]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/cciss.c
procfs: new helper - PDE_DATA(inode)
[mirror_ubuntu-bionic-kernel.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <linux/bitmap.h>
45 #include <linux/io.h>
46 #include <asm/uaccess.h>
47
48 #include <linux/dma-mapping.h>
49 #include <linux/blkdev.h>
50 #include <linux/genhd.h>
51 #include <linux/completion.h>
52 #include <scsi/scsi.h>
53 #include <scsi/sg.h>
54 #include <scsi/scsi_ioctl.h>
55 #include <linux/cdrom.h>
56 #include <linux/scatterlist.h>
57 #include <linux/kthread.h>
58
59 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62
63 /* Embedded module documentation macros - see modules.h */
64 MODULE_AUTHOR("Hewlett-Packard Company");
65 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67 MODULE_VERSION("3.6.26");
68 MODULE_LICENSE("GPL");
69 static int cciss_tape_cmds = 6;
70 module_param(cciss_tape_cmds, int, 0644);
71 MODULE_PARM_DESC(cciss_tape_cmds,
72 "number of commands to allocate for tape devices (default: 6)");
73 static int cciss_simple_mode;
74 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(cciss_simple_mode,
76 "Use 'simple mode' rather than 'performant mode'");
77
78 static DEFINE_MUTEX(cciss_mutex);
79 static struct proc_dir_entry *proc_cciss;
80
81 #include "cciss_cmd.h"
82 #include "cciss.h"
83 #include <linux/cciss_ioctl.h>
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id cciss_pci_device_id[] = {
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
92 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
93 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
94 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
95 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
107 {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
111
112 /* board_id = Subsystem Device ID & Vendor ID
113 * product = Marketing Name for the board
114 * access = Address of the struct of function pointers
115 */
116 static struct board_type products[] = {
117 {0x40700E11, "Smart Array 5300", &SA5_access},
118 {0x40800E11, "Smart Array 5i", &SA5B_access},
119 {0x40820E11, "Smart Array 532", &SA5B_access},
120 {0x40830E11, "Smart Array 5312", &SA5B_access},
121 {0x409A0E11, "Smart Array 641", &SA5_access},
122 {0x409B0E11, "Smart Array 642", &SA5_access},
123 {0x409C0E11, "Smart Array 6400", &SA5_access},
124 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
125 {0x40910E11, "Smart Array 6i", &SA5_access},
126 {0x3225103C, "Smart Array P600", &SA5_access},
127 {0x3223103C, "Smart Array P800", &SA5_access},
128 {0x3234103C, "Smart Array P400", &SA5_access},
129 {0x3235103C, "Smart Array P400i", &SA5_access},
130 {0x3211103C, "Smart Array E200i", &SA5_access},
131 {0x3212103C, "Smart Array E200", &SA5_access},
132 {0x3213103C, "Smart Array E200i", &SA5_access},
133 {0x3214103C, "Smart Array E200i", &SA5_access},
134 {0x3215103C, "Smart Array E200i", &SA5_access},
135 {0x3237103C, "Smart Array E500", &SA5_access},
136 {0x3223103C, "Smart Array P800", &SA5_access},
137 {0x3234103C, "Smart Array P400", &SA5_access},
138 {0x323D103C, "Smart Array P700m", &SA5_access},
139 };
140
141 /* How long to wait (in milliseconds) for board to go into simple mode */
142 #define MAX_CONFIG_WAIT 30000
143 #define MAX_IOCTL_CONFIG_WAIT 1000
144
145 /*define how many times we will try a command because of bus resets */
146 #define MAX_CMD_RETRIES 3
147
148 #define MAX_CTLR 32
149
150 /* Originally cciss driver only supports 8 major numbers */
151 #define MAX_CTLR_ORIG 8
152
153 static ctlr_info_t *hba[MAX_CTLR];
154
155 static struct task_struct *cciss_scan_thread;
156 static DEFINE_MUTEX(scan_mutex);
157 static LIST_HEAD(scan_q);
158
159 static void do_cciss_request(struct request_queue *q);
160 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
161 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
162 static int cciss_open(struct block_device *bdev, fmode_t mode);
163 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
164 static int cciss_release(struct gendisk *disk, fmode_t mode);
165 static int do_ioctl(struct block_device *bdev, fmode_t mode,
166 unsigned int cmd, unsigned long arg);
167 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
168 unsigned int cmd, unsigned long arg);
169 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
170
171 static int cciss_revalidate(struct gendisk *disk);
172 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
173 static int deregister_disk(ctlr_info_t *h, int drv_index,
174 int clear_all, int via_ioctl);
175
176 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
177 sector_t *total_size, unsigned int *block_size);
178 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
179 sector_t *total_size, unsigned int *block_size);
180 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
181 sector_t total_size,
182 unsigned int block_size, InquiryData_struct *inq_buff,
183 drive_info_struct *drv);
184 static void cciss_interrupt_mode(ctlr_info_t *);
185 static int cciss_enter_simple_mode(struct ctlr_info *h);
186 static void start_io(ctlr_info_t *h);
187 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
188 __u8 page_code, unsigned char scsi3addr[],
189 int cmd_type);
190 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
191 int attempt_retry);
192 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
193
194 static int add_to_scan_list(struct ctlr_info *h);
195 static int scan_thread(void *data);
196 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
197 static void cciss_hba_release(struct device *dev);
198 static void cciss_device_release(struct device *dev);
199 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
200 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
201 static inline u32 next_command(ctlr_info_t *h);
202 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
203 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
204 u64 *cfg_offset);
205 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
206 unsigned long *memory_bar);
207 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
208 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
209
210 /* performant mode helper functions */
211 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
212 int *bucket_map);
213 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
214
215 #ifdef CONFIG_PROC_FS
216 static void cciss_procinit(ctlr_info_t *h);
217 #else
218 static void cciss_procinit(ctlr_info_t *h)
219 {
220 }
221 #endif /* CONFIG_PROC_FS */
222
223 #ifdef CONFIG_COMPAT
224 static int cciss_compat_ioctl(struct block_device *, fmode_t,
225 unsigned, unsigned long);
226 #endif
227
228 static const struct block_device_operations cciss_fops = {
229 .owner = THIS_MODULE,
230 .open = cciss_unlocked_open,
231 .release = cciss_release,
232 .ioctl = do_ioctl,
233 .getgeo = cciss_getgeo,
234 #ifdef CONFIG_COMPAT
235 .compat_ioctl = cciss_compat_ioctl,
236 #endif
237 .revalidate_disk = cciss_revalidate,
238 };
239
240 /* set_performant_mode: Modify the tag for cciss performant
241 * set bit 0 for pull model, bits 3-1 for block fetch
242 * register number
243 */
244 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
245 {
246 if (likely(h->transMethod & CFGTBL_Trans_Performant))
247 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
248 }
249
250 /*
251 * Enqueuing and dequeuing functions for cmdlists.
252 */
253 static inline void addQ(struct list_head *list, CommandList_struct *c)
254 {
255 list_add_tail(&c->list, list);
256 }
257
258 static inline void removeQ(CommandList_struct *c)
259 {
260 /*
261 * After kexec/dump some commands might still
262 * be in flight, which the firmware will try
263 * to complete. Resetting the firmware doesn't work
264 * with old fw revisions, so we have to mark
265 * them off as 'stale' to prevent the driver from
266 * falling over.
267 */
268 if (WARN_ON(list_empty(&c->list))) {
269 c->cmd_type = CMD_MSG_STALE;
270 return;
271 }
272
273 list_del_init(&c->list);
274 }
275
276 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
277 CommandList_struct *c)
278 {
279 unsigned long flags;
280 set_performant_mode(h, c);
281 spin_lock_irqsave(&h->lock, flags);
282 addQ(&h->reqQ, c);
283 h->Qdepth++;
284 if (h->Qdepth > h->maxQsinceinit)
285 h->maxQsinceinit = h->Qdepth;
286 start_io(h);
287 spin_unlock_irqrestore(&h->lock, flags);
288 }
289
290 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
291 int nr_cmds)
292 {
293 int i;
294
295 if (!cmd_sg_list)
296 return;
297 for (i = 0; i < nr_cmds; i++) {
298 kfree(cmd_sg_list[i]);
299 cmd_sg_list[i] = NULL;
300 }
301 kfree(cmd_sg_list);
302 }
303
304 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
305 ctlr_info_t *h, int chainsize, int nr_cmds)
306 {
307 int j;
308 SGDescriptor_struct **cmd_sg_list;
309
310 if (chainsize <= 0)
311 return NULL;
312
313 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
314 if (!cmd_sg_list)
315 return NULL;
316
317 /* Build up chain blocks for each command */
318 for (j = 0; j < nr_cmds; j++) {
319 /* Need a block of chainsized s/g elements. */
320 cmd_sg_list[j] = kmalloc((chainsize *
321 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
322 if (!cmd_sg_list[j]) {
323 dev_err(&h->pdev->dev, "Cannot get memory "
324 "for s/g chains.\n");
325 goto clean;
326 }
327 }
328 return cmd_sg_list;
329 clean:
330 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
331 return NULL;
332 }
333
334 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
335 {
336 SGDescriptor_struct *chain_sg;
337 u64bit temp64;
338
339 if (c->Header.SGTotal <= h->max_cmd_sgentries)
340 return;
341
342 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
343 temp64.val32.lower = chain_sg->Addr.lower;
344 temp64.val32.upper = chain_sg->Addr.upper;
345 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
346 }
347
348 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
349 SGDescriptor_struct *chain_block, int len)
350 {
351 SGDescriptor_struct *chain_sg;
352 u64bit temp64;
353
354 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
355 chain_sg->Ext = CCISS_SG_CHAIN;
356 chain_sg->Len = len;
357 temp64.val = pci_map_single(h->pdev, chain_block, len,
358 PCI_DMA_TODEVICE);
359 chain_sg->Addr.lower = temp64.val32.lower;
360 chain_sg->Addr.upper = temp64.val32.upper;
361 }
362
363 #include "cciss_scsi.c" /* For SCSI tape support */
364
365 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
366 "UNKNOWN"
367 };
368 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
369
370 #ifdef CONFIG_PROC_FS
371
372 /*
373 * Report information about this controller.
374 */
375 #define ENG_GIG 1000000000
376 #define ENG_GIG_FACTOR (ENG_GIG/512)
377 #define ENGAGE_SCSI "engage scsi"
378
379 static void cciss_seq_show_header(struct seq_file *seq)
380 {
381 ctlr_info_t *h = seq->private;
382
383 seq_printf(seq, "%s: HP %s Controller\n"
384 "Board ID: 0x%08lx\n"
385 "Firmware Version: %c%c%c%c\n"
386 "IRQ: %d\n"
387 "Logical drives: %d\n"
388 "Current Q depth: %d\n"
389 "Current # commands on controller: %d\n"
390 "Max Q depth since init: %d\n"
391 "Max # commands on controller since init: %d\n"
392 "Max SG entries since init: %d\n",
393 h->devname,
394 h->product_name,
395 (unsigned long)h->board_id,
396 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
397 h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
398 h->num_luns,
399 h->Qdepth, h->commands_outstanding,
400 h->maxQsinceinit, h->max_outstanding, h->maxSG);
401
402 #ifdef CONFIG_CISS_SCSI_TAPE
403 cciss_seq_tape_report(seq, h);
404 #endif /* CONFIG_CISS_SCSI_TAPE */
405 }
406
407 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
408 {
409 ctlr_info_t *h = seq->private;
410 unsigned long flags;
411
412 /* prevent displaying bogus info during configuration
413 * or deconfiguration of a logical volume
414 */
415 spin_lock_irqsave(&h->lock, flags);
416 if (h->busy_configuring) {
417 spin_unlock_irqrestore(&h->lock, flags);
418 return ERR_PTR(-EBUSY);
419 }
420 h->busy_configuring = 1;
421 spin_unlock_irqrestore(&h->lock, flags);
422
423 if (*pos == 0)
424 cciss_seq_show_header(seq);
425
426 return pos;
427 }
428
429 static int cciss_seq_show(struct seq_file *seq, void *v)
430 {
431 sector_t vol_sz, vol_sz_frac;
432 ctlr_info_t *h = seq->private;
433 unsigned ctlr = h->ctlr;
434 loff_t *pos = v;
435 drive_info_struct *drv = h->drv[*pos];
436
437 if (*pos > h->highest_lun)
438 return 0;
439
440 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
441 return 0;
442
443 if (drv->heads == 0)
444 return 0;
445
446 vol_sz = drv->nr_blocks;
447 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
448 vol_sz_frac *= 100;
449 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
450
451 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
452 drv->raid_level = RAID_UNKNOWN;
453 seq_printf(seq, "cciss/c%dd%d:"
454 "\t%4u.%02uGB\tRAID %s\n",
455 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
456 raid_label[drv->raid_level]);
457 return 0;
458 }
459
460 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
461 {
462 ctlr_info_t *h = seq->private;
463
464 if (*pos > h->highest_lun)
465 return NULL;
466 *pos += 1;
467
468 return pos;
469 }
470
471 static void cciss_seq_stop(struct seq_file *seq, void *v)
472 {
473 ctlr_info_t *h = seq->private;
474
475 /* Only reset h->busy_configuring if we succeeded in setting
476 * it during cciss_seq_start. */
477 if (v == ERR_PTR(-EBUSY))
478 return;
479
480 h->busy_configuring = 0;
481 }
482
483 static const struct seq_operations cciss_seq_ops = {
484 .start = cciss_seq_start,
485 .show = cciss_seq_show,
486 .next = cciss_seq_next,
487 .stop = cciss_seq_stop,
488 };
489
490 static int cciss_seq_open(struct inode *inode, struct file *file)
491 {
492 int ret = seq_open(file, &cciss_seq_ops);
493 struct seq_file *seq = file->private_data;
494
495 if (!ret)
496 seq->private = PDE_DATA(inode);
497
498 return ret;
499 }
500
501 static ssize_t
502 cciss_proc_write(struct file *file, const char __user *buf,
503 size_t length, loff_t *ppos)
504 {
505 int err;
506 char *buffer;
507
508 #ifndef CONFIG_CISS_SCSI_TAPE
509 return -EINVAL;
510 #endif
511
512 if (!buf || length > PAGE_SIZE - 1)
513 return -EINVAL;
514
515 buffer = (char *)__get_free_page(GFP_KERNEL);
516 if (!buffer)
517 return -ENOMEM;
518
519 err = -EFAULT;
520 if (copy_from_user(buffer, buf, length))
521 goto out;
522 buffer[length] = '\0';
523
524 #ifdef CONFIG_CISS_SCSI_TAPE
525 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
526 struct seq_file *seq = file->private_data;
527 ctlr_info_t *h = seq->private;
528
529 err = cciss_engage_scsi(h);
530 if (err == 0)
531 err = length;
532 } else
533 #endif /* CONFIG_CISS_SCSI_TAPE */
534 err = -EINVAL;
535 /* might be nice to have "disengage" too, but it's not
536 safely possible. (only 1 module use count, lock issues.) */
537
538 out:
539 free_page((unsigned long)buffer);
540 return err;
541 }
542
543 static const struct file_operations cciss_proc_fops = {
544 .owner = THIS_MODULE,
545 .open = cciss_seq_open,
546 .read = seq_read,
547 .llseek = seq_lseek,
548 .release = seq_release,
549 .write = cciss_proc_write,
550 };
551
552 static void cciss_procinit(ctlr_info_t *h)
553 {
554 struct proc_dir_entry *pde;
555
556 if (proc_cciss == NULL)
557 proc_cciss = proc_mkdir("driver/cciss", NULL);
558 if (!proc_cciss)
559 return;
560 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
561 S_IROTH, proc_cciss,
562 &cciss_proc_fops, h);
563 }
564 #endif /* CONFIG_PROC_FS */
565
566 #define MAX_PRODUCT_NAME_LEN 19
567
568 #define to_hba(n) container_of(n, struct ctlr_info, dev)
569 #define to_drv(n) container_of(n, drive_info_struct, dev)
570
571 /* List of controllers which cannot be hard reset on kexec with reset_devices */
572 static u32 unresettable_controller[] = {
573 0x324a103C, /* Smart Array P712m */
574 0x324b103C, /* SmartArray P711m */
575 0x3223103C, /* Smart Array P800 */
576 0x3234103C, /* Smart Array P400 */
577 0x3235103C, /* Smart Array P400i */
578 0x3211103C, /* Smart Array E200i */
579 0x3212103C, /* Smart Array E200 */
580 0x3213103C, /* Smart Array E200i */
581 0x3214103C, /* Smart Array E200i */
582 0x3215103C, /* Smart Array E200i */
583 0x3237103C, /* Smart Array E500 */
584 0x323D103C, /* Smart Array P700m */
585 0x409C0E11, /* Smart Array 6400 */
586 0x409D0E11, /* Smart Array 6400 EM */
587 };
588
589 /* List of controllers which cannot even be soft reset */
590 static u32 soft_unresettable_controller[] = {
591 0x409C0E11, /* Smart Array 6400 */
592 0x409D0E11, /* Smart Array 6400 EM */
593 };
594
595 static int ctlr_is_hard_resettable(u32 board_id)
596 {
597 int i;
598
599 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
600 if (unresettable_controller[i] == board_id)
601 return 0;
602 return 1;
603 }
604
605 static int ctlr_is_soft_resettable(u32 board_id)
606 {
607 int i;
608
609 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
610 if (soft_unresettable_controller[i] == board_id)
611 return 0;
612 return 1;
613 }
614
615 static int ctlr_is_resettable(u32 board_id)
616 {
617 return ctlr_is_hard_resettable(board_id) ||
618 ctlr_is_soft_resettable(board_id);
619 }
620
621 static ssize_t host_show_resettable(struct device *dev,
622 struct device_attribute *attr,
623 char *buf)
624 {
625 struct ctlr_info *h = to_hba(dev);
626
627 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 }
629 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
630
631 static ssize_t host_store_rescan(struct device *dev,
632 struct device_attribute *attr,
633 const char *buf, size_t count)
634 {
635 struct ctlr_info *h = to_hba(dev);
636
637 add_to_scan_list(h);
638 wake_up_process(cciss_scan_thread);
639 wait_for_completion_interruptible(&h->scan_wait);
640
641 return count;
642 }
643 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
644
645 static ssize_t host_show_transport_mode(struct device *dev,
646 struct device_attribute *attr,
647 char *buf)
648 {
649 struct ctlr_info *h = to_hba(dev);
650
651 return snprintf(buf, 20, "%s\n",
652 h->transMethod & CFGTBL_Trans_Performant ?
653 "performant" : "simple");
654 }
655 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
656
657 static ssize_t dev_show_unique_id(struct device *dev,
658 struct device_attribute *attr,
659 char *buf)
660 {
661 drive_info_struct *drv = to_drv(dev);
662 struct ctlr_info *h = to_hba(drv->dev.parent);
663 __u8 sn[16];
664 unsigned long flags;
665 int ret = 0;
666
667 spin_lock_irqsave(&h->lock, flags);
668 if (h->busy_configuring)
669 ret = -EBUSY;
670 else
671 memcpy(sn, drv->serial_no, sizeof(sn));
672 spin_unlock_irqrestore(&h->lock, flags);
673
674 if (ret)
675 return ret;
676 else
677 return snprintf(buf, 16 * 2 + 2,
678 "%02X%02X%02X%02X%02X%02X%02X%02X"
679 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
680 sn[0], sn[1], sn[2], sn[3],
681 sn[4], sn[5], sn[6], sn[7],
682 sn[8], sn[9], sn[10], sn[11],
683 sn[12], sn[13], sn[14], sn[15]);
684 }
685 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
686
687 static ssize_t dev_show_vendor(struct device *dev,
688 struct device_attribute *attr,
689 char *buf)
690 {
691 drive_info_struct *drv = to_drv(dev);
692 struct ctlr_info *h = to_hba(drv->dev.parent);
693 char vendor[VENDOR_LEN + 1];
694 unsigned long flags;
695 int ret = 0;
696
697 spin_lock_irqsave(&h->lock, flags);
698 if (h->busy_configuring)
699 ret = -EBUSY;
700 else
701 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
702 spin_unlock_irqrestore(&h->lock, flags);
703
704 if (ret)
705 return ret;
706 else
707 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
708 }
709 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
710
711 static ssize_t dev_show_model(struct device *dev,
712 struct device_attribute *attr,
713 char *buf)
714 {
715 drive_info_struct *drv = to_drv(dev);
716 struct ctlr_info *h = to_hba(drv->dev.parent);
717 char model[MODEL_LEN + 1];
718 unsigned long flags;
719 int ret = 0;
720
721 spin_lock_irqsave(&h->lock, flags);
722 if (h->busy_configuring)
723 ret = -EBUSY;
724 else
725 memcpy(model, drv->model, MODEL_LEN + 1);
726 spin_unlock_irqrestore(&h->lock, flags);
727
728 if (ret)
729 return ret;
730 else
731 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
732 }
733 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
734
735 static ssize_t dev_show_rev(struct device *dev,
736 struct device_attribute *attr,
737 char *buf)
738 {
739 drive_info_struct *drv = to_drv(dev);
740 struct ctlr_info *h = to_hba(drv->dev.parent);
741 char rev[REV_LEN + 1];
742 unsigned long flags;
743 int ret = 0;
744
745 spin_lock_irqsave(&h->lock, flags);
746 if (h->busy_configuring)
747 ret = -EBUSY;
748 else
749 memcpy(rev, drv->rev, REV_LEN + 1);
750 spin_unlock_irqrestore(&h->lock, flags);
751
752 if (ret)
753 return ret;
754 else
755 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
756 }
757 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
758
759 static ssize_t cciss_show_lunid(struct device *dev,
760 struct device_attribute *attr, char *buf)
761 {
762 drive_info_struct *drv = to_drv(dev);
763 struct ctlr_info *h = to_hba(drv->dev.parent);
764 unsigned long flags;
765 unsigned char lunid[8];
766
767 spin_lock_irqsave(&h->lock, flags);
768 if (h->busy_configuring) {
769 spin_unlock_irqrestore(&h->lock, flags);
770 return -EBUSY;
771 }
772 if (!drv->heads) {
773 spin_unlock_irqrestore(&h->lock, flags);
774 return -ENOTTY;
775 }
776 memcpy(lunid, drv->LunID, sizeof(lunid));
777 spin_unlock_irqrestore(&h->lock, flags);
778 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
779 lunid[0], lunid[1], lunid[2], lunid[3],
780 lunid[4], lunid[5], lunid[6], lunid[7]);
781 }
782 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
783
784 static ssize_t cciss_show_raid_level(struct device *dev,
785 struct device_attribute *attr, char *buf)
786 {
787 drive_info_struct *drv = to_drv(dev);
788 struct ctlr_info *h = to_hba(drv->dev.parent);
789 int raid;
790 unsigned long flags;
791
792 spin_lock_irqsave(&h->lock, flags);
793 if (h->busy_configuring) {
794 spin_unlock_irqrestore(&h->lock, flags);
795 return -EBUSY;
796 }
797 raid = drv->raid_level;
798 spin_unlock_irqrestore(&h->lock, flags);
799 if (raid < 0 || raid > RAID_UNKNOWN)
800 raid = RAID_UNKNOWN;
801
802 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
803 raid_label[raid]);
804 }
805 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
806
807 static ssize_t cciss_show_usage_count(struct device *dev,
808 struct device_attribute *attr, char *buf)
809 {
810 drive_info_struct *drv = to_drv(dev);
811 struct ctlr_info *h = to_hba(drv->dev.parent);
812 unsigned long flags;
813 int count;
814
815 spin_lock_irqsave(&h->lock, flags);
816 if (h->busy_configuring) {
817 spin_unlock_irqrestore(&h->lock, flags);
818 return -EBUSY;
819 }
820 count = drv->usage_count;
821 spin_unlock_irqrestore(&h->lock, flags);
822 return snprintf(buf, 20, "%d\n", count);
823 }
824 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
825
826 static struct attribute *cciss_host_attrs[] = {
827 &dev_attr_rescan.attr,
828 &dev_attr_resettable.attr,
829 &dev_attr_transport_mode.attr,
830 NULL
831 };
832
833 static struct attribute_group cciss_host_attr_group = {
834 .attrs = cciss_host_attrs,
835 };
836
837 static const struct attribute_group *cciss_host_attr_groups[] = {
838 &cciss_host_attr_group,
839 NULL
840 };
841
842 static struct device_type cciss_host_type = {
843 .name = "cciss_host",
844 .groups = cciss_host_attr_groups,
845 .release = cciss_hba_release,
846 };
847
848 static struct attribute *cciss_dev_attrs[] = {
849 &dev_attr_unique_id.attr,
850 &dev_attr_model.attr,
851 &dev_attr_vendor.attr,
852 &dev_attr_rev.attr,
853 &dev_attr_lunid.attr,
854 &dev_attr_raid_level.attr,
855 &dev_attr_usage_count.attr,
856 NULL
857 };
858
859 static struct attribute_group cciss_dev_attr_group = {
860 .attrs = cciss_dev_attrs,
861 };
862
863 static const struct attribute_group *cciss_dev_attr_groups[] = {
864 &cciss_dev_attr_group,
865 NULL
866 };
867
868 static struct device_type cciss_dev_type = {
869 .name = "cciss_device",
870 .groups = cciss_dev_attr_groups,
871 .release = cciss_device_release,
872 };
873
874 static struct bus_type cciss_bus_type = {
875 .name = "cciss",
876 };
877
878 /*
879 * cciss_hba_release is called when the reference count
880 * of h->dev goes to zero.
881 */
882 static void cciss_hba_release(struct device *dev)
883 {
884 /*
885 * nothing to do, but need this to avoid a warning
886 * about not having a release handler from lib/kref.c.
887 */
888 }
889
890 /*
891 * Initialize sysfs entry for each controller. This sets up and registers
892 * the 'cciss#' directory for each individual controller under
893 * /sys/bus/pci/devices/<dev>/.
894 */
895 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
896 {
897 device_initialize(&h->dev);
898 h->dev.type = &cciss_host_type;
899 h->dev.bus = &cciss_bus_type;
900 dev_set_name(&h->dev, "%s", h->devname);
901 h->dev.parent = &h->pdev->dev;
902
903 return device_add(&h->dev);
904 }
905
906 /*
907 * Remove sysfs entries for an hba.
908 */
909 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
910 {
911 device_del(&h->dev);
912 put_device(&h->dev); /* final put. */
913 }
914
915 /* cciss_device_release is called when the reference count
916 * of h->drv[x]dev goes to zero.
917 */
918 static void cciss_device_release(struct device *dev)
919 {
920 drive_info_struct *drv = to_drv(dev);
921 kfree(drv);
922 }
923
924 /*
925 * Initialize sysfs for each logical drive. This sets up and registers
926 * the 'c#d#' directory for each individual logical drive under
927 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
928 * /sys/block/cciss!c#d# to this entry.
929 */
930 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
931 int drv_index)
932 {
933 struct device *dev;
934
935 if (h->drv[drv_index]->device_initialized)
936 return 0;
937
938 dev = &h->drv[drv_index]->dev;
939 device_initialize(dev);
940 dev->type = &cciss_dev_type;
941 dev->bus = &cciss_bus_type;
942 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
943 dev->parent = &h->dev;
944 h->drv[drv_index]->device_initialized = 1;
945 return device_add(dev);
946 }
947
948 /*
949 * Remove sysfs entries for a logical drive.
950 */
951 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
952 int ctlr_exiting)
953 {
954 struct device *dev = &h->drv[drv_index]->dev;
955
956 /* special case for c*d0, we only destroy it on controller exit */
957 if (drv_index == 0 && !ctlr_exiting)
958 return;
959
960 device_del(dev);
961 put_device(dev); /* the "final" put. */
962 h->drv[drv_index] = NULL;
963 }
964
965 /*
966 * For operations that cannot sleep, a command block is allocated at init,
967 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
968 * which ones are free or in use.
969 */
970 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
971 {
972 CommandList_struct *c;
973 int i;
974 u64bit temp64;
975 dma_addr_t cmd_dma_handle, err_dma_handle;
976
977 do {
978 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
979 if (i == h->nr_cmds)
980 return NULL;
981 } while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
982 c = h->cmd_pool + i;
983 memset(c, 0, sizeof(CommandList_struct));
984 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
985 c->err_info = h->errinfo_pool + i;
986 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
987 err_dma_handle = h->errinfo_pool_dhandle
988 + i * sizeof(ErrorInfo_struct);
989 h->nr_allocs++;
990
991 c->cmdindex = i;
992
993 INIT_LIST_HEAD(&c->list);
994 c->busaddr = (__u32) cmd_dma_handle;
995 temp64.val = (__u64) err_dma_handle;
996 c->ErrDesc.Addr.lower = temp64.val32.lower;
997 c->ErrDesc.Addr.upper = temp64.val32.upper;
998 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
999
1000 c->ctlr = h->ctlr;
1001 return c;
1002 }
1003
1004 /* allocate a command using pci_alloc_consistent, used for ioctls,
1005 * etc., not for the main i/o path.
1006 */
1007 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1008 {
1009 CommandList_struct *c;
1010 u64bit temp64;
1011 dma_addr_t cmd_dma_handle, err_dma_handle;
1012
1013 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1014 sizeof(CommandList_struct), &cmd_dma_handle);
1015 if (c == NULL)
1016 return NULL;
1017 memset(c, 0, sizeof(CommandList_struct));
1018
1019 c->cmdindex = -1;
1020
1021 c->err_info = (ErrorInfo_struct *)
1022 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1023 &err_dma_handle);
1024
1025 if (c->err_info == NULL) {
1026 pci_free_consistent(h->pdev,
1027 sizeof(CommandList_struct), c, cmd_dma_handle);
1028 return NULL;
1029 }
1030 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1031
1032 INIT_LIST_HEAD(&c->list);
1033 c->busaddr = (__u32) cmd_dma_handle;
1034 temp64.val = (__u64) err_dma_handle;
1035 c->ErrDesc.Addr.lower = temp64.val32.lower;
1036 c->ErrDesc.Addr.upper = temp64.val32.upper;
1037 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1038
1039 c->ctlr = h->ctlr;
1040 return c;
1041 }
1042
1043 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1044 {
1045 int i;
1046
1047 i = c - h->cmd_pool;
1048 clear_bit(i, h->cmd_pool_bits);
1049 h->nr_frees++;
1050 }
1051
1052 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1053 {
1054 u64bit temp64;
1055
1056 temp64.val32.lower = c->ErrDesc.Addr.lower;
1057 temp64.val32.upper = c->ErrDesc.Addr.upper;
1058 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1059 c->err_info, (dma_addr_t) temp64.val);
1060 pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1061 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1062 }
1063
1064 static inline ctlr_info_t *get_host(struct gendisk *disk)
1065 {
1066 return disk->queue->queuedata;
1067 }
1068
1069 static inline drive_info_struct *get_drv(struct gendisk *disk)
1070 {
1071 return disk->private_data;
1072 }
1073
1074 /*
1075 * Open. Make sure the device is really there.
1076 */
1077 static int cciss_open(struct block_device *bdev, fmode_t mode)
1078 {
1079 ctlr_info_t *h = get_host(bdev->bd_disk);
1080 drive_info_struct *drv = get_drv(bdev->bd_disk);
1081
1082 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1083 if (drv->busy_configuring)
1084 return -EBUSY;
1085 /*
1086 * Root is allowed to open raw volume zero even if it's not configured
1087 * so array config can still work. Root is also allowed to open any
1088 * volume that has a LUN ID, so it can issue IOCTL to reread the
1089 * disk information. I don't think I really like this
1090 * but I'm already using way to many device nodes to claim another one
1091 * for "raw controller".
1092 */
1093 if (drv->heads == 0) {
1094 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1095 /* if not node 0 make sure it is a partition = 0 */
1096 if (MINOR(bdev->bd_dev) & 0x0f) {
1097 return -ENXIO;
1098 /* if it is, make sure we have a LUN ID */
1099 } else if (memcmp(drv->LunID, CTLR_LUNID,
1100 sizeof(drv->LunID))) {
1101 return -ENXIO;
1102 }
1103 }
1104 if (!capable(CAP_SYS_ADMIN))
1105 return -EPERM;
1106 }
1107 drv->usage_count++;
1108 h->usage_count++;
1109 return 0;
1110 }
1111
1112 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1113 {
1114 int ret;
1115
1116 mutex_lock(&cciss_mutex);
1117 ret = cciss_open(bdev, mode);
1118 mutex_unlock(&cciss_mutex);
1119
1120 return ret;
1121 }
1122
1123 /*
1124 * Close. Sync first.
1125 */
1126 static int cciss_release(struct gendisk *disk, fmode_t mode)
1127 {
1128 ctlr_info_t *h;
1129 drive_info_struct *drv;
1130
1131 mutex_lock(&cciss_mutex);
1132 h = get_host(disk);
1133 drv = get_drv(disk);
1134 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1135 drv->usage_count--;
1136 h->usage_count--;
1137 mutex_unlock(&cciss_mutex);
1138 return 0;
1139 }
1140
1141 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1142 unsigned cmd, unsigned long arg)
1143 {
1144 int ret;
1145 mutex_lock(&cciss_mutex);
1146 ret = cciss_ioctl(bdev, mode, cmd, arg);
1147 mutex_unlock(&cciss_mutex);
1148 return ret;
1149 }
1150
1151 #ifdef CONFIG_COMPAT
1152
1153 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1154 unsigned cmd, unsigned long arg);
1155 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1156 unsigned cmd, unsigned long arg);
1157
1158 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1159 unsigned cmd, unsigned long arg)
1160 {
1161 switch (cmd) {
1162 case CCISS_GETPCIINFO:
1163 case CCISS_GETINTINFO:
1164 case CCISS_SETINTINFO:
1165 case CCISS_GETNODENAME:
1166 case CCISS_SETNODENAME:
1167 case CCISS_GETHEARTBEAT:
1168 case CCISS_GETBUSTYPES:
1169 case CCISS_GETFIRMVER:
1170 case CCISS_GETDRIVVER:
1171 case CCISS_REVALIDVOLS:
1172 case CCISS_DEREGDISK:
1173 case CCISS_REGNEWDISK:
1174 case CCISS_REGNEWD:
1175 case CCISS_RESCANDISK:
1176 case CCISS_GETLUNINFO:
1177 return do_ioctl(bdev, mode, cmd, arg);
1178
1179 case CCISS_PASSTHRU32:
1180 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1181 case CCISS_BIG_PASSTHRU32:
1182 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1183
1184 default:
1185 return -ENOIOCTLCMD;
1186 }
1187 }
1188
1189 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1190 unsigned cmd, unsigned long arg)
1191 {
1192 IOCTL32_Command_struct __user *arg32 =
1193 (IOCTL32_Command_struct __user *) arg;
1194 IOCTL_Command_struct arg64;
1195 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1196 int err;
1197 u32 cp;
1198
1199 err = 0;
1200 err |=
1201 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1202 sizeof(arg64.LUN_info));
1203 err |=
1204 copy_from_user(&arg64.Request, &arg32->Request,
1205 sizeof(arg64.Request));
1206 err |=
1207 copy_from_user(&arg64.error_info, &arg32->error_info,
1208 sizeof(arg64.error_info));
1209 err |= get_user(arg64.buf_size, &arg32->buf_size);
1210 err |= get_user(cp, &arg32->buf);
1211 arg64.buf = compat_ptr(cp);
1212 err |= copy_to_user(p, &arg64, sizeof(arg64));
1213
1214 if (err)
1215 return -EFAULT;
1216
1217 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1218 if (err)
1219 return err;
1220 err |=
1221 copy_in_user(&arg32->error_info, &p->error_info,
1222 sizeof(arg32->error_info));
1223 if (err)
1224 return -EFAULT;
1225 return err;
1226 }
1227
1228 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1229 unsigned cmd, unsigned long arg)
1230 {
1231 BIG_IOCTL32_Command_struct __user *arg32 =
1232 (BIG_IOCTL32_Command_struct __user *) arg;
1233 BIG_IOCTL_Command_struct arg64;
1234 BIG_IOCTL_Command_struct __user *p =
1235 compat_alloc_user_space(sizeof(arg64));
1236 int err;
1237 u32 cp;
1238
1239 memset(&arg64, 0, sizeof(arg64));
1240 err = 0;
1241 err |=
1242 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1243 sizeof(arg64.LUN_info));
1244 err |=
1245 copy_from_user(&arg64.Request, &arg32->Request,
1246 sizeof(arg64.Request));
1247 err |=
1248 copy_from_user(&arg64.error_info, &arg32->error_info,
1249 sizeof(arg64.error_info));
1250 err |= get_user(arg64.buf_size, &arg32->buf_size);
1251 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1252 err |= get_user(cp, &arg32->buf);
1253 arg64.buf = compat_ptr(cp);
1254 err |= copy_to_user(p, &arg64, sizeof(arg64));
1255
1256 if (err)
1257 return -EFAULT;
1258
1259 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1260 if (err)
1261 return err;
1262 err |=
1263 copy_in_user(&arg32->error_info, &p->error_info,
1264 sizeof(arg32->error_info));
1265 if (err)
1266 return -EFAULT;
1267 return err;
1268 }
1269 #endif
1270
1271 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1272 {
1273 drive_info_struct *drv = get_drv(bdev->bd_disk);
1274
1275 if (!drv->cylinders)
1276 return -ENXIO;
1277
1278 geo->heads = drv->heads;
1279 geo->sectors = drv->sectors;
1280 geo->cylinders = drv->cylinders;
1281 return 0;
1282 }
1283
1284 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1285 {
1286 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1287 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1288 (void)check_for_unit_attention(h, c);
1289 }
1290
1291 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1292 {
1293 cciss_pci_info_struct pciinfo;
1294
1295 if (!argp)
1296 return -EINVAL;
1297 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1298 pciinfo.bus = h->pdev->bus->number;
1299 pciinfo.dev_fn = h->pdev->devfn;
1300 pciinfo.board_id = h->board_id;
1301 if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1302 return -EFAULT;
1303 return 0;
1304 }
1305
1306 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1307 {
1308 cciss_coalint_struct intinfo;
1309
1310 if (!argp)
1311 return -EINVAL;
1312 intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1313 intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1314 if (copy_to_user
1315 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1316 return -EFAULT;
1317 return 0;
1318 }
1319
1320 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1321 {
1322 cciss_coalint_struct intinfo;
1323 unsigned long flags;
1324 int i;
1325
1326 if (!argp)
1327 return -EINVAL;
1328 if (!capable(CAP_SYS_ADMIN))
1329 return -EPERM;
1330 if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1331 return -EFAULT;
1332 if ((intinfo.delay == 0) && (intinfo.count == 0))
1333 return -EINVAL;
1334 spin_lock_irqsave(&h->lock, flags);
1335 /* Update the field, and then ring the doorbell */
1336 writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1337 writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1338 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1339
1340 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1341 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1342 break;
1343 udelay(1000); /* delay and try again */
1344 }
1345 spin_unlock_irqrestore(&h->lock, flags);
1346 if (i >= MAX_IOCTL_CONFIG_WAIT)
1347 return -EAGAIN;
1348 return 0;
1349 }
1350
1351 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1352 {
1353 NodeName_type NodeName;
1354 int i;
1355
1356 if (!argp)
1357 return -EINVAL;
1358 for (i = 0; i < 16; i++)
1359 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1360 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1361 return -EFAULT;
1362 return 0;
1363 }
1364
1365 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1366 {
1367 NodeName_type NodeName;
1368 unsigned long flags;
1369 int i;
1370
1371 if (!argp)
1372 return -EINVAL;
1373 if (!capable(CAP_SYS_ADMIN))
1374 return -EPERM;
1375 if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1376 return -EFAULT;
1377 spin_lock_irqsave(&h->lock, flags);
1378 /* Update the field, and then ring the doorbell */
1379 for (i = 0; i < 16; i++)
1380 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1381 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1382 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1383 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1384 break;
1385 udelay(1000); /* delay and try again */
1386 }
1387 spin_unlock_irqrestore(&h->lock, flags);
1388 if (i >= MAX_IOCTL_CONFIG_WAIT)
1389 return -EAGAIN;
1390 return 0;
1391 }
1392
1393 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1394 {
1395 Heartbeat_type heartbeat;
1396
1397 if (!argp)
1398 return -EINVAL;
1399 heartbeat = readl(&h->cfgtable->HeartBeat);
1400 if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1401 return -EFAULT;
1402 return 0;
1403 }
1404
1405 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1406 {
1407 BusTypes_type BusTypes;
1408
1409 if (!argp)
1410 return -EINVAL;
1411 BusTypes = readl(&h->cfgtable->BusTypes);
1412 if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1413 return -EFAULT;
1414 return 0;
1415 }
1416
1417 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1418 {
1419 FirmwareVer_type firmware;
1420
1421 if (!argp)
1422 return -EINVAL;
1423 memcpy(firmware, h->firm_ver, 4);
1424
1425 if (copy_to_user
1426 (argp, firmware, sizeof(FirmwareVer_type)))
1427 return -EFAULT;
1428 return 0;
1429 }
1430
1431 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1432 {
1433 DriverVer_type DriverVer = DRIVER_VERSION;
1434
1435 if (!argp)
1436 return -EINVAL;
1437 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1438 return -EFAULT;
1439 return 0;
1440 }
1441
1442 static int cciss_getluninfo(ctlr_info_t *h,
1443 struct gendisk *disk, void __user *argp)
1444 {
1445 LogvolInfo_struct luninfo;
1446 drive_info_struct *drv = get_drv(disk);
1447
1448 if (!argp)
1449 return -EINVAL;
1450 memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1451 luninfo.num_opens = drv->usage_count;
1452 luninfo.num_parts = 0;
1453 if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1454 return -EFAULT;
1455 return 0;
1456 }
1457
1458 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1459 {
1460 IOCTL_Command_struct iocommand;
1461 CommandList_struct *c;
1462 char *buff = NULL;
1463 u64bit temp64;
1464 DECLARE_COMPLETION_ONSTACK(wait);
1465
1466 if (!argp)
1467 return -EINVAL;
1468
1469 if (!capable(CAP_SYS_RAWIO))
1470 return -EPERM;
1471
1472 if (copy_from_user
1473 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1474 return -EFAULT;
1475 if ((iocommand.buf_size < 1) &&
1476 (iocommand.Request.Type.Direction != XFER_NONE)) {
1477 return -EINVAL;
1478 }
1479 if (iocommand.buf_size > 0) {
1480 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1481 if (buff == NULL)
1482 return -EFAULT;
1483 }
1484 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1485 /* Copy the data into the buffer we created */
1486 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1487 kfree(buff);
1488 return -EFAULT;
1489 }
1490 } else {
1491 memset(buff, 0, iocommand.buf_size);
1492 }
1493 c = cmd_special_alloc(h);
1494 if (!c) {
1495 kfree(buff);
1496 return -ENOMEM;
1497 }
1498 /* Fill in the command type */
1499 c->cmd_type = CMD_IOCTL_PEND;
1500 /* Fill in Command Header */
1501 c->Header.ReplyQueue = 0; /* unused in simple mode */
1502 if (iocommand.buf_size > 0) { /* buffer to fill */
1503 c->Header.SGList = 1;
1504 c->Header.SGTotal = 1;
1505 } else { /* no buffers to fill */
1506 c->Header.SGList = 0;
1507 c->Header.SGTotal = 0;
1508 }
1509 c->Header.LUN = iocommand.LUN_info;
1510 /* use the kernel address the cmd block for tag */
1511 c->Header.Tag.lower = c->busaddr;
1512
1513 /* Fill in Request block */
1514 c->Request = iocommand.Request;
1515
1516 /* Fill in the scatter gather information */
1517 if (iocommand.buf_size > 0) {
1518 temp64.val = pci_map_single(h->pdev, buff,
1519 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1520 c->SG[0].Addr.lower = temp64.val32.lower;
1521 c->SG[0].Addr.upper = temp64.val32.upper;
1522 c->SG[0].Len = iocommand.buf_size;
1523 c->SG[0].Ext = 0; /* we are not chaining */
1524 }
1525 c->waiting = &wait;
1526
1527 enqueue_cmd_and_start_io(h, c);
1528 wait_for_completion(&wait);
1529
1530 /* unlock the buffers from DMA */
1531 temp64.val32.lower = c->SG[0].Addr.lower;
1532 temp64.val32.upper = c->SG[0].Addr.upper;
1533 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1534 PCI_DMA_BIDIRECTIONAL);
1535 check_ioctl_unit_attention(h, c);
1536
1537 /* Copy the error information out */
1538 iocommand.error_info = *(c->err_info);
1539 if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1540 kfree(buff);
1541 cmd_special_free(h, c);
1542 return -EFAULT;
1543 }
1544
1545 if (iocommand.Request.Type.Direction == XFER_READ) {
1546 /* Copy the data out of the buffer we created */
1547 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1548 kfree(buff);
1549 cmd_special_free(h, c);
1550 return -EFAULT;
1551 }
1552 }
1553 kfree(buff);
1554 cmd_special_free(h, c);
1555 return 0;
1556 }
1557
1558 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1559 {
1560 BIG_IOCTL_Command_struct *ioc;
1561 CommandList_struct *c;
1562 unsigned char **buff = NULL;
1563 int *buff_size = NULL;
1564 u64bit temp64;
1565 BYTE sg_used = 0;
1566 int status = 0;
1567 int i;
1568 DECLARE_COMPLETION_ONSTACK(wait);
1569 __u32 left;
1570 __u32 sz;
1571 BYTE __user *data_ptr;
1572
1573 if (!argp)
1574 return -EINVAL;
1575 if (!capable(CAP_SYS_RAWIO))
1576 return -EPERM;
1577 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1578 if (!ioc) {
1579 status = -ENOMEM;
1580 goto cleanup1;
1581 }
1582 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1583 status = -EFAULT;
1584 goto cleanup1;
1585 }
1586 if ((ioc->buf_size < 1) &&
1587 (ioc->Request.Type.Direction != XFER_NONE)) {
1588 status = -EINVAL;
1589 goto cleanup1;
1590 }
1591 /* Check kmalloc limits using all SGs */
1592 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1593 status = -EINVAL;
1594 goto cleanup1;
1595 }
1596 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1597 status = -EINVAL;
1598 goto cleanup1;
1599 }
1600 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1601 if (!buff) {
1602 status = -ENOMEM;
1603 goto cleanup1;
1604 }
1605 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1606 if (!buff_size) {
1607 status = -ENOMEM;
1608 goto cleanup1;
1609 }
1610 left = ioc->buf_size;
1611 data_ptr = ioc->buf;
1612 while (left) {
1613 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1614 buff_size[sg_used] = sz;
1615 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1616 if (buff[sg_used] == NULL) {
1617 status = -ENOMEM;
1618 goto cleanup1;
1619 }
1620 if (ioc->Request.Type.Direction == XFER_WRITE) {
1621 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1622 status = -EFAULT;
1623 goto cleanup1;
1624 }
1625 } else {
1626 memset(buff[sg_used], 0, sz);
1627 }
1628 left -= sz;
1629 data_ptr += sz;
1630 sg_used++;
1631 }
1632 c = cmd_special_alloc(h);
1633 if (!c) {
1634 status = -ENOMEM;
1635 goto cleanup1;
1636 }
1637 c->cmd_type = CMD_IOCTL_PEND;
1638 c->Header.ReplyQueue = 0;
1639 c->Header.SGList = sg_used;
1640 c->Header.SGTotal = sg_used;
1641 c->Header.LUN = ioc->LUN_info;
1642 c->Header.Tag.lower = c->busaddr;
1643
1644 c->Request = ioc->Request;
1645 for (i = 0; i < sg_used; i++) {
1646 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1647 PCI_DMA_BIDIRECTIONAL);
1648 c->SG[i].Addr.lower = temp64.val32.lower;
1649 c->SG[i].Addr.upper = temp64.val32.upper;
1650 c->SG[i].Len = buff_size[i];
1651 c->SG[i].Ext = 0; /* we are not chaining */
1652 }
1653 c->waiting = &wait;
1654 enqueue_cmd_and_start_io(h, c);
1655 wait_for_completion(&wait);
1656 /* unlock the buffers from DMA */
1657 for (i = 0; i < sg_used; i++) {
1658 temp64.val32.lower = c->SG[i].Addr.lower;
1659 temp64.val32.upper = c->SG[i].Addr.upper;
1660 pci_unmap_single(h->pdev,
1661 (dma_addr_t) temp64.val, buff_size[i],
1662 PCI_DMA_BIDIRECTIONAL);
1663 }
1664 check_ioctl_unit_attention(h, c);
1665 /* Copy the error information out */
1666 ioc->error_info = *(c->err_info);
1667 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1668 cmd_special_free(h, c);
1669 status = -EFAULT;
1670 goto cleanup1;
1671 }
1672 if (ioc->Request.Type.Direction == XFER_READ) {
1673 /* Copy the data out of the buffer we created */
1674 BYTE __user *ptr = ioc->buf;
1675 for (i = 0; i < sg_used; i++) {
1676 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1677 cmd_special_free(h, c);
1678 status = -EFAULT;
1679 goto cleanup1;
1680 }
1681 ptr += buff_size[i];
1682 }
1683 }
1684 cmd_special_free(h, c);
1685 status = 0;
1686 cleanup1:
1687 if (buff) {
1688 for (i = 0; i < sg_used; i++)
1689 kfree(buff[i]);
1690 kfree(buff);
1691 }
1692 kfree(buff_size);
1693 kfree(ioc);
1694 return status;
1695 }
1696
1697 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1698 unsigned int cmd, unsigned long arg)
1699 {
1700 struct gendisk *disk = bdev->bd_disk;
1701 ctlr_info_t *h = get_host(disk);
1702 void __user *argp = (void __user *)arg;
1703
1704 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1705 cmd, arg);
1706 switch (cmd) {
1707 case CCISS_GETPCIINFO:
1708 return cciss_getpciinfo(h, argp);
1709 case CCISS_GETINTINFO:
1710 return cciss_getintinfo(h, argp);
1711 case CCISS_SETINTINFO:
1712 return cciss_setintinfo(h, argp);
1713 case CCISS_GETNODENAME:
1714 return cciss_getnodename(h, argp);
1715 case CCISS_SETNODENAME:
1716 return cciss_setnodename(h, argp);
1717 case CCISS_GETHEARTBEAT:
1718 return cciss_getheartbeat(h, argp);
1719 case CCISS_GETBUSTYPES:
1720 return cciss_getbustypes(h, argp);
1721 case CCISS_GETFIRMVER:
1722 return cciss_getfirmver(h, argp);
1723 case CCISS_GETDRIVVER:
1724 return cciss_getdrivver(h, argp);
1725 case CCISS_DEREGDISK:
1726 case CCISS_REGNEWD:
1727 case CCISS_REVALIDVOLS:
1728 return rebuild_lun_table(h, 0, 1);
1729 case CCISS_GETLUNINFO:
1730 return cciss_getluninfo(h, disk, argp);
1731 case CCISS_PASSTHRU:
1732 return cciss_passthru(h, argp);
1733 case CCISS_BIG_PASSTHRU:
1734 return cciss_bigpassthru(h, argp);
1735
1736 /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1737 /* very meaningful for cciss. SG_IO is the main one people want. */
1738
1739 case SG_GET_VERSION_NUM:
1740 case SG_SET_TIMEOUT:
1741 case SG_GET_TIMEOUT:
1742 case SG_GET_RESERVED_SIZE:
1743 case SG_SET_RESERVED_SIZE:
1744 case SG_EMULATED_HOST:
1745 case SG_IO:
1746 case SCSI_IOCTL_SEND_COMMAND:
1747 return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1748
1749 /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1750 /* they aren't a good fit for cciss, as CD-ROMs are */
1751 /* not supported, and we don't have any bus/target/lun */
1752 /* which we present to the kernel. */
1753
1754 case CDROM_SEND_PACKET:
1755 case CDROMCLOSETRAY:
1756 case CDROMEJECT:
1757 case SCSI_IOCTL_GET_IDLUN:
1758 case SCSI_IOCTL_GET_BUS_NUMBER:
1759 default:
1760 return -ENOTTY;
1761 }
1762 }
1763
1764 static void cciss_check_queues(ctlr_info_t *h)
1765 {
1766 int start_queue = h->next_to_run;
1767 int i;
1768
1769 /* check to see if we have maxed out the number of commands that can
1770 * be placed on the queue. If so then exit. We do this check here
1771 * in case the interrupt we serviced was from an ioctl and did not
1772 * free any new commands.
1773 */
1774 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1775 return;
1776
1777 /* We have room on the queue for more commands. Now we need to queue
1778 * them up. We will also keep track of the next queue to run so
1779 * that every queue gets a chance to be started first.
1780 */
1781 for (i = 0; i < h->highest_lun + 1; i++) {
1782 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1783 /* make sure the disk has been added and the drive is real
1784 * because this can be called from the middle of init_one.
1785 */
1786 if (!h->drv[curr_queue])
1787 continue;
1788 if (!(h->drv[curr_queue]->queue) ||
1789 !(h->drv[curr_queue]->heads))
1790 continue;
1791 blk_start_queue(h->gendisk[curr_queue]->queue);
1792
1793 /* check to see if we have maxed out the number of commands
1794 * that can be placed on the queue.
1795 */
1796 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1797 if (curr_queue == start_queue) {
1798 h->next_to_run =
1799 (start_queue + 1) % (h->highest_lun + 1);
1800 break;
1801 } else {
1802 h->next_to_run = curr_queue;
1803 break;
1804 }
1805 }
1806 }
1807 }
1808
1809 static void cciss_softirq_done(struct request *rq)
1810 {
1811 CommandList_struct *c = rq->completion_data;
1812 ctlr_info_t *h = hba[c->ctlr];
1813 SGDescriptor_struct *curr_sg = c->SG;
1814 u64bit temp64;
1815 unsigned long flags;
1816 int i, ddir;
1817 int sg_index = 0;
1818
1819 if (c->Request.Type.Direction == XFER_READ)
1820 ddir = PCI_DMA_FROMDEVICE;
1821 else
1822 ddir = PCI_DMA_TODEVICE;
1823
1824 /* command did not need to be retried */
1825 /* unmap the DMA mapping for all the scatter gather elements */
1826 for (i = 0; i < c->Header.SGList; i++) {
1827 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1828 cciss_unmap_sg_chain_block(h, c);
1829 /* Point to the next block */
1830 curr_sg = h->cmd_sg_list[c->cmdindex];
1831 sg_index = 0;
1832 }
1833 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1834 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1835 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1836 ddir);
1837 ++sg_index;
1838 }
1839
1840 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1841
1842 /* set the residual count for pc requests */
1843 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1844 rq->resid_len = c->err_info->ResidualCnt;
1845
1846 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1847
1848 spin_lock_irqsave(&h->lock, flags);
1849 cmd_free(h, c);
1850 cciss_check_queues(h);
1851 spin_unlock_irqrestore(&h->lock, flags);
1852 }
1853
1854 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1855 unsigned char scsi3addr[], uint32_t log_unit)
1856 {
1857 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1858 sizeof(h->drv[log_unit]->LunID));
1859 }
1860
1861 /* This function gets the SCSI vendor, model, and revision of a logical drive
1862 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1863 * they cannot be read.
1864 */
1865 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1866 char *vendor, char *model, char *rev)
1867 {
1868 int rc;
1869 InquiryData_struct *inq_buf;
1870 unsigned char scsi3addr[8];
1871
1872 *vendor = '\0';
1873 *model = '\0';
1874 *rev = '\0';
1875
1876 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1877 if (!inq_buf)
1878 return;
1879
1880 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1881 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1882 scsi3addr, TYPE_CMD);
1883 if (rc == IO_OK) {
1884 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1885 vendor[VENDOR_LEN] = '\0';
1886 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1887 model[MODEL_LEN] = '\0';
1888 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1889 rev[REV_LEN] = '\0';
1890 }
1891
1892 kfree(inq_buf);
1893 return;
1894 }
1895
1896 /* This function gets the serial number of a logical drive via
1897 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1898 * number cannot be had, for whatever reason, 16 bytes of 0xff
1899 * are returned instead.
1900 */
1901 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1902 unsigned char *serial_no, int buflen)
1903 {
1904 #define PAGE_83_INQ_BYTES 64
1905 int rc;
1906 unsigned char *buf;
1907 unsigned char scsi3addr[8];
1908
1909 if (buflen > 16)
1910 buflen = 16;
1911 memset(serial_no, 0xff, buflen);
1912 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1913 if (!buf)
1914 return;
1915 memset(serial_no, 0, buflen);
1916 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1917 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1918 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1919 if (rc == IO_OK)
1920 memcpy(serial_no, &buf[8], buflen);
1921 kfree(buf);
1922 return;
1923 }
1924
1925 /*
1926 * cciss_add_disk sets up the block device queue for a logical drive
1927 */
1928 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1929 int drv_index)
1930 {
1931 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1932 if (!disk->queue)
1933 goto init_queue_failure;
1934 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1935 disk->major = h->major;
1936 disk->first_minor = drv_index << NWD_SHIFT;
1937 disk->fops = &cciss_fops;
1938 if (cciss_create_ld_sysfs_entry(h, drv_index))
1939 goto cleanup_queue;
1940 disk->private_data = h->drv[drv_index];
1941 disk->driverfs_dev = &h->drv[drv_index]->dev;
1942
1943 /* Set up queue information */
1944 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1945
1946 /* This is a hardware imposed limit. */
1947 blk_queue_max_segments(disk->queue, h->maxsgentries);
1948
1949 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1950
1951 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1952
1953 disk->queue->queuedata = h;
1954
1955 blk_queue_logical_block_size(disk->queue,
1956 h->drv[drv_index]->block_size);
1957
1958 /* Make sure all queue data is written out before */
1959 /* setting h->drv[drv_index]->queue, as setting this */
1960 /* allows the interrupt handler to start the queue */
1961 wmb();
1962 h->drv[drv_index]->queue = disk->queue;
1963 add_disk(disk);
1964 return 0;
1965
1966 cleanup_queue:
1967 blk_cleanup_queue(disk->queue);
1968 disk->queue = NULL;
1969 init_queue_failure:
1970 return -1;
1971 }
1972
1973 /* This function will check the usage_count of the drive to be updated/added.
1974 * If the usage_count is zero and it is a heretofore unknown drive, or,
1975 * the drive's capacity, geometry, or serial number has changed,
1976 * then the drive information will be updated and the disk will be
1977 * re-registered with the kernel. If these conditions don't hold,
1978 * then it will be left alone for the next reboot. The exception to this
1979 * is disk 0 which will always be left registered with the kernel since it
1980 * is also the controller node. Any changes to disk 0 will show up on
1981 * the next reboot.
1982 */
1983 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1984 int first_time, int via_ioctl)
1985 {
1986 struct gendisk *disk;
1987 InquiryData_struct *inq_buff = NULL;
1988 unsigned int block_size;
1989 sector_t total_size;
1990 unsigned long flags = 0;
1991 int ret = 0;
1992 drive_info_struct *drvinfo;
1993
1994 /* Get information about the disk and modify the driver structure */
1995 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1996 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1997 if (inq_buff == NULL || drvinfo == NULL)
1998 goto mem_msg;
1999
2000 /* testing to see if 16-byte CDBs are already being used */
2001 if (h->cciss_read == CCISS_READ_16) {
2002 cciss_read_capacity_16(h, drv_index,
2003 &total_size, &block_size);
2004
2005 } else {
2006 cciss_read_capacity(h, drv_index, &total_size, &block_size);
2007 /* if read_capacity returns all F's this volume is >2TB */
2008 /* in size so we switch to 16-byte CDB's for all */
2009 /* read/write ops */
2010 if (total_size == 0xFFFFFFFFULL) {
2011 cciss_read_capacity_16(h, drv_index,
2012 &total_size, &block_size);
2013 h->cciss_read = CCISS_READ_16;
2014 h->cciss_write = CCISS_WRITE_16;
2015 } else {
2016 h->cciss_read = CCISS_READ_10;
2017 h->cciss_write = CCISS_WRITE_10;
2018 }
2019 }
2020
2021 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2022 inq_buff, drvinfo);
2023 drvinfo->block_size = block_size;
2024 drvinfo->nr_blocks = total_size + 1;
2025
2026 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2027 drvinfo->model, drvinfo->rev);
2028 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2029 sizeof(drvinfo->serial_no));
2030 /* Save the lunid in case we deregister the disk, below. */
2031 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2032 sizeof(drvinfo->LunID));
2033
2034 /* Is it the same disk we already know, and nothing's changed? */
2035 if (h->drv[drv_index]->raid_level != -1 &&
2036 ((memcmp(drvinfo->serial_no,
2037 h->drv[drv_index]->serial_no, 16) == 0) &&
2038 drvinfo->block_size == h->drv[drv_index]->block_size &&
2039 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2040 drvinfo->heads == h->drv[drv_index]->heads &&
2041 drvinfo->sectors == h->drv[drv_index]->sectors &&
2042 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2043 /* The disk is unchanged, nothing to update */
2044 goto freeret;
2045
2046 /* If we get here it's not the same disk, or something's changed,
2047 * so we need to * deregister it, and re-register it, if it's not
2048 * in use.
2049 * If the disk already exists then deregister it before proceeding
2050 * (unless it's the first disk (for the controller node).
2051 */
2052 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2053 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2054 spin_lock_irqsave(&h->lock, flags);
2055 h->drv[drv_index]->busy_configuring = 1;
2056 spin_unlock_irqrestore(&h->lock, flags);
2057
2058 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2059 * which keeps the interrupt handler from starting
2060 * the queue.
2061 */
2062 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2063 }
2064
2065 /* If the disk is in use return */
2066 if (ret)
2067 goto freeret;
2068
2069 /* Save the new information from cciss_geometry_inquiry
2070 * and serial number inquiry. If the disk was deregistered
2071 * above, then h->drv[drv_index] will be NULL.
2072 */
2073 if (h->drv[drv_index] == NULL) {
2074 drvinfo->device_initialized = 0;
2075 h->drv[drv_index] = drvinfo;
2076 drvinfo = NULL; /* so it won't be freed below. */
2077 } else {
2078 /* special case for cxd0 */
2079 h->drv[drv_index]->block_size = drvinfo->block_size;
2080 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2081 h->drv[drv_index]->heads = drvinfo->heads;
2082 h->drv[drv_index]->sectors = drvinfo->sectors;
2083 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2084 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2085 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2086 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2087 VENDOR_LEN + 1);
2088 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2089 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2090 }
2091
2092 ++h->num_luns;
2093 disk = h->gendisk[drv_index];
2094 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2095
2096 /* If it's not disk 0 (drv_index != 0)
2097 * or if it was disk 0, but there was previously
2098 * no actual corresponding configured logical drive
2099 * (raid_leve == -1) then we want to update the
2100 * logical drive's information.
2101 */
2102 if (drv_index || first_time) {
2103 if (cciss_add_disk(h, disk, drv_index) != 0) {
2104 cciss_free_gendisk(h, drv_index);
2105 cciss_free_drive_info(h, drv_index);
2106 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2107 drv_index);
2108 --h->num_luns;
2109 }
2110 }
2111
2112 freeret:
2113 kfree(inq_buff);
2114 kfree(drvinfo);
2115 return;
2116 mem_msg:
2117 dev_err(&h->pdev->dev, "out of memory\n");
2118 goto freeret;
2119 }
2120
2121 /* This function will find the first index of the controllers drive array
2122 * that has a null drv pointer and allocate the drive info struct and
2123 * will return that index This is where new drives will be added.
2124 * If the index to be returned is greater than the highest_lun index for
2125 * the controller then highest_lun is set * to this new index.
2126 * If there are no available indexes or if tha allocation fails, then -1
2127 * is returned. * "controller_node" is used to know if this is a real
2128 * logical drive, or just the controller node, which determines if this
2129 * counts towards highest_lun.
2130 */
2131 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2132 {
2133 int i;
2134 drive_info_struct *drv;
2135
2136 /* Search for an empty slot for our drive info */
2137 for (i = 0; i < CISS_MAX_LUN; i++) {
2138
2139 /* if not cxd0 case, and it's occupied, skip it. */
2140 if (h->drv[i] && i != 0)
2141 continue;
2142 /*
2143 * If it's cxd0 case, and drv is alloc'ed already, and a
2144 * disk is configured there, skip it.
2145 */
2146 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2147 continue;
2148
2149 /*
2150 * We've found an empty slot. Update highest_lun
2151 * provided this isn't just the fake cxd0 controller node.
2152 */
2153 if (i > h->highest_lun && !controller_node)
2154 h->highest_lun = i;
2155
2156 /* If adding a real disk at cxd0, and it's already alloc'ed */
2157 if (i == 0 && h->drv[i] != NULL)
2158 return i;
2159
2160 /*
2161 * Found an empty slot, not already alloc'ed. Allocate it.
2162 * Mark it with raid_level == -1, so we know it's new later on.
2163 */
2164 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2165 if (!drv)
2166 return -1;
2167 drv->raid_level = -1; /* so we know it's new */
2168 h->drv[i] = drv;
2169 return i;
2170 }
2171 return -1;
2172 }
2173
2174 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2175 {
2176 kfree(h->drv[drv_index]);
2177 h->drv[drv_index] = NULL;
2178 }
2179
2180 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2181 {
2182 put_disk(h->gendisk[drv_index]);
2183 h->gendisk[drv_index] = NULL;
2184 }
2185
2186 /* cciss_add_gendisk finds a free hba[]->drv structure
2187 * and allocates a gendisk if needed, and sets the lunid
2188 * in the drvinfo structure. It returns the index into
2189 * the ->drv[] array, or -1 if none are free.
2190 * is_controller_node indicates whether highest_lun should
2191 * count this disk, or if it's only being added to provide
2192 * a means to talk to the controller in case no logical
2193 * drives have yet been configured.
2194 */
2195 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2196 int controller_node)
2197 {
2198 int drv_index;
2199
2200 drv_index = cciss_alloc_drive_info(h, controller_node);
2201 if (drv_index == -1)
2202 return -1;
2203
2204 /*Check if the gendisk needs to be allocated */
2205 if (!h->gendisk[drv_index]) {
2206 h->gendisk[drv_index] =
2207 alloc_disk(1 << NWD_SHIFT);
2208 if (!h->gendisk[drv_index]) {
2209 dev_err(&h->pdev->dev,
2210 "could not allocate a new disk %d\n",
2211 drv_index);
2212 goto err_free_drive_info;
2213 }
2214 }
2215 memcpy(h->drv[drv_index]->LunID, lunid,
2216 sizeof(h->drv[drv_index]->LunID));
2217 if (cciss_create_ld_sysfs_entry(h, drv_index))
2218 goto err_free_disk;
2219 /* Don't need to mark this busy because nobody */
2220 /* else knows about this disk yet to contend */
2221 /* for access to it. */
2222 h->drv[drv_index]->busy_configuring = 0;
2223 wmb();
2224 return drv_index;
2225
2226 err_free_disk:
2227 cciss_free_gendisk(h, drv_index);
2228 err_free_drive_info:
2229 cciss_free_drive_info(h, drv_index);
2230 return -1;
2231 }
2232
2233 /* This is for the special case of a controller which
2234 * has no logical drives. In this case, we still need
2235 * to register a disk so the controller can be accessed
2236 * by the Array Config Utility.
2237 */
2238 static void cciss_add_controller_node(ctlr_info_t *h)
2239 {
2240 struct gendisk *disk;
2241 int drv_index;
2242
2243 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2244 return;
2245
2246 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2247 if (drv_index == -1)
2248 goto error;
2249 h->drv[drv_index]->block_size = 512;
2250 h->drv[drv_index]->nr_blocks = 0;
2251 h->drv[drv_index]->heads = 0;
2252 h->drv[drv_index]->sectors = 0;
2253 h->drv[drv_index]->cylinders = 0;
2254 h->drv[drv_index]->raid_level = -1;
2255 memset(h->drv[drv_index]->serial_no, 0, 16);
2256 disk = h->gendisk[drv_index];
2257 if (cciss_add_disk(h, disk, drv_index) == 0)
2258 return;
2259 cciss_free_gendisk(h, drv_index);
2260 cciss_free_drive_info(h, drv_index);
2261 error:
2262 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2263 return;
2264 }
2265
2266 /* This function will add and remove logical drives from the Logical
2267 * drive array of the controller and maintain persistency of ordering
2268 * so that mount points are preserved until the next reboot. This allows
2269 * for the removal of logical drives in the middle of the drive array
2270 * without a re-ordering of those drives.
2271 * INPUT
2272 * h = The controller to perform the operations on
2273 */
2274 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2275 int via_ioctl)
2276 {
2277 int num_luns;
2278 ReportLunData_struct *ld_buff = NULL;
2279 int return_code;
2280 int listlength = 0;
2281 int i;
2282 int drv_found;
2283 int drv_index = 0;
2284 unsigned char lunid[8] = CTLR_LUNID;
2285 unsigned long flags;
2286
2287 if (!capable(CAP_SYS_RAWIO))
2288 return -EPERM;
2289
2290 /* Set busy_configuring flag for this operation */
2291 spin_lock_irqsave(&h->lock, flags);
2292 if (h->busy_configuring) {
2293 spin_unlock_irqrestore(&h->lock, flags);
2294 return -EBUSY;
2295 }
2296 h->busy_configuring = 1;
2297 spin_unlock_irqrestore(&h->lock, flags);
2298
2299 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2300 if (ld_buff == NULL)
2301 goto mem_msg;
2302
2303 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2304 sizeof(ReportLunData_struct),
2305 0, CTLR_LUNID, TYPE_CMD);
2306
2307 if (return_code == IO_OK)
2308 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2309 else { /* reading number of logical volumes failed */
2310 dev_warn(&h->pdev->dev,
2311 "report logical volume command failed\n");
2312 listlength = 0;
2313 goto freeret;
2314 }
2315
2316 num_luns = listlength / 8; /* 8 bytes per entry */
2317 if (num_luns > CISS_MAX_LUN) {
2318 num_luns = CISS_MAX_LUN;
2319 dev_warn(&h->pdev->dev, "more luns configured"
2320 " on controller than can be handled by"
2321 " this driver.\n");
2322 }
2323
2324 if (num_luns == 0)
2325 cciss_add_controller_node(h);
2326
2327 /* Compare controller drive array to driver's drive array
2328 * to see if any drives are missing on the controller due
2329 * to action of Array Config Utility (user deletes drive)
2330 * and deregister logical drives which have disappeared.
2331 */
2332 for (i = 0; i <= h->highest_lun; i++) {
2333 int j;
2334 drv_found = 0;
2335
2336 /* skip holes in the array from already deleted drives */
2337 if (h->drv[i] == NULL)
2338 continue;
2339
2340 for (j = 0; j < num_luns; j++) {
2341 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2342 if (memcmp(h->drv[i]->LunID, lunid,
2343 sizeof(lunid)) == 0) {
2344 drv_found = 1;
2345 break;
2346 }
2347 }
2348 if (!drv_found) {
2349 /* Deregister it from the OS, it's gone. */
2350 spin_lock_irqsave(&h->lock, flags);
2351 h->drv[i]->busy_configuring = 1;
2352 spin_unlock_irqrestore(&h->lock, flags);
2353 return_code = deregister_disk(h, i, 1, via_ioctl);
2354 if (h->drv[i] != NULL)
2355 h->drv[i]->busy_configuring = 0;
2356 }
2357 }
2358
2359 /* Compare controller drive array to driver's drive array.
2360 * Check for updates in the drive information and any new drives
2361 * on the controller due to ACU adding logical drives, or changing
2362 * a logical drive's size, etc. Reregister any new/changed drives
2363 */
2364 for (i = 0; i < num_luns; i++) {
2365 int j;
2366
2367 drv_found = 0;
2368
2369 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2370 /* Find if the LUN is already in the drive array
2371 * of the driver. If so then update its info
2372 * if not in use. If it does not exist then find
2373 * the first free index and add it.
2374 */
2375 for (j = 0; j <= h->highest_lun; j++) {
2376 if (h->drv[j] != NULL &&
2377 memcmp(h->drv[j]->LunID, lunid,
2378 sizeof(h->drv[j]->LunID)) == 0) {
2379 drv_index = j;
2380 drv_found = 1;
2381 break;
2382 }
2383 }
2384
2385 /* check if the drive was found already in the array */
2386 if (!drv_found) {
2387 drv_index = cciss_add_gendisk(h, lunid, 0);
2388 if (drv_index == -1)
2389 goto freeret;
2390 }
2391 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2392 } /* end for */
2393
2394 freeret:
2395 kfree(ld_buff);
2396 h->busy_configuring = 0;
2397 /* We return -1 here to tell the ACU that we have registered/updated
2398 * all of the drives that we can and to keep it from calling us
2399 * additional times.
2400 */
2401 return -1;
2402 mem_msg:
2403 dev_err(&h->pdev->dev, "out of memory\n");
2404 h->busy_configuring = 0;
2405 goto freeret;
2406 }
2407
2408 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2409 {
2410 /* zero out the disk size info */
2411 drive_info->nr_blocks = 0;
2412 drive_info->block_size = 0;
2413 drive_info->heads = 0;
2414 drive_info->sectors = 0;
2415 drive_info->cylinders = 0;
2416 drive_info->raid_level = -1;
2417 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2418 memset(drive_info->model, 0, sizeof(drive_info->model));
2419 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2420 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2421 /*
2422 * don't clear the LUNID though, we need to remember which
2423 * one this one is.
2424 */
2425 }
2426
2427 /* This function will deregister the disk and it's queue from the
2428 * kernel. It must be called with the controller lock held and the
2429 * drv structures busy_configuring flag set. It's parameters are:
2430 *
2431 * disk = This is the disk to be deregistered
2432 * drv = This is the drive_info_struct associated with the disk to be
2433 * deregistered. It contains information about the disk used
2434 * by the driver.
2435 * clear_all = This flag determines whether or not the disk information
2436 * is going to be completely cleared out and the highest_lun
2437 * reset. Sometimes we want to clear out information about
2438 * the disk in preparation for re-adding it. In this case
2439 * the highest_lun should be left unchanged and the LunID
2440 * should not be cleared.
2441 * via_ioctl
2442 * This indicates whether we've reached this path via ioctl.
2443 * This affects the maximum usage count allowed for c0d0 to be messed with.
2444 * If this path is reached via ioctl(), then the max_usage_count will
2445 * be 1, as the process calling ioctl() has got to have the device open.
2446 * If we get here via sysfs, then the max usage count will be zero.
2447 */
2448 static int deregister_disk(ctlr_info_t *h, int drv_index,
2449 int clear_all, int via_ioctl)
2450 {
2451 int i;
2452 struct gendisk *disk;
2453 drive_info_struct *drv;
2454 int recalculate_highest_lun;
2455
2456 if (!capable(CAP_SYS_RAWIO))
2457 return -EPERM;
2458
2459 drv = h->drv[drv_index];
2460 disk = h->gendisk[drv_index];
2461
2462 /* make sure logical volume is NOT is use */
2463 if (clear_all || (h->gendisk[0] == disk)) {
2464 if (drv->usage_count > via_ioctl)
2465 return -EBUSY;
2466 } else if (drv->usage_count > 0)
2467 return -EBUSY;
2468
2469 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2470
2471 /* invalidate the devices and deregister the disk. If it is disk
2472 * zero do not deregister it but just zero out it's values. This
2473 * allows us to delete disk zero but keep the controller registered.
2474 */
2475 if (h->gendisk[0] != disk) {
2476 struct request_queue *q = disk->queue;
2477 if (disk->flags & GENHD_FL_UP) {
2478 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2479 del_gendisk(disk);
2480 }
2481 if (q)
2482 blk_cleanup_queue(q);
2483 /* If clear_all is set then we are deleting the logical
2484 * drive, not just refreshing its info. For drives
2485 * other than disk 0 we will call put_disk. We do not
2486 * do this for disk 0 as we need it to be able to
2487 * configure the controller.
2488 */
2489 if (clear_all){
2490 /* This isn't pretty, but we need to find the
2491 * disk in our array and NULL our the pointer.
2492 * This is so that we will call alloc_disk if
2493 * this index is used again later.
2494 */
2495 for (i=0; i < CISS_MAX_LUN; i++){
2496 if (h->gendisk[i] == disk) {
2497 h->gendisk[i] = NULL;
2498 break;
2499 }
2500 }
2501 put_disk(disk);
2502 }
2503 } else {
2504 set_capacity(disk, 0);
2505 cciss_clear_drive_info(drv);
2506 }
2507
2508 --h->num_luns;
2509
2510 /* if it was the last disk, find the new hightest lun */
2511 if (clear_all && recalculate_highest_lun) {
2512 int newhighest = -1;
2513 for (i = 0; i <= h->highest_lun; i++) {
2514 /* if the disk has size > 0, it is available */
2515 if (h->drv[i] && h->drv[i]->heads)
2516 newhighest = i;
2517 }
2518 h->highest_lun = newhighest;
2519 }
2520 return 0;
2521 }
2522
2523 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2524 size_t size, __u8 page_code, unsigned char *scsi3addr,
2525 int cmd_type)
2526 {
2527 u64bit buff_dma_handle;
2528 int status = IO_OK;
2529
2530 c->cmd_type = CMD_IOCTL_PEND;
2531 c->Header.ReplyQueue = 0;
2532 if (buff != NULL) {
2533 c->Header.SGList = 1;
2534 c->Header.SGTotal = 1;
2535 } else {
2536 c->Header.SGList = 0;
2537 c->Header.SGTotal = 0;
2538 }
2539 c->Header.Tag.lower = c->busaddr;
2540 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2541
2542 c->Request.Type.Type = cmd_type;
2543 if (cmd_type == TYPE_CMD) {
2544 switch (cmd) {
2545 case CISS_INQUIRY:
2546 /* are we trying to read a vital product page */
2547 if (page_code != 0) {
2548 c->Request.CDB[1] = 0x01;
2549 c->Request.CDB[2] = page_code;
2550 }
2551 c->Request.CDBLen = 6;
2552 c->Request.Type.Attribute = ATTR_SIMPLE;
2553 c->Request.Type.Direction = XFER_READ;
2554 c->Request.Timeout = 0;
2555 c->Request.CDB[0] = CISS_INQUIRY;
2556 c->Request.CDB[4] = size & 0xFF;
2557 break;
2558 case CISS_REPORT_LOG:
2559 case CISS_REPORT_PHYS:
2560 /* Talking to controller so It's a physical command
2561 mode = 00 target = 0. Nothing to write.
2562 */
2563 c->Request.CDBLen = 12;
2564 c->Request.Type.Attribute = ATTR_SIMPLE;
2565 c->Request.Type.Direction = XFER_READ;
2566 c->Request.Timeout = 0;
2567 c->Request.CDB[0] = cmd;
2568 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2569 c->Request.CDB[7] = (size >> 16) & 0xFF;
2570 c->Request.CDB[8] = (size >> 8) & 0xFF;
2571 c->Request.CDB[9] = size & 0xFF;
2572 break;
2573
2574 case CCISS_READ_CAPACITY:
2575 c->Request.CDBLen = 10;
2576 c->Request.Type.Attribute = ATTR_SIMPLE;
2577 c->Request.Type.Direction = XFER_READ;
2578 c->Request.Timeout = 0;
2579 c->Request.CDB[0] = cmd;
2580 break;
2581 case CCISS_READ_CAPACITY_16:
2582 c->Request.CDBLen = 16;
2583 c->Request.Type.Attribute = ATTR_SIMPLE;
2584 c->Request.Type.Direction = XFER_READ;
2585 c->Request.Timeout = 0;
2586 c->Request.CDB[0] = cmd;
2587 c->Request.CDB[1] = 0x10;
2588 c->Request.CDB[10] = (size >> 24) & 0xFF;
2589 c->Request.CDB[11] = (size >> 16) & 0xFF;
2590 c->Request.CDB[12] = (size >> 8) & 0xFF;
2591 c->Request.CDB[13] = size & 0xFF;
2592 c->Request.Timeout = 0;
2593 c->Request.CDB[0] = cmd;
2594 break;
2595 case CCISS_CACHE_FLUSH:
2596 c->Request.CDBLen = 12;
2597 c->Request.Type.Attribute = ATTR_SIMPLE;
2598 c->Request.Type.Direction = XFER_WRITE;
2599 c->Request.Timeout = 0;
2600 c->Request.CDB[0] = BMIC_WRITE;
2601 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2602 c->Request.CDB[7] = (size >> 8) & 0xFF;
2603 c->Request.CDB[8] = size & 0xFF;
2604 break;
2605 case TEST_UNIT_READY:
2606 c->Request.CDBLen = 6;
2607 c->Request.Type.Attribute = ATTR_SIMPLE;
2608 c->Request.Type.Direction = XFER_NONE;
2609 c->Request.Timeout = 0;
2610 break;
2611 default:
2612 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2613 return IO_ERROR;
2614 }
2615 } else if (cmd_type == TYPE_MSG) {
2616 switch (cmd) {
2617 case CCISS_ABORT_MSG:
2618 c->Request.CDBLen = 12;
2619 c->Request.Type.Attribute = ATTR_SIMPLE;
2620 c->Request.Type.Direction = XFER_WRITE;
2621 c->Request.Timeout = 0;
2622 c->Request.CDB[0] = cmd; /* abort */
2623 c->Request.CDB[1] = 0; /* abort a command */
2624 /* buff contains the tag of the command to abort */
2625 memcpy(&c->Request.CDB[4], buff, 8);
2626 break;
2627 case CCISS_RESET_MSG:
2628 c->Request.CDBLen = 16;
2629 c->Request.Type.Attribute = ATTR_SIMPLE;
2630 c->Request.Type.Direction = XFER_NONE;
2631 c->Request.Timeout = 0;
2632 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2633 c->Request.CDB[0] = cmd; /* reset */
2634 c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2635 break;
2636 case CCISS_NOOP_MSG:
2637 c->Request.CDBLen = 1;
2638 c->Request.Type.Attribute = ATTR_SIMPLE;
2639 c->Request.Type.Direction = XFER_WRITE;
2640 c->Request.Timeout = 0;
2641 c->Request.CDB[0] = cmd;
2642 break;
2643 default:
2644 dev_warn(&h->pdev->dev,
2645 "unknown message type %d\n", cmd);
2646 return IO_ERROR;
2647 }
2648 } else {
2649 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2650 return IO_ERROR;
2651 }
2652 /* Fill in the scatter gather information */
2653 if (size > 0) {
2654 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2655 buff, size,
2656 PCI_DMA_BIDIRECTIONAL);
2657 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2658 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2659 c->SG[0].Len = size;
2660 c->SG[0].Ext = 0; /* we are not chaining */
2661 }
2662 return status;
2663 }
2664
2665 static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2666 u8 reset_type)
2667 {
2668 CommandList_struct *c;
2669 int return_status;
2670
2671 c = cmd_alloc(h);
2672 if (!c)
2673 return -ENOMEM;
2674 return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2675 CTLR_LUNID, TYPE_MSG);
2676 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2677 if (return_status != IO_OK) {
2678 cmd_special_free(h, c);
2679 return return_status;
2680 }
2681 c->waiting = NULL;
2682 enqueue_cmd_and_start_io(h, c);
2683 /* Don't wait for completion, the reset won't complete. Don't free
2684 * the command either. This is the last command we will send before
2685 * re-initializing everything, so it doesn't matter and won't leak.
2686 */
2687 return 0;
2688 }
2689
2690 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2691 {
2692 switch (c->err_info->ScsiStatus) {
2693 case SAM_STAT_GOOD:
2694 return IO_OK;
2695 case SAM_STAT_CHECK_CONDITION:
2696 switch (0xf & c->err_info->SenseInfo[2]) {
2697 case 0: return IO_OK; /* no sense */
2698 case 1: return IO_OK; /* recovered error */
2699 default:
2700 if (check_for_unit_attention(h, c))
2701 return IO_NEEDS_RETRY;
2702 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2703 "check condition, sense key = 0x%02x\n",
2704 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2705 }
2706 break;
2707 default:
2708 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2709 "scsi status = 0x%02x\n",
2710 c->Request.CDB[0], c->err_info->ScsiStatus);
2711 break;
2712 }
2713 return IO_ERROR;
2714 }
2715
2716 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2717 {
2718 int return_status = IO_OK;
2719
2720 if (c->err_info->CommandStatus == CMD_SUCCESS)
2721 return IO_OK;
2722
2723 switch (c->err_info->CommandStatus) {
2724 case CMD_TARGET_STATUS:
2725 return_status = check_target_status(h, c);
2726 break;
2727 case CMD_DATA_UNDERRUN:
2728 case CMD_DATA_OVERRUN:
2729 /* expected for inquiry and report lun commands */
2730 break;
2731 case CMD_INVALID:
2732 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2733 "reported invalid\n", c->Request.CDB[0]);
2734 return_status = IO_ERROR;
2735 break;
2736 case CMD_PROTOCOL_ERR:
2737 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2738 "protocol error\n", c->Request.CDB[0]);
2739 return_status = IO_ERROR;
2740 break;
2741 case CMD_HARDWARE_ERR:
2742 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2743 " hardware error\n", c->Request.CDB[0]);
2744 return_status = IO_ERROR;
2745 break;
2746 case CMD_CONNECTION_LOST:
2747 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2748 "connection lost\n", c->Request.CDB[0]);
2749 return_status = IO_ERROR;
2750 break;
2751 case CMD_ABORTED:
2752 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2753 "aborted\n", c->Request.CDB[0]);
2754 return_status = IO_ERROR;
2755 break;
2756 case CMD_ABORT_FAILED:
2757 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2758 "abort failed\n", c->Request.CDB[0]);
2759 return_status = IO_ERROR;
2760 break;
2761 case CMD_UNSOLICITED_ABORT:
2762 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2763 c->Request.CDB[0]);
2764 return_status = IO_NEEDS_RETRY;
2765 break;
2766 case CMD_UNABORTABLE:
2767 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2768 return_status = IO_ERROR;
2769 break;
2770 default:
2771 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2772 "unknown status %x\n", c->Request.CDB[0],
2773 c->err_info->CommandStatus);
2774 return_status = IO_ERROR;
2775 }
2776 return return_status;
2777 }
2778
2779 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2780 int attempt_retry)
2781 {
2782 DECLARE_COMPLETION_ONSTACK(wait);
2783 u64bit buff_dma_handle;
2784 int return_status = IO_OK;
2785
2786 resend_cmd2:
2787 c->waiting = &wait;
2788 enqueue_cmd_and_start_io(h, c);
2789
2790 wait_for_completion(&wait);
2791
2792 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2793 goto command_done;
2794
2795 return_status = process_sendcmd_error(h, c);
2796
2797 if (return_status == IO_NEEDS_RETRY &&
2798 c->retry_count < MAX_CMD_RETRIES) {
2799 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2800 c->Request.CDB[0]);
2801 c->retry_count++;
2802 /* erase the old error information */
2803 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2804 return_status = IO_OK;
2805 INIT_COMPLETION(wait);
2806 goto resend_cmd2;
2807 }
2808
2809 command_done:
2810 /* unlock the buffers from DMA */
2811 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2812 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2813 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2814 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2815 return return_status;
2816 }
2817
2818 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2819 __u8 page_code, unsigned char scsi3addr[],
2820 int cmd_type)
2821 {
2822 CommandList_struct *c;
2823 int return_status;
2824
2825 c = cmd_special_alloc(h);
2826 if (!c)
2827 return -ENOMEM;
2828 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2829 scsi3addr, cmd_type);
2830 if (return_status == IO_OK)
2831 return_status = sendcmd_withirq_core(h, c, 1);
2832
2833 cmd_special_free(h, c);
2834 return return_status;
2835 }
2836
2837 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2838 sector_t total_size,
2839 unsigned int block_size,
2840 InquiryData_struct *inq_buff,
2841 drive_info_struct *drv)
2842 {
2843 int return_code;
2844 unsigned long t;
2845 unsigned char scsi3addr[8];
2846
2847 memset(inq_buff, 0, sizeof(InquiryData_struct));
2848 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2849 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2850 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2851 if (return_code == IO_OK) {
2852 if (inq_buff->data_byte[8] == 0xFF) {
2853 dev_warn(&h->pdev->dev,
2854 "reading geometry failed, volume "
2855 "does not support reading geometry\n");
2856 drv->heads = 255;
2857 drv->sectors = 32; /* Sectors per track */
2858 drv->cylinders = total_size + 1;
2859 drv->raid_level = RAID_UNKNOWN;
2860 } else {
2861 drv->heads = inq_buff->data_byte[6];
2862 drv->sectors = inq_buff->data_byte[7];
2863 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2864 drv->cylinders += inq_buff->data_byte[5];
2865 drv->raid_level = inq_buff->data_byte[8];
2866 }
2867 drv->block_size = block_size;
2868 drv->nr_blocks = total_size + 1;
2869 t = drv->heads * drv->sectors;
2870 if (t > 1) {
2871 sector_t real_size = total_size + 1;
2872 unsigned long rem = sector_div(real_size, t);
2873 if (rem)
2874 real_size++;
2875 drv->cylinders = real_size;
2876 }
2877 } else { /* Get geometry failed */
2878 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2879 }
2880 }
2881
2882 static void
2883 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2884 unsigned int *block_size)
2885 {
2886 ReadCapdata_struct *buf;
2887 int return_code;
2888 unsigned char scsi3addr[8];
2889
2890 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2891 if (!buf) {
2892 dev_warn(&h->pdev->dev, "out of memory\n");
2893 return;
2894 }
2895
2896 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2897 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2898 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2899 if (return_code == IO_OK) {
2900 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2901 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2902 } else { /* read capacity command failed */
2903 dev_warn(&h->pdev->dev, "read capacity failed\n");
2904 *total_size = 0;
2905 *block_size = BLOCK_SIZE;
2906 }
2907 kfree(buf);
2908 }
2909
2910 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2911 sector_t *total_size, unsigned int *block_size)
2912 {
2913 ReadCapdata_struct_16 *buf;
2914 int return_code;
2915 unsigned char scsi3addr[8];
2916
2917 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2918 if (!buf) {
2919 dev_warn(&h->pdev->dev, "out of memory\n");
2920 return;
2921 }
2922
2923 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2924 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2925 buf, sizeof(ReadCapdata_struct_16),
2926 0, scsi3addr, TYPE_CMD);
2927 if (return_code == IO_OK) {
2928 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2929 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2930 } else { /* read capacity command failed */
2931 dev_warn(&h->pdev->dev, "read capacity failed\n");
2932 *total_size = 0;
2933 *block_size = BLOCK_SIZE;
2934 }
2935 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2936 (unsigned long long)*total_size+1, *block_size);
2937 kfree(buf);
2938 }
2939
2940 static int cciss_revalidate(struct gendisk *disk)
2941 {
2942 ctlr_info_t *h = get_host(disk);
2943 drive_info_struct *drv = get_drv(disk);
2944 int logvol;
2945 int FOUND = 0;
2946 unsigned int block_size;
2947 sector_t total_size;
2948 InquiryData_struct *inq_buff = NULL;
2949
2950 for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2951 if (!h->drv[logvol])
2952 continue;
2953 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2954 sizeof(drv->LunID)) == 0) {
2955 FOUND = 1;
2956 break;
2957 }
2958 }
2959
2960 if (!FOUND)
2961 return 1;
2962
2963 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2964 if (inq_buff == NULL) {
2965 dev_warn(&h->pdev->dev, "out of memory\n");
2966 return 1;
2967 }
2968 if (h->cciss_read == CCISS_READ_10) {
2969 cciss_read_capacity(h, logvol,
2970 &total_size, &block_size);
2971 } else {
2972 cciss_read_capacity_16(h, logvol,
2973 &total_size, &block_size);
2974 }
2975 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2976 inq_buff, drv);
2977
2978 blk_queue_logical_block_size(drv->queue, drv->block_size);
2979 set_capacity(disk, drv->nr_blocks);
2980
2981 kfree(inq_buff);
2982 return 0;
2983 }
2984
2985 /*
2986 * Map (physical) PCI mem into (virtual) kernel space
2987 */
2988 static void __iomem *remap_pci_mem(ulong base, ulong size)
2989 {
2990 ulong page_base = ((ulong) base) & PAGE_MASK;
2991 ulong page_offs = ((ulong) base) - page_base;
2992 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2993
2994 return page_remapped ? (page_remapped + page_offs) : NULL;
2995 }
2996
2997 /*
2998 * Takes jobs of the Q and sends them to the hardware, then puts it on
2999 * the Q to wait for completion.
3000 */
3001 static void start_io(ctlr_info_t *h)
3002 {
3003 CommandList_struct *c;
3004
3005 while (!list_empty(&h->reqQ)) {
3006 c = list_entry(h->reqQ.next, CommandList_struct, list);
3007 /* can't do anything if fifo is full */
3008 if ((h->access.fifo_full(h))) {
3009 dev_warn(&h->pdev->dev, "fifo full\n");
3010 break;
3011 }
3012
3013 /* Get the first entry from the Request Q */
3014 removeQ(c);
3015 h->Qdepth--;
3016
3017 /* Tell the controller execute command */
3018 h->access.submit_command(h, c);
3019
3020 /* Put job onto the completed Q */
3021 addQ(&h->cmpQ, c);
3022 }
3023 }
3024
3025 /* Assumes that h->lock is held. */
3026 /* Zeros out the error record and then resends the command back */
3027 /* to the controller */
3028 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3029 {
3030 /* erase the old error information */
3031 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3032
3033 /* add it to software queue and then send it to the controller */
3034 addQ(&h->reqQ, c);
3035 h->Qdepth++;
3036 if (h->Qdepth > h->maxQsinceinit)
3037 h->maxQsinceinit = h->Qdepth;
3038
3039 start_io(h);
3040 }
3041
3042 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3043 unsigned int msg_byte, unsigned int host_byte,
3044 unsigned int driver_byte)
3045 {
3046 /* inverse of macros in scsi.h */
3047 return (scsi_status_byte & 0xff) |
3048 ((msg_byte & 0xff) << 8) |
3049 ((host_byte & 0xff) << 16) |
3050 ((driver_byte & 0xff) << 24);
3051 }
3052
3053 static inline int evaluate_target_status(ctlr_info_t *h,
3054 CommandList_struct *cmd, int *retry_cmd)
3055 {
3056 unsigned char sense_key;
3057 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3058 int error_value;
3059
3060 *retry_cmd = 0;
3061 /* If we get in here, it means we got "target status", that is, scsi status */
3062 status_byte = cmd->err_info->ScsiStatus;
3063 driver_byte = DRIVER_OK;
3064 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3065
3066 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3067 host_byte = DID_PASSTHROUGH;
3068 else
3069 host_byte = DID_OK;
3070
3071 error_value = make_status_bytes(status_byte, msg_byte,
3072 host_byte, driver_byte);
3073
3074 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3075 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3076 dev_warn(&h->pdev->dev, "cmd %p "
3077 "has SCSI Status 0x%x\n",
3078 cmd, cmd->err_info->ScsiStatus);
3079 return error_value;
3080 }
3081
3082 /* check the sense key */
3083 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3084 /* no status or recovered error */
3085 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3086 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3087 error_value = 0;
3088
3089 if (check_for_unit_attention(h, cmd)) {
3090 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3091 return 0;
3092 }
3093
3094 /* Not SG_IO or similar? */
3095 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3096 if (error_value != 0)
3097 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3098 " sense key = 0x%x\n", cmd, sense_key);
3099 return error_value;
3100 }
3101
3102 /* SG_IO or similar, copy sense data back */
3103 if (cmd->rq->sense) {
3104 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3105 cmd->rq->sense_len = cmd->err_info->SenseLen;
3106 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3107 cmd->rq->sense_len);
3108 } else
3109 cmd->rq->sense_len = 0;
3110
3111 return error_value;
3112 }
3113
3114 /* checks the status of the job and calls complete buffers to mark all
3115 * buffers for the completed job. Note that this function does not need
3116 * to hold the hba/queue lock.
3117 */
3118 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3119 int timeout)
3120 {
3121 int retry_cmd = 0;
3122 struct request *rq = cmd->rq;
3123
3124 rq->errors = 0;
3125
3126 if (timeout)
3127 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3128
3129 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3130 goto after_error_processing;
3131
3132 switch (cmd->err_info->CommandStatus) {
3133 case CMD_TARGET_STATUS:
3134 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3135 break;
3136 case CMD_DATA_UNDERRUN:
3137 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3138 dev_warn(&h->pdev->dev, "cmd %p has"
3139 " completed with data underrun "
3140 "reported\n", cmd);
3141 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3142 }
3143 break;
3144 case CMD_DATA_OVERRUN:
3145 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3146 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3147 " completed with data overrun "
3148 "reported\n", cmd);
3149 break;
3150 case CMD_INVALID:
3151 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3152 "reported invalid\n", cmd);
3153 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3154 cmd->err_info->CommandStatus, DRIVER_OK,
3155 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3156 DID_PASSTHROUGH : DID_ERROR);
3157 break;
3158 case CMD_PROTOCOL_ERR:
3159 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3160 "protocol error\n", cmd);
3161 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3162 cmd->err_info->CommandStatus, DRIVER_OK,
3163 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3164 DID_PASSTHROUGH : DID_ERROR);
3165 break;
3166 case CMD_HARDWARE_ERR:
3167 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3168 " hardware error\n", cmd);
3169 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3170 cmd->err_info->CommandStatus, DRIVER_OK,
3171 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3172 DID_PASSTHROUGH : DID_ERROR);
3173 break;
3174 case CMD_CONNECTION_LOST:
3175 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3176 "connection lost\n", cmd);
3177 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3178 cmd->err_info->CommandStatus, DRIVER_OK,
3179 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3180 DID_PASSTHROUGH : DID_ERROR);
3181 break;
3182 case CMD_ABORTED:
3183 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3184 "aborted\n", cmd);
3185 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3186 cmd->err_info->CommandStatus, DRIVER_OK,
3187 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3188 DID_PASSTHROUGH : DID_ABORT);
3189 break;
3190 case CMD_ABORT_FAILED:
3191 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3192 "abort failed\n", cmd);
3193 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3194 cmd->err_info->CommandStatus, DRIVER_OK,
3195 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3196 DID_PASSTHROUGH : DID_ERROR);
3197 break;
3198 case CMD_UNSOLICITED_ABORT:
3199 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3200 "abort %p\n", h->ctlr, cmd);
3201 if (cmd->retry_count < MAX_CMD_RETRIES) {
3202 retry_cmd = 1;
3203 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3204 cmd->retry_count++;
3205 } else
3206 dev_warn(&h->pdev->dev,
3207 "%p retried too many times\n", cmd);
3208 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3209 cmd->err_info->CommandStatus, DRIVER_OK,
3210 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3211 DID_PASSTHROUGH : DID_ABORT);
3212 break;
3213 case CMD_TIMEOUT:
3214 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3215 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3216 cmd->err_info->CommandStatus, DRIVER_OK,
3217 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3218 DID_PASSTHROUGH : DID_ERROR);
3219 break;
3220 case CMD_UNABORTABLE:
3221 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3222 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3223 cmd->err_info->CommandStatus, DRIVER_OK,
3224 cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3225 DID_PASSTHROUGH : DID_ERROR);
3226 break;
3227 default:
3228 dev_warn(&h->pdev->dev, "cmd %p returned "
3229 "unknown status %x\n", cmd,
3230 cmd->err_info->CommandStatus);
3231 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3232 cmd->err_info->CommandStatus, DRIVER_OK,
3233 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3234 DID_PASSTHROUGH : DID_ERROR);
3235 }
3236
3237 after_error_processing:
3238
3239 /* We need to return this command */
3240 if (retry_cmd) {
3241 resend_cciss_cmd(h, cmd);
3242 return;
3243 }
3244 cmd->rq->completion_data = cmd;
3245 blk_complete_request(cmd->rq);
3246 }
3247
3248 static inline u32 cciss_tag_contains_index(u32 tag)
3249 {
3250 #define DIRECT_LOOKUP_BIT 0x10
3251 return tag & DIRECT_LOOKUP_BIT;
3252 }
3253
3254 static inline u32 cciss_tag_to_index(u32 tag)
3255 {
3256 #define DIRECT_LOOKUP_SHIFT 5
3257 return tag >> DIRECT_LOOKUP_SHIFT;
3258 }
3259
3260 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3261 {
3262 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3263 #define CCISS_SIMPLE_ERROR_BITS 0x03
3264 if (likely(h->transMethod & CFGTBL_Trans_Performant))
3265 return tag & ~CCISS_PERF_ERROR_BITS;
3266 return tag & ~CCISS_SIMPLE_ERROR_BITS;
3267 }
3268
3269 static inline void cciss_mark_tag_indexed(u32 *tag)
3270 {
3271 *tag |= DIRECT_LOOKUP_BIT;
3272 }
3273
3274 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3275 {
3276 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3277 }
3278
3279 /*
3280 * Get a request and submit it to the controller.
3281 */
3282 static void do_cciss_request(struct request_queue *q)
3283 {
3284 ctlr_info_t *h = q->queuedata;
3285 CommandList_struct *c;
3286 sector_t start_blk;
3287 int seg;
3288 struct request *creq;
3289 u64bit temp64;
3290 struct scatterlist *tmp_sg;
3291 SGDescriptor_struct *curr_sg;
3292 drive_info_struct *drv;
3293 int i, dir;
3294 int sg_index = 0;
3295 int chained = 0;
3296
3297 queue:
3298 creq = blk_peek_request(q);
3299 if (!creq)
3300 goto startio;
3301
3302 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3303
3304 c = cmd_alloc(h);
3305 if (!c)
3306 goto full;
3307
3308 blk_start_request(creq);
3309
3310 tmp_sg = h->scatter_list[c->cmdindex];
3311 spin_unlock_irq(q->queue_lock);
3312
3313 c->cmd_type = CMD_RWREQ;
3314 c->rq = creq;
3315
3316 /* fill in the request */
3317 drv = creq->rq_disk->private_data;
3318 c->Header.ReplyQueue = 0; /* unused in simple mode */
3319 /* got command from pool, so use the command block index instead */
3320 /* for direct lookups. */
3321 /* The first 2 bits are reserved for controller error reporting. */
3322 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3323 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3324 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3325 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3326 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3327 c->Request.Type.Attribute = ATTR_SIMPLE;
3328 c->Request.Type.Direction =
3329 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3330 c->Request.Timeout = 0; /* Don't time out */
3331 c->Request.CDB[0] =
3332 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3333 start_blk = blk_rq_pos(creq);
3334 dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3335 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3336 sg_init_table(tmp_sg, h->maxsgentries);
3337 seg = blk_rq_map_sg(q, creq, tmp_sg);
3338
3339 /* get the DMA records for the setup */
3340 if (c->Request.Type.Direction == XFER_READ)
3341 dir = PCI_DMA_FROMDEVICE;
3342 else
3343 dir = PCI_DMA_TODEVICE;
3344
3345 curr_sg = c->SG;
3346 sg_index = 0;
3347 chained = 0;
3348
3349 for (i = 0; i < seg; i++) {
3350 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3351 !chained && ((seg - i) > 1)) {
3352 /* Point to next chain block. */
3353 curr_sg = h->cmd_sg_list[c->cmdindex];
3354 sg_index = 0;
3355 chained = 1;
3356 }
3357 curr_sg[sg_index].Len = tmp_sg[i].length;
3358 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3359 tmp_sg[i].offset,
3360 tmp_sg[i].length, dir);
3361 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3362 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3363 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3364 ++sg_index;
3365 }
3366 if (chained)
3367 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3368 (seg - (h->max_cmd_sgentries - 1)) *
3369 sizeof(SGDescriptor_struct));
3370
3371 /* track how many SG entries we are using */
3372 if (seg > h->maxSG)
3373 h->maxSG = seg;
3374
3375 dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3376 "chained[%d]\n",
3377 blk_rq_sectors(creq), seg, chained);
3378
3379 c->Header.SGTotal = seg + chained;
3380 if (seg <= h->max_cmd_sgentries)
3381 c->Header.SGList = c->Header.SGTotal;
3382 else
3383 c->Header.SGList = h->max_cmd_sgentries;
3384 set_performant_mode(h, c);
3385
3386 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3387 if(h->cciss_read == CCISS_READ_10) {
3388 c->Request.CDB[1] = 0;
3389 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3390 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3391 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3392 c->Request.CDB[5] = start_blk & 0xff;
3393 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3394 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3395 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3396 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3397 } else {
3398 u32 upper32 = upper_32_bits(start_blk);
3399
3400 c->Request.CDBLen = 16;
3401 c->Request.CDB[1]= 0;
3402 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3403 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3404 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3405 c->Request.CDB[5]= upper32 & 0xff;
3406 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3407 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3408 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3409 c->Request.CDB[9]= start_blk & 0xff;
3410 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3411 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3412 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3413 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3414 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3415 }
3416 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3417 c->Request.CDBLen = creq->cmd_len;
3418 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3419 } else {
3420 dev_warn(&h->pdev->dev, "bad request type %d\n",
3421 creq->cmd_type);
3422 BUG();
3423 }
3424
3425 spin_lock_irq(q->queue_lock);
3426
3427 addQ(&h->reqQ, c);
3428 h->Qdepth++;
3429 if (h->Qdepth > h->maxQsinceinit)
3430 h->maxQsinceinit = h->Qdepth;
3431
3432 goto queue;
3433 full:
3434 blk_stop_queue(q);
3435 startio:
3436 /* We will already have the driver lock here so not need
3437 * to lock it.
3438 */
3439 start_io(h);
3440 }
3441
3442 static inline unsigned long get_next_completion(ctlr_info_t *h)
3443 {
3444 return h->access.command_completed(h);
3445 }
3446
3447 static inline int interrupt_pending(ctlr_info_t *h)
3448 {
3449 return h->access.intr_pending(h);
3450 }
3451
3452 static inline long interrupt_not_for_us(ctlr_info_t *h)
3453 {
3454 return ((h->access.intr_pending(h) == 0) ||
3455 (h->interrupts_enabled == 0));
3456 }
3457
3458 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3459 u32 raw_tag)
3460 {
3461 if (unlikely(tag_index >= h->nr_cmds)) {
3462 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3463 return 1;
3464 }
3465 return 0;
3466 }
3467
3468 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3469 u32 raw_tag)
3470 {
3471 removeQ(c);
3472 if (likely(c->cmd_type == CMD_RWREQ))
3473 complete_command(h, c, 0);
3474 else if (c->cmd_type == CMD_IOCTL_PEND)
3475 complete(c->waiting);
3476 #ifdef CONFIG_CISS_SCSI_TAPE
3477 else if (c->cmd_type == CMD_SCSI)
3478 complete_scsi_command(c, 0, raw_tag);
3479 #endif
3480 }
3481
3482 static inline u32 next_command(ctlr_info_t *h)
3483 {
3484 u32 a;
3485
3486 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3487 return h->access.command_completed(h);
3488
3489 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3490 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3491 (h->reply_pool_head)++;
3492 h->commands_outstanding--;
3493 } else {
3494 a = FIFO_EMPTY;
3495 }
3496 /* Check for wraparound */
3497 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3498 h->reply_pool_head = h->reply_pool;
3499 h->reply_pool_wraparound ^= 1;
3500 }
3501 return a;
3502 }
3503
3504 /* process completion of an indexed ("direct lookup") command */
3505 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3506 {
3507 u32 tag_index;
3508 CommandList_struct *c;
3509
3510 tag_index = cciss_tag_to_index(raw_tag);
3511 if (bad_tag(h, tag_index, raw_tag))
3512 return next_command(h);
3513 c = h->cmd_pool + tag_index;
3514 finish_cmd(h, c, raw_tag);
3515 return next_command(h);
3516 }
3517
3518 /* process completion of a non-indexed command */
3519 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3520 {
3521 CommandList_struct *c = NULL;
3522 __u32 busaddr_masked, tag_masked;
3523
3524 tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3525 list_for_each_entry(c, &h->cmpQ, list) {
3526 busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3527 if (busaddr_masked == tag_masked) {
3528 finish_cmd(h, c, raw_tag);
3529 return next_command(h);
3530 }
3531 }
3532 bad_tag(h, h->nr_cmds + 1, raw_tag);
3533 return next_command(h);
3534 }
3535
3536 /* Some controllers, like p400, will give us one interrupt
3537 * after a soft reset, even if we turned interrupts off.
3538 * Only need to check for this in the cciss_xxx_discard_completions
3539 * functions.
3540 */
3541 static int ignore_bogus_interrupt(ctlr_info_t *h)
3542 {
3543 if (likely(!reset_devices))
3544 return 0;
3545
3546 if (likely(h->interrupts_enabled))
3547 return 0;
3548
3549 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3550 "(known firmware bug.) Ignoring.\n");
3551
3552 return 1;
3553 }
3554
3555 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3556 {
3557 ctlr_info_t *h = dev_id;
3558 unsigned long flags;
3559 u32 raw_tag;
3560
3561 if (ignore_bogus_interrupt(h))
3562 return IRQ_NONE;
3563
3564 if (interrupt_not_for_us(h))
3565 return IRQ_NONE;
3566 spin_lock_irqsave(&h->lock, flags);
3567 while (interrupt_pending(h)) {
3568 raw_tag = get_next_completion(h);
3569 while (raw_tag != FIFO_EMPTY)
3570 raw_tag = next_command(h);
3571 }
3572 spin_unlock_irqrestore(&h->lock, flags);
3573 return IRQ_HANDLED;
3574 }
3575
3576 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3577 {
3578 ctlr_info_t *h = dev_id;
3579 unsigned long flags;
3580 u32 raw_tag;
3581
3582 if (ignore_bogus_interrupt(h))
3583 return IRQ_NONE;
3584
3585 spin_lock_irqsave(&h->lock, flags);
3586 raw_tag = get_next_completion(h);
3587 while (raw_tag != FIFO_EMPTY)
3588 raw_tag = next_command(h);
3589 spin_unlock_irqrestore(&h->lock, flags);
3590 return IRQ_HANDLED;
3591 }
3592
3593 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3594 {
3595 ctlr_info_t *h = dev_id;
3596 unsigned long flags;
3597 u32 raw_tag;
3598
3599 if (interrupt_not_for_us(h))
3600 return IRQ_NONE;
3601 spin_lock_irqsave(&h->lock, flags);
3602 while (interrupt_pending(h)) {
3603 raw_tag = get_next_completion(h);
3604 while (raw_tag != FIFO_EMPTY) {
3605 if (cciss_tag_contains_index(raw_tag))
3606 raw_tag = process_indexed_cmd(h, raw_tag);
3607 else
3608 raw_tag = process_nonindexed_cmd(h, raw_tag);
3609 }
3610 }
3611 spin_unlock_irqrestore(&h->lock, flags);
3612 return IRQ_HANDLED;
3613 }
3614
3615 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3616 * check the interrupt pending register because it is not set.
3617 */
3618 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3619 {
3620 ctlr_info_t *h = dev_id;
3621 unsigned long flags;
3622 u32 raw_tag;
3623
3624 spin_lock_irqsave(&h->lock, flags);
3625 raw_tag = get_next_completion(h);
3626 while (raw_tag != FIFO_EMPTY) {
3627 if (cciss_tag_contains_index(raw_tag))
3628 raw_tag = process_indexed_cmd(h, raw_tag);
3629 else
3630 raw_tag = process_nonindexed_cmd(h, raw_tag);
3631 }
3632 spin_unlock_irqrestore(&h->lock, flags);
3633 return IRQ_HANDLED;
3634 }
3635
3636 /**
3637 * add_to_scan_list() - add controller to rescan queue
3638 * @h: Pointer to the controller.
3639 *
3640 * Adds the controller to the rescan queue if not already on the queue.
3641 *
3642 * returns 1 if added to the queue, 0 if skipped (could be on the
3643 * queue already, or the controller could be initializing or shutting
3644 * down).
3645 **/
3646 static int add_to_scan_list(struct ctlr_info *h)
3647 {
3648 struct ctlr_info *test_h;
3649 int found = 0;
3650 int ret = 0;
3651
3652 if (h->busy_initializing)
3653 return 0;
3654
3655 if (!mutex_trylock(&h->busy_shutting_down))
3656 return 0;
3657
3658 mutex_lock(&scan_mutex);
3659 list_for_each_entry(test_h, &scan_q, scan_list) {
3660 if (test_h == h) {
3661 found = 1;
3662 break;
3663 }
3664 }
3665 if (!found && !h->busy_scanning) {
3666 INIT_COMPLETION(h->scan_wait);
3667 list_add_tail(&h->scan_list, &scan_q);
3668 ret = 1;
3669 }
3670 mutex_unlock(&scan_mutex);
3671 mutex_unlock(&h->busy_shutting_down);
3672
3673 return ret;
3674 }
3675
3676 /**
3677 * remove_from_scan_list() - remove controller from rescan queue
3678 * @h: Pointer to the controller.
3679 *
3680 * Removes the controller from the rescan queue if present. Blocks if
3681 * the controller is currently conducting a rescan. The controller
3682 * can be in one of three states:
3683 * 1. Doesn't need a scan
3684 * 2. On the scan list, but not scanning yet (we remove it)
3685 * 3. Busy scanning (and not on the list). In this case we want to wait for
3686 * the scan to complete to make sure the scanning thread for this
3687 * controller is completely idle.
3688 **/
3689 static void remove_from_scan_list(struct ctlr_info *h)
3690 {
3691 struct ctlr_info *test_h, *tmp_h;
3692
3693 mutex_lock(&scan_mutex);
3694 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3695 if (test_h == h) { /* state 2. */
3696 list_del(&h->scan_list);
3697 complete_all(&h->scan_wait);
3698 mutex_unlock(&scan_mutex);
3699 return;
3700 }
3701 }
3702 if (h->busy_scanning) { /* state 3. */
3703 mutex_unlock(&scan_mutex);
3704 wait_for_completion(&h->scan_wait);
3705 } else { /* state 1, nothing to do. */
3706 mutex_unlock(&scan_mutex);
3707 }
3708 }
3709
3710 /**
3711 * scan_thread() - kernel thread used to rescan controllers
3712 * @data: Ignored.
3713 *
3714 * A kernel thread used scan for drive topology changes on
3715 * controllers. The thread processes only one controller at a time
3716 * using a queue. Controllers are added to the queue using
3717 * add_to_scan_list() and removed from the queue either after done
3718 * processing or using remove_from_scan_list().
3719 *
3720 * returns 0.
3721 **/
3722 static int scan_thread(void *data)
3723 {
3724 struct ctlr_info *h;
3725
3726 while (1) {
3727 set_current_state(TASK_INTERRUPTIBLE);
3728 schedule();
3729 if (kthread_should_stop())
3730 break;
3731
3732 while (1) {
3733 mutex_lock(&scan_mutex);
3734 if (list_empty(&scan_q)) {
3735 mutex_unlock(&scan_mutex);
3736 break;
3737 }
3738
3739 h = list_entry(scan_q.next,
3740 struct ctlr_info,
3741 scan_list);
3742 list_del(&h->scan_list);
3743 h->busy_scanning = 1;
3744 mutex_unlock(&scan_mutex);
3745
3746 rebuild_lun_table(h, 0, 0);
3747 complete_all(&h->scan_wait);
3748 mutex_lock(&scan_mutex);
3749 h->busy_scanning = 0;
3750 mutex_unlock(&scan_mutex);
3751 }
3752 }
3753
3754 return 0;
3755 }
3756
3757 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3758 {
3759 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3760 return 0;
3761
3762 switch (c->err_info->SenseInfo[12]) {
3763 case STATE_CHANGED:
3764 dev_warn(&h->pdev->dev, "a state change "
3765 "detected, command retried\n");
3766 return 1;
3767 break;
3768 case LUN_FAILED:
3769 dev_warn(&h->pdev->dev, "LUN failure "
3770 "detected, action required\n");
3771 return 1;
3772 break;
3773 case REPORT_LUNS_CHANGED:
3774 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3775 /*
3776 * Here, we could call add_to_scan_list and wake up the scan thread,
3777 * except that it's quite likely that we will get more than one
3778 * REPORT_LUNS_CHANGED condition in quick succession, which means
3779 * that those which occur after the first one will likely happen
3780 * *during* the scan_thread's rescan. And the rescan code is not
3781 * robust enough to restart in the middle, undoing what it has already
3782 * done, and it's not clear that it's even possible to do this, since
3783 * part of what it does is notify the block layer, which starts
3784 * doing it's own i/o to read partition tables and so on, and the
3785 * driver doesn't have visibility to know what might need undoing.
3786 * In any event, if possible, it is horribly complicated to get right
3787 * so we just don't do it for now.
3788 *
3789 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3790 */
3791 return 1;
3792 break;
3793 case POWER_OR_RESET:
3794 dev_warn(&h->pdev->dev,
3795 "a power on or device reset detected\n");
3796 return 1;
3797 break;
3798 case UNIT_ATTENTION_CLEARED:
3799 dev_warn(&h->pdev->dev,
3800 "unit attention cleared by another initiator\n");
3801 return 1;
3802 break;
3803 default:
3804 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3805 return 1;
3806 }
3807 }
3808
3809 /*
3810 * We cannot read the structure directly, for portability we must use
3811 * the io functions.
3812 * This is for debug only.
3813 */
3814 static void print_cfg_table(ctlr_info_t *h)
3815 {
3816 int i;
3817 char temp_name[17];
3818 CfgTable_struct *tb = h->cfgtable;
3819
3820 dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3821 dev_dbg(&h->pdev->dev, "------------------------------------\n");
3822 for (i = 0; i < 4; i++)
3823 temp_name[i] = readb(&(tb->Signature[i]));
3824 temp_name[4] = '\0';
3825 dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3826 dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3827 readl(&(tb->SpecValence)));
3828 dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3829 readl(&(tb->TransportSupport)));
3830 dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3831 readl(&(tb->TransportActive)));
3832 dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3833 readl(&(tb->HostWrite.TransportRequest)));
3834 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3835 readl(&(tb->HostWrite.CoalIntDelay)));
3836 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3837 readl(&(tb->HostWrite.CoalIntCount)));
3838 dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3839 readl(&(tb->CmdsOutMax)));
3840 dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3841 readl(&(tb->BusTypes)));
3842 for (i = 0; i < 16; i++)
3843 temp_name[i] = readb(&(tb->ServerName[i]));
3844 temp_name[16] = '\0';
3845 dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3846 dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3847 readl(&(tb->HeartBeat)));
3848 }
3849
3850 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3851 {
3852 int i, offset, mem_type, bar_type;
3853 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3854 return 0;
3855 offset = 0;
3856 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3857 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3858 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3859 offset += 4;
3860 else {
3861 mem_type = pci_resource_flags(pdev, i) &
3862 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3863 switch (mem_type) {
3864 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3865 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3866 offset += 4; /* 32 bit */
3867 break;
3868 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3869 offset += 8;
3870 break;
3871 default: /* reserved in PCI 2.2 */
3872 dev_warn(&pdev->dev,
3873 "Base address is invalid\n");
3874 return -1;
3875 break;
3876 }
3877 }
3878 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3879 return i + 1;
3880 }
3881 return -1;
3882 }
3883
3884 /* Fill in bucket_map[], given nsgs (the max number of
3885 * scatter gather elements supported) and bucket[],
3886 * which is an array of 8 integers. The bucket[] array
3887 * contains 8 different DMA transfer sizes (in 16
3888 * byte increments) which the controller uses to fetch
3889 * commands. This function fills in bucket_map[], which
3890 * maps a given number of scatter gather elements to one of
3891 * the 8 DMA transfer sizes. The point of it is to allow the
3892 * controller to only do as much DMA as needed to fetch the
3893 * command, with the DMA transfer size encoded in the lower
3894 * bits of the command address.
3895 */
3896 static void calc_bucket_map(int bucket[], int num_buckets,
3897 int nsgs, int *bucket_map)
3898 {
3899 int i, j, b, size;
3900
3901 /* even a command with 0 SGs requires 4 blocks */
3902 #define MINIMUM_TRANSFER_BLOCKS 4
3903 #define NUM_BUCKETS 8
3904 /* Note, bucket_map must have nsgs+1 entries. */
3905 for (i = 0; i <= nsgs; i++) {
3906 /* Compute size of a command with i SG entries */
3907 size = i + MINIMUM_TRANSFER_BLOCKS;
3908 b = num_buckets; /* Assume the biggest bucket */
3909 /* Find the bucket that is just big enough */
3910 for (j = 0; j < 8; j++) {
3911 if (bucket[j] >= size) {
3912 b = j;
3913 break;
3914 }
3915 }
3916 /* for a command with i SG entries, use bucket b. */
3917 bucket_map[i] = b;
3918 }
3919 }
3920
3921 static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3922 {
3923 int i;
3924
3925 /* under certain very rare conditions, this can take awhile.
3926 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3927 * as we enter this code.) */
3928 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3929 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3930 break;
3931 usleep_range(10000, 20000);
3932 }
3933 }
3934
3935 static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3936 {
3937 /* This is a bit complicated. There are 8 registers on
3938 * the controller which we write to to tell it 8 different
3939 * sizes of commands which there may be. It's a way of
3940 * reducing the DMA done to fetch each command. Encoded into
3941 * each command's tag are 3 bits which communicate to the controller
3942 * which of the eight sizes that command fits within. The size of
3943 * each command depends on how many scatter gather entries there are.
3944 * Each SG entry requires 16 bytes. The eight registers are programmed
3945 * with the number of 16-byte blocks a command of that size requires.
3946 * The smallest command possible requires 5 such 16 byte blocks.
3947 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3948 * blocks. Note, this only extends to the SG entries contained
3949 * within the command block, and does not extend to chained blocks
3950 * of SG elements. bft[] contains the eight values we write to
3951 * the registers. They are not evenly distributed, but have more
3952 * sizes for small commands, and fewer sizes for larger commands.
3953 */
3954 __u32 trans_offset;
3955 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3956 /*
3957 * 5 = 1 s/g entry or 4k
3958 * 6 = 2 s/g entry or 8k
3959 * 8 = 4 s/g entry or 16k
3960 * 10 = 6 s/g entry or 24k
3961 */
3962 unsigned long register_value;
3963 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3964
3965 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3966
3967 /* Controller spec: zero out this buffer. */
3968 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3969 h->reply_pool_head = h->reply_pool;
3970
3971 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3972 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3973 h->blockFetchTable);
3974 writel(bft[0], &h->transtable->BlockFetch0);
3975 writel(bft[1], &h->transtable->BlockFetch1);
3976 writel(bft[2], &h->transtable->BlockFetch2);
3977 writel(bft[3], &h->transtable->BlockFetch3);
3978 writel(bft[4], &h->transtable->BlockFetch4);
3979 writel(bft[5], &h->transtable->BlockFetch5);
3980 writel(bft[6], &h->transtable->BlockFetch6);
3981 writel(bft[7], &h->transtable->BlockFetch7);
3982
3983 /* size of controller ring buffer */
3984 writel(h->max_commands, &h->transtable->RepQSize);
3985 writel(1, &h->transtable->RepQCount);
3986 writel(0, &h->transtable->RepQCtrAddrLow32);
3987 writel(0, &h->transtable->RepQCtrAddrHigh32);
3988 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3989 writel(0, &h->transtable->RepQAddr0High32);
3990 writel(CFGTBL_Trans_Performant | use_short_tags,
3991 &(h->cfgtable->HostWrite.TransportRequest));
3992
3993 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3994 cciss_wait_for_mode_change_ack(h);
3995 register_value = readl(&(h->cfgtable->TransportActive));
3996 if (!(register_value & CFGTBL_Trans_Performant))
3997 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
3998 " performant mode\n");
3999 }
4000
4001 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4002 {
4003 __u32 trans_support;
4004
4005 if (cciss_simple_mode)
4006 return;
4007
4008 dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4009 /* Attempt to put controller into performant mode if supported */
4010 /* Does board support performant mode? */
4011 trans_support = readl(&(h->cfgtable->TransportSupport));
4012 if (!(trans_support & PERFORMANT_MODE))
4013 return;
4014
4015 dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4016 /* Performant mode demands commands on a 32 byte boundary
4017 * pci_alloc_consistent aligns on page boundarys already.
4018 * Just need to check if divisible by 32
4019 */
4020 if ((sizeof(CommandList_struct) % 32) != 0) {
4021 dev_warn(&h->pdev->dev, "%s %d %s\n",
4022 "cciss info: command size[",
4023 (int)sizeof(CommandList_struct),
4024 "] not divisible by 32, no performant mode..\n");
4025 return;
4026 }
4027
4028 /* Performant mode ring buffer and supporting data structures */
4029 h->reply_pool = (__u64 *)pci_alloc_consistent(
4030 h->pdev, h->max_commands * sizeof(__u64),
4031 &(h->reply_pool_dhandle));
4032
4033 /* Need a block fetch table for performant mode */
4034 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4035 sizeof(__u32)), GFP_KERNEL);
4036
4037 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4038 goto clean_up;
4039
4040 cciss_enter_performant_mode(h,
4041 trans_support & CFGTBL_Trans_use_short_tags);
4042
4043 /* Change the access methods to the performant access methods */
4044 h->access = SA5_performant_access;
4045 h->transMethod = CFGTBL_Trans_Performant;
4046
4047 return;
4048 clean_up:
4049 kfree(h->blockFetchTable);
4050 if (h->reply_pool)
4051 pci_free_consistent(h->pdev,
4052 h->max_commands * sizeof(__u64),
4053 h->reply_pool,
4054 h->reply_pool_dhandle);
4055 return;
4056
4057 } /* cciss_put_controller_into_performant_mode */
4058
4059 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4060 * controllers that are capable. If not, we use IO-APIC mode.
4061 */
4062
4063 static void cciss_interrupt_mode(ctlr_info_t *h)
4064 {
4065 #ifdef CONFIG_PCI_MSI
4066 int err;
4067 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4068 {0, 2}, {0, 3}
4069 };
4070
4071 /* Some boards advertise MSI but don't really support it */
4072 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4073 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4074 goto default_int_mode;
4075
4076 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4077 err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4078 if (!err) {
4079 h->intr[0] = cciss_msix_entries[0].vector;
4080 h->intr[1] = cciss_msix_entries[1].vector;
4081 h->intr[2] = cciss_msix_entries[2].vector;
4082 h->intr[3] = cciss_msix_entries[3].vector;
4083 h->msix_vector = 1;
4084 return;
4085 }
4086 if (err > 0) {
4087 dev_warn(&h->pdev->dev,
4088 "only %d MSI-X vectors available\n", err);
4089 goto default_int_mode;
4090 } else {
4091 dev_warn(&h->pdev->dev,
4092 "MSI-X init failed %d\n", err);
4093 goto default_int_mode;
4094 }
4095 }
4096 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4097 if (!pci_enable_msi(h->pdev))
4098 h->msi_vector = 1;
4099 else
4100 dev_warn(&h->pdev->dev, "MSI init failed\n");
4101 }
4102 default_int_mode:
4103 #endif /* CONFIG_PCI_MSI */
4104 /* if we get here we're going to use the default interrupt mode */
4105 h->intr[h->intr_mode] = h->pdev->irq;
4106 return;
4107 }
4108
4109 static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4110 {
4111 int i;
4112 u32 subsystem_vendor_id, subsystem_device_id;
4113
4114 subsystem_vendor_id = pdev->subsystem_vendor;
4115 subsystem_device_id = pdev->subsystem_device;
4116 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4117 subsystem_vendor_id;
4118
4119 for (i = 0; i < ARRAY_SIZE(products); i++)
4120 if (*board_id == products[i].board_id)
4121 return i;
4122 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4123 *board_id);
4124 return -ENODEV;
4125 }
4126
4127 static inline bool cciss_board_disabled(ctlr_info_t *h)
4128 {
4129 u16 command;
4130
4131 (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4132 return ((command & PCI_COMMAND_MEMORY) == 0);
4133 }
4134
4135 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4136 unsigned long *memory_bar)
4137 {
4138 int i;
4139
4140 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4141 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4142 /* addressing mode bits already removed */
4143 *memory_bar = pci_resource_start(pdev, i);
4144 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4145 *memory_bar);
4146 return 0;
4147 }
4148 dev_warn(&pdev->dev, "no memory BAR found\n");
4149 return -ENODEV;
4150 }
4151
4152 static int cciss_wait_for_board_state(struct pci_dev *pdev,
4153 void __iomem *vaddr, int wait_for_ready)
4154 #define BOARD_READY 1
4155 #define BOARD_NOT_READY 0
4156 {
4157 int i, iterations;
4158 u32 scratchpad;
4159
4160 if (wait_for_ready)
4161 iterations = CCISS_BOARD_READY_ITERATIONS;
4162 else
4163 iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4164
4165 for (i = 0; i < iterations; i++) {
4166 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4167 if (wait_for_ready) {
4168 if (scratchpad == CCISS_FIRMWARE_READY)
4169 return 0;
4170 } else {
4171 if (scratchpad != CCISS_FIRMWARE_READY)
4172 return 0;
4173 }
4174 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4175 }
4176 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4177 return -ENODEV;
4178 }
4179
4180 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4181 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4182 u64 *cfg_offset)
4183 {
4184 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4185 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4186 *cfg_base_addr &= (u32) 0x0000ffff;
4187 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4188 if (*cfg_base_addr_index == -1) {
4189 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4190 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4191 return -ENODEV;
4192 }
4193 return 0;
4194 }
4195
4196 static int cciss_find_cfgtables(ctlr_info_t *h)
4197 {
4198 u64 cfg_offset;
4199 u32 cfg_base_addr;
4200 u64 cfg_base_addr_index;
4201 u32 trans_offset;
4202 int rc;
4203
4204 rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4205 &cfg_base_addr_index, &cfg_offset);
4206 if (rc)
4207 return rc;
4208 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4209 cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4210 if (!h->cfgtable)
4211 return -ENOMEM;
4212 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4213 if (rc)
4214 return rc;
4215 /* Find performant mode table. */
4216 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4217 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4218 cfg_base_addr_index)+cfg_offset+trans_offset,
4219 sizeof(*h->transtable));
4220 if (!h->transtable)
4221 return -ENOMEM;
4222 return 0;
4223 }
4224
4225 static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4226 {
4227 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4228
4229 /* Limit commands in memory limited kdump scenario. */
4230 if (reset_devices && h->max_commands > 32)
4231 h->max_commands = 32;
4232
4233 if (h->max_commands < 16) {
4234 dev_warn(&h->pdev->dev, "Controller reports "
4235 "max supported commands of %d, an obvious lie. "
4236 "Using 16. Ensure that firmware is up to date.\n",
4237 h->max_commands);
4238 h->max_commands = 16;
4239 }
4240 }
4241
4242 /* Interrogate the hardware for some limits:
4243 * max commands, max SG elements without chaining, and with chaining,
4244 * SG chain block size, etc.
4245 */
4246 static void cciss_find_board_params(ctlr_info_t *h)
4247 {
4248 cciss_get_max_perf_mode_cmds(h);
4249 h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4250 h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4251 /*
4252 * Limit in-command s/g elements to 32 save dma'able memory.
4253 * Howvever spec says if 0, use 31
4254 */
4255 h->max_cmd_sgentries = 31;
4256 if (h->maxsgentries > 512) {
4257 h->max_cmd_sgentries = 32;
4258 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4259 h->maxsgentries--; /* save one for chain pointer */
4260 } else {
4261 h->maxsgentries = 31; /* default to traditional values */
4262 h->chainsize = 0;
4263 }
4264 }
4265
4266 static inline bool CISS_signature_present(ctlr_info_t *h)
4267 {
4268 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4269 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4270 return false;
4271 }
4272 return true;
4273 }
4274
4275 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4276 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4277 {
4278 #ifdef CONFIG_X86
4279 u32 prefetch;
4280
4281 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4282 prefetch |= 0x100;
4283 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4284 #endif
4285 }
4286
4287 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4288 * in a prefetch beyond physical memory.
4289 */
4290 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4291 {
4292 u32 dma_prefetch;
4293 __u32 dma_refetch;
4294
4295 if (h->board_id != 0x3225103C)
4296 return;
4297 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4298 dma_prefetch |= 0x8000;
4299 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4300 pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4301 dma_refetch |= 0x1;
4302 pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4303 }
4304
4305 static int cciss_pci_init(ctlr_info_t *h)
4306 {
4307 int prod_index, err;
4308
4309 prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4310 if (prod_index < 0)
4311 return -ENODEV;
4312 h->product_name = products[prod_index].product_name;
4313 h->access = *(products[prod_index].access);
4314
4315 if (cciss_board_disabled(h)) {
4316 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4317 return -ENODEV;
4318 }
4319
4320 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4321 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4322
4323 err = pci_enable_device(h->pdev);
4324 if (err) {
4325 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4326 return err;
4327 }
4328
4329 err = pci_request_regions(h->pdev, "cciss");
4330 if (err) {
4331 dev_warn(&h->pdev->dev,
4332 "Cannot obtain PCI resources, aborting\n");
4333 return err;
4334 }
4335
4336 dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4337 dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4338
4339 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4340 * else we use the IO-APIC interrupt assigned to us by system ROM.
4341 */
4342 cciss_interrupt_mode(h);
4343 err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4344 if (err)
4345 goto err_out_free_res;
4346 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4347 if (!h->vaddr) {
4348 err = -ENOMEM;
4349 goto err_out_free_res;
4350 }
4351 err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4352 if (err)
4353 goto err_out_free_res;
4354 err = cciss_find_cfgtables(h);
4355 if (err)
4356 goto err_out_free_res;
4357 print_cfg_table(h);
4358 cciss_find_board_params(h);
4359
4360 if (!CISS_signature_present(h)) {
4361 err = -ENODEV;
4362 goto err_out_free_res;
4363 }
4364 cciss_enable_scsi_prefetch(h);
4365 cciss_p600_dma_prefetch_quirk(h);
4366 err = cciss_enter_simple_mode(h);
4367 if (err)
4368 goto err_out_free_res;
4369 cciss_put_controller_into_performant_mode(h);
4370 return 0;
4371
4372 err_out_free_res:
4373 /*
4374 * Deliberately omit pci_disable_device(): it does something nasty to
4375 * Smart Array controllers that pci_enable_device does not undo
4376 */
4377 if (h->transtable)
4378 iounmap(h->transtable);
4379 if (h->cfgtable)
4380 iounmap(h->cfgtable);
4381 if (h->vaddr)
4382 iounmap(h->vaddr);
4383 pci_release_regions(h->pdev);
4384 return err;
4385 }
4386
4387 /* Function to find the first free pointer into our hba[] array
4388 * Returns -1 if no free entries are left.
4389 */
4390 static int alloc_cciss_hba(struct pci_dev *pdev)
4391 {
4392 int i;
4393
4394 for (i = 0; i < MAX_CTLR; i++) {
4395 if (!hba[i]) {
4396 ctlr_info_t *h;
4397
4398 h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4399 if (!h)
4400 goto Enomem;
4401 hba[i] = h;
4402 return i;
4403 }
4404 }
4405 dev_warn(&pdev->dev, "This driver supports a maximum"
4406 " of %d controllers.\n", MAX_CTLR);
4407 return -1;
4408 Enomem:
4409 dev_warn(&pdev->dev, "out of memory.\n");
4410 return -1;
4411 }
4412
4413 static void free_hba(ctlr_info_t *h)
4414 {
4415 int i;
4416
4417 hba[h->ctlr] = NULL;
4418 for (i = 0; i < h->highest_lun + 1; i++)
4419 if (h->gendisk[i] != NULL)
4420 put_disk(h->gendisk[i]);
4421 kfree(h);
4422 }
4423
4424 /* Send a message CDB to the firmware. */
4425 static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4426 unsigned char type)
4427 {
4428 typedef struct {
4429 CommandListHeader_struct CommandHeader;
4430 RequestBlock_struct Request;
4431 ErrDescriptor_struct ErrorDescriptor;
4432 } Command;
4433 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4434 Command *cmd;
4435 dma_addr_t paddr64;
4436 uint32_t paddr32, tag;
4437 void __iomem *vaddr;
4438 int i, err;
4439
4440 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4441 if (vaddr == NULL)
4442 return -ENOMEM;
4443
4444 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4445 CCISS commands, so they must be allocated from the lower 4GiB of
4446 memory. */
4447 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4448 if (err) {
4449 iounmap(vaddr);
4450 return -ENOMEM;
4451 }
4452
4453 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4454 if (cmd == NULL) {
4455 iounmap(vaddr);
4456 return -ENOMEM;
4457 }
4458
4459 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4460 although there's no guarantee, we assume that the address is at
4461 least 4-byte aligned (most likely, it's page-aligned). */
4462 paddr32 = paddr64;
4463
4464 cmd->CommandHeader.ReplyQueue = 0;
4465 cmd->CommandHeader.SGList = 0;
4466 cmd->CommandHeader.SGTotal = 0;
4467 cmd->CommandHeader.Tag.lower = paddr32;
4468 cmd->CommandHeader.Tag.upper = 0;
4469 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4470
4471 cmd->Request.CDBLen = 16;
4472 cmd->Request.Type.Type = TYPE_MSG;
4473 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4474 cmd->Request.Type.Direction = XFER_NONE;
4475 cmd->Request.Timeout = 0; /* Don't time out */
4476 cmd->Request.CDB[0] = opcode;
4477 cmd->Request.CDB[1] = type;
4478 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4479
4480 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4481 cmd->ErrorDescriptor.Addr.upper = 0;
4482 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4483
4484 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4485
4486 for (i = 0; i < 10; i++) {
4487 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4488 if ((tag & ~3) == paddr32)
4489 break;
4490 msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4491 }
4492
4493 iounmap(vaddr);
4494
4495 /* we leak the DMA buffer here ... no choice since the controller could
4496 still complete the command. */
4497 if (i == 10) {
4498 dev_err(&pdev->dev,
4499 "controller message %02x:%02x timed out\n",
4500 opcode, type);
4501 return -ETIMEDOUT;
4502 }
4503
4504 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4505
4506 if (tag & 2) {
4507 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4508 opcode, type);
4509 return -EIO;
4510 }
4511
4512 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4513 opcode, type);
4514 return 0;
4515 }
4516
4517 #define cciss_noop(p) cciss_message(p, 3, 0)
4518
4519 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4520 void * __iomem vaddr, u32 use_doorbell)
4521 {
4522 u16 pmcsr;
4523 int pos;
4524
4525 if (use_doorbell) {
4526 /* For everything after the P600, the PCI power state method
4527 * of resetting the controller doesn't work, so we have this
4528 * other way using the doorbell register.
4529 */
4530 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4531 writel(use_doorbell, vaddr + SA5_DOORBELL);
4532 } else { /* Try to do it the PCI power state way */
4533
4534 /* Quoting from the Open CISS Specification: "The Power
4535 * Management Control/Status Register (CSR) controls the power
4536 * state of the device. The normal operating state is D0,
4537 * CSR=00h. The software off state is D3, CSR=03h. To reset
4538 * the controller, place the interface device in D3 then to D0,
4539 * this causes a secondary PCI reset which will reset the
4540 * controller." */
4541
4542 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4543 if (pos == 0) {
4544 dev_err(&pdev->dev,
4545 "cciss_controller_hard_reset: "
4546 "PCI PM not supported\n");
4547 return -ENODEV;
4548 }
4549 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4550 /* enter the D3hot power management state */
4551 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4552 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4553 pmcsr |= PCI_D3hot;
4554 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4555
4556 msleep(500);
4557
4558 /* enter the D0 power management state */
4559 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4560 pmcsr |= PCI_D0;
4561 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4562
4563 /*
4564 * The P600 requires a small delay when changing states.
4565 * Otherwise we may think the board did not reset and we bail.
4566 * This for kdump only and is particular to the P600.
4567 */
4568 msleep(500);
4569 }
4570 return 0;
4571 }
4572
4573 static void init_driver_version(char *driver_version, int len)
4574 {
4575 memset(driver_version, 0, len);
4576 strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4577 }
4578
4579 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4580 {
4581 char *driver_version;
4582 int i, size = sizeof(cfgtable->driver_version);
4583
4584 driver_version = kmalloc(size, GFP_KERNEL);
4585 if (!driver_version)
4586 return -ENOMEM;
4587
4588 init_driver_version(driver_version, size);
4589 for (i = 0; i < size; i++)
4590 writeb(driver_version[i], &cfgtable->driver_version[i]);
4591 kfree(driver_version);
4592 return 0;
4593 }
4594
4595 static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4596 unsigned char *driver_ver)
4597 {
4598 int i;
4599
4600 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4601 driver_ver[i] = readb(&cfgtable->driver_version[i]);
4602 }
4603
4604 static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4605 {
4606
4607 char *driver_ver, *old_driver_ver;
4608 int rc, size = sizeof(cfgtable->driver_version);
4609
4610 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4611 if (!old_driver_ver)
4612 return -ENOMEM;
4613 driver_ver = old_driver_ver + size;
4614
4615 /* After a reset, the 32 bytes of "driver version" in the cfgtable
4616 * should have been changed, otherwise we know the reset failed.
4617 */
4618 init_driver_version(old_driver_ver, size);
4619 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4620 rc = !memcmp(driver_ver, old_driver_ver, size);
4621 kfree(old_driver_ver);
4622 return rc;
4623 }
4624
4625 /* This does a hard reset of the controller using PCI power management
4626 * states or using the doorbell register. */
4627 static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4628 {
4629 u64 cfg_offset;
4630 u32 cfg_base_addr;
4631 u64 cfg_base_addr_index;
4632 void __iomem *vaddr;
4633 unsigned long paddr;
4634 u32 misc_fw_support;
4635 int rc;
4636 CfgTable_struct __iomem *cfgtable;
4637 u32 use_doorbell;
4638 u32 board_id;
4639 u16 command_register;
4640
4641 /* For controllers as old a the p600, this is very nearly
4642 * the same thing as
4643 *
4644 * pci_save_state(pci_dev);
4645 * pci_set_power_state(pci_dev, PCI_D3hot);
4646 * pci_set_power_state(pci_dev, PCI_D0);
4647 * pci_restore_state(pci_dev);
4648 *
4649 * For controllers newer than the P600, the pci power state
4650 * method of resetting doesn't work so we have another way
4651 * using the doorbell register.
4652 */
4653
4654 /* Exclude 640x boards. These are two pci devices in one slot
4655 * which share a battery backed cache module. One controls the
4656 * cache, the other accesses the cache through the one that controls
4657 * it. If we reset the one controlling the cache, the other will
4658 * likely not be happy. Just forbid resetting this conjoined mess.
4659 */
4660 cciss_lookup_board_id(pdev, &board_id);
4661 if (!ctlr_is_resettable(board_id)) {
4662 dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4663 "due to shared cache module.");
4664 return -ENODEV;
4665 }
4666
4667 /* if controller is soft- but not hard resettable... */
4668 if (!ctlr_is_hard_resettable(board_id))
4669 return -ENOTSUPP; /* try soft reset later. */
4670
4671 /* Save the PCI command register */
4672 pci_read_config_word(pdev, 4, &command_register);
4673 /* Turn the board off. This is so that later pci_restore_state()
4674 * won't turn the board on before the rest of config space is ready.
4675 */
4676 pci_disable_device(pdev);
4677 pci_save_state(pdev);
4678
4679 /* find the first memory BAR, so we can find the cfg table */
4680 rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4681 if (rc)
4682 return rc;
4683 vaddr = remap_pci_mem(paddr, 0x250);
4684 if (!vaddr)
4685 return -ENOMEM;
4686
4687 /* find cfgtable in order to check if reset via doorbell is supported */
4688 rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4689 &cfg_base_addr_index, &cfg_offset);
4690 if (rc)
4691 goto unmap_vaddr;
4692 cfgtable = remap_pci_mem(pci_resource_start(pdev,
4693 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4694 if (!cfgtable) {
4695 rc = -ENOMEM;
4696 goto unmap_vaddr;
4697 }
4698 rc = write_driver_ver_to_cfgtable(cfgtable);
4699 if (rc)
4700 goto unmap_vaddr;
4701
4702 /* If reset via doorbell register is supported, use that.
4703 * There are two such methods. Favor the newest method.
4704 */
4705 misc_fw_support = readl(&cfgtable->misc_fw_support);
4706 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4707 if (use_doorbell) {
4708 use_doorbell = DOORBELL_CTLR_RESET2;
4709 } else {
4710 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4711 if (use_doorbell) {
4712 dev_warn(&pdev->dev, "Controller claims that "
4713 "'Bit 2 doorbell reset' is "
4714 "supported, but not 'bit 5 doorbell reset'. "
4715 "Firmware update is recommended.\n");
4716 rc = -ENOTSUPP; /* use the soft reset */
4717 goto unmap_cfgtable;
4718 }
4719 }
4720
4721 rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4722 if (rc)
4723 goto unmap_cfgtable;
4724 pci_restore_state(pdev);
4725 rc = pci_enable_device(pdev);
4726 if (rc) {
4727 dev_warn(&pdev->dev, "failed to enable device.\n");
4728 goto unmap_cfgtable;
4729 }
4730 pci_write_config_word(pdev, 4, command_register);
4731
4732 /* Some devices (notably the HP Smart Array 5i Controller)
4733 need a little pause here */
4734 msleep(CCISS_POST_RESET_PAUSE_MSECS);
4735
4736 /* Wait for board to become not ready, then ready. */
4737 dev_info(&pdev->dev, "Waiting for board to reset.\n");
4738 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4739 if (rc) {
4740 dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4741 " Will try soft reset.\n");
4742 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4743 goto unmap_cfgtable;
4744 }
4745 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4746 if (rc) {
4747 dev_warn(&pdev->dev,
4748 "failed waiting for board to become ready "
4749 "after hard reset\n");
4750 goto unmap_cfgtable;
4751 }
4752
4753 rc = controller_reset_failed(vaddr);
4754 if (rc < 0)
4755 goto unmap_cfgtable;
4756 if (rc) {
4757 dev_warn(&pdev->dev, "Unable to successfully hard reset "
4758 "controller. Will try soft reset.\n");
4759 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4760 } else {
4761 dev_info(&pdev->dev, "Board ready after hard reset.\n");
4762 }
4763
4764 unmap_cfgtable:
4765 iounmap(cfgtable);
4766
4767 unmap_vaddr:
4768 iounmap(vaddr);
4769 return rc;
4770 }
4771
4772 static int cciss_init_reset_devices(struct pci_dev *pdev)
4773 {
4774 int rc, i;
4775
4776 if (!reset_devices)
4777 return 0;
4778
4779 /* Reset the controller with a PCI power-cycle or via doorbell */
4780 rc = cciss_kdump_hard_reset_controller(pdev);
4781
4782 /* -ENOTSUPP here means we cannot reset the controller
4783 * but it's already (and still) up and running in
4784 * "performant mode". Or, it might be 640x, which can't reset
4785 * due to concerns about shared bbwc between 6402/6404 pair.
4786 */
4787 if (rc == -ENOTSUPP)
4788 return rc; /* just try to do the kdump anyhow. */
4789 if (rc)
4790 return -ENODEV;
4791
4792 /* Now try to get the controller to respond to a no-op */
4793 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4794 for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4795 if (cciss_noop(pdev) == 0)
4796 break;
4797 else
4798 dev_warn(&pdev->dev, "no-op failed%s\n",
4799 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4800 "; re-trying" : ""));
4801 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4802 }
4803 return 0;
4804 }
4805
4806 static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4807 {
4808 h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4809 sizeof(unsigned long), GFP_KERNEL);
4810 h->cmd_pool = pci_alloc_consistent(h->pdev,
4811 h->nr_cmds * sizeof(CommandList_struct),
4812 &(h->cmd_pool_dhandle));
4813 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4814 h->nr_cmds * sizeof(ErrorInfo_struct),
4815 &(h->errinfo_pool_dhandle));
4816 if ((h->cmd_pool_bits == NULL)
4817 || (h->cmd_pool == NULL)
4818 || (h->errinfo_pool == NULL)) {
4819 dev_err(&h->pdev->dev, "out of memory");
4820 return -ENOMEM;
4821 }
4822 return 0;
4823 }
4824
4825 static int cciss_allocate_scatterlists(ctlr_info_t *h)
4826 {
4827 int i;
4828
4829 /* zero it, so that on free we need not know how many were alloc'ed */
4830 h->scatter_list = kzalloc(h->max_commands *
4831 sizeof(struct scatterlist *), GFP_KERNEL);
4832 if (!h->scatter_list)
4833 return -ENOMEM;
4834
4835 for (i = 0; i < h->nr_cmds; i++) {
4836 h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4837 h->maxsgentries, GFP_KERNEL);
4838 if (h->scatter_list[i] == NULL) {
4839 dev_err(&h->pdev->dev, "could not allocate "
4840 "s/g lists\n");
4841 return -ENOMEM;
4842 }
4843 }
4844 return 0;
4845 }
4846
4847 static void cciss_free_scatterlists(ctlr_info_t *h)
4848 {
4849 int i;
4850
4851 if (h->scatter_list) {
4852 for (i = 0; i < h->nr_cmds; i++)
4853 kfree(h->scatter_list[i]);
4854 kfree(h->scatter_list);
4855 }
4856 }
4857
4858 static void cciss_free_cmd_pool(ctlr_info_t *h)
4859 {
4860 kfree(h->cmd_pool_bits);
4861 if (h->cmd_pool)
4862 pci_free_consistent(h->pdev,
4863 h->nr_cmds * sizeof(CommandList_struct),
4864 h->cmd_pool, h->cmd_pool_dhandle);
4865 if (h->errinfo_pool)
4866 pci_free_consistent(h->pdev,
4867 h->nr_cmds * sizeof(ErrorInfo_struct),
4868 h->errinfo_pool, h->errinfo_pool_dhandle);
4869 }
4870
4871 static int cciss_request_irq(ctlr_info_t *h,
4872 irqreturn_t (*msixhandler)(int, void *),
4873 irqreturn_t (*intxhandler)(int, void *))
4874 {
4875 if (h->msix_vector || h->msi_vector) {
4876 if (!request_irq(h->intr[h->intr_mode], msixhandler,
4877 0, h->devname, h))
4878 return 0;
4879 dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4880 " for %s\n", h->intr[h->intr_mode],
4881 h->devname);
4882 return -1;
4883 }
4884
4885 if (!request_irq(h->intr[h->intr_mode], intxhandler,
4886 IRQF_SHARED, h->devname, h))
4887 return 0;
4888 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4889 h->intr[h->intr_mode], h->devname);
4890 return -1;
4891 }
4892
4893 static int cciss_kdump_soft_reset(ctlr_info_t *h)
4894 {
4895 if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4896 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4897 return -EIO;
4898 }
4899
4900 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4901 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4902 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4903 return -1;
4904 }
4905
4906 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4907 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4908 dev_warn(&h->pdev->dev, "Board failed to become ready "
4909 "after soft reset.\n");
4910 return -1;
4911 }
4912
4913 return 0;
4914 }
4915
4916 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4917 {
4918 int ctlr = h->ctlr;
4919
4920 free_irq(h->intr[h->intr_mode], h);
4921 #ifdef CONFIG_PCI_MSI
4922 if (h->msix_vector)
4923 pci_disable_msix(h->pdev);
4924 else if (h->msi_vector)
4925 pci_disable_msi(h->pdev);
4926 #endif /* CONFIG_PCI_MSI */
4927 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4928 cciss_free_scatterlists(h);
4929 cciss_free_cmd_pool(h);
4930 kfree(h->blockFetchTable);
4931 if (h->reply_pool)
4932 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4933 h->reply_pool, h->reply_pool_dhandle);
4934 if (h->transtable)
4935 iounmap(h->transtable);
4936 if (h->cfgtable)
4937 iounmap(h->cfgtable);
4938 if (h->vaddr)
4939 iounmap(h->vaddr);
4940 unregister_blkdev(h->major, h->devname);
4941 cciss_destroy_hba_sysfs_entry(h);
4942 pci_release_regions(h->pdev);
4943 kfree(h);
4944 hba[ctlr] = NULL;
4945 }
4946
4947 /*
4948 * This is it. Find all the controllers and register them. I really hate
4949 * stealing all these major device numbers.
4950 * returns the number of block devices registered.
4951 */
4952 static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4953 {
4954 int i;
4955 int j = 0;
4956 int rc;
4957 int try_soft_reset = 0;
4958 int dac, return_code;
4959 InquiryData_struct *inq_buff;
4960 ctlr_info_t *h;
4961 unsigned long flags;
4962
4963 rc = cciss_init_reset_devices(pdev);
4964 if (rc) {
4965 if (rc != -ENOTSUPP)
4966 return rc;
4967 /* If the reset fails in a particular way (it has no way to do
4968 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4969 * a soft reset once we get the controller configured up to the
4970 * point that it can accept a command.
4971 */
4972 try_soft_reset = 1;
4973 rc = 0;
4974 }
4975
4976 reinit_after_soft_reset:
4977
4978 i = alloc_cciss_hba(pdev);
4979 if (i < 0)
4980 return -1;
4981
4982 h = hba[i];
4983 h->pdev = pdev;
4984 h->busy_initializing = 1;
4985 h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4986 INIT_LIST_HEAD(&h->cmpQ);
4987 INIT_LIST_HEAD(&h->reqQ);
4988 mutex_init(&h->busy_shutting_down);
4989
4990 if (cciss_pci_init(h) != 0)
4991 goto clean_no_release_regions;
4992
4993 sprintf(h->devname, "cciss%d", i);
4994 h->ctlr = i;
4995
4996 if (cciss_tape_cmds < 2)
4997 cciss_tape_cmds = 2;
4998 if (cciss_tape_cmds > 16)
4999 cciss_tape_cmds = 16;
5000
5001 init_completion(&h->scan_wait);
5002
5003 if (cciss_create_hba_sysfs_entry(h))
5004 goto clean0;
5005
5006 /* configure PCI DMA stuff */
5007 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5008 dac = 1;
5009 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5010 dac = 0;
5011 else {
5012 dev_err(&h->pdev->dev, "no suitable DMA available\n");
5013 goto clean1;
5014 }
5015
5016 /*
5017 * register with the major number, or get a dynamic major number
5018 * by passing 0 as argument. This is done for greater than
5019 * 8 controller support.
5020 */
5021 if (i < MAX_CTLR_ORIG)
5022 h->major = COMPAQ_CISS_MAJOR + i;
5023 rc = register_blkdev(h->major, h->devname);
5024 if (rc == -EBUSY || rc == -EINVAL) {
5025 dev_err(&h->pdev->dev,
5026 "Unable to get major number %d for %s "
5027 "on hba %d\n", h->major, h->devname, i);
5028 goto clean1;
5029 } else {
5030 if (i >= MAX_CTLR_ORIG)
5031 h->major = rc;
5032 }
5033
5034 /* make sure the board interrupts are off */
5035 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5036 rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5037 if (rc)
5038 goto clean2;
5039
5040 dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5041 h->devname, pdev->device, pci_name(pdev),
5042 h->intr[h->intr_mode], dac ? "" : " not");
5043
5044 if (cciss_allocate_cmd_pool(h))
5045 goto clean4;
5046
5047 if (cciss_allocate_scatterlists(h))
5048 goto clean4;
5049
5050 h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5051 h->chainsize, h->nr_cmds);
5052 if (!h->cmd_sg_list && h->chainsize > 0)
5053 goto clean4;
5054
5055 spin_lock_init(&h->lock);
5056
5057 /* Initialize the pdev driver private data.
5058 have it point to h. */
5059 pci_set_drvdata(pdev, h);
5060 /* command and error info recs zeroed out before
5061 they are used */
5062 bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5063
5064 h->num_luns = 0;
5065 h->highest_lun = -1;
5066 for (j = 0; j < CISS_MAX_LUN; j++) {
5067 h->drv[j] = NULL;
5068 h->gendisk[j] = NULL;
5069 }
5070
5071 /* At this point, the controller is ready to take commands.
5072 * Now, if reset_devices and the hard reset didn't work, try
5073 * the soft reset and see if that works.
5074 */
5075 if (try_soft_reset) {
5076
5077 /* This is kind of gross. We may or may not get a completion
5078 * from the soft reset command, and if we do, then the value
5079 * from the fifo may or may not be valid. So, we wait 10 secs
5080 * after the reset throwing away any completions we get during
5081 * that time. Unregister the interrupt handler and register
5082 * fake ones to scoop up any residual completions.
5083 */
5084 spin_lock_irqsave(&h->lock, flags);
5085 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5086 spin_unlock_irqrestore(&h->lock, flags);
5087 free_irq(h->intr[h->intr_mode], h);
5088 rc = cciss_request_irq(h, cciss_msix_discard_completions,
5089 cciss_intx_discard_completions);
5090 if (rc) {
5091 dev_warn(&h->pdev->dev, "Failed to request_irq after "
5092 "soft reset.\n");
5093 goto clean4;
5094 }
5095
5096 rc = cciss_kdump_soft_reset(h);
5097 if (rc) {
5098 dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5099 goto clean4;
5100 }
5101
5102 dev_info(&h->pdev->dev, "Board READY.\n");
5103 dev_info(&h->pdev->dev,
5104 "Waiting for stale completions to drain.\n");
5105 h->access.set_intr_mask(h, CCISS_INTR_ON);
5106 msleep(10000);
5107 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5108
5109 rc = controller_reset_failed(h->cfgtable);
5110 if (rc)
5111 dev_info(&h->pdev->dev,
5112 "Soft reset appears to have failed.\n");
5113
5114 /* since the controller's reset, we have to go back and re-init
5115 * everything. Easiest to just forget what we've done and do it
5116 * all over again.
5117 */
5118 cciss_undo_allocations_after_kdump_soft_reset(h);
5119 try_soft_reset = 0;
5120 if (rc)
5121 /* don't go to clean4, we already unallocated */
5122 return -ENODEV;
5123
5124 goto reinit_after_soft_reset;
5125 }
5126
5127 cciss_scsi_setup(h);
5128
5129 /* Turn the interrupts on so we can service requests */
5130 h->access.set_intr_mask(h, CCISS_INTR_ON);
5131
5132 /* Get the firmware version */
5133 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5134 if (inq_buff == NULL) {
5135 dev_err(&h->pdev->dev, "out of memory\n");
5136 goto clean4;
5137 }
5138
5139 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5140 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5141 if (return_code == IO_OK) {
5142 h->firm_ver[0] = inq_buff->data_byte[32];
5143 h->firm_ver[1] = inq_buff->data_byte[33];
5144 h->firm_ver[2] = inq_buff->data_byte[34];
5145 h->firm_ver[3] = inq_buff->data_byte[35];
5146 } else { /* send command failed */
5147 dev_warn(&h->pdev->dev, "unable to determine firmware"
5148 " version of controller\n");
5149 }
5150 kfree(inq_buff);
5151
5152 cciss_procinit(h);
5153
5154 h->cciss_max_sectors = 8192;
5155
5156 rebuild_lun_table(h, 1, 0);
5157 cciss_engage_scsi(h);
5158 h->busy_initializing = 0;
5159 return 1;
5160
5161 clean4:
5162 cciss_free_cmd_pool(h);
5163 cciss_free_scatterlists(h);
5164 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5165 free_irq(h->intr[h->intr_mode], h);
5166 clean2:
5167 unregister_blkdev(h->major, h->devname);
5168 clean1:
5169 cciss_destroy_hba_sysfs_entry(h);
5170 clean0:
5171 pci_release_regions(pdev);
5172 clean_no_release_regions:
5173 h->busy_initializing = 0;
5174
5175 /*
5176 * Deliberately omit pci_disable_device(): it does something nasty to
5177 * Smart Array controllers that pci_enable_device does not undo
5178 */
5179 pci_set_drvdata(pdev, NULL);
5180 free_hba(h);
5181 return -1;
5182 }
5183
5184 static void cciss_shutdown(struct pci_dev *pdev)
5185 {
5186 ctlr_info_t *h;
5187 char *flush_buf;
5188 int return_code;
5189
5190 h = pci_get_drvdata(pdev);
5191 flush_buf = kzalloc(4, GFP_KERNEL);
5192 if (!flush_buf) {
5193 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5194 return;
5195 }
5196 /* write all data in the battery backed cache to disk */
5197 return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5198 4, 0, CTLR_LUNID, TYPE_CMD);
5199 kfree(flush_buf);
5200 if (return_code != IO_OK)
5201 dev_warn(&h->pdev->dev, "Error flushing cache\n");
5202 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5203 free_irq(h->intr[h->intr_mode], h);
5204 }
5205
5206 static int cciss_enter_simple_mode(struct ctlr_info *h)
5207 {
5208 u32 trans_support;
5209
5210 trans_support = readl(&(h->cfgtable->TransportSupport));
5211 if (!(trans_support & SIMPLE_MODE))
5212 return -ENOTSUPP;
5213
5214 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5215 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5216 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5217 cciss_wait_for_mode_change_ack(h);
5218 print_cfg_table(h);
5219 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5220 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5221 return -ENODEV;
5222 }
5223 h->transMethod = CFGTBL_Trans_Simple;
5224 return 0;
5225 }
5226
5227
5228 static void cciss_remove_one(struct pci_dev *pdev)
5229 {
5230 ctlr_info_t *h;
5231 int i, j;
5232
5233 if (pci_get_drvdata(pdev) == NULL) {
5234 dev_err(&pdev->dev, "Unable to remove device\n");
5235 return;
5236 }
5237
5238 h = pci_get_drvdata(pdev);
5239 i = h->ctlr;
5240 if (hba[i] == NULL) {
5241 dev_err(&pdev->dev, "device appears to already be removed\n");
5242 return;
5243 }
5244
5245 mutex_lock(&h->busy_shutting_down);
5246
5247 remove_from_scan_list(h);
5248 remove_proc_entry(h->devname, proc_cciss);
5249 unregister_blkdev(h->major, h->devname);
5250
5251 /* remove it from the disk list */
5252 for (j = 0; j < CISS_MAX_LUN; j++) {
5253 struct gendisk *disk = h->gendisk[j];
5254 if (disk) {
5255 struct request_queue *q = disk->queue;
5256
5257 if (disk->flags & GENHD_FL_UP) {
5258 cciss_destroy_ld_sysfs_entry(h, j, 1);
5259 del_gendisk(disk);
5260 }
5261 if (q)
5262 blk_cleanup_queue(q);
5263 }
5264 }
5265
5266 #ifdef CONFIG_CISS_SCSI_TAPE
5267 cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
5268 #endif
5269
5270 cciss_shutdown(pdev);
5271
5272 #ifdef CONFIG_PCI_MSI
5273 if (h->msix_vector)
5274 pci_disable_msix(h->pdev);
5275 else if (h->msi_vector)
5276 pci_disable_msi(h->pdev);
5277 #endif /* CONFIG_PCI_MSI */
5278
5279 iounmap(h->transtable);
5280 iounmap(h->cfgtable);
5281 iounmap(h->vaddr);
5282
5283 cciss_free_cmd_pool(h);
5284 /* Free up sg elements */
5285 for (j = 0; j < h->nr_cmds; j++)
5286 kfree(h->scatter_list[j]);
5287 kfree(h->scatter_list);
5288 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5289 kfree(h->blockFetchTable);
5290 if (h->reply_pool)
5291 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5292 h->reply_pool, h->reply_pool_dhandle);
5293 /*
5294 * Deliberately omit pci_disable_device(): it does something nasty to
5295 * Smart Array controllers that pci_enable_device does not undo
5296 */
5297 pci_release_regions(pdev);
5298 pci_set_drvdata(pdev, NULL);
5299 cciss_destroy_hba_sysfs_entry(h);
5300 mutex_unlock(&h->busy_shutting_down);
5301 free_hba(h);
5302 }
5303
5304 static struct pci_driver cciss_pci_driver = {
5305 .name = "cciss",
5306 .probe = cciss_init_one,
5307 .remove = cciss_remove_one,
5308 .id_table = cciss_pci_device_id, /* id_table */
5309 .shutdown = cciss_shutdown,
5310 };
5311
5312 /*
5313 * This is it. Register the PCI driver information for the cards we control
5314 * the OS will call our registered routines when it finds one of our cards.
5315 */
5316 static int __init cciss_init(void)
5317 {
5318 int err;
5319
5320 /*
5321 * The hardware requires that commands are aligned on a 64-bit
5322 * boundary. Given that we use pci_alloc_consistent() to allocate an
5323 * array of them, the size must be a multiple of 8 bytes.
5324 */
5325 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5326 printk(KERN_INFO DRIVER_NAME "\n");
5327
5328 err = bus_register(&cciss_bus_type);
5329 if (err)
5330 return err;
5331
5332 /* Start the scan thread */
5333 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5334 if (IS_ERR(cciss_scan_thread)) {
5335 err = PTR_ERR(cciss_scan_thread);
5336 goto err_bus_unregister;
5337 }
5338
5339 /* Register for our PCI devices */
5340 err = pci_register_driver(&cciss_pci_driver);
5341 if (err)
5342 goto err_thread_stop;
5343
5344 return err;
5345
5346 err_thread_stop:
5347 kthread_stop(cciss_scan_thread);
5348 err_bus_unregister:
5349 bus_unregister(&cciss_bus_type);
5350
5351 return err;
5352 }
5353
5354 static void __exit cciss_cleanup(void)
5355 {
5356 int i;
5357
5358 pci_unregister_driver(&cciss_pci_driver);
5359 /* double check that all controller entrys have been removed */
5360 for (i = 0; i < MAX_CTLR; i++) {
5361 if (hba[i] != NULL) {
5362 dev_warn(&hba[i]->pdev->dev,
5363 "had to remove controller\n");
5364 cciss_remove_one(hba[i]->pdev);
5365 }
5366 }
5367 kthread_stop(cciss_scan_thread);
5368 if (proc_cciss)
5369 remove_proc_entry("driver/cciss", NULL);
5370 bus_unregister(&cciss_bus_type);
5371 }
5372
5373 module_init(cciss_init);
5374 module_exit(cciss_cleanup);