]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/cciss.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <linux/bitmap.h>
45 #include <linux/io.h>
46 #include <asm/uaccess.h>
47
48 #include <linux/dma-mapping.h>
49 #include <linux/blkdev.h>
50 #include <linux/genhd.h>
51 #include <linux/completion.h>
52 #include <scsi/scsi.h>
53 #include <scsi/sg.h>
54 #include <scsi/scsi_ioctl.h>
55 #include <linux/cdrom.h>
56 #include <linux/scatterlist.h>
57 #include <linux/kthread.h>
58
59 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62
63 /* Embedded module documentation macros - see modules.h */
64 MODULE_AUTHOR("Hewlett-Packard Company");
65 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67 MODULE_VERSION("3.6.26");
68 MODULE_LICENSE("GPL");
69 static int cciss_tape_cmds = 6;
70 module_param(cciss_tape_cmds, int, 0644);
71 MODULE_PARM_DESC(cciss_tape_cmds,
72 "number of commands to allocate for tape devices (default: 6)");
73 static int cciss_simple_mode;
74 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(cciss_simple_mode,
76 "Use 'simple mode' rather than 'performant mode'");
77
78 static int cciss_allow_hpsa;
79 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(cciss_allow_hpsa,
81 "Prevent cciss driver from accessing hardware known to be "
82 " supported by the hpsa driver");
83
84 static DEFINE_MUTEX(cciss_mutex);
85 static struct proc_dir_entry *proc_cciss;
86
87 #include "cciss_cmd.h"
88 #include "cciss.h"
89 #include <linux/cciss_ioctl.h>
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id cciss_pci_device_id[] = {
93 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
94 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
95 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
96 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
97 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
98 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
99 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
100 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
101 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
113 {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
117
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
121 */
122 static struct board_type products[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access},
124 {0x40800E11, "Smart Array 5i", &SA5B_access},
125 {0x40820E11, "Smart Array 532", &SA5B_access},
126 {0x40830E11, "Smart Array 5312", &SA5B_access},
127 {0x409A0E11, "Smart Array 641", &SA5_access},
128 {0x409B0E11, "Smart Array 642", &SA5_access},
129 {0x409C0E11, "Smart Array 6400", &SA5_access},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131 {0x40910E11, "Smart Array 6i", &SA5_access},
132 {0x3225103C, "Smart Array P600", &SA5_access},
133 {0x3223103C, "Smart Array P800", &SA5_access},
134 {0x3234103C, "Smart Array P400", &SA5_access},
135 {0x3235103C, "Smart Array P400i", &SA5_access},
136 {0x3211103C, "Smart Array E200i", &SA5_access},
137 {0x3212103C, "Smart Array E200", &SA5_access},
138 {0x3213103C, "Smart Array E200i", &SA5_access},
139 {0x3214103C, "Smart Array E200i", &SA5_access},
140 {0x3215103C, "Smart Array E200i", &SA5_access},
141 {0x3237103C, "Smart Array E500", &SA5_access},
142 {0x323D103C, "Smart Array P700m", &SA5_access},
143 };
144
145 /* How long to wait (in milliseconds) for board to go into simple mode */
146 #define MAX_CONFIG_WAIT 30000
147 #define MAX_IOCTL_CONFIG_WAIT 1000
148
149 /*define how many times we will try a command because of bus resets */
150 #define MAX_CMD_RETRIES 3
151
152 #define MAX_CTLR 32
153
154 /* Originally cciss driver only supports 8 major numbers */
155 #define MAX_CTLR_ORIG 8
156
157 static ctlr_info_t *hba[MAX_CTLR];
158
159 static struct task_struct *cciss_scan_thread;
160 static DEFINE_MUTEX(scan_mutex);
161 static LIST_HEAD(scan_q);
162
163 static void do_cciss_request(struct request_queue *q);
164 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
165 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
166 static int cciss_open(struct block_device *bdev, fmode_t mode);
167 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
168 static void cciss_release(struct gendisk *disk, fmode_t mode);
169 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
170 unsigned int cmd, unsigned long arg);
171 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
172
173 static int cciss_revalidate(struct gendisk *disk);
174 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
175 static int deregister_disk(ctlr_info_t *h, int drv_index,
176 int clear_all, int via_ioctl);
177
178 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
179 sector_t *total_size, unsigned int *block_size);
180 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
181 sector_t *total_size, unsigned int *block_size);
182 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
183 sector_t total_size,
184 unsigned int block_size, InquiryData_struct *inq_buff,
185 drive_info_struct *drv);
186 static void cciss_interrupt_mode(ctlr_info_t *);
187 static int cciss_enter_simple_mode(struct ctlr_info *h);
188 static void start_io(ctlr_info_t *h);
189 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
190 __u8 page_code, unsigned char scsi3addr[],
191 int cmd_type);
192 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
193 int attempt_retry);
194 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
195
196 static int add_to_scan_list(struct ctlr_info *h);
197 static int scan_thread(void *data);
198 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
199 static void cciss_hba_release(struct device *dev);
200 static void cciss_device_release(struct device *dev);
201 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
202 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
203 static inline u32 next_command(ctlr_info_t *h);
204 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
205 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
206 u64 *cfg_offset);
207 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
208 unsigned long *memory_bar);
209 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
210 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
211
212 /* performant mode helper functions */
213 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
214 int *bucket_map);
215 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
216
217 #ifdef CONFIG_PROC_FS
218 static void cciss_procinit(ctlr_info_t *h);
219 #else
220 static void cciss_procinit(ctlr_info_t *h)
221 {
222 }
223 #endif /* CONFIG_PROC_FS */
224
225 #ifdef CONFIG_COMPAT
226 static int cciss_compat_ioctl(struct block_device *, fmode_t,
227 unsigned, unsigned long);
228 #endif
229
230 static const struct block_device_operations cciss_fops = {
231 .owner = THIS_MODULE,
232 .open = cciss_unlocked_open,
233 .release = cciss_release,
234 .ioctl = cciss_ioctl,
235 .getgeo = cciss_getgeo,
236 #ifdef CONFIG_COMPAT
237 .compat_ioctl = cciss_compat_ioctl,
238 #endif
239 .revalidate_disk = cciss_revalidate,
240 };
241
242 /* set_performant_mode: Modify the tag for cciss performant
243 * set bit 0 for pull model, bits 3-1 for block fetch
244 * register number
245 */
246 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
247 {
248 if (likely(h->transMethod & CFGTBL_Trans_Performant))
249 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
250 }
251
252 /*
253 * Enqueuing and dequeuing functions for cmdlists.
254 */
255 static inline void addQ(struct list_head *list, CommandList_struct *c)
256 {
257 list_add_tail(&c->list, list);
258 }
259
260 static inline void removeQ(CommandList_struct *c)
261 {
262 /*
263 * After kexec/dump some commands might still
264 * be in flight, which the firmware will try
265 * to complete. Resetting the firmware doesn't work
266 * with old fw revisions, so we have to mark
267 * them off as 'stale' to prevent the driver from
268 * falling over.
269 */
270 if (WARN_ON(list_empty(&c->list))) {
271 c->cmd_type = CMD_MSG_STALE;
272 return;
273 }
274
275 list_del_init(&c->list);
276 }
277
278 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
279 CommandList_struct *c)
280 {
281 unsigned long flags;
282 set_performant_mode(h, c);
283 spin_lock_irqsave(&h->lock, flags);
284 addQ(&h->reqQ, c);
285 h->Qdepth++;
286 if (h->Qdepth > h->maxQsinceinit)
287 h->maxQsinceinit = h->Qdepth;
288 start_io(h);
289 spin_unlock_irqrestore(&h->lock, flags);
290 }
291
292 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
293 int nr_cmds)
294 {
295 int i;
296
297 if (!cmd_sg_list)
298 return;
299 for (i = 0; i < nr_cmds; i++) {
300 kfree(cmd_sg_list[i]);
301 cmd_sg_list[i] = NULL;
302 }
303 kfree(cmd_sg_list);
304 }
305
306 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
307 ctlr_info_t *h, int chainsize, int nr_cmds)
308 {
309 int j;
310 SGDescriptor_struct **cmd_sg_list;
311
312 if (chainsize <= 0)
313 return NULL;
314
315 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
316 if (!cmd_sg_list)
317 return NULL;
318
319 /* Build up chain blocks for each command */
320 for (j = 0; j < nr_cmds; j++) {
321 /* Need a block of chainsized s/g elements. */
322 cmd_sg_list[j] = kmalloc((chainsize *
323 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
324 if (!cmd_sg_list[j]) {
325 dev_err(&h->pdev->dev, "Cannot get memory "
326 "for s/g chains.\n");
327 goto clean;
328 }
329 }
330 return cmd_sg_list;
331 clean:
332 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
333 return NULL;
334 }
335
336 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
337 {
338 SGDescriptor_struct *chain_sg;
339 u64bit temp64;
340
341 if (c->Header.SGTotal <= h->max_cmd_sgentries)
342 return;
343
344 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
345 temp64.val32.lower = chain_sg->Addr.lower;
346 temp64.val32.upper = chain_sg->Addr.upper;
347 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
348 }
349
350 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
351 SGDescriptor_struct *chain_block, int len)
352 {
353 SGDescriptor_struct *chain_sg;
354 u64bit temp64;
355
356 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
357 chain_sg->Ext = CCISS_SG_CHAIN;
358 chain_sg->Len = len;
359 temp64.val = pci_map_single(h->pdev, chain_block, len,
360 PCI_DMA_TODEVICE);
361 chain_sg->Addr.lower = temp64.val32.lower;
362 chain_sg->Addr.upper = temp64.val32.upper;
363 }
364
365 #include "cciss_scsi.c" /* For SCSI tape support */
366
367 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
368 "UNKNOWN"
369 };
370 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
371
372 #ifdef CONFIG_PROC_FS
373
374 /*
375 * Report information about this controller.
376 */
377 #define ENG_GIG 1000000000
378 #define ENG_GIG_FACTOR (ENG_GIG/512)
379 #define ENGAGE_SCSI "engage scsi"
380
381 static void cciss_seq_show_header(struct seq_file *seq)
382 {
383 ctlr_info_t *h = seq->private;
384
385 seq_printf(seq, "%s: HP %s Controller\n"
386 "Board ID: 0x%08lx\n"
387 "Firmware Version: %c%c%c%c\n"
388 "IRQ: %d\n"
389 "Logical drives: %d\n"
390 "Current Q depth: %d\n"
391 "Current # commands on controller: %d\n"
392 "Max Q depth since init: %d\n"
393 "Max # commands on controller since init: %d\n"
394 "Max SG entries since init: %d\n",
395 h->devname,
396 h->product_name,
397 (unsigned long)h->board_id,
398 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
399 h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
400 h->num_luns,
401 h->Qdepth, h->commands_outstanding,
402 h->maxQsinceinit, h->max_outstanding, h->maxSG);
403
404 #ifdef CONFIG_CISS_SCSI_TAPE
405 cciss_seq_tape_report(seq, h);
406 #endif /* CONFIG_CISS_SCSI_TAPE */
407 }
408
409 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
410 {
411 ctlr_info_t *h = seq->private;
412 unsigned long flags;
413
414 /* prevent displaying bogus info during configuration
415 * or deconfiguration of a logical volume
416 */
417 spin_lock_irqsave(&h->lock, flags);
418 if (h->busy_configuring) {
419 spin_unlock_irqrestore(&h->lock, flags);
420 return ERR_PTR(-EBUSY);
421 }
422 h->busy_configuring = 1;
423 spin_unlock_irqrestore(&h->lock, flags);
424
425 if (*pos == 0)
426 cciss_seq_show_header(seq);
427
428 return pos;
429 }
430
431 static int cciss_seq_show(struct seq_file *seq, void *v)
432 {
433 sector_t vol_sz, vol_sz_frac;
434 ctlr_info_t *h = seq->private;
435 unsigned ctlr = h->ctlr;
436 loff_t *pos = v;
437 drive_info_struct *drv = h->drv[*pos];
438
439 if (*pos > h->highest_lun)
440 return 0;
441
442 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
443 return 0;
444
445 if (drv->heads == 0)
446 return 0;
447
448 vol_sz = drv->nr_blocks;
449 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
450 vol_sz_frac *= 100;
451 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
452
453 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
454 drv->raid_level = RAID_UNKNOWN;
455 seq_printf(seq, "cciss/c%dd%d:"
456 "\t%4u.%02uGB\tRAID %s\n",
457 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
458 raid_label[drv->raid_level]);
459 return 0;
460 }
461
462 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
463 {
464 ctlr_info_t *h = seq->private;
465
466 if (*pos > h->highest_lun)
467 return NULL;
468 *pos += 1;
469
470 return pos;
471 }
472
473 static void cciss_seq_stop(struct seq_file *seq, void *v)
474 {
475 ctlr_info_t *h = seq->private;
476
477 /* Only reset h->busy_configuring if we succeeded in setting
478 * it during cciss_seq_start. */
479 if (v == ERR_PTR(-EBUSY))
480 return;
481
482 h->busy_configuring = 0;
483 }
484
485 static const struct seq_operations cciss_seq_ops = {
486 .start = cciss_seq_start,
487 .show = cciss_seq_show,
488 .next = cciss_seq_next,
489 .stop = cciss_seq_stop,
490 };
491
492 static int cciss_seq_open(struct inode *inode, struct file *file)
493 {
494 int ret = seq_open(file, &cciss_seq_ops);
495 struct seq_file *seq = file->private_data;
496
497 if (!ret)
498 seq->private = PDE_DATA(inode);
499
500 return ret;
501 }
502
503 static ssize_t
504 cciss_proc_write(struct file *file, const char __user *buf,
505 size_t length, loff_t *ppos)
506 {
507 int err;
508 char *buffer;
509
510 #ifndef CONFIG_CISS_SCSI_TAPE
511 return -EINVAL;
512 #endif
513
514 if (!buf || length > PAGE_SIZE - 1)
515 return -EINVAL;
516
517 buffer = (char *)__get_free_page(GFP_KERNEL);
518 if (!buffer)
519 return -ENOMEM;
520
521 err = -EFAULT;
522 if (copy_from_user(buffer, buf, length))
523 goto out;
524 buffer[length] = '\0';
525
526 #ifdef CONFIG_CISS_SCSI_TAPE
527 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
528 struct seq_file *seq = file->private_data;
529 ctlr_info_t *h = seq->private;
530
531 err = cciss_engage_scsi(h);
532 if (err == 0)
533 err = length;
534 } else
535 #endif /* CONFIG_CISS_SCSI_TAPE */
536 err = -EINVAL;
537 /* might be nice to have "disengage" too, but it's not
538 safely possible. (only 1 module use count, lock issues.) */
539
540 out:
541 free_page((unsigned long)buffer);
542 return err;
543 }
544
545 static const struct file_operations cciss_proc_fops = {
546 .owner = THIS_MODULE,
547 .open = cciss_seq_open,
548 .read = seq_read,
549 .llseek = seq_lseek,
550 .release = seq_release,
551 .write = cciss_proc_write,
552 };
553
554 static void cciss_procinit(ctlr_info_t *h)
555 {
556 struct proc_dir_entry *pde;
557
558 if (proc_cciss == NULL)
559 proc_cciss = proc_mkdir("driver/cciss", NULL);
560 if (!proc_cciss)
561 return;
562 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
563 S_IROTH, proc_cciss,
564 &cciss_proc_fops, h);
565 }
566 #endif /* CONFIG_PROC_FS */
567
568 #define MAX_PRODUCT_NAME_LEN 19
569
570 #define to_hba(n) container_of(n, struct ctlr_info, dev)
571 #define to_drv(n) container_of(n, drive_info_struct, dev)
572
573 /* List of controllers which cannot be hard reset on kexec with reset_devices */
574 static u32 unresettable_controller[] = {
575 0x3223103C, /* Smart Array P800 */
576 0x3234103C, /* Smart Array P400 */
577 0x3235103C, /* Smart Array P400i */
578 0x3211103C, /* Smart Array E200i */
579 0x3212103C, /* Smart Array E200 */
580 0x3213103C, /* Smart Array E200i */
581 0x3214103C, /* Smart Array E200i */
582 0x3215103C, /* Smart Array E200i */
583 0x3237103C, /* Smart Array E500 */
584 0x323D103C, /* Smart Array P700m */
585 0x40800E11, /* Smart Array 5i */
586 0x409C0E11, /* Smart Array 6400 */
587 0x409D0E11, /* Smart Array 6400 EM */
588 0x40700E11, /* Smart Array 5300 */
589 0x40820E11, /* Smart Array 532 */
590 0x40830E11, /* Smart Array 5312 */
591 0x409A0E11, /* Smart Array 641 */
592 0x409B0E11, /* Smart Array 642 */
593 0x40910E11, /* Smart Array 6i */
594 };
595
596 /* List of controllers which cannot even be soft reset */
597 static u32 soft_unresettable_controller[] = {
598 0x40800E11, /* Smart Array 5i */
599 0x40700E11, /* Smart Array 5300 */
600 0x40820E11, /* Smart Array 532 */
601 0x40830E11, /* Smart Array 5312 */
602 0x409A0E11, /* Smart Array 641 */
603 0x409B0E11, /* Smart Array 642 */
604 0x40910E11, /* Smart Array 6i */
605 /* Exclude 640x boards. These are two pci devices in one slot
606 * which share a battery backed cache module. One controls the
607 * cache, the other accesses the cache through the one that controls
608 * it. If we reset the one controlling the cache, the other will
609 * likely not be happy. Just forbid resetting this conjoined mess.
610 */
611 0x409C0E11, /* Smart Array 6400 */
612 0x409D0E11, /* Smart Array 6400 EM */
613 };
614
615 static int ctlr_is_hard_resettable(u32 board_id)
616 {
617 int i;
618
619 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
620 if (unresettable_controller[i] == board_id)
621 return 0;
622 return 1;
623 }
624
625 static int ctlr_is_soft_resettable(u32 board_id)
626 {
627 int i;
628
629 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
630 if (soft_unresettable_controller[i] == board_id)
631 return 0;
632 return 1;
633 }
634
635 static int ctlr_is_resettable(u32 board_id)
636 {
637 return ctlr_is_hard_resettable(board_id) ||
638 ctlr_is_soft_resettable(board_id);
639 }
640
641 static ssize_t host_show_resettable(struct device *dev,
642 struct device_attribute *attr,
643 char *buf)
644 {
645 struct ctlr_info *h = to_hba(dev);
646
647 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
648 }
649 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
650
651 static ssize_t host_store_rescan(struct device *dev,
652 struct device_attribute *attr,
653 const char *buf, size_t count)
654 {
655 struct ctlr_info *h = to_hba(dev);
656
657 add_to_scan_list(h);
658 wake_up_process(cciss_scan_thread);
659 wait_for_completion_interruptible(&h->scan_wait);
660
661 return count;
662 }
663 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
664
665 static ssize_t host_show_transport_mode(struct device *dev,
666 struct device_attribute *attr,
667 char *buf)
668 {
669 struct ctlr_info *h = to_hba(dev);
670
671 return snprintf(buf, 20, "%s\n",
672 h->transMethod & CFGTBL_Trans_Performant ?
673 "performant" : "simple");
674 }
675 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
676
677 static ssize_t dev_show_unique_id(struct device *dev,
678 struct device_attribute *attr,
679 char *buf)
680 {
681 drive_info_struct *drv = to_drv(dev);
682 struct ctlr_info *h = to_hba(drv->dev.parent);
683 __u8 sn[16];
684 unsigned long flags;
685 int ret = 0;
686
687 spin_lock_irqsave(&h->lock, flags);
688 if (h->busy_configuring)
689 ret = -EBUSY;
690 else
691 memcpy(sn, drv->serial_no, sizeof(sn));
692 spin_unlock_irqrestore(&h->lock, flags);
693
694 if (ret)
695 return ret;
696 else
697 return snprintf(buf, 16 * 2 + 2,
698 "%02X%02X%02X%02X%02X%02X%02X%02X"
699 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
700 sn[0], sn[1], sn[2], sn[3],
701 sn[4], sn[5], sn[6], sn[7],
702 sn[8], sn[9], sn[10], sn[11],
703 sn[12], sn[13], sn[14], sn[15]);
704 }
705 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
706
707 static ssize_t dev_show_vendor(struct device *dev,
708 struct device_attribute *attr,
709 char *buf)
710 {
711 drive_info_struct *drv = to_drv(dev);
712 struct ctlr_info *h = to_hba(drv->dev.parent);
713 char vendor[VENDOR_LEN + 1];
714 unsigned long flags;
715 int ret = 0;
716
717 spin_lock_irqsave(&h->lock, flags);
718 if (h->busy_configuring)
719 ret = -EBUSY;
720 else
721 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
722 spin_unlock_irqrestore(&h->lock, flags);
723
724 if (ret)
725 return ret;
726 else
727 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
728 }
729 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
730
731 static ssize_t dev_show_model(struct device *dev,
732 struct device_attribute *attr,
733 char *buf)
734 {
735 drive_info_struct *drv = to_drv(dev);
736 struct ctlr_info *h = to_hba(drv->dev.parent);
737 char model[MODEL_LEN + 1];
738 unsigned long flags;
739 int ret = 0;
740
741 spin_lock_irqsave(&h->lock, flags);
742 if (h->busy_configuring)
743 ret = -EBUSY;
744 else
745 memcpy(model, drv->model, MODEL_LEN + 1);
746 spin_unlock_irqrestore(&h->lock, flags);
747
748 if (ret)
749 return ret;
750 else
751 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
752 }
753 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
754
755 static ssize_t dev_show_rev(struct device *dev,
756 struct device_attribute *attr,
757 char *buf)
758 {
759 drive_info_struct *drv = to_drv(dev);
760 struct ctlr_info *h = to_hba(drv->dev.parent);
761 char rev[REV_LEN + 1];
762 unsigned long flags;
763 int ret = 0;
764
765 spin_lock_irqsave(&h->lock, flags);
766 if (h->busy_configuring)
767 ret = -EBUSY;
768 else
769 memcpy(rev, drv->rev, REV_LEN + 1);
770 spin_unlock_irqrestore(&h->lock, flags);
771
772 if (ret)
773 return ret;
774 else
775 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
776 }
777 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
778
779 static ssize_t cciss_show_lunid(struct device *dev,
780 struct device_attribute *attr, char *buf)
781 {
782 drive_info_struct *drv = to_drv(dev);
783 struct ctlr_info *h = to_hba(drv->dev.parent);
784 unsigned long flags;
785 unsigned char lunid[8];
786
787 spin_lock_irqsave(&h->lock, flags);
788 if (h->busy_configuring) {
789 spin_unlock_irqrestore(&h->lock, flags);
790 return -EBUSY;
791 }
792 if (!drv->heads) {
793 spin_unlock_irqrestore(&h->lock, flags);
794 return -ENOTTY;
795 }
796 memcpy(lunid, drv->LunID, sizeof(lunid));
797 spin_unlock_irqrestore(&h->lock, flags);
798 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
799 lunid[0], lunid[1], lunid[2], lunid[3],
800 lunid[4], lunid[5], lunid[6], lunid[7]);
801 }
802 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
803
804 static ssize_t cciss_show_raid_level(struct device *dev,
805 struct device_attribute *attr, char *buf)
806 {
807 drive_info_struct *drv = to_drv(dev);
808 struct ctlr_info *h = to_hba(drv->dev.parent);
809 int raid;
810 unsigned long flags;
811
812 spin_lock_irqsave(&h->lock, flags);
813 if (h->busy_configuring) {
814 spin_unlock_irqrestore(&h->lock, flags);
815 return -EBUSY;
816 }
817 raid = drv->raid_level;
818 spin_unlock_irqrestore(&h->lock, flags);
819 if (raid < 0 || raid > RAID_UNKNOWN)
820 raid = RAID_UNKNOWN;
821
822 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
823 raid_label[raid]);
824 }
825 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
826
827 static ssize_t cciss_show_usage_count(struct device *dev,
828 struct device_attribute *attr, char *buf)
829 {
830 drive_info_struct *drv = to_drv(dev);
831 struct ctlr_info *h = to_hba(drv->dev.parent);
832 unsigned long flags;
833 int count;
834
835 spin_lock_irqsave(&h->lock, flags);
836 if (h->busy_configuring) {
837 spin_unlock_irqrestore(&h->lock, flags);
838 return -EBUSY;
839 }
840 count = drv->usage_count;
841 spin_unlock_irqrestore(&h->lock, flags);
842 return snprintf(buf, 20, "%d\n", count);
843 }
844 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
845
846 static struct attribute *cciss_host_attrs[] = {
847 &dev_attr_rescan.attr,
848 &dev_attr_resettable.attr,
849 &dev_attr_transport_mode.attr,
850 NULL
851 };
852
853 static struct attribute_group cciss_host_attr_group = {
854 .attrs = cciss_host_attrs,
855 };
856
857 static const struct attribute_group *cciss_host_attr_groups[] = {
858 &cciss_host_attr_group,
859 NULL
860 };
861
862 static struct device_type cciss_host_type = {
863 .name = "cciss_host",
864 .groups = cciss_host_attr_groups,
865 .release = cciss_hba_release,
866 };
867
868 static struct attribute *cciss_dev_attrs[] = {
869 &dev_attr_unique_id.attr,
870 &dev_attr_model.attr,
871 &dev_attr_vendor.attr,
872 &dev_attr_rev.attr,
873 &dev_attr_lunid.attr,
874 &dev_attr_raid_level.attr,
875 &dev_attr_usage_count.attr,
876 NULL
877 };
878
879 static struct attribute_group cciss_dev_attr_group = {
880 .attrs = cciss_dev_attrs,
881 };
882
883 static const struct attribute_group *cciss_dev_attr_groups[] = {
884 &cciss_dev_attr_group,
885 NULL
886 };
887
888 static struct device_type cciss_dev_type = {
889 .name = "cciss_device",
890 .groups = cciss_dev_attr_groups,
891 .release = cciss_device_release,
892 };
893
894 static struct bus_type cciss_bus_type = {
895 .name = "cciss",
896 };
897
898 /*
899 * cciss_hba_release is called when the reference count
900 * of h->dev goes to zero.
901 */
902 static void cciss_hba_release(struct device *dev)
903 {
904 /*
905 * nothing to do, but need this to avoid a warning
906 * about not having a release handler from lib/kref.c.
907 */
908 }
909
910 /*
911 * Initialize sysfs entry for each controller. This sets up and registers
912 * the 'cciss#' directory for each individual controller under
913 * /sys/bus/pci/devices/<dev>/.
914 */
915 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
916 {
917 device_initialize(&h->dev);
918 h->dev.type = &cciss_host_type;
919 h->dev.bus = &cciss_bus_type;
920 dev_set_name(&h->dev, "%s", h->devname);
921 h->dev.parent = &h->pdev->dev;
922
923 return device_add(&h->dev);
924 }
925
926 /*
927 * Remove sysfs entries for an hba.
928 */
929 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
930 {
931 device_del(&h->dev);
932 put_device(&h->dev); /* final put. */
933 }
934
935 /* cciss_device_release is called when the reference count
936 * of h->drv[x]dev goes to zero.
937 */
938 static void cciss_device_release(struct device *dev)
939 {
940 drive_info_struct *drv = to_drv(dev);
941 kfree(drv);
942 }
943
944 /*
945 * Initialize sysfs for each logical drive. This sets up and registers
946 * the 'c#d#' directory for each individual logical drive under
947 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
948 * /sys/block/cciss!c#d# to this entry.
949 */
950 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
951 int drv_index)
952 {
953 struct device *dev;
954
955 if (h->drv[drv_index]->device_initialized)
956 return 0;
957
958 dev = &h->drv[drv_index]->dev;
959 device_initialize(dev);
960 dev->type = &cciss_dev_type;
961 dev->bus = &cciss_bus_type;
962 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
963 dev->parent = &h->dev;
964 h->drv[drv_index]->device_initialized = 1;
965 return device_add(dev);
966 }
967
968 /*
969 * Remove sysfs entries for a logical drive.
970 */
971 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
972 int ctlr_exiting)
973 {
974 struct device *dev = &h->drv[drv_index]->dev;
975
976 /* special case for c*d0, we only destroy it on controller exit */
977 if (drv_index == 0 && !ctlr_exiting)
978 return;
979
980 device_del(dev);
981 put_device(dev); /* the "final" put. */
982 h->drv[drv_index] = NULL;
983 }
984
985 /*
986 * For operations that cannot sleep, a command block is allocated at init,
987 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
988 * which ones are free or in use.
989 */
990 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
991 {
992 CommandList_struct *c;
993 int i;
994 u64bit temp64;
995 dma_addr_t cmd_dma_handle, err_dma_handle;
996
997 do {
998 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
999 if (i == h->nr_cmds)
1000 return NULL;
1001 } while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
1002 c = h->cmd_pool + i;
1003 memset(c, 0, sizeof(CommandList_struct));
1004 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
1005 c->err_info = h->errinfo_pool + i;
1006 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1007 err_dma_handle = h->errinfo_pool_dhandle
1008 + i * sizeof(ErrorInfo_struct);
1009 h->nr_allocs++;
1010
1011 c->cmdindex = i;
1012
1013 INIT_LIST_HEAD(&c->list);
1014 c->busaddr = (__u32) cmd_dma_handle;
1015 temp64.val = (__u64) err_dma_handle;
1016 c->ErrDesc.Addr.lower = temp64.val32.lower;
1017 c->ErrDesc.Addr.upper = temp64.val32.upper;
1018 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1019
1020 c->ctlr = h->ctlr;
1021 return c;
1022 }
1023
1024 /* allocate a command using pci_alloc_consistent, used for ioctls,
1025 * etc., not for the main i/o path.
1026 */
1027 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1028 {
1029 CommandList_struct *c;
1030 u64bit temp64;
1031 dma_addr_t cmd_dma_handle, err_dma_handle;
1032
1033 c = pci_zalloc_consistent(h->pdev, sizeof(CommandList_struct),
1034 &cmd_dma_handle);
1035 if (c == NULL)
1036 return NULL;
1037
1038 c->cmdindex = -1;
1039
1040 c->err_info = pci_zalloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1041 &err_dma_handle);
1042
1043 if (c->err_info == NULL) {
1044 pci_free_consistent(h->pdev,
1045 sizeof(CommandList_struct), c, cmd_dma_handle);
1046 return NULL;
1047 }
1048
1049 INIT_LIST_HEAD(&c->list);
1050 c->busaddr = (__u32) cmd_dma_handle;
1051 temp64.val = (__u64) err_dma_handle;
1052 c->ErrDesc.Addr.lower = temp64.val32.lower;
1053 c->ErrDesc.Addr.upper = temp64.val32.upper;
1054 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1055
1056 c->ctlr = h->ctlr;
1057 return c;
1058 }
1059
1060 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1061 {
1062 int i;
1063
1064 i = c - h->cmd_pool;
1065 clear_bit(i, h->cmd_pool_bits);
1066 h->nr_frees++;
1067 }
1068
1069 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1070 {
1071 u64bit temp64;
1072
1073 temp64.val32.lower = c->ErrDesc.Addr.lower;
1074 temp64.val32.upper = c->ErrDesc.Addr.upper;
1075 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1076 c->err_info, (dma_addr_t) temp64.val);
1077 pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1078 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1079 }
1080
1081 static inline ctlr_info_t *get_host(struct gendisk *disk)
1082 {
1083 return disk->queue->queuedata;
1084 }
1085
1086 static inline drive_info_struct *get_drv(struct gendisk *disk)
1087 {
1088 return disk->private_data;
1089 }
1090
1091 /*
1092 * Open. Make sure the device is really there.
1093 */
1094 static int cciss_open(struct block_device *bdev, fmode_t mode)
1095 {
1096 ctlr_info_t *h = get_host(bdev->bd_disk);
1097 drive_info_struct *drv = get_drv(bdev->bd_disk);
1098
1099 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1100 if (drv->busy_configuring)
1101 return -EBUSY;
1102 /*
1103 * Root is allowed to open raw volume zero even if it's not configured
1104 * so array config can still work. Root is also allowed to open any
1105 * volume that has a LUN ID, so it can issue IOCTL to reread the
1106 * disk information. I don't think I really like this
1107 * but I'm already using way to many device nodes to claim another one
1108 * for "raw controller".
1109 */
1110 if (drv->heads == 0) {
1111 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1112 /* if not node 0 make sure it is a partition = 0 */
1113 if (MINOR(bdev->bd_dev) & 0x0f) {
1114 return -ENXIO;
1115 /* if it is, make sure we have a LUN ID */
1116 } else if (memcmp(drv->LunID, CTLR_LUNID,
1117 sizeof(drv->LunID))) {
1118 return -ENXIO;
1119 }
1120 }
1121 if (!capable(CAP_SYS_ADMIN))
1122 return -EPERM;
1123 }
1124 drv->usage_count++;
1125 h->usage_count++;
1126 return 0;
1127 }
1128
1129 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1130 {
1131 int ret;
1132
1133 mutex_lock(&cciss_mutex);
1134 ret = cciss_open(bdev, mode);
1135 mutex_unlock(&cciss_mutex);
1136
1137 return ret;
1138 }
1139
1140 /*
1141 * Close. Sync first.
1142 */
1143 static void cciss_release(struct gendisk *disk, fmode_t mode)
1144 {
1145 ctlr_info_t *h;
1146 drive_info_struct *drv;
1147
1148 mutex_lock(&cciss_mutex);
1149 h = get_host(disk);
1150 drv = get_drv(disk);
1151 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1152 drv->usage_count--;
1153 h->usage_count--;
1154 mutex_unlock(&cciss_mutex);
1155 }
1156
1157 #ifdef CONFIG_COMPAT
1158
1159 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1160 unsigned cmd, unsigned long arg);
1161 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1162 unsigned cmd, unsigned long arg);
1163
1164 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1165 unsigned cmd, unsigned long arg)
1166 {
1167 switch (cmd) {
1168 case CCISS_GETPCIINFO:
1169 case CCISS_GETINTINFO:
1170 case CCISS_SETINTINFO:
1171 case CCISS_GETNODENAME:
1172 case CCISS_SETNODENAME:
1173 case CCISS_GETHEARTBEAT:
1174 case CCISS_GETBUSTYPES:
1175 case CCISS_GETFIRMVER:
1176 case CCISS_GETDRIVVER:
1177 case CCISS_REVALIDVOLS:
1178 case CCISS_DEREGDISK:
1179 case CCISS_REGNEWDISK:
1180 case CCISS_REGNEWD:
1181 case CCISS_RESCANDISK:
1182 case CCISS_GETLUNINFO:
1183 return cciss_ioctl(bdev, mode, cmd, arg);
1184
1185 case CCISS_PASSTHRU32:
1186 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1187 case CCISS_BIG_PASSTHRU32:
1188 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1189
1190 default:
1191 return -ENOIOCTLCMD;
1192 }
1193 }
1194
1195 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1196 unsigned cmd, unsigned long arg)
1197 {
1198 IOCTL32_Command_struct __user *arg32 =
1199 (IOCTL32_Command_struct __user *) arg;
1200 IOCTL_Command_struct arg64;
1201 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1202 int err;
1203 u32 cp;
1204
1205 memset(&arg64, 0, sizeof(arg64));
1206 err = 0;
1207 err |=
1208 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1209 sizeof(arg64.LUN_info));
1210 err |=
1211 copy_from_user(&arg64.Request, &arg32->Request,
1212 sizeof(arg64.Request));
1213 err |=
1214 copy_from_user(&arg64.error_info, &arg32->error_info,
1215 sizeof(arg64.error_info));
1216 err |= get_user(arg64.buf_size, &arg32->buf_size);
1217 err |= get_user(cp, &arg32->buf);
1218 arg64.buf = compat_ptr(cp);
1219 err |= copy_to_user(p, &arg64, sizeof(arg64));
1220
1221 if (err)
1222 return -EFAULT;
1223
1224 err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1225 if (err)
1226 return err;
1227 err |=
1228 copy_in_user(&arg32->error_info, &p->error_info,
1229 sizeof(arg32->error_info));
1230 if (err)
1231 return -EFAULT;
1232 return err;
1233 }
1234
1235 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1236 unsigned cmd, unsigned long arg)
1237 {
1238 BIG_IOCTL32_Command_struct __user *arg32 =
1239 (BIG_IOCTL32_Command_struct __user *) arg;
1240 BIG_IOCTL_Command_struct arg64;
1241 BIG_IOCTL_Command_struct __user *p =
1242 compat_alloc_user_space(sizeof(arg64));
1243 int err;
1244 u32 cp;
1245
1246 memset(&arg64, 0, sizeof(arg64));
1247 err = 0;
1248 err |=
1249 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1250 sizeof(arg64.LUN_info));
1251 err |=
1252 copy_from_user(&arg64.Request, &arg32->Request,
1253 sizeof(arg64.Request));
1254 err |=
1255 copy_from_user(&arg64.error_info, &arg32->error_info,
1256 sizeof(arg64.error_info));
1257 err |= get_user(arg64.buf_size, &arg32->buf_size);
1258 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1259 err |= get_user(cp, &arg32->buf);
1260 arg64.buf = compat_ptr(cp);
1261 err |= copy_to_user(p, &arg64, sizeof(arg64));
1262
1263 if (err)
1264 return -EFAULT;
1265
1266 err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1267 if (err)
1268 return err;
1269 err |=
1270 copy_in_user(&arg32->error_info, &p->error_info,
1271 sizeof(arg32->error_info));
1272 if (err)
1273 return -EFAULT;
1274 return err;
1275 }
1276 #endif
1277
1278 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1279 {
1280 drive_info_struct *drv = get_drv(bdev->bd_disk);
1281
1282 if (!drv->cylinders)
1283 return -ENXIO;
1284
1285 geo->heads = drv->heads;
1286 geo->sectors = drv->sectors;
1287 geo->cylinders = drv->cylinders;
1288 return 0;
1289 }
1290
1291 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1292 {
1293 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1294 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1295 (void)check_for_unit_attention(h, c);
1296 }
1297
1298 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1299 {
1300 cciss_pci_info_struct pciinfo;
1301
1302 if (!argp)
1303 return -EINVAL;
1304 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1305 pciinfo.bus = h->pdev->bus->number;
1306 pciinfo.dev_fn = h->pdev->devfn;
1307 pciinfo.board_id = h->board_id;
1308 if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1309 return -EFAULT;
1310 return 0;
1311 }
1312
1313 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1314 {
1315 cciss_coalint_struct intinfo;
1316 unsigned long flags;
1317
1318 if (!argp)
1319 return -EINVAL;
1320 spin_lock_irqsave(&h->lock, flags);
1321 intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1322 intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1323 spin_unlock_irqrestore(&h->lock, flags);
1324 if (copy_to_user
1325 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1326 return -EFAULT;
1327 return 0;
1328 }
1329
1330 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1331 {
1332 cciss_coalint_struct intinfo;
1333 unsigned long flags;
1334 int i;
1335
1336 if (!argp)
1337 return -EINVAL;
1338 if (!capable(CAP_SYS_ADMIN))
1339 return -EPERM;
1340 if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1341 return -EFAULT;
1342 if ((intinfo.delay == 0) && (intinfo.count == 0))
1343 return -EINVAL;
1344 spin_lock_irqsave(&h->lock, flags);
1345 /* Update the field, and then ring the doorbell */
1346 writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1347 writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1348 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1349
1350 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1351 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1352 break;
1353 udelay(1000); /* delay and try again */
1354 }
1355 spin_unlock_irqrestore(&h->lock, flags);
1356 if (i >= MAX_IOCTL_CONFIG_WAIT)
1357 return -EAGAIN;
1358 return 0;
1359 }
1360
1361 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1362 {
1363 NodeName_type NodeName;
1364 unsigned long flags;
1365 int i;
1366
1367 if (!argp)
1368 return -EINVAL;
1369 spin_lock_irqsave(&h->lock, flags);
1370 for (i = 0; i < 16; i++)
1371 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1372 spin_unlock_irqrestore(&h->lock, flags);
1373 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1374 return -EFAULT;
1375 return 0;
1376 }
1377
1378 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1379 {
1380 NodeName_type NodeName;
1381 unsigned long flags;
1382 int i;
1383
1384 if (!argp)
1385 return -EINVAL;
1386 if (!capable(CAP_SYS_ADMIN))
1387 return -EPERM;
1388 if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1389 return -EFAULT;
1390 spin_lock_irqsave(&h->lock, flags);
1391 /* Update the field, and then ring the doorbell */
1392 for (i = 0; i < 16; i++)
1393 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1394 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1395 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1396 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1397 break;
1398 udelay(1000); /* delay and try again */
1399 }
1400 spin_unlock_irqrestore(&h->lock, flags);
1401 if (i >= MAX_IOCTL_CONFIG_WAIT)
1402 return -EAGAIN;
1403 return 0;
1404 }
1405
1406 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1407 {
1408 Heartbeat_type heartbeat;
1409 unsigned long flags;
1410
1411 if (!argp)
1412 return -EINVAL;
1413 spin_lock_irqsave(&h->lock, flags);
1414 heartbeat = readl(&h->cfgtable->HeartBeat);
1415 spin_unlock_irqrestore(&h->lock, flags);
1416 if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1417 return -EFAULT;
1418 return 0;
1419 }
1420
1421 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1422 {
1423 BusTypes_type BusTypes;
1424 unsigned long flags;
1425
1426 if (!argp)
1427 return -EINVAL;
1428 spin_lock_irqsave(&h->lock, flags);
1429 BusTypes = readl(&h->cfgtable->BusTypes);
1430 spin_unlock_irqrestore(&h->lock, flags);
1431 if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1432 return -EFAULT;
1433 return 0;
1434 }
1435
1436 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1437 {
1438 FirmwareVer_type firmware;
1439
1440 if (!argp)
1441 return -EINVAL;
1442 memcpy(firmware, h->firm_ver, 4);
1443
1444 if (copy_to_user
1445 (argp, firmware, sizeof(FirmwareVer_type)))
1446 return -EFAULT;
1447 return 0;
1448 }
1449
1450 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1451 {
1452 DriverVer_type DriverVer = DRIVER_VERSION;
1453
1454 if (!argp)
1455 return -EINVAL;
1456 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1457 return -EFAULT;
1458 return 0;
1459 }
1460
1461 static int cciss_getluninfo(ctlr_info_t *h,
1462 struct gendisk *disk, void __user *argp)
1463 {
1464 LogvolInfo_struct luninfo;
1465 drive_info_struct *drv = get_drv(disk);
1466
1467 if (!argp)
1468 return -EINVAL;
1469 memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1470 luninfo.num_opens = drv->usage_count;
1471 luninfo.num_parts = 0;
1472 if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1473 return -EFAULT;
1474 return 0;
1475 }
1476
1477 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1478 {
1479 IOCTL_Command_struct iocommand;
1480 CommandList_struct *c;
1481 char *buff = NULL;
1482 u64bit temp64;
1483 DECLARE_COMPLETION_ONSTACK(wait);
1484
1485 if (!argp)
1486 return -EINVAL;
1487
1488 if (!capable(CAP_SYS_RAWIO))
1489 return -EPERM;
1490
1491 if (copy_from_user
1492 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1493 return -EFAULT;
1494 if ((iocommand.buf_size < 1) &&
1495 (iocommand.Request.Type.Direction != XFER_NONE)) {
1496 return -EINVAL;
1497 }
1498 if (iocommand.buf_size > 0) {
1499 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1500 if (buff == NULL)
1501 return -EFAULT;
1502 }
1503 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1504 /* Copy the data into the buffer we created */
1505 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1506 kfree(buff);
1507 return -EFAULT;
1508 }
1509 } else {
1510 memset(buff, 0, iocommand.buf_size);
1511 }
1512 c = cmd_special_alloc(h);
1513 if (!c) {
1514 kfree(buff);
1515 return -ENOMEM;
1516 }
1517 /* Fill in the command type */
1518 c->cmd_type = CMD_IOCTL_PEND;
1519 /* Fill in Command Header */
1520 c->Header.ReplyQueue = 0; /* unused in simple mode */
1521 if (iocommand.buf_size > 0) { /* buffer to fill */
1522 c->Header.SGList = 1;
1523 c->Header.SGTotal = 1;
1524 } else { /* no buffers to fill */
1525 c->Header.SGList = 0;
1526 c->Header.SGTotal = 0;
1527 }
1528 c->Header.LUN = iocommand.LUN_info;
1529 /* use the kernel address the cmd block for tag */
1530 c->Header.Tag.lower = c->busaddr;
1531
1532 /* Fill in Request block */
1533 c->Request = iocommand.Request;
1534
1535 /* Fill in the scatter gather information */
1536 if (iocommand.buf_size > 0) {
1537 temp64.val = pci_map_single(h->pdev, buff,
1538 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1539 c->SG[0].Addr.lower = temp64.val32.lower;
1540 c->SG[0].Addr.upper = temp64.val32.upper;
1541 c->SG[0].Len = iocommand.buf_size;
1542 c->SG[0].Ext = 0; /* we are not chaining */
1543 }
1544 c->waiting = &wait;
1545
1546 enqueue_cmd_and_start_io(h, c);
1547 wait_for_completion(&wait);
1548
1549 /* unlock the buffers from DMA */
1550 temp64.val32.lower = c->SG[0].Addr.lower;
1551 temp64.val32.upper = c->SG[0].Addr.upper;
1552 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1553 PCI_DMA_BIDIRECTIONAL);
1554 check_ioctl_unit_attention(h, c);
1555
1556 /* Copy the error information out */
1557 iocommand.error_info = *(c->err_info);
1558 if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1559 kfree(buff);
1560 cmd_special_free(h, c);
1561 return -EFAULT;
1562 }
1563
1564 if (iocommand.Request.Type.Direction == XFER_READ) {
1565 /* Copy the data out of the buffer we created */
1566 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1567 kfree(buff);
1568 cmd_special_free(h, c);
1569 return -EFAULT;
1570 }
1571 }
1572 kfree(buff);
1573 cmd_special_free(h, c);
1574 return 0;
1575 }
1576
1577 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1578 {
1579 BIG_IOCTL_Command_struct *ioc;
1580 CommandList_struct *c;
1581 unsigned char **buff = NULL;
1582 int *buff_size = NULL;
1583 u64bit temp64;
1584 BYTE sg_used = 0;
1585 int status = 0;
1586 int i;
1587 DECLARE_COMPLETION_ONSTACK(wait);
1588 __u32 left;
1589 __u32 sz;
1590 BYTE __user *data_ptr;
1591
1592 if (!argp)
1593 return -EINVAL;
1594 if (!capable(CAP_SYS_RAWIO))
1595 return -EPERM;
1596 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1597 if (!ioc) {
1598 status = -ENOMEM;
1599 goto cleanup1;
1600 }
1601 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1602 status = -EFAULT;
1603 goto cleanup1;
1604 }
1605 if ((ioc->buf_size < 1) &&
1606 (ioc->Request.Type.Direction != XFER_NONE)) {
1607 status = -EINVAL;
1608 goto cleanup1;
1609 }
1610 /* Check kmalloc limits using all SGs */
1611 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1612 status = -EINVAL;
1613 goto cleanup1;
1614 }
1615 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1616 status = -EINVAL;
1617 goto cleanup1;
1618 }
1619 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1620 if (!buff) {
1621 status = -ENOMEM;
1622 goto cleanup1;
1623 }
1624 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1625 if (!buff_size) {
1626 status = -ENOMEM;
1627 goto cleanup1;
1628 }
1629 left = ioc->buf_size;
1630 data_ptr = ioc->buf;
1631 while (left) {
1632 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1633 buff_size[sg_used] = sz;
1634 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1635 if (buff[sg_used] == NULL) {
1636 status = -ENOMEM;
1637 goto cleanup1;
1638 }
1639 if (ioc->Request.Type.Direction == XFER_WRITE) {
1640 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1641 status = -EFAULT;
1642 goto cleanup1;
1643 }
1644 } else {
1645 memset(buff[sg_used], 0, sz);
1646 }
1647 left -= sz;
1648 data_ptr += sz;
1649 sg_used++;
1650 }
1651 c = cmd_special_alloc(h);
1652 if (!c) {
1653 status = -ENOMEM;
1654 goto cleanup1;
1655 }
1656 c->cmd_type = CMD_IOCTL_PEND;
1657 c->Header.ReplyQueue = 0;
1658 c->Header.SGList = sg_used;
1659 c->Header.SGTotal = sg_used;
1660 c->Header.LUN = ioc->LUN_info;
1661 c->Header.Tag.lower = c->busaddr;
1662
1663 c->Request = ioc->Request;
1664 for (i = 0; i < sg_used; i++) {
1665 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1666 PCI_DMA_BIDIRECTIONAL);
1667 c->SG[i].Addr.lower = temp64.val32.lower;
1668 c->SG[i].Addr.upper = temp64.val32.upper;
1669 c->SG[i].Len = buff_size[i];
1670 c->SG[i].Ext = 0; /* we are not chaining */
1671 }
1672 c->waiting = &wait;
1673 enqueue_cmd_and_start_io(h, c);
1674 wait_for_completion(&wait);
1675 /* unlock the buffers from DMA */
1676 for (i = 0; i < sg_used; i++) {
1677 temp64.val32.lower = c->SG[i].Addr.lower;
1678 temp64.val32.upper = c->SG[i].Addr.upper;
1679 pci_unmap_single(h->pdev,
1680 (dma_addr_t) temp64.val, buff_size[i],
1681 PCI_DMA_BIDIRECTIONAL);
1682 }
1683 check_ioctl_unit_attention(h, c);
1684 /* Copy the error information out */
1685 ioc->error_info = *(c->err_info);
1686 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1687 cmd_special_free(h, c);
1688 status = -EFAULT;
1689 goto cleanup1;
1690 }
1691 if (ioc->Request.Type.Direction == XFER_READ) {
1692 /* Copy the data out of the buffer we created */
1693 BYTE __user *ptr = ioc->buf;
1694 for (i = 0; i < sg_used; i++) {
1695 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1696 cmd_special_free(h, c);
1697 status = -EFAULT;
1698 goto cleanup1;
1699 }
1700 ptr += buff_size[i];
1701 }
1702 }
1703 cmd_special_free(h, c);
1704 status = 0;
1705 cleanup1:
1706 if (buff) {
1707 for (i = 0; i < sg_used; i++)
1708 kfree(buff[i]);
1709 kfree(buff);
1710 }
1711 kfree(buff_size);
1712 kfree(ioc);
1713 return status;
1714 }
1715
1716 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1717 unsigned int cmd, unsigned long arg)
1718 {
1719 struct gendisk *disk = bdev->bd_disk;
1720 ctlr_info_t *h = get_host(disk);
1721 void __user *argp = (void __user *)arg;
1722
1723 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1724 cmd, arg);
1725 switch (cmd) {
1726 case CCISS_GETPCIINFO:
1727 return cciss_getpciinfo(h, argp);
1728 case CCISS_GETINTINFO:
1729 return cciss_getintinfo(h, argp);
1730 case CCISS_SETINTINFO:
1731 return cciss_setintinfo(h, argp);
1732 case CCISS_GETNODENAME:
1733 return cciss_getnodename(h, argp);
1734 case CCISS_SETNODENAME:
1735 return cciss_setnodename(h, argp);
1736 case CCISS_GETHEARTBEAT:
1737 return cciss_getheartbeat(h, argp);
1738 case CCISS_GETBUSTYPES:
1739 return cciss_getbustypes(h, argp);
1740 case CCISS_GETFIRMVER:
1741 return cciss_getfirmver(h, argp);
1742 case CCISS_GETDRIVVER:
1743 return cciss_getdrivver(h, argp);
1744 case CCISS_DEREGDISK:
1745 case CCISS_REGNEWD:
1746 case CCISS_REVALIDVOLS:
1747 return rebuild_lun_table(h, 0, 1);
1748 case CCISS_GETLUNINFO:
1749 return cciss_getluninfo(h, disk, argp);
1750 case CCISS_PASSTHRU:
1751 return cciss_passthru(h, argp);
1752 case CCISS_BIG_PASSTHRU:
1753 return cciss_bigpassthru(h, argp);
1754
1755 /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1756 /* very meaningful for cciss. SG_IO is the main one people want. */
1757
1758 case SG_GET_VERSION_NUM:
1759 case SG_SET_TIMEOUT:
1760 case SG_GET_TIMEOUT:
1761 case SG_GET_RESERVED_SIZE:
1762 case SG_SET_RESERVED_SIZE:
1763 case SG_EMULATED_HOST:
1764 case SG_IO:
1765 case SCSI_IOCTL_SEND_COMMAND:
1766 return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1767
1768 /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1769 /* they aren't a good fit for cciss, as CD-ROMs are */
1770 /* not supported, and we don't have any bus/target/lun */
1771 /* which we present to the kernel. */
1772
1773 case CDROM_SEND_PACKET:
1774 case CDROMCLOSETRAY:
1775 case CDROMEJECT:
1776 case SCSI_IOCTL_GET_IDLUN:
1777 case SCSI_IOCTL_GET_BUS_NUMBER:
1778 default:
1779 return -ENOTTY;
1780 }
1781 }
1782
1783 static void cciss_check_queues(ctlr_info_t *h)
1784 {
1785 int start_queue = h->next_to_run;
1786 int i;
1787
1788 /* check to see if we have maxed out the number of commands that can
1789 * be placed on the queue. If so then exit. We do this check here
1790 * in case the interrupt we serviced was from an ioctl and did not
1791 * free any new commands.
1792 */
1793 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1794 return;
1795
1796 /* We have room on the queue for more commands. Now we need to queue
1797 * them up. We will also keep track of the next queue to run so
1798 * that every queue gets a chance to be started first.
1799 */
1800 for (i = 0; i < h->highest_lun + 1; i++) {
1801 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1802 /* make sure the disk has been added and the drive is real
1803 * because this can be called from the middle of init_one.
1804 */
1805 if (!h->drv[curr_queue])
1806 continue;
1807 if (!(h->drv[curr_queue]->queue) ||
1808 !(h->drv[curr_queue]->heads))
1809 continue;
1810 blk_start_queue(h->gendisk[curr_queue]->queue);
1811
1812 /* check to see if we have maxed out the number of commands
1813 * that can be placed on the queue.
1814 */
1815 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1816 if (curr_queue == start_queue) {
1817 h->next_to_run =
1818 (start_queue + 1) % (h->highest_lun + 1);
1819 break;
1820 } else {
1821 h->next_to_run = curr_queue;
1822 break;
1823 }
1824 }
1825 }
1826 }
1827
1828 static void cciss_softirq_done(struct request *rq)
1829 {
1830 CommandList_struct *c = rq->completion_data;
1831 ctlr_info_t *h = hba[c->ctlr];
1832 SGDescriptor_struct *curr_sg = c->SG;
1833 u64bit temp64;
1834 unsigned long flags;
1835 int i, ddir;
1836 int sg_index = 0;
1837
1838 if (c->Request.Type.Direction == XFER_READ)
1839 ddir = PCI_DMA_FROMDEVICE;
1840 else
1841 ddir = PCI_DMA_TODEVICE;
1842
1843 /* command did not need to be retried */
1844 /* unmap the DMA mapping for all the scatter gather elements */
1845 for (i = 0; i < c->Header.SGList; i++) {
1846 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1847 cciss_unmap_sg_chain_block(h, c);
1848 /* Point to the next block */
1849 curr_sg = h->cmd_sg_list[c->cmdindex];
1850 sg_index = 0;
1851 }
1852 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1853 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1854 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1855 ddir);
1856 ++sg_index;
1857 }
1858
1859 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1860
1861 /* set the residual count for pc requests */
1862 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1863 rq->resid_len = c->err_info->ResidualCnt;
1864
1865 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1866
1867 spin_lock_irqsave(&h->lock, flags);
1868 cmd_free(h, c);
1869 cciss_check_queues(h);
1870 spin_unlock_irqrestore(&h->lock, flags);
1871 }
1872
1873 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1874 unsigned char scsi3addr[], uint32_t log_unit)
1875 {
1876 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1877 sizeof(h->drv[log_unit]->LunID));
1878 }
1879
1880 /* This function gets the SCSI vendor, model, and revision of a logical drive
1881 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1882 * they cannot be read.
1883 */
1884 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1885 char *vendor, char *model, char *rev)
1886 {
1887 int rc;
1888 InquiryData_struct *inq_buf;
1889 unsigned char scsi3addr[8];
1890
1891 *vendor = '\0';
1892 *model = '\0';
1893 *rev = '\0';
1894
1895 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1896 if (!inq_buf)
1897 return;
1898
1899 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1900 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1901 scsi3addr, TYPE_CMD);
1902 if (rc == IO_OK) {
1903 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1904 vendor[VENDOR_LEN] = '\0';
1905 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1906 model[MODEL_LEN] = '\0';
1907 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1908 rev[REV_LEN] = '\0';
1909 }
1910
1911 kfree(inq_buf);
1912 return;
1913 }
1914
1915 /* This function gets the serial number of a logical drive via
1916 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1917 * number cannot be had, for whatever reason, 16 bytes of 0xff
1918 * are returned instead.
1919 */
1920 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1921 unsigned char *serial_no, int buflen)
1922 {
1923 #define PAGE_83_INQ_BYTES 64
1924 int rc;
1925 unsigned char *buf;
1926 unsigned char scsi3addr[8];
1927
1928 if (buflen > 16)
1929 buflen = 16;
1930 memset(serial_no, 0xff, buflen);
1931 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1932 if (!buf)
1933 return;
1934 memset(serial_no, 0, buflen);
1935 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1936 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1937 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1938 if (rc == IO_OK)
1939 memcpy(serial_no, &buf[8], buflen);
1940 kfree(buf);
1941 return;
1942 }
1943
1944 /*
1945 * cciss_add_disk sets up the block device queue for a logical drive
1946 */
1947 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1948 int drv_index)
1949 {
1950 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1951 if (!disk->queue)
1952 goto init_queue_failure;
1953 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1954 disk->major = h->major;
1955 disk->first_minor = drv_index << NWD_SHIFT;
1956 disk->fops = &cciss_fops;
1957 if (cciss_create_ld_sysfs_entry(h, drv_index))
1958 goto cleanup_queue;
1959 disk->private_data = h->drv[drv_index];
1960 disk->driverfs_dev = &h->drv[drv_index]->dev;
1961
1962 /* Set up queue information */
1963 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1964
1965 /* This is a hardware imposed limit. */
1966 blk_queue_max_segments(disk->queue, h->maxsgentries);
1967
1968 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1969
1970 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1971
1972 disk->queue->queuedata = h;
1973
1974 blk_queue_logical_block_size(disk->queue,
1975 h->drv[drv_index]->block_size);
1976
1977 /* Make sure all queue data is written out before */
1978 /* setting h->drv[drv_index]->queue, as setting this */
1979 /* allows the interrupt handler to start the queue */
1980 wmb();
1981 h->drv[drv_index]->queue = disk->queue;
1982 add_disk(disk);
1983 return 0;
1984
1985 cleanup_queue:
1986 blk_cleanup_queue(disk->queue);
1987 disk->queue = NULL;
1988 init_queue_failure:
1989 return -1;
1990 }
1991
1992 /* This function will check the usage_count of the drive to be updated/added.
1993 * If the usage_count is zero and it is a heretofore unknown drive, or,
1994 * the drive's capacity, geometry, or serial number has changed,
1995 * then the drive information will be updated and the disk will be
1996 * re-registered with the kernel. If these conditions don't hold,
1997 * then it will be left alone for the next reboot. The exception to this
1998 * is disk 0 which will always be left registered with the kernel since it
1999 * is also the controller node. Any changes to disk 0 will show up on
2000 * the next reboot.
2001 */
2002 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
2003 int first_time, int via_ioctl)
2004 {
2005 struct gendisk *disk;
2006 InquiryData_struct *inq_buff = NULL;
2007 unsigned int block_size;
2008 sector_t total_size;
2009 unsigned long flags = 0;
2010 int ret = 0;
2011 drive_info_struct *drvinfo;
2012
2013 /* Get information about the disk and modify the driver structure */
2014 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2015 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2016 if (inq_buff == NULL || drvinfo == NULL)
2017 goto mem_msg;
2018
2019 /* testing to see if 16-byte CDBs are already being used */
2020 if (h->cciss_read == CCISS_READ_16) {
2021 cciss_read_capacity_16(h, drv_index,
2022 &total_size, &block_size);
2023
2024 } else {
2025 cciss_read_capacity(h, drv_index, &total_size, &block_size);
2026 /* if read_capacity returns all F's this volume is >2TB */
2027 /* in size so we switch to 16-byte CDB's for all */
2028 /* read/write ops */
2029 if (total_size == 0xFFFFFFFFULL) {
2030 cciss_read_capacity_16(h, drv_index,
2031 &total_size, &block_size);
2032 h->cciss_read = CCISS_READ_16;
2033 h->cciss_write = CCISS_WRITE_16;
2034 } else {
2035 h->cciss_read = CCISS_READ_10;
2036 h->cciss_write = CCISS_WRITE_10;
2037 }
2038 }
2039
2040 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2041 inq_buff, drvinfo);
2042 drvinfo->block_size = block_size;
2043 drvinfo->nr_blocks = total_size + 1;
2044
2045 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2046 drvinfo->model, drvinfo->rev);
2047 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2048 sizeof(drvinfo->serial_no));
2049 /* Save the lunid in case we deregister the disk, below. */
2050 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2051 sizeof(drvinfo->LunID));
2052
2053 /* Is it the same disk we already know, and nothing's changed? */
2054 if (h->drv[drv_index]->raid_level != -1 &&
2055 ((memcmp(drvinfo->serial_no,
2056 h->drv[drv_index]->serial_no, 16) == 0) &&
2057 drvinfo->block_size == h->drv[drv_index]->block_size &&
2058 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2059 drvinfo->heads == h->drv[drv_index]->heads &&
2060 drvinfo->sectors == h->drv[drv_index]->sectors &&
2061 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2062 /* The disk is unchanged, nothing to update */
2063 goto freeret;
2064
2065 /* If we get here it's not the same disk, or something's changed,
2066 * so we need to * deregister it, and re-register it, if it's not
2067 * in use.
2068 * If the disk already exists then deregister it before proceeding
2069 * (unless it's the first disk (for the controller node).
2070 */
2071 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2072 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2073 spin_lock_irqsave(&h->lock, flags);
2074 h->drv[drv_index]->busy_configuring = 1;
2075 spin_unlock_irqrestore(&h->lock, flags);
2076
2077 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2078 * which keeps the interrupt handler from starting
2079 * the queue.
2080 */
2081 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2082 }
2083
2084 /* If the disk is in use return */
2085 if (ret)
2086 goto freeret;
2087
2088 /* Save the new information from cciss_geometry_inquiry
2089 * and serial number inquiry. If the disk was deregistered
2090 * above, then h->drv[drv_index] will be NULL.
2091 */
2092 if (h->drv[drv_index] == NULL) {
2093 drvinfo->device_initialized = 0;
2094 h->drv[drv_index] = drvinfo;
2095 drvinfo = NULL; /* so it won't be freed below. */
2096 } else {
2097 /* special case for cxd0 */
2098 h->drv[drv_index]->block_size = drvinfo->block_size;
2099 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2100 h->drv[drv_index]->heads = drvinfo->heads;
2101 h->drv[drv_index]->sectors = drvinfo->sectors;
2102 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2103 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2104 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2105 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2106 VENDOR_LEN + 1);
2107 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2108 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2109 }
2110
2111 ++h->num_luns;
2112 disk = h->gendisk[drv_index];
2113 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2114
2115 /* If it's not disk 0 (drv_index != 0)
2116 * or if it was disk 0, but there was previously
2117 * no actual corresponding configured logical drive
2118 * (raid_leve == -1) then we want to update the
2119 * logical drive's information.
2120 */
2121 if (drv_index || first_time) {
2122 if (cciss_add_disk(h, disk, drv_index) != 0) {
2123 cciss_free_gendisk(h, drv_index);
2124 cciss_free_drive_info(h, drv_index);
2125 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2126 drv_index);
2127 --h->num_luns;
2128 }
2129 }
2130
2131 freeret:
2132 kfree(inq_buff);
2133 kfree(drvinfo);
2134 return;
2135 mem_msg:
2136 dev_err(&h->pdev->dev, "out of memory\n");
2137 goto freeret;
2138 }
2139
2140 /* This function will find the first index of the controllers drive array
2141 * that has a null drv pointer and allocate the drive info struct and
2142 * will return that index This is where new drives will be added.
2143 * If the index to be returned is greater than the highest_lun index for
2144 * the controller then highest_lun is set * to this new index.
2145 * If there are no available indexes or if tha allocation fails, then -1
2146 * is returned. * "controller_node" is used to know if this is a real
2147 * logical drive, or just the controller node, which determines if this
2148 * counts towards highest_lun.
2149 */
2150 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2151 {
2152 int i;
2153 drive_info_struct *drv;
2154
2155 /* Search for an empty slot for our drive info */
2156 for (i = 0; i < CISS_MAX_LUN; i++) {
2157
2158 /* if not cxd0 case, and it's occupied, skip it. */
2159 if (h->drv[i] && i != 0)
2160 continue;
2161 /*
2162 * If it's cxd0 case, and drv is alloc'ed already, and a
2163 * disk is configured there, skip it.
2164 */
2165 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2166 continue;
2167
2168 /*
2169 * We've found an empty slot. Update highest_lun
2170 * provided this isn't just the fake cxd0 controller node.
2171 */
2172 if (i > h->highest_lun && !controller_node)
2173 h->highest_lun = i;
2174
2175 /* If adding a real disk at cxd0, and it's already alloc'ed */
2176 if (i == 0 && h->drv[i] != NULL)
2177 return i;
2178
2179 /*
2180 * Found an empty slot, not already alloc'ed. Allocate it.
2181 * Mark it with raid_level == -1, so we know it's new later on.
2182 */
2183 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2184 if (!drv)
2185 return -1;
2186 drv->raid_level = -1; /* so we know it's new */
2187 h->drv[i] = drv;
2188 return i;
2189 }
2190 return -1;
2191 }
2192
2193 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2194 {
2195 kfree(h->drv[drv_index]);
2196 h->drv[drv_index] = NULL;
2197 }
2198
2199 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2200 {
2201 put_disk(h->gendisk[drv_index]);
2202 h->gendisk[drv_index] = NULL;
2203 }
2204
2205 /* cciss_add_gendisk finds a free hba[]->drv structure
2206 * and allocates a gendisk if needed, and sets the lunid
2207 * in the drvinfo structure. It returns the index into
2208 * the ->drv[] array, or -1 if none are free.
2209 * is_controller_node indicates whether highest_lun should
2210 * count this disk, or if it's only being added to provide
2211 * a means to talk to the controller in case no logical
2212 * drives have yet been configured.
2213 */
2214 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2215 int controller_node)
2216 {
2217 int drv_index;
2218
2219 drv_index = cciss_alloc_drive_info(h, controller_node);
2220 if (drv_index == -1)
2221 return -1;
2222
2223 /*Check if the gendisk needs to be allocated */
2224 if (!h->gendisk[drv_index]) {
2225 h->gendisk[drv_index] =
2226 alloc_disk(1 << NWD_SHIFT);
2227 if (!h->gendisk[drv_index]) {
2228 dev_err(&h->pdev->dev,
2229 "could not allocate a new disk %d\n",
2230 drv_index);
2231 goto err_free_drive_info;
2232 }
2233 }
2234 memcpy(h->drv[drv_index]->LunID, lunid,
2235 sizeof(h->drv[drv_index]->LunID));
2236 if (cciss_create_ld_sysfs_entry(h, drv_index))
2237 goto err_free_disk;
2238 /* Don't need to mark this busy because nobody */
2239 /* else knows about this disk yet to contend */
2240 /* for access to it. */
2241 h->drv[drv_index]->busy_configuring = 0;
2242 wmb();
2243 return drv_index;
2244
2245 err_free_disk:
2246 cciss_free_gendisk(h, drv_index);
2247 err_free_drive_info:
2248 cciss_free_drive_info(h, drv_index);
2249 return -1;
2250 }
2251
2252 /* This is for the special case of a controller which
2253 * has no logical drives. In this case, we still need
2254 * to register a disk so the controller can be accessed
2255 * by the Array Config Utility.
2256 */
2257 static void cciss_add_controller_node(ctlr_info_t *h)
2258 {
2259 struct gendisk *disk;
2260 int drv_index;
2261
2262 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2263 return;
2264
2265 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2266 if (drv_index == -1)
2267 goto error;
2268 h->drv[drv_index]->block_size = 512;
2269 h->drv[drv_index]->nr_blocks = 0;
2270 h->drv[drv_index]->heads = 0;
2271 h->drv[drv_index]->sectors = 0;
2272 h->drv[drv_index]->cylinders = 0;
2273 h->drv[drv_index]->raid_level = -1;
2274 memset(h->drv[drv_index]->serial_no, 0, 16);
2275 disk = h->gendisk[drv_index];
2276 if (cciss_add_disk(h, disk, drv_index) == 0)
2277 return;
2278 cciss_free_gendisk(h, drv_index);
2279 cciss_free_drive_info(h, drv_index);
2280 error:
2281 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2282 return;
2283 }
2284
2285 /* This function will add and remove logical drives from the Logical
2286 * drive array of the controller and maintain persistency of ordering
2287 * so that mount points are preserved until the next reboot. This allows
2288 * for the removal of logical drives in the middle of the drive array
2289 * without a re-ordering of those drives.
2290 * INPUT
2291 * h = The controller to perform the operations on
2292 */
2293 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2294 int via_ioctl)
2295 {
2296 int num_luns;
2297 ReportLunData_struct *ld_buff = NULL;
2298 int return_code;
2299 int listlength = 0;
2300 int i;
2301 int drv_found;
2302 int drv_index = 0;
2303 unsigned char lunid[8] = CTLR_LUNID;
2304 unsigned long flags;
2305
2306 if (!capable(CAP_SYS_RAWIO))
2307 return -EPERM;
2308
2309 /* Set busy_configuring flag for this operation */
2310 spin_lock_irqsave(&h->lock, flags);
2311 if (h->busy_configuring) {
2312 spin_unlock_irqrestore(&h->lock, flags);
2313 return -EBUSY;
2314 }
2315 h->busy_configuring = 1;
2316 spin_unlock_irqrestore(&h->lock, flags);
2317
2318 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2319 if (ld_buff == NULL)
2320 goto mem_msg;
2321
2322 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2323 sizeof(ReportLunData_struct),
2324 0, CTLR_LUNID, TYPE_CMD);
2325
2326 if (return_code == IO_OK)
2327 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2328 else { /* reading number of logical volumes failed */
2329 dev_warn(&h->pdev->dev,
2330 "report logical volume command failed\n");
2331 listlength = 0;
2332 goto freeret;
2333 }
2334
2335 num_luns = listlength / 8; /* 8 bytes per entry */
2336 if (num_luns > CISS_MAX_LUN) {
2337 num_luns = CISS_MAX_LUN;
2338 dev_warn(&h->pdev->dev, "more luns configured"
2339 " on controller than can be handled by"
2340 " this driver.\n");
2341 }
2342
2343 if (num_luns == 0)
2344 cciss_add_controller_node(h);
2345
2346 /* Compare controller drive array to driver's drive array
2347 * to see if any drives are missing on the controller due
2348 * to action of Array Config Utility (user deletes drive)
2349 * and deregister logical drives which have disappeared.
2350 */
2351 for (i = 0; i <= h->highest_lun; i++) {
2352 int j;
2353 drv_found = 0;
2354
2355 /* skip holes in the array from already deleted drives */
2356 if (h->drv[i] == NULL)
2357 continue;
2358
2359 for (j = 0; j < num_luns; j++) {
2360 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2361 if (memcmp(h->drv[i]->LunID, lunid,
2362 sizeof(lunid)) == 0) {
2363 drv_found = 1;
2364 break;
2365 }
2366 }
2367 if (!drv_found) {
2368 /* Deregister it from the OS, it's gone. */
2369 spin_lock_irqsave(&h->lock, flags);
2370 h->drv[i]->busy_configuring = 1;
2371 spin_unlock_irqrestore(&h->lock, flags);
2372 return_code = deregister_disk(h, i, 1, via_ioctl);
2373 if (h->drv[i] != NULL)
2374 h->drv[i]->busy_configuring = 0;
2375 }
2376 }
2377
2378 /* Compare controller drive array to driver's drive array.
2379 * Check for updates in the drive information and any new drives
2380 * on the controller due to ACU adding logical drives, or changing
2381 * a logical drive's size, etc. Reregister any new/changed drives
2382 */
2383 for (i = 0; i < num_luns; i++) {
2384 int j;
2385
2386 drv_found = 0;
2387
2388 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2389 /* Find if the LUN is already in the drive array
2390 * of the driver. If so then update its info
2391 * if not in use. If it does not exist then find
2392 * the first free index and add it.
2393 */
2394 for (j = 0; j <= h->highest_lun; j++) {
2395 if (h->drv[j] != NULL &&
2396 memcmp(h->drv[j]->LunID, lunid,
2397 sizeof(h->drv[j]->LunID)) == 0) {
2398 drv_index = j;
2399 drv_found = 1;
2400 break;
2401 }
2402 }
2403
2404 /* check if the drive was found already in the array */
2405 if (!drv_found) {
2406 drv_index = cciss_add_gendisk(h, lunid, 0);
2407 if (drv_index == -1)
2408 goto freeret;
2409 }
2410 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2411 } /* end for */
2412
2413 freeret:
2414 kfree(ld_buff);
2415 h->busy_configuring = 0;
2416 /* We return -1 here to tell the ACU that we have registered/updated
2417 * all of the drives that we can and to keep it from calling us
2418 * additional times.
2419 */
2420 return -1;
2421 mem_msg:
2422 dev_err(&h->pdev->dev, "out of memory\n");
2423 h->busy_configuring = 0;
2424 goto freeret;
2425 }
2426
2427 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2428 {
2429 /* zero out the disk size info */
2430 drive_info->nr_blocks = 0;
2431 drive_info->block_size = 0;
2432 drive_info->heads = 0;
2433 drive_info->sectors = 0;
2434 drive_info->cylinders = 0;
2435 drive_info->raid_level = -1;
2436 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2437 memset(drive_info->model, 0, sizeof(drive_info->model));
2438 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2439 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2440 /*
2441 * don't clear the LUNID though, we need to remember which
2442 * one this one is.
2443 */
2444 }
2445
2446 /* This function will deregister the disk and it's queue from the
2447 * kernel. It must be called with the controller lock held and the
2448 * drv structures busy_configuring flag set. It's parameters are:
2449 *
2450 * disk = This is the disk to be deregistered
2451 * drv = This is the drive_info_struct associated with the disk to be
2452 * deregistered. It contains information about the disk used
2453 * by the driver.
2454 * clear_all = This flag determines whether or not the disk information
2455 * is going to be completely cleared out and the highest_lun
2456 * reset. Sometimes we want to clear out information about
2457 * the disk in preparation for re-adding it. In this case
2458 * the highest_lun should be left unchanged and the LunID
2459 * should not be cleared.
2460 * via_ioctl
2461 * This indicates whether we've reached this path via ioctl.
2462 * This affects the maximum usage count allowed for c0d0 to be messed with.
2463 * If this path is reached via ioctl(), then the max_usage_count will
2464 * be 1, as the process calling ioctl() has got to have the device open.
2465 * If we get here via sysfs, then the max usage count will be zero.
2466 */
2467 static int deregister_disk(ctlr_info_t *h, int drv_index,
2468 int clear_all, int via_ioctl)
2469 {
2470 int i;
2471 struct gendisk *disk;
2472 drive_info_struct *drv;
2473 int recalculate_highest_lun;
2474
2475 if (!capable(CAP_SYS_RAWIO))
2476 return -EPERM;
2477
2478 drv = h->drv[drv_index];
2479 disk = h->gendisk[drv_index];
2480
2481 /* make sure logical volume is NOT is use */
2482 if (clear_all || (h->gendisk[0] == disk)) {
2483 if (drv->usage_count > via_ioctl)
2484 return -EBUSY;
2485 } else if (drv->usage_count > 0)
2486 return -EBUSY;
2487
2488 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2489
2490 /* invalidate the devices and deregister the disk. If it is disk
2491 * zero do not deregister it but just zero out it's values. This
2492 * allows us to delete disk zero but keep the controller registered.
2493 */
2494 if (h->gendisk[0] != disk) {
2495 struct request_queue *q = disk->queue;
2496 if (disk->flags & GENHD_FL_UP) {
2497 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2498 del_gendisk(disk);
2499 }
2500 if (q)
2501 blk_cleanup_queue(q);
2502 /* If clear_all is set then we are deleting the logical
2503 * drive, not just refreshing its info. For drives
2504 * other than disk 0 we will call put_disk. We do not
2505 * do this for disk 0 as we need it to be able to
2506 * configure the controller.
2507 */
2508 if (clear_all){
2509 /* This isn't pretty, but we need to find the
2510 * disk in our array and NULL our the pointer.
2511 * This is so that we will call alloc_disk if
2512 * this index is used again later.
2513 */
2514 for (i=0; i < CISS_MAX_LUN; i++){
2515 if (h->gendisk[i] == disk) {
2516 h->gendisk[i] = NULL;
2517 break;
2518 }
2519 }
2520 put_disk(disk);
2521 }
2522 } else {
2523 set_capacity(disk, 0);
2524 cciss_clear_drive_info(drv);
2525 }
2526
2527 --h->num_luns;
2528
2529 /* if it was the last disk, find the new hightest lun */
2530 if (clear_all && recalculate_highest_lun) {
2531 int newhighest = -1;
2532 for (i = 0; i <= h->highest_lun; i++) {
2533 /* if the disk has size > 0, it is available */
2534 if (h->drv[i] && h->drv[i]->heads)
2535 newhighest = i;
2536 }
2537 h->highest_lun = newhighest;
2538 }
2539 return 0;
2540 }
2541
2542 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2543 size_t size, __u8 page_code, unsigned char *scsi3addr,
2544 int cmd_type)
2545 {
2546 u64bit buff_dma_handle;
2547 int status = IO_OK;
2548
2549 c->cmd_type = CMD_IOCTL_PEND;
2550 c->Header.ReplyQueue = 0;
2551 if (buff != NULL) {
2552 c->Header.SGList = 1;
2553 c->Header.SGTotal = 1;
2554 } else {
2555 c->Header.SGList = 0;
2556 c->Header.SGTotal = 0;
2557 }
2558 c->Header.Tag.lower = c->busaddr;
2559 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2560
2561 c->Request.Type.Type = cmd_type;
2562 if (cmd_type == TYPE_CMD) {
2563 switch (cmd) {
2564 case CISS_INQUIRY:
2565 /* are we trying to read a vital product page */
2566 if (page_code != 0) {
2567 c->Request.CDB[1] = 0x01;
2568 c->Request.CDB[2] = page_code;
2569 }
2570 c->Request.CDBLen = 6;
2571 c->Request.Type.Attribute = ATTR_SIMPLE;
2572 c->Request.Type.Direction = XFER_READ;
2573 c->Request.Timeout = 0;
2574 c->Request.CDB[0] = CISS_INQUIRY;
2575 c->Request.CDB[4] = size & 0xFF;
2576 break;
2577 case CISS_REPORT_LOG:
2578 case CISS_REPORT_PHYS:
2579 /* Talking to controller so It's a physical command
2580 mode = 00 target = 0. Nothing to write.
2581 */
2582 c->Request.CDBLen = 12;
2583 c->Request.Type.Attribute = ATTR_SIMPLE;
2584 c->Request.Type.Direction = XFER_READ;
2585 c->Request.Timeout = 0;
2586 c->Request.CDB[0] = cmd;
2587 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2588 c->Request.CDB[7] = (size >> 16) & 0xFF;
2589 c->Request.CDB[8] = (size >> 8) & 0xFF;
2590 c->Request.CDB[9] = size & 0xFF;
2591 break;
2592
2593 case CCISS_READ_CAPACITY:
2594 c->Request.CDBLen = 10;
2595 c->Request.Type.Attribute = ATTR_SIMPLE;
2596 c->Request.Type.Direction = XFER_READ;
2597 c->Request.Timeout = 0;
2598 c->Request.CDB[0] = cmd;
2599 break;
2600 case CCISS_READ_CAPACITY_16:
2601 c->Request.CDBLen = 16;
2602 c->Request.Type.Attribute = ATTR_SIMPLE;
2603 c->Request.Type.Direction = XFER_READ;
2604 c->Request.Timeout = 0;
2605 c->Request.CDB[0] = cmd;
2606 c->Request.CDB[1] = 0x10;
2607 c->Request.CDB[10] = (size >> 24) & 0xFF;
2608 c->Request.CDB[11] = (size >> 16) & 0xFF;
2609 c->Request.CDB[12] = (size >> 8) & 0xFF;
2610 c->Request.CDB[13] = size & 0xFF;
2611 c->Request.Timeout = 0;
2612 c->Request.CDB[0] = cmd;
2613 break;
2614 case CCISS_CACHE_FLUSH:
2615 c->Request.CDBLen = 12;
2616 c->Request.Type.Attribute = ATTR_SIMPLE;
2617 c->Request.Type.Direction = XFER_WRITE;
2618 c->Request.Timeout = 0;
2619 c->Request.CDB[0] = BMIC_WRITE;
2620 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2621 c->Request.CDB[7] = (size >> 8) & 0xFF;
2622 c->Request.CDB[8] = size & 0xFF;
2623 break;
2624 case TEST_UNIT_READY:
2625 c->Request.CDBLen = 6;
2626 c->Request.Type.Attribute = ATTR_SIMPLE;
2627 c->Request.Type.Direction = XFER_NONE;
2628 c->Request.Timeout = 0;
2629 break;
2630 default:
2631 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2632 return IO_ERROR;
2633 }
2634 } else if (cmd_type == TYPE_MSG) {
2635 switch (cmd) {
2636 case CCISS_ABORT_MSG:
2637 c->Request.CDBLen = 12;
2638 c->Request.Type.Attribute = ATTR_SIMPLE;
2639 c->Request.Type.Direction = XFER_WRITE;
2640 c->Request.Timeout = 0;
2641 c->Request.CDB[0] = cmd; /* abort */
2642 c->Request.CDB[1] = 0; /* abort a command */
2643 /* buff contains the tag of the command to abort */
2644 memcpy(&c->Request.CDB[4], buff, 8);
2645 break;
2646 case CCISS_RESET_MSG:
2647 c->Request.CDBLen = 16;
2648 c->Request.Type.Attribute = ATTR_SIMPLE;
2649 c->Request.Type.Direction = XFER_NONE;
2650 c->Request.Timeout = 0;
2651 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2652 c->Request.CDB[0] = cmd; /* reset */
2653 c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2654 break;
2655 case CCISS_NOOP_MSG:
2656 c->Request.CDBLen = 1;
2657 c->Request.Type.Attribute = ATTR_SIMPLE;
2658 c->Request.Type.Direction = XFER_WRITE;
2659 c->Request.Timeout = 0;
2660 c->Request.CDB[0] = cmd;
2661 break;
2662 default:
2663 dev_warn(&h->pdev->dev,
2664 "unknown message type %d\n", cmd);
2665 return IO_ERROR;
2666 }
2667 } else {
2668 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2669 return IO_ERROR;
2670 }
2671 /* Fill in the scatter gather information */
2672 if (size > 0) {
2673 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2674 buff, size,
2675 PCI_DMA_BIDIRECTIONAL);
2676 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2677 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2678 c->SG[0].Len = size;
2679 c->SG[0].Ext = 0; /* we are not chaining */
2680 }
2681 return status;
2682 }
2683
2684 static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2685 u8 reset_type)
2686 {
2687 CommandList_struct *c;
2688 int return_status;
2689
2690 c = cmd_alloc(h);
2691 if (!c)
2692 return -ENOMEM;
2693 return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2694 CTLR_LUNID, TYPE_MSG);
2695 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2696 if (return_status != IO_OK) {
2697 cmd_special_free(h, c);
2698 return return_status;
2699 }
2700 c->waiting = NULL;
2701 enqueue_cmd_and_start_io(h, c);
2702 /* Don't wait for completion, the reset won't complete. Don't free
2703 * the command either. This is the last command we will send before
2704 * re-initializing everything, so it doesn't matter and won't leak.
2705 */
2706 return 0;
2707 }
2708
2709 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2710 {
2711 switch (c->err_info->ScsiStatus) {
2712 case SAM_STAT_GOOD:
2713 return IO_OK;
2714 case SAM_STAT_CHECK_CONDITION:
2715 switch (0xf & c->err_info->SenseInfo[2]) {
2716 case 0: return IO_OK; /* no sense */
2717 case 1: return IO_OK; /* recovered error */
2718 default:
2719 if (check_for_unit_attention(h, c))
2720 return IO_NEEDS_RETRY;
2721 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2722 "check condition, sense key = 0x%02x\n",
2723 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2724 }
2725 break;
2726 default:
2727 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2728 "scsi status = 0x%02x\n",
2729 c->Request.CDB[0], c->err_info->ScsiStatus);
2730 break;
2731 }
2732 return IO_ERROR;
2733 }
2734
2735 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2736 {
2737 int return_status = IO_OK;
2738
2739 if (c->err_info->CommandStatus == CMD_SUCCESS)
2740 return IO_OK;
2741
2742 switch (c->err_info->CommandStatus) {
2743 case CMD_TARGET_STATUS:
2744 return_status = check_target_status(h, c);
2745 break;
2746 case CMD_DATA_UNDERRUN:
2747 case CMD_DATA_OVERRUN:
2748 /* expected for inquiry and report lun commands */
2749 break;
2750 case CMD_INVALID:
2751 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2752 "reported invalid\n", c->Request.CDB[0]);
2753 return_status = IO_ERROR;
2754 break;
2755 case CMD_PROTOCOL_ERR:
2756 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2757 "protocol error\n", c->Request.CDB[0]);
2758 return_status = IO_ERROR;
2759 break;
2760 case CMD_HARDWARE_ERR:
2761 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2762 " hardware error\n", c->Request.CDB[0]);
2763 return_status = IO_ERROR;
2764 break;
2765 case CMD_CONNECTION_LOST:
2766 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2767 "connection lost\n", c->Request.CDB[0]);
2768 return_status = IO_ERROR;
2769 break;
2770 case CMD_ABORTED:
2771 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2772 "aborted\n", c->Request.CDB[0]);
2773 return_status = IO_ERROR;
2774 break;
2775 case CMD_ABORT_FAILED:
2776 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2777 "abort failed\n", c->Request.CDB[0]);
2778 return_status = IO_ERROR;
2779 break;
2780 case CMD_UNSOLICITED_ABORT:
2781 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2782 c->Request.CDB[0]);
2783 return_status = IO_NEEDS_RETRY;
2784 break;
2785 case CMD_UNABORTABLE:
2786 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2787 return_status = IO_ERROR;
2788 break;
2789 default:
2790 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2791 "unknown status %x\n", c->Request.CDB[0],
2792 c->err_info->CommandStatus);
2793 return_status = IO_ERROR;
2794 }
2795 return return_status;
2796 }
2797
2798 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2799 int attempt_retry)
2800 {
2801 DECLARE_COMPLETION_ONSTACK(wait);
2802 u64bit buff_dma_handle;
2803 int return_status = IO_OK;
2804
2805 resend_cmd2:
2806 c->waiting = &wait;
2807 enqueue_cmd_and_start_io(h, c);
2808
2809 wait_for_completion(&wait);
2810
2811 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2812 goto command_done;
2813
2814 return_status = process_sendcmd_error(h, c);
2815
2816 if (return_status == IO_NEEDS_RETRY &&
2817 c->retry_count < MAX_CMD_RETRIES) {
2818 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2819 c->Request.CDB[0]);
2820 c->retry_count++;
2821 /* erase the old error information */
2822 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2823 return_status = IO_OK;
2824 reinit_completion(&wait);
2825 goto resend_cmd2;
2826 }
2827
2828 command_done:
2829 /* unlock the buffers from DMA */
2830 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2831 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2832 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2833 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2834 return return_status;
2835 }
2836
2837 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2838 __u8 page_code, unsigned char scsi3addr[],
2839 int cmd_type)
2840 {
2841 CommandList_struct *c;
2842 int return_status;
2843
2844 c = cmd_special_alloc(h);
2845 if (!c)
2846 return -ENOMEM;
2847 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2848 scsi3addr, cmd_type);
2849 if (return_status == IO_OK)
2850 return_status = sendcmd_withirq_core(h, c, 1);
2851
2852 cmd_special_free(h, c);
2853 return return_status;
2854 }
2855
2856 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2857 sector_t total_size,
2858 unsigned int block_size,
2859 InquiryData_struct *inq_buff,
2860 drive_info_struct *drv)
2861 {
2862 int return_code;
2863 unsigned long t;
2864 unsigned char scsi3addr[8];
2865
2866 memset(inq_buff, 0, sizeof(InquiryData_struct));
2867 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2868 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2869 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2870 if (return_code == IO_OK) {
2871 if (inq_buff->data_byte[8] == 0xFF) {
2872 dev_warn(&h->pdev->dev,
2873 "reading geometry failed, volume "
2874 "does not support reading geometry\n");
2875 drv->heads = 255;
2876 drv->sectors = 32; /* Sectors per track */
2877 drv->cylinders = total_size + 1;
2878 drv->raid_level = RAID_UNKNOWN;
2879 } else {
2880 drv->heads = inq_buff->data_byte[6];
2881 drv->sectors = inq_buff->data_byte[7];
2882 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2883 drv->cylinders += inq_buff->data_byte[5];
2884 drv->raid_level = inq_buff->data_byte[8];
2885 }
2886 drv->block_size = block_size;
2887 drv->nr_blocks = total_size + 1;
2888 t = drv->heads * drv->sectors;
2889 if (t > 1) {
2890 sector_t real_size = total_size + 1;
2891 unsigned long rem = sector_div(real_size, t);
2892 if (rem)
2893 real_size++;
2894 drv->cylinders = real_size;
2895 }
2896 } else { /* Get geometry failed */
2897 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2898 }
2899 }
2900
2901 static void
2902 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2903 unsigned int *block_size)
2904 {
2905 ReadCapdata_struct *buf;
2906 int return_code;
2907 unsigned char scsi3addr[8];
2908
2909 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2910 if (!buf) {
2911 dev_warn(&h->pdev->dev, "out of memory\n");
2912 return;
2913 }
2914
2915 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2916 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2917 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2918 if (return_code == IO_OK) {
2919 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2920 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2921 } else { /* read capacity command failed */
2922 dev_warn(&h->pdev->dev, "read capacity failed\n");
2923 *total_size = 0;
2924 *block_size = BLOCK_SIZE;
2925 }
2926 kfree(buf);
2927 }
2928
2929 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2930 sector_t *total_size, unsigned int *block_size)
2931 {
2932 ReadCapdata_struct_16 *buf;
2933 int return_code;
2934 unsigned char scsi3addr[8];
2935
2936 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2937 if (!buf) {
2938 dev_warn(&h->pdev->dev, "out of memory\n");
2939 return;
2940 }
2941
2942 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2943 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2944 buf, sizeof(ReadCapdata_struct_16),
2945 0, scsi3addr, TYPE_CMD);
2946 if (return_code == IO_OK) {
2947 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2948 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2949 } else { /* read capacity command failed */
2950 dev_warn(&h->pdev->dev, "read capacity failed\n");
2951 *total_size = 0;
2952 *block_size = BLOCK_SIZE;
2953 }
2954 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2955 (unsigned long long)*total_size+1, *block_size);
2956 kfree(buf);
2957 }
2958
2959 static int cciss_revalidate(struct gendisk *disk)
2960 {
2961 ctlr_info_t *h = get_host(disk);
2962 drive_info_struct *drv = get_drv(disk);
2963 int logvol;
2964 int FOUND = 0;
2965 unsigned int block_size;
2966 sector_t total_size;
2967 InquiryData_struct *inq_buff = NULL;
2968
2969 for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2970 if (!h->drv[logvol])
2971 continue;
2972 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2973 sizeof(drv->LunID)) == 0) {
2974 FOUND = 1;
2975 break;
2976 }
2977 }
2978
2979 if (!FOUND)
2980 return 1;
2981
2982 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2983 if (inq_buff == NULL) {
2984 dev_warn(&h->pdev->dev, "out of memory\n");
2985 return 1;
2986 }
2987 if (h->cciss_read == CCISS_READ_10) {
2988 cciss_read_capacity(h, logvol,
2989 &total_size, &block_size);
2990 } else {
2991 cciss_read_capacity_16(h, logvol,
2992 &total_size, &block_size);
2993 }
2994 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2995 inq_buff, drv);
2996
2997 blk_queue_logical_block_size(drv->queue, drv->block_size);
2998 set_capacity(disk, drv->nr_blocks);
2999
3000 kfree(inq_buff);
3001 return 0;
3002 }
3003
3004 /*
3005 * Map (physical) PCI mem into (virtual) kernel space
3006 */
3007 static void __iomem *remap_pci_mem(ulong base, ulong size)
3008 {
3009 ulong page_base = ((ulong) base) & PAGE_MASK;
3010 ulong page_offs = ((ulong) base) - page_base;
3011 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3012
3013 return page_remapped ? (page_remapped + page_offs) : NULL;
3014 }
3015
3016 /*
3017 * Takes jobs of the Q and sends them to the hardware, then puts it on
3018 * the Q to wait for completion.
3019 */
3020 static void start_io(ctlr_info_t *h)
3021 {
3022 CommandList_struct *c;
3023
3024 while (!list_empty(&h->reqQ)) {
3025 c = list_entry(h->reqQ.next, CommandList_struct, list);
3026 /* can't do anything if fifo is full */
3027 if ((h->access.fifo_full(h))) {
3028 dev_warn(&h->pdev->dev, "fifo full\n");
3029 break;
3030 }
3031
3032 /* Get the first entry from the Request Q */
3033 removeQ(c);
3034 h->Qdepth--;
3035
3036 /* Tell the controller execute command */
3037 h->access.submit_command(h, c);
3038
3039 /* Put job onto the completed Q */
3040 addQ(&h->cmpQ, c);
3041 }
3042 }
3043
3044 /* Assumes that h->lock is held. */
3045 /* Zeros out the error record and then resends the command back */
3046 /* to the controller */
3047 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3048 {
3049 /* erase the old error information */
3050 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3051
3052 /* add it to software queue and then send it to the controller */
3053 addQ(&h->reqQ, c);
3054 h->Qdepth++;
3055 if (h->Qdepth > h->maxQsinceinit)
3056 h->maxQsinceinit = h->Qdepth;
3057
3058 start_io(h);
3059 }
3060
3061 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3062 unsigned int msg_byte, unsigned int host_byte,
3063 unsigned int driver_byte)
3064 {
3065 /* inverse of macros in scsi.h */
3066 return (scsi_status_byte & 0xff) |
3067 ((msg_byte & 0xff) << 8) |
3068 ((host_byte & 0xff) << 16) |
3069 ((driver_byte & 0xff) << 24);
3070 }
3071
3072 static inline int evaluate_target_status(ctlr_info_t *h,
3073 CommandList_struct *cmd, int *retry_cmd)
3074 {
3075 unsigned char sense_key;
3076 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3077 int error_value;
3078
3079 *retry_cmd = 0;
3080 /* If we get in here, it means we got "target status", that is, scsi status */
3081 status_byte = cmd->err_info->ScsiStatus;
3082 driver_byte = DRIVER_OK;
3083 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3084
3085 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3086 host_byte = DID_PASSTHROUGH;
3087 else
3088 host_byte = DID_OK;
3089
3090 error_value = make_status_bytes(status_byte, msg_byte,
3091 host_byte, driver_byte);
3092
3093 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3094 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3095 dev_warn(&h->pdev->dev, "cmd %p "
3096 "has SCSI Status 0x%x\n",
3097 cmd, cmd->err_info->ScsiStatus);
3098 return error_value;
3099 }
3100
3101 /* check the sense key */
3102 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3103 /* no status or recovered error */
3104 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3105 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3106 error_value = 0;
3107
3108 if (check_for_unit_attention(h, cmd)) {
3109 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3110 return 0;
3111 }
3112
3113 /* Not SG_IO or similar? */
3114 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3115 if (error_value != 0)
3116 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3117 " sense key = 0x%x\n", cmd, sense_key);
3118 return error_value;
3119 }
3120
3121 /* SG_IO or similar, copy sense data back */
3122 if (cmd->rq->sense) {
3123 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3124 cmd->rq->sense_len = cmd->err_info->SenseLen;
3125 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3126 cmd->rq->sense_len);
3127 } else
3128 cmd->rq->sense_len = 0;
3129
3130 return error_value;
3131 }
3132
3133 /* checks the status of the job and calls complete buffers to mark all
3134 * buffers for the completed job. Note that this function does not need
3135 * to hold the hba/queue lock.
3136 */
3137 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3138 int timeout)
3139 {
3140 int retry_cmd = 0;
3141 struct request *rq = cmd->rq;
3142
3143 rq->errors = 0;
3144
3145 if (timeout)
3146 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3147
3148 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3149 goto after_error_processing;
3150
3151 switch (cmd->err_info->CommandStatus) {
3152 case CMD_TARGET_STATUS:
3153 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3154 break;
3155 case CMD_DATA_UNDERRUN:
3156 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3157 dev_warn(&h->pdev->dev, "cmd %p has"
3158 " completed with data underrun "
3159 "reported\n", cmd);
3160 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3161 }
3162 break;
3163 case CMD_DATA_OVERRUN:
3164 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3165 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3166 " completed with data overrun "
3167 "reported\n", cmd);
3168 break;
3169 case CMD_INVALID:
3170 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3171 "reported invalid\n", cmd);
3172 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3173 cmd->err_info->CommandStatus, DRIVER_OK,
3174 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3175 DID_PASSTHROUGH : DID_ERROR);
3176 break;
3177 case CMD_PROTOCOL_ERR:
3178 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3179 "protocol error\n", cmd);
3180 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3181 cmd->err_info->CommandStatus, DRIVER_OK,
3182 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3183 DID_PASSTHROUGH : DID_ERROR);
3184 break;
3185 case CMD_HARDWARE_ERR:
3186 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3187 " hardware error\n", cmd);
3188 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3189 cmd->err_info->CommandStatus, DRIVER_OK,
3190 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3191 DID_PASSTHROUGH : DID_ERROR);
3192 break;
3193 case CMD_CONNECTION_LOST:
3194 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3195 "connection lost\n", cmd);
3196 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197 cmd->err_info->CommandStatus, DRIVER_OK,
3198 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3199 DID_PASSTHROUGH : DID_ERROR);
3200 break;
3201 case CMD_ABORTED:
3202 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3203 "aborted\n", cmd);
3204 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3205 cmd->err_info->CommandStatus, DRIVER_OK,
3206 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3207 DID_PASSTHROUGH : DID_ABORT);
3208 break;
3209 case CMD_ABORT_FAILED:
3210 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3211 "abort failed\n", cmd);
3212 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3213 cmd->err_info->CommandStatus, DRIVER_OK,
3214 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3215 DID_PASSTHROUGH : DID_ERROR);
3216 break;
3217 case CMD_UNSOLICITED_ABORT:
3218 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3219 "abort %p\n", h->ctlr, cmd);
3220 if (cmd->retry_count < MAX_CMD_RETRIES) {
3221 retry_cmd = 1;
3222 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3223 cmd->retry_count++;
3224 } else
3225 dev_warn(&h->pdev->dev,
3226 "%p retried too many times\n", cmd);
3227 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3228 cmd->err_info->CommandStatus, DRIVER_OK,
3229 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3230 DID_PASSTHROUGH : DID_ABORT);
3231 break;
3232 case CMD_TIMEOUT:
3233 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3234 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3235 cmd->err_info->CommandStatus, DRIVER_OK,
3236 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3237 DID_PASSTHROUGH : DID_ERROR);
3238 break;
3239 case CMD_UNABORTABLE:
3240 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3241 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3242 cmd->err_info->CommandStatus, DRIVER_OK,
3243 cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3244 DID_PASSTHROUGH : DID_ERROR);
3245 break;
3246 default:
3247 dev_warn(&h->pdev->dev, "cmd %p returned "
3248 "unknown status %x\n", cmd,
3249 cmd->err_info->CommandStatus);
3250 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3251 cmd->err_info->CommandStatus, DRIVER_OK,
3252 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3253 DID_PASSTHROUGH : DID_ERROR);
3254 }
3255
3256 after_error_processing:
3257
3258 /* We need to return this command */
3259 if (retry_cmd) {
3260 resend_cciss_cmd(h, cmd);
3261 return;
3262 }
3263 cmd->rq->completion_data = cmd;
3264 blk_complete_request(cmd->rq);
3265 }
3266
3267 static inline u32 cciss_tag_contains_index(u32 tag)
3268 {
3269 #define DIRECT_LOOKUP_BIT 0x10
3270 return tag & DIRECT_LOOKUP_BIT;
3271 }
3272
3273 static inline u32 cciss_tag_to_index(u32 tag)
3274 {
3275 #define DIRECT_LOOKUP_SHIFT 5
3276 return tag >> DIRECT_LOOKUP_SHIFT;
3277 }
3278
3279 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3280 {
3281 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3282 #define CCISS_SIMPLE_ERROR_BITS 0x03
3283 if (likely(h->transMethod & CFGTBL_Trans_Performant))
3284 return tag & ~CCISS_PERF_ERROR_BITS;
3285 return tag & ~CCISS_SIMPLE_ERROR_BITS;
3286 }
3287
3288 static inline void cciss_mark_tag_indexed(u32 *tag)
3289 {
3290 *tag |= DIRECT_LOOKUP_BIT;
3291 }
3292
3293 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3294 {
3295 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3296 }
3297
3298 /*
3299 * Get a request and submit it to the controller.
3300 */
3301 static void do_cciss_request(struct request_queue *q)
3302 {
3303 ctlr_info_t *h = q->queuedata;
3304 CommandList_struct *c;
3305 sector_t start_blk;
3306 int seg;
3307 struct request *creq;
3308 u64bit temp64;
3309 struct scatterlist *tmp_sg;
3310 SGDescriptor_struct *curr_sg;
3311 drive_info_struct *drv;
3312 int i, dir;
3313 int sg_index = 0;
3314 int chained = 0;
3315
3316 queue:
3317 creq = blk_peek_request(q);
3318 if (!creq)
3319 goto startio;
3320
3321 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3322
3323 c = cmd_alloc(h);
3324 if (!c)
3325 goto full;
3326
3327 blk_start_request(creq);
3328
3329 tmp_sg = h->scatter_list[c->cmdindex];
3330 spin_unlock_irq(q->queue_lock);
3331
3332 c->cmd_type = CMD_RWREQ;
3333 c->rq = creq;
3334
3335 /* fill in the request */
3336 drv = creq->rq_disk->private_data;
3337 c->Header.ReplyQueue = 0; /* unused in simple mode */
3338 /* got command from pool, so use the command block index instead */
3339 /* for direct lookups. */
3340 /* The first 2 bits are reserved for controller error reporting. */
3341 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3342 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3343 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3344 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3345 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3346 c->Request.Type.Attribute = ATTR_SIMPLE;
3347 c->Request.Type.Direction =
3348 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3349 c->Request.Timeout = 0; /* Don't time out */
3350 c->Request.CDB[0] =
3351 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3352 start_blk = blk_rq_pos(creq);
3353 dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3354 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3355 sg_init_table(tmp_sg, h->maxsgentries);
3356 seg = blk_rq_map_sg(q, creq, tmp_sg);
3357
3358 /* get the DMA records for the setup */
3359 if (c->Request.Type.Direction == XFER_READ)
3360 dir = PCI_DMA_FROMDEVICE;
3361 else
3362 dir = PCI_DMA_TODEVICE;
3363
3364 curr_sg = c->SG;
3365 sg_index = 0;
3366 chained = 0;
3367
3368 for (i = 0; i < seg; i++) {
3369 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3370 !chained && ((seg - i) > 1)) {
3371 /* Point to next chain block. */
3372 curr_sg = h->cmd_sg_list[c->cmdindex];
3373 sg_index = 0;
3374 chained = 1;
3375 }
3376 curr_sg[sg_index].Len = tmp_sg[i].length;
3377 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3378 tmp_sg[i].offset,
3379 tmp_sg[i].length, dir);
3380 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3381 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3382 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3383 ++sg_index;
3384 }
3385 if (chained)
3386 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3387 (seg - (h->max_cmd_sgentries - 1)) *
3388 sizeof(SGDescriptor_struct));
3389
3390 /* track how many SG entries we are using */
3391 if (seg > h->maxSG)
3392 h->maxSG = seg;
3393
3394 dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3395 "chained[%d]\n",
3396 blk_rq_sectors(creq), seg, chained);
3397
3398 c->Header.SGTotal = seg + chained;
3399 if (seg <= h->max_cmd_sgentries)
3400 c->Header.SGList = c->Header.SGTotal;
3401 else
3402 c->Header.SGList = h->max_cmd_sgentries;
3403 set_performant_mode(h, c);
3404
3405 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3406 if(h->cciss_read == CCISS_READ_10) {
3407 c->Request.CDB[1] = 0;
3408 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3409 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3410 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3411 c->Request.CDB[5] = start_blk & 0xff;
3412 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3413 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3414 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3415 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3416 } else {
3417 u32 upper32 = upper_32_bits(start_blk);
3418
3419 c->Request.CDBLen = 16;
3420 c->Request.CDB[1]= 0;
3421 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3422 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3423 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3424 c->Request.CDB[5]= upper32 & 0xff;
3425 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3426 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3427 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3428 c->Request.CDB[9]= start_blk & 0xff;
3429 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3430 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3431 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3432 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3433 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3434 }
3435 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3436 c->Request.CDBLen = creq->cmd_len;
3437 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3438 } else {
3439 dev_warn(&h->pdev->dev, "bad request type %d\n",
3440 creq->cmd_type);
3441 BUG();
3442 }
3443
3444 spin_lock_irq(q->queue_lock);
3445
3446 addQ(&h->reqQ, c);
3447 h->Qdepth++;
3448 if (h->Qdepth > h->maxQsinceinit)
3449 h->maxQsinceinit = h->Qdepth;
3450
3451 goto queue;
3452 full:
3453 blk_stop_queue(q);
3454 startio:
3455 /* We will already have the driver lock here so not need
3456 * to lock it.
3457 */
3458 start_io(h);
3459 }
3460
3461 static inline unsigned long get_next_completion(ctlr_info_t *h)
3462 {
3463 return h->access.command_completed(h);
3464 }
3465
3466 static inline int interrupt_pending(ctlr_info_t *h)
3467 {
3468 return h->access.intr_pending(h);
3469 }
3470
3471 static inline long interrupt_not_for_us(ctlr_info_t *h)
3472 {
3473 return ((h->access.intr_pending(h) == 0) ||
3474 (h->interrupts_enabled == 0));
3475 }
3476
3477 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3478 u32 raw_tag)
3479 {
3480 if (unlikely(tag_index >= h->nr_cmds)) {
3481 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3482 return 1;
3483 }
3484 return 0;
3485 }
3486
3487 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3488 u32 raw_tag)
3489 {
3490 removeQ(c);
3491 if (likely(c->cmd_type == CMD_RWREQ))
3492 complete_command(h, c, 0);
3493 else if (c->cmd_type == CMD_IOCTL_PEND)
3494 complete(c->waiting);
3495 #ifdef CONFIG_CISS_SCSI_TAPE
3496 else if (c->cmd_type == CMD_SCSI)
3497 complete_scsi_command(c, 0, raw_tag);
3498 #endif
3499 }
3500
3501 static inline u32 next_command(ctlr_info_t *h)
3502 {
3503 u32 a;
3504
3505 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3506 return h->access.command_completed(h);
3507
3508 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3509 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3510 (h->reply_pool_head)++;
3511 h->commands_outstanding--;
3512 } else {
3513 a = FIFO_EMPTY;
3514 }
3515 /* Check for wraparound */
3516 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3517 h->reply_pool_head = h->reply_pool;
3518 h->reply_pool_wraparound ^= 1;
3519 }
3520 return a;
3521 }
3522
3523 /* process completion of an indexed ("direct lookup") command */
3524 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3525 {
3526 u32 tag_index;
3527 CommandList_struct *c;
3528
3529 tag_index = cciss_tag_to_index(raw_tag);
3530 if (bad_tag(h, tag_index, raw_tag))
3531 return next_command(h);
3532 c = h->cmd_pool + tag_index;
3533 finish_cmd(h, c, raw_tag);
3534 return next_command(h);
3535 }
3536
3537 /* process completion of a non-indexed command */
3538 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3539 {
3540 CommandList_struct *c = NULL;
3541 __u32 busaddr_masked, tag_masked;
3542
3543 tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3544 list_for_each_entry(c, &h->cmpQ, list) {
3545 busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3546 if (busaddr_masked == tag_masked) {
3547 finish_cmd(h, c, raw_tag);
3548 return next_command(h);
3549 }
3550 }
3551 bad_tag(h, h->nr_cmds + 1, raw_tag);
3552 return next_command(h);
3553 }
3554
3555 /* Some controllers, like p400, will give us one interrupt
3556 * after a soft reset, even if we turned interrupts off.
3557 * Only need to check for this in the cciss_xxx_discard_completions
3558 * functions.
3559 */
3560 static int ignore_bogus_interrupt(ctlr_info_t *h)
3561 {
3562 if (likely(!reset_devices))
3563 return 0;
3564
3565 if (likely(h->interrupts_enabled))
3566 return 0;
3567
3568 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3569 "(known firmware bug.) Ignoring.\n");
3570
3571 return 1;
3572 }
3573
3574 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3575 {
3576 ctlr_info_t *h = dev_id;
3577 unsigned long flags;
3578 u32 raw_tag;
3579
3580 if (ignore_bogus_interrupt(h))
3581 return IRQ_NONE;
3582
3583 if (interrupt_not_for_us(h))
3584 return IRQ_NONE;
3585 spin_lock_irqsave(&h->lock, flags);
3586 while (interrupt_pending(h)) {
3587 raw_tag = get_next_completion(h);
3588 while (raw_tag != FIFO_EMPTY)
3589 raw_tag = next_command(h);
3590 }
3591 spin_unlock_irqrestore(&h->lock, flags);
3592 return IRQ_HANDLED;
3593 }
3594
3595 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3596 {
3597 ctlr_info_t *h = dev_id;
3598 unsigned long flags;
3599 u32 raw_tag;
3600
3601 if (ignore_bogus_interrupt(h))
3602 return IRQ_NONE;
3603
3604 spin_lock_irqsave(&h->lock, flags);
3605 raw_tag = get_next_completion(h);
3606 while (raw_tag != FIFO_EMPTY)
3607 raw_tag = next_command(h);
3608 spin_unlock_irqrestore(&h->lock, flags);
3609 return IRQ_HANDLED;
3610 }
3611
3612 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3613 {
3614 ctlr_info_t *h = dev_id;
3615 unsigned long flags;
3616 u32 raw_tag;
3617
3618 if (interrupt_not_for_us(h))
3619 return IRQ_NONE;
3620 spin_lock_irqsave(&h->lock, flags);
3621 while (interrupt_pending(h)) {
3622 raw_tag = get_next_completion(h);
3623 while (raw_tag != FIFO_EMPTY) {
3624 if (cciss_tag_contains_index(raw_tag))
3625 raw_tag = process_indexed_cmd(h, raw_tag);
3626 else
3627 raw_tag = process_nonindexed_cmd(h, raw_tag);
3628 }
3629 }
3630 spin_unlock_irqrestore(&h->lock, flags);
3631 return IRQ_HANDLED;
3632 }
3633
3634 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3635 * check the interrupt pending register because it is not set.
3636 */
3637 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3638 {
3639 ctlr_info_t *h = dev_id;
3640 unsigned long flags;
3641 u32 raw_tag;
3642
3643 spin_lock_irqsave(&h->lock, flags);
3644 raw_tag = get_next_completion(h);
3645 while (raw_tag != FIFO_EMPTY) {
3646 if (cciss_tag_contains_index(raw_tag))
3647 raw_tag = process_indexed_cmd(h, raw_tag);
3648 else
3649 raw_tag = process_nonindexed_cmd(h, raw_tag);
3650 }
3651 spin_unlock_irqrestore(&h->lock, flags);
3652 return IRQ_HANDLED;
3653 }
3654
3655 /**
3656 * add_to_scan_list() - add controller to rescan queue
3657 * @h: Pointer to the controller.
3658 *
3659 * Adds the controller to the rescan queue if not already on the queue.
3660 *
3661 * returns 1 if added to the queue, 0 if skipped (could be on the
3662 * queue already, or the controller could be initializing or shutting
3663 * down).
3664 **/
3665 static int add_to_scan_list(struct ctlr_info *h)
3666 {
3667 struct ctlr_info *test_h;
3668 int found = 0;
3669 int ret = 0;
3670
3671 if (h->busy_initializing)
3672 return 0;
3673
3674 if (!mutex_trylock(&h->busy_shutting_down))
3675 return 0;
3676
3677 mutex_lock(&scan_mutex);
3678 list_for_each_entry(test_h, &scan_q, scan_list) {
3679 if (test_h == h) {
3680 found = 1;
3681 break;
3682 }
3683 }
3684 if (!found && !h->busy_scanning) {
3685 reinit_completion(&h->scan_wait);
3686 list_add_tail(&h->scan_list, &scan_q);
3687 ret = 1;
3688 }
3689 mutex_unlock(&scan_mutex);
3690 mutex_unlock(&h->busy_shutting_down);
3691
3692 return ret;
3693 }
3694
3695 /**
3696 * remove_from_scan_list() - remove controller from rescan queue
3697 * @h: Pointer to the controller.
3698 *
3699 * Removes the controller from the rescan queue if present. Blocks if
3700 * the controller is currently conducting a rescan. The controller
3701 * can be in one of three states:
3702 * 1. Doesn't need a scan
3703 * 2. On the scan list, but not scanning yet (we remove it)
3704 * 3. Busy scanning (and not on the list). In this case we want to wait for
3705 * the scan to complete to make sure the scanning thread for this
3706 * controller is completely idle.
3707 **/
3708 static void remove_from_scan_list(struct ctlr_info *h)
3709 {
3710 struct ctlr_info *test_h, *tmp_h;
3711
3712 mutex_lock(&scan_mutex);
3713 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3714 if (test_h == h) { /* state 2. */
3715 list_del(&h->scan_list);
3716 complete_all(&h->scan_wait);
3717 mutex_unlock(&scan_mutex);
3718 return;
3719 }
3720 }
3721 if (h->busy_scanning) { /* state 3. */
3722 mutex_unlock(&scan_mutex);
3723 wait_for_completion(&h->scan_wait);
3724 } else { /* state 1, nothing to do. */
3725 mutex_unlock(&scan_mutex);
3726 }
3727 }
3728
3729 /**
3730 * scan_thread() - kernel thread used to rescan controllers
3731 * @data: Ignored.
3732 *
3733 * A kernel thread used scan for drive topology changes on
3734 * controllers. The thread processes only one controller at a time
3735 * using a queue. Controllers are added to the queue using
3736 * add_to_scan_list() and removed from the queue either after done
3737 * processing or using remove_from_scan_list().
3738 *
3739 * returns 0.
3740 **/
3741 static int scan_thread(void *data)
3742 {
3743 struct ctlr_info *h;
3744
3745 while (1) {
3746 set_current_state(TASK_INTERRUPTIBLE);
3747 schedule();
3748 if (kthread_should_stop())
3749 break;
3750
3751 while (1) {
3752 mutex_lock(&scan_mutex);
3753 if (list_empty(&scan_q)) {
3754 mutex_unlock(&scan_mutex);
3755 break;
3756 }
3757
3758 h = list_entry(scan_q.next,
3759 struct ctlr_info,
3760 scan_list);
3761 list_del(&h->scan_list);
3762 h->busy_scanning = 1;
3763 mutex_unlock(&scan_mutex);
3764
3765 rebuild_lun_table(h, 0, 0);
3766 complete_all(&h->scan_wait);
3767 mutex_lock(&scan_mutex);
3768 h->busy_scanning = 0;
3769 mutex_unlock(&scan_mutex);
3770 }
3771 }
3772
3773 return 0;
3774 }
3775
3776 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3777 {
3778 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3779 return 0;
3780
3781 switch (c->err_info->SenseInfo[12]) {
3782 case STATE_CHANGED:
3783 dev_warn(&h->pdev->dev, "a state change "
3784 "detected, command retried\n");
3785 return 1;
3786 break;
3787 case LUN_FAILED:
3788 dev_warn(&h->pdev->dev, "LUN failure "
3789 "detected, action required\n");
3790 return 1;
3791 break;
3792 case REPORT_LUNS_CHANGED:
3793 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3794 /*
3795 * Here, we could call add_to_scan_list and wake up the scan thread,
3796 * except that it's quite likely that we will get more than one
3797 * REPORT_LUNS_CHANGED condition in quick succession, which means
3798 * that those which occur after the first one will likely happen
3799 * *during* the scan_thread's rescan. And the rescan code is not
3800 * robust enough to restart in the middle, undoing what it has already
3801 * done, and it's not clear that it's even possible to do this, since
3802 * part of what it does is notify the block layer, which starts
3803 * doing it's own i/o to read partition tables and so on, and the
3804 * driver doesn't have visibility to know what might need undoing.
3805 * In any event, if possible, it is horribly complicated to get right
3806 * so we just don't do it for now.
3807 *
3808 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3809 */
3810 return 1;
3811 break;
3812 case POWER_OR_RESET:
3813 dev_warn(&h->pdev->dev,
3814 "a power on or device reset detected\n");
3815 return 1;
3816 break;
3817 case UNIT_ATTENTION_CLEARED:
3818 dev_warn(&h->pdev->dev,
3819 "unit attention cleared by another initiator\n");
3820 return 1;
3821 break;
3822 default:
3823 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3824 return 1;
3825 }
3826 }
3827
3828 /*
3829 * We cannot read the structure directly, for portability we must use
3830 * the io functions.
3831 * This is for debug only.
3832 */
3833 static void print_cfg_table(ctlr_info_t *h)
3834 {
3835 int i;
3836 char temp_name[17];
3837 CfgTable_struct *tb = h->cfgtable;
3838
3839 dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3840 dev_dbg(&h->pdev->dev, "------------------------------------\n");
3841 for (i = 0; i < 4; i++)
3842 temp_name[i] = readb(&(tb->Signature[i]));
3843 temp_name[4] = '\0';
3844 dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3845 dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3846 readl(&(tb->SpecValence)));
3847 dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3848 readl(&(tb->TransportSupport)));
3849 dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3850 readl(&(tb->TransportActive)));
3851 dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3852 readl(&(tb->HostWrite.TransportRequest)));
3853 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3854 readl(&(tb->HostWrite.CoalIntDelay)));
3855 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3856 readl(&(tb->HostWrite.CoalIntCount)));
3857 dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3858 readl(&(tb->CmdsOutMax)));
3859 dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3860 readl(&(tb->BusTypes)));
3861 for (i = 0; i < 16; i++)
3862 temp_name[i] = readb(&(tb->ServerName[i]));
3863 temp_name[16] = '\0';
3864 dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3865 dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3866 readl(&(tb->HeartBeat)));
3867 }
3868
3869 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3870 {
3871 int i, offset, mem_type, bar_type;
3872 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3873 return 0;
3874 offset = 0;
3875 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3876 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3877 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3878 offset += 4;
3879 else {
3880 mem_type = pci_resource_flags(pdev, i) &
3881 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3882 switch (mem_type) {
3883 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3884 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3885 offset += 4; /* 32 bit */
3886 break;
3887 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3888 offset += 8;
3889 break;
3890 default: /* reserved in PCI 2.2 */
3891 dev_warn(&pdev->dev,
3892 "Base address is invalid\n");
3893 return -1;
3894 break;
3895 }
3896 }
3897 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3898 return i + 1;
3899 }
3900 return -1;
3901 }
3902
3903 /* Fill in bucket_map[], given nsgs (the max number of
3904 * scatter gather elements supported) and bucket[],
3905 * which is an array of 8 integers. The bucket[] array
3906 * contains 8 different DMA transfer sizes (in 16
3907 * byte increments) which the controller uses to fetch
3908 * commands. This function fills in bucket_map[], which
3909 * maps a given number of scatter gather elements to one of
3910 * the 8 DMA transfer sizes. The point of it is to allow the
3911 * controller to only do as much DMA as needed to fetch the
3912 * command, with the DMA transfer size encoded in the lower
3913 * bits of the command address.
3914 */
3915 static void calc_bucket_map(int bucket[], int num_buckets,
3916 int nsgs, int *bucket_map)
3917 {
3918 int i, j, b, size;
3919
3920 /* even a command with 0 SGs requires 4 blocks */
3921 #define MINIMUM_TRANSFER_BLOCKS 4
3922 #define NUM_BUCKETS 8
3923 /* Note, bucket_map must have nsgs+1 entries. */
3924 for (i = 0; i <= nsgs; i++) {
3925 /* Compute size of a command with i SG entries */
3926 size = i + MINIMUM_TRANSFER_BLOCKS;
3927 b = num_buckets; /* Assume the biggest bucket */
3928 /* Find the bucket that is just big enough */
3929 for (j = 0; j < 8; j++) {
3930 if (bucket[j] >= size) {
3931 b = j;
3932 break;
3933 }
3934 }
3935 /* for a command with i SG entries, use bucket b. */
3936 bucket_map[i] = b;
3937 }
3938 }
3939
3940 static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3941 {
3942 int i;
3943
3944 /* under certain very rare conditions, this can take awhile.
3945 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3946 * as we enter this code.) */
3947 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3948 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3949 break;
3950 usleep_range(10000, 20000);
3951 }
3952 }
3953
3954 static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3955 {
3956 /* This is a bit complicated. There are 8 registers on
3957 * the controller which we write to to tell it 8 different
3958 * sizes of commands which there may be. It's a way of
3959 * reducing the DMA done to fetch each command. Encoded into
3960 * each command's tag are 3 bits which communicate to the controller
3961 * which of the eight sizes that command fits within. The size of
3962 * each command depends on how many scatter gather entries there are.
3963 * Each SG entry requires 16 bytes. The eight registers are programmed
3964 * with the number of 16-byte blocks a command of that size requires.
3965 * The smallest command possible requires 5 such 16 byte blocks.
3966 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3967 * blocks. Note, this only extends to the SG entries contained
3968 * within the command block, and does not extend to chained blocks
3969 * of SG elements. bft[] contains the eight values we write to
3970 * the registers. They are not evenly distributed, but have more
3971 * sizes for small commands, and fewer sizes for larger commands.
3972 */
3973 __u32 trans_offset;
3974 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3975 /*
3976 * 5 = 1 s/g entry or 4k
3977 * 6 = 2 s/g entry or 8k
3978 * 8 = 4 s/g entry or 16k
3979 * 10 = 6 s/g entry or 24k
3980 */
3981 unsigned long register_value;
3982 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3983
3984 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3985
3986 /* Controller spec: zero out this buffer. */
3987 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3988 h->reply_pool_head = h->reply_pool;
3989
3990 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3991 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3992 h->blockFetchTable);
3993 writel(bft[0], &h->transtable->BlockFetch0);
3994 writel(bft[1], &h->transtable->BlockFetch1);
3995 writel(bft[2], &h->transtable->BlockFetch2);
3996 writel(bft[3], &h->transtable->BlockFetch3);
3997 writel(bft[4], &h->transtable->BlockFetch4);
3998 writel(bft[5], &h->transtable->BlockFetch5);
3999 writel(bft[6], &h->transtable->BlockFetch6);
4000 writel(bft[7], &h->transtable->BlockFetch7);
4001
4002 /* size of controller ring buffer */
4003 writel(h->max_commands, &h->transtable->RepQSize);
4004 writel(1, &h->transtable->RepQCount);
4005 writel(0, &h->transtable->RepQCtrAddrLow32);
4006 writel(0, &h->transtable->RepQCtrAddrHigh32);
4007 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4008 writel(0, &h->transtable->RepQAddr0High32);
4009 writel(CFGTBL_Trans_Performant | use_short_tags,
4010 &(h->cfgtable->HostWrite.TransportRequest));
4011
4012 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4013 cciss_wait_for_mode_change_ack(h);
4014 register_value = readl(&(h->cfgtable->TransportActive));
4015 if (!(register_value & CFGTBL_Trans_Performant))
4016 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4017 " performant mode\n");
4018 }
4019
4020 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4021 {
4022 __u32 trans_support;
4023
4024 if (cciss_simple_mode)
4025 return;
4026
4027 dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4028 /* Attempt to put controller into performant mode if supported */
4029 /* Does board support performant mode? */
4030 trans_support = readl(&(h->cfgtable->TransportSupport));
4031 if (!(trans_support & PERFORMANT_MODE))
4032 return;
4033
4034 dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4035 /* Performant mode demands commands on a 32 byte boundary
4036 * pci_alloc_consistent aligns on page boundarys already.
4037 * Just need to check if divisible by 32
4038 */
4039 if ((sizeof(CommandList_struct) % 32) != 0) {
4040 dev_warn(&h->pdev->dev, "%s %d %s\n",
4041 "cciss info: command size[",
4042 (int)sizeof(CommandList_struct),
4043 "] not divisible by 32, no performant mode..\n");
4044 return;
4045 }
4046
4047 /* Performant mode ring buffer and supporting data structures */
4048 h->reply_pool = (__u64 *)pci_alloc_consistent(
4049 h->pdev, h->max_commands * sizeof(__u64),
4050 &(h->reply_pool_dhandle));
4051
4052 /* Need a block fetch table for performant mode */
4053 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4054 sizeof(__u32)), GFP_KERNEL);
4055
4056 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4057 goto clean_up;
4058
4059 cciss_enter_performant_mode(h,
4060 trans_support & CFGTBL_Trans_use_short_tags);
4061
4062 /* Change the access methods to the performant access methods */
4063 h->access = SA5_performant_access;
4064 h->transMethod = CFGTBL_Trans_Performant;
4065
4066 return;
4067 clean_up:
4068 kfree(h->blockFetchTable);
4069 if (h->reply_pool)
4070 pci_free_consistent(h->pdev,
4071 h->max_commands * sizeof(__u64),
4072 h->reply_pool,
4073 h->reply_pool_dhandle);
4074 return;
4075
4076 } /* cciss_put_controller_into_performant_mode */
4077
4078 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4079 * controllers that are capable. If not, we use IO-APIC mode.
4080 */
4081
4082 static void cciss_interrupt_mode(ctlr_info_t *h)
4083 {
4084 #ifdef CONFIG_PCI_MSI
4085 int err;
4086 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4087 {0, 2}, {0, 3}
4088 };
4089
4090 /* Some boards advertise MSI but don't really support it */
4091 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4092 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4093 goto default_int_mode;
4094
4095 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4096 err = pci_enable_msix_exact(h->pdev, cciss_msix_entries, 4);
4097 if (!err) {
4098 h->intr[0] = cciss_msix_entries[0].vector;
4099 h->intr[1] = cciss_msix_entries[1].vector;
4100 h->intr[2] = cciss_msix_entries[2].vector;
4101 h->intr[3] = cciss_msix_entries[3].vector;
4102 h->msix_vector = 1;
4103 return;
4104 } else {
4105 dev_warn(&h->pdev->dev,
4106 "MSI-X init failed %d\n", err);
4107 }
4108 }
4109 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4110 if (!pci_enable_msi(h->pdev))
4111 h->msi_vector = 1;
4112 else
4113 dev_warn(&h->pdev->dev, "MSI init failed\n");
4114 }
4115 default_int_mode:
4116 #endif /* CONFIG_PCI_MSI */
4117 /* if we get here we're going to use the default interrupt mode */
4118 h->intr[h->intr_mode] = h->pdev->irq;
4119 return;
4120 }
4121
4122 static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4123 {
4124 int i;
4125 u32 subsystem_vendor_id, subsystem_device_id;
4126
4127 subsystem_vendor_id = pdev->subsystem_vendor;
4128 subsystem_device_id = pdev->subsystem_device;
4129 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4130 subsystem_vendor_id;
4131
4132 for (i = 0; i < ARRAY_SIZE(products); i++) {
4133 /* Stand aside for hpsa driver on request */
4134 if (cciss_allow_hpsa)
4135 return -ENODEV;
4136 if (*board_id == products[i].board_id)
4137 return i;
4138 }
4139 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4140 *board_id);
4141 return -ENODEV;
4142 }
4143
4144 static inline bool cciss_board_disabled(ctlr_info_t *h)
4145 {
4146 u16 command;
4147
4148 (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4149 return ((command & PCI_COMMAND_MEMORY) == 0);
4150 }
4151
4152 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4153 unsigned long *memory_bar)
4154 {
4155 int i;
4156
4157 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4158 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4159 /* addressing mode bits already removed */
4160 *memory_bar = pci_resource_start(pdev, i);
4161 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4162 *memory_bar);
4163 return 0;
4164 }
4165 dev_warn(&pdev->dev, "no memory BAR found\n");
4166 return -ENODEV;
4167 }
4168
4169 static int cciss_wait_for_board_state(struct pci_dev *pdev,
4170 void __iomem *vaddr, int wait_for_ready)
4171 #define BOARD_READY 1
4172 #define BOARD_NOT_READY 0
4173 {
4174 int i, iterations;
4175 u32 scratchpad;
4176
4177 if (wait_for_ready)
4178 iterations = CCISS_BOARD_READY_ITERATIONS;
4179 else
4180 iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4181
4182 for (i = 0; i < iterations; i++) {
4183 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4184 if (wait_for_ready) {
4185 if (scratchpad == CCISS_FIRMWARE_READY)
4186 return 0;
4187 } else {
4188 if (scratchpad != CCISS_FIRMWARE_READY)
4189 return 0;
4190 }
4191 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4192 }
4193 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4194 return -ENODEV;
4195 }
4196
4197 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4198 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4199 u64 *cfg_offset)
4200 {
4201 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4202 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4203 *cfg_base_addr &= (u32) 0x0000ffff;
4204 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4205 if (*cfg_base_addr_index == -1) {
4206 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4207 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4208 return -ENODEV;
4209 }
4210 return 0;
4211 }
4212
4213 static int cciss_find_cfgtables(ctlr_info_t *h)
4214 {
4215 u64 cfg_offset;
4216 u32 cfg_base_addr;
4217 u64 cfg_base_addr_index;
4218 u32 trans_offset;
4219 int rc;
4220
4221 rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4222 &cfg_base_addr_index, &cfg_offset);
4223 if (rc)
4224 return rc;
4225 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4226 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4227 if (!h->cfgtable)
4228 return -ENOMEM;
4229 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4230 if (rc)
4231 return rc;
4232 /* Find performant mode table. */
4233 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4234 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4235 cfg_base_addr_index)+cfg_offset+trans_offset,
4236 sizeof(*h->transtable));
4237 if (!h->transtable)
4238 return -ENOMEM;
4239 return 0;
4240 }
4241
4242 static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4243 {
4244 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4245
4246 /* Limit commands in memory limited kdump scenario. */
4247 if (reset_devices && h->max_commands > 32)
4248 h->max_commands = 32;
4249
4250 if (h->max_commands < 16) {
4251 dev_warn(&h->pdev->dev, "Controller reports "
4252 "max supported commands of %d, an obvious lie. "
4253 "Using 16. Ensure that firmware is up to date.\n",
4254 h->max_commands);
4255 h->max_commands = 16;
4256 }
4257 }
4258
4259 /* Interrogate the hardware for some limits:
4260 * max commands, max SG elements without chaining, and with chaining,
4261 * SG chain block size, etc.
4262 */
4263 static void cciss_find_board_params(ctlr_info_t *h)
4264 {
4265 cciss_get_max_perf_mode_cmds(h);
4266 h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4267 h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4268 /*
4269 * The P600 may exhibit poor performnace under some workloads
4270 * if we use the value in the configuration table. Limit this
4271 * controller to MAXSGENTRIES (32) instead.
4272 */
4273 if (h->board_id == 0x3225103C)
4274 h->maxsgentries = MAXSGENTRIES;
4275 /*
4276 * Limit in-command s/g elements to 32 save dma'able memory.
4277 * Howvever spec says if 0, use 31
4278 */
4279 h->max_cmd_sgentries = 31;
4280 if (h->maxsgentries > 512) {
4281 h->max_cmd_sgentries = 32;
4282 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4283 h->maxsgentries--; /* save one for chain pointer */
4284 } else {
4285 h->maxsgentries = 31; /* default to traditional values */
4286 h->chainsize = 0;
4287 }
4288 }
4289
4290 static inline bool CISS_signature_present(ctlr_info_t *h)
4291 {
4292 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4293 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4294 return false;
4295 }
4296 return true;
4297 }
4298
4299 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4300 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4301 {
4302 #ifdef CONFIG_X86
4303 u32 prefetch;
4304
4305 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4306 prefetch |= 0x100;
4307 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4308 #endif
4309 }
4310
4311 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4312 * in a prefetch beyond physical memory.
4313 */
4314 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4315 {
4316 u32 dma_prefetch;
4317 __u32 dma_refetch;
4318
4319 if (h->board_id != 0x3225103C)
4320 return;
4321 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4322 dma_prefetch |= 0x8000;
4323 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4324 pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4325 dma_refetch |= 0x1;
4326 pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4327 }
4328
4329 static int cciss_pci_init(ctlr_info_t *h)
4330 {
4331 int prod_index, err;
4332
4333 prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4334 if (prod_index < 0)
4335 return -ENODEV;
4336 h->product_name = products[prod_index].product_name;
4337 h->access = *(products[prod_index].access);
4338
4339 if (cciss_board_disabled(h)) {
4340 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4341 return -ENODEV;
4342 }
4343
4344 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4345 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4346
4347 err = pci_enable_device(h->pdev);
4348 if (err) {
4349 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4350 return err;
4351 }
4352
4353 err = pci_request_regions(h->pdev, "cciss");
4354 if (err) {
4355 dev_warn(&h->pdev->dev,
4356 "Cannot obtain PCI resources, aborting\n");
4357 return err;
4358 }
4359
4360 dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4361 dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4362
4363 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4364 * else we use the IO-APIC interrupt assigned to us by system ROM.
4365 */
4366 cciss_interrupt_mode(h);
4367 err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4368 if (err)
4369 goto err_out_free_res;
4370 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4371 if (!h->vaddr) {
4372 err = -ENOMEM;
4373 goto err_out_free_res;
4374 }
4375 err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4376 if (err)
4377 goto err_out_free_res;
4378 err = cciss_find_cfgtables(h);
4379 if (err)
4380 goto err_out_free_res;
4381 print_cfg_table(h);
4382 cciss_find_board_params(h);
4383
4384 if (!CISS_signature_present(h)) {
4385 err = -ENODEV;
4386 goto err_out_free_res;
4387 }
4388 cciss_enable_scsi_prefetch(h);
4389 cciss_p600_dma_prefetch_quirk(h);
4390 err = cciss_enter_simple_mode(h);
4391 if (err)
4392 goto err_out_free_res;
4393 cciss_put_controller_into_performant_mode(h);
4394 return 0;
4395
4396 err_out_free_res:
4397 /*
4398 * Deliberately omit pci_disable_device(): it does something nasty to
4399 * Smart Array controllers that pci_enable_device does not undo
4400 */
4401 if (h->transtable)
4402 iounmap(h->transtable);
4403 if (h->cfgtable)
4404 iounmap(h->cfgtable);
4405 if (h->vaddr)
4406 iounmap(h->vaddr);
4407 pci_release_regions(h->pdev);
4408 return err;
4409 }
4410
4411 /* Function to find the first free pointer into our hba[] array
4412 * Returns -1 if no free entries are left.
4413 */
4414 static int alloc_cciss_hba(struct pci_dev *pdev)
4415 {
4416 int i;
4417
4418 for (i = 0; i < MAX_CTLR; i++) {
4419 if (!hba[i]) {
4420 ctlr_info_t *h;
4421
4422 h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4423 if (!h)
4424 goto Enomem;
4425 hba[i] = h;
4426 return i;
4427 }
4428 }
4429 dev_warn(&pdev->dev, "This driver supports a maximum"
4430 " of %d controllers.\n", MAX_CTLR);
4431 return -1;
4432 Enomem:
4433 dev_warn(&pdev->dev, "out of memory.\n");
4434 return -1;
4435 }
4436
4437 static void free_hba(ctlr_info_t *h)
4438 {
4439 int i;
4440
4441 hba[h->ctlr] = NULL;
4442 for (i = 0; i < h->highest_lun + 1; i++)
4443 if (h->gendisk[i] != NULL)
4444 put_disk(h->gendisk[i]);
4445 kfree(h);
4446 }
4447
4448 /* Send a message CDB to the firmware. */
4449 static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4450 unsigned char type)
4451 {
4452 typedef struct {
4453 CommandListHeader_struct CommandHeader;
4454 RequestBlock_struct Request;
4455 ErrDescriptor_struct ErrorDescriptor;
4456 } Command;
4457 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4458 Command *cmd;
4459 dma_addr_t paddr64;
4460 uint32_t paddr32, tag;
4461 void __iomem *vaddr;
4462 int i, err;
4463
4464 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4465 if (vaddr == NULL)
4466 return -ENOMEM;
4467
4468 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4469 CCISS commands, so they must be allocated from the lower 4GiB of
4470 memory. */
4471 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4472 if (err) {
4473 iounmap(vaddr);
4474 return -ENOMEM;
4475 }
4476
4477 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4478 if (cmd == NULL) {
4479 iounmap(vaddr);
4480 return -ENOMEM;
4481 }
4482
4483 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4484 although there's no guarantee, we assume that the address is at
4485 least 4-byte aligned (most likely, it's page-aligned). */
4486 paddr32 = paddr64;
4487
4488 cmd->CommandHeader.ReplyQueue = 0;
4489 cmd->CommandHeader.SGList = 0;
4490 cmd->CommandHeader.SGTotal = 0;
4491 cmd->CommandHeader.Tag.lower = paddr32;
4492 cmd->CommandHeader.Tag.upper = 0;
4493 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4494
4495 cmd->Request.CDBLen = 16;
4496 cmd->Request.Type.Type = TYPE_MSG;
4497 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4498 cmd->Request.Type.Direction = XFER_NONE;
4499 cmd->Request.Timeout = 0; /* Don't time out */
4500 cmd->Request.CDB[0] = opcode;
4501 cmd->Request.CDB[1] = type;
4502 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4503
4504 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4505 cmd->ErrorDescriptor.Addr.upper = 0;
4506 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4507
4508 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4509
4510 for (i = 0; i < 10; i++) {
4511 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4512 if ((tag & ~3) == paddr32)
4513 break;
4514 msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4515 }
4516
4517 iounmap(vaddr);
4518
4519 /* we leak the DMA buffer here ... no choice since the controller could
4520 still complete the command. */
4521 if (i == 10) {
4522 dev_err(&pdev->dev,
4523 "controller message %02x:%02x timed out\n",
4524 opcode, type);
4525 return -ETIMEDOUT;
4526 }
4527
4528 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4529
4530 if (tag & 2) {
4531 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4532 opcode, type);
4533 return -EIO;
4534 }
4535
4536 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4537 opcode, type);
4538 return 0;
4539 }
4540
4541 #define cciss_noop(p) cciss_message(p, 3, 0)
4542
4543 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4544 void * __iomem vaddr, u32 use_doorbell)
4545 {
4546 u16 pmcsr;
4547 int pos;
4548
4549 if (use_doorbell) {
4550 /* For everything after the P600, the PCI power state method
4551 * of resetting the controller doesn't work, so we have this
4552 * other way using the doorbell register.
4553 */
4554 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4555 writel(use_doorbell, vaddr + SA5_DOORBELL);
4556 } else { /* Try to do it the PCI power state way */
4557
4558 /* Quoting from the Open CISS Specification: "The Power
4559 * Management Control/Status Register (CSR) controls the power
4560 * state of the device. The normal operating state is D0,
4561 * CSR=00h. The software off state is D3, CSR=03h. To reset
4562 * the controller, place the interface device in D3 then to D0,
4563 * this causes a secondary PCI reset which will reset the
4564 * controller." */
4565
4566 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4567 if (pos == 0) {
4568 dev_err(&pdev->dev,
4569 "cciss_controller_hard_reset: "
4570 "PCI PM not supported\n");
4571 return -ENODEV;
4572 }
4573 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4574 /* enter the D3hot power management state */
4575 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4576 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4577 pmcsr |= PCI_D3hot;
4578 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4579
4580 msleep(500);
4581
4582 /* enter the D0 power management state */
4583 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4584 pmcsr |= PCI_D0;
4585 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4586
4587 /*
4588 * The P600 requires a small delay when changing states.
4589 * Otherwise we may think the board did not reset and we bail.
4590 * This for kdump only and is particular to the P600.
4591 */
4592 msleep(500);
4593 }
4594 return 0;
4595 }
4596
4597 static void init_driver_version(char *driver_version, int len)
4598 {
4599 memset(driver_version, 0, len);
4600 strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4601 }
4602
4603 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4604 {
4605 char *driver_version;
4606 int i, size = sizeof(cfgtable->driver_version);
4607
4608 driver_version = kmalloc(size, GFP_KERNEL);
4609 if (!driver_version)
4610 return -ENOMEM;
4611
4612 init_driver_version(driver_version, size);
4613 for (i = 0; i < size; i++)
4614 writeb(driver_version[i], &cfgtable->driver_version[i]);
4615 kfree(driver_version);
4616 return 0;
4617 }
4618
4619 static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4620 unsigned char *driver_ver)
4621 {
4622 int i;
4623
4624 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4625 driver_ver[i] = readb(&cfgtable->driver_version[i]);
4626 }
4627
4628 static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4629 {
4630
4631 char *driver_ver, *old_driver_ver;
4632 int rc, size = sizeof(cfgtable->driver_version);
4633
4634 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4635 if (!old_driver_ver)
4636 return -ENOMEM;
4637 driver_ver = old_driver_ver + size;
4638
4639 /* After a reset, the 32 bytes of "driver version" in the cfgtable
4640 * should have been changed, otherwise we know the reset failed.
4641 */
4642 init_driver_version(old_driver_ver, size);
4643 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4644 rc = !memcmp(driver_ver, old_driver_ver, size);
4645 kfree(old_driver_ver);
4646 return rc;
4647 }
4648
4649 /* This does a hard reset of the controller using PCI power management
4650 * states or using the doorbell register. */
4651 static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4652 {
4653 u64 cfg_offset;
4654 u32 cfg_base_addr;
4655 u64 cfg_base_addr_index;
4656 void __iomem *vaddr;
4657 unsigned long paddr;
4658 u32 misc_fw_support;
4659 int rc;
4660 CfgTable_struct __iomem *cfgtable;
4661 u32 use_doorbell;
4662 u32 board_id;
4663 u16 command_register;
4664
4665 /* For controllers as old a the p600, this is very nearly
4666 * the same thing as
4667 *
4668 * pci_save_state(pci_dev);
4669 * pci_set_power_state(pci_dev, PCI_D3hot);
4670 * pci_set_power_state(pci_dev, PCI_D0);
4671 * pci_restore_state(pci_dev);
4672 *
4673 * For controllers newer than the P600, the pci power state
4674 * method of resetting doesn't work so we have another way
4675 * using the doorbell register.
4676 */
4677
4678 /* Exclude 640x boards. These are two pci devices in one slot
4679 * which share a battery backed cache module. One controls the
4680 * cache, the other accesses the cache through the one that controls
4681 * it. If we reset the one controlling the cache, the other will
4682 * likely not be happy. Just forbid resetting this conjoined mess.
4683 */
4684 cciss_lookup_board_id(pdev, &board_id);
4685 if (!ctlr_is_resettable(board_id)) {
4686 dev_warn(&pdev->dev, "Controller not resettable\n");
4687 return -ENODEV;
4688 }
4689
4690 /* if controller is soft- but not hard resettable... */
4691 if (!ctlr_is_hard_resettable(board_id))
4692 return -ENOTSUPP; /* try soft reset later. */
4693
4694 /* Save the PCI command register */
4695 pci_read_config_word(pdev, 4, &command_register);
4696 /* Turn the board off. This is so that later pci_restore_state()
4697 * won't turn the board on before the rest of config space is ready.
4698 */
4699 pci_disable_device(pdev);
4700 pci_save_state(pdev);
4701
4702 /* find the first memory BAR, so we can find the cfg table */
4703 rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4704 if (rc)
4705 return rc;
4706 vaddr = remap_pci_mem(paddr, 0x250);
4707 if (!vaddr)
4708 return -ENOMEM;
4709
4710 /* find cfgtable in order to check if reset via doorbell is supported */
4711 rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4712 &cfg_base_addr_index, &cfg_offset);
4713 if (rc)
4714 goto unmap_vaddr;
4715 cfgtable = remap_pci_mem(pci_resource_start(pdev,
4716 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4717 if (!cfgtable) {
4718 rc = -ENOMEM;
4719 goto unmap_vaddr;
4720 }
4721 rc = write_driver_ver_to_cfgtable(cfgtable);
4722 if (rc)
4723 goto unmap_vaddr;
4724
4725 /* If reset via doorbell register is supported, use that.
4726 * There are two such methods. Favor the newest method.
4727 */
4728 misc_fw_support = readl(&cfgtable->misc_fw_support);
4729 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4730 if (use_doorbell) {
4731 use_doorbell = DOORBELL_CTLR_RESET2;
4732 } else {
4733 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4734 if (use_doorbell) {
4735 dev_warn(&pdev->dev, "Controller claims that "
4736 "'Bit 2 doorbell reset' is "
4737 "supported, but not 'bit 5 doorbell reset'. "
4738 "Firmware update is recommended.\n");
4739 rc = -ENOTSUPP; /* use the soft reset */
4740 goto unmap_cfgtable;
4741 }
4742 }
4743
4744 rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4745 if (rc)
4746 goto unmap_cfgtable;
4747 pci_restore_state(pdev);
4748 rc = pci_enable_device(pdev);
4749 if (rc) {
4750 dev_warn(&pdev->dev, "failed to enable device.\n");
4751 goto unmap_cfgtable;
4752 }
4753 pci_write_config_word(pdev, 4, command_register);
4754
4755 /* Some devices (notably the HP Smart Array 5i Controller)
4756 need a little pause here */
4757 msleep(CCISS_POST_RESET_PAUSE_MSECS);
4758
4759 /* Wait for board to become not ready, then ready. */
4760 dev_info(&pdev->dev, "Waiting for board to reset.\n");
4761 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4762 if (rc) {
4763 dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4764 " Will try soft reset.\n");
4765 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4766 goto unmap_cfgtable;
4767 }
4768 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4769 if (rc) {
4770 dev_warn(&pdev->dev,
4771 "failed waiting for board to become ready "
4772 "after hard reset\n");
4773 goto unmap_cfgtable;
4774 }
4775
4776 rc = controller_reset_failed(vaddr);
4777 if (rc < 0)
4778 goto unmap_cfgtable;
4779 if (rc) {
4780 dev_warn(&pdev->dev, "Unable to successfully hard reset "
4781 "controller. Will try soft reset.\n");
4782 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4783 } else {
4784 dev_info(&pdev->dev, "Board ready after hard reset.\n");
4785 }
4786
4787 unmap_cfgtable:
4788 iounmap(cfgtable);
4789
4790 unmap_vaddr:
4791 iounmap(vaddr);
4792 return rc;
4793 }
4794
4795 static int cciss_init_reset_devices(struct pci_dev *pdev)
4796 {
4797 int rc, i;
4798
4799 if (!reset_devices)
4800 return 0;
4801
4802 /* Reset the controller with a PCI power-cycle or via doorbell */
4803 rc = cciss_kdump_hard_reset_controller(pdev);
4804
4805 /* -ENOTSUPP here means we cannot reset the controller
4806 * but it's already (and still) up and running in
4807 * "performant mode". Or, it might be 640x, which can't reset
4808 * due to concerns about shared bbwc between 6402/6404 pair.
4809 */
4810 if (rc == -ENOTSUPP)
4811 return rc; /* just try to do the kdump anyhow. */
4812 if (rc)
4813 return -ENODEV;
4814
4815 /* Now try to get the controller to respond to a no-op */
4816 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4817 for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4818 if (cciss_noop(pdev) == 0)
4819 break;
4820 else
4821 dev_warn(&pdev->dev, "no-op failed%s\n",
4822 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4823 "; re-trying" : ""));
4824 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4825 }
4826 return 0;
4827 }
4828
4829 static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4830 {
4831 h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4832 sizeof(unsigned long), GFP_KERNEL);
4833 h->cmd_pool = pci_alloc_consistent(h->pdev,
4834 h->nr_cmds * sizeof(CommandList_struct),
4835 &(h->cmd_pool_dhandle));
4836 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4837 h->nr_cmds * sizeof(ErrorInfo_struct),
4838 &(h->errinfo_pool_dhandle));
4839 if ((h->cmd_pool_bits == NULL)
4840 || (h->cmd_pool == NULL)
4841 || (h->errinfo_pool == NULL)) {
4842 dev_err(&h->pdev->dev, "out of memory");
4843 return -ENOMEM;
4844 }
4845 return 0;
4846 }
4847
4848 static int cciss_allocate_scatterlists(ctlr_info_t *h)
4849 {
4850 int i;
4851
4852 /* zero it, so that on free we need not know how many were alloc'ed */
4853 h->scatter_list = kzalloc(h->max_commands *
4854 sizeof(struct scatterlist *), GFP_KERNEL);
4855 if (!h->scatter_list)
4856 return -ENOMEM;
4857
4858 for (i = 0; i < h->nr_cmds; i++) {
4859 h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4860 h->maxsgentries, GFP_KERNEL);
4861 if (h->scatter_list[i] == NULL) {
4862 dev_err(&h->pdev->dev, "could not allocate "
4863 "s/g lists\n");
4864 return -ENOMEM;
4865 }
4866 }
4867 return 0;
4868 }
4869
4870 static void cciss_free_scatterlists(ctlr_info_t *h)
4871 {
4872 int i;
4873
4874 if (h->scatter_list) {
4875 for (i = 0; i < h->nr_cmds; i++)
4876 kfree(h->scatter_list[i]);
4877 kfree(h->scatter_list);
4878 }
4879 }
4880
4881 static void cciss_free_cmd_pool(ctlr_info_t *h)
4882 {
4883 kfree(h->cmd_pool_bits);
4884 if (h->cmd_pool)
4885 pci_free_consistent(h->pdev,
4886 h->nr_cmds * sizeof(CommandList_struct),
4887 h->cmd_pool, h->cmd_pool_dhandle);
4888 if (h->errinfo_pool)
4889 pci_free_consistent(h->pdev,
4890 h->nr_cmds * sizeof(ErrorInfo_struct),
4891 h->errinfo_pool, h->errinfo_pool_dhandle);
4892 }
4893
4894 static int cciss_request_irq(ctlr_info_t *h,
4895 irqreturn_t (*msixhandler)(int, void *),
4896 irqreturn_t (*intxhandler)(int, void *))
4897 {
4898 if (h->msix_vector || h->msi_vector) {
4899 if (!request_irq(h->intr[h->intr_mode], msixhandler,
4900 0, h->devname, h))
4901 return 0;
4902 dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4903 " for %s\n", h->intr[h->intr_mode],
4904 h->devname);
4905 return -1;
4906 }
4907
4908 if (!request_irq(h->intr[h->intr_mode], intxhandler,
4909 IRQF_SHARED, h->devname, h))
4910 return 0;
4911 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4912 h->intr[h->intr_mode], h->devname);
4913 return -1;
4914 }
4915
4916 static int cciss_kdump_soft_reset(ctlr_info_t *h)
4917 {
4918 if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4919 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4920 return -EIO;
4921 }
4922
4923 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4924 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4925 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4926 return -1;
4927 }
4928
4929 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4930 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4931 dev_warn(&h->pdev->dev, "Board failed to become ready "
4932 "after soft reset.\n");
4933 return -1;
4934 }
4935
4936 return 0;
4937 }
4938
4939 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4940 {
4941 int ctlr = h->ctlr;
4942
4943 free_irq(h->intr[h->intr_mode], h);
4944 #ifdef CONFIG_PCI_MSI
4945 if (h->msix_vector)
4946 pci_disable_msix(h->pdev);
4947 else if (h->msi_vector)
4948 pci_disable_msi(h->pdev);
4949 #endif /* CONFIG_PCI_MSI */
4950 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4951 cciss_free_scatterlists(h);
4952 cciss_free_cmd_pool(h);
4953 kfree(h->blockFetchTable);
4954 if (h->reply_pool)
4955 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4956 h->reply_pool, h->reply_pool_dhandle);
4957 if (h->transtable)
4958 iounmap(h->transtable);
4959 if (h->cfgtable)
4960 iounmap(h->cfgtable);
4961 if (h->vaddr)
4962 iounmap(h->vaddr);
4963 unregister_blkdev(h->major, h->devname);
4964 cciss_destroy_hba_sysfs_entry(h);
4965 pci_release_regions(h->pdev);
4966 kfree(h);
4967 hba[ctlr] = NULL;
4968 }
4969
4970 /*
4971 * This is it. Find all the controllers and register them. I really hate
4972 * stealing all these major device numbers.
4973 * returns the number of block devices registered.
4974 */
4975 static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4976 {
4977 int i;
4978 int j = 0;
4979 int rc;
4980 int try_soft_reset = 0;
4981 int dac, return_code;
4982 InquiryData_struct *inq_buff;
4983 ctlr_info_t *h;
4984 unsigned long flags;
4985
4986 /*
4987 * By default the cciss driver is used for all older HP Smart Array
4988 * controllers. There are module paramaters that allow a user to
4989 * override this behavior and instead use the hpsa SCSI driver. If
4990 * this is the case cciss may be loaded first from the kdump initrd
4991 * image and cause a kernel panic. So if reset_devices is true and
4992 * cciss_allow_hpsa is set just bail.
4993 */
4994 if ((reset_devices) && (cciss_allow_hpsa == 1))
4995 return -ENODEV;
4996 rc = cciss_init_reset_devices(pdev);
4997 if (rc) {
4998 if (rc != -ENOTSUPP)
4999 return rc;
5000 /* If the reset fails in a particular way (it has no way to do
5001 * a proper hard reset, so returns -ENOTSUPP) we can try to do
5002 * a soft reset once we get the controller configured up to the
5003 * point that it can accept a command.
5004 */
5005 try_soft_reset = 1;
5006 rc = 0;
5007 }
5008
5009 reinit_after_soft_reset:
5010
5011 i = alloc_cciss_hba(pdev);
5012 if (i < 0)
5013 return -ENOMEM;
5014
5015 h = hba[i];
5016 h->pdev = pdev;
5017 h->busy_initializing = 1;
5018 h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5019 INIT_LIST_HEAD(&h->cmpQ);
5020 INIT_LIST_HEAD(&h->reqQ);
5021 mutex_init(&h->busy_shutting_down);
5022
5023 if (cciss_pci_init(h) != 0)
5024 goto clean_no_release_regions;
5025
5026 sprintf(h->devname, "cciss%d", i);
5027 h->ctlr = i;
5028
5029 if (cciss_tape_cmds < 2)
5030 cciss_tape_cmds = 2;
5031 if (cciss_tape_cmds > 16)
5032 cciss_tape_cmds = 16;
5033
5034 init_completion(&h->scan_wait);
5035
5036 if (cciss_create_hba_sysfs_entry(h))
5037 goto clean0;
5038
5039 /* configure PCI DMA stuff */
5040 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5041 dac = 1;
5042 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5043 dac = 0;
5044 else {
5045 dev_err(&h->pdev->dev, "no suitable DMA available\n");
5046 goto clean1;
5047 }
5048
5049 /*
5050 * register with the major number, or get a dynamic major number
5051 * by passing 0 as argument. This is done for greater than
5052 * 8 controller support.
5053 */
5054 if (i < MAX_CTLR_ORIG)
5055 h->major = COMPAQ_CISS_MAJOR + i;
5056 rc = register_blkdev(h->major, h->devname);
5057 if (rc == -EBUSY || rc == -EINVAL) {
5058 dev_err(&h->pdev->dev,
5059 "Unable to get major number %d for %s "
5060 "on hba %d\n", h->major, h->devname, i);
5061 goto clean1;
5062 } else {
5063 if (i >= MAX_CTLR_ORIG)
5064 h->major = rc;
5065 }
5066
5067 /* make sure the board interrupts are off */
5068 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5069 rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5070 if (rc)
5071 goto clean2;
5072
5073 dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5074 h->devname, pdev->device, pci_name(pdev),
5075 h->intr[h->intr_mode], dac ? "" : " not");
5076
5077 if (cciss_allocate_cmd_pool(h))
5078 goto clean4;
5079
5080 if (cciss_allocate_scatterlists(h))
5081 goto clean4;
5082
5083 h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5084 h->chainsize, h->nr_cmds);
5085 if (!h->cmd_sg_list && h->chainsize > 0)
5086 goto clean4;
5087
5088 spin_lock_init(&h->lock);
5089
5090 /* Initialize the pdev driver private data.
5091 have it point to h. */
5092 pci_set_drvdata(pdev, h);
5093 /* command and error info recs zeroed out before
5094 they are used */
5095 bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5096
5097 h->num_luns = 0;
5098 h->highest_lun = -1;
5099 for (j = 0; j < CISS_MAX_LUN; j++) {
5100 h->drv[j] = NULL;
5101 h->gendisk[j] = NULL;
5102 }
5103
5104 /* At this point, the controller is ready to take commands.
5105 * Now, if reset_devices and the hard reset didn't work, try
5106 * the soft reset and see if that works.
5107 */
5108 if (try_soft_reset) {
5109
5110 /* This is kind of gross. We may or may not get a completion
5111 * from the soft reset command, and if we do, then the value
5112 * from the fifo may or may not be valid. So, we wait 10 secs
5113 * after the reset throwing away any completions we get during
5114 * that time. Unregister the interrupt handler and register
5115 * fake ones to scoop up any residual completions.
5116 */
5117 spin_lock_irqsave(&h->lock, flags);
5118 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5119 spin_unlock_irqrestore(&h->lock, flags);
5120 free_irq(h->intr[h->intr_mode], h);
5121 rc = cciss_request_irq(h, cciss_msix_discard_completions,
5122 cciss_intx_discard_completions);
5123 if (rc) {
5124 dev_warn(&h->pdev->dev, "Failed to request_irq after "
5125 "soft reset.\n");
5126 goto clean4;
5127 }
5128
5129 rc = cciss_kdump_soft_reset(h);
5130 if (rc) {
5131 dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5132 goto clean4;
5133 }
5134
5135 dev_info(&h->pdev->dev, "Board READY.\n");
5136 dev_info(&h->pdev->dev,
5137 "Waiting for stale completions to drain.\n");
5138 h->access.set_intr_mask(h, CCISS_INTR_ON);
5139 msleep(10000);
5140 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5141
5142 rc = controller_reset_failed(h->cfgtable);
5143 if (rc)
5144 dev_info(&h->pdev->dev,
5145 "Soft reset appears to have failed.\n");
5146
5147 /* since the controller's reset, we have to go back and re-init
5148 * everything. Easiest to just forget what we've done and do it
5149 * all over again.
5150 */
5151 cciss_undo_allocations_after_kdump_soft_reset(h);
5152 try_soft_reset = 0;
5153 if (rc)
5154 /* don't go to clean4, we already unallocated */
5155 return -ENODEV;
5156
5157 goto reinit_after_soft_reset;
5158 }
5159
5160 cciss_scsi_setup(h);
5161
5162 /* Turn the interrupts on so we can service requests */
5163 h->access.set_intr_mask(h, CCISS_INTR_ON);
5164
5165 /* Get the firmware version */
5166 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5167 if (inq_buff == NULL) {
5168 dev_err(&h->pdev->dev, "out of memory\n");
5169 goto clean4;
5170 }
5171
5172 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5173 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5174 if (return_code == IO_OK) {
5175 h->firm_ver[0] = inq_buff->data_byte[32];
5176 h->firm_ver[1] = inq_buff->data_byte[33];
5177 h->firm_ver[2] = inq_buff->data_byte[34];
5178 h->firm_ver[3] = inq_buff->data_byte[35];
5179 } else { /* send command failed */
5180 dev_warn(&h->pdev->dev, "unable to determine firmware"
5181 " version of controller\n");
5182 }
5183 kfree(inq_buff);
5184
5185 cciss_procinit(h);
5186
5187 h->cciss_max_sectors = 8192;
5188
5189 rebuild_lun_table(h, 1, 0);
5190 cciss_engage_scsi(h);
5191 h->busy_initializing = 0;
5192 return 0;
5193
5194 clean4:
5195 cciss_free_cmd_pool(h);
5196 cciss_free_scatterlists(h);
5197 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5198 free_irq(h->intr[h->intr_mode], h);
5199 clean2:
5200 unregister_blkdev(h->major, h->devname);
5201 clean1:
5202 cciss_destroy_hba_sysfs_entry(h);
5203 clean0:
5204 pci_release_regions(pdev);
5205 clean_no_release_regions:
5206 h->busy_initializing = 0;
5207
5208 /*
5209 * Deliberately omit pci_disable_device(): it does something nasty to
5210 * Smart Array controllers that pci_enable_device does not undo
5211 */
5212 pci_set_drvdata(pdev, NULL);
5213 free_hba(h);
5214 return -ENODEV;
5215 }
5216
5217 static void cciss_shutdown(struct pci_dev *pdev)
5218 {
5219 ctlr_info_t *h;
5220 char *flush_buf;
5221 int return_code;
5222
5223 h = pci_get_drvdata(pdev);
5224 flush_buf = kzalloc(4, GFP_KERNEL);
5225 if (!flush_buf) {
5226 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5227 return;
5228 }
5229 /* write all data in the battery backed cache to disk */
5230 return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5231 4, 0, CTLR_LUNID, TYPE_CMD);
5232 kfree(flush_buf);
5233 if (return_code != IO_OK)
5234 dev_warn(&h->pdev->dev, "Error flushing cache\n");
5235 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5236 free_irq(h->intr[h->intr_mode], h);
5237 }
5238
5239 static int cciss_enter_simple_mode(struct ctlr_info *h)
5240 {
5241 u32 trans_support;
5242
5243 trans_support = readl(&(h->cfgtable->TransportSupport));
5244 if (!(trans_support & SIMPLE_MODE))
5245 return -ENOTSUPP;
5246
5247 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5248 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5249 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5250 cciss_wait_for_mode_change_ack(h);
5251 print_cfg_table(h);
5252 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5253 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5254 return -ENODEV;
5255 }
5256 h->transMethod = CFGTBL_Trans_Simple;
5257 return 0;
5258 }
5259
5260
5261 static void cciss_remove_one(struct pci_dev *pdev)
5262 {
5263 ctlr_info_t *h;
5264 int i, j;
5265
5266 if (pci_get_drvdata(pdev) == NULL) {
5267 dev_err(&pdev->dev, "Unable to remove device\n");
5268 return;
5269 }
5270
5271 h = pci_get_drvdata(pdev);
5272 i = h->ctlr;
5273 if (hba[i] == NULL) {
5274 dev_err(&pdev->dev, "device appears to already be removed\n");
5275 return;
5276 }
5277
5278 mutex_lock(&h->busy_shutting_down);
5279
5280 remove_from_scan_list(h);
5281 remove_proc_entry(h->devname, proc_cciss);
5282 unregister_blkdev(h->major, h->devname);
5283
5284 /* remove it from the disk list */
5285 for (j = 0; j < CISS_MAX_LUN; j++) {
5286 struct gendisk *disk = h->gendisk[j];
5287 if (disk) {
5288 struct request_queue *q = disk->queue;
5289
5290 if (disk->flags & GENHD_FL_UP) {
5291 cciss_destroy_ld_sysfs_entry(h, j, 1);
5292 del_gendisk(disk);
5293 }
5294 if (q)
5295 blk_cleanup_queue(q);
5296 }
5297 }
5298
5299 #ifdef CONFIG_CISS_SCSI_TAPE
5300 cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
5301 #endif
5302
5303 cciss_shutdown(pdev);
5304
5305 #ifdef CONFIG_PCI_MSI
5306 if (h->msix_vector)
5307 pci_disable_msix(h->pdev);
5308 else if (h->msi_vector)
5309 pci_disable_msi(h->pdev);
5310 #endif /* CONFIG_PCI_MSI */
5311
5312 iounmap(h->transtable);
5313 iounmap(h->cfgtable);
5314 iounmap(h->vaddr);
5315
5316 cciss_free_cmd_pool(h);
5317 /* Free up sg elements */
5318 for (j = 0; j < h->nr_cmds; j++)
5319 kfree(h->scatter_list[j]);
5320 kfree(h->scatter_list);
5321 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5322 kfree(h->blockFetchTable);
5323 if (h->reply_pool)
5324 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5325 h->reply_pool, h->reply_pool_dhandle);
5326 /*
5327 * Deliberately omit pci_disable_device(): it does something nasty to
5328 * Smart Array controllers that pci_enable_device does not undo
5329 */
5330 pci_release_regions(pdev);
5331 pci_set_drvdata(pdev, NULL);
5332 cciss_destroy_hba_sysfs_entry(h);
5333 mutex_unlock(&h->busy_shutting_down);
5334 free_hba(h);
5335 }
5336
5337 static struct pci_driver cciss_pci_driver = {
5338 .name = "cciss",
5339 .probe = cciss_init_one,
5340 .remove = cciss_remove_one,
5341 .id_table = cciss_pci_device_id, /* id_table */
5342 .shutdown = cciss_shutdown,
5343 };
5344
5345 /*
5346 * This is it. Register the PCI driver information for the cards we control
5347 * the OS will call our registered routines when it finds one of our cards.
5348 */
5349 static int __init cciss_init(void)
5350 {
5351 int err;
5352
5353 /*
5354 * The hardware requires that commands are aligned on a 64-bit
5355 * boundary. Given that we use pci_alloc_consistent() to allocate an
5356 * array of them, the size must be a multiple of 8 bytes.
5357 */
5358 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5359 printk(KERN_INFO DRIVER_NAME "\n");
5360
5361 err = bus_register(&cciss_bus_type);
5362 if (err)
5363 return err;
5364
5365 /* Start the scan thread */
5366 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5367 if (IS_ERR(cciss_scan_thread)) {
5368 err = PTR_ERR(cciss_scan_thread);
5369 goto err_bus_unregister;
5370 }
5371
5372 /* Register for our PCI devices */
5373 err = pci_register_driver(&cciss_pci_driver);
5374 if (err)
5375 goto err_thread_stop;
5376
5377 return err;
5378
5379 err_thread_stop:
5380 kthread_stop(cciss_scan_thread);
5381 err_bus_unregister:
5382 bus_unregister(&cciss_bus_type);
5383
5384 return err;
5385 }
5386
5387 static void __exit cciss_cleanup(void)
5388 {
5389 int i;
5390
5391 pci_unregister_driver(&cciss_pci_driver);
5392 /* double check that all controller entrys have been removed */
5393 for (i = 0; i < MAX_CTLR; i++) {
5394 if (hba[i] != NULL) {
5395 dev_warn(&hba[i]->pdev->dev,
5396 "had to remove controller\n");
5397 cciss_remove_one(hba[i]->pdev);
5398 }
5399 }
5400 kthread_stop(cciss_scan_thread);
5401 if (proc_cciss)
5402 remove_proc_entry("driver/cciss", NULL);
5403 bus_unregister(&cciss_bus_type);
5404 }
5405
5406 module_init(cciss_init);
5407 module_exit(cciss_cleanup);