]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/cfq-iosched.c
[PATCH] 02/05: update ioscheds to use generic dispatch queue
[mirror_ubuntu-artful-kernel.git] / drivers / block / cfq-iosched.c
1 /*
2 * linux/drivers/block/cfq-iosched.c
3 *
4 * CFQ, or complete fairness queueing, disk scheduler.
5 *
6 * Based on ideas from a previously unfinished io
7 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
8 *
9 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
10 */
11 #include <linux/kernel.h>
12 #include <linux/fs.h>
13 #include <linux/blkdev.h>
14 #include <linux/elevator.h>
15 #include <linux/bio.h>
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/compiler.h>
21 #include <linux/hash.h>
22 #include <linux/rbtree.h>
23 #include <linux/mempool.h>
24 #include <linux/ioprio.h>
25 #include <linux/writeback.h>
26
27 /*
28 * tunables
29 */
30 static int cfq_quantum = 4; /* max queue in one round of service */
31 static int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
32 static int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
33 static int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
34 static int cfq_back_penalty = 2; /* penalty of a backwards seek */
35
36 static int cfq_slice_sync = HZ / 10;
37 static int cfq_slice_async = HZ / 25;
38 static int cfq_slice_async_rq = 2;
39 static int cfq_slice_idle = HZ / 100;
40
41 #define CFQ_IDLE_GRACE (HZ / 10)
42 #define CFQ_SLICE_SCALE (5)
43
44 #define CFQ_KEY_ASYNC (0)
45 #define CFQ_KEY_ANY (0xffff)
46
47 /*
48 * disable queueing at the driver/hardware level
49 */
50 static int cfq_max_depth = 2;
51
52 /*
53 * for the hash of cfqq inside the cfqd
54 */
55 #define CFQ_QHASH_SHIFT 6
56 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
57 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
58
59 /*
60 * for the hash of crq inside the cfqq
61 */
62 #define CFQ_MHASH_SHIFT 6
63 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
64 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
65 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
66 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
67 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
68
69 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
70 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
71
72 #define RQ_DATA(rq) (rq)->elevator_private
73
74 /*
75 * rb-tree defines
76 */
77 #define RB_NONE (2)
78 #define RB_EMPTY(node) ((node)->rb_node == NULL)
79 #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE
80 #define RB_CLEAR(node) do { \
81 (node)->rb_parent = NULL; \
82 RB_CLEAR_COLOR((node)); \
83 (node)->rb_right = NULL; \
84 (node)->rb_left = NULL; \
85 } while (0)
86 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
87 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
88 #define rq_rb_key(rq) (rq)->sector
89
90 static kmem_cache_t *crq_pool;
91 static kmem_cache_t *cfq_pool;
92 static kmem_cache_t *cfq_ioc_pool;
93
94 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
95 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
96 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
97 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
98
99 #define ASYNC (0)
100 #define SYNC (1)
101
102 #define cfq_cfqq_dispatched(cfqq) \
103 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
104
105 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
106
107 #define cfq_cfqq_sync(cfqq) \
108 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
109
110 /*
111 * Per block device queue structure
112 */
113 struct cfq_data {
114 atomic_t ref;
115 request_queue_t *queue;
116
117 /*
118 * rr list of queues with requests and the count of them
119 */
120 struct list_head rr_list[CFQ_PRIO_LISTS];
121 struct list_head busy_rr;
122 struct list_head cur_rr;
123 struct list_head idle_rr;
124 unsigned int busy_queues;
125
126 /*
127 * non-ordered list of empty cfqq's
128 */
129 struct list_head empty_list;
130
131 /*
132 * cfqq lookup hash
133 */
134 struct hlist_head *cfq_hash;
135
136 /*
137 * global crq hash for all queues
138 */
139 struct hlist_head *crq_hash;
140
141 unsigned int max_queued;
142
143 mempool_t *crq_pool;
144
145 int rq_in_driver;
146
147 /*
148 * schedule slice state info
149 */
150 /*
151 * idle window management
152 */
153 struct timer_list idle_slice_timer;
154 struct work_struct unplug_work;
155
156 struct cfq_queue *active_queue;
157 struct cfq_io_context *active_cic;
158 int cur_prio, cur_end_prio;
159 unsigned int dispatch_slice;
160
161 struct timer_list idle_class_timer;
162
163 sector_t last_sector;
164 unsigned long last_end_request;
165
166 unsigned int rq_starved;
167
168 /*
169 * tunables, see top of file
170 */
171 unsigned int cfq_quantum;
172 unsigned int cfq_queued;
173 unsigned int cfq_fifo_expire[2];
174 unsigned int cfq_back_penalty;
175 unsigned int cfq_back_max;
176 unsigned int cfq_slice[2];
177 unsigned int cfq_slice_async_rq;
178 unsigned int cfq_slice_idle;
179 unsigned int cfq_max_depth;
180 };
181
182 /*
183 * Per process-grouping structure
184 */
185 struct cfq_queue {
186 /* reference count */
187 atomic_t ref;
188 /* parent cfq_data */
189 struct cfq_data *cfqd;
190 /* cfqq lookup hash */
191 struct hlist_node cfq_hash;
192 /* hash key */
193 unsigned int key;
194 /* on either rr or empty list of cfqd */
195 struct list_head cfq_list;
196 /* sorted list of pending requests */
197 struct rb_root sort_list;
198 /* if fifo isn't expired, next request to serve */
199 struct cfq_rq *next_crq;
200 /* requests queued in sort_list */
201 int queued[2];
202 /* currently allocated requests */
203 int allocated[2];
204 /* fifo list of requests in sort_list */
205 struct list_head fifo;
206
207 unsigned long slice_start;
208 unsigned long slice_end;
209 unsigned long slice_left;
210 unsigned long service_last;
211
212 /* number of requests that are on the dispatch list */
213 int on_dispatch[2];
214
215 /* io prio of this group */
216 unsigned short ioprio, org_ioprio;
217 unsigned short ioprio_class, org_ioprio_class;
218
219 /* various state flags, see below */
220 unsigned int flags;
221 };
222
223 struct cfq_rq {
224 struct rb_node rb_node;
225 sector_t rb_key;
226 struct request *request;
227 struct hlist_node hash;
228
229 struct cfq_queue *cfq_queue;
230 struct cfq_io_context *io_context;
231
232 unsigned int crq_flags;
233 };
234
235 enum cfqq_state_flags {
236 CFQ_CFQQ_FLAG_on_rr = 0,
237 CFQ_CFQQ_FLAG_wait_request,
238 CFQ_CFQQ_FLAG_must_alloc,
239 CFQ_CFQQ_FLAG_must_alloc_slice,
240 CFQ_CFQQ_FLAG_must_dispatch,
241 CFQ_CFQQ_FLAG_fifo_expire,
242 CFQ_CFQQ_FLAG_idle_window,
243 CFQ_CFQQ_FLAG_prio_changed,
244 CFQ_CFQQ_FLAG_expired,
245 };
246
247 #define CFQ_CFQQ_FNS(name) \
248 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
249 { \
250 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
251 } \
252 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
253 { \
254 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
255 } \
256 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
257 { \
258 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
259 }
260
261 CFQ_CFQQ_FNS(on_rr);
262 CFQ_CFQQ_FNS(wait_request);
263 CFQ_CFQQ_FNS(must_alloc);
264 CFQ_CFQQ_FNS(must_alloc_slice);
265 CFQ_CFQQ_FNS(must_dispatch);
266 CFQ_CFQQ_FNS(fifo_expire);
267 CFQ_CFQQ_FNS(idle_window);
268 CFQ_CFQQ_FNS(prio_changed);
269 CFQ_CFQQ_FNS(expired);
270 #undef CFQ_CFQQ_FNS
271
272 enum cfq_rq_state_flags {
273 CFQ_CRQ_FLAG_is_sync = 0,
274 };
275
276 #define CFQ_CRQ_FNS(name) \
277 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
278 { \
279 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
280 } \
281 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
282 { \
283 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
284 } \
285 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
286 { \
287 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
288 }
289
290 CFQ_CRQ_FNS(is_sync);
291 #undef CFQ_CRQ_FNS
292
293 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
294 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
295 static void cfq_put_cfqd(struct cfq_data *cfqd);
296
297 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
298
299 /*
300 * lots of deadline iosched dupes, can be abstracted later...
301 */
302 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
303 {
304 hlist_del_init(&crq->hash);
305 }
306
307 static void cfq_remove_merge_hints(request_queue_t *q, struct cfq_rq *crq)
308 {
309 cfq_del_crq_hash(crq);
310
311 if (q->last_merge == crq->request)
312 q->last_merge = NULL;
313 }
314
315 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
316 {
317 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
318
319 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
320 }
321
322 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
323 {
324 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
325 struct hlist_node *entry, *next;
326
327 hlist_for_each_safe(entry, next, hash_list) {
328 struct cfq_rq *crq = list_entry_hash(entry);
329 struct request *__rq = crq->request;
330
331 if (!rq_mergeable(__rq)) {
332 cfq_del_crq_hash(crq);
333 continue;
334 }
335
336 if (rq_hash_key(__rq) == offset)
337 return __rq;
338 }
339
340 return NULL;
341 }
342
343 /*
344 * scheduler run of queue, if there are requests pending and no one in the
345 * driver that will restart queueing
346 */
347 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
348 {
349 if (!cfqd->rq_in_driver && cfqd->busy_queues)
350 kblockd_schedule_work(&cfqd->unplug_work);
351 }
352
353 static int cfq_queue_empty(request_queue_t *q)
354 {
355 struct cfq_data *cfqd = q->elevator->elevator_data;
356
357 return !cfqd->busy_queues;
358 }
359
360 /*
361 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
362 * We choose the request that is closest to the head right now. Distance
363 * behind the head are penalized and only allowed to a certain extent.
364 */
365 static struct cfq_rq *
366 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
367 {
368 sector_t last, s1, s2, d1 = 0, d2 = 0;
369 int r1_wrap = 0, r2_wrap = 0; /* requests are behind the disk head */
370 unsigned long back_max;
371
372 if (crq1 == NULL || crq1 == crq2)
373 return crq2;
374 if (crq2 == NULL)
375 return crq1;
376
377 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
378 return crq1;
379 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
380 return crq2;
381
382 s1 = crq1->request->sector;
383 s2 = crq2->request->sector;
384
385 last = cfqd->last_sector;
386
387 /*
388 * by definition, 1KiB is 2 sectors
389 */
390 back_max = cfqd->cfq_back_max * 2;
391
392 /*
393 * Strict one way elevator _except_ in the case where we allow
394 * short backward seeks which are biased as twice the cost of a
395 * similar forward seek.
396 */
397 if (s1 >= last)
398 d1 = s1 - last;
399 else if (s1 + back_max >= last)
400 d1 = (last - s1) * cfqd->cfq_back_penalty;
401 else
402 r1_wrap = 1;
403
404 if (s2 >= last)
405 d2 = s2 - last;
406 else if (s2 + back_max >= last)
407 d2 = (last - s2) * cfqd->cfq_back_penalty;
408 else
409 r2_wrap = 1;
410
411 /* Found required data */
412 if (!r1_wrap && r2_wrap)
413 return crq1;
414 else if (!r2_wrap && r1_wrap)
415 return crq2;
416 else if (r1_wrap && r2_wrap) {
417 /* both behind the head */
418 if (s1 <= s2)
419 return crq1;
420 else
421 return crq2;
422 }
423
424 /* Both requests in front of the head */
425 if (d1 < d2)
426 return crq1;
427 else if (d2 < d1)
428 return crq2;
429 else {
430 if (s1 >= s2)
431 return crq1;
432 else
433 return crq2;
434 }
435 }
436
437 /*
438 * would be nice to take fifo expire time into account as well
439 */
440 static struct cfq_rq *
441 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
442 struct cfq_rq *last)
443 {
444 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
445 struct rb_node *rbnext, *rbprev;
446
447 if (!(rbnext = rb_next(&last->rb_node))) {
448 rbnext = rb_first(&cfqq->sort_list);
449 if (rbnext == &last->rb_node)
450 rbnext = NULL;
451 }
452
453 rbprev = rb_prev(&last->rb_node);
454
455 if (rbprev)
456 crq_prev = rb_entry_crq(rbprev);
457 if (rbnext)
458 crq_next = rb_entry_crq(rbnext);
459
460 return cfq_choose_req(cfqd, crq_next, crq_prev);
461 }
462
463 static void cfq_update_next_crq(struct cfq_rq *crq)
464 {
465 struct cfq_queue *cfqq = crq->cfq_queue;
466
467 if (cfqq->next_crq == crq)
468 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
469 }
470
471 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
472 {
473 struct cfq_data *cfqd = cfqq->cfqd;
474 struct list_head *list, *entry;
475
476 BUG_ON(!cfq_cfqq_on_rr(cfqq));
477
478 list_del(&cfqq->cfq_list);
479
480 if (cfq_class_rt(cfqq))
481 list = &cfqd->cur_rr;
482 else if (cfq_class_idle(cfqq))
483 list = &cfqd->idle_rr;
484 else {
485 /*
486 * if cfqq has requests in flight, don't allow it to be
487 * found in cfq_set_active_queue before it has finished them.
488 * this is done to increase fairness between a process that
489 * has lots of io pending vs one that only generates one
490 * sporadically or synchronously
491 */
492 if (cfq_cfqq_dispatched(cfqq))
493 list = &cfqd->busy_rr;
494 else
495 list = &cfqd->rr_list[cfqq->ioprio];
496 }
497
498 /*
499 * if queue was preempted, just add to front to be fair. busy_rr
500 * isn't sorted.
501 */
502 if (preempted || list == &cfqd->busy_rr) {
503 list_add(&cfqq->cfq_list, list);
504 return;
505 }
506
507 /*
508 * sort by when queue was last serviced
509 */
510 entry = list;
511 while ((entry = entry->prev) != list) {
512 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
513
514 if (!__cfqq->service_last)
515 break;
516 if (time_before(__cfqq->service_last, cfqq->service_last))
517 break;
518 }
519
520 list_add(&cfqq->cfq_list, entry);
521 }
522
523 /*
524 * add to busy list of queues for service, trying to be fair in ordering
525 * the pending list according to last request service
526 */
527 static inline void
528 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529 {
530 BUG_ON(cfq_cfqq_on_rr(cfqq));
531 cfq_mark_cfqq_on_rr(cfqq);
532 cfqd->busy_queues++;
533
534 cfq_resort_rr_list(cfqq, 0);
535 }
536
537 static inline void
538 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
539 {
540 BUG_ON(!cfq_cfqq_on_rr(cfqq));
541 cfq_clear_cfqq_on_rr(cfqq);
542 list_move(&cfqq->cfq_list, &cfqd->empty_list);
543
544 BUG_ON(!cfqd->busy_queues);
545 cfqd->busy_queues--;
546 }
547
548 /*
549 * rb tree support functions
550 */
551 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
552 {
553 struct cfq_queue *cfqq = crq->cfq_queue;
554 struct cfq_data *cfqd = cfqq->cfqd;
555 const int sync = cfq_crq_is_sync(crq);
556
557 BUG_ON(!cfqq->queued[sync]);
558 cfqq->queued[sync]--;
559
560 cfq_update_next_crq(crq);
561
562 rb_erase(&crq->rb_node, &cfqq->sort_list);
563 RB_CLEAR_COLOR(&crq->rb_node);
564
565 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
566 cfq_del_cfqq_rr(cfqd, cfqq);
567 }
568
569 static struct cfq_rq *
570 __cfq_add_crq_rb(struct cfq_rq *crq)
571 {
572 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
573 struct rb_node *parent = NULL;
574 struct cfq_rq *__crq;
575
576 while (*p) {
577 parent = *p;
578 __crq = rb_entry_crq(parent);
579
580 if (crq->rb_key < __crq->rb_key)
581 p = &(*p)->rb_left;
582 else if (crq->rb_key > __crq->rb_key)
583 p = &(*p)->rb_right;
584 else
585 return __crq;
586 }
587
588 rb_link_node(&crq->rb_node, parent, p);
589 return NULL;
590 }
591
592 static void cfq_add_crq_rb(struct cfq_rq *crq)
593 {
594 struct cfq_queue *cfqq = crq->cfq_queue;
595 struct cfq_data *cfqd = cfqq->cfqd;
596 struct request *rq = crq->request;
597 struct cfq_rq *__alias;
598
599 crq->rb_key = rq_rb_key(rq);
600 cfqq->queued[cfq_crq_is_sync(crq)]++;
601
602 /*
603 * looks a little odd, but the first insert might return an alias.
604 * if that happens, put the alias on the dispatch list
605 */
606 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
607 cfq_dispatch_insert(cfqd->queue, __alias);
608
609 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
610
611 if (!cfq_cfqq_on_rr(cfqq))
612 cfq_add_cfqq_rr(cfqd, cfqq);
613
614 /*
615 * check if this request is a better next-serve candidate
616 */
617 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
618 }
619
620 static inline void
621 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
622 {
623 rb_erase(&crq->rb_node, &cfqq->sort_list);
624 cfqq->queued[cfq_crq_is_sync(crq)]--;
625
626 cfq_add_crq_rb(crq);
627 }
628
629 static struct request *cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector)
630
631 {
632 struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, current->pid, CFQ_KEY_ANY);
633 struct rb_node *n;
634
635 if (!cfqq)
636 goto out;
637
638 n = cfqq->sort_list.rb_node;
639 while (n) {
640 struct cfq_rq *crq = rb_entry_crq(n);
641
642 if (sector < crq->rb_key)
643 n = n->rb_left;
644 else if (sector > crq->rb_key)
645 n = n->rb_right;
646 else
647 return crq->request;
648 }
649
650 out:
651 return NULL;
652 }
653
654 static void cfq_activate_request(request_queue_t *q, struct request *rq)
655 {
656 struct cfq_data *cfqd = q->elevator->elevator_data;
657
658 cfqd->rq_in_driver++;
659 }
660
661 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
662 {
663 struct cfq_data *cfqd = q->elevator->elevator_data;
664
665 WARN_ON(!cfqd->rq_in_driver);
666 cfqd->rq_in_driver--;
667 }
668
669 static void cfq_remove_request(struct request *rq)
670 {
671 struct cfq_rq *crq = RQ_DATA(rq);
672
673 list_del_init(&rq->queuelist);
674 cfq_del_crq_rb(crq);
675 cfq_remove_merge_hints(rq->q, crq);
676 }
677
678 static int
679 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
680 {
681 struct cfq_data *cfqd = q->elevator->elevator_data;
682 struct request *__rq;
683 int ret;
684
685 ret = elv_try_last_merge(q, bio);
686 if (ret != ELEVATOR_NO_MERGE) {
687 __rq = q->last_merge;
688 goto out_insert;
689 }
690
691 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
692 if (__rq && elv_rq_merge_ok(__rq, bio)) {
693 ret = ELEVATOR_BACK_MERGE;
694 goto out;
695 }
696
697 __rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio));
698 if (__rq && elv_rq_merge_ok(__rq, bio)) {
699 ret = ELEVATOR_FRONT_MERGE;
700 goto out;
701 }
702
703 return ELEVATOR_NO_MERGE;
704 out:
705 q->last_merge = __rq;
706 out_insert:
707 *req = __rq;
708 return ret;
709 }
710
711 static void cfq_merged_request(request_queue_t *q, struct request *req)
712 {
713 struct cfq_data *cfqd = q->elevator->elevator_data;
714 struct cfq_rq *crq = RQ_DATA(req);
715
716 cfq_del_crq_hash(crq);
717 cfq_add_crq_hash(cfqd, crq);
718
719 if (rq_rb_key(req) != crq->rb_key) {
720 struct cfq_queue *cfqq = crq->cfq_queue;
721
722 cfq_update_next_crq(crq);
723 cfq_reposition_crq_rb(cfqq, crq);
724 }
725
726 q->last_merge = req;
727 }
728
729 static void
730 cfq_merged_requests(request_queue_t *q, struct request *rq,
731 struct request *next)
732 {
733 cfq_merged_request(q, rq);
734
735 /*
736 * reposition in fifo if next is older than rq
737 */
738 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
739 time_before(next->start_time, rq->start_time))
740 list_move(&rq->queuelist, &next->queuelist);
741
742 cfq_remove_request(next);
743 }
744
745 static inline void
746 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
747 {
748 if (cfqq) {
749 /*
750 * stop potential idle class queues waiting service
751 */
752 del_timer(&cfqd->idle_class_timer);
753
754 cfqq->slice_start = jiffies;
755 cfqq->slice_end = 0;
756 cfqq->slice_left = 0;
757 cfq_clear_cfqq_must_alloc_slice(cfqq);
758 cfq_clear_cfqq_fifo_expire(cfqq);
759 cfq_clear_cfqq_expired(cfqq);
760 }
761
762 cfqd->active_queue = cfqq;
763 }
764
765 /*
766 * 0
767 * 0,1
768 * 0,1,2
769 * 0,1,2,3
770 * 0,1,2,3,4
771 * 0,1,2,3,4,5
772 * 0,1,2,3,4,5,6
773 * 0,1,2,3,4,5,6,7
774 */
775 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
776 {
777 int prio, wrap;
778
779 prio = -1;
780 wrap = 0;
781 do {
782 int p;
783
784 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
785 if (!list_empty(&cfqd->rr_list[p])) {
786 prio = p;
787 break;
788 }
789 }
790
791 if (prio != -1)
792 break;
793 cfqd->cur_prio = 0;
794 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
795 cfqd->cur_end_prio = 0;
796 if (wrap)
797 break;
798 wrap = 1;
799 }
800 } while (1);
801
802 if (unlikely(prio == -1))
803 return -1;
804
805 BUG_ON(prio >= CFQ_PRIO_LISTS);
806
807 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
808
809 cfqd->cur_prio = prio + 1;
810 if (cfqd->cur_prio > cfqd->cur_end_prio) {
811 cfqd->cur_end_prio = cfqd->cur_prio;
812 cfqd->cur_prio = 0;
813 }
814 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
815 cfqd->cur_prio = 0;
816 cfqd->cur_end_prio = 0;
817 }
818
819 return prio;
820 }
821
822 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
823 {
824 struct cfq_queue *cfqq;
825
826 /*
827 * if current queue is expired but not done with its requests yet,
828 * wait for that to happen
829 */
830 if ((cfqq = cfqd->active_queue) != NULL) {
831 if (cfq_cfqq_expired(cfqq) && cfq_cfqq_dispatched(cfqq))
832 return NULL;
833 }
834
835 /*
836 * if current list is non-empty, grab first entry. if it is empty,
837 * get next prio level and grab first entry then if any are spliced
838 */
839 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
840 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
841
842 /*
843 * if we have idle queues and no rt or be queues had pending
844 * requests, either allow immediate service if the grace period
845 * has passed or arm the idle grace timer
846 */
847 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
848 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
849
850 if (time_after_eq(jiffies, end))
851 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
852 else
853 mod_timer(&cfqd->idle_class_timer, end);
854 }
855
856 __cfq_set_active_queue(cfqd, cfqq);
857 return cfqq;
858 }
859
860 /*
861 * current cfqq expired its slice (or was too idle), select new one
862 */
863 static void
864 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
865 int preempted)
866 {
867 unsigned long now = jiffies;
868
869 if (cfq_cfqq_wait_request(cfqq))
870 del_timer(&cfqd->idle_slice_timer);
871
872 if (!preempted && !cfq_cfqq_dispatched(cfqq))
873 cfqq->service_last = now;
874
875 cfq_clear_cfqq_must_dispatch(cfqq);
876 cfq_clear_cfqq_wait_request(cfqq);
877
878 /*
879 * store what was left of this slice, if the queue idled out
880 * or was preempted
881 */
882 if (time_after(now, cfqq->slice_end))
883 cfqq->slice_left = now - cfqq->slice_end;
884 else
885 cfqq->slice_left = 0;
886
887 if (cfq_cfqq_on_rr(cfqq))
888 cfq_resort_rr_list(cfqq, preempted);
889
890 if (cfqq == cfqd->active_queue)
891 cfqd->active_queue = NULL;
892
893 if (cfqd->active_cic) {
894 put_io_context(cfqd->active_cic->ioc);
895 cfqd->active_cic = NULL;
896 }
897
898 cfqd->dispatch_slice = 0;
899 }
900
901 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
902 {
903 struct cfq_queue *cfqq = cfqd->active_queue;
904
905 if (cfqq) {
906 /*
907 * use deferred expiry, if there are requests in progress as
908 * not to disturb the slice of the next queue
909 */
910 if (cfq_cfqq_dispatched(cfqq))
911 cfq_mark_cfqq_expired(cfqq);
912 else
913 __cfq_slice_expired(cfqd, cfqq, preempted);
914 }
915 }
916
917 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
918
919 {
920 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
921 WARN_ON(cfqq != cfqd->active_queue);
922
923 /*
924 * idle is disabled, either manually or by past process history
925 */
926 if (!cfqd->cfq_slice_idle)
927 return 0;
928 if (!cfq_cfqq_idle_window(cfqq))
929 return 0;
930 /*
931 * task has exited, don't wait
932 */
933 if (cfqd->active_cic && !cfqd->active_cic->ioc->task)
934 return 0;
935
936 cfq_mark_cfqq_must_dispatch(cfqq);
937 cfq_mark_cfqq_wait_request(cfqq);
938
939 if (!timer_pending(&cfqd->idle_slice_timer)) {
940 unsigned long slice_left = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
941
942 cfqd->idle_slice_timer.expires = jiffies + slice_left;
943 add_timer(&cfqd->idle_slice_timer);
944 }
945
946 return 1;
947 }
948
949 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
950 {
951 struct cfq_data *cfqd = q->elevator->elevator_data;
952 struct cfq_queue *cfqq = crq->cfq_queue;
953
954 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
955 cfq_remove_request(crq->request);
956 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
957 elv_dispatch_sort(q, crq->request);
958 }
959
960 /*
961 * return expired entry, or NULL to just start from scratch in rbtree
962 */
963 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
964 {
965 struct cfq_data *cfqd = cfqq->cfqd;
966 struct request *rq;
967 struct cfq_rq *crq;
968
969 if (cfq_cfqq_fifo_expire(cfqq))
970 return NULL;
971
972 if (!list_empty(&cfqq->fifo)) {
973 int fifo = cfq_cfqq_class_sync(cfqq);
974
975 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
976 rq = crq->request;
977 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
978 cfq_mark_cfqq_fifo_expire(cfqq);
979 return crq;
980 }
981 }
982
983 return NULL;
984 }
985
986 /*
987 * Scale schedule slice based on io priority. Use the sync time slice only
988 * if a queue is marked sync and has sync io queued. A sync queue with async
989 * io only, should not get full sync slice length.
990 */
991 static inline int
992 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
993 {
994 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
995
996 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
997
998 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
999 }
1000
1001 static inline void
1002 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1003 {
1004 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1005 }
1006
1007 static inline int
1008 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1009 {
1010 const int base_rq = cfqd->cfq_slice_async_rq;
1011
1012 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1013
1014 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1015 }
1016
1017 /*
1018 * get next queue for service
1019 */
1020 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd, int force)
1021 {
1022 unsigned long now = jiffies;
1023 struct cfq_queue *cfqq;
1024
1025 cfqq = cfqd->active_queue;
1026 if (!cfqq)
1027 goto new_queue;
1028
1029 if (cfq_cfqq_expired(cfqq))
1030 goto new_queue;
1031
1032 /*
1033 * slice has expired
1034 */
1035 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1036 goto expire;
1037
1038 /*
1039 * if queue has requests, dispatch one. if not, check if
1040 * enough slice is left to wait for one
1041 */
1042 if (!RB_EMPTY(&cfqq->sort_list))
1043 goto keep_queue;
1044 else if (!force && cfq_cfqq_class_sync(cfqq) &&
1045 time_before(now, cfqq->slice_end)) {
1046 if (cfq_arm_slice_timer(cfqd, cfqq))
1047 return NULL;
1048 }
1049
1050 expire:
1051 cfq_slice_expired(cfqd, 0);
1052 new_queue:
1053 cfqq = cfq_set_active_queue(cfqd);
1054 keep_queue:
1055 return cfqq;
1056 }
1057
1058 static int
1059 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1060 int max_dispatch)
1061 {
1062 int dispatched = 0;
1063
1064 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1065
1066 do {
1067 struct cfq_rq *crq;
1068
1069 /*
1070 * follow expired path, else get first next available
1071 */
1072 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1073 crq = cfqq->next_crq;
1074
1075 /*
1076 * finally, insert request into driver dispatch list
1077 */
1078 cfq_dispatch_insert(cfqd->queue, crq);
1079
1080 cfqd->dispatch_slice++;
1081 dispatched++;
1082
1083 if (!cfqd->active_cic) {
1084 atomic_inc(&crq->io_context->ioc->refcount);
1085 cfqd->active_cic = crq->io_context;
1086 }
1087
1088 if (RB_EMPTY(&cfqq->sort_list))
1089 break;
1090
1091 } while (dispatched < max_dispatch);
1092
1093 /*
1094 * if slice end isn't set yet, set it. if at least one request was
1095 * sync, use the sync time slice value
1096 */
1097 if (!cfqq->slice_end)
1098 cfq_set_prio_slice(cfqd, cfqq);
1099
1100 /*
1101 * expire an async queue immediately if it has used up its slice. idle
1102 * queue always expire after 1 dispatch round.
1103 */
1104 if ((!cfq_cfqq_sync(cfqq) &&
1105 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1106 cfq_class_idle(cfqq))
1107 cfq_slice_expired(cfqd, 0);
1108
1109 return dispatched;
1110 }
1111
1112 static int
1113 cfq_dispatch_requests(request_queue_t *q, int force)
1114 {
1115 struct cfq_data *cfqd = q->elevator->elevator_data;
1116 struct cfq_queue *cfqq;
1117
1118 if (!cfqd->busy_queues)
1119 return 0;
1120
1121 cfqq = cfq_select_queue(cfqd, force);
1122 if (cfqq) {
1123 int max_dispatch;
1124
1125 /*
1126 * if idle window is disabled, allow queue buildup
1127 */
1128 if (!cfq_cfqq_idle_window(cfqq) &&
1129 cfqd->rq_in_driver >= cfqd->cfq_max_depth)
1130 return 0;
1131
1132 cfq_clear_cfqq_must_dispatch(cfqq);
1133 cfq_clear_cfqq_wait_request(cfqq);
1134 del_timer(&cfqd->idle_slice_timer);
1135
1136 if (!force) {
1137 max_dispatch = cfqd->cfq_quantum;
1138 if (cfq_class_idle(cfqq))
1139 max_dispatch = 1;
1140 } else
1141 max_dispatch = INT_MAX;
1142
1143 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1144 }
1145
1146 return 0;
1147 }
1148
1149 /*
1150 * task holds one reference to the queue, dropped when task exits. each crq
1151 * in-flight on this queue also holds a reference, dropped when crq is freed.
1152 *
1153 * queue lock must be held here.
1154 */
1155 static void cfq_put_queue(struct cfq_queue *cfqq)
1156 {
1157 struct cfq_data *cfqd = cfqq->cfqd;
1158
1159 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1160
1161 if (!atomic_dec_and_test(&cfqq->ref))
1162 return;
1163
1164 BUG_ON(rb_first(&cfqq->sort_list));
1165 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1166 BUG_ON(cfq_cfqq_on_rr(cfqq));
1167
1168 if (unlikely(cfqd->active_queue == cfqq)) {
1169 __cfq_slice_expired(cfqd, cfqq, 0);
1170 cfq_schedule_dispatch(cfqd);
1171 }
1172
1173 cfq_put_cfqd(cfqq->cfqd);
1174
1175 /*
1176 * it's on the empty list and still hashed
1177 */
1178 list_del(&cfqq->cfq_list);
1179 hlist_del(&cfqq->cfq_hash);
1180 kmem_cache_free(cfq_pool, cfqq);
1181 }
1182
1183 static inline struct cfq_queue *
1184 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1185 const int hashval)
1186 {
1187 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1188 struct hlist_node *entry, *next;
1189
1190 hlist_for_each_safe(entry, next, hash_list) {
1191 struct cfq_queue *__cfqq = list_entry_qhash(entry);
1192 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->ioprio_class, __cfqq->ioprio);
1193
1194 if (__cfqq->key == key && (__p == prio || prio == CFQ_KEY_ANY))
1195 return __cfqq;
1196 }
1197
1198 return NULL;
1199 }
1200
1201 static struct cfq_queue *
1202 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1203 {
1204 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1205 }
1206
1207 static void cfq_free_io_context(struct cfq_io_context *cic)
1208 {
1209 struct cfq_io_context *__cic;
1210 struct list_head *entry, *next;
1211
1212 list_for_each_safe(entry, next, &cic->list) {
1213 __cic = list_entry(entry, struct cfq_io_context, list);
1214 kmem_cache_free(cfq_ioc_pool, __cic);
1215 }
1216
1217 kmem_cache_free(cfq_ioc_pool, cic);
1218 }
1219
1220 /*
1221 * Called with interrupts disabled
1222 */
1223 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1224 {
1225 struct cfq_data *cfqd = cic->cfqq->cfqd;
1226 request_queue_t *q = cfqd->queue;
1227
1228 WARN_ON(!irqs_disabled());
1229
1230 spin_lock(q->queue_lock);
1231
1232 if (unlikely(cic->cfqq == cfqd->active_queue)) {
1233 __cfq_slice_expired(cfqd, cic->cfqq, 0);
1234 cfq_schedule_dispatch(cfqd);
1235 }
1236
1237 cfq_put_queue(cic->cfqq);
1238 cic->cfqq = NULL;
1239 spin_unlock(q->queue_lock);
1240 }
1241
1242 /*
1243 * Another task may update the task cic list, if it is doing a queue lookup
1244 * on its behalf. cfq_cic_lock excludes such concurrent updates
1245 */
1246 static void cfq_exit_io_context(struct cfq_io_context *cic)
1247 {
1248 struct cfq_io_context *__cic;
1249 struct list_head *entry;
1250 unsigned long flags;
1251
1252 local_irq_save(flags);
1253
1254 /*
1255 * put the reference this task is holding to the various queues
1256 */
1257 list_for_each(entry, &cic->list) {
1258 __cic = list_entry(entry, struct cfq_io_context, list);
1259 cfq_exit_single_io_context(__cic);
1260 }
1261
1262 cfq_exit_single_io_context(cic);
1263 local_irq_restore(flags);
1264 }
1265
1266 static struct cfq_io_context *
1267 cfq_alloc_io_context(struct cfq_data *cfqd, int gfp_mask)
1268 {
1269 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1270
1271 if (cic) {
1272 INIT_LIST_HEAD(&cic->list);
1273 cic->cfqq = NULL;
1274 cic->key = NULL;
1275 cic->last_end_request = jiffies;
1276 cic->ttime_total = 0;
1277 cic->ttime_samples = 0;
1278 cic->ttime_mean = 0;
1279 cic->dtor = cfq_free_io_context;
1280 cic->exit = cfq_exit_io_context;
1281 }
1282
1283 return cic;
1284 }
1285
1286 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1287 {
1288 struct task_struct *tsk = current;
1289 int ioprio_class;
1290
1291 if (!cfq_cfqq_prio_changed(cfqq))
1292 return;
1293
1294 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1295 switch (ioprio_class) {
1296 default:
1297 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1298 case IOPRIO_CLASS_NONE:
1299 /*
1300 * no prio set, place us in the middle of the BE classes
1301 */
1302 cfqq->ioprio = task_nice_ioprio(tsk);
1303 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1304 break;
1305 case IOPRIO_CLASS_RT:
1306 cfqq->ioprio = task_ioprio(tsk);
1307 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1308 break;
1309 case IOPRIO_CLASS_BE:
1310 cfqq->ioprio = task_ioprio(tsk);
1311 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1312 break;
1313 case IOPRIO_CLASS_IDLE:
1314 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1315 cfqq->ioprio = 7;
1316 cfq_clear_cfqq_idle_window(cfqq);
1317 break;
1318 }
1319
1320 /*
1321 * keep track of original prio settings in case we have to temporarily
1322 * elevate the priority of this queue
1323 */
1324 cfqq->org_ioprio = cfqq->ioprio;
1325 cfqq->org_ioprio_class = cfqq->ioprio_class;
1326
1327 if (cfq_cfqq_on_rr(cfqq))
1328 cfq_resort_rr_list(cfqq, 0);
1329
1330 cfq_clear_cfqq_prio_changed(cfqq);
1331 }
1332
1333 static inline void changed_ioprio(struct cfq_queue *cfqq)
1334 {
1335 if (cfqq) {
1336 struct cfq_data *cfqd = cfqq->cfqd;
1337
1338 spin_lock(cfqd->queue->queue_lock);
1339 cfq_mark_cfqq_prio_changed(cfqq);
1340 cfq_init_prio_data(cfqq);
1341 spin_unlock(cfqd->queue->queue_lock);
1342 }
1343 }
1344
1345 /*
1346 * callback from sys_ioprio_set, irqs are disabled
1347 */
1348 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1349 {
1350 struct cfq_io_context *cic = ioc->cic;
1351
1352 changed_ioprio(cic->cfqq);
1353
1354 list_for_each_entry(cic, &cic->list, list)
1355 changed_ioprio(cic->cfqq);
1356
1357 return 0;
1358 }
1359
1360 static struct cfq_queue *
1361 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, unsigned short ioprio,
1362 int gfp_mask)
1363 {
1364 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1365 struct cfq_queue *cfqq, *new_cfqq = NULL;
1366
1367 retry:
1368 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1369
1370 if (!cfqq) {
1371 if (new_cfqq) {
1372 cfqq = new_cfqq;
1373 new_cfqq = NULL;
1374 } else if (gfp_mask & __GFP_WAIT) {
1375 spin_unlock_irq(cfqd->queue->queue_lock);
1376 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1377 spin_lock_irq(cfqd->queue->queue_lock);
1378 goto retry;
1379 } else {
1380 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1381 if (!cfqq)
1382 goto out;
1383 }
1384
1385 memset(cfqq, 0, sizeof(*cfqq));
1386
1387 INIT_HLIST_NODE(&cfqq->cfq_hash);
1388 INIT_LIST_HEAD(&cfqq->cfq_list);
1389 RB_CLEAR_ROOT(&cfqq->sort_list);
1390 INIT_LIST_HEAD(&cfqq->fifo);
1391
1392 cfqq->key = key;
1393 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1394 atomic_set(&cfqq->ref, 0);
1395 cfqq->cfqd = cfqd;
1396 atomic_inc(&cfqd->ref);
1397 cfqq->service_last = 0;
1398 /*
1399 * set ->slice_left to allow preemption for a new process
1400 */
1401 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1402 cfq_mark_cfqq_idle_window(cfqq);
1403 cfq_mark_cfqq_prio_changed(cfqq);
1404 cfq_init_prio_data(cfqq);
1405 }
1406
1407 if (new_cfqq)
1408 kmem_cache_free(cfq_pool, new_cfqq);
1409
1410 atomic_inc(&cfqq->ref);
1411 out:
1412 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1413 return cfqq;
1414 }
1415
1416 /*
1417 * Setup general io context and cfq io context. There can be several cfq
1418 * io contexts per general io context, if this process is doing io to more
1419 * than one device managed by cfq. Note that caller is holding a reference to
1420 * cfqq, so we don't need to worry about it disappearing
1421 */
1422 static struct cfq_io_context *
1423 cfq_get_io_context(struct cfq_data *cfqd, pid_t pid, int gfp_mask)
1424 {
1425 struct io_context *ioc = NULL;
1426 struct cfq_io_context *cic;
1427
1428 might_sleep_if(gfp_mask & __GFP_WAIT);
1429
1430 ioc = get_io_context(gfp_mask);
1431 if (!ioc)
1432 return NULL;
1433
1434 if ((cic = ioc->cic) == NULL) {
1435 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1436
1437 if (cic == NULL)
1438 goto err;
1439
1440 /*
1441 * manually increment generic io_context usage count, it
1442 * cannot go away since we are already holding one ref to it
1443 */
1444 ioc->cic = cic;
1445 ioc->set_ioprio = cfq_ioc_set_ioprio;
1446 cic->ioc = ioc;
1447 cic->key = cfqd;
1448 atomic_inc(&cfqd->ref);
1449 } else {
1450 struct cfq_io_context *__cic;
1451
1452 /*
1453 * the first cic on the list is actually the head itself
1454 */
1455 if (cic->key == cfqd)
1456 goto out;
1457
1458 /*
1459 * cic exists, check if we already are there. linear search
1460 * should be ok here, the list will usually not be more than
1461 * 1 or a few entries long
1462 */
1463 list_for_each_entry(__cic, &cic->list, list) {
1464 /*
1465 * this process is already holding a reference to
1466 * this queue, so no need to get one more
1467 */
1468 if (__cic->key == cfqd) {
1469 cic = __cic;
1470 goto out;
1471 }
1472 }
1473
1474 /*
1475 * nope, process doesn't have a cic assoicated with this
1476 * cfqq yet. get a new one and add to list
1477 */
1478 __cic = cfq_alloc_io_context(cfqd, gfp_mask);
1479 if (__cic == NULL)
1480 goto err;
1481
1482 __cic->ioc = ioc;
1483 __cic->key = cfqd;
1484 atomic_inc(&cfqd->ref);
1485 list_add(&__cic->list, &cic->list);
1486 cic = __cic;
1487 }
1488
1489 out:
1490 return cic;
1491 err:
1492 put_io_context(ioc);
1493 return NULL;
1494 }
1495
1496 static void
1497 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1498 {
1499 unsigned long elapsed, ttime;
1500
1501 /*
1502 * if this context already has stuff queued, thinktime is from
1503 * last queue not last end
1504 */
1505 #if 0
1506 if (time_after(cic->last_end_request, cic->last_queue))
1507 elapsed = jiffies - cic->last_end_request;
1508 else
1509 elapsed = jiffies - cic->last_queue;
1510 #else
1511 elapsed = jiffies - cic->last_end_request;
1512 #endif
1513
1514 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1515
1516 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1517 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1518 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1519 }
1520
1521 #define sample_valid(samples) ((samples) > 80)
1522
1523 /*
1524 * Disable idle window if the process thinks too long or seeks so much that
1525 * it doesn't matter
1526 */
1527 static void
1528 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1529 struct cfq_io_context *cic)
1530 {
1531 int enable_idle = cfq_cfqq_idle_window(cfqq);
1532
1533 if (!cic->ioc->task || !cfqd->cfq_slice_idle)
1534 enable_idle = 0;
1535 else if (sample_valid(cic->ttime_samples)) {
1536 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1537 enable_idle = 0;
1538 else
1539 enable_idle = 1;
1540 }
1541
1542 if (enable_idle)
1543 cfq_mark_cfqq_idle_window(cfqq);
1544 else
1545 cfq_clear_cfqq_idle_window(cfqq);
1546 }
1547
1548
1549 /*
1550 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1551 * no or if we aren't sure, a 1 will cause a preempt.
1552 */
1553 static int
1554 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1555 struct cfq_rq *crq)
1556 {
1557 struct cfq_queue *cfqq = cfqd->active_queue;
1558
1559 if (cfq_class_idle(new_cfqq))
1560 return 0;
1561
1562 if (!cfqq)
1563 return 1;
1564
1565 if (cfq_class_idle(cfqq))
1566 return 1;
1567 if (!cfq_cfqq_wait_request(new_cfqq))
1568 return 0;
1569 /*
1570 * if it doesn't have slice left, forget it
1571 */
1572 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1573 return 0;
1574 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1575 return 1;
1576
1577 return 0;
1578 }
1579
1580 /*
1581 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1582 * let it have half of its nominal slice.
1583 */
1584 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1585 {
1586 struct cfq_queue *__cfqq, *next;
1587
1588 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1589 cfq_resort_rr_list(__cfqq, 1);
1590
1591 if (!cfqq->slice_left)
1592 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1593
1594 cfqq->slice_end = cfqq->slice_left + jiffies;
1595 __cfq_slice_expired(cfqd, cfqq, 1);
1596 __cfq_set_active_queue(cfqd, cfqq);
1597 }
1598
1599 /*
1600 * should really be a ll_rw_blk.c helper
1601 */
1602 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1603 {
1604 request_queue_t *q = cfqd->queue;
1605
1606 if (!blk_queue_plugged(q))
1607 q->request_fn(q);
1608 else
1609 __generic_unplug_device(q);
1610 }
1611
1612 /*
1613 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1614 * something we should do about it
1615 */
1616 static void
1617 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1618 struct cfq_rq *crq)
1619 {
1620 struct cfq_io_context *cic;
1621
1622 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1623
1624 /*
1625 * we never wait for an async request and we don't allow preemption
1626 * of an async request. so just return early
1627 */
1628 if (!cfq_crq_is_sync(crq))
1629 return;
1630
1631 cic = crq->io_context;
1632
1633 cfq_update_io_thinktime(cfqd, cic);
1634 cfq_update_idle_window(cfqd, cfqq, cic);
1635
1636 cic->last_queue = jiffies;
1637
1638 if (cfqq == cfqd->active_queue) {
1639 /*
1640 * if we are waiting for a request for this queue, let it rip
1641 * immediately and flag that we must not expire this queue
1642 * just now
1643 */
1644 if (cfq_cfqq_wait_request(cfqq)) {
1645 cfq_mark_cfqq_must_dispatch(cfqq);
1646 del_timer(&cfqd->idle_slice_timer);
1647 cfq_start_queueing(cfqd, cfqq);
1648 }
1649 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1650 /*
1651 * not the active queue - expire current slice if it is
1652 * idle and has expired it's mean thinktime or this new queue
1653 * has some old slice time left and is of higher priority
1654 */
1655 cfq_preempt_queue(cfqd, cfqq);
1656 cfq_mark_cfqq_must_dispatch(cfqq);
1657 cfq_start_queueing(cfqd, cfqq);
1658 }
1659 }
1660
1661 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1662 {
1663 struct cfq_data *cfqd = q->elevator->elevator_data;
1664 struct cfq_rq *crq = RQ_DATA(rq);
1665 struct cfq_queue *cfqq = crq->cfq_queue;
1666
1667 cfq_init_prio_data(cfqq);
1668
1669 cfq_add_crq_rb(crq);
1670
1671 list_add_tail(&rq->queuelist, &cfqq->fifo);
1672
1673 if (rq_mergeable(rq)) {
1674 cfq_add_crq_hash(cfqd, crq);
1675
1676 if (!cfqd->queue->last_merge)
1677 cfqd->queue->last_merge = rq;
1678 }
1679
1680 cfq_crq_enqueued(cfqd, cfqq, crq);
1681 }
1682
1683 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1684 {
1685 struct cfq_rq *crq = RQ_DATA(rq);
1686 struct cfq_queue *cfqq = crq->cfq_queue;
1687 struct cfq_data *cfqd = cfqq->cfqd;
1688 const int sync = cfq_crq_is_sync(crq);
1689 unsigned long now;
1690
1691 now = jiffies;
1692
1693 WARN_ON(!cfqd->rq_in_driver);
1694 WARN_ON(!cfqq->on_dispatch[sync]);
1695 cfqd->rq_in_driver--;
1696 cfqq->on_dispatch[sync]--;
1697
1698 if (!cfq_class_idle(cfqq))
1699 cfqd->last_end_request = now;
1700
1701 if (!cfq_cfqq_dispatched(cfqq)) {
1702 if (cfq_cfqq_on_rr(cfqq)) {
1703 cfqq->service_last = now;
1704 cfq_resort_rr_list(cfqq, 0);
1705 }
1706 if (cfq_cfqq_expired(cfqq)) {
1707 __cfq_slice_expired(cfqd, cfqq, 0);
1708 cfq_schedule_dispatch(cfqd);
1709 }
1710 }
1711
1712 if (cfq_crq_is_sync(crq))
1713 crq->io_context->last_end_request = now;
1714 }
1715
1716 static struct request *
1717 cfq_former_request(request_queue_t *q, struct request *rq)
1718 {
1719 struct cfq_rq *crq = RQ_DATA(rq);
1720 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1721
1722 if (rbprev)
1723 return rb_entry_crq(rbprev)->request;
1724
1725 return NULL;
1726 }
1727
1728 static struct request *
1729 cfq_latter_request(request_queue_t *q, struct request *rq)
1730 {
1731 struct cfq_rq *crq = RQ_DATA(rq);
1732 struct rb_node *rbnext = rb_next(&crq->rb_node);
1733
1734 if (rbnext)
1735 return rb_entry_crq(rbnext)->request;
1736
1737 return NULL;
1738 }
1739
1740 /*
1741 * we temporarily boost lower priority queues if they are holding fs exclusive
1742 * resources. they are boosted to normal prio (CLASS_BE/4)
1743 */
1744 static void cfq_prio_boost(struct cfq_queue *cfqq)
1745 {
1746 const int ioprio_class = cfqq->ioprio_class;
1747 const int ioprio = cfqq->ioprio;
1748
1749 if (has_fs_excl()) {
1750 /*
1751 * boost idle prio on transactions that would lock out other
1752 * users of the filesystem
1753 */
1754 if (cfq_class_idle(cfqq))
1755 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1756 if (cfqq->ioprio > IOPRIO_NORM)
1757 cfqq->ioprio = IOPRIO_NORM;
1758 } else {
1759 /*
1760 * check if we need to unboost the queue
1761 */
1762 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1763 cfqq->ioprio_class = cfqq->org_ioprio_class;
1764 if (cfqq->ioprio != cfqq->org_ioprio)
1765 cfqq->ioprio = cfqq->org_ioprio;
1766 }
1767
1768 /*
1769 * refile between round-robin lists if we moved the priority class
1770 */
1771 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1772 cfq_cfqq_on_rr(cfqq))
1773 cfq_resort_rr_list(cfqq, 0);
1774 }
1775
1776 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
1777 {
1778 if (rw == READ || process_sync(task))
1779 return task->pid;
1780
1781 return CFQ_KEY_ASYNC;
1782 }
1783
1784 static inline int
1785 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1786 struct task_struct *task, int rw)
1787 {
1788 #if 1
1789 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1790 !cfq_cfqq_must_alloc_slice(cfqq)) {
1791 cfq_mark_cfqq_must_alloc_slice(cfqq);
1792 return ELV_MQUEUE_MUST;
1793 }
1794
1795 return ELV_MQUEUE_MAY;
1796 #else
1797 if (!cfqq || task->flags & PF_MEMALLOC)
1798 return ELV_MQUEUE_MAY;
1799 if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1800 if (cfq_cfqq_wait_request(cfqq))
1801 return ELV_MQUEUE_MUST;
1802
1803 /*
1804 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1805 * can quickly flood the queue with writes from a single task
1806 */
1807 if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1808 cfq_mark_cfqq_must_alloc_slice(cfqq);
1809 return ELV_MQUEUE_MUST;
1810 }
1811
1812 return ELV_MQUEUE_MAY;
1813 }
1814 if (cfq_class_idle(cfqq))
1815 return ELV_MQUEUE_NO;
1816 if (cfqq->allocated[rw] >= cfqd->max_queued) {
1817 struct io_context *ioc = get_io_context(GFP_ATOMIC);
1818 int ret = ELV_MQUEUE_NO;
1819
1820 if (ioc && ioc->nr_batch_requests)
1821 ret = ELV_MQUEUE_MAY;
1822
1823 put_io_context(ioc);
1824 return ret;
1825 }
1826
1827 return ELV_MQUEUE_MAY;
1828 #endif
1829 }
1830
1831 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1832 {
1833 struct cfq_data *cfqd = q->elevator->elevator_data;
1834 struct task_struct *tsk = current;
1835 struct cfq_queue *cfqq;
1836
1837 /*
1838 * don't force setup of a queue from here, as a call to may_queue
1839 * does not necessarily imply that a request actually will be queued.
1840 * so just lookup a possibly existing queue, or return 'may queue'
1841 * if that fails
1842 */
1843 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1844 if (cfqq) {
1845 cfq_init_prio_data(cfqq);
1846 cfq_prio_boost(cfqq);
1847
1848 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1849 }
1850
1851 return ELV_MQUEUE_MAY;
1852 }
1853
1854 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1855 {
1856 struct cfq_data *cfqd = q->elevator->elevator_data;
1857 struct request_list *rl = &q->rq;
1858
1859 if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1860 smp_mb();
1861 if (waitqueue_active(&rl->wait[READ]))
1862 wake_up(&rl->wait[READ]);
1863 }
1864
1865 if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1866 smp_mb();
1867 if (waitqueue_active(&rl->wait[WRITE]))
1868 wake_up(&rl->wait[WRITE]);
1869 }
1870 }
1871
1872 /*
1873 * queue lock held here
1874 */
1875 static void cfq_put_request(request_queue_t *q, struct request *rq)
1876 {
1877 struct cfq_data *cfqd = q->elevator->elevator_data;
1878 struct cfq_rq *crq = RQ_DATA(rq);
1879
1880 if (crq) {
1881 struct cfq_queue *cfqq = crq->cfq_queue;
1882 const int rw = rq_data_dir(rq);
1883
1884 BUG_ON(!cfqq->allocated[rw]);
1885 cfqq->allocated[rw]--;
1886
1887 put_io_context(crq->io_context->ioc);
1888
1889 mempool_free(crq, cfqd->crq_pool);
1890 rq->elevator_private = NULL;
1891
1892 cfq_check_waiters(q, cfqq);
1893 cfq_put_queue(cfqq);
1894 }
1895 }
1896
1897 /*
1898 * Allocate cfq data structures associated with this request.
1899 */
1900 static int
1901 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1902 int gfp_mask)
1903 {
1904 struct cfq_data *cfqd = q->elevator->elevator_data;
1905 struct task_struct *tsk = current;
1906 struct cfq_io_context *cic;
1907 const int rw = rq_data_dir(rq);
1908 pid_t key = cfq_queue_pid(tsk, rw);
1909 struct cfq_queue *cfqq;
1910 struct cfq_rq *crq;
1911 unsigned long flags;
1912
1913 might_sleep_if(gfp_mask & __GFP_WAIT);
1914
1915 cic = cfq_get_io_context(cfqd, key, gfp_mask);
1916
1917 spin_lock_irqsave(q->queue_lock, flags);
1918
1919 if (!cic)
1920 goto queue_fail;
1921
1922 if (!cic->cfqq) {
1923 cfqq = cfq_get_queue(cfqd, key, tsk->ioprio, gfp_mask);
1924 if (!cfqq)
1925 goto queue_fail;
1926
1927 cic->cfqq = cfqq;
1928 } else
1929 cfqq = cic->cfqq;
1930
1931 cfqq->allocated[rw]++;
1932 cfq_clear_cfqq_must_alloc(cfqq);
1933 cfqd->rq_starved = 0;
1934 atomic_inc(&cfqq->ref);
1935 spin_unlock_irqrestore(q->queue_lock, flags);
1936
1937 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
1938 if (crq) {
1939 RB_CLEAR(&crq->rb_node);
1940 crq->rb_key = 0;
1941 crq->request = rq;
1942 INIT_HLIST_NODE(&crq->hash);
1943 crq->cfq_queue = cfqq;
1944 crq->io_context = cic;
1945
1946 if (rw == READ || process_sync(tsk))
1947 cfq_mark_crq_is_sync(crq);
1948 else
1949 cfq_clear_crq_is_sync(crq);
1950
1951 rq->elevator_private = crq;
1952 return 0;
1953 }
1954
1955 spin_lock_irqsave(q->queue_lock, flags);
1956 cfqq->allocated[rw]--;
1957 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
1958 cfq_mark_cfqq_must_alloc(cfqq);
1959 cfq_put_queue(cfqq);
1960 queue_fail:
1961 if (cic)
1962 put_io_context(cic->ioc);
1963 /*
1964 * mark us rq allocation starved. we need to kickstart the process
1965 * ourselves if there are no pending requests that can do it for us.
1966 * that would be an extremely rare OOM situation
1967 */
1968 cfqd->rq_starved = 1;
1969 cfq_schedule_dispatch(cfqd);
1970 spin_unlock_irqrestore(q->queue_lock, flags);
1971 return 1;
1972 }
1973
1974 static void cfq_kick_queue(void *data)
1975 {
1976 request_queue_t *q = data;
1977 struct cfq_data *cfqd = q->elevator->elevator_data;
1978 unsigned long flags;
1979
1980 spin_lock_irqsave(q->queue_lock, flags);
1981
1982 if (cfqd->rq_starved) {
1983 struct request_list *rl = &q->rq;
1984
1985 /*
1986 * we aren't guaranteed to get a request after this, but we
1987 * have to be opportunistic
1988 */
1989 smp_mb();
1990 if (waitqueue_active(&rl->wait[READ]))
1991 wake_up(&rl->wait[READ]);
1992 if (waitqueue_active(&rl->wait[WRITE]))
1993 wake_up(&rl->wait[WRITE]);
1994 }
1995
1996 blk_remove_plug(q);
1997 q->request_fn(q);
1998 spin_unlock_irqrestore(q->queue_lock, flags);
1999 }
2000
2001 /*
2002 * Timer running if the active_queue is currently idling inside its time slice
2003 */
2004 static void cfq_idle_slice_timer(unsigned long data)
2005 {
2006 struct cfq_data *cfqd = (struct cfq_data *) data;
2007 struct cfq_queue *cfqq;
2008 unsigned long flags;
2009
2010 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2011
2012 if ((cfqq = cfqd->active_queue) != NULL) {
2013 unsigned long now = jiffies;
2014
2015 /*
2016 * expired
2017 */
2018 if (time_after(now, cfqq->slice_end))
2019 goto expire;
2020
2021 /*
2022 * only expire and reinvoke request handler, if there are
2023 * other queues with pending requests
2024 */
2025 if (!cfqd->busy_queues) {
2026 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2027 add_timer(&cfqd->idle_slice_timer);
2028 goto out_cont;
2029 }
2030
2031 /*
2032 * not expired and it has a request pending, let it dispatch
2033 */
2034 if (!RB_EMPTY(&cfqq->sort_list)) {
2035 cfq_mark_cfqq_must_dispatch(cfqq);
2036 goto out_kick;
2037 }
2038 }
2039 expire:
2040 cfq_slice_expired(cfqd, 0);
2041 out_kick:
2042 cfq_schedule_dispatch(cfqd);
2043 out_cont:
2044 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2045 }
2046
2047 /*
2048 * Timer running if an idle class queue is waiting for service
2049 */
2050 static void cfq_idle_class_timer(unsigned long data)
2051 {
2052 struct cfq_data *cfqd = (struct cfq_data *) data;
2053 unsigned long flags, end;
2054
2055 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2056
2057 /*
2058 * race with a non-idle queue, reset timer
2059 */
2060 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2061 if (!time_after_eq(jiffies, end)) {
2062 cfqd->idle_class_timer.expires = end;
2063 add_timer(&cfqd->idle_class_timer);
2064 } else
2065 cfq_schedule_dispatch(cfqd);
2066
2067 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2068 }
2069
2070 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2071 {
2072 del_timer_sync(&cfqd->idle_slice_timer);
2073 del_timer_sync(&cfqd->idle_class_timer);
2074 blk_sync_queue(cfqd->queue);
2075 }
2076
2077 static void cfq_put_cfqd(struct cfq_data *cfqd)
2078 {
2079 request_queue_t *q = cfqd->queue;
2080
2081 if (!atomic_dec_and_test(&cfqd->ref))
2082 return;
2083
2084 blk_put_queue(q);
2085
2086 cfq_shutdown_timer_wq(cfqd);
2087 q->elevator->elevator_data = NULL;
2088
2089 mempool_destroy(cfqd->crq_pool);
2090 kfree(cfqd->crq_hash);
2091 kfree(cfqd->cfq_hash);
2092 kfree(cfqd);
2093 }
2094
2095 static void cfq_exit_queue(elevator_t *e)
2096 {
2097 struct cfq_data *cfqd = e->elevator_data;
2098
2099 cfq_shutdown_timer_wq(cfqd);
2100 cfq_put_cfqd(cfqd);
2101 }
2102
2103 static int cfq_init_queue(request_queue_t *q, elevator_t *e)
2104 {
2105 struct cfq_data *cfqd;
2106 int i;
2107
2108 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2109 if (!cfqd)
2110 return -ENOMEM;
2111
2112 memset(cfqd, 0, sizeof(*cfqd));
2113
2114 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2115 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2116
2117 INIT_LIST_HEAD(&cfqd->busy_rr);
2118 INIT_LIST_HEAD(&cfqd->cur_rr);
2119 INIT_LIST_HEAD(&cfqd->idle_rr);
2120 INIT_LIST_HEAD(&cfqd->empty_list);
2121
2122 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2123 if (!cfqd->crq_hash)
2124 goto out_crqhash;
2125
2126 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2127 if (!cfqd->cfq_hash)
2128 goto out_cfqhash;
2129
2130 cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool);
2131 if (!cfqd->crq_pool)
2132 goto out_crqpool;
2133
2134 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2135 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2136 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2137 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2138
2139 e->elevator_data = cfqd;
2140
2141 cfqd->queue = q;
2142 atomic_inc(&q->refcnt);
2143
2144 cfqd->max_queued = q->nr_requests / 4;
2145 q->nr_batching = cfq_queued;
2146
2147 init_timer(&cfqd->idle_slice_timer);
2148 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2149 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2150
2151 init_timer(&cfqd->idle_class_timer);
2152 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2153 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2154
2155 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2156
2157 atomic_set(&cfqd->ref, 1);
2158
2159 cfqd->cfq_queued = cfq_queued;
2160 cfqd->cfq_quantum = cfq_quantum;
2161 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2162 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2163 cfqd->cfq_back_max = cfq_back_max;
2164 cfqd->cfq_back_penalty = cfq_back_penalty;
2165 cfqd->cfq_slice[0] = cfq_slice_async;
2166 cfqd->cfq_slice[1] = cfq_slice_sync;
2167 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2168 cfqd->cfq_slice_idle = cfq_slice_idle;
2169 cfqd->cfq_max_depth = cfq_max_depth;
2170
2171 return 0;
2172 out_crqpool:
2173 kfree(cfqd->cfq_hash);
2174 out_cfqhash:
2175 kfree(cfqd->crq_hash);
2176 out_crqhash:
2177 kfree(cfqd);
2178 return -ENOMEM;
2179 }
2180
2181 static void cfq_slab_kill(void)
2182 {
2183 if (crq_pool)
2184 kmem_cache_destroy(crq_pool);
2185 if (cfq_pool)
2186 kmem_cache_destroy(cfq_pool);
2187 if (cfq_ioc_pool)
2188 kmem_cache_destroy(cfq_ioc_pool);
2189 }
2190
2191 static int __init cfq_slab_setup(void)
2192 {
2193 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2194 NULL, NULL);
2195 if (!crq_pool)
2196 goto fail;
2197
2198 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2199 NULL, NULL);
2200 if (!cfq_pool)
2201 goto fail;
2202
2203 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2204 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2205 if (!cfq_ioc_pool)
2206 goto fail;
2207
2208 return 0;
2209 fail:
2210 cfq_slab_kill();
2211 return -ENOMEM;
2212 }
2213
2214 /*
2215 * sysfs parts below -->
2216 */
2217 struct cfq_fs_entry {
2218 struct attribute attr;
2219 ssize_t (*show)(struct cfq_data *, char *);
2220 ssize_t (*store)(struct cfq_data *, const char *, size_t);
2221 };
2222
2223 static ssize_t
2224 cfq_var_show(unsigned int var, char *page)
2225 {
2226 return sprintf(page, "%d\n", var);
2227 }
2228
2229 static ssize_t
2230 cfq_var_store(unsigned int *var, const char *page, size_t count)
2231 {
2232 char *p = (char *) page;
2233
2234 *var = simple_strtoul(p, &p, 10);
2235 return count;
2236 }
2237
2238 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2239 static ssize_t __FUNC(struct cfq_data *cfqd, char *page) \
2240 { \
2241 unsigned int __data = __VAR; \
2242 if (__CONV) \
2243 __data = jiffies_to_msecs(__data); \
2244 return cfq_var_show(__data, (page)); \
2245 }
2246 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2247 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2248 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2249 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2250 SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0);
2251 SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0);
2252 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2253 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2254 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2255 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2256 SHOW_FUNCTION(cfq_max_depth_show, cfqd->cfq_max_depth, 0);
2257 #undef SHOW_FUNCTION
2258
2259 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2260 static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count) \
2261 { \
2262 unsigned int __data; \
2263 int ret = cfq_var_store(&__data, (page), count); \
2264 if (__data < (MIN)) \
2265 __data = (MIN); \
2266 else if (__data > (MAX)) \
2267 __data = (MAX); \
2268 if (__CONV) \
2269 *(__PTR) = msecs_to_jiffies(__data); \
2270 else \
2271 *(__PTR) = __data; \
2272 return ret; \
2273 }
2274 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2275 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2276 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2277 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2278 STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2279 STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2280 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2281 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2282 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2283 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2284 STORE_FUNCTION(cfq_max_depth_store, &cfqd->cfq_max_depth, 1, UINT_MAX, 0);
2285 #undef STORE_FUNCTION
2286
2287 static struct cfq_fs_entry cfq_quantum_entry = {
2288 .attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR },
2289 .show = cfq_quantum_show,
2290 .store = cfq_quantum_store,
2291 };
2292 static struct cfq_fs_entry cfq_queued_entry = {
2293 .attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR },
2294 .show = cfq_queued_show,
2295 .store = cfq_queued_store,
2296 };
2297 static struct cfq_fs_entry cfq_fifo_expire_sync_entry = {
2298 .attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR },
2299 .show = cfq_fifo_expire_sync_show,
2300 .store = cfq_fifo_expire_sync_store,
2301 };
2302 static struct cfq_fs_entry cfq_fifo_expire_async_entry = {
2303 .attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR },
2304 .show = cfq_fifo_expire_async_show,
2305 .store = cfq_fifo_expire_async_store,
2306 };
2307 static struct cfq_fs_entry cfq_back_max_entry = {
2308 .attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR },
2309 .show = cfq_back_max_show,
2310 .store = cfq_back_max_store,
2311 };
2312 static struct cfq_fs_entry cfq_back_penalty_entry = {
2313 .attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR },
2314 .show = cfq_back_penalty_show,
2315 .store = cfq_back_penalty_store,
2316 };
2317 static struct cfq_fs_entry cfq_slice_sync_entry = {
2318 .attr = {.name = "slice_sync", .mode = S_IRUGO | S_IWUSR },
2319 .show = cfq_slice_sync_show,
2320 .store = cfq_slice_sync_store,
2321 };
2322 static struct cfq_fs_entry cfq_slice_async_entry = {
2323 .attr = {.name = "slice_async", .mode = S_IRUGO | S_IWUSR },
2324 .show = cfq_slice_async_show,
2325 .store = cfq_slice_async_store,
2326 };
2327 static struct cfq_fs_entry cfq_slice_async_rq_entry = {
2328 .attr = {.name = "slice_async_rq", .mode = S_IRUGO | S_IWUSR },
2329 .show = cfq_slice_async_rq_show,
2330 .store = cfq_slice_async_rq_store,
2331 };
2332 static struct cfq_fs_entry cfq_slice_idle_entry = {
2333 .attr = {.name = "slice_idle", .mode = S_IRUGO | S_IWUSR },
2334 .show = cfq_slice_idle_show,
2335 .store = cfq_slice_idle_store,
2336 };
2337 static struct cfq_fs_entry cfq_max_depth_entry = {
2338 .attr = {.name = "max_depth", .mode = S_IRUGO | S_IWUSR },
2339 .show = cfq_max_depth_show,
2340 .store = cfq_max_depth_store,
2341 };
2342
2343 static struct attribute *default_attrs[] = {
2344 &cfq_quantum_entry.attr,
2345 &cfq_queued_entry.attr,
2346 &cfq_fifo_expire_sync_entry.attr,
2347 &cfq_fifo_expire_async_entry.attr,
2348 &cfq_back_max_entry.attr,
2349 &cfq_back_penalty_entry.attr,
2350 &cfq_slice_sync_entry.attr,
2351 &cfq_slice_async_entry.attr,
2352 &cfq_slice_async_rq_entry.attr,
2353 &cfq_slice_idle_entry.attr,
2354 &cfq_max_depth_entry.attr,
2355 NULL,
2356 };
2357
2358 #define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr)
2359
2360 static ssize_t
2361 cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2362 {
2363 elevator_t *e = container_of(kobj, elevator_t, kobj);
2364 struct cfq_fs_entry *entry = to_cfq(attr);
2365
2366 if (!entry->show)
2367 return -EIO;
2368
2369 return entry->show(e->elevator_data, page);
2370 }
2371
2372 static ssize_t
2373 cfq_attr_store(struct kobject *kobj, struct attribute *attr,
2374 const char *page, size_t length)
2375 {
2376 elevator_t *e = container_of(kobj, elevator_t, kobj);
2377 struct cfq_fs_entry *entry = to_cfq(attr);
2378
2379 if (!entry->store)
2380 return -EIO;
2381
2382 return entry->store(e->elevator_data, page, length);
2383 }
2384
2385 static struct sysfs_ops cfq_sysfs_ops = {
2386 .show = cfq_attr_show,
2387 .store = cfq_attr_store,
2388 };
2389
2390 static struct kobj_type cfq_ktype = {
2391 .sysfs_ops = &cfq_sysfs_ops,
2392 .default_attrs = default_attrs,
2393 };
2394
2395 static struct elevator_type iosched_cfq = {
2396 .ops = {
2397 .elevator_merge_fn = cfq_merge,
2398 .elevator_merged_fn = cfq_merged_request,
2399 .elevator_merge_req_fn = cfq_merged_requests,
2400 .elevator_dispatch_fn = cfq_dispatch_requests,
2401 .elevator_add_req_fn = cfq_insert_request,
2402 .elevator_activate_req_fn = cfq_activate_request,
2403 .elevator_deactivate_req_fn = cfq_deactivate_request,
2404 .elevator_queue_empty_fn = cfq_queue_empty,
2405 .elevator_completed_req_fn = cfq_completed_request,
2406 .elevator_former_req_fn = cfq_former_request,
2407 .elevator_latter_req_fn = cfq_latter_request,
2408 .elevator_set_req_fn = cfq_set_request,
2409 .elevator_put_req_fn = cfq_put_request,
2410 .elevator_may_queue_fn = cfq_may_queue,
2411 .elevator_init_fn = cfq_init_queue,
2412 .elevator_exit_fn = cfq_exit_queue,
2413 },
2414 .elevator_ktype = &cfq_ktype,
2415 .elevator_name = "cfq",
2416 .elevator_owner = THIS_MODULE,
2417 };
2418
2419 static int __init cfq_init(void)
2420 {
2421 int ret;
2422
2423 /*
2424 * could be 0 on HZ < 1000 setups
2425 */
2426 if (!cfq_slice_async)
2427 cfq_slice_async = 1;
2428 if (!cfq_slice_idle)
2429 cfq_slice_idle = 1;
2430
2431 if (cfq_slab_setup())
2432 return -ENOMEM;
2433
2434 ret = elv_register(&iosched_cfq);
2435 if (ret)
2436 cfq_slab_kill();
2437
2438 return ret;
2439 }
2440
2441 static void __exit cfq_exit(void)
2442 {
2443 struct task_struct *g, *p;
2444 unsigned long flags;
2445
2446 read_lock_irqsave(&tasklist_lock, flags);
2447
2448 /*
2449 * iterate each process in the system, removing our io_context
2450 */
2451 do_each_thread(g, p) {
2452 struct io_context *ioc = p->io_context;
2453
2454 if (ioc && ioc->cic) {
2455 ioc->cic->exit(ioc->cic);
2456 cfq_free_io_context(ioc->cic);
2457 ioc->cic = NULL;
2458 }
2459 } while_each_thread(g, p);
2460
2461 read_unlock_irqrestore(&tasklist_lock, flags);
2462
2463 cfq_slab_kill();
2464 elv_unregister(&iosched_cfq);
2465 }
2466
2467 module_init(cfq_init);
2468 module_exit(cfq_exit);
2469
2470 MODULE_AUTHOR("Jens Axboe");
2471 MODULE_LICENSE("GPL");
2472 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");