]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/block/cciss.c
d2d45eaf3681f0459ce9beb13e7c03bbe57bf29f
[mirror_ubuntu-kernels.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP SA 5xxx and 6xxx Controllers
3 * Copyright 2000, 2006 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/config.h> /* CONFIG_PROC_FS */
24 #include <linux/module.h>
25 #include <linux/interrupt.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49
50 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
51 #define DRIVER_NAME "HP CISS Driver (v 3.6.10)"
52 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3,6,10)
53
54 /* Embedded module documentation macros - see modules.h */
55 MODULE_AUTHOR("Hewlett-Packard Company");
56 MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 3.6.10");
57 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
58 " SA6i P600 P800 P400 P400i E200 E200i E500");
59 MODULE_LICENSE("GPL");
60
61 #include "cciss_cmd.h"
62 #include "cciss.h"
63 #include <linux/cciss_ioctl.h>
64
65 /* define the PCI info for the cards we can control */
66 static const struct pci_device_id cciss_pci_device_id[] = {
67 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
68 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
69 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
70 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
71 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
72 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
73 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
76 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
77 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
78 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
79 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3233},
86 {0,}
87 };
88
89 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
90
91 /* board_id = Subsystem Device ID & Vendor ID
92 * product = Marketing Name for the board
93 * access = Address of the struct of function pointers
94 */
95 static struct board_type products[] = {
96 {0x40700E11, "Smart Array 5300", &SA5_access},
97 {0x40800E11, "Smart Array 5i", &SA5B_access},
98 {0x40820E11, "Smart Array 532", &SA5B_access},
99 {0x40830E11, "Smart Array 5312", &SA5B_access},
100 {0x409A0E11, "Smart Array 641", &SA5_access},
101 {0x409B0E11, "Smart Array 642", &SA5_access},
102 {0x409C0E11, "Smart Array 6400", &SA5_access},
103 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
104 {0x40910E11, "Smart Array 6i", &SA5_access},
105 {0x3225103C, "Smart Array P600", &SA5_access},
106 {0x3223103C, "Smart Array P800", &SA5_access},
107 {0x3234103C, "Smart Array P400", &SA5_access},
108 {0x3235103C, "Smart Array P400i", &SA5_access},
109 {0x3211103C, "Smart Array E200i", &SA5_access},
110 {0x3212103C, "Smart Array E200", &SA5_access},
111 {0x3213103C, "Smart Array E200i", &SA5_access},
112 {0x3214103C, "Smart Array E200i", &SA5_access},
113 {0x3215103C, "Smart Array E200i", &SA5_access},
114 {0x3233103C, "Smart Array E500", &SA5_access},
115 };
116
117 /* How long to wait (in milliseconds) for board to go into simple mode */
118 #define MAX_CONFIG_WAIT 30000
119 #define MAX_IOCTL_CONFIG_WAIT 1000
120
121 /*define how many times we will try a command because of bus resets */
122 #define MAX_CMD_RETRIES 3
123
124 #define READ_AHEAD 1024
125 #define NR_CMDS 384 /* #commands that can be outstanding */
126 #define MAX_CTLR 32
127
128 /* Originally cciss driver only supports 8 major numbers */
129 #define MAX_CTLR_ORIG 8
130
131 static ctlr_info_t *hba[MAX_CTLR];
132
133 static void do_cciss_request(request_queue_t *q);
134 static irqreturn_t do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs);
135 static int cciss_open(struct inode *inode, struct file *filep);
136 static int cciss_release(struct inode *inode, struct file *filep);
137 static int cciss_ioctl(struct inode *inode, struct file *filep,
138 unsigned int cmd, unsigned long arg);
139 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
140
141 static int revalidate_allvol(ctlr_info_t *host);
142 static int cciss_revalidate(struct gendisk *disk);
143 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
144 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
145 int clear_all);
146
147 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
148 sector_t *total_size, unsigned int *block_size);
149 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
150 sector_t *total_size, unsigned int *block_size);
151 static void cciss_geometry_inquiry(int ctlr, int logvol,
152 int withirq, sector_t total_size,
153 unsigned int block_size, InquiryData_struct *inq_buff,
154 drive_info_struct *drv);
155 static void cciss_getgeometry(int cntl_num);
156 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
157 __u32);
158 static void start_io(ctlr_info_t *h);
159 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
160 unsigned int use_unit_num, unsigned int log_unit,
161 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
162 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
163 unsigned int use_unit_num, unsigned int log_unit,
164 __u8 page_code, int cmd_type);
165
166 static void fail_all_cmds(unsigned long ctlr);
167
168 #ifdef CONFIG_PROC_FS
169 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
170 int length, int *eof, void *data);
171 static void cciss_procinit(int i);
172 #else
173 static void cciss_procinit(int i)
174 {
175 }
176 #endif /* CONFIG_PROC_FS */
177
178 #ifdef CONFIG_COMPAT
179 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
180 #endif
181
182 static struct block_device_operations cciss_fops = {
183 .owner = THIS_MODULE,
184 .open = cciss_open,
185 .release = cciss_release,
186 .ioctl = cciss_ioctl,
187 .getgeo = cciss_getgeo,
188 #ifdef CONFIG_COMPAT
189 .compat_ioctl = cciss_compat_ioctl,
190 #endif
191 .revalidate_disk = cciss_revalidate,
192 };
193
194 /*
195 * Enqueuing and dequeuing functions for cmdlists.
196 */
197 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
198 {
199 if (*Qptr == NULL) {
200 *Qptr = c;
201 c->next = c->prev = c;
202 } else {
203 c->prev = (*Qptr)->prev;
204 c->next = (*Qptr);
205 (*Qptr)->prev->next = c;
206 (*Qptr)->prev = c;
207 }
208 }
209
210 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
211 CommandList_struct *c)
212 {
213 if (c && c->next != c) {
214 if (*Qptr == c)
215 *Qptr = c->next;
216 c->prev->next = c->next;
217 c->next->prev = c->prev;
218 } else {
219 *Qptr = NULL;
220 }
221 return c;
222 }
223
224 #include "cciss_scsi.c" /* For SCSI tape support */
225
226 #ifdef CONFIG_PROC_FS
227
228 /*
229 * Report information about this controller.
230 */
231 #define ENG_GIG 1000000000
232 #define ENG_GIG_FACTOR (ENG_GIG/512)
233 #define RAID_UNKNOWN 6
234 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
235 "UNKNOWN"
236 };
237
238 static struct proc_dir_entry *proc_cciss;
239
240 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
241 int length, int *eof, void *data)
242 {
243 off_t pos = 0;
244 off_t len = 0;
245 int size, i, ctlr;
246 ctlr_info_t *h = (ctlr_info_t *) data;
247 drive_info_struct *drv;
248 unsigned long flags;
249 sector_t vol_sz, vol_sz_frac;
250
251 ctlr = h->ctlr;
252
253 /* prevent displaying bogus info during configuration
254 * or deconfiguration of a logical volume
255 */
256 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
257 if (h->busy_configuring) {
258 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
259 return -EBUSY;
260 }
261 h->busy_configuring = 1;
262 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
263
264 size = sprintf(buffer, "%s: HP %s Controller\n"
265 "Board ID: 0x%08lx\n"
266 "Firmware Version: %c%c%c%c\n"
267 "IRQ: %d\n"
268 "Logical drives: %d\n"
269 "Current Q depth: %d\n"
270 "Current # commands on controller: %d\n"
271 "Max Q depth since init: %d\n"
272 "Max # commands on controller since init: %d\n"
273 "Max SG entries since init: %d\n\n",
274 h->devname,
275 h->product_name,
276 (unsigned long)h->board_id,
277 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
278 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
279 h->num_luns, h->Qdepth, h->commands_outstanding,
280 h->maxQsinceinit, h->max_outstanding, h->maxSG);
281
282 pos += size;
283 len += size;
284 cciss_proc_tape_report(ctlr, buffer, &pos, &len);
285 for (i = 0; i <= h->highest_lun; i++) {
286
287 drv = &h->drv[i];
288 if (drv->heads == 0)
289 continue;
290
291 vol_sz = drv->nr_blocks;
292 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
293 vol_sz_frac *= 100;
294 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
295
296 if (drv->raid_level > 5)
297 drv->raid_level = RAID_UNKNOWN;
298 size = sprintf(buffer + len, "cciss/c%dd%d:"
299 "\t%4u.%02uGB\tRAID %s\n",
300 ctlr, i, (int)vol_sz, (int)vol_sz_frac,
301 raid_label[drv->raid_level]);
302 pos += size;
303 len += size;
304 }
305
306 *eof = 1;
307 *start = buffer + offset;
308 len -= offset;
309 if (len > length)
310 len = length;
311 h->busy_configuring = 0;
312 return len;
313 }
314
315 static int
316 cciss_proc_write(struct file *file, const char __user *buffer,
317 unsigned long count, void *data)
318 {
319 unsigned char cmd[80];
320 int len;
321 #ifdef CONFIG_CISS_SCSI_TAPE
322 ctlr_info_t *h = (ctlr_info_t *) data;
323 int rc;
324 #endif
325
326 if (count > sizeof(cmd) - 1)
327 return -EINVAL;
328 if (copy_from_user(cmd, buffer, count))
329 return -EFAULT;
330 cmd[count] = '\0';
331 len = strlen(cmd); // above 3 lines ensure safety
332 if (len && cmd[len - 1] == '\n')
333 cmd[--len] = '\0';
334 # ifdef CONFIG_CISS_SCSI_TAPE
335 if (strcmp("engage scsi", cmd) == 0) {
336 rc = cciss_engage_scsi(h->ctlr);
337 if (rc != 0)
338 return -rc;
339 return count;
340 }
341 /* might be nice to have "disengage" too, but it's not
342 safely possible. (only 1 module use count, lock issues.) */
343 # endif
344 return -EINVAL;
345 }
346
347 /*
348 * Get us a file in /proc/cciss that says something about each controller.
349 * Create /proc/cciss if it doesn't exist yet.
350 */
351 static void __devinit cciss_procinit(int i)
352 {
353 struct proc_dir_entry *pde;
354
355 if (proc_cciss == NULL) {
356 proc_cciss = proc_mkdir("cciss", proc_root_driver);
357 if (!proc_cciss)
358 return;
359 }
360
361 pde = create_proc_read_entry(hba[i]->devname,
362 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
363 proc_cciss, cciss_proc_get_info, hba[i]);
364 pde->write_proc = cciss_proc_write;
365 }
366 #endif /* CONFIG_PROC_FS */
367
368 /*
369 * For operations that cannot sleep, a command block is allocated at init,
370 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
371 * which ones are free or in use. For operations that can wait for kmalloc
372 * to possible sleep, this routine can be called with get_from_pool set to 0.
373 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
374 */
375 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
376 {
377 CommandList_struct *c;
378 int i;
379 u64bit temp64;
380 dma_addr_t cmd_dma_handle, err_dma_handle;
381
382 if (!get_from_pool) {
383 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
384 sizeof(CommandList_struct), &cmd_dma_handle);
385 if (c == NULL)
386 return NULL;
387 memset(c, 0, sizeof(CommandList_struct));
388
389 c->cmdindex = -1;
390
391 c->err_info = (ErrorInfo_struct *)
392 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
393 &err_dma_handle);
394
395 if (c->err_info == NULL) {
396 pci_free_consistent(h->pdev,
397 sizeof(CommandList_struct), c, cmd_dma_handle);
398 return NULL;
399 }
400 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
401 } else { /* get it out of the controllers pool */
402
403 do {
404 i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
405 if (i == NR_CMDS)
406 return NULL;
407 } while (test_and_set_bit
408 (i & (BITS_PER_LONG - 1),
409 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
410 #ifdef CCISS_DEBUG
411 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
412 #endif
413 c = h->cmd_pool + i;
414 memset(c, 0, sizeof(CommandList_struct));
415 cmd_dma_handle = h->cmd_pool_dhandle
416 + i * sizeof(CommandList_struct);
417 c->err_info = h->errinfo_pool + i;
418 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
419 err_dma_handle = h->errinfo_pool_dhandle
420 + i * sizeof(ErrorInfo_struct);
421 h->nr_allocs++;
422
423 c->cmdindex = i;
424 }
425
426 c->busaddr = (__u32) cmd_dma_handle;
427 temp64.val = (__u64) err_dma_handle;
428 c->ErrDesc.Addr.lower = temp64.val32.lower;
429 c->ErrDesc.Addr.upper = temp64.val32.upper;
430 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
431
432 c->ctlr = h->ctlr;
433 return c;
434 }
435
436 /*
437 * Frees a command block that was previously allocated with cmd_alloc().
438 */
439 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
440 {
441 int i;
442 u64bit temp64;
443
444 if (!got_from_pool) {
445 temp64.val32.lower = c->ErrDesc.Addr.lower;
446 temp64.val32.upper = c->ErrDesc.Addr.upper;
447 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
448 c->err_info, (dma_addr_t) temp64.val);
449 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
450 c, (dma_addr_t) c->busaddr);
451 } else {
452 i = c - h->cmd_pool;
453 clear_bit(i & (BITS_PER_LONG - 1),
454 h->cmd_pool_bits + (i / BITS_PER_LONG));
455 h->nr_frees++;
456 }
457 }
458
459 static inline ctlr_info_t *get_host(struct gendisk *disk)
460 {
461 return disk->queue->queuedata;
462 }
463
464 static inline drive_info_struct *get_drv(struct gendisk *disk)
465 {
466 return disk->private_data;
467 }
468
469 /*
470 * Open. Make sure the device is really there.
471 */
472 static int cciss_open(struct inode *inode, struct file *filep)
473 {
474 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
475 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
476
477 #ifdef CCISS_DEBUG
478 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
479 #endif /* CCISS_DEBUG */
480
481 if (host->busy_initializing || drv->busy_configuring)
482 return -EBUSY;
483 /*
484 * Root is allowed to open raw volume zero even if it's not configured
485 * so array config can still work. Root is also allowed to open any
486 * volume that has a LUN ID, so it can issue IOCTL to reread the
487 * disk information. I don't think I really like this
488 * but I'm already using way to many device nodes to claim another one
489 * for "raw controller".
490 */
491 if (drv->nr_blocks == 0) {
492 if (iminor(inode) != 0) { /* not node 0? */
493 /* if not node 0 make sure it is a partition = 0 */
494 if (iminor(inode) & 0x0f) {
495 return -ENXIO;
496 /* if it is, make sure we have a LUN ID */
497 } else if (drv->LunID == 0) {
498 return -ENXIO;
499 }
500 }
501 if (!capable(CAP_SYS_ADMIN))
502 return -EPERM;
503 }
504 drv->usage_count++;
505 host->usage_count++;
506 return 0;
507 }
508
509 /*
510 * Close. Sync first.
511 */
512 static int cciss_release(struct inode *inode, struct file *filep)
513 {
514 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
515 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
516
517 #ifdef CCISS_DEBUG
518 printk(KERN_DEBUG "cciss_release %s\n",
519 inode->i_bdev->bd_disk->disk_name);
520 #endif /* CCISS_DEBUG */
521
522 drv->usage_count--;
523 host->usage_count--;
524 return 0;
525 }
526
527 #ifdef CONFIG_COMPAT
528
529 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
530 {
531 int ret;
532 lock_kernel();
533 ret = cciss_ioctl(f->f_dentry->d_inode, f, cmd, arg);
534 unlock_kernel();
535 return ret;
536 }
537
538 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
539 unsigned long arg);
540 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
541 unsigned long arg);
542
543 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
544 {
545 switch (cmd) {
546 case CCISS_GETPCIINFO:
547 case CCISS_GETINTINFO:
548 case CCISS_SETINTINFO:
549 case CCISS_GETNODENAME:
550 case CCISS_SETNODENAME:
551 case CCISS_GETHEARTBEAT:
552 case CCISS_GETBUSTYPES:
553 case CCISS_GETFIRMVER:
554 case CCISS_GETDRIVVER:
555 case CCISS_REVALIDVOLS:
556 case CCISS_DEREGDISK:
557 case CCISS_REGNEWDISK:
558 case CCISS_REGNEWD:
559 case CCISS_RESCANDISK:
560 case CCISS_GETLUNINFO:
561 return do_ioctl(f, cmd, arg);
562
563 case CCISS_PASSTHRU32:
564 return cciss_ioctl32_passthru(f, cmd, arg);
565 case CCISS_BIG_PASSTHRU32:
566 return cciss_ioctl32_big_passthru(f, cmd, arg);
567
568 default:
569 return -ENOIOCTLCMD;
570 }
571 }
572
573 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
574 unsigned long arg)
575 {
576 IOCTL32_Command_struct __user *arg32 =
577 (IOCTL32_Command_struct __user *) arg;
578 IOCTL_Command_struct arg64;
579 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
580 int err;
581 u32 cp;
582
583 err = 0;
584 err |=
585 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
586 sizeof(arg64.LUN_info));
587 err |=
588 copy_from_user(&arg64.Request, &arg32->Request,
589 sizeof(arg64.Request));
590 err |=
591 copy_from_user(&arg64.error_info, &arg32->error_info,
592 sizeof(arg64.error_info));
593 err |= get_user(arg64.buf_size, &arg32->buf_size);
594 err |= get_user(cp, &arg32->buf);
595 arg64.buf = compat_ptr(cp);
596 err |= copy_to_user(p, &arg64, sizeof(arg64));
597
598 if (err)
599 return -EFAULT;
600
601 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
602 if (err)
603 return err;
604 err |=
605 copy_in_user(&arg32->error_info, &p->error_info,
606 sizeof(arg32->error_info));
607 if (err)
608 return -EFAULT;
609 return err;
610 }
611
612 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
613 unsigned long arg)
614 {
615 BIG_IOCTL32_Command_struct __user *arg32 =
616 (BIG_IOCTL32_Command_struct __user *) arg;
617 BIG_IOCTL_Command_struct arg64;
618 BIG_IOCTL_Command_struct __user *p =
619 compat_alloc_user_space(sizeof(arg64));
620 int err;
621 u32 cp;
622
623 err = 0;
624 err |=
625 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
626 sizeof(arg64.LUN_info));
627 err |=
628 copy_from_user(&arg64.Request, &arg32->Request,
629 sizeof(arg64.Request));
630 err |=
631 copy_from_user(&arg64.error_info, &arg32->error_info,
632 sizeof(arg64.error_info));
633 err |= get_user(arg64.buf_size, &arg32->buf_size);
634 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
635 err |= get_user(cp, &arg32->buf);
636 arg64.buf = compat_ptr(cp);
637 err |= copy_to_user(p, &arg64, sizeof(arg64));
638
639 if (err)
640 return -EFAULT;
641
642 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
643 if (err)
644 return err;
645 err |=
646 copy_in_user(&arg32->error_info, &p->error_info,
647 sizeof(arg32->error_info));
648 if (err)
649 return -EFAULT;
650 return err;
651 }
652 #endif
653
654 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
655 {
656 drive_info_struct *drv = get_drv(bdev->bd_disk);
657
658 if (!drv->cylinders)
659 return -ENXIO;
660
661 geo->heads = drv->heads;
662 geo->sectors = drv->sectors;
663 geo->cylinders = drv->cylinders;
664 return 0;
665 }
666
667 /*
668 * ioctl
669 */
670 static int cciss_ioctl(struct inode *inode, struct file *filep,
671 unsigned int cmd, unsigned long arg)
672 {
673 struct block_device *bdev = inode->i_bdev;
674 struct gendisk *disk = bdev->bd_disk;
675 ctlr_info_t *host = get_host(disk);
676 drive_info_struct *drv = get_drv(disk);
677 int ctlr = host->ctlr;
678 void __user *argp = (void __user *)arg;
679
680 #ifdef CCISS_DEBUG
681 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
682 #endif /* CCISS_DEBUG */
683
684 switch (cmd) {
685 case CCISS_GETPCIINFO:
686 {
687 cciss_pci_info_struct pciinfo;
688
689 if (!arg)
690 return -EINVAL;
691 pciinfo.domain = pci_domain_nr(host->pdev->bus);
692 pciinfo.bus = host->pdev->bus->number;
693 pciinfo.dev_fn = host->pdev->devfn;
694 pciinfo.board_id = host->board_id;
695 if (copy_to_user
696 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
697 return -EFAULT;
698 return 0;
699 }
700 case CCISS_GETINTINFO:
701 {
702 cciss_coalint_struct intinfo;
703 if (!arg)
704 return -EINVAL;
705 intinfo.delay =
706 readl(&host->cfgtable->HostWrite.CoalIntDelay);
707 intinfo.count =
708 readl(&host->cfgtable->HostWrite.CoalIntCount);
709 if (copy_to_user
710 (argp, &intinfo, sizeof(cciss_coalint_struct)))
711 return -EFAULT;
712 return 0;
713 }
714 case CCISS_SETINTINFO:
715 {
716 cciss_coalint_struct intinfo;
717 unsigned long flags;
718 int i;
719
720 if (!arg)
721 return -EINVAL;
722 if (!capable(CAP_SYS_ADMIN))
723 return -EPERM;
724 if (copy_from_user
725 (&intinfo, argp, sizeof(cciss_coalint_struct)))
726 return -EFAULT;
727 if ((intinfo.delay == 0) && (intinfo.count == 0))
728 {
729 // printk("cciss_ioctl: delay and count cannot be 0\n");
730 return -EINVAL;
731 }
732 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
733 /* Update the field, and then ring the doorbell */
734 writel(intinfo.delay,
735 &(host->cfgtable->HostWrite.CoalIntDelay));
736 writel(intinfo.count,
737 &(host->cfgtable->HostWrite.CoalIntCount));
738 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
739
740 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
741 if (!(readl(host->vaddr + SA5_DOORBELL)
742 & CFGTBL_ChangeReq))
743 break;
744 /* delay and try again */
745 udelay(1000);
746 }
747 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
748 if (i >= MAX_IOCTL_CONFIG_WAIT)
749 return -EAGAIN;
750 return 0;
751 }
752 case CCISS_GETNODENAME:
753 {
754 NodeName_type NodeName;
755 int i;
756
757 if (!arg)
758 return -EINVAL;
759 for (i = 0; i < 16; i++)
760 NodeName[i] =
761 readb(&host->cfgtable->ServerName[i]);
762 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
763 return -EFAULT;
764 return 0;
765 }
766 case CCISS_SETNODENAME:
767 {
768 NodeName_type NodeName;
769 unsigned long flags;
770 int i;
771
772 if (!arg)
773 return -EINVAL;
774 if (!capable(CAP_SYS_ADMIN))
775 return -EPERM;
776
777 if (copy_from_user
778 (NodeName, argp, sizeof(NodeName_type)))
779 return -EFAULT;
780
781 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
782
783 /* Update the field, and then ring the doorbell */
784 for (i = 0; i < 16; i++)
785 writeb(NodeName[i],
786 &host->cfgtable->ServerName[i]);
787
788 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
789
790 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
791 if (!(readl(host->vaddr + SA5_DOORBELL)
792 & CFGTBL_ChangeReq))
793 break;
794 /* delay and try again */
795 udelay(1000);
796 }
797 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
798 if (i >= MAX_IOCTL_CONFIG_WAIT)
799 return -EAGAIN;
800 return 0;
801 }
802
803 case CCISS_GETHEARTBEAT:
804 {
805 Heartbeat_type heartbeat;
806
807 if (!arg)
808 return -EINVAL;
809 heartbeat = readl(&host->cfgtable->HeartBeat);
810 if (copy_to_user
811 (argp, &heartbeat, sizeof(Heartbeat_type)))
812 return -EFAULT;
813 return 0;
814 }
815 case CCISS_GETBUSTYPES:
816 {
817 BusTypes_type BusTypes;
818
819 if (!arg)
820 return -EINVAL;
821 BusTypes = readl(&host->cfgtable->BusTypes);
822 if (copy_to_user
823 (argp, &BusTypes, sizeof(BusTypes_type)))
824 return -EFAULT;
825 return 0;
826 }
827 case CCISS_GETFIRMVER:
828 {
829 FirmwareVer_type firmware;
830
831 if (!arg)
832 return -EINVAL;
833 memcpy(firmware, host->firm_ver, 4);
834
835 if (copy_to_user
836 (argp, firmware, sizeof(FirmwareVer_type)))
837 return -EFAULT;
838 return 0;
839 }
840 case CCISS_GETDRIVVER:
841 {
842 DriverVer_type DriverVer = DRIVER_VERSION;
843
844 if (!arg)
845 return -EINVAL;
846
847 if (copy_to_user
848 (argp, &DriverVer, sizeof(DriverVer_type)))
849 return -EFAULT;
850 return 0;
851 }
852
853 case CCISS_REVALIDVOLS:
854 if (bdev != bdev->bd_contains || drv != host->drv)
855 return -ENXIO;
856 return revalidate_allvol(host);
857
858 case CCISS_GETLUNINFO:{
859 LogvolInfo_struct luninfo;
860
861 luninfo.LunID = drv->LunID;
862 luninfo.num_opens = drv->usage_count;
863 luninfo.num_parts = 0;
864 if (copy_to_user(argp, &luninfo,
865 sizeof(LogvolInfo_struct)))
866 return -EFAULT;
867 return 0;
868 }
869 case CCISS_DEREGDISK:
870 return rebuild_lun_table(host, disk);
871
872 case CCISS_REGNEWD:
873 return rebuild_lun_table(host, NULL);
874
875 case CCISS_PASSTHRU:
876 {
877 IOCTL_Command_struct iocommand;
878 CommandList_struct *c;
879 char *buff = NULL;
880 u64bit temp64;
881 unsigned long flags;
882 DECLARE_COMPLETION(wait);
883
884 if (!arg)
885 return -EINVAL;
886
887 if (!capable(CAP_SYS_RAWIO))
888 return -EPERM;
889
890 if (copy_from_user
891 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
892 return -EFAULT;
893 if ((iocommand.buf_size < 1) &&
894 (iocommand.Request.Type.Direction != XFER_NONE)) {
895 return -EINVAL;
896 }
897 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
898 /* Check kmalloc limits */
899 if (iocommand.buf_size > 128000)
900 return -EINVAL;
901 #endif
902 if (iocommand.buf_size > 0) {
903 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
904 if (buff == NULL)
905 return -EFAULT;
906 }
907 if (iocommand.Request.Type.Direction == XFER_WRITE) {
908 /* Copy the data into the buffer we created */
909 if (copy_from_user
910 (buff, iocommand.buf, iocommand.buf_size)) {
911 kfree(buff);
912 return -EFAULT;
913 }
914 } else {
915 memset(buff, 0, iocommand.buf_size);
916 }
917 if ((c = cmd_alloc(host, 0)) == NULL) {
918 kfree(buff);
919 return -ENOMEM;
920 }
921 // Fill in the command type
922 c->cmd_type = CMD_IOCTL_PEND;
923 // Fill in Command Header
924 c->Header.ReplyQueue = 0; // unused in simple mode
925 if (iocommand.buf_size > 0) // buffer to fill
926 {
927 c->Header.SGList = 1;
928 c->Header.SGTotal = 1;
929 } else // no buffers to fill
930 {
931 c->Header.SGList = 0;
932 c->Header.SGTotal = 0;
933 }
934 c->Header.LUN = iocommand.LUN_info;
935 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
936
937 // Fill in Request block
938 c->Request = iocommand.Request;
939
940 // Fill in the scatter gather information
941 if (iocommand.buf_size > 0) {
942 temp64.val = pci_map_single(host->pdev, buff,
943 iocommand.buf_size,
944 PCI_DMA_BIDIRECTIONAL);
945 c->SG[0].Addr.lower = temp64.val32.lower;
946 c->SG[0].Addr.upper = temp64.val32.upper;
947 c->SG[0].Len = iocommand.buf_size;
948 c->SG[0].Ext = 0; // we are not chaining
949 }
950 c->waiting = &wait;
951
952 /* Put the request on the tail of the request queue */
953 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
954 addQ(&host->reqQ, c);
955 host->Qdepth++;
956 start_io(host);
957 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
958
959 wait_for_completion(&wait);
960
961 /* unlock the buffers from DMA */
962 temp64.val32.lower = c->SG[0].Addr.lower;
963 temp64.val32.upper = c->SG[0].Addr.upper;
964 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
965 iocommand.buf_size,
966 PCI_DMA_BIDIRECTIONAL);
967
968 /* Copy the error information out */
969 iocommand.error_info = *(c->err_info);
970 if (copy_to_user
971 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
972 kfree(buff);
973 cmd_free(host, c, 0);
974 return -EFAULT;
975 }
976
977 if (iocommand.Request.Type.Direction == XFER_READ) {
978 /* Copy the data out of the buffer we created */
979 if (copy_to_user
980 (iocommand.buf, buff, iocommand.buf_size)) {
981 kfree(buff);
982 cmd_free(host, c, 0);
983 return -EFAULT;
984 }
985 }
986 kfree(buff);
987 cmd_free(host, c, 0);
988 return 0;
989 }
990 case CCISS_BIG_PASSTHRU:{
991 BIG_IOCTL_Command_struct *ioc;
992 CommandList_struct *c;
993 unsigned char **buff = NULL;
994 int *buff_size = NULL;
995 u64bit temp64;
996 unsigned long flags;
997 BYTE sg_used = 0;
998 int status = 0;
999 int i;
1000 DECLARE_COMPLETION(wait);
1001 __u32 left;
1002 __u32 sz;
1003 BYTE __user *data_ptr;
1004
1005 if (!arg)
1006 return -EINVAL;
1007 if (!capable(CAP_SYS_RAWIO))
1008 return -EPERM;
1009 ioc = (BIG_IOCTL_Command_struct *)
1010 kmalloc(sizeof(*ioc), GFP_KERNEL);
1011 if (!ioc) {
1012 status = -ENOMEM;
1013 goto cleanup1;
1014 }
1015 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1016 status = -EFAULT;
1017 goto cleanup1;
1018 }
1019 if ((ioc->buf_size < 1) &&
1020 (ioc->Request.Type.Direction != XFER_NONE)) {
1021 status = -EINVAL;
1022 goto cleanup1;
1023 }
1024 /* Check kmalloc limits using all SGs */
1025 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1026 status = -EINVAL;
1027 goto cleanup1;
1028 }
1029 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1030 status = -EINVAL;
1031 goto cleanup1;
1032 }
1033 buff =
1034 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1035 if (!buff) {
1036 status = -ENOMEM;
1037 goto cleanup1;
1038 }
1039 buff_size = (int *)kmalloc(MAXSGENTRIES * sizeof(int),
1040 GFP_KERNEL);
1041 if (!buff_size) {
1042 status = -ENOMEM;
1043 goto cleanup1;
1044 }
1045 left = ioc->buf_size;
1046 data_ptr = ioc->buf;
1047 while (left) {
1048 sz = (left >
1049 ioc->malloc_size) ? ioc->
1050 malloc_size : left;
1051 buff_size[sg_used] = sz;
1052 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1053 if (buff[sg_used] == NULL) {
1054 status = -ENOMEM;
1055 goto cleanup1;
1056 }
1057 if (ioc->Request.Type.Direction == XFER_WRITE) {
1058 if (copy_from_user
1059 (buff[sg_used], data_ptr, sz)) {
1060 status = -ENOMEM;
1061 goto cleanup1;
1062 }
1063 } else {
1064 memset(buff[sg_used], 0, sz);
1065 }
1066 left -= sz;
1067 data_ptr += sz;
1068 sg_used++;
1069 }
1070 if ((c = cmd_alloc(host, 0)) == NULL) {
1071 status = -ENOMEM;
1072 goto cleanup1;
1073 }
1074 c->cmd_type = CMD_IOCTL_PEND;
1075 c->Header.ReplyQueue = 0;
1076
1077 if (ioc->buf_size > 0) {
1078 c->Header.SGList = sg_used;
1079 c->Header.SGTotal = sg_used;
1080 } else {
1081 c->Header.SGList = 0;
1082 c->Header.SGTotal = 0;
1083 }
1084 c->Header.LUN = ioc->LUN_info;
1085 c->Header.Tag.lower = c->busaddr;
1086
1087 c->Request = ioc->Request;
1088 if (ioc->buf_size > 0) {
1089 int i;
1090 for (i = 0; i < sg_used; i++) {
1091 temp64.val =
1092 pci_map_single(host->pdev, buff[i],
1093 buff_size[i],
1094 PCI_DMA_BIDIRECTIONAL);
1095 c->SG[i].Addr.lower =
1096 temp64.val32.lower;
1097 c->SG[i].Addr.upper =
1098 temp64.val32.upper;
1099 c->SG[i].Len = buff_size[i];
1100 c->SG[i].Ext = 0; /* we are not chaining */
1101 }
1102 }
1103 c->waiting = &wait;
1104 /* Put the request on the tail of the request queue */
1105 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1106 addQ(&host->reqQ, c);
1107 host->Qdepth++;
1108 start_io(host);
1109 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1110 wait_for_completion(&wait);
1111 /* unlock the buffers from DMA */
1112 for (i = 0; i < sg_used; i++) {
1113 temp64.val32.lower = c->SG[i].Addr.lower;
1114 temp64.val32.upper = c->SG[i].Addr.upper;
1115 pci_unmap_single(host->pdev,
1116 (dma_addr_t) temp64.val, buff_size[i],
1117 PCI_DMA_BIDIRECTIONAL);
1118 }
1119 /* Copy the error information out */
1120 ioc->error_info = *(c->err_info);
1121 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1122 cmd_free(host, c, 0);
1123 status = -EFAULT;
1124 goto cleanup1;
1125 }
1126 if (ioc->Request.Type.Direction == XFER_READ) {
1127 /* Copy the data out of the buffer we created */
1128 BYTE __user *ptr = ioc->buf;
1129 for (i = 0; i < sg_used; i++) {
1130 if (copy_to_user
1131 (ptr, buff[i], buff_size[i])) {
1132 cmd_free(host, c, 0);
1133 status = -EFAULT;
1134 goto cleanup1;
1135 }
1136 ptr += buff_size[i];
1137 }
1138 }
1139 cmd_free(host, c, 0);
1140 status = 0;
1141 cleanup1:
1142 if (buff) {
1143 for (i = 0; i < sg_used; i++)
1144 kfree(buff[i]);
1145 kfree(buff);
1146 }
1147 kfree(buff_size);
1148 kfree(ioc);
1149 return status;
1150 }
1151 default:
1152 return -ENOTTY;
1153 }
1154 }
1155
1156 /*
1157 * revalidate_allvol is for online array config utilities. After a
1158 * utility reconfigures the drives in the array, it can use this function
1159 * (through an ioctl) to make the driver zap any previous disk structs for
1160 * that controller and get new ones.
1161 *
1162 * Right now I'm using the getgeometry() function to do this, but this
1163 * function should probably be finer grained and allow you to revalidate one
1164 * particular logical volume (instead of all of them on a particular
1165 * controller).
1166 */
1167 static int revalidate_allvol(ctlr_info_t *host)
1168 {
1169 int ctlr = host->ctlr, i;
1170 unsigned long flags;
1171
1172 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1173 if (host->usage_count > 1) {
1174 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1175 printk(KERN_WARNING "cciss: Device busy for volume"
1176 " revalidation (usage=%d)\n", host->usage_count);
1177 return -EBUSY;
1178 }
1179 host->usage_count++;
1180 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1181
1182 for (i = 0; i < NWD; i++) {
1183 struct gendisk *disk = host->gendisk[i];
1184 if (disk) {
1185 request_queue_t *q = disk->queue;
1186
1187 if (disk->flags & GENHD_FL_UP)
1188 del_gendisk(disk);
1189 if (q)
1190 blk_cleanup_queue(q);
1191 }
1192 }
1193
1194 /*
1195 * Set the partition and block size structures for all volumes
1196 * on this controller to zero. We will reread all of this data
1197 */
1198 memset(host->drv, 0, sizeof(drive_info_struct)
1199 * CISS_MAX_LUN);
1200 /*
1201 * Tell the array controller not to give us any interrupts while
1202 * we check the new geometry. Then turn interrupts back on when
1203 * we're done.
1204 */
1205 host->access.set_intr_mask(host, CCISS_INTR_OFF);
1206 cciss_getgeometry(ctlr);
1207 host->access.set_intr_mask(host, CCISS_INTR_ON);
1208
1209 /* Loop through each real device */
1210 for (i = 0; i < NWD; i++) {
1211 struct gendisk *disk = host->gendisk[i];
1212 drive_info_struct *drv = &(host->drv[i]);
1213 /* we must register the controller even if no disks exist */
1214 /* this is for the online array utilities */
1215 if (!drv->heads && i)
1216 continue;
1217 blk_queue_hardsect_size(drv->queue, drv->block_size);
1218 set_capacity(disk, drv->nr_blocks);
1219 add_disk(disk);
1220 }
1221 host->usage_count--;
1222 return 0;
1223 }
1224
1225 static inline void complete_buffers(struct bio *bio, int status)
1226 {
1227 while (bio) {
1228 struct bio *xbh = bio->bi_next;
1229 int nr_sectors = bio_sectors(bio);
1230
1231 bio->bi_next = NULL;
1232 bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
1233 bio = xbh;
1234 }
1235 }
1236
1237 static void cciss_check_queues(ctlr_info_t *h)
1238 {
1239 int start_queue = h->next_to_run;
1240 int i;
1241
1242 /* check to see if we have maxed out the number of commands that can
1243 * be placed on the queue. If so then exit. We do this check here
1244 * in case the interrupt we serviced was from an ioctl and did not
1245 * free any new commands.
1246 */
1247 if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
1248 return;
1249
1250 /* We have room on the queue for more commands. Now we need to queue
1251 * them up. We will also keep track of the next queue to run so
1252 * that every queue gets a chance to be started first.
1253 */
1254 for (i = 0; i < h->highest_lun + 1; i++) {
1255 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1256 /* make sure the disk has been added and the drive is real
1257 * because this can be called from the middle of init_one.
1258 */
1259 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1260 continue;
1261 blk_start_queue(h->gendisk[curr_queue]->queue);
1262
1263 /* check to see if we have maxed out the number of commands
1264 * that can be placed on the queue.
1265 */
1266 if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS) {
1267 if (curr_queue == start_queue) {
1268 h->next_to_run =
1269 (start_queue + 1) % (h->highest_lun + 1);
1270 break;
1271 } else {
1272 h->next_to_run = curr_queue;
1273 break;
1274 }
1275 } else {
1276 curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
1277 }
1278 }
1279 }
1280
1281 static void cciss_softirq_done(struct request *rq)
1282 {
1283 CommandList_struct *cmd = rq->completion_data;
1284 ctlr_info_t *h = hba[cmd->ctlr];
1285 unsigned long flags;
1286 u64bit temp64;
1287 int i, ddir;
1288
1289 if (cmd->Request.Type.Direction == XFER_READ)
1290 ddir = PCI_DMA_FROMDEVICE;
1291 else
1292 ddir = PCI_DMA_TODEVICE;
1293
1294 /* command did not need to be retried */
1295 /* unmap the DMA mapping for all the scatter gather elements */
1296 for (i = 0; i < cmd->Header.SGList; i++) {
1297 temp64.val32.lower = cmd->SG[i].Addr.lower;
1298 temp64.val32.upper = cmd->SG[i].Addr.upper;
1299 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1300 }
1301
1302 complete_buffers(rq->bio, rq->errors);
1303
1304 #ifdef CCISS_DEBUG
1305 printk("Done with %p\n", rq);
1306 #endif /* CCISS_DEBUG */
1307
1308 add_disk_randomness(rq->rq_disk);
1309 spin_lock_irqsave(&h->lock, flags);
1310 end_that_request_last(rq, rq->errors);
1311 cmd_free(h, cmd, 1);
1312 cciss_check_queues(h);
1313 spin_unlock_irqrestore(&h->lock, flags);
1314 }
1315
1316 /* This function will check the usage_count of the drive to be updated/added.
1317 * If the usage_count is zero then the drive information will be updated and
1318 * the disk will be re-registered with the kernel. If not then it will be
1319 * left alone for the next reboot. The exception to this is disk 0 which
1320 * will always be left registered with the kernel since it is also the
1321 * controller node. Any changes to disk 0 will show up on the next
1322 * reboot.
1323 */
1324 static void cciss_update_drive_info(int ctlr, int drv_index)
1325 {
1326 ctlr_info_t *h = hba[ctlr];
1327 struct gendisk *disk;
1328 InquiryData_struct *inq_buff = NULL;
1329 unsigned int block_size;
1330 sector_t total_size;
1331 unsigned long flags = 0;
1332 int ret = 0;
1333
1334 /* if the disk already exists then deregister it before proceeding */
1335 if (h->drv[drv_index].raid_level != -1) {
1336 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1337 h->drv[drv_index].busy_configuring = 1;
1338 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1339 ret = deregister_disk(h->gendisk[drv_index],
1340 &h->drv[drv_index], 0);
1341 h->drv[drv_index].busy_configuring = 0;
1342 }
1343
1344 /* If the disk is in use return */
1345 if (ret)
1346 return;
1347
1348 /* Get information about the disk and modify the driver structure */
1349 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1350 if (inq_buff == NULL)
1351 goto mem_msg;
1352
1353 cciss_read_capacity(ctlr, drv_index, 1,
1354 &total_size, &block_size);
1355
1356 /* total size = last LBA + 1 */
1357 /* FFFFFFFF + 1 = 0, cannot have a logical volume of size 0 */
1358 /* so we assume this volume this must be >2TB in size */
1359 if (total_size == (__u32) 0) {
1360 cciss_read_capacity_16(ctlr, drv_index, 1,
1361 &total_size, &block_size);
1362 h->cciss_read = CCISS_READ_16;
1363 h->cciss_write = CCISS_WRITE_16;
1364 } else {
1365 h->cciss_read = CCISS_READ_10;
1366 h->cciss_write = CCISS_WRITE_10;
1367 }
1368 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1369 inq_buff, &h->drv[drv_index]);
1370
1371 ++h->num_luns;
1372 disk = h->gendisk[drv_index];
1373 set_capacity(disk, h->drv[drv_index].nr_blocks);
1374
1375 /* if it's the controller it's already added */
1376 if (drv_index) {
1377 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1378
1379 /* Set up queue information */
1380 disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1381 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1382
1383 /* This is a hardware imposed limit. */
1384 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1385
1386 /* This is a limit in the driver and could be eliminated. */
1387 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1388
1389 blk_queue_max_sectors(disk->queue, 512);
1390
1391 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1392
1393 disk->queue->queuedata = hba[ctlr];
1394
1395 blk_queue_hardsect_size(disk->queue,
1396 hba[ctlr]->drv[drv_index].block_size);
1397
1398 h->drv[drv_index].queue = disk->queue;
1399 add_disk(disk);
1400 }
1401
1402 freeret:
1403 kfree(inq_buff);
1404 return;
1405 mem_msg:
1406 printk(KERN_ERR "cciss: out of memory\n");
1407 goto freeret;
1408 }
1409
1410 /* This function will find the first index of the controllers drive array
1411 * that has a -1 for the raid_level and will return that index. This is
1412 * where new drives will be added. If the index to be returned is greater
1413 * than the highest_lun index for the controller then highest_lun is set
1414 * to this new index. If there are no available indexes then -1 is returned.
1415 */
1416 static int cciss_find_free_drive_index(int ctlr)
1417 {
1418 int i;
1419
1420 for (i = 0; i < CISS_MAX_LUN; i++) {
1421 if (hba[ctlr]->drv[i].raid_level == -1) {
1422 if (i > hba[ctlr]->highest_lun)
1423 hba[ctlr]->highest_lun = i;
1424 return i;
1425 }
1426 }
1427 return -1;
1428 }
1429
1430 /* This function will add and remove logical drives from the Logical
1431 * drive array of the controller and maintain persistency of ordering
1432 * so that mount points are preserved until the next reboot. This allows
1433 * for the removal of logical drives in the middle of the drive array
1434 * without a re-ordering of those drives.
1435 * INPUT
1436 * h = The controller to perform the operations on
1437 * del_disk = The disk to remove if specified. If the value given
1438 * is NULL then no disk is removed.
1439 */
1440 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1441 {
1442 int ctlr = h->ctlr;
1443 int num_luns;
1444 ReportLunData_struct *ld_buff = NULL;
1445 drive_info_struct *drv = NULL;
1446 int return_code;
1447 int listlength = 0;
1448 int i;
1449 int drv_found;
1450 int drv_index = 0;
1451 __u32 lunid = 0;
1452 unsigned long flags;
1453
1454 /* Set busy_configuring flag for this operation */
1455 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1456 if (h->num_luns >= CISS_MAX_LUN) {
1457 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1458 return -EINVAL;
1459 }
1460
1461 if (h->busy_configuring) {
1462 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1463 return -EBUSY;
1464 }
1465 h->busy_configuring = 1;
1466
1467 /* if del_disk is NULL then we are being called to add a new disk
1468 * and update the logical drive table. If it is not NULL then
1469 * we will check if the disk is in use or not.
1470 */
1471 if (del_disk != NULL) {
1472 drv = get_drv(del_disk);
1473 drv->busy_configuring = 1;
1474 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1475 return_code = deregister_disk(del_disk, drv, 1);
1476 drv->busy_configuring = 0;
1477 h->busy_configuring = 0;
1478 return return_code;
1479 } else {
1480 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1481 if (!capable(CAP_SYS_RAWIO))
1482 return -EPERM;
1483
1484 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1485 if (ld_buff == NULL)
1486 goto mem_msg;
1487
1488 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1489 sizeof(ReportLunData_struct), 0,
1490 0, 0, TYPE_CMD);
1491
1492 if (return_code == IO_OK) {
1493 listlength |=
1494 (0xff & (unsigned int)(ld_buff->LUNListLength[0]))
1495 << 24;
1496 listlength |=
1497 (0xff & (unsigned int)(ld_buff->LUNListLength[1]))
1498 << 16;
1499 listlength |=
1500 (0xff & (unsigned int)(ld_buff->LUNListLength[2]))
1501 << 8;
1502 listlength |=
1503 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
1504 } else { /* reading number of logical volumes failed */
1505 printk(KERN_WARNING "cciss: report logical volume"
1506 " command failed\n");
1507 listlength = 0;
1508 goto freeret;
1509 }
1510
1511 num_luns = listlength / 8; /* 8 bytes per entry */
1512 if (num_luns > CISS_MAX_LUN) {
1513 num_luns = CISS_MAX_LUN;
1514 printk(KERN_WARNING "cciss: more luns configured"
1515 " on controller than can be handled by"
1516 " this driver.\n");
1517 }
1518
1519 /* Compare controller drive array to drivers drive array.
1520 * Check for updates in the drive information and any new drives
1521 * on the controller.
1522 */
1523 for (i = 0; i < num_luns; i++) {
1524 int j;
1525
1526 drv_found = 0;
1527
1528 lunid = (0xff &
1529 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1530 lunid |= (0xff &
1531 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1532 lunid |= (0xff &
1533 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1534 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1535
1536 /* Find if the LUN is already in the drive array
1537 * of the controller. If so then update its info
1538 * if not is use. If it does not exist then find
1539 * the first free index and add it.
1540 */
1541 for (j = 0; j <= h->highest_lun; j++) {
1542 if (h->drv[j].LunID == lunid) {
1543 drv_index = j;
1544 drv_found = 1;
1545 }
1546 }
1547
1548 /* check if the drive was found already in the array */
1549 if (!drv_found) {
1550 drv_index = cciss_find_free_drive_index(ctlr);
1551 if (drv_index == -1)
1552 goto freeret;
1553
1554 }
1555 h->drv[drv_index].LunID = lunid;
1556 cciss_update_drive_info(ctlr, drv_index);
1557 } /* end for */
1558 } /* end else */
1559
1560 freeret:
1561 kfree(ld_buff);
1562 h->busy_configuring = 0;
1563 /* We return -1 here to tell the ACU that we have registered/updated
1564 * all of the drives that we can and to keep it from calling us
1565 * additional times.
1566 */
1567 return -1;
1568 mem_msg:
1569 printk(KERN_ERR "cciss: out of memory\n");
1570 goto freeret;
1571 }
1572
1573 /* This function will deregister the disk and it's queue from the
1574 * kernel. It must be called with the controller lock held and the
1575 * drv structures busy_configuring flag set. It's parameters are:
1576 *
1577 * disk = This is the disk to be deregistered
1578 * drv = This is the drive_info_struct associated with the disk to be
1579 * deregistered. It contains information about the disk used
1580 * by the driver.
1581 * clear_all = This flag determines whether or not the disk information
1582 * is going to be completely cleared out and the highest_lun
1583 * reset. Sometimes we want to clear out information about
1584 * the disk in preparation for re-adding it. In this case
1585 * the highest_lun should be left unchanged and the LunID
1586 * should not be cleared.
1587 */
1588 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1589 int clear_all)
1590 {
1591 ctlr_info_t *h = get_host(disk);
1592
1593 if (!capable(CAP_SYS_RAWIO))
1594 return -EPERM;
1595
1596 /* make sure logical volume is NOT is use */
1597 if (clear_all || (h->gendisk[0] == disk)) {
1598 if (drv->usage_count > 1)
1599 return -EBUSY;
1600 } else if (drv->usage_count > 0)
1601 return -EBUSY;
1602
1603 /* invalidate the devices and deregister the disk. If it is disk
1604 * zero do not deregister it but just zero out it's values. This
1605 * allows us to delete disk zero but keep the controller registered.
1606 */
1607 if (h->gendisk[0] != disk) {
1608 if (disk) {
1609 request_queue_t *q = disk->queue;
1610 if (disk->flags & GENHD_FL_UP)
1611 del_gendisk(disk);
1612 if (q) {
1613 blk_cleanup_queue(q);
1614 drv->queue = NULL;
1615 }
1616 }
1617 }
1618
1619 --h->num_luns;
1620 /* zero out the disk size info */
1621 drv->nr_blocks = 0;
1622 drv->block_size = 0;
1623 drv->heads = 0;
1624 drv->sectors = 0;
1625 drv->cylinders = 0;
1626 drv->raid_level = -1; /* This can be used as a flag variable to
1627 * indicate that this element of the drive
1628 * array is free.
1629 */
1630
1631 if (clear_all) {
1632 /* check to see if it was the last disk */
1633 if (drv == h->drv + h->highest_lun) {
1634 /* if so, find the new hightest lun */
1635 int i, newhighest = -1;
1636 for (i = 0; i < h->highest_lun; i++) {
1637 /* if the disk has size > 0, it is available */
1638 if (h->drv[i].heads)
1639 newhighest = i;
1640 }
1641 h->highest_lun = newhighest;
1642 }
1643
1644 drv->LunID = 0;
1645 }
1646 return 0;
1647 }
1648
1649 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1650 1: address logical volume log_unit,
1651 2: periph device address is scsi3addr */
1652 unsigned int log_unit, __u8 page_code,
1653 unsigned char *scsi3addr, int cmd_type)
1654 {
1655 ctlr_info_t *h = hba[ctlr];
1656 u64bit buff_dma_handle;
1657 int status = IO_OK;
1658
1659 c->cmd_type = CMD_IOCTL_PEND;
1660 c->Header.ReplyQueue = 0;
1661 if (buff != NULL) {
1662 c->Header.SGList = 1;
1663 c->Header.SGTotal = 1;
1664 } else {
1665 c->Header.SGList = 0;
1666 c->Header.SGTotal = 0;
1667 }
1668 c->Header.Tag.lower = c->busaddr;
1669
1670 c->Request.Type.Type = cmd_type;
1671 if (cmd_type == TYPE_CMD) {
1672 switch (cmd) {
1673 case CISS_INQUIRY:
1674 /* If the logical unit number is 0 then, this is going
1675 to controller so It's a physical command
1676 mode = 0 target = 0. So we have nothing to write.
1677 otherwise, if use_unit_num == 1,
1678 mode = 1(volume set addressing) target = LUNID
1679 otherwise, if use_unit_num == 2,
1680 mode = 0(periph dev addr) target = scsi3addr */
1681 if (use_unit_num == 1) {
1682 c->Header.LUN.LogDev.VolId =
1683 h->drv[log_unit].LunID;
1684 c->Header.LUN.LogDev.Mode = 1;
1685 } else if (use_unit_num == 2) {
1686 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1687 8);
1688 c->Header.LUN.LogDev.Mode = 0;
1689 }
1690 /* are we trying to read a vital product page */
1691 if (page_code != 0) {
1692 c->Request.CDB[1] = 0x01;
1693 c->Request.CDB[2] = page_code;
1694 }
1695 c->Request.CDBLen = 6;
1696 c->Request.Type.Attribute = ATTR_SIMPLE;
1697 c->Request.Type.Direction = XFER_READ;
1698 c->Request.Timeout = 0;
1699 c->Request.CDB[0] = CISS_INQUIRY;
1700 c->Request.CDB[4] = size & 0xFF;
1701 break;
1702 case CISS_REPORT_LOG:
1703 case CISS_REPORT_PHYS:
1704 /* Talking to controller so It's a physical command
1705 mode = 00 target = 0. Nothing to write.
1706 */
1707 c->Request.CDBLen = 12;
1708 c->Request.Type.Attribute = ATTR_SIMPLE;
1709 c->Request.Type.Direction = XFER_READ;
1710 c->Request.Timeout = 0;
1711 c->Request.CDB[0] = cmd;
1712 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1713 c->Request.CDB[7] = (size >> 16) & 0xFF;
1714 c->Request.CDB[8] = (size >> 8) & 0xFF;
1715 c->Request.CDB[9] = size & 0xFF;
1716 break;
1717
1718 case CCISS_READ_CAPACITY:
1719 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1720 c->Header.LUN.LogDev.Mode = 1;
1721 c->Request.CDBLen = 10;
1722 c->Request.Type.Attribute = ATTR_SIMPLE;
1723 c->Request.Type.Direction = XFER_READ;
1724 c->Request.Timeout = 0;
1725 c->Request.CDB[0] = cmd;
1726 break;
1727 case CCISS_READ_CAPACITY_16:
1728 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1729 c->Header.LUN.LogDev.Mode = 1;
1730 c->Request.CDBLen = 16;
1731 c->Request.Type.Attribute = ATTR_SIMPLE;
1732 c->Request.Type.Direction = XFER_READ;
1733 c->Request.Timeout = 0;
1734 c->Request.CDB[0] = cmd;
1735 c->Request.CDB[1] = 0x10;
1736 c->Request.CDB[10] = (size >> 24) & 0xFF;
1737 c->Request.CDB[11] = (size >> 16) & 0xFF;
1738 c->Request.CDB[12] = (size >> 8) & 0xFF;
1739 c->Request.CDB[13] = size & 0xFF;
1740 c->Request.Timeout = 0;
1741 c->Request.CDB[0] = cmd;
1742 break;
1743 case CCISS_CACHE_FLUSH:
1744 c->Request.CDBLen = 12;
1745 c->Request.Type.Attribute = ATTR_SIMPLE;
1746 c->Request.Type.Direction = XFER_WRITE;
1747 c->Request.Timeout = 0;
1748 c->Request.CDB[0] = BMIC_WRITE;
1749 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1750 break;
1751 default:
1752 printk(KERN_WARNING
1753 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1754 return IO_ERROR;
1755 }
1756 } else if (cmd_type == TYPE_MSG) {
1757 switch (cmd) {
1758 case 0: /* ABORT message */
1759 c->Request.CDBLen = 12;
1760 c->Request.Type.Attribute = ATTR_SIMPLE;
1761 c->Request.Type.Direction = XFER_WRITE;
1762 c->Request.Timeout = 0;
1763 c->Request.CDB[0] = cmd; /* abort */
1764 c->Request.CDB[1] = 0; /* abort a command */
1765 /* buff contains the tag of the command to abort */
1766 memcpy(&c->Request.CDB[4], buff, 8);
1767 break;
1768 case 1: /* RESET message */
1769 c->Request.CDBLen = 12;
1770 c->Request.Type.Attribute = ATTR_SIMPLE;
1771 c->Request.Type.Direction = XFER_WRITE;
1772 c->Request.Timeout = 0;
1773 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1774 c->Request.CDB[0] = cmd; /* reset */
1775 c->Request.CDB[1] = 0x04; /* reset a LUN */
1776 break;
1777 case 3: /* No-Op message */
1778 c->Request.CDBLen = 1;
1779 c->Request.Type.Attribute = ATTR_SIMPLE;
1780 c->Request.Type.Direction = XFER_WRITE;
1781 c->Request.Timeout = 0;
1782 c->Request.CDB[0] = cmd;
1783 break;
1784 default:
1785 printk(KERN_WARNING
1786 "cciss%d: unknown message type %d\n", ctlr, cmd);
1787 return IO_ERROR;
1788 }
1789 } else {
1790 printk(KERN_WARNING
1791 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1792 return IO_ERROR;
1793 }
1794 /* Fill in the scatter gather information */
1795 if (size > 0) {
1796 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1797 buff, size,
1798 PCI_DMA_BIDIRECTIONAL);
1799 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1800 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1801 c->SG[0].Len = size;
1802 c->SG[0].Ext = 0; /* we are not chaining */
1803 }
1804 return status;
1805 }
1806
1807 static int sendcmd_withirq(__u8 cmd,
1808 int ctlr,
1809 void *buff,
1810 size_t size,
1811 unsigned int use_unit_num,
1812 unsigned int log_unit, __u8 page_code, int cmd_type)
1813 {
1814 ctlr_info_t *h = hba[ctlr];
1815 CommandList_struct *c;
1816 u64bit buff_dma_handle;
1817 unsigned long flags;
1818 int return_status;
1819 DECLARE_COMPLETION(wait);
1820
1821 if ((c = cmd_alloc(h, 0)) == NULL)
1822 return -ENOMEM;
1823 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1824 log_unit, page_code, NULL, cmd_type);
1825 if (return_status != IO_OK) {
1826 cmd_free(h, c, 0);
1827 return return_status;
1828 }
1829 resend_cmd2:
1830 c->waiting = &wait;
1831
1832 /* Put the request on the tail of the queue and send it */
1833 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1834 addQ(&h->reqQ, c);
1835 h->Qdepth++;
1836 start_io(h);
1837 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1838
1839 wait_for_completion(&wait);
1840
1841 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
1842 switch (c->err_info->CommandStatus) {
1843 case CMD_TARGET_STATUS:
1844 printk(KERN_WARNING "cciss: cmd %p has "
1845 " completed with errors\n", c);
1846 if (c->err_info->ScsiStatus) {
1847 printk(KERN_WARNING "cciss: cmd %p "
1848 "has SCSI Status = %x\n",
1849 c, c->err_info->ScsiStatus);
1850 }
1851
1852 break;
1853 case CMD_DATA_UNDERRUN:
1854 case CMD_DATA_OVERRUN:
1855 /* expected for inquire and report lun commands */
1856 break;
1857 case CMD_INVALID:
1858 printk(KERN_WARNING "cciss: Cmd %p is "
1859 "reported invalid\n", c);
1860 return_status = IO_ERROR;
1861 break;
1862 case CMD_PROTOCOL_ERR:
1863 printk(KERN_WARNING "cciss: cmd %p has "
1864 "protocol error \n", c);
1865 return_status = IO_ERROR;
1866 break;
1867 case CMD_HARDWARE_ERR:
1868 printk(KERN_WARNING "cciss: cmd %p had "
1869 " hardware error\n", c);
1870 return_status = IO_ERROR;
1871 break;
1872 case CMD_CONNECTION_LOST:
1873 printk(KERN_WARNING "cciss: cmd %p had "
1874 "connection lost\n", c);
1875 return_status = IO_ERROR;
1876 break;
1877 case CMD_ABORTED:
1878 printk(KERN_WARNING "cciss: cmd %p was "
1879 "aborted\n", c);
1880 return_status = IO_ERROR;
1881 break;
1882 case CMD_ABORT_FAILED:
1883 printk(KERN_WARNING "cciss: cmd %p reports "
1884 "abort failed\n", c);
1885 return_status = IO_ERROR;
1886 break;
1887 case CMD_UNSOLICITED_ABORT:
1888 printk(KERN_WARNING
1889 "cciss%d: unsolicited abort %p\n", ctlr, c);
1890 if (c->retry_count < MAX_CMD_RETRIES) {
1891 printk(KERN_WARNING
1892 "cciss%d: retrying %p\n", ctlr, c);
1893 c->retry_count++;
1894 /* erase the old error information */
1895 memset(c->err_info, 0,
1896 sizeof(ErrorInfo_struct));
1897 return_status = IO_OK;
1898 INIT_COMPLETION(wait);
1899 goto resend_cmd2;
1900 }
1901 return_status = IO_ERROR;
1902 break;
1903 default:
1904 printk(KERN_WARNING "cciss: cmd %p returned "
1905 "unknown status %x\n", c,
1906 c->err_info->CommandStatus);
1907 return_status = IO_ERROR;
1908 }
1909 }
1910 /* unlock the buffers from DMA */
1911 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1912 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1913 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
1914 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1915 cmd_free(h, c, 0);
1916 return return_status;
1917 }
1918
1919 static void cciss_geometry_inquiry(int ctlr, int logvol,
1920 int withirq, sector_t total_size,
1921 unsigned int block_size,
1922 InquiryData_struct *inq_buff,
1923 drive_info_struct *drv)
1924 {
1925 int return_code;
1926 unsigned long t;
1927 unsigned long rem;
1928
1929 memset(inq_buff, 0, sizeof(InquiryData_struct));
1930 if (withirq)
1931 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1932 inq_buff, sizeof(*inq_buff), 1,
1933 logvol, 0xC1, TYPE_CMD);
1934 else
1935 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1936 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
1937 TYPE_CMD);
1938 if (return_code == IO_OK) {
1939 if (inq_buff->data_byte[8] == 0xFF) {
1940 printk(KERN_WARNING
1941 "cciss: reading geometry failed, volume "
1942 "does not support reading geometry\n");
1943 drv->block_size = block_size;
1944 drv->nr_blocks = total_size;
1945 drv->heads = 255;
1946 drv->sectors = 32; // Sectors per track
1947 t = drv->heads * drv->sectors;
1948 drv->cylinders = total_size;
1949 rem = do_div(drv->cylinders, t);
1950 } else {
1951 drv->block_size = block_size;
1952 drv->nr_blocks = total_size;
1953 drv->heads = inq_buff->data_byte[6];
1954 drv->sectors = inq_buff->data_byte[7];
1955 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1956 drv->cylinders += inq_buff->data_byte[5];
1957 drv->raid_level = inq_buff->data_byte[8];
1958 t = drv->heads * drv->sectors;
1959 if (t > 1) {
1960 drv->cylinders = total_size;
1961 rem = do_div(drv->cylinders, t);
1962 }
1963 }
1964 } else { /* Get geometry failed */
1965 printk(KERN_WARNING "cciss: reading geometry failed\n");
1966 }
1967 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
1968 drv->heads, drv->sectors, drv->cylinders);
1969 }
1970
1971 static void
1972 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
1973 unsigned int *block_size)
1974 {
1975 ReadCapdata_struct *buf;
1976 int return_code;
1977 buf = kmalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
1978 if (buf == NULL) {
1979 printk(KERN_WARNING "cciss: out of memory\n");
1980 return;
1981 }
1982 memset(buf, 0, sizeof(ReadCapdata_struct));
1983 if (withirq)
1984 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1985 ctlr, buf, sizeof(ReadCapdata_struct),
1986 1, logvol, 0, TYPE_CMD);
1987 else
1988 return_code = sendcmd(CCISS_READ_CAPACITY,
1989 ctlr, buf, sizeof(ReadCapdata_struct),
1990 1, logvol, 0, NULL, TYPE_CMD);
1991 if (return_code == IO_OK) {
1992 *total_size = be32_to_cpu(*(__u32 *) buf->total_size)+1;
1993 *block_size = be32_to_cpu(*(__u32 *) buf->block_size);
1994 } else { /* read capacity command failed */
1995 printk(KERN_WARNING "cciss: read capacity failed\n");
1996 *total_size = 0;
1997 *block_size = BLOCK_SIZE;
1998 }
1999 if (*total_size != (__u32) 0)
2000 printk(KERN_INFO " blocks= %lld block_size= %d\n",
2001 *total_size, *block_size);
2002 kfree(buf);
2003 return;
2004 }
2005
2006 static void
2007 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2008 {
2009 ReadCapdata_struct_16 *buf;
2010 int return_code;
2011 buf = kmalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2012 if (buf == NULL) {
2013 printk(KERN_WARNING "cciss: out of memory\n");
2014 return;
2015 }
2016 memset(buf, 0, sizeof(ReadCapdata_struct_16));
2017 if (withirq) {
2018 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2019 ctlr, buf, sizeof(ReadCapdata_struct_16),
2020 1, logvol, 0, TYPE_CMD);
2021 }
2022 else {
2023 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2024 ctlr, buf, sizeof(ReadCapdata_struct_16),
2025 1, logvol, 0, NULL, TYPE_CMD);
2026 }
2027 if (return_code == IO_OK) {
2028 *total_size = be64_to_cpu(*(__u64 *) buf->total_size)+1;
2029 *block_size = be32_to_cpu(*(__u32 *) buf->block_size);
2030 } else { /* read capacity command failed */
2031 printk(KERN_WARNING "cciss: read capacity failed\n");
2032 *total_size = 0;
2033 *block_size = BLOCK_SIZE;
2034 }
2035 printk(KERN_INFO " blocks= %lld block_size= %d\n",
2036 *total_size, *block_size);
2037 kfree(buf);
2038 return;
2039 }
2040
2041 static int cciss_revalidate(struct gendisk *disk)
2042 {
2043 ctlr_info_t *h = get_host(disk);
2044 drive_info_struct *drv = get_drv(disk);
2045 int logvol;
2046 int FOUND = 0;
2047 unsigned int block_size;
2048 sector_t total_size;
2049 InquiryData_struct *inq_buff = NULL;
2050
2051 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2052 if (h->drv[logvol].LunID == drv->LunID) {
2053 FOUND = 1;
2054 break;
2055 }
2056 }
2057
2058 if (!FOUND)
2059 return 1;
2060
2061 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2062 if (inq_buff == NULL) {
2063 printk(KERN_WARNING "cciss: out of memory\n");
2064 return 1;
2065 }
2066 if (h->cciss_read == CCISS_READ_10) {
2067 cciss_read_capacity(h->ctlr, logvol, 1,
2068 &total_size, &block_size);
2069 } else {
2070 cciss_read_capacity_16(h->ctlr, logvol, 1,
2071 &total_size, &block_size);
2072 }
2073 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2074 inq_buff, drv);
2075
2076 blk_queue_hardsect_size(drv->queue, drv->block_size);
2077 set_capacity(disk, drv->nr_blocks);
2078
2079 kfree(inq_buff);
2080 return 0;
2081 }
2082
2083 /*
2084 * Wait polling for a command to complete.
2085 * The memory mapped FIFO is polled for the completion.
2086 * Used only at init time, interrupts from the HBA are disabled.
2087 */
2088 static unsigned long pollcomplete(int ctlr)
2089 {
2090 unsigned long done;
2091 int i;
2092
2093 /* Wait (up to 20 seconds) for a command to complete */
2094
2095 for (i = 20 * HZ; i > 0; i--) {
2096 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2097 if (done == FIFO_EMPTY)
2098 schedule_timeout_uninterruptible(1);
2099 else
2100 return done;
2101 }
2102 /* Invalid address to tell caller we ran out of time */
2103 return 1;
2104 }
2105
2106 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2107 {
2108 /* We get in here if sendcmd() is polling for completions
2109 and gets some command back that it wasn't expecting --
2110 something other than that which it just sent down.
2111 Ordinarily, that shouldn't happen, but it can happen when
2112 the scsi tape stuff gets into error handling mode, and
2113 starts using sendcmd() to try to abort commands and
2114 reset tape drives. In that case, sendcmd may pick up
2115 completions of commands that were sent to logical drives
2116 through the block i/o system, or cciss ioctls completing, etc.
2117 In that case, we need to save those completions for later
2118 processing by the interrupt handler.
2119 */
2120
2121 #ifdef CONFIG_CISS_SCSI_TAPE
2122 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2123
2124 /* If it's not the scsi tape stuff doing error handling, (abort */
2125 /* or reset) then we don't expect anything weird. */
2126 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2127 #endif
2128 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2129 "Invalid command list address returned! (%lx)\n",
2130 ctlr, complete);
2131 /* not much we can do. */
2132 #ifdef CONFIG_CISS_SCSI_TAPE
2133 return 1;
2134 }
2135
2136 /* We've sent down an abort or reset, but something else
2137 has completed */
2138 if (srl->ncompletions >= (NR_CMDS + 2)) {
2139 /* Uh oh. No room to save it for later... */
2140 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2141 "reject list overflow, command lost!\n", ctlr);
2142 return 1;
2143 }
2144 /* Save it for later */
2145 srl->complete[srl->ncompletions] = complete;
2146 srl->ncompletions++;
2147 #endif
2148 return 0;
2149 }
2150
2151 /*
2152 * Send a command to the controller, and wait for it to complete.
2153 * Only used at init time.
2154 */
2155 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2156 1: address logical volume log_unit,
2157 2: periph device address is scsi3addr */
2158 unsigned int log_unit,
2159 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2160 {
2161 CommandList_struct *c;
2162 int i;
2163 unsigned long complete;
2164 ctlr_info_t *info_p = hba[ctlr];
2165 u64bit buff_dma_handle;
2166 int status, done = 0;
2167
2168 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2169 printk(KERN_WARNING "cciss: unable to get memory");
2170 return IO_ERROR;
2171 }
2172 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2173 log_unit, page_code, scsi3addr, cmd_type);
2174 if (status != IO_OK) {
2175 cmd_free(info_p, c, 1);
2176 return status;
2177 }
2178 resend_cmd1:
2179 /*
2180 * Disable interrupt
2181 */
2182 #ifdef CCISS_DEBUG
2183 printk(KERN_DEBUG "cciss: turning intr off\n");
2184 #endif /* CCISS_DEBUG */
2185 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2186
2187 /* Make sure there is room in the command FIFO */
2188 /* Actually it should be completely empty at this time */
2189 /* unless we are in here doing error handling for the scsi */
2190 /* tape side of the driver. */
2191 for (i = 200000; i > 0; i--) {
2192 /* if fifo isn't full go */
2193 if (!(info_p->access.fifo_full(info_p))) {
2194
2195 break;
2196 }
2197 udelay(10);
2198 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2199 " waiting!\n", ctlr);
2200 }
2201 /*
2202 * Send the cmd
2203 */
2204 info_p->access.submit_command(info_p, c);
2205 done = 0;
2206 do {
2207 complete = pollcomplete(ctlr);
2208
2209 #ifdef CCISS_DEBUG
2210 printk(KERN_DEBUG "cciss: command completed\n");
2211 #endif /* CCISS_DEBUG */
2212
2213 if (complete == 1) {
2214 printk(KERN_WARNING
2215 "cciss cciss%d: SendCmd Timeout out, "
2216 "No command list address returned!\n", ctlr);
2217 status = IO_ERROR;
2218 done = 1;
2219 break;
2220 }
2221
2222 /* This will need to change for direct lookup completions */
2223 if ((complete & CISS_ERROR_BIT)
2224 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2225 /* if data overrun or underun on Report command
2226 ignore it
2227 */
2228 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2229 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2230 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2231 ((c->err_info->CommandStatus ==
2232 CMD_DATA_OVERRUN) ||
2233 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2234 )) {
2235 complete = c->busaddr;
2236 } else {
2237 if (c->err_info->CommandStatus ==
2238 CMD_UNSOLICITED_ABORT) {
2239 printk(KERN_WARNING "cciss%d: "
2240 "unsolicited abort %p\n",
2241 ctlr, c);
2242 if (c->retry_count < MAX_CMD_RETRIES) {
2243 printk(KERN_WARNING
2244 "cciss%d: retrying %p\n",
2245 ctlr, c);
2246 c->retry_count++;
2247 /* erase the old error */
2248 /* information */
2249 memset(c->err_info, 0,
2250 sizeof
2251 (ErrorInfo_struct));
2252 goto resend_cmd1;
2253 } else {
2254 printk(KERN_WARNING
2255 "cciss%d: retried %p too "
2256 "many times\n", ctlr, c);
2257 status = IO_ERROR;
2258 goto cleanup1;
2259 }
2260 } else if (c->err_info->CommandStatus ==
2261 CMD_UNABORTABLE) {
2262 printk(KERN_WARNING
2263 "cciss%d: command could not be aborted.\n",
2264 ctlr);
2265 status = IO_ERROR;
2266 goto cleanup1;
2267 }
2268 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2269 " Error %x \n", ctlr,
2270 c->err_info->CommandStatus);
2271 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2272 " offensive info\n"
2273 " size %x\n num %x value %x\n",
2274 ctlr,
2275 c->err_info->MoreErrInfo.Invalid_Cmd.
2276 offense_size,
2277 c->err_info->MoreErrInfo.Invalid_Cmd.
2278 offense_num,
2279 c->err_info->MoreErrInfo.Invalid_Cmd.
2280 offense_value);
2281 status = IO_ERROR;
2282 goto cleanup1;
2283 }
2284 }
2285 /* This will need changing for direct lookup completions */
2286 if (complete != c->busaddr) {
2287 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2288 BUG(); /* we are pretty much hosed if we get here. */
2289 }
2290 continue;
2291 } else
2292 done = 1;
2293 } while (!done);
2294
2295 cleanup1:
2296 /* unlock the data buffer from DMA */
2297 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2298 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2299 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2300 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2301 #ifdef CONFIG_CISS_SCSI_TAPE
2302 /* if we saved some commands for later, process them now. */
2303 if (info_p->scsi_rejects.ncompletions > 0)
2304 do_cciss_intr(0, info_p, NULL);
2305 #endif
2306 cmd_free(info_p, c, 1);
2307 return status;
2308 }
2309
2310 /*
2311 * Map (physical) PCI mem into (virtual) kernel space
2312 */
2313 static void __iomem *remap_pci_mem(ulong base, ulong size)
2314 {
2315 ulong page_base = ((ulong) base) & PAGE_MASK;
2316 ulong page_offs = ((ulong) base) - page_base;
2317 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2318
2319 return page_remapped ? (page_remapped + page_offs) : NULL;
2320 }
2321
2322 /*
2323 * Takes jobs of the Q and sends them to the hardware, then puts it on
2324 * the Q to wait for completion.
2325 */
2326 static void start_io(ctlr_info_t *h)
2327 {
2328 CommandList_struct *c;
2329
2330 while ((c = h->reqQ) != NULL) {
2331 /* can't do anything if fifo is full */
2332 if ((h->access.fifo_full(h))) {
2333 printk(KERN_WARNING "cciss: fifo full\n");
2334 break;
2335 }
2336
2337 /* Get the first entry from the Request Q */
2338 removeQ(&(h->reqQ), c);
2339 h->Qdepth--;
2340
2341 /* Tell the controller execute command */
2342 h->access.submit_command(h, c);
2343
2344 /* Put job onto the completed Q */
2345 addQ(&(h->cmpQ), c);
2346 }
2347 }
2348
2349 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2350 /* Zeros out the error record and then resends the command back */
2351 /* to the controller */
2352 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2353 {
2354 /* erase the old error information */
2355 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2356
2357 /* add it to software queue and then send it to the controller */
2358 addQ(&(h->reqQ), c);
2359 h->Qdepth++;
2360 if (h->Qdepth > h->maxQsinceinit)
2361 h->maxQsinceinit = h->Qdepth;
2362
2363 start_io(h);
2364 }
2365
2366 /* checks the status of the job and calls complete buffers to mark all
2367 * buffers for the completed job. Note that this function does not need
2368 * to hold the hba/queue lock.
2369 */
2370 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2371 int timeout)
2372 {
2373 int status = 1;
2374 int retry_cmd = 0;
2375
2376 if (timeout)
2377 status = 0;
2378
2379 if (cmd->err_info->CommandStatus != 0) { /* an error has occurred */
2380 switch (cmd->err_info->CommandStatus) {
2381 unsigned char sense_key;
2382 case CMD_TARGET_STATUS:
2383 status = 0;
2384
2385 if (cmd->err_info->ScsiStatus == 0x02) {
2386 printk(KERN_WARNING "cciss: cmd %p "
2387 "has CHECK CONDITION "
2388 " byte 2 = 0x%x\n", cmd,
2389 cmd->err_info->SenseInfo[2]
2390 );
2391 /* check the sense key */
2392 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2393 /* no status or recovered error */
2394 if ((sense_key == 0x0) || (sense_key == 0x1)) {
2395 status = 1;
2396 }
2397 } else {
2398 printk(KERN_WARNING "cciss: cmd %p "
2399 "has SCSI Status 0x%x\n",
2400 cmd, cmd->err_info->ScsiStatus);
2401 }
2402 break;
2403 case CMD_DATA_UNDERRUN:
2404 printk(KERN_WARNING "cciss: cmd %p has"
2405 " completed with data underrun "
2406 "reported\n", cmd);
2407 break;
2408 case CMD_DATA_OVERRUN:
2409 printk(KERN_WARNING "cciss: cmd %p has"
2410 " completed with data overrun "
2411 "reported\n", cmd);
2412 break;
2413 case CMD_INVALID:
2414 printk(KERN_WARNING "cciss: cmd %p is "
2415 "reported invalid\n", cmd);
2416 status = 0;
2417 break;
2418 case CMD_PROTOCOL_ERR:
2419 printk(KERN_WARNING "cciss: cmd %p has "
2420 "protocol error \n", cmd);
2421 status = 0;
2422 break;
2423 case CMD_HARDWARE_ERR:
2424 printk(KERN_WARNING "cciss: cmd %p had "
2425 " hardware error\n", cmd);
2426 status = 0;
2427 break;
2428 case CMD_CONNECTION_LOST:
2429 printk(KERN_WARNING "cciss: cmd %p had "
2430 "connection lost\n", cmd);
2431 status = 0;
2432 break;
2433 case CMD_ABORTED:
2434 printk(KERN_WARNING "cciss: cmd %p was "
2435 "aborted\n", cmd);
2436 status = 0;
2437 break;
2438 case CMD_ABORT_FAILED:
2439 printk(KERN_WARNING "cciss: cmd %p reports "
2440 "abort failed\n", cmd);
2441 status = 0;
2442 break;
2443 case CMD_UNSOLICITED_ABORT:
2444 printk(KERN_WARNING "cciss%d: unsolicited "
2445 "abort %p\n", h->ctlr, cmd);
2446 if (cmd->retry_count < MAX_CMD_RETRIES) {
2447 retry_cmd = 1;
2448 printk(KERN_WARNING
2449 "cciss%d: retrying %p\n", h->ctlr, cmd);
2450 cmd->retry_count++;
2451 } else
2452 printk(KERN_WARNING
2453 "cciss%d: %p retried too "
2454 "many times\n", h->ctlr, cmd);
2455 status = 0;
2456 break;
2457 case CMD_TIMEOUT:
2458 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2459 status = 0;
2460 break;
2461 default:
2462 printk(KERN_WARNING "cciss: cmd %p returned "
2463 "unknown status %x\n", cmd,
2464 cmd->err_info->CommandStatus);
2465 status = 0;
2466 }
2467 }
2468 /* We need to return this command */
2469 if (retry_cmd) {
2470 resend_cciss_cmd(h, cmd);
2471 return;
2472 }
2473
2474 cmd->rq->completion_data = cmd;
2475 cmd->rq->errors = status;
2476 blk_add_trace_rq(cmd->rq->q, cmd->rq, BLK_TA_COMPLETE);
2477 blk_complete_request(cmd->rq);
2478 }
2479
2480 /*
2481 * Get a request and submit it to the controller.
2482 */
2483 static void do_cciss_request(request_queue_t *q)
2484 {
2485 ctlr_info_t *h = q->queuedata;
2486 CommandList_struct *c;
2487 sector_t start_blk;
2488 int seg;
2489 struct request *creq;
2490 u64bit temp64;
2491 struct scatterlist tmp_sg[MAXSGENTRIES];
2492 drive_info_struct *drv;
2493 int i, dir;
2494
2495 /* We call start_io here in case there is a command waiting on the
2496 * queue that has not been sent.
2497 */
2498 if (blk_queue_plugged(q))
2499 goto startio;
2500
2501 queue:
2502 creq = elv_next_request(q);
2503 if (!creq)
2504 goto startio;
2505
2506 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2507
2508 if ((c = cmd_alloc(h, 1)) == NULL)
2509 goto full;
2510
2511 blkdev_dequeue_request(creq);
2512
2513 spin_unlock_irq(q->queue_lock);
2514
2515 c->cmd_type = CMD_RWREQ;
2516 c->rq = creq;
2517
2518 /* fill in the request */
2519 drv = creq->rq_disk->private_data;
2520 c->Header.ReplyQueue = 0; // unused in simple mode
2521 /* got command from pool, so use the command block index instead */
2522 /* for direct lookups. */
2523 /* The first 2 bits are reserved for controller error reporting. */
2524 c->Header.Tag.lower = (c->cmdindex << 3);
2525 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2526 c->Header.LUN.LogDev.VolId = drv->LunID;
2527 c->Header.LUN.LogDev.Mode = 1;
2528 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2529 c->Request.Type.Type = TYPE_CMD; // It is a command.
2530 c->Request.Type.Attribute = ATTR_SIMPLE;
2531 c->Request.Type.Direction =
2532 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2533 c->Request.Timeout = 0; // Don't time out
2534 c->Request.CDB[0] =
2535 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2536 start_blk = creq->sector;
2537 #ifdef CCISS_DEBUG
2538 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2539 (int)creq->nr_sectors);
2540 #endif /* CCISS_DEBUG */
2541
2542 seg = blk_rq_map_sg(q, creq, tmp_sg);
2543
2544 /* get the DMA records for the setup */
2545 if (c->Request.Type.Direction == XFER_READ)
2546 dir = PCI_DMA_FROMDEVICE;
2547 else
2548 dir = PCI_DMA_TODEVICE;
2549
2550 for (i = 0; i < seg; i++) {
2551 c->SG[i].Len = tmp_sg[i].length;
2552 temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
2553 tmp_sg[i].offset,
2554 tmp_sg[i].length, dir);
2555 c->SG[i].Addr.lower = temp64.val32.lower;
2556 c->SG[i].Addr.upper = temp64.val32.upper;
2557 c->SG[i].Ext = 0; // we are not chaining
2558 }
2559 /* track how many SG entries we are using */
2560 if (seg > h->maxSG)
2561 h->maxSG = seg;
2562
2563 #ifdef CCISS_DEBUG
2564 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2565 creq->nr_sectors, seg);
2566 #endif /* CCISS_DEBUG */
2567
2568 c->Header.SGList = c->Header.SGTotal = seg;
2569 if(h->cciss_read == CCISS_READ_10) {
2570 c->Request.CDB[1] = 0;
2571 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2572 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2573 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2574 c->Request.CDB[5] = start_blk & 0xff;
2575 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2576 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2577 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2578 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2579 } else {
2580 c->Request.CDBLen = 16;
2581 c->Request.CDB[1]= 0;
2582 c->Request.CDB[2]= (start_blk >> 56) & 0xff; //MSB
2583 c->Request.CDB[3]= (start_blk >> 48) & 0xff;
2584 c->Request.CDB[4]= (start_blk >> 40) & 0xff;
2585 c->Request.CDB[5]= (start_blk >> 32) & 0xff;
2586 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2587 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2588 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2589 c->Request.CDB[9]= start_blk & 0xff;
2590 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2591 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2592 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2593 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2594 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2595 }
2596
2597 spin_lock_irq(q->queue_lock);
2598
2599 addQ(&(h->reqQ), c);
2600 h->Qdepth++;
2601 if (h->Qdepth > h->maxQsinceinit)
2602 h->maxQsinceinit = h->Qdepth;
2603
2604 goto queue;
2605 full:
2606 blk_stop_queue(q);
2607 startio:
2608 /* We will already have the driver lock here so not need
2609 * to lock it.
2610 */
2611 start_io(h);
2612 }
2613
2614 static inline unsigned long get_next_completion(ctlr_info_t *h)
2615 {
2616 #ifdef CONFIG_CISS_SCSI_TAPE
2617 /* Any rejects from sendcmd() lying around? Process them first */
2618 if (h->scsi_rejects.ncompletions == 0)
2619 return h->access.command_completed(h);
2620 else {
2621 struct sendcmd_reject_list *srl;
2622 int n;
2623 srl = &h->scsi_rejects;
2624 n = --srl->ncompletions;
2625 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2626 printk("p");
2627 return srl->complete[n];
2628 }
2629 #else
2630 return h->access.command_completed(h);
2631 #endif
2632 }
2633
2634 static inline int interrupt_pending(ctlr_info_t *h)
2635 {
2636 #ifdef CONFIG_CISS_SCSI_TAPE
2637 return (h->access.intr_pending(h)
2638 || (h->scsi_rejects.ncompletions > 0));
2639 #else
2640 return h->access.intr_pending(h);
2641 #endif
2642 }
2643
2644 static inline long interrupt_not_for_us(ctlr_info_t *h)
2645 {
2646 #ifdef CONFIG_CISS_SCSI_TAPE
2647 return (((h->access.intr_pending(h) == 0) ||
2648 (h->interrupts_enabled == 0))
2649 && (h->scsi_rejects.ncompletions == 0));
2650 #else
2651 return (((h->access.intr_pending(h) == 0) ||
2652 (h->interrupts_enabled == 0)));
2653 #endif
2654 }
2655
2656 static irqreturn_t do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs)
2657 {
2658 ctlr_info_t *h = dev_id;
2659 CommandList_struct *c;
2660 unsigned long flags;
2661 __u32 a, a1, a2;
2662
2663 if (interrupt_not_for_us(h))
2664 return IRQ_NONE;
2665 /*
2666 * If there are completed commands in the completion queue,
2667 * we had better do something about it.
2668 */
2669 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2670 while (interrupt_pending(h)) {
2671 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2672 a1 = a;
2673 if ((a & 0x04)) {
2674 a2 = (a >> 3);
2675 if (a2 >= NR_CMDS) {
2676 printk(KERN_WARNING
2677 "cciss: controller cciss%d failed, stopping.\n",
2678 h->ctlr);
2679 fail_all_cmds(h->ctlr);
2680 return IRQ_HANDLED;
2681 }
2682
2683 c = h->cmd_pool + a2;
2684 a = c->busaddr;
2685
2686 } else {
2687 a &= ~3;
2688 if ((c = h->cmpQ) == NULL) {
2689 printk(KERN_WARNING
2690 "cciss: Completion of %08x ignored\n",
2691 a1);
2692 continue;
2693 }
2694 while (c->busaddr != a) {
2695 c = c->next;
2696 if (c == h->cmpQ)
2697 break;
2698 }
2699 }
2700 /*
2701 * If we've found the command, take it off the
2702 * completion Q and free it
2703 */
2704 if (c->busaddr == a) {
2705 removeQ(&h->cmpQ, c);
2706 if (c->cmd_type == CMD_RWREQ) {
2707 complete_command(h, c, 0);
2708 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2709 complete(c->waiting);
2710 }
2711 # ifdef CONFIG_CISS_SCSI_TAPE
2712 else if (c->cmd_type == CMD_SCSI)
2713 complete_scsi_command(c, 0, a1);
2714 # endif
2715 continue;
2716 }
2717 }
2718 }
2719
2720 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2721 return IRQ_HANDLED;
2722 }
2723
2724 /*
2725 * We cannot read the structure directly, for portability we must use
2726 * the io functions.
2727 * This is for debug only.
2728 */
2729 #ifdef CCISS_DEBUG
2730 static void print_cfg_table(CfgTable_struct *tb)
2731 {
2732 int i;
2733 char temp_name[17];
2734
2735 printk("Controller Configuration information\n");
2736 printk("------------------------------------\n");
2737 for (i = 0; i < 4; i++)
2738 temp_name[i] = readb(&(tb->Signature[i]));
2739 temp_name[4] = '\0';
2740 printk(" Signature = %s\n", temp_name);
2741 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2742 printk(" Transport methods supported = 0x%x\n",
2743 readl(&(tb->TransportSupport)));
2744 printk(" Transport methods active = 0x%x\n",
2745 readl(&(tb->TransportActive)));
2746 printk(" Requested transport Method = 0x%x\n",
2747 readl(&(tb->HostWrite.TransportRequest)));
2748 printk(" Coalesce Interrupt Delay = 0x%x\n",
2749 readl(&(tb->HostWrite.CoalIntDelay)));
2750 printk(" Coalesce Interrupt Count = 0x%x\n",
2751 readl(&(tb->HostWrite.CoalIntCount)));
2752 printk(" Max outstanding commands = 0x%d\n",
2753 readl(&(tb->CmdsOutMax)));
2754 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
2755 for (i = 0; i < 16; i++)
2756 temp_name[i] = readb(&(tb->ServerName[i]));
2757 temp_name[16] = '\0';
2758 printk(" Server Name = %s\n", temp_name);
2759 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
2760 }
2761 #endif /* CCISS_DEBUG */
2762
2763 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
2764 {
2765 int i, offset, mem_type, bar_type;
2766 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2767 return 0;
2768 offset = 0;
2769 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2770 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
2771 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2772 offset += 4;
2773 else {
2774 mem_type = pci_resource_flags(pdev, i) &
2775 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2776 switch (mem_type) {
2777 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2778 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2779 offset += 4; /* 32 bit */
2780 break;
2781 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2782 offset += 8;
2783 break;
2784 default: /* reserved in PCI 2.2 */
2785 printk(KERN_WARNING
2786 "Base address is invalid\n");
2787 return -1;
2788 break;
2789 }
2790 }
2791 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2792 return i + 1;
2793 }
2794 return -1;
2795 }
2796
2797 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
2798 * controllers that are capable. If not, we use IO-APIC mode.
2799 */
2800
2801 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
2802 struct pci_dev *pdev, __u32 board_id)
2803 {
2804 #ifdef CONFIG_PCI_MSI
2805 int err;
2806 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
2807 {0, 2}, {0, 3}
2808 };
2809
2810 /* Some boards advertise MSI but don't really support it */
2811 if ((board_id == 0x40700E11) ||
2812 (board_id == 0x40800E11) ||
2813 (board_id == 0x40820E11) || (board_id == 0x40830E11))
2814 goto default_int_mode;
2815
2816 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
2817 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
2818 if (!err) {
2819 c->intr[0] = cciss_msix_entries[0].vector;
2820 c->intr[1] = cciss_msix_entries[1].vector;
2821 c->intr[2] = cciss_msix_entries[2].vector;
2822 c->intr[3] = cciss_msix_entries[3].vector;
2823 c->msix_vector = 1;
2824 return;
2825 }
2826 if (err > 0) {
2827 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
2828 "available\n", err);
2829 } else {
2830 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
2831 err);
2832 }
2833 }
2834 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
2835 if (!pci_enable_msi(pdev)) {
2836 c->intr[SIMPLE_MODE_INT] = pdev->irq;
2837 c->msi_vector = 1;
2838 return;
2839 } else {
2840 printk(KERN_WARNING "cciss: MSI init failed\n");
2841 c->intr[SIMPLE_MODE_INT] = pdev->irq;
2842 return;
2843 }
2844 }
2845 default_int_mode:
2846 #endif /* CONFIG_PCI_MSI */
2847 /* if we get here we're going to use the default interrupt mode */
2848 c->intr[SIMPLE_MODE_INT] = pdev->irq;
2849 return;
2850 }
2851
2852 static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2853 {
2854 ushort subsystem_vendor_id, subsystem_device_id, command;
2855 __u32 board_id, scratchpad = 0;
2856 __u64 cfg_offset;
2857 __u32 cfg_base_addr;
2858 __u64 cfg_base_addr_index;
2859 int i, err;
2860
2861 /* check to see if controller has been disabled */
2862 /* BEFORE trying to enable it */
2863 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
2864 if (!(command & 0x02)) {
2865 printk(KERN_WARNING
2866 "cciss: controller appears to be disabled\n");
2867 return -ENODEV;
2868 }
2869
2870 err = pci_enable_device(pdev);
2871 if (err) {
2872 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2873 return err;
2874 }
2875
2876 err = pci_request_regions(pdev, "cciss");
2877 if (err) {
2878 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
2879 "aborting\n");
2880 goto err_out_disable_pdev;
2881 }
2882
2883 subsystem_vendor_id = pdev->subsystem_vendor;
2884 subsystem_device_id = pdev->subsystem_device;
2885 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2886 subsystem_vendor_id);
2887
2888 #ifdef CCISS_DEBUG
2889 printk("command = %x\n", command);
2890 printk("irq = %x\n", pdev->irq);
2891 printk("board_id = %x\n", board_id);
2892 #endif /* CCISS_DEBUG */
2893
2894 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
2895 * else we use the IO-APIC interrupt assigned to us by system ROM.
2896 */
2897 cciss_interrupt_mode(c, pdev, board_id);
2898
2899 /*
2900 * Memory base addr is first addr , the second points to the config
2901 * table
2902 */
2903
2904 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
2905 #ifdef CCISS_DEBUG
2906 printk("address 0 = %x\n", c->paddr);
2907 #endif /* CCISS_DEBUG */
2908 c->vaddr = remap_pci_mem(c->paddr, 200);
2909
2910 /* Wait for the board to become ready. (PCI hotplug needs this.)
2911 * We poll for up to 120 secs, once per 100ms. */
2912 for (i = 0; i < 1200; i++) {
2913 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2914 if (scratchpad == CCISS_FIRMWARE_READY)
2915 break;
2916 set_current_state(TASK_INTERRUPTIBLE);
2917 schedule_timeout(HZ / 10); /* wait 100ms */
2918 }
2919 if (scratchpad != CCISS_FIRMWARE_READY) {
2920 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
2921 err = -ENODEV;
2922 goto err_out_free_res;
2923 }
2924
2925 /* get the address index number */
2926 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2927 cfg_base_addr &= (__u32) 0x0000ffff;
2928 #ifdef CCISS_DEBUG
2929 printk("cfg base address = %x\n", cfg_base_addr);
2930 #endif /* CCISS_DEBUG */
2931 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
2932 #ifdef CCISS_DEBUG
2933 printk("cfg base address index = %x\n", cfg_base_addr_index);
2934 #endif /* CCISS_DEBUG */
2935 if (cfg_base_addr_index == -1) {
2936 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2937 err = -ENODEV;
2938 goto err_out_free_res;
2939 }
2940
2941 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
2942 #ifdef CCISS_DEBUG
2943 printk("cfg offset = %x\n", cfg_offset);
2944 #endif /* CCISS_DEBUG */
2945 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
2946 cfg_base_addr_index) +
2947 cfg_offset, sizeof(CfgTable_struct));
2948 c->board_id = board_id;
2949
2950 #ifdef CCISS_DEBUG
2951 print_cfg_table(c->cfgtable);
2952 #endif /* CCISS_DEBUG */
2953
2954 for (i = 0; i < ARRAY_SIZE(products); i++) {
2955 if (board_id == products[i].board_id) {
2956 c->product_name = products[i].product_name;
2957 c->access = *(products[i].access);
2958 break;
2959 }
2960 }
2961 if (i == ARRAY_SIZE(products)) {
2962 printk(KERN_WARNING "cciss: Sorry, I don't know how"
2963 " to access the Smart Array controller %08lx\n",
2964 (unsigned long)board_id);
2965 err = -ENODEV;
2966 goto err_out_free_res;
2967 }
2968 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
2969 (readb(&c->cfgtable->Signature[1]) != 'I') ||
2970 (readb(&c->cfgtable->Signature[2]) != 'S') ||
2971 (readb(&c->cfgtable->Signature[3]) != 'S')) {
2972 printk("Does not appear to be a valid CISS config table\n");
2973 err = -ENODEV;
2974 goto err_out_free_res;
2975 }
2976 #ifdef CONFIG_X86
2977 {
2978 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
2979 __u32 prefetch;
2980 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
2981 prefetch |= 0x100;
2982 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
2983 }
2984 #endif
2985
2986 #ifdef CCISS_DEBUG
2987 printk("Trying to put board into Simple mode\n");
2988 #endif /* CCISS_DEBUG */
2989 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
2990 /* Update the field, and then ring the doorbell */
2991 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
2992 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
2993
2994 /* under certain very rare conditions, this can take awhile.
2995 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
2996 * as we enter this code.) */
2997 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
2998 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
2999 break;
3000 /* delay and try again */
3001 set_current_state(TASK_INTERRUPTIBLE);
3002 schedule_timeout(10);
3003 }
3004
3005 #ifdef CCISS_DEBUG
3006 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3007 readl(c->vaddr + SA5_DOORBELL));
3008 #endif /* CCISS_DEBUG */
3009 #ifdef CCISS_DEBUG
3010 print_cfg_table(c->cfgtable);
3011 #endif /* CCISS_DEBUG */
3012
3013 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3014 printk(KERN_WARNING "cciss: unable to get board into"
3015 " simple mode\n");
3016 err = -ENODEV;
3017 goto err_out_free_res;
3018 }
3019 return 0;
3020
3021 err_out_free_res:
3022 pci_release_regions(pdev);
3023
3024 err_out_disable_pdev:
3025 pci_disable_device(pdev);
3026 return err;
3027 }
3028
3029 /*
3030 * Gets information about the local volumes attached to the controller.
3031 */
3032 static void cciss_getgeometry(int cntl_num)
3033 {
3034 ReportLunData_struct *ld_buff;
3035 InquiryData_struct *inq_buff;
3036 int return_code;
3037 int i;
3038 int listlength = 0;
3039 __u32 lunid = 0;
3040 int block_size;
3041 sector_t total_size;
3042
3043 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
3044 if (ld_buff == NULL) {
3045 printk(KERN_ERR "cciss: out of memory\n");
3046 return;
3047 }
3048 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3049 if (inq_buff == NULL) {
3050 printk(KERN_ERR "cciss: out of memory\n");
3051 kfree(ld_buff);
3052 return;
3053 }
3054 /* Get the firmware version */
3055 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
3056 sizeof(InquiryData_struct), 0, 0, 0, NULL,
3057 TYPE_CMD);
3058 if (return_code == IO_OK) {
3059 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
3060 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
3061 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
3062 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
3063 } else { /* send command failed */
3064
3065 printk(KERN_WARNING "cciss: unable to determine firmware"
3066 " version of controller\n");
3067 }
3068 /* Get the number of logical volumes */
3069 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
3070 sizeof(ReportLunData_struct), 0, 0, 0, NULL,
3071 TYPE_CMD);
3072
3073 if (return_code == IO_OK) {
3074 #ifdef CCISS_DEBUG
3075 printk("LUN Data\n--------------------------\n");
3076 #endif /* CCISS_DEBUG */
3077
3078 listlength |=
3079 (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
3080 listlength |=
3081 (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
3082 listlength |=
3083 (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
3084 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
3085 } else { /* reading number of logical volumes failed */
3086
3087 printk(KERN_WARNING "cciss: report logical volume"
3088 " command failed\n");
3089 listlength = 0;
3090 }
3091 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
3092 if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
3093 printk(KERN_ERR
3094 "ciss: only %d number of logical volumes supported\n",
3095 CISS_MAX_LUN);
3096 hba[cntl_num]->num_luns = CISS_MAX_LUN;
3097 }
3098 #ifdef CCISS_DEBUG
3099 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
3100 ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
3101 ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
3102 hba[cntl_num]->num_luns);
3103 #endif /* CCISS_DEBUG */
3104
3105 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
3106 for (i = 0; i < CISS_MAX_LUN; i++) {
3107 if (i < hba[cntl_num]->num_luns) {
3108 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
3109 << 24;
3110 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
3111 << 16;
3112 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
3113 << 8;
3114 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
3115
3116 hba[cntl_num]->drv[i].LunID = lunid;
3117
3118 #ifdef CCISS_DEBUG
3119 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
3120 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
3121 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
3122 hba[cntl_num]->drv[i].LunID);
3123 #endif /* CCISS_DEBUG */
3124
3125 /* testing to see if 16-byte CDBs are already being used */
3126 if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
3127 cciss_read_capacity_16(cntl_num, i, 0,
3128 &total_size, &block_size);
3129 goto geo_inq;
3130 }
3131 cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
3132
3133 /* total_size = last LBA + 1 */
3134 if(total_size == (__u32) 0) {
3135 cciss_read_capacity_16(cntl_num, i, 0,
3136 &total_size, &block_size);
3137 hba[cntl_num]->cciss_read = CCISS_READ_16;
3138 hba[cntl_num]->cciss_write = CCISS_WRITE_16;
3139 } else {
3140 hba[cntl_num]->cciss_read = CCISS_READ_10;
3141 hba[cntl_num]->cciss_write = CCISS_WRITE_10;
3142 }
3143 geo_inq:
3144 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
3145 block_size, inq_buff,
3146 &hba[cntl_num]->drv[i]);
3147 } else {
3148 /* initialize raid_level to indicate a free space */
3149 hba[cntl_num]->drv[i].raid_level = -1;
3150 }
3151 }
3152 kfree(ld_buff);
3153 kfree(inq_buff);
3154 }
3155
3156 /* Function to find the first free pointer into our hba[] array */
3157 /* Returns -1 if no free entries are left. */
3158 static int alloc_cciss_hba(void)
3159 {
3160 struct gendisk *disk[NWD];
3161 int i, n;
3162 for (n = 0; n < NWD; n++) {
3163 disk[n] = alloc_disk(1 << NWD_SHIFT);
3164 if (!disk[n])
3165 goto out;
3166 }
3167
3168 for (i = 0; i < MAX_CTLR; i++) {
3169 if (!hba[i]) {
3170 ctlr_info_t *p;
3171 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3172 if (!p)
3173 goto Enomem;
3174 for (n = 0; n < NWD; n++)
3175 p->gendisk[n] = disk[n];
3176 hba[i] = p;
3177 return i;
3178 }
3179 }
3180 printk(KERN_WARNING "cciss: This driver supports a maximum"
3181 " of %d controllers.\n", MAX_CTLR);
3182 goto out;
3183 Enomem:
3184 printk(KERN_ERR "cciss: out of memory.\n");
3185 out:
3186 while (n--)
3187 put_disk(disk[n]);
3188 return -1;
3189 }
3190
3191 static void free_hba(int i)
3192 {
3193 ctlr_info_t *p = hba[i];
3194 int n;
3195
3196 hba[i] = NULL;
3197 for (n = 0; n < NWD; n++)
3198 put_disk(p->gendisk[n]);
3199 kfree(p);
3200 }
3201
3202 /*
3203 * This is it. Find all the controllers and register them. I really hate
3204 * stealing all these major device numbers.
3205 * returns the number of block devices registered.
3206 */
3207 static int __devinit cciss_init_one(struct pci_dev *pdev,
3208 const struct pci_device_id *ent)
3209 {
3210 request_queue_t *q;
3211 int i;
3212 int j;
3213 int rc;
3214 int dac;
3215
3216 i = alloc_cciss_hba();
3217 if (i < 0)
3218 return -1;
3219
3220 hba[i]->busy_initializing = 1;
3221
3222 if (cciss_pci_init(hba[i], pdev) != 0)
3223 goto clean1;
3224
3225 sprintf(hba[i]->devname, "cciss%d", i);
3226 hba[i]->ctlr = i;
3227 hba[i]->pdev = pdev;
3228
3229 /* configure PCI DMA stuff */
3230 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3231 dac = 1;
3232 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3233 dac = 0;
3234 else {
3235 printk(KERN_ERR "cciss: no suitable DMA available\n");
3236 goto clean1;
3237 }
3238
3239 /*
3240 * register with the major number, or get a dynamic major number
3241 * by passing 0 as argument. This is done for greater than
3242 * 8 controller support.
3243 */
3244 if (i < MAX_CTLR_ORIG)
3245 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3246 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3247 if (rc == -EBUSY || rc == -EINVAL) {
3248 printk(KERN_ERR
3249 "cciss: Unable to get major number %d for %s "
3250 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3251 goto clean1;
3252 } else {
3253 if (i >= MAX_CTLR_ORIG)
3254 hba[i]->major = rc;
3255 }
3256
3257 /* make sure the board interrupts are off */
3258 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3259 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3260 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3261 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3262 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3263 goto clean2;
3264 }
3265
3266 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3267 hba[i]->devname, pdev->device, pci_name(pdev),
3268 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3269
3270 hba[i]->cmd_pool_bits =
3271 kmalloc(((NR_CMDS + BITS_PER_LONG -
3272 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3273 hba[i]->cmd_pool = (CommandList_struct *)
3274 pci_alloc_consistent(hba[i]->pdev,
3275 NR_CMDS * sizeof(CommandList_struct),
3276 &(hba[i]->cmd_pool_dhandle));
3277 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3278 pci_alloc_consistent(hba[i]->pdev,
3279 NR_CMDS * sizeof(ErrorInfo_struct),
3280 &(hba[i]->errinfo_pool_dhandle));
3281 if ((hba[i]->cmd_pool_bits == NULL)
3282 || (hba[i]->cmd_pool == NULL)
3283 || (hba[i]->errinfo_pool == NULL)) {
3284 printk(KERN_ERR "cciss: out of memory");
3285 goto clean4;
3286 }
3287 #ifdef CONFIG_CISS_SCSI_TAPE
3288 hba[i]->scsi_rejects.complete =
3289 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3290 (NR_CMDS + 5), GFP_KERNEL);
3291 if (hba[i]->scsi_rejects.complete == NULL) {
3292 printk(KERN_ERR "cciss: out of memory");
3293 goto clean4;
3294 }
3295 #endif
3296 spin_lock_init(&hba[i]->lock);
3297
3298 /* Initialize the pdev driver private data.
3299 have it point to hba[i]. */
3300 pci_set_drvdata(pdev, hba[i]);
3301 /* command and error info recs zeroed out before
3302 they are used */
3303 memset(hba[i]->cmd_pool_bits, 0,
3304 ((NR_CMDS + BITS_PER_LONG -
3305 1) / BITS_PER_LONG) * sizeof(unsigned long));
3306
3307 #ifdef CCISS_DEBUG
3308 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
3309 #endif /* CCISS_DEBUG */
3310
3311 cciss_getgeometry(i);
3312
3313 cciss_scsi_setup(i);
3314
3315 /* Turn the interrupts on so we can service requests */
3316 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3317
3318 cciss_procinit(i);
3319 hba[i]->busy_initializing = 0;
3320
3321 for (j = 0; j < NWD; j++) { /* mfm */
3322 drive_info_struct *drv = &(hba[i]->drv[j]);
3323 struct gendisk *disk = hba[i]->gendisk[j];
3324
3325 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
3326 if (!q) {
3327 printk(KERN_ERR
3328 "cciss: unable to allocate queue for disk %d\n",
3329 j);
3330 break;
3331 }
3332 drv->queue = q;
3333
3334 q->backing_dev_info.ra_pages = READ_AHEAD;
3335 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3336
3337 /* This is a hardware imposed limit. */
3338 blk_queue_max_hw_segments(q, MAXSGENTRIES);
3339
3340 /* This is a limit in the driver and could be eliminated. */
3341 blk_queue_max_phys_segments(q, MAXSGENTRIES);
3342
3343 blk_queue_max_sectors(q, 512);
3344
3345 blk_queue_softirq_done(q, cciss_softirq_done);
3346
3347 q->queuedata = hba[i];
3348 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3349 disk->major = hba[i]->major;
3350 disk->first_minor = j << NWD_SHIFT;
3351 disk->fops = &cciss_fops;
3352 disk->queue = q;
3353 disk->private_data = drv;
3354 disk->driverfs_dev = &pdev->dev;
3355 /* we must register the controller even if no disks exist */
3356 /* this is for the online array utilities */
3357 if (!drv->heads && j)
3358 continue;
3359 blk_queue_hardsect_size(q, drv->block_size);
3360 set_capacity(disk, drv->nr_blocks);
3361 add_disk(disk);
3362 }
3363
3364 return 1;
3365
3366 clean4:
3367 #ifdef CONFIG_CISS_SCSI_TAPE
3368 kfree(hba[i]->scsi_rejects.complete);
3369 #endif
3370 kfree(hba[i]->cmd_pool_bits);
3371 if (hba[i]->cmd_pool)
3372 pci_free_consistent(hba[i]->pdev,
3373 NR_CMDS * sizeof(CommandList_struct),
3374 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3375 if (hba[i]->errinfo_pool)
3376 pci_free_consistent(hba[i]->pdev,
3377 NR_CMDS * sizeof(ErrorInfo_struct),
3378 hba[i]->errinfo_pool,
3379 hba[i]->errinfo_pool_dhandle);
3380 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3381 clean2:
3382 unregister_blkdev(hba[i]->major, hba[i]->devname);
3383 clean1:
3384 hba[i]->busy_initializing = 0;
3385 free_hba(i);
3386 return -1;
3387 }
3388
3389 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3390 {
3391 ctlr_info_t *tmp_ptr;
3392 int i, j;
3393 char flush_buf[4];
3394 int return_code;
3395
3396 if (pci_get_drvdata(pdev) == NULL) {
3397 printk(KERN_ERR "cciss: Unable to remove device \n");
3398 return;
3399 }
3400 tmp_ptr = pci_get_drvdata(pdev);
3401 i = tmp_ptr->ctlr;
3402 if (hba[i] == NULL) {
3403 printk(KERN_ERR "cciss: device appears to "
3404 "already be removed \n");
3405 return;
3406 }
3407 /* Turn board interrupts off and send the flush cache command */
3408 /* sendcmd will turn off interrupt, and send the flush...
3409 * To write all data in the battery backed cache to disks */
3410 memset(flush_buf, 0, 4);
3411 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3412 TYPE_CMD);
3413 if (return_code != IO_OK) {
3414 printk(KERN_WARNING "Error Flushing cache on controller %d\n",
3415 i);
3416 }
3417 free_irq(hba[i]->intr[2], hba[i]);
3418
3419 #ifdef CONFIG_PCI_MSI
3420 if (hba[i]->msix_vector)
3421 pci_disable_msix(hba[i]->pdev);
3422 else if (hba[i]->msi_vector)
3423 pci_disable_msi(hba[i]->pdev);
3424 #endif /* CONFIG_PCI_MSI */
3425
3426 iounmap(hba[i]->vaddr);
3427 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3428 unregister_blkdev(hba[i]->major, hba[i]->devname);
3429 remove_proc_entry(hba[i]->devname, proc_cciss);
3430
3431 /* remove it from the disk list */
3432 for (j = 0; j < NWD; j++) {
3433 struct gendisk *disk = hba[i]->gendisk[j];
3434 if (disk) {
3435 request_queue_t *q = disk->queue;
3436
3437 if (disk->flags & GENHD_FL_UP)
3438 del_gendisk(disk);
3439 if (q)
3440 blk_cleanup_queue(q);
3441 }
3442 }
3443
3444 pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
3445 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3446 pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(ErrorInfo_struct),
3447 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3448 kfree(hba[i]->cmd_pool_bits);
3449 #ifdef CONFIG_CISS_SCSI_TAPE
3450 kfree(hba[i]->scsi_rejects.complete);
3451 #endif
3452 pci_release_regions(pdev);
3453 pci_disable_device(pdev);
3454 pci_set_drvdata(pdev, NULL);
3455 free_hba(i);
3456 }
3457
3458 static struct pci_driver cciss_pci_driver = {
3459 .name = "cciss",
3460 .probe = cciss_init_one,
3461 .remove = __devexit_p(cciss_remove_one),
3462 .id_table = cciss_pci_device_id, /* id_table */
3463 };
3464
3465 /*
3466 * This is it. Register the PCI driver information for the cards we control
3467 * the OS will call our registered routines when it finds one of our cards.
3468 */
3469 static int __init cciss_init(void)
3470 {
3471 printk(KERN_INFO DRIVER_NAME "\n");
3472
3473 /* Register for our PCI devices */
3474 return pci_register_driver(&cciss_pci_driver);
3475 }
3476
3477 static void __exit cciss_cleanup(void)
3478 {
3479 int i;
3480
3481 pci_unregister_driver(&cciss_pci_driver);
3482 /* double check that all controller entrys have been removed */
3483 for (i = 0; i < MAX_CTLR; i++) {
3484 if (hba[i] != NULL) {
3485 printk(KERN_WARNING "cciss: had to remove"
3486 " controller %d\n", i);
3487 cciss_remove_one(hba[i]->pdev);
3488 }
3489 }
3490 remove_proc_entry("cciss", proc_root_driver);
3491 }
3492
3493 static void fail_all_cmds(unsigned long ctlr)
3494 {
3495 /* If we get here, the board is apparently dead. */
3496 ctlr_info_t *h = hba[ctlr];
3497 CommandList_struct *c;
3498 unsigned long flags;
3499
3500 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3501 h->alive = 0; /* the controller apparently died... */
3502
3503 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3504
3505 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3506
3507 /* move everything off the request queue onto the completed queue */
3508 while ((c = h->reqQ) != NULL) {
3509 removeQ(&(h->reqQ), c);
3510 h->Qdepth--;
3511 addQ(&(h->cmpQ), c);
3512 }
3513
3514 /* Now, fail everything on the completed queue with a HW error */
3515 while ((c = h->cmpQ) != NULL) {
3516 removeQ(&h->cmpQ, c);
3517 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3518 if (c->cmd_type == CMD_RWREQ) {
3519 complete_command(h, c, 0);
3520 } else if (c->cmd_type == CMD_IOCTL_PEND)
3521 complete(c->waiting);
3522 #ifdef CONFIG_CISS_SCSI_TAPE
3523 else if (c->cmd_type == CMD_SCSI)
3524 complete_scsi_command(c, 0, 0);
3525 #endif
3526 }
3527 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3528 return;
3529 }
3530
3531 module_init(cciss_init);
3532 module_exit(cciss_cleanup);