real_size++;
2716 drv->cylinders = real_size;
2717 }
2718 } else { /* Get geometry failed */
2719 printk(KERN_WARNING "cciss: reading geometry failed\n");
2720 }
2721 }
2722
2723 static void
2724 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2725 unsigned int *block_size)
2726 {
2727 ReadCapdata_struct *buf;
2728 int return_code;
2729 unsigned char scsi3addr[8];
2730
2731 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2732 if (!buf) {
2733 printk(KERN_WARNING "cciss: out of memory\n");
2734 return;
2735 }
2736
2737 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2738 return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2739 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2740 if (return_code == IO_OK) {
2741 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2742 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2743 } else { /* read capacity command failed */
2744 printk(KERN_WARNING "cciss: read capacity failed\n");
2745 *total_size = 0;
2746 *block_size = BLOCK_SIZE;
2747 }
2748 kfree(buf);
2749 }
2750
2751 static void cciss_read_capacity_16(int ctlr, int logvol,
2752 sector_t *total_size, unsigned int *block_size)
2753 {
2754 ReadCapdata_struct_16 *buf;
2755 int return_code;
2756 unsigned char scsi3addr[8];
2757
2758 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2759 if (!buf) {
2760 printk(KERN_WARNING "cciss: out of memory\n");
2761 return;
2762 }
2763
2764 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2765 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2766 ctlr, buf, sizeof(ReadCapdata_struct_16),
2767 0, scsi3addr, TYPE_CMD);
2768 if (return_code == IO_OK) {
2769 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2770 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2771 } else { /* read capacity command failed */
2772 printk(KERN_WARNING "cciss: read capacity failed\n");
2773 *total_size = 0;
2774 *block_size = BLOCK_SIZE;
2775 }
2776 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2777 (unsigned long long)*total_size+1, *block_size);
2778 kfree(buf);
2779 }
2780
2781 static int cciss_revalidate(struct gendisk *disk)
2782 {
2783 ctlr_info_t *h = get_host(disk);
2784 drive_info_struct *drv = get_drv(disk);
2785 int logvol;
2786 int FOUND = 0;
2787 unsigned int block_size;
2788 sector_t total_size;
2789 InquiryData_struct *inq_buff = NULL;
2790
2791 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2792 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2793 sizeof(drv->LunID)) == 0) {
2794 FOUND = 1;
2795 break;
2796 }
2797 }
2798
2799 if (!FOUND)
2800 return 1;
2801
2802 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2803 if (inq_buff == NULL) {
2804 printk(KERN_WARNING "cciss: out of memory\n");
2805 return 1;
2806 }
2807 if (h->cciss_read == CCISS_READ_10) {
2808 cciss_read_capacity(h->ctlr, logvol,
2809 &total_size, &block_size);
2810 } else {
2811 cciss_read_capacity_16(h->ctlr, logvol,
2812 &total_size, &block_size);
2813 }
2814 cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2815 inq_buff, drv);
2816
2817 blk_queue_logical_block_size(drv->queue, drv->block_size);
2818 set_capacity(disk, drv->nr_blocks);
2819
2820 kfree(inq_buff);
2821 return 0;
2822 }
2823
2824 /*
2825 * Map (physical) PCI mem into (virtual) kernel space
2826 */
2827 static void __iomem *remap_pci_mem(ulong base, ulong size)
2828 {
2829 ulong page_base = ((ulong) base) & PAGE_MASK;
2830 ulong page_offs = ((ulong) base) - page_base;
2831 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2832
2833 return page_remapped ? (page_remapped + page_offs) : NULL;
2834 }
2835
2836 /*
2837 * Takes jobs of the Q and sends them to the hardware, then puts it on
2838 * the Q to wait for completion.
2839 */
2840 static void start_io(ctlr_info_t *h)
2841 {
2842 CommandList_struct *c;
2843
2844 while (!hlist_empty(&h->reqQ)) {
2845 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2846 /* can't do anything if fifo is full */
2847 if ((h->access.fifo_full(h))) {
2848 printk(KERN_WARNING "cciss: fifo full\n");
2849 break;
2850 }
2851
2852 /* Get the first entry from the Request Q */
2853 removeQ(c);
2854 h->Qdepth--;
2855
2856 /* Tell the controller execute command */
2857 h->access.submit_command(h, c);
2858
2859 /* Put job onto the completed Q */
2860 addQ(&h->cmpQ, c);
2861 }
2862 }
2863
2864 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2865 /* Zeros out the error record and then resends the command back */
2866 /* to the controller */
2867 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2868 {
2869 /* erase the old error information */
2870 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2871
2872 /* add it to software queue and then send it to the controller */
2873 addQ(&h->reqQ, c);
2874 h->Qdepth++;
2875 if (h->Qdepth > h->maxQsinceinit)
2876 h->maxQsinceinit = h->Qdepth;
2877
2878 start_io(h);
2879 }
2880
2881 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2882 unsigned int msg_byte, unsigned int host_byte,
2883 unsigned int driver_byte)
2884 {
2885 /* inverse of macros in scsi.h */
2886 return (scsi_status_byte & 0xff) |
2887 ((msg_byte & 0xff) << 8) |
2888 ((host_byte & 0xff) << 16) |
2889 ((driver_byte & 0xff) << 24);
2890 }
2891
2892 static inline int evaluate_target_status(ctlr_info_t *h,
2893 CommandList_struct *cmd, int *retry_cmd)
2894 {
2895 unsigned char sense_key;
2896 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2897 int error_value;
2898
2899 *retry_cmd = 0;
2900 /* If we get in here, it means we got "target status", that is, scsi status */
2901 status_byte = cmd->err_info->ScsiStatus;
2902 driver_byte = DRIVER_OK;
2903 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2904
2905 if (blk_pc_request(cmd->rq))
2906 host_byte = DID_PASSTHROUGH;
2907 else
2908 host_byte = DID_OK;
2909
2910 error_value = make_status_bytes(status_byte, msg_byte,
2911 host_byte, driver_byte);
2912
2913 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2914 if (!blk_pc_request(cmd->rq))
2915 printk(KERN_WARNING "cciss: cmd %p "
2916 "has SCSI Status 0x%x\n",
2917 cmd, cmd->err_info->ScsiStatus);
2918 return error_value;
2919 }
2920
2921 /* check the sense key */
2922 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2923 /* no status or recovered error */
2924 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2925 error_value = 0;
2926
2927 if (check_for_unit_attention(h, cmd)) {
2928 *retry_cmd = !blk_pc_request(cmd->rq);
2929 return 0;
2930 }
2931
2932 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2933 if (error_value != 0)
2934 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2935 " sense key = 0x%x\n", cmd, sense_key);
2936 return error_value;
2937 }
2938
2939 /* SG_IO or similar, copy sense data back */
2940 if (cmd->rq->sense) {
2941 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2942 cmd->rq->sense_len = cmd->err_info->SenseLen;
2943 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2944 cmd->rq->sense_len);
2945 } else
2946 cmd->rq->sense_len = 0;
2947
2948 return error_value;
2949 }
2950
2951 /* checks the status of the job and calls complete buffers to mark all
2952 * buffers for the completed job. Note that this function does not need
2953 * to hold the hba/queue lock.
2954 */
2955 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2956 int timeout)
2957 {
2958 int retry_cmd = 0;
2959 struct request *rq = cmd->rq;
2960
2961 rq->errors = 0;
2962
2963 if (timeout)
2964 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2965
2966 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2967 goto after_error_processing;
2968
2969 switch (cmd->err_info->CommandStatus) {
2970 case CMD_TARGET_STATUS:
2971 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2972 break;
2973 case CMD_DATA_UNDERRUN:
2974 if (blk_fs_request(cmd->rq)) {
2975 printk(KERN_WARNING "cciss: cmd %p has"
2976 " completed with data underrun "
2977 "reported\n", cmd);
2978 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2979 }
2980 break;
2981 case CMD_DATA_OVERRUN:
2982 if (blk_fs_request(cmd->rq))
2983 printk(KERN_WARNING "cciss: cmd %p has"
2984 " completed with data overrun "
2985 "reported\n", cmd);
2986 break;
2987 case CMD_INVALID:
2988 printk(KERN_WARNING "cciss: cmd %p is "
2989 "reported invalid\n", cmd);
2990 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2991 cmd->err_info->CommandStatus, DRIVER_OK,
2992 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2993 break;
2994 case CMD_PROTOCOL_ERR:
2995 printk(KERN_WARNING "cciss: cmd %p has "
2996 "protocol error \n", cmd);
2997 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2998 cmd->err_info->CommandStatus, DRIVER_OK,
2999 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3000 break;
3001 case CMD_HARDWARE_ERR:
3002 printk(KERN_WARNING "cciss: cmd %p had "
3003 " hardware error\n", cmd);
3004 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3005 cmd->err_info->CommandStatus, DRIVER_OK,
3006 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3007 break;
3008 case CMD_CONNECTION_LOST:
3009 printk(KERN_WARNING "cciss: cmd %p had "
3010 "connection lost\n", cmd);
3011 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3012 cmd->err_info->CommandStatus, DRIVER_OK,
3013 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3014 break;
3015 case CMD_ABORTED:
3016 printk(KERN_WARNING "cciss: cmd %p was "
3017 "aborted\n", cmd);
3018 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3019 cmd->err_info->CommandStatus, DRIVER_OK,
3020 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3021 break;
3022 case CMD_ABORT_FAILED:
3023 printk(KERN_WARNING "cciss: cmd %p reports "
3024 "abort failed\n", cmd);
3025 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3026 cmd->err_info->CommandStatus, DRIVER_OK,
3027 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3028 break;
3029 case CMD_UNSOLICITED_ABORT:
3030 printk(KERN_WARNING "cciss%d: unsolicited "
3031 "abort %p\n", h->ctlr, cmd);
3032 if (cmd->retry_count < MAX_CMD_RETRIES) {
3033 retry_cmd = 1;
3034 printk(KERN_WARNING
3035 "cciss%d: retrying %p\n", h->ctlr, cmd);
3036 cmd->retry_count++;
3037 } else
3038 printk(KERN_WARNING
3039 "cciss%d: %p retried too "
3040 "many times\n", h->ctlr, cmd);
3041 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3042 cmd->err_info->CommandStatus, DRIVER_OK,
3043 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3044 break;
3045 case CMD_TIMEOUT:
3046 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3047 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3048 cmd->err_info->CommandStatus, DRIVER_OK,
3049 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3050 break;
3051 default:
3052 printk(KERN_WARNING "cciss: cmd %p returned "
3053 "unknown status %x\n", cmd,
3054 cmd->err_info->CommandStatus);
3055 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3056 cmd->err_info->CommandStatus, DRIVER_OK,
3057 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3058 }
3059
3060 after_error_processing:
3061
3062 /* We need to return this command */
3063 if (retry_cmd) {
3064 resend_cciss_cmd(h, cmd);
3065 return;
3066 }
3067 cmd->rq->completion_data = cmd;
3068 blk_complete_request(cmd->rq);
3069 }
3070
3071 /*
3072 * Get a request and submit it to the controller.
3073 */
3074 static void do_cciss_request(struct request_queue *q)
3075 {
3076 ctlr_info_t *h = q->queuedata;
3077 CommandList_struct *c;
3078 sector_t start_blk;
3079 int seg;
3080 struct request *creq;
3081 u64bit temp64;
3082 struct scatterlist *tmp_sg;
3083 SGDescriptor_struct *curr_sg;
3084 drive_info_struct *drv;
3085 int i, dir;
3086 int nseg = 0;
3087 int sg_index = 0;
3088 int chained = 0;
3089
3090 /* We call start_io here in case there is a command waiting on the
3091 * queue that has not been sent.
3092 */
3093 if (blk_queue_plugged(q))
3094 goto startio;
3095
3096 queue:
3097 creq = blk_peek_request(q);
3098 if (!creq)
3099 goto startio;
3100
3101 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3102
3103 if ((c = cmd_alloc(h, 1)) == NULL)
3104 goto full;
3105
3106 blk_start_request(creq);
3107
3108 tmp_sg = h->scatter_list[c->cmdindex];
3109 spin_unlock_irq(q->queue_lock);
3110
3111 c->cmd_type = CMD_RWREQ;
3112 c->rq = creq;
3113
3114 /* fill in the request */
3115 drv = creq->rq_disk->private_data;
3116 c->Header.ReplyQueue = 0; /* unused in simple mode */
3117 /* got command from pool, so use the command block index instead */
3118 /* for direct lookups. */
3119 /* The first 2 bits are reserved for controller error reporting. */
3120 c->Header.Tag.lower = (c->cmdindex << 3);
3121 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3122 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3123 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3124 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3125 c->Request.Type.Attribute = ATTR_SIMPLE;
3126 c->Request.Type.Direction =
3127 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3128 c->Request.Timeout = 0; /* Don't time out */
3129 c->Request.CDB[0] =
3130 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3131 start_blk = blk_rq_pos(creq);
3132 #ifdef CCISS_DEBUG
3133 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3134 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3135 #endif /* CCISS_DEBUG */
3136
3137 sg_init_table(tmp_sg, h->maxsgentries);
3138 seg = blk_rq_map_sg(q, creq, tmp_sg);
3139
3140 /* get the DMA records for the setup */
3141 if (c->Request.Type.Direction == XFER_READ)
3142 dir = PCI_DMA_FROMDEVICE;
3143 else
3144 dir = PCI_DMA_TODEVICE;
3145
3146 curr_sg = c->SG;
3147 sg_index = 0;
3148 chained = 0;
3149
3150 for (i = 0; i < seg; i++) {
3151 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3152 !chained && ((seg - i) > 1)) {
3153 nseg = seg - i;
3154 curr_sg[sg_index].Len = (nseg) *
3155 sizeof(SGDescriptor_struct);
3156 curr_sg[sg_index].Ext = CCISS_SG_CHAIN;
3157
3158 /* Point to next chain block. */
3159 curr_sg = h->cmd_sg_list[c->cmdindex]->sgchain;
3160 sg_index = 0;
3161 chained = 1;
3162 }
3163 curr_sg[sg_index].Len = tmp_sg[i].length;
3164 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3165 tmp_sg[i].offset,
3166 tmp_sg[i].length, dir);
3167 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3168 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3169 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3170
3171 ++sg_index;
3172 }
3173
3174 if (chained) {
3175 int len;
3176 curr_sg = c->SG;
3177 sg_index = h->max_cmd_sgentries - 1;
3178 len = curr_sg[sg_index].Len;
3179 /* Setup pointer to next chain block.
3180 * Fill out last element in current chain
3181 * block with address of next chain block.
3182 */
3183 temp64.val = pci_map_single(h->pdev,
3184 h->cmd_sg_list[c->cmdindex]->sgchain,
3185 len, dir);
3186
3187 h->cmd_sg_list[c->cmdindex]->sg_chain_dma = temp64.val;
3188 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3189 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3190
3191 pci_dma_sync_single_for_device(h->pdev,
3192 h->cmd_sg_list[c->cmdindex]->sg_chain_dma,
3193 len, dir);
3194 }
3195
3196 /* track how many SG entries we are using */
3197 if (seg > h->maxSG)
3198 h->maxSG = seg;
3199
3200 #ifdef CCISS_DEBUG
3201 printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3202 "chained[%d]\n",
3203 blk_rq_sectors(creq), seg, chained);
3204 #endif /* CCISS_DEBUG */
3205
3206 c->Header.SGList = c->Header.SGTotal = seg + chained;
3207 if (seg > h->max_cmd_sgentries)
3208 c->Header.SGList = h->max_cmd_sgentries;
3209
3210 if (likely(blk_fs_request(creq))) {
3211 if(h->cciss_read == CCISS_READ_10) {
3212 c->Request.CDB[1] = 0;
3213 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3214 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3215 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3216 c->Request.CDB[5] = start_blk & 0xff;
3217 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3218 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3219 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3220 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3221 } else {
3222 u32 upper32 = upper_32_bits(start_blk);
3223
3224 c->Request.CDBLen = 16;
3225 c->Request.CDB[1]= 0;
3226 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3227 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3228 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3229 c->Request.CDB[5]= upper32 & 0xff;
3230 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3231 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3232 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3233 c->Request.CDB[9]= start_blk & 0xff;
3234 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3235 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3236 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3237 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3238 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3239 }
3240 } else if (blk_pc_request(creq)) {
3241 c->Request.CDBLen = creq->cmd_len;
3242 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3243 } else {
3244 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3245 BUG();
3246 }
3247
3248 spin_lock_irq(q->queue_lock);
3249
3250 addQ(&h->reqQ, c);
3251 h->Qdepth++;
3252 if (h->Qdepth > h->maxQsinceinit)
3253 h->maxQsinceinit = h->Qdepth;
3254
3255 goto queue;
3256 full:
3257 blk_stop_queue(q);
3258 startio:
3259 /* We will already have the driver lock here so not need
3260 * to lock it.
3261 */
3262 start_io(h);
3263 }
3264
3265 static inline unsigned long get_next_completion(ctlr_info_t *h)
3266 {
3267 return h->access.command_completed(h);
3268 }
3269
3270 static inline int interrupt_pending(ctlr_info_t *h)
3271 {
3272 return h->access.intr_pending(h);
3273 }
3274
3275 static inline long interrupt_not_for_us(ctlr_info_t *h)
3276 {
3277 return (((h->access.intr_pending(h) == 0) ||
3278 (h->interrupts_enabled == 0)));
3279 }
3280
3281 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3282 {
3283 ctlr_info_t *h = dev_id;
3284 CommandList_struct *c;
3285 unsigned long flags;
3286 __u32 a, a1, a2;
3287
3288 if (interrupt_not_for_us(h))
3289 return IRQ_NONE;
3290 /*
3291 * If there are completed commands in the completion queue,
3292 * we had better do something about it.
3293 */
3294 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3295 while (interrupt_pending(h)) {
3296 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3297 a1 = a;
3298 if ((a & 0x04)) {
3299 a2 = (a >> 3);
3300 if (a2 >= h->nr_cmds) {
3301 printk(KERN_WARNING
3302 "cciss: controller cciss%d failed, stopping.\n",
3303 h->ctlr);
3304 fail_all_cmds(h->ctlr);
3305 return IRQ_HANDLED;
3306 }
3307
3308 c = h->cmd_pool + a2;
3309 a = c->busaddr;
3310
3311 } else {
3312 struct hlist_node *tmp;
3313
3314 a &= ~3;
3315 c = NULL;
3316 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3317 if (c->busaddr == a)
3318 break;
3319 }
3320 }
3321 /*
3322 * If we've found the command, take it off the
3323 * completion Q and free it
3324 */
3325 if (c && c->busaddr == a) {
3326 removeQ(c);
3327 if (c->cmd_type == CMD_RWREQ) {
3328 complete_command(h, c, 0);
3329 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3330 complete(c->waiting);
3331 }
3332 # ifdef CONFIG_CISS_SCSI_TAPE
3333 else if (c->cmd_type == CMD_SCSI)
3334 complete_scsi_command(c, 0, a1);
3335 # endif
3336 continue;
3337 }
3338 }
3339 }
3340
3341 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3342 return IRQ_HANDLED;
3343 }
3344
3345 /**
3346 * add_to_scan_list() - add controller to rescan queue
3347 * @h: Pointer to the controller.
3348 *
3349 * Adds the controller to the rescan queue if not already on the queue.
3350 *
3351 * returns 1 if added to the queue, 0 if skipped (could be on the
3352 * queue already, or the controller could be initializing or shutting
3353 * down).
3354 **/
3355 static int add_to_scan_list(struct ctlr_info *h)
3356 {
3357 struct ctlr_info *test_h;
3358 int found = 0;
3359 int ret = 0;
3360
3361 if (h->busy_initializing)
3362 return 0;
3363
3364 if (!mutex_trylock(&h->busy_shutting_down))
3365 return 0;
3366
3367 mutex_lock(&scan_mutex);
3368 list_for_each_entry(test_h, &scan_q, scan_list) {
3369 if (test_h == h) {
3370 found = 1;
3371 break;
3372 }
3373 }
3374 if (!found && !h->busy_scanning) {
3375 INIT_COMPLETION(h->scan_wait);
3376 list_add_tail(&h->scan_list, &scan_q);
3377 ret = 1;
3378 }
3379 mutex_unlock(&scan_mutex);
3380 mutex_unlock(&h->busy_shutting_down);
3381
3382 return ret;
3383 }
3384
3385 /**
3386 * remove_from_scan_list() - remove controller from rescan queue
3387 * @h: Pointer to the controller.
3388 *
3389 * Removes the controller from the rescan queue if present. Blocks if
3390 * the controller is currently conducting a rescan. The controller
3391 * can be in one of three states:
3392 * 1. Doesn't need a scan
3393 * 2. On the scan list, but not scanning yet (we remove it)
3394 * 3. Busy scanning (and not on the list). In this case we want to wait for
3395 * the scan to complete to make sure the scanning thread for this
3396 * controller is completely idle.
3397 **/
3398 static void remove_from_scan_list(struct ctlr_info *h)
3399 {
3400 struct ctlr_info *test_h, *tmp_h;
3401
3402 mutex_lock(&scan_mutex);
3403 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3404 if (test_h == h) { /* state 2. */
3405 list_del(&h->scan_list);
3406 complete_all(&h->scan_wait);
3407 mutex_unlock(&scan_mutex);
3408 return;
3409 }
3410 }
3411 if (h->busy_scanning) { /* state 3. */
3412 mutex_unlock(&scan_mutex);
3413 wait_for_completion(&h->scan_wait);
3414 } else { /* state 1, nothing to do. */
3415 mutex_unlock(&scan_mutex);
3416 }
3417 }
3418
3419 /**
3420 * scan_thread() - kernel thread used to rescan controllers
3421 * @data: Ignored.
3422 *
3423 * A kernel thread used scan for drive topology changes on
3424 * controllers. The thread processes only one controller at a time
3425 * using a queue. Controllers are added to the queue using
3426 * add_to_scan_list() and removed from the queue either after done
3427 * processing or using remove_from_scan_list().
3428 *
3429 * returns 0.
3430 **/
3431 static int scan_thread(void *data)
3432 {
3433 struct ctlr_info *h;
3434
3435 while (1) {
3436 set_current_state(TASK_INTERRUPTIBLE);
3437 schedule();
3438 if (kthread_should_stop())
3439 break;
3440
3441 while (1) {
3442 mutex_lock(&scan_mutex);
3443 if (list_empty(&scan_q)) {
3444 mutex_unlock(&scan_mutex);
3445 break;
3446 }
3447
3448 h = list_entry(scan_q.next,
3449 struct ctlr_info,
3450 scan_list);
3451 list_del(&h->scan_list);
3452 h->busy_scanning = 1;
3453 mutex_unlock(&scan_mutex);
3454
3455 rebuild_lun_table(h, 0, 0);
3456 complete_all(&h->scan_wait);
3457 mutex_lock(&scan_mutex);
3458 h->busy_scanning = 0;
3459 mutex_unlock(&scan_mutex);
3460 }
3461 }
3462
3463 return 0;
3464 }
3465
3466 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3467 {
3468 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3469 return 0;
3470
3471 switch (c->err_info->SenseInfo[12]) {
3472 case STATE_CHANGED:
3473 printk(KERN_WARNING "cciss%d: a state change "
3474 "detected, command retried\n", h->ctlr);
3475 return 1;
3476 break;
3477 case LUN_FAILED:
3478 printk(KERN_WARNING "cciss%d: LUN failure "
3479 "detected, action required\n", h->ctlr);
3480 return 1;
3481 break;
3482 case REPORT_LUNS_CHANGED:
3483 printk(KERN_WARNING "cciss%d: report LUN data "
3484 "changed\n", h->ctlr);
3485 /*
3486 * Here, we could call add_to_scan_list and wake up the scan thread,
3487 * except that it's quite likely that we will get more than one
3488 * REPORT_LUNS_CHANGED condition in quick succession, which means
3489 * that those which occur after the first one will likely happen
3490 * *during* the scan_thread's rescan. And the rescan code is not
3491 * robust enough to restart in the middle, undoing what it has already
3492 * done, and it's not clear that it's even possible to do this, since
3493 * part of what it does is notify the block layer, which starts
3494 * doing it's own i/o to read partition tables and so on, and the
3495 * driver doesn't have visibility to know what might need undoing.
3496 * In any event, if possible, it is horribly complicated to get right
3497 * so we just don't do it for now.
3498 *
3499 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3500 */
3501 return 1;
3502 break;
3503 case POWER_OR_RESET:
3504 printk(KERN_WARNING "cciss%d: a power on "
3505 "or device reset detected\n", h->ctlr);
3506 return 1;
3507 break;
3508 case UNIT_ATTENTION_CLEARED:
3509 printk(KERN_WARNING "cciss%d: unit attention "
3510 "cleared by another initiator\n", h->ctlr);
3511 return 1;
3512 break;
3513 default:
3514 printk(KERN_WARNING "cciss%d: unknown "
3515 "unit attention detected\n", h->ctlr);
3516 return 1;
3517 }
3518 }
3519
3520 /*
3521 * We cannot read the structure directly, for portability we must use
3522 * the io functions.
3523 * This is for debug only.
3524 */
3525 #ifdef CCISS_DEBUG
3526 static void print_cfg_table(CfgTable_struct *tb)
3527 {
3528 int i;
3529 char temp_name[17];
3530
3531 printk("Controller Configuration information\n");
3532 printk("------------------------------------\n");
3533 for (i = 0; i < 4; i++)
3534 temp_name[i] = readb(&(tb->Signature[i]));
3535 temp_name[4] = '\0';
3536 printk(" Signature = %s\n", temp_name);
3537 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3538 printk(" Transport methods supported = 0x%x\n",
3539 readl(&(tb->TransportSupport)));
3540 printk(" Transport methods active = 0x%x\n",
3541 readl(&(tb->TransportActive)));
3542 printk(" Requested transport Method = 0x%x\n",
3543 readl(&(tb->HostWrite.TransportRequest)));
3544 printk(" Coalesce Interrupt Delay = 0x%x\n",
3545 readl(&(tb->HostWrite.CoalIntDelay)));
3546 printk(" Coalesce Interrupt Count = 0x%x\n",
3547 readl(&(tb->HostWrite.CoalIntCount)));
3548 printk(" Max outstanding commands = 0x%d\n",
3549 readl(&(tb->CmdsOutMax)));
3550 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3551 for (i = 0; i < 16; i++)
3552 temp_name[i] = readb(&(tb->ServerName[i]));
3553 temp_name[16] = '\0';
3554 printk(" Server Name = %s\n", temp_name);
3555 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3556 }
3557 #endif /* CCISS_DEBUG */
3558
3559 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3560 {
3561 int i, offset, mem_type, bar_type;
3562 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3563 return 0;
3564 offset = 0;
3565 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3566 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3567 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3568 offset += 4;
3569 else {
3570 mem_type = pci_resource_flags(pdev, i) &
3571 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3572 switch (mem_type) {
3573 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3574 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3575 offset += 4; /* 32 bit */
3576 break;
3577 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3578 offset += 8;
3579 break;
3580 default: /* reserved in PCI 2.2 */
3581 printk(KERN_WARNING
3582 "Base address is invalid\n");
3583 return -1;
3584 break;
3585 }
3586 }
3587 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3588 return i + 1;
3589 }
3590 return -1;
3591 }
3592
3593 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3594 * controllers that are capable. If not, we use IO-APIC mode.
3595 */
3596
3597 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3598 struct pci_dev *pdev, __u32 board_id)
3599 {
3600 #ifdef CONFIG_PCI_MSI
3601 int err;
3602 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3603 {0, 2}, {0, 3}
3604 };
3605
3606 /* Some boards advertise MSI but don't really support it */
3607 if ((board_id == 0x40700E11) ||
3608 (board_id == 0x40800E11) ||
3609 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3610 goto default_int_mode;
3611
3612 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3613 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3614 if (!err) {
3615 c->intr[0] = cciss_msix_entries[0].vector;
3616 c->intr[1] = cciss_msix_entries[1].vector;
3617 c->intr[2] = cciss_msix_entries[2].vector;
3618 c->intr[3] = cciss_msix_entries[3].vector;
3619 c->msix_vector = 1;
3620 return;
3621 }
3622 if (err > 0) {
3623 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3624 "available\n", err);
3625 goto default_int_mode;
3626 } else {
3627 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3628 err);
3629 goto default_int_mode;
3630 }
3631 }
3632 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3633 if (!pci_enable_msi(pdev)) {
3634 c->msi_vector = 1;
3635 } else {
3636 printk(KERN_WARNING "cciss: MSI init failed\n");
3637 }
3638 }
3639 default_int_mode:
3640 #endif /* CONFIG_PCI_MSI */
3641 /* if we get here we're going to use the default interrupt mode */
3642 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3643 return;
3644 }
3645
3646 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3647 {
3648 ushort subsystem_vendor_id, subsystem_device_id, command;
3649 __u32 board_id, scratchpad = 0;
3650 __u64 cfg_offset;
3651 __u32 cfg_base_addr;
3652 __u64 cfg_base_addr_index;
3653 int i, prod_index, err;
3654
3655 subsystem_vendor_id = pdev->subsystem_vendor;
3656 subsystem_device_id = pdev->subsystem_device;
3657 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3658 subsystem_vendor_id);
3659
3660 for (i = 0; i < ARRAY_SIZE(products); i++) {
3661 /* Stand aside for hpsa driver on request */
3662 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3663 return -ENODEV;
3664 if (board_id == products[i].board_id)
3665 break;
3666 }
3667 prod_index = i;
3668 if (prod_index == ARRAY_SIZE(products)) {
3669 dev_warn(&pdev->dev,
3670 "unrecognized board ID: 0x%08lx, ignoring.\n",
3671 (unsigned long) board_id);
3672 return -ENODEV;
3673 }
3674
3675 /* check to see if controller has been disabled */
3676 /* BEFORE trying to enable it */
3677 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3678 if (!(command & 0x02)) {
3679 printk(KERN_WARNING
3680 "cciss: controller appears to be disabled\n");
3681 return -ENODEV;
3682 }
3683
3684 err = pci_enable_device(pdev);
3685 if (err) {
3686 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3687 return err;
3688 }
3689
3690 err = pci_request_regions(pdev, "cciss");
3691 if (err) {
3692 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3693 "aborting\n");
3694 return err;
3695 }
3696
3697 #ifdef CCISS_DEBUG
3698 printk("command = %x\n", command);
3699 printk("irq = %x\n", pdev->irq);
3700 printk("board_id = %x\n", board_id);
3701 #endif /* CCISS_DEBUG */
3702
3703 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3704 * else we use the IO-APIC interrupt assigned to us by system ROM.
3705 */
3706 cciss_interrupt_mode(c, pdev, board_id);
3707
3708 /* find the memory BAR */
3709 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3710 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3711 break;
3712 }
3713 if (i == DEVICE_COUNT_RESOURCE) {
3714 printk(KERN_WARNING "cciss: No memory BAR found\n");
3715 err = -ENODEV;
3716 goto err_out_free_res;
3717 }
3718
3719 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3720 * already removed
3721 */
3722
3723 #ifdef CCISS_DEBUG
3724 printk("address 0 = %lx\n", c->paddr);
3725 #endif /* CCISS_DEBUG */
3726 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3727
3728 /* Wait for the board to become ready. (PCI hotplug needs this.)
3729 * We poll for up to 120 secs, once per 100ms. */
3730 for (i = 0; i < 1200; i++) {
3731 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3732 if (scratchpad == CCISS_FIRMWARE_READY)
3733 break;
3734 set_current_state(TASK_INTERRUPTIBLE);
3735 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3736 }
3737 if (scratchpad != CCISS_FIRMWARE_READY) {
3738 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3739 err = -ENODEV;
3740 goto err_out_free_res;
3741 }
3742
3743 /* get the address index number */
3744 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3745 cfg_base_addr &= (__u32) 0x0000ffff;
3746 #ifdef CCISS_DEBUG
3747 printk("cfg base address = %x\n", cfg_base_addr);
3748 #endif /* CCISS_DEBUG */
3749 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3750 #ifdef CCISS_DEBUG
3751 printk("cfg base address index = %llx\n",
3752 (unsigned long long)cfg_base_addr_index);
3753 #endif /* CCISS_DEBUG */
3754 if (cfg_base_addr_index == -1) {
3755 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3756 err = -ENODEV;
3757 goto err_out_free_res;
3758 }
3759
3760 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3761 #ifdef CCISS_DEBUG
3762 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3763 #endif /* CCISS_DEBUG */
3764 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3765 cfg_base_addr_index) +
3766 cfg_offset, sizeof(CfgTable_struct));
3767 c->board_id = board_id;
3768
3769 #ifdef CCISS_DEBUG
3770 print_cfg_table(c->cfgtable);
3771 #endif /* CCISS_DEBUG */
3772
3773 /* Some controllers support Zero Memory Raid (ZMR).
3774 * When configured in ZMR mode the number of supported
3775 * commands drops to 64. So instead of just setting an
3776 * arbitrary value we make the driver a little smarter.
3777 * We read the config table to tell us how many commands
3778 * are supported on the controller then subtract 4 to
3779 * leave a little room for ioctl calls.
3780 */
3781 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3782 c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
3783
3784 /*
3785 * Limit native command to 32 s/g elements to save dma'able memory.
3786 * Howvever spec says if 0, use 31
3787 */
3788
3789 c->max_cmd_sgentries = 31;
3790 if (c->maxsgentries > 512) {
3791 c->max_cmd_sgentries = 32;
3792 c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
3793 c->maxsgentries -= 1; /* account for chain pointer */
3794 } else {
3795 c->maxsgentries = 31; /* Default to traditional value */
3796 c->chainsize = 0; /* traditional */
3797 }
3798
3799 c->product_name = products[prod_index].product_name;
3800 c->access = *(products[prod_index].access);
3801 c->nr_cmds = c->max_commands - 4;
3802 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3803 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3804 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3805 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3806 printk("Does not appear to be a valid CISS config table\n");
3807 err = -ENODEV;
3808 goto err_out_free_res;
3809 }
3810 #ifdef CONFIG_X86
3811 {
3812 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3813 __u32 prefetch;
3814 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3815 prefetch |= 0x100;
3816 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3817 }
3818 #endif
3819
3820 /* Disabling DMA prefetch and refetch for the P600.
3821 * An ASIC bug may result in accesses to invalid memory addresses.
3822 * We've disabled prefetch for some time now. Testing with XEN
3823 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3824 */
3825 if(board_id == 0x3225103C) {
3826 __u32 dma_prefetch;
3827 __u32 dma_refetch;
3828 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3829 dma_prefetch |= 0x8000;
3830 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3831 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3832 dma_refetch |= 0x1;
3833 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3834 }
3835
3836 #ifdef CCISS_DEBUG
3837 printk("Trying to put board into Simple mode\n");
3838 #endif /* CCISS_DEBUG */
3839 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3840 /* Update the field, and then ring the doorbell */
3841 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3842 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3843
3844 /* under certain very rare conditions, this can take awhile.
3845 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3846 * as we enter this code.) */
3847 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3848 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3849 break;
3850 /* delay and try again */
3851 set_current_state(TASK_INTERRUPTIBLE);
3852 schedule_timeout(msecs_to_jiffies(1));
3853 }
3854
3855 #ifdef CCISS_DEBUG
3856 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3857 readl(c->vaddr + SA5_DOORBELL));
3858 #endif /* CCISS_DEBUG */
3859 #ifdef CCISS_DEBUG
3860 print_cfg_table(c->cfgtable);
3861 #endif /* CCISS_DEBUG */
3862
3863 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3864 printk(KERN_WARNING "cciss: unable to get board into"
3865 " simple mode\n");
3866 err = -ENODEV;
3867 goto err_out_free_res;
3868 }
3869 return 0;
3870
3871 err_out_free_res:
3872 /*
3873 * Deliberately omit pci_disable_device(): it does something nasty to
3874 * Smart Array controllers that pci_enable_device does not undo
3875 */
3876 pci_release_regions(pdev);
3877 return err;
3878 }
3879
3880 /* Function to find the first free pointer into our hba[] array
3881 * Returns -1 if no free entries are left.
3882 */
3883 static int alloc_cciss_hba(void)
3884 {
3885 int i;
3886
3887 for (i = 0; i < MAX_CTLR; i++) {
3888 if (!hba[i]) {
3889 ctlr_info_t *p;
3890
3891 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3892 if (!p)
3893 goto Enomem;
3894 hba[i] = p;
3895 return i;
3896 }
3897 }
3898 printk(KERN_WARNING "cciss: This driver supports a maximum"
3899 " of %d controllers.\n", MAX_CTLR);
3900 return -1;
3901 Enomem:
3902 printk(KERN_ERR "cciss: out of memory.\n");
3903 return -1;
3904 }
3905
3906 static void free_hba(int n)
3907 {
3908 ctlr_info_t *h = hba[n];
3909 int i;
3910
3911 hba[n] = NULL;
3912 for (i = 0; i < h->highest_lun + 1; i++)
3913 if (h->gendisk[i] != NULL)
3914 put_disk(h->gendisk[i]);
3915 kfree(h);
3916 }
3917
3918 /* Send a message CDB to the firmware. */
3919 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3920 {
3921 typedef struct {
3922 CommandListHeader_struct CommandHeader;
3923 RequestBlock_struct Request;
3924 ErrDescriptor_struct ErrorDescriptor;
3925 } Command;
3926 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3927 Command *cmd;
3928 dma_addr_t paddr64;
3929 uint32_t paddr32, tag;
3930 void __iomem *vaddr;
3931 int i, err;
3932
3933 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3934 if (vaddr == NULL)
3935 return -ENOMEM;
3936
3937 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3938 CCISS commands, so they must be allocated from the lower 4GiB of
3939 memory. */
3940 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3941 if (err) {
3942 iounmap(vaddr);
3943 return -ENOMEM;
3944 }
3945
3946 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3947 if (cmd == NULL) {
3948 iounmap(vaddr);
3949 return -ENOMEM;
3950 }
3951
3952 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3953 although there's no guarantee, we assume that the address is at
3954 least 4-byte aligned (most likely, it's page-aligned). */
3955 paddr32 = paddr64;
3956
3957 cmd->CommandHeader.ReplyQueue = 0;
3958 cmd->CommandHeader.SGList = 0;
3959 cmd->CommandHeader.SGTotal = 0;
3960 cmd->CommandHeader.Tag.lower = paddr32;
3961 cmd->CommandHeader.Tag.upper = 0;
3962 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3963
3964 cmd->Request.CDBLen = 16;
3965 cmd->Request.Type.Type = TYPE_MSG;
3966 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3967 cmd->Request.Type.Direction = XFER_NONE;
3968 cmd->Request.Timeout = 0; /* Don't time out */
3969 cmd->Request.CDB[0] = opcode;
3970 cmd->Request.CDB[1] = type;
3971 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3972
3973 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3974 cmd->ErrorDescriptor.Addr.upper = 0;
3975 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3976
3977 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3978
3979 for (i = 0; i < 10; i++) {
3980 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3981 if ((tag & ~3) == paddr32)
3982 break;
3983 schedule_timeout_uninterruptible(HZ);
3984 }
3985
3986 iounmap(vaddr);
3987
3988 /* we leak the DMA buffer here ... no choice since the controller could
3989 still complete the command. */
3990 if (i == 10) {
3991 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3992 opcode, type);
3993 return -ETIMEDOUT;
3994 }
3995
3996 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3997
3998 if (tag & 2) {
3999 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4000 opcode, type);
4001 return -EIO;
4002 }
4003
4004 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4005 opcode, type);
4006 return 0;
4007 }
4008
4009 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4010 #define cciss_noop(p) cciss_message(p, 3, 0)
4011
4012 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4013 {
4014 /* the #defines are stolen from drivers/pci/msi.h. */
4015 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4016 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4017
4018 int pos;
4019 u16 control = 0;
4020
4021 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4022 if (pos) {
4023 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4024 if (control & PCI_MSI_FLAGS_ENABLE) {
4025 printk(KERN_INFO "cciss: resetting MSI\n");
4026 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4027 }
4028 }
4029
4030 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4031 if (pos) {
4032 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4033 if (control & PCI_MSIX_FLAGS_ENABLE) {
4034 printk(KERN_INFO "cciss: resetting MSI-X\n");
4035 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4036 }
4037 }
4038
4039 return 0;
4040 }
4041
4042 /* This does a hard reset of the controller using PCI power management
4043 * states. */
4044 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4045 {
4046 u16 pmcsr, saved_config_space[32];
4047 int i, pos;
4048
4049 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4050
4051 /* This is very nearly the same thing as
4052
4053 pci_save_state(pci_dev);
4054 pci_set_power_state(pci_dev, PCI_D3hot);
4055 pci_set_power_state(pci_dev, PCI_D0);
4056 pci_restore_state(pci_dev);
4057
4058 but we can't use these nice canned kernel routines on
4059 kexec, because they also check the MSI/MSI-X state in PCI
4060 configuration space and do the wrong thing when it is
4061 set/cleared. Also, the pci_save/restore_state functions
4062 violate the ordering requirements for restoring the
4063 configuration space from the CCISS document (see the
4064 comment below). So we roll our own .... */
4065
4066 for (i = 0; i < 32; i++)
4067 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4068
4069 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4070 if (pos == 0) {
4071 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4072 return -ENODEV;
4073 }
4074
4075 /* Quoting from the Open CISS Specification: "The Power
4076 * Management Control/Status Register (CSR) controls the power
4077 * state of the device. The normal operating state is D0,
4078 * CSR=00h. The software off state is D3, CSR=03h. To reset
4079 * the controller, place the interface device in D3 then to
4080 * D0, this causes a secondary PCI reset which will reset the
4081 * controller." */
4082
4083 /* enter the D3hot power management state */
4084 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4085 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4086 pmcsr |= PCI_D3hot;
4087 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4088
4089 schedule_timeout_uninterruptible(HZ >> 1);
4090
4091 /* enter the D0 power management state */
4092 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4093 pmcsr |= PCI_D0;
4094 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4095
4096 schedule_timeout_uninterruptible(HZ >> 1);
4097
4098 /* Restore the PCI configuration space. The Open CISS
4099 * Specification says, "Restore the PCI Configuration
4100 * Registers, offsets 00h through 60h. It is important to
4101 * restore the command register, 16-bits at offset 04h,
4102 * last. Do not restore the configuration status register,
4103 * 16-bits at offset 06h." Note that the offset is 2*i. */
4104 for (i = 0; i < 32; i++) {
4105 if (i == 2 || i == 3)
4106 continue;
4107 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4108 }
4109 wmb();
4110 pci_write_config_word(pdev, 4, saved_config_space[2]);
4111
4112 return 0;
4113 }
4114
4115 /*
4116 * This is it. Find all the controllers and register them. I really hate
4117 * stealing all these major device numbers.
4118 * returns the number of block devices registered.
4119 */
4120 static int __devinit cciss_init_one(struct pci_dev *pdev,
4121 const struct pci_device_id *ent)
4122 {
4123 int i;
4124 int j = 0;
4125 int k = 0;
4126 int rc;
4127 int dac, return_code;
4128 InquiryData_struct *inq_buff;
4129
4130 if (reset_devices) {
4131 /* Reset the controller with a PCI power-cycle */
4132 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4133 return -ENODEV;
4134
4135 /* Now try to get the controller to respond to a no-op. Some
4136 devices (notably the HP Smart Array 5i Controller) need
4137 up to 30 seconds to respond. */
4138 for (i=0; i<30; i++) {
4139 if (cciss_noop(pdev) == 0)
4140 break;
4141
4142 schedule_timeout_uninterruptible(HZ);
4143 }
4144 if (i == 30) {
4145 printk(KERN_ERR "cciss: controller seems dead\n");
4146 return -EBUSY;
4147 }
4148 }
4149
4150 i = alloc_cciss_hba();
4151 if (i < 0)
4152 return -1;
4153
4154 hba[i]->busy_initializing = 1;
4155 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4156 INIT_HLIST_HEAD(&hba[i]->reqQ);
4157 mutex_init(&hba[i]->busy_shutting_down);
4158
4159 if (cciss_pci_init(hba[i], pdev) != 0)
4160 goto clean_no_release_regions;
4161
4162 sprintf(hba[i]->devname, "cciss%d", i);
4163 hba[i]->ctlr = i;
4164 hba[i]->pdev = pdev;
4165
4166 init_completion(&hba[i]->scan_wait);
4167
4168 if (cciss_create_hba_sysfs_entry(hba[i]))
4169 goto clean0;
4170
4171 /* configure PCI DMA stuff */
4172 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4173 dac = 1;
4174 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4175 dac = 0;
4176 else {
4177 printk(KERN_ERR "cciss: no suitable DMA available\n");
4178 goto clean1;
4179 }
4180
4181 /*
4182 * register with the major number, or get a dynamic major number
4183 * by passing 0 as argument. This is done for greater than
4184 * 8 controller support.
4185 */
4186 if (i < MAX_CTLR_ORIG)
4187 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4188 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4189 if (rc == -EBUSY || rc == -EINVAL) {
4190 printk(KERN_ERR
4191 "cciss: Unable to get major number %d for %s "
4192 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4193 goto clean1;
4194 } else {
4195 if (i >= MAX_CTLR_ORIG)
4196 hba[i]->major = rc;
4197 }
4198
4199 /* make sure the board interrupts are off */
4200 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4201 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4202 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4203 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4204 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4205 goto clean2;
4206 }
4207
4208 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4209 hba[i]->devname, pdev->device, pci_name(pdev),
4210 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4211
4212 hba[i]->cmd_pool_bits =
4213 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4214 * sizeof(unsigned long), GFP_KERNEL);
4215 hba[i]->cmd_pool = (CommandList_struct *)
4216 pci_alloc_consistent(hba[i]->pdev,
4217 hba[i]->nr_cmds * sizeof(CommandList_struct),
4218 &(hba[i]->cmd_pool_dhandle));
4219 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4220 pci_alloc_consistent(hba[i]->pdev,
4221 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4222 &(hba[i]->errinfo_pool_dhandle));
4223 if ((hba[i]->cmd_pool_bits == NULL)
4224 || (hba[i]->cmd_pool == NULL)
4225 || (hba[i]->errinfo_pool == NULL)) {
4226 printk(KERN_ERR "cciss: out of memory");
4227 goto clean4;
4228 }
4229
4230 /* Need space for temp scatter list */
4231 hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4232 sizeof(struct scatterlist *),
4233 GFP_KERNEL);
4234 for (k = 0; k < hba[i]->nr_cmds; k++) {
4235 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4236 hba[i]->maxsgentries,
4237 GFP_KERNEL);
4238 if (hba[i]->scatter_list[k] == NULL) {
4239 printk(KERN_ERR "cciss%d: could not allocate "
4240 "s/g lists\n", i);
4241 goto clean4;
4242 }
4243 }
4244 hba[i]->cmd_sg_list = kmalloc(sizeof(struct Cmd_sg_list *) *
4245 hba[i]->nr_cmds,
4246 GFP_KERNEL);
4247 if (!hba[i]->cmd_sg_list) {
4248 printk(KERN_ERR "cciss%d: Cannot get memory for "
4249 "s/g chaining.\n", i);
4250 goto clean4;
4251 }
4252 /* Build up chain blocks for each command */
4253 if (hba[i]->chainsize > 0) {
4254 for (j = 0; j < hba[i]->nr_cmds; j++) {
4255 hba[i]->cmd_sg_list[j] =
4256 kmalloc(sizeof(struct Cmd_sg_list),
4257 GFP_KERNEL);
4258 if (!hba[i]->cmd_sg_list[j]) {
4259 printk(KERN_ERR "cciss%d: Cannot get memory "
4260 "for chain block.\n", i);
4261 goto clean4;
4262 }
4263 /* Need a block of chainsized s/g elements. */
4264 hba[i]->cmd_sg_list[j]->sgchain =
4265 kmalloc((hba[i]->chainsize *
4266 sizeof(SGDescriptor_struct)),
4267 GFP_KERNEL);
4268 if (!hba[i]->cmd_sg_list[j]->sgchain) {
4269 printk(KERN_ERR "cciss%d: Cannot get memory "
4270 "for s/g chains\n", i);
4271 goto clean4;
4272 }
4273 }
4274 }
4275
4276 spin_lock_init(&hba[i]->lock);
4277
4278 /* Initialize the pdev driver private data.
4279 have it point to hba[i]. */
4280 pci_set_drvdata(pdev, hba[i]);
4281 /* command and error info recs zeroed out before
4282 they are used */
4283 memset(hba[i]->cmd_pool_bits, 0,
4284 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4285 * sizeof(unsigned long));
4286
4287 hba[i]->num_luns = 0;
4288 hba[i]->highest_lun = -1;
4289 for (j = 0; j < CISS_MAX_LUN; j++) {
4290 hba[i]->drv[j] = NULL;
4291 hba[i]->gendisk[j] = NULL;
4292 }
4293
4294 cciss_scsi_setup(i);
4295
4296 /* Turn the interrupts on so we can service requests */
4297 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4298
4299 /* Get the firmware version */
4300 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4301 if (inq_buff == NULL) {
4302 printk(KERN_ERR "cciss: out of memory\n");
4303 goto clean4;
4304 }
4305
4306 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4307 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4308 if (return_code == IO_OK) {
4309 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4310 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4311 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4312 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4313 } else { /* send command failed */
4314 printk(KERN_WARNING "cciss: unable to determine firmware"
4315 " version of controller\n");
4316 }
4317 kfree(inq_buff);
4318
4319 cciss_procinit(i);
4320
4321 hba[i]->cciss_max_sectors = 8192;
4322
4323 rebuild_lun_table(hba[i], 1, 0);
4324 hba[i]->busy_initializing = 0;
4325 return 1;
4326
4327 clean4:
4328 kfree(hba[i]->cmd_pool_bits);
4329 /* Free up sg elements */
4330 for (k = 0; k < hba[i]->nr_cmds; k++)
4331 kfree(hba[i]->scatter_list[k]);
4332 kfree(hba[i]->scatter_list);
4333 /* Only free up extra s/g lists if controller supports them */
4334 if (hba[i]->chainsize > 0) {
4335 for (j = 0; j < hba[i]->nr_cmds; j++) {
4336 if (hba[i]->cmd_sg_list[j]) {
4337 kfree(hba[i]->cmd_sg_list[j]->sgchain);
4338 kfree(hba[i]->cmd_sg_list[j]);
4339 }
4340 }
4341 kfree(hba[i]->cmd_sg_list);
4342 }
4343 if (hba[i]->cmd_pool)
4344 pci_free_consistent(hba[i]->pdev,
4345 hba[i]->nr_cmds * sizeof(CommandList_struct),
4346 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4347 if (hba[i]->errinfo_pool)
4348 pci_free_consistent(hba[i]->pdev,
4349 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4350 hba[i]->errinfo_pool,
4351 hba[i]->errinfo_pool_dhandle);
4352 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4353 clean2:
4354 unregister_blkdev(hba[i]->major, hba[i]->devname);
4355 clean1:
4356 cciss_destroy_hba_sysfs_entry(hba[i]);
4357 clean0:
4358 pci_release_regions(pdev);
4359 clean_no_release_regions:
4360 hba[i]->busy_initializing = 0;
4361
4362 /*
4363 * Deliberately omit pci_disable_device(): it does something nasty to
4364 * Smart Array controllers that pci_enable_device does not undo
4365 */
4366 pci_set_drvdata(pdev, NULL);
4367 free_hba(i);
4368 return -1;
4369 }
4370
4371 static void cciss_shutdown(struct pci_dev *pdev)
4372 {
4373 ctlr_info_t *h;
4374 char *flush_buf;
4375 int return_code;
4376
4377 h = pci_get_drvdata(pdev);
4378 flush_buf = kzalloc(4, GFP_KERNEL);
4379 if (!flush_buf) {
4380 printk(KERN_WARNING
4381 "cciss:%d cache not flushed, out of memory.\n",
4382 h->ctlr);
4383 return;
4384 }
4385 /* write all data in the battery backed cache to disk */
4386 memset(flush_buf, 0, 4);
4387 return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4388 4, 0, CTLR_LUNID, TYPE_CMD);
4389 kfree(flush_buf);
4390 if (return_code != IO_OK)
4391 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4392 h->ctlr);
4393 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4394 free_irq(h->intr[2], h);
4395 }
4396
4397 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4398 {
4399 ctlr_info_t *tmp_ptr;
4400 int i, j;
4401
4402 if (pci_get_drvdata(pdev) == NULL) {
4403 printk(KERN_ERR "cciss: Unable to remove device \n");
4404 return;
4405 }
4406
4407 tmp_ptr = pci_get_drvdata(pdev);
4408 i = tmp_ptr->ctlr;
4409 if (hba[i] == NULL) {
4410 printk(KERN_ERR "cciss: device appears to "
4411 "already be removed \n");
4412 return;
4413 }
4414
4415 mutex_lock(&hba[i]->busy_shutting_down);
4416
4417 remove_from_scan_list(hba[i]);
4418 remove_proc_entry(hba[i]->devname, proc_cciss);
4419 unregister_blkdev(hba[i]->major, hba[i]->devname);
4420
4421 /* remove it from the disk list */
4422 for (j = 0; j < CISS_MAX_LUN; j++) {
4423 struct gendisk *disk = hba[i]->gendisk[j];
4424 if (disk) {
4425 struct request_queue *q = disk->queue;
4426
4427 if (disk->flags & GENHD_FL_UP) {
4428 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4429 del_gendisk(disk);
4430 }
4431 if (q)
4432 blk_cleanup_queue(q);
4433 }
4434 }
4435
4436 #ifdef CONFIG_CISS_SCSI_TAPE
4437 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4438 #endif
4439
4440 cciss_shutdown(pdev);
4441
4442 #ifdef CONFIG_PCI_MSI
4443 if (hba[i]->msix_vector)
4444 pci_disable_msix(hba[i]->pdev);
4445 else if (hba[i]->msi_vector)
4446 pci_disable_msi(hba[i]->pdev);
4447 #endif /* CONFIG_PCI_MSI */
4448
4449 iounmap(hba[i]->vaddr);
4450
4451 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4452 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4453 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4454 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4455 kfree(hba[i]->cmd_pool_bits);
4456 /* Free up sg elements */
4457 for (j = 0; j < hba[i]->nr_cmds; j++)
4458 kfree(hba[i]->scatter_list[j]);
4459 kfree(hba[i]->scatter_list);
4460 /* Only free up extra s/g lists if controller supports them */
4461 if (hba[i]->chainsize > 0) {
4462 for (j = 0; j < hba[i]->nr_cmds; j++) {
4463 if (hba[i]->cmd_sg_list[j]) {
4464 kfree(hba[i]->cmd_sg_list[j]->sgchain);
4465 kfree(hba[i]->cmd_sg_list[j]);
4466 }
4467 }
4468 kfree(hba[i]->cmd_sg_list);
4469 }
4470 /*
4471 * Deliberately omit pci_disable_device(): it does something nasty to
4472 * Smart Array controllers that pci_enable_device does not undo
4473 */
4474 pci_release_regions(pdev);
4475 pci_set_drvdata(pdev, NULL);
4476 cciss_destroy_hba_sysfs_entry(hba[i]);
4477 mutex_unlock(&hba[i]->busy_shutting_down);
4478 free_hba(i);
4479 }
4480
4481 static struct pci_driver cciss_pci_driver = {
4482 .name = "cciss",
4483 .probe = cciss_init_one,
4484 .remove = __devexit_p(cciss_remove_one),
4485 .id_table = cciss_pci_device_id, /* id_table */
4486 .shutdown = cciss_shutdown,
4487 };
4488
4489 /*
4490 * This is it. Register the PCI driver information for the cards we control
4491 * the OS will call our registered routines when it finds one of our cards.
4492 */
4493 static int __init cciss_init(void)
4494 {
4495 int err;
4496
4497 /*
4498 * The hardware requires that commands are aligned on a 64-bit
4499 * boundary. Given that we use pci_alloc_consistent() to allocate an
4500 * array of them, the size must be a multiple of 8 bytes.
4501 */
4502 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4503
4504 printk(KERN_INFO DRIVER_NAME "\n");
4505
4506 err = bus_register(&cciss_bus_type);
4507 if (err)
4508 return err;
4509
4510 /* Start the scan thread */
4511 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4512 if (IS_ERR(cciss_scan_thread)) {
4513 err = PTR_ERR(cciss_scan_thread);
4514 goto err_bus_unregister;
4515 }
4516
4517 /* Register for our PCI devices */
4518 err = pci_register_driver(&cciss_pci_driver);
4519 if (err)
4520 goto err_thread_stop;
4521
4522 return err;
4523
4524 err_thread_stop:
4525 kthread_stop(cciss_scan_thread);
4526 err_bus_unregister:
4527 bus_unregister(&cciss_bus_type);
4528
4529 return err;
4530 }
4531
4532 static void __exit cciss_cleanup(void)
4533 {
4534 int i;
4535
4536 pci_unregister_driver(&cciss_pci_driver);
4537 /* double check that all controller entrys have been removed */
4538 for (i = 0; i < MAX_CTLR; i++) {
4539 if (hba[i] != NULL) {
4540 printk(KERN_WARNING "cciss: had to remove"
4541 " controller %d\n", i);
4542 cciss_remove_one(hba[i]->pdev);
4543 }
4544 }
4545 kthread_stop(cciss_scan_thread);
4546 remove_proc_entry("driver/cciss", NULL);
4547 bus_unregister(&cciss_bus_type);
4548 }
4549
4550 static void fail_all_cmds(unsigned long ctlr)
4551 {
4552 /* If we get here, the board is apparently dead. */
4553 ctlr_info_t *h = hba[ctlr];
4554 CommandList_struct *c;
4555 unsigned long flags;
4556
4557 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4558 h->alive = 0; /* the controller apparently died... */
4559
4560 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4561
4562 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4563
4564 /* move everything off the request queue onto the completed queue */
4565 while (!hlist_empty(&h->reqQ)) {
4566 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4567 removeQ(c);
4568 h->Qdepth--;
4569 addQ(&h->cmpQ, c);
4570 }
4571
4572 /* Now, fail everything on the completed queue with a HW error */
4573 while (!hlist_empty(&h->cmpQ)) {
4574 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4575 removeQ(c);
4576 if (c->cmd_type != CMD_MSG_STALE)
4577 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4578 if (c->cmd_type == CMD_RWREQ) {
4579 complete_command(h, c, 0);
4580 } else if (c->cmd_type == CMD_IOCTL_PEND)
4581 complete(c->waiting);
4582 #ifdef CONFIG_CISS_SCSI_TAPE
4583 else if (c->cmd_type == CMD_SCSI)
4584 complete_scsi_command(c, 0, 0);
4585 #endif
4586 }
4587 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4588 return;
4589 }
4590
4591 module_init(cciss_init);
4592 module_exit(cciss_cleanup);