]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/drbd/drbd_main.c
drbd: Refcounting for mdev objects
[mirror_ubuntu-bionic-kernel.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
56
57 #include "drbd_vli.h"
58
59 static DEFINE_MUTEX(drbd_main_mutex);
60 int drbdd_init(struct drbd_thread *);
61 int drbd_worker(struct drbd_thread *);
62 int drbd_asender(struct drbd_thread *);
63
64 int drbd_init(void);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static int drbd_release(struct gendisk *gd, fmode_t mode);
67 static int w_md_sync(struct drbd_work *w, int unused);
68 static void md_sync_timer_fn(unsigned long data);
69 static int w_bitmap_io(struct drbd_work *w, int unused);
70 static int w_go_diskless(struct drbd_work *w, int unused);
71
72 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
73 "Lars Ellenberg <lars@linbit.com>");
74 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
75 MODULE_VERSION(REL_VERSION);
76 MODULE_LICENSE("GPL");
77 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
78 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
79 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
80
81 #include <linux/moduleparam.h>
82 /* allow_open_on_secondary */
83 MODULE_PARM_DESC(allow_oos, "DONT USE!");
84 /* thanks to these macros, if compiled into the kernel (not-module),
85 * this becomes the boot parameter drbd.minor_count */
86 module_param(minor_count, uint, 0444);
87 module_param(disable_sendpage, bool, 0644);
88 module_param(allow_oos, bool, 0);
89 module_param(proc_details, int, 0644);
90
91 #ifdef CONFIG_DRBD_FAULT_INJECTION
92 int enable_faults;
93 int fault_rate;
94 static int fault_count;
95 int fault_devs;
96 /* bitmap of enabled faults */
97 module_param(enable_faults, int, 0664);
98 /* fault rate % value - applies to all enabled faults */
99 module_param(fault_rate, int, 0664);
100 /* count of faults inserted */
101 module_param(fault_count, int, 0664);
102 /* bitmap of devices to insert faults on */
103 module_param(fault_devs, int, 0644);
104 #endif
105
106 /* module parameter, defined */
107 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
108 int disable_sendpage;
109 int allow_oos;
110 int proc_details; /* Detail level in proc drbd*/
111
112 /* Module parameter for setting the user mode helper program
113 * to run. Default is /sbin/drbdadm */
114 char usermode_helper[80] = "/sbin/drbdadm";
115
116 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
117
118 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
119 * as member "struct gendisk *vdisk;"
120 */
121 struct idr minors;
122 struct list_head drbd_tconns; /* list of struct drbd_tconn */
123 DECLARE_RWSEM(drbd_cfg_rwsem);
124
125 struct kmem_cache *drbd_request_cache;
126 struct kmem_cache *drbd_ee_cache; /* peer requests */
127 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
128 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
129 mempool_t *drbd_request_mempool;
130 mempool_t *drbd_ee_mempool;
131 mempool_t *drbd_md_io_page_pool;
132 struct bio_set *drbd_md_io_bio_set;
133
134 /* I do not use a standard mempool, because:
135 1) I want to hand out the pre-allocated objects first.
136 2) I want to be able to interrupt sleeping allocation with a signal.
137 Note: This is a single linked list, the next pointer is the private
138 member of struct page.
139 */
140 struct page *drbd_pp_pool;
141 spinlock_t drbd_pp_lock;
142 int drbd_pp_vacant;
143 wait_queue_head_t drbd_pp_wait;
144
145 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
146
147 static const struct block_device_operations drbd_ops = {
148 .owner = THIS_MODULE,
149 .open = drbd_open,
150 .release = drbd_release,
151 };
152
153 static void bio_destructor_drbd(struct bio *bio)
154 {
155 bio_free(bio, drbd_md_io_bio_set);
156 }
157
158 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
159 {
160 struct bio *bio;
161
162 if (!drbd_md_io_bio_set)
163 return bio_alloc(gfp_mask, 1);
164
165 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
166 if (!bio)
167 return NULL;
168 bio->bi_destructor = bio_destructor_drbd;
169 return bio;
170 }
171
172 #ifdef __CHECKER__
173 /* When checking with sparse, and this is an inline function, sparse will
174 give tons of false positives. When this is a real functions sparse works.
175 */
176 int _get_ldev_if_state(struct drbd_conf *mdev, enum drbd_disk_state mins)
177 {
178 int io_allowed;
179
180 atomic_inc(&mdev->local_cnt);
181 io_allowed = (mdev->state.disk >= mins);
182 if (!io_allowed) {
183 if (atomic_dec_and_test(&mdev->local_cnt))
184 wake_up(&mdev->misc_wait);
185 }
186 return io_allowed;
187 }
188
189 #endif
190
191 /**
192 * DOC: The transfer log
193 *
194 * The transfer log is a single linked list of &struct drbd_tl_epoch objects.
195 * mdev->tconn->newest_tle points to the head, mdev->tconn->oldest_tle points to the tail
196 * of the list. There is always at least one &struct drbd_tl_epoch object.
197 *
198 * Each &struct drbd_tl_epoch has a circular double linked list of requests
199 * attached.
200 */
201 static int tl_init(struct drbd_tconn *tconn)
202 {
203 struct drbd_tl_epoch *b;
204
205 /* during device minor initialization, we may well use GFP_KERNEL */
206 b = kmalloc(sizeof(struct drbd_tl_epoch), GFP_KERNEL);
207 if (!b)
208 return 0;
209 INIT_LIST_HEAD(&b->requests);
210 INIT_LIST_HEAD(&b->w.list);
211 b->next = NULL;
212 b->br_number = 4711;
213 b->n_writes = 0;
214 b->w.cb = NULL; /* if this is != NULL, we need to dec_ap_pending in tl_clear */
215
216 tconn->oldest_tle = b;
217 tconn->newest_tle = b;
218 INIT_LIST_HEAD(&tconn->out_of_sequence_requests);
219
220 return 1;
221 }
222
223 static void tl_cleanup(struct drbd_tconn *tconn)
224 {
225 if (tconn->oldest_tle != tconn->newest_tle)
226 conn_err(tconn, "ASSERT FAILED: oldest_tle == newest_tle\n");
227 if (!list_empty(&tconn->out_of_sequence_requests))
228 conn_err(tconn, "ASSERT FAILED: list_empty(out_of_sequence_requests)\n");
229 kfree(tconn->oldest_tle);
230 tconn->oldest_tle = NULL;
231 kfree(tconn->unused_spare_tle);
232 tconn->unused_spare_tle = NULL;
233 }
234
235 /**
236 * _tl_add_barrier() - Adds a barrier to the transfer log
237 * @mdev: DRBD device.
238 * @new: Barrier to be added before the current head of the TL.
239 *
240 * The caller must hold the req_lock.
241 */
242 void _tl_add_barrier(struct drbd_tconn *tconn, struct drbd_tl_epoch *new)
243 {
244 struct drbd_tl_epoch *newest_before;
245
246 INIT_LIST_HEAD(&new->requests);
247 INIT_LIST_HEAD(&new->w.list);
248 new->w.cb = NULL; /* if this is != NULL, we need to dec_ap_pending in tl_clear */
249 new->next = NULL;
250 new->n_writes = 0;
251
252 newest_before = tconn->newest_tle;
253 /* never send a barrier number == 0, because that is special-cased
254 * when using TCQ for our write ordering code */
255 new->br_number = (newest_before->br_number+1) ?: 1;
256 if (tconn->newest_tle != new) {
257 tconn->newest_tle->next = new;
258 tconn->newest_tle = new;
259 }
260 }
261
262 /**
263 * tl_release() - Free or recycle the oldest &struct drbd_tl_epoch object of the TL
264 * @mdev: DRBD device.
265 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
266 * @set_size: Expected number of requests before that barrier.
267 *
268 * In case the passed barrier_nr or set_size does not match the oldest
269 * &struct drbd_tl_epoch objects this function will cause a termination
270 * of the connection.
271 */
272 void tl_release(struct drbd_tconn *tconn, unsigned int barrier_nr,
273 unsigned int set_size)
274 {
275 struct drbd_conf *mdev;
276 struct drbd_tl_epoch *b, *nob; /* next old barrier */
277 struct list_head *le, *tle;
278 struct drbd_request *r;
279
280 spin_lock_irq(&tconn->req_lock);
281
282 b = tconn->oldest_tle;
283
284 /* first some paranoia code */
285 if (b == NULL) {
286 conn_err(tconn, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
287 barrier_nr);
288 goto bail;
289 }
290 if (b->br_number != barrier_nr) {
291 conn_err(tconn, "BAD! BarrierAck #%u received, expected #%u!\n",
292 barrier_nr, b->br_number);
293 goto bail;
294 }
295 if (b->n_writes != set_size) {
296 conn_err(tconn, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
297 barrier_nr, set_size, b->n_writes);
298 goto bail;
299 }
300
301 /* Clean up list of requests processed during current epoch */
302 list_for_each_safe(le, tle, &b->requests) {
303 r = list_entry(le, struct drbd_request, tl_requests);
304 _req_mod(r, BARRIER_ACKED);
305 }
306 /* There could be requests on the list waiting for completion
307 of the write to the local disk. To avoid corruptions of
308 slab's data structures we have to remove the lists head.
309
310 Also there could have been a barrier ack out of sequence, overtaking
311 the write acks - which would be a bug and violating write ordering.
312 To not deadlock in case we lose connection while such requests are
313 still pending, we need some way to find them for the
314 _req_mode(CONNECTION_LOST_WHILE_PENDING).
315
316 These have been list_move'd to the out_of_sequence_requests list in
317 _req_mod(, BARRIER_ACKED) above.
318 */
319 list_del_init(&b->requests);
320 mdev = b->w.mdev;
321
322 nob = b->next;
323 if (test_and_clear_bit(CREATE_BARRIER, &mdev->flags)) {
324 _tl_add_barrier(tconn, b);
325 if (nob)
326 tconn->oldest_tle = nob;
327 /* if nob == NULL b was the only barrier, and becomes the new
328 barrier. Therefore tconn->oldest_tle points already to b */
329 } else {
330 D_ASSERT(nob != NULL);
331 tconn->oldest_tle = nob;
332 kfree(b);
333 }
334
335 spin_unlock_irq(&tconn->req_lock);
336 dec_ap_pending(mdev);
337
338 return;
339
340 bail:
341 spin_unlock_irq(&tconn->req_lock);
342 conn_request_state(tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
343 }
344
345
346 /**
347 * _tl_restart() - Walks the transfer log, and applies an action to all requests
348 * @mdev: DRBD device.
349 * @what: The action/event to perform with all request objects
350 *
351 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
352 * RESTART_FROZEN_DISK_IO.
353 */
354 void _tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
355 {
356 struct drbd_tl_epoch *b, *tmp, **pn;
357 struct list_head *le, *tle, carry_reads;
358 struct drbd_request *req;
359 int rv, n_writes, n_reads;
360
361 b = tconn->oldest_tle;
362 pn = &tconn->oldest_tle;
363 while (b) {
364 n_writes = 0;
365 n_reads = 0;
366 INIT_LIST_HEAD(&carry_reads);
367 list_for_each_safe(le, tle, &b->requests) {
368 req = list_entry(le, struct drbd_request, tl_requests);
369 rv = _req_mod(req, what);
370
371 n_writes += (rv & MR_WRITE) >> MR_WRITE_SHIFT;
372 n_reads += (rv & MR_READ) >> MR_READ_SHIFT;
373 }
374 tmp = b->next;
375
376 if (n_writes) {
377 if (what == RESEND) {
378 b->n_writes = n_writes;
379 if (b->w.cb == NULL) {
380 b->w.cb = w_send_barrier;
381 inc_ap_pending(b->w.mdev);
382 set_bit(CREATE_BARRIER, &b->w.mdev->flags);
383 }
384
385 drbd_queue_work(&tconn->data.work, &b->w);
386 }
387 pn = &b->next;
388 } else {
389 if (n_reads)
390 list_add(&carry_reads, &b->requests);
391 /* there could still be requests on that ring list,
392 * in case local io is still pending */
393 list_del(&b->requests);
394
395 /* dec_ap_pending corresponding to queue_barrier.
396 * the newest barrier may not have been queued yet,
397 * in which case w.cb is still NULL. */
398 if (b->w.cb != NULL)
399 dec_ap_pending(b->w.mdev);
400
401 if (b == tconn->newest_tle) {
402 /* recycle, but reinit! */
403 if (tmp != NULL)
404 conn_err(tconn, "ASSERT FAILED tmp == NULL");
405 INIT_LIST_HEAD(&b->requests);
406 list_splice(&carry_reads, &b->requests);
407 INIT_LIST_HEAD(&b->w.list);
408 b->w.cb = NULL;
409 b->br_number = net_random();
410 b->n_writes = 0;
411
412 *pn = b;
413 break;
414 }
415 *pn = tmp;
416 kfree(b);
417 }
418 b = tmp;
419 list_splice(&carry_reads, &b->requests);
420 }
421 }
422
423
424 /**
425 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
426 * @mdev: DRBD device.
427 *
428 * This is called after the connection to the peer was lost. The storage covered
429 * by the requests on the transfer gets marked as our of sync. Called from the
430 * receiver thread and the worker thread.
431 */
432 void tl_clear(struct drbd_tconn *tconn)
433 {
434 struct drbd_conf *mdev;
435 struct list_head *le, *tle;
436 struct drbd_request *r;
437 int vnr;
438
439 spin_lock_irq(&tconn->req_lock);
440
441 _tl_restart(tconn, CONNECTION_LOST_WHILE_PENDING);
442
443 /* we expect this list to be empty. */
444 if (!list_empty(&tconn->out_of_sequence_requests))
445 conn_err(tconn, "ASSERT FAILED list_empty(&out_of_sequence_requests)\n");
446
447 /* but just in case, clean it up anyways! */
448 list_for_each_safe(le, tle, &tconn->out_of_sequence_requests) {
449 r = list_entry(le, struct drbd_request, tl_requests);
450 /* It would be nice to complete outside of spinlock.
451 * But this is easier for now. */
452 _req_mod(r, CONNECTION_LOST_WHILE_PENDING);
453 }
454
455 /* ensure bit indicating barrier is required is clear */
456 rcu_read_lock();
457 idr_for_each_entry(&tconn->volumes, mdev, vnr)
458 clear_bit(CREATE_BARRIER, &mdev->flags);
459 rcu_read_unlock();
460
461 spin_unlock_irq(&tconn->req_lock);
462 }
463
464 void tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
465 {
466 spin_lock_irq(&tconn->req_lock);
467 _tl_restart(tconn, what);
468 spin_unlock_irq(&tconn->req_lock);
469 }
470
471 static int drbd_thread_setup(void *arg)
472 {
473 struct drbd_thread *thi = (struct drbd_thread *) arg;
474 struct drbd_tconn *tconn = thi->tconn;
475 unsigned long flags;
476 int retval;
477
478 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
479 thi->name[0], thi->tconn->name);
480
481 restart:
482 retval = thi->function(thi);
483
484 spin_lock_irqsave(&thi->t_lock, flags);
485
486 /* if the receiver has been "EXITING", the last thing it did
487 * was set the conn state to "StandAlone",
488 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
489 * and receiver thread will be "started".
490 * drbd_thread_start needs to set "RESTARTING" in that case.
491 * t_state check and assignment needs to be within the same spinlock,
492 * so either thread_start sees EXITING, and can remap to RESTARTING,
493 * or thread_start see NONE, and can proceed as normal.
494 */
495
496 if (thi->t_state == RESTARTING) {
497 conn_info(tconn, "Restarting %s thread\n", thi->name);
498 thi->t_state = RUNNING;
499 spin_unlock_irqrestore(&thi->t_lock, flags);
500 goto restart;
501 }
502
503 thi->task = NULL;
504 thi->t_state = NONE;
505 smp_mb();
506 complete_all(&thi->stop);
507 spin_unlock_irqrestore(&thi->t_lock, flags);
508
509 conn_info(tconn, "Terminating %s\n", current->comm);
510
511 /* Release mod reference taken when thread was started */
512
513 kref_put(&tconn->kref, &conn_destroy);
514 module_put(THIS_MODULE);
515 return retval;
516 }
517
518 static void drbd_thread_init(struct drbd_tconn *tconn, struct drbd_thread *thi,
519 int (*func) (struct drbd_thread *), char *name)
520 {
521 spin_lock_init(&thi->t_lock);
522 thi->task = NULL;
523 thi->t_state = NONE;
524 thi->function = func;
525 thi->tconn = tconn;
526 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
527 }
528
529 int drbd_thread_start(struct drbd_thread *thi)
530 {
531 struct drbd_tconn *tconn = thi->tconn;
532 struct task_struct *nt;
533 unsigned long flags;
534
535 /* is used from state engine doing drbd_thread_stop_nowait,
536 * while holding the req lock irqsave */
537 spin_lock_irqsave(&thi->t_lock, flags);
538
539 switch (thi->t_state) {
540 case NONE:
541 conn_info(tconn, "Starting %s thread (from %s [%d])\n",
542 thi->name, current->comm, current->pid);
543
544 /* Get ref on module for thread - this is released when thread exits */
545 if (!try_module_get(THIS_MODULE)) {
546 conn_err(tconn, "Failed to get module reference in drbd_thread_start\n");
547 spin_unlock_irqrestore(&thi->t_lock, flags);
548 return false;
549 }
550
551 kref_get(&thi->tconn->kref);
552
553 init_completion(&thi->stop);
554 thi->reset_cpu_mask = 1;
555 thi->t_state = RUNNING;
556 spin_unlock_irqrestore(&thi->t_lock, flags);
557 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
558
559 nt = kthread_create(drbd_thread_setup, (void *) thi,
560 "drbd_%c_%s", thi->name[0], thi->tconn->name);
561
562 if (IS_ERR(nt)) {
563 conn_err(tconn, "Couldn't start thread\n");
564
565 kref_put(&tconn->kref, &conn_destroy);
566 module_put(THIS_MODULE);
567 return false;
568 }
569 spin_lock_irqsave(&thi->t_lock, flags);
570 thi->task = nt;
571 thi->t_state = RUNNING;
572 spin_unlock_irqrestore(&thi->t_lock, flags);
573 wake_up_process(nt);
574 break;
575 case EXITING:
576 thi->t_state = RESTARTING;
577 conn_info(tconn, "Restarting %s thread (from %s [%d])\n",
578 thi->name, current->comm, current->pid);
579 /* fall through */
580 case RUNNING:
581 case RESTARTING:
582 default:
583 spin_unlock_irqrestore(&thi->t_lock, flags);
584 break;
585 }
586
587 return true;
588 }
589
590
591 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
592 {
593 unsigned long flags;
594
595 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
596
597 /* may be called from state engine, holding the req lock irqsave */
598 spin_lock_irqsave(&thi->t_lock, flags);
599
600 if (thi->t_state == NONE) {
601 spin_unlock_irqrestore(&thi->t_lock, flags);
602 if (restart)
603 drbd_thread_start(thi);
604 return;
605 }
606
607 if (thi->t_state != ns) {
608 if (thi->task == NULL) {
609 spin_unlock_irqrestore(&thi->t_lock, flags);
610 return;
611 }
612
613 thi->t_state = ns;
614 smp_mb();
615 init_completion(&thi->stop);
616 if (thi->task != current)
617 force_sig(DRBD_SIGKILL, thi->task);
618 }
619
620 spin_unlock_irqrestore(&thi->t_lock, flags);
621
622 if (wait)
623 wait_for_completion(&thi->stop);
624 }
625
626 static struct drbd_thread *drbd_task_to_thread(struct drbd_tconn *tconn, struct task_struct *task)
627 {
628 struct drbd_thread *thi =
629 task == tconn->receiver.task ? &tconn->receiver :
630 task == tconn->asender.task ? &tconn->asender :
631 task == tconn->worker.task ? &tconn->worker : NULL;
632
633 return thi;
634 }
635
636 char *drbd_task_to_thread_name(struct drbd_tconn *tconn, struct task_struct *task)
637 {
638 struct drbd_thread *thi = drbd_task_to_thread(tconn, task);
639 return thi ? thi->name : task->comm;
640 }
641
642 int conn_lowest_minor(struct drbd_tconn *tconn)
643 {
644 struct drbd_conf *mdev;
645 int vnr = 0, m;
646
647 rcu_read_lock();
648 mdev = idr_get_next(&tconn->volumes, &vnr);
649 m = mdev ? mdev_to_minor(mdev) : -1;
650 rcu_read_unlock();
651
652 return m;
653 }
654
655 #ifdef CONFIG_SMP
656 /**
657 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
658 * @mdev: DRBD device.
659 *
660 * Forces all threads of a device onto the same CPU. This is beneficial for
661 * DRBD's performance. May be overwritten by user's configuration.
662 */
663 void drbd_calc_cpu_mask(struct drbd_tconn *tconn)
664 {
665 int ord, cpu;
666
667 /* user override. */
668 if (cpumask_weight(tconn->cpu_mask))
669 return;
670
671 ord = conn_lowest_minor(tconn) % cpumask_weight(cpu_online_mask);
672 for_each_online_cpu(cpu) {
673 if (ord-- == 0) {
674 cpumask_set_cpu(cpu, tconn->cpu_mask);
675 return;
676 }
677 }
678 /* should not be reached */
679 cpumask_setall(tconn->cpu_mask);
680 }
681
682 /**
683 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
684 * @mdev: DRBD device.
685 * @thi: drbd_thread object
686 *
687 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
688 * prematurely.
689 */
690 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
691 {
692 struct task_struct *p = current;
693
694 if (!thi->reset_cpu_mask)
695 return;
696 thi->reset_cpu_mask = 0;
697 set_cpus_allowed_ptr(p, thi->tconn->cpu_mask);
698 }
699 #endif
700
701 /**
702 * drbd_header_size - size of a packet header
703 *
704 * The header size is a multiple of 8, so any payload following the header is
705 * word aligned on 64-bit architectures. (The bitmap send and receive code
706 * relies on this.)
707 */
708 unsigned int drbd_header_size(struct drbd_tconn *tconn)
709 {
710 if (tconn->agreed_pro_version >= 100) {
711 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
712 return sizeof(struct p_header100);
713 } else {
714 BUILD_BUG_ON(sizeof(struct p_header80) !=
715 sizeof(struct p_header95));
716 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
717 return sizeof(struct p_header80);
718 }
719 }
720
721 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
722 {
723 h->magic = cpu_to_be32(DRBD_MAGIC);
724 h->command = cpu_to_be16(cmd);
725 h->length = cpu_to_be16(size);
726 return sizeof(struct p_header80);
727 }
728
729 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
730 {
731 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
732 h->command = cpu_to_be16(cmd);
733 h->length = cpu_to_be32(size);
734 return sizeof(struct p_header95);
735 }
736
737 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
738 int size, int vnr)
739 {
740 h->magic = cpu_to_be32(DRBD_MAGIC_100);
741 h->volume = cpu_to_be16(vnr);
742 h->command = cpu_to_be16(cmd);
743 h->length = cpu_to_be32(size);
744 h->pad = 0;
745 return sizeof(struct p_header100);
746 }
747
748 static unsigned int prepare_header(struct drbd_tconn *tconn, int vnr,
749 void *buffer, enum drbd_packet cmd, int size)
750 {
751 if (tconn->agreed_pro_version >= 100)
752 return prepare_header100(buffer, cmd, size, vnr);
753 else if (tconn->agreed_pro_version >= 95 &&
754 size > DRBD_MAX_SIZE_H80_PACKET)
755 return prepare_header95(buffer, cmd, size);
756 else
757 return prepare_header80(buffer, cmd, size);
758 }
759
760 static void *__conn_prepare_command(struct drbd_tconn *tconn,
761 struct drbd_socket *sock)
762 {
763 if (!sock->socket)
764 return NULL;
765 return sock->sbuf + drbd_header_size(tconn);
766 }
767
768 void *conn_prepare_command(struct drbd_tconn *tconn, struct drbd_socket *sock)
769 {
770 void *p;
771
772 mutex_lock(&sock->mutex);
773 p = __conn_prepare_command(tconn, sock);
774 if (!p)
775 mutex_unlock(&sock->mutex);
776
777 return p;
778 }
779
780 void *drbd_prepare_command(struct drbd_conf *mdev, struct drbd_socket *sock)
781 {
782 return conn_prepare_command(mdev->tconn, sock);
783 }
784
785 static int __send_command(struct drbd_tconn *tconn, int vnr,
786 struct drbd_socket *sock, enum drbd_packet cmd,
787 unsigned int header_size, void *data,
788 unsigned int size)
789 {
790 int msg_flags;
791 int err;
792
793 /*
794 * Called with @data == NULL and the size of the data blocks in @size
795 * for commands that send data blocks. For those commands, omit the
796 * MSG_MORE flag: this will increase the likelihood that data blocks
797 * which are page aligned on the sender will end up page aligned on the
798 * receiver.
799 */
800 msg_flags = data ? MSG_MORE : 0;
801
802 header_size += prepare_header(tconn, vnr, sock->sbuf, cmd,
803 header_size + size);
804 err = drbd_send_all(tconn, sock->socket, sock->sbuf, header_size,
805 msg_flags);
806 if (data && !err)
807 err = drbd_send_all(tconn, sock->socket, data, size, 0);
808 return err;
809 }
810
811 static int __conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
812 enum drbd_packet cmd, unsigned int header_size,
813 void *data, unsigned int size)
814 {
815 return __send_command(tconn, 0, sock, cmd, header_size, data, size);
816 }
817
818 int conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
819 enum drbd_packet cmd, unsigned int header_size,
820 void *data, unsigned int size)
821 {
822 int err;
823
824 err = __conn_send_command(tconn, sock, cmd, header_size, data, size);
825 mutex_unlock(&sock->mutex);
826 return err;
827 }
828
829 int drbd_send_command(struct drbd_conf *mdev, struct drbd_socket *sock,
830 enum drbd_packet cmd, unsigned int header_size,
831 void *data, unsigned int size)
832 {
833 int err;
834
835 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, header_size,
836 data, size);
837 mutex_unlock(&sock->mutex);
838 return err;
839 }
840
841 int drbd_send_ping(struct drbd_tconn *tconn)
842 {
843 struct drbd_socket *sock;
844
845 sock = &tconn->meta;
846 if (!conn_prepare_command(tconn, sock))
847 return -EIO;
848 return conn_send_command(tconn, sock, P_PING, 0, NULL, 0);
849 }
850
851 int drbd_send_ping_ack(struct drbd_tconn *tconn)
852 {
853 struct drbd_socket *sock;
854
855 sock = &tconn->meta;
856 if (!conn_prepare_command(tconn, sock))
857 return -EIO;
858 return conn_send_command(tconn, sock, P_PING_ACK, 0, NULL, 0);
859 }
860
861 int drbd_send_sync_param(struct drbd_conf *mdev)
862 {
863 struct drbd_socket *sock;
864 struct p_rs_param_95 *p;
865 int size;
866 const int apv = mdev->tconn->agreed_pro_version;
867 enum drbd_packet cmd;
868 struct net_conf *nc;
869 struct disk_conf *dc;
870
871 sock = &mdev->tconn->data;
872 p = drbd_prepare_command(mdev, sock);
873 if (!p)
874 return -EIO;
875
876 rcu_read_lock();
877 nc = rcu_dereference(mdev->tconn->net_conf);
878
879 size = apv <= 87 ? sizeof(struct p_rs_param)
880 : apv == 88 ? sizeof(struct p_rs_param)
881 + strlen(nc->verify_alg) + 1
882 : apv <= 94 ? sizeof(struct p_rs_param_89)
883 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
884
885 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
886
887 /* initialize verify_alg and csums_alg */
888 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
889
890 if (get_ldev(mdev)) {
891 dc = rcu_dereference(mdev->ldev->disk_conf);
892 p->rate = cpu_to_be32(dc->resync_rate);
893 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
894 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
895 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
896 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
897 put_ldev(mdev);
898 } else {
899 p->rate = cpu_to_be32(DRBD_RATE_DEF);
900 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
901 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
902 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
903 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
904 }
905
906 if (apv >= 88)
907 strcpy(p->verify_alg, nc->verify_alg);
908 if (apv >= 89)
909 strcpy(p->csums_alg, nc->csums_alg);
910 rcu_read_unlock();
911
912 return drbd_send_command(mdev, sock, cmd, size, NULL, 0);
913 }
914
915 int __drbd_send_protocol(struct drbd_tconn *tconn)
916 {
917 struct drbd_socket *sock;
918 struct p_protocol *p;
919 struct net_conf *nc;
920 int size, cf;
921
922 sock = &tconn->data;
923 p = __conn_prepare_command(tconn, sock);
924 if (!p)
925 return -EIO;
926
927 rcu_read_lock();
928 nc = rcu_dereference(tconn->net_conf);
929
930 if (nc->dry_run && tconn->agreed_pro_version < 92) {
931 rcu_read_unlock();
932 mutex_unlock(&sock->mutex);
933 conn_err(tconn, "--dry-run is not supported by peer");
934 return -EOPNOTSUPP;
935 }
936
937 size = sizeof(*p);
938 if (tconn->agreed_pro_version >= 87)
939 size += strlen(nc->integrity_alg) + 1;
940
941 p->protocol = cpu_to_be32(nc->wire_protocol);
942 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
943 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
944 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
945 p->two_primaries = cpu_to_be32(nc->two_primaries);
946 cf = 0;
947 if (nc->want_lose)
948 cf |= CF_WANT_LOSE;
949 if (nc->dry_run)
950 cf |= CF_DRY_RUN;
951 p->conn_flags = cpu_to_be32(cf);
952
953 if (tconn->agreed_pro_version >= 87)
954 strcpy(p->integrity_alg, nc->integrity_alg);
955 rcu_read_unlock();
956
957 return __conn_send_command(tconn, sock, P_PROTOCOL, size, NULL, 0);
958 }
959
960 int drbd_send_protocol(struct drbd_tconn *tconn)
961 {
962 int err;
963
964 mutex_lock(&tconn->data.mutex);
965 err = __drbd_send_protocol(tconn);
966 mutex_unlock(&tconn->data.mutex);
967
968 return err;
969 }
970
971 int _drbd_send_uuids(struct drbd_conf *mdev, u64 uuid_flags)
972 {
973 struct drbd_socket *sock;
974 struct p_uuids *p;
975 int i;
976
977 if (!get_ldev_if_state(mdev, D_NEGOTIATING))
978 return 0;
979
980 sock = &mdev->tconn->data;
981 p = drbd_prepare_command(mdev, sock);
982 if (!p) {
983 put_ldev(mdev);
984 return -EIO;
985 }
986 for (i = UI_CURRENT; i < UI_SIZE; i++)
987 p->uuid[i] = mdev->ldev ? cpu_to_be64(mdev->ldev->md.uuid[i]) : 0;
988
989 mdev->comm_bm_set = drbd_bm_total_weight(mdev);
990 p->uuid[UI_SIZE] = cpu_to_be64(mdev->comm_bm_set);
991 rcu_read_lock();
992 uuid_flags |= rcu_dereference(mdev->tconn->net_conf)->want_lose ? 1 : 0;
993 rcu_read_unlock();
994 uuid_flags |= test_bit(CRASHED_PRIMARY, &mdev->flags) ? 2 : 0;
995 uuid_flags |= mdev->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
996 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
997
998 put_ldev(mdev);
999 return drbd_send_command(mdev, sock, P_UUIDS, sizeof(*p), NULL, 0);
1000 }
1001
1002 int drbd_send_uuids(struct drbd_conf *mdev)
1003 {
1004 return _drbd_send_uuids(mdev, 0);
1005 }
1006
1007 int drbd_send_uuids_skip_initial_sync(struct drbd_conf *mdev)
1008 {
1009 return _drbd_send_uuids(mdev, 8);
1010 }
1011
1012 void drbd_print_uuids(struct drbd_conf *mdev, const char *text)
1013 {
1014 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
1015 u64 *uuid = mdev->ldev->md.uuid;
1016 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX\n",
1017 text,
1018 (unsigned long long)uuid[UI_CURRENT],
1019 (unsigned long long)uuid[UI_BITMAP],
1020 (unsigned long long)uuid[UI_HISTORY_START],
1021 (unsigned long long)uuid[UI_HISTORY_END]);
1022 put_ldev(mdev);
1023 } else {
1024 dev_info(DEV, "%s effective data uuid: %016llX\n",
1025 text,
1026 (unsigned long long)mdev->ed_uuid);
1027 }
1028 }
1029
1030 void drbd_gen_and_send_sync_uuid(struct drbd_conf *mdev)
1031 {
1032 struct drbd_socket *sock;
1033 struct p_rs_uuid *p;
1034 u64 uuid;
1035
1036 D_ASSERT(mdev->state.disk == D_UP_TO_DATE);
1037
1038 uuid = mdev->ldev->md.uuid[UI_BITMAP] + UUID_NEW_BM_OFFSET;
1039 drbd_uuid_set(mdev, UI_BITMAP, uuid);
1040 drbd_print_uuids(mdev, "updated sync UUID");
1041 drbd_md_sync(mdev);
1042
1043 sock = &mdev->tconn->data;
1044 p = drbd_prepare_command(mdev, sock);
1045 if (p) {
1046 p->uuid = cpu_to_be64(uuid);
1047 drbd_send_command(mdev, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
1048 }
1049 }
1050
1051 int drbd_send_sizes(struct drbd_conf *mdev, int trigger_reply, enum dds_flags flags)
1052 {
1053 struct drbd_socket *sock;
1054 struct p_sizes *p;
1055 sector_t d_size, u_size;
1056 int q_order_type, max_bio_size;
1057
1058 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
1059 D_ASSERT(mdev->ldev->backing_bdev);
1060 d_size = drbd_get_max_capacity(mdev->ldev);
1061 rcu_read_lock();
1062 u_size = rcu_dereference(mdev->ldev->disk_conf)->disk_size;
1063 rcu_read_unlock();
1064 q_order_type = drbd_queue_order_type(mdev);
1065 max_bio_size = queue_max_hw_sectors(mdev->ldev->backing_bdev->bd_disk->queue) << 9;
1066 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_BIO_SIZE);
1067 put_ldev(mdev);
1068 } else {
1069 d_size = 0;
1070 u_size = 0;
1071 q_order_type = QUEUE_ORDERED_NONE;
1072 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
1073 }
1074
1075 sock = &mdev->tconn->data;
1076 p = drbd_prepare_command(mdev, sock);
1077 if (!p)
1078 return -EIO;
1079 p->d_size = cpu_to_be64(d_size);
1080 p->u_size = cpu_to_be64(u_size);
1081 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(mdev->this_bdev));
1082 p->max_bio_size = cpu_to_be32(max_bio_size);
1083 p->queue_order_type = cpu_to_be16(q_order_type);
1084 p->dds_flags = cpu_to_be16(flags);
1085 return drbd_send_command(mdev, sock, P_SIZES, sizeof(*p), NULL, 0);
1086 }
1087
1088 /**
1089 * drbd_send_state() - Sends the drbd state to the peer
1090 * @mdev: DRBD device.
1091 */
1092 int drbd_send_state(struct drbd_conf *mdev)
1093 {
1094 struct drbd_socket *sock;
1095 struct p_state *p;
1096
1097 sock = &mdev->tconn->data;
1098 p = drbd_prepare_command(mdev, sock);
1099 if (!p)
1100 return -EIO;
1101 p->state = cpu_to_be32(mdev->state.i); /* Within the send mutex */
1102 return drbd_send_command(mdev, sock, P_STATE, sizeof(*p), NULL, 0);
1103 }
1104
1105 int drbd_send_state_req(struct drbd_conf *mdev, union drbd_state mask, union drbd_state val)
1106 {
1107 struct drbd_socket *sock;
1108 struct p_req_state *p;
1109
1110 sock = &mdev->tconn->data;
1111 p = drbd_prepare_command(mdev, sock);
1112 if (!p)
1113 return -EIO;
1114 p->mask = cpu_to_be32(mask.i);
1115 p->val = cpu_to_be32(val.i);
1116 return drbd_send_command(mdev, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1117
1118 }
1119
1120 int conn_send_state_req(struct drbd_tconn *tconn, union drbd_state mask, union drbd_state val)
1121 {
1122 enum drbd_packet cmd;
1123 struct drbd_socket *sock;
1124 struct p_req_state *p;
1125
1126 cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1127 sock = &tconn->data;
1128 p = conn_prepare_command(tconn, sock);
1129 if (!p)
1130 return -EIO;
1131 p->mask = cpu_to_be32(mask.i);
1132 p->val = cpu_to_be32(val.i);
1133 return conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1134 }
1135
1136 void drbd_send_sr_reply(struct drbd_conf *mdev, enum drbd_state_rv retcode)
1137 {
1138 struct drbd_socket *sock;
1139 struct p_req_state_reply *p;
1140
1141 sock = &mdev->tconn->meta;
1142 p = drbd_prepare_command(mdev, sock);
1143 if (p) {
1144 p->retcode = cpu_to_be32(retcode);
1145 drbd_send_command(mdev, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1146 }
1147 }
1148
1149 void conn_send_sr_reply(struct drbd_tconn *tconn, enum drbd_state_rv retcode)
1150 {
1151 struct drbd_socket *sock;
1152 struct p_req_state_reply *p;
1153 enum drbd_packet cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1154
1155 sock = &tconn->meta;
1156 p = conn_prepare_command(tconn, sock);
1157 if (p) {
1158 p->retcode = cpu_to_be32(retcode);
1159 conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1160 }
1161 }
1162
1163 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1164 {
1165 BUG_ON(code & ~0xf);
1166 p->encoding = (p->encoding & ~0xf) | code;
1167 }
1168
1169 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1170 {
1171 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1172 }
1173
1174 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1175 {
1176 BUG_ON(n & ~0x7);
1177 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1178 }
1179
1180 int fill_bitmap_rle_bits(struct drbd_conf *mdev,
1181 struct p_compressed_bm *p,
1182 unsigned int size,
1183 struct bm_xfer_ctx *c)
1184 {
1185 struct bitstream bs;
1186 unsigned long plain_bits;
1187 unsigned long tmp;
1188 unsigned long rl;
1189 unsigned len;
1190 unsigned toggle;
1191 int bits, use_rle;
1192
1193 /* may we use this feature? */
1194 rcu_read_lock();
1195 use_rle = rcu_dereference(mdev->tconn->net_conf)->use_rle;
1196 rcu_read_unlock();
1197 if (!use_rle || mdev->tconn->agreed_pro_version < 90)
1198 return 0;
1199
1200 if (c->bit_offset >= c->bm_bits)
1201 return 0; /* nothing to do. */
1202
1203 /* use at most thus many bytes */
1204 bitstream_init(&bs, p->code, size, 0);
1205 memset(p->code, 0, size);
1206 /* plain bits covered in this code string */
1207 plain_bits = 0;
1208
1209 /* p->encoding & 0x80 stores whether the first run length is set.
1210 * bit offset is implicit.
1211 * start with toggle == 2 to be able to tell the first iteration */
1212 toggle = 2;
1213
1214 /* see how much plain bits we can stuff into one packet
1215 * using RLE and VLI. */
1216 do {
1217 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(mdev, c->bit_offset)
1218 : _drbd_bm_find_next(mdev, c->bit_offset);
1219 if (tmp == -1UL)
1220 tmp = c->bm_bits;
1221 rl = tmp - c->bit_offset;
1222
1223 if (toggle == 2) { /* first iteration */
1224 if (rl == 0) {
1225 /* the first checked bit was set,
1226 * store start value, */
1227 dcbp_set_start(p, 1);
1228 /* but skip encoding of zero run length */
1229 toggle = !toggle;
1230 continue;
1231 }
1232 dcbp_set_start(p, 0);
1233 }
1234
1235 /* paranoia: catch zero runlength.
1236 * can only happen if bitmap is modified while we scan it. */
1237 if (rl == 0) {
1238 dev_err(DEV, "unexpected zero runlength while encoding bitmap "
1239 "t:%u bo:%lu\n", toggle, c->bit_offset);
1240 return -1;
1241 }
1242
1243 bits = vli_encode_bits(&bs, rl);
1244 if (bits == -ENOBUFS) /* buffer full */
1245 break;
1246 if (bits <= 0) {
1247 dev_err(DEV, "error while encoding bitmap: %d\n", bits);
1248 return 0;
1249 }
1250
1251 toggle = !toggle;
1252 plain_bits += rl;
1253 c->bit_offset = tmp;
1254 } while (c->bit_offset < c->bm_bits);
1255
1256 len = bs.cur.b - p->code + !!bs.cur.bit;
1257
1258 if (plain_bits < (len << 3)) {
1259 /* incompressible with this method.
1260 * we need to rewind both word and bit position. */
1261 c->bit_offset -= plain_bits;
1262 bm_xfer_ctx_bit_to_word_offset(c);
1263 c->bit_offset = c->word_offset * BITS_PER_LONG;
1264 return 0;
1265 }
1266
1267 /* RLE + VLI was able to compress it just fine.
1268 * update c->word_offset. */
1269 bm_xfer_ctx_bit_to_word_offset(c);
1270
1271 /* store pad_bits */
1272 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1273
1274 return len;
1275 }
1276
1277 /**
1278 * send_bitmap_rle_or_plain
1279 *
1280 * Return 0 when done, 1 when another iteration is needed, and a negative error
1281 * code upon failure.
1282 */
1283 static int
1284 send_bitmap_rle_or_plain(struct drbd_conf *mdev, struct bm_xfer_ctx *c)
1285 {
1286 struct drbd_socket *sock = &mdev->tconn->data;
1287 unsigned int header_size = drbd_header_size(mdev->tconn);
1288 struct p_compressed_bm *p = sock->sbuf + header_size;
1289 int len, err;
1290
1291 len = fill_bitmap_rle_bits(mdev, p,
1292 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1293 if (len < 0)
1294 return -EIO;
1295
1296 if (len) {
1297 dcbp_set_code(p, RLE_VLI_Bits);
1298 err = __send_command(mdev->tconn, mdev->vnr, sock,
1299 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1300 NULL, 0);
1301 c->packets[0]++;
1302 c->bytes[0] += header_size + sizeof(*p) + len;
1303
1304 if (c->bit_offset >= c->bm_bits)
1305 len = 0; /* DONE */
1306 } else {
1307 /* was not compressible.
1308 * send a buffer full of plain text bits instead. */
1309 unsigned int data_size;
1310 unsigned long num_words;
1311 unsigned long *p = sock->sbuf + header_size;
1312
1313 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1314 num_words = min_t(size_t, data_size / sizeof(*p),
1315 c->bm_words - c->word_offset);
1316 len = num_words * sizeof(*p);
1317 if (len)
1318 drbd_bm_get_lel(mdev, c->word_offset, num_words, p);
1319 err = __send_command(mdev->tconn, mdev->vnr, sock, P_BITMAP, len, NULL, 0);
1320 c->word_offset += num_words;
1321 c->bit_offset = c->word_offset * BITS_PER_LONG;
1322
1323 c->packets[1]++;
1324 c->bytes[1] += header_size + len;
1325
1326 if (c->bit_offset > c->bm_bits)
1327 c->bit_offset = c->bm_bits;
1328 }
1329 if (!err) {
1330 if (len == 0) {
1331 INFO_bm_xfer_stats(mdev, "send", c);
1332 return 0;
1333 } else
1334 return 1;
1335 }
1336 return -EIO;
1337 }
1338
1339 /* See the comment at receive_bitmap() */
1340 static int _drbd_send_bitmap(struct drbd_conf *mdev)
1341 {
1342 struct bm_xfer_ctx c;
1343 int err;
1344
1345 if (!expect(mdev->bitmap))
1346 return false;
1347
1348 if (get_ldev(mdev)) {
1349 if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) {
1350 dev_info(DEV, "Writing the whole bitmap, MDF_FullSync was set.\n");
1351 drbd_bm_set_all(mdev);
1352 if (drbd_bm_write(mdev)) {
1353 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1354 * but otherwise process as per normal - need to tell other
1355 * side that a full resync is required! */
1356 dev_err(DEV, "Failed to write bitmap to disk!\n");
1357 } else {
1358 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
1359 drbd_md_sync(mdev);
1360 }
1361 }
1362 put_ldev(mdev);
1363 }
1364
1365 c = (struct bm_xfer_ctx) {
1366 .bm_bits = drbd_bm_bits(mdev),
1367 .bm_words = drbd_bm_words(mdev),
1368 };
1369
1370 do {
1371 err = send_bitmap_rle_or_plain(mdev, &c);
1372 } while (err > 0);
1373
1374 return err == 0;
1375 }
1376
1377 int drbd_send_bitmap(struct drbd_conf *mdev)
1378 {
1379 struct drbd_socket *sock = &mdev->tconn->data;
1380 int err = -1;
1381
1382 mutex_lock(&sock->mutex);
1383 if (sock->socket)
1384 err = !_drbd_send_bitmap(mdev);
1385 mutex_unlock(&sock->mutex);
1386 return err;
1387 }
1388
1389 void drbd_send_b_ack(struct drbd_conf *mdev, u32 barrier_nr, u32 set_size)
1390 {
1391 struct drbd_socket *sock;
1392 struct p_barrier_ack *p;
1393
1394 if (mdev->state.conn < C_CONNECTED)
1395 return;
1396
1397 sock = &mdev->tconn->meta;
1398 p = drbd_prepare_command(mdev, sock);
1399 if (!p)
1400 return;
1401 p->barrier = barrier_nr;
1402 p->set_size = cpu_to_be32(set_size);
1403 drbd_send_command(mdev, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1404 }
1405
1406 /**
1407 * _drbd_send_ack() - Sends an ack packet
1408 * @mdev: DRBD device.
1409 * @cmd: Packet command code.
1410 * @sector: sector, needs to be in big endian byte order
1411 * @blksize: size in byte, needs to be in big endian byte order
1412 * @block_id: Id, big endian byte order
1413 */
1414 static int _drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1415 u64 sector, u32 blksize, u64 block_id)
1416 {
1417 struct drbd_socket *sock;
1418 struct p_block_ack *p;
1419
1420 if (mdev->state.conn < C_CONNECTED)
1421 return -EIO;
1422
1423 sock = &mdev->tconn->meta;
1424 p = drbd_prepare_command(mdev, sock);
1425 if (!p)
1426 return -EIO;
1427 p->sector = sector;
1428 p->block_id = block_id;
1429 p->blksize = blksize;
1430 p->seq_num = cpu_to_be32(atomic_inc_return(&mdev->packet_seq));
1431 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1432 }
1433
1434 /* dp->sector and dp->block_id already/still in network byte order,
1435 * data_size is payload size according to dp->head,
1436 * and may need to be corrected for digest size. */
1437 void drbd_send_ack_dp(struct drbd_conf *mdev, enum drbd_packet cmd,
1438 struct p_data *dp, int data_size)
1439 {
1440 if (mdev->tconn->peer_integrity_tfm)
1441 data_size -= crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm);
1442 _drbd_send_ack(mdev, cmd, dp->sector, cpu_to_be32(data_size),
1443 dp->block_id);
1444 }
1445
1446 void drbd_send_ack_rp(struct drbd_conf *mdev, enum drbd_packet cmd,
1447 struct p_block_req *rp)
1448 {
1449 _drbd_send_ack(mdev, cmd, rp->sector, rp->blksize, rp->block_id);
1450 }
1451
1452 /**
1453 * drbd_send_ack() - Sends an ack packet
1454 * @mdev: DRBD device
1455 * @cmd: packet command code
1456 * @peer_req: peer request
1457 */
1458 int drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1459 struct drbd_peer_request *peer_req)
1460 {
1461 return _drbd_send_ack(mdev, cmd,
1462 cpu_to_be64(peer_req->i.sector),
1463 cpu_to_be32(peer_req->i.size),
1464 peer_req->block_id);
1465 }
1466
1467 /* This function misuses the block_id field to signal if the blocks
1468 * are is sync or not. */
1469 int drbd_send_ack_ex(struct drbd_conf *mdev, enum drbd_packet cmd,
1470 sector_t sector, int blksize, u64 block_id)
1471 {
1472 return _drbd_send_ack(mdev, cmd,
1473 cpu_to_be64(sector),
1474 cpu_to_be32(blksize),
1475 cpu_to_be64(block_id));
1476 }
1477
1478 int drbd_send_drequest(struct drbd_conf *mdev, int cmd,
1479 sector_t sector, int size, u64 block_id)
1480 {
1481 struct drbd_socket *sock;
1482 struct p_block_req *p;
1483
1484 sock = &mdev->tconn->data;
1485 p = drbd_prepare_command(mdev, sock);
1486 if (!p)
1487 return -EIO;
1488 p->sector = cpu_to_be64(sector);
1489 p->block_id = block_id;
1490 p->blksize = cpu_to_be32(size);
1491 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1492 }
1493
1494 int drbd_send_drequest_csum(struct drbd_conf *mdev, sector_t sector, int size,
1495 void *digest, int digest_size, enum drbd_packet cmd)
1496 {
1497 struct drbd_socket *sock;
1498 struct p_block_req *p;
1499
1500 /* FIXME: Put the digest into the preallocated socket buffer. */
1501
1502 sock = &mdev->tconn->data;
1503 p = drbd_prepare_command(mdev, sock);
1504 if (!p)
1505 return -EIO;
1506 p->sector = cpu_to_be64(sector);
1507 p->block_id = ID_SYNCER /* unused */;
1508 p->blksize = cpu_to_be32(size);
1509 return drbd_send_command(mdev, sock, cmd, sizeof(*p),
1510 digest, digest_size);
1511 }
1512
1513 int drbd_send_ov_request(struct drbd_conf *mdev, sector_t sector, int size)
1514 {
1515 struct drbd_socket *sock;
1516 struct p_block_req *p;
1517
1518 sock = &mdev->tconn->data;
1519 p = drbd_prepare_command(mdev, sock);
1520 if (!p)
1521 return -EIO;
1522 p->sector = cpu_to_be64(sector);
1523 p->block_id = ID_SYNCER /* unused */;
1524 p->blksize = cpu_to_be32(size);
1525 return drbd_send_command(mdev, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1526 }
1527
1528 /* called on sndtimeo
1529 * returns false if we should retry,
1530 * true if we think connection is dead
1531 */
1532 static int we_should_drop_the_connection(struct drbd_tconn *tconn, struct socket *sock)
1533 {
1534 int drop_it;
1535 /* long elapsed = (long)(jiffies - mdev->last_received); */
1536
1537 drop_it = tconn->meta.socket == sock
1538 || !tconn->asender.task
1539 || get_t_state(&tconn->asender) != RUNNING
1540 || tconn->cstate < C_WF_REPORT_PARAMS;
1541
1542 if (drop_it)
1543 return true;
1544
1545 drop_it = !--tconn->ko_count;
1546 if (!drop_it) {
1547 conn_err(tconn, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1548 current->comm, current->pid, tconn->ko_count);
1549 request_ping(tconn);
1550 }
1551
1552 return drop_it; /* && (mdev->state == R_PRIMARY) */;
1553 }
1554
1555 static void drbd_update_congested(struct drbd_tconn *tconn)
1556 {
1557 struct sock *sk = tconn->data.socket->sk;
1558 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1559 set_bit(NET_CONGESTED, &tconn->flags);
1560 }
1561
1562 /* The idea of sendpage seems to be to put some kind of reference
1563 * to the page into the skb, and to hand it over to the NIC. In
1564 * this process get_page() gets called.
1565 *
1566 * As soon as the page was really sent over the network put_page()
1567 * gets called by some part of the network layer. [ NIC driver? ]
1568 *
1569 * [ get_page() / put_page() increment/decrement the count. If count
1570 * reaches 0 the page will be freed. ]
1571 *
1572 * This works nicely with pages from FSs.
1573 * But this means that in protocol A we might signal IO completion too early!
1574 *
1575 * In order not to corrupt data during a resync we must make sure
1576 * that we do not reuse our own buffer pages (EEs) to early, therefore
1577 * we have the net_ee list.
1578 *
1579 * XFS seems to have problems, still, it submits pages with page_count == 0!
1580 * As a workaround, we disable sendpage on pages
1581 * with page_count == 0 or PageSlab.
1582 */
1583 static int _drbd_no_send_page(struct drbd_conf *mdev, struct page *page,
1584 int offset, size_t size, unsigned msg_flags)
1585 {
1586 struct socket *socket;
1587 void *addr;
1588 int err;
1589
1590 socket = mdev->tconn->data.socket;
1591 addr = kmap(page) + offset;
1592 err = drbd_send_all(mdev->tconn, socket, addr, size, msg_flags);
1593 kunmap(page);
1594 if (!err)
1595 mdev->send_cnt += size >> 9;
1596 return err;
1597 }
1598
1599 static int _drbd_send_page(struct drbd_conf *mdev, struct page *page,
1600 int offset, size_t size, unsigned msg_flags)
1601 {
1602 struct socket *socket = mdev->tconn->data.socket;
1603 mm_segment_t oldfs = get_fs();
1604 int len = size;
1605 int err = -EIO;
1606
1607 /* e.g. XFS meta- & log-data is in slab pages, which have a
1608 * page_count of 0 and/or have PageSlab() set.
1609 * we cannot use send_page for those, as that does get_page();
1610 * put_page(); and would cause either a VM_BUG directly, or
1611 * __page_cache_release a page that would actually still be referenced
1612 * by someone, leading to some obscure delayed Oops somewhere else. */
1613 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1614 return _drbd_no_send_page(mdev, page, offset, size, msg_flags);
1615
1616 msg_flags |= MSG_NOSIGNAL;
1617 drbd_update_congested(mdev->tconn);
1618 set_fs(KERNEL_DS);
1619 do {
1620 int sent;
1621
1622 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1623 if (sent <= 0) {
1624 if (sent == -EAGAIN) {
1625 if (we_should_drop_the_connection(mdev->tconn, socket))
1626 break;
1627 continue;
1628 }
1629 dev_warn(DEV, "%s: size=%d len=%d sent=%d\n",
1630 __func__, (int)size, len, sent);
1631 if (sent < 0)
1632 err = sent;
1633 break;
1634 }
1635 len -= sent;
1636 offset += sent;
1637 } while (len > 0 /* THINK && mdev->cstate >= C_CONNECTED*/);
1638 set_fs(oldfs);
1639 clear_bit(NET_CONGESTED, &mdev->tconn->flags);
1640
1641 if (len == 0) {
1642 err = 0;
1643 mdev->send_cnt += size >> 9;
1644 }
1645 return err;
1646 }
1647
1648 static int _drbd_send_bio(struct drbd_conf *mdev, struct bio *bio)
1649 {
1650 struct bio_vec *bvec;
1651 int i;
1652 /* hint all but last page with MSG_MORE */
1653 __bio_for_each_segment(bvec, bio, i, 0) {
1654 int err;
1655
1656 err = _drbd_no_send_page(mdev, bvec->bv_page,
1657 bvec->bv_offset, bvec->bv_len,
1658 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1659 if (err)
1660 return err;
1661 }
1662 return 0;
1663 }
1664
1665 static int _drbd_send_zc_bio(struct drbd_conf *mdev, struct bio *bio)
1666 {
1667 struct bio_vec *bvec;
1668 int i;
1669 /* hint all but last page with MSG_MORE */
1670 __bio_for_each_segment(bvec, bio, i, 0) {
1671 int err;
1672
1673 err = _drbd_send_page(mdev, bvec->bv_page,
1674 bvec->bv_offset, bvec->bv_len,
1675 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1676 if (err)
1677 return err;
1678 }
1679 return 0;
1680 }
1681
1682 static int _drbd_send_zc_ee(struct drbd_conf *mdev,
1683 struct drbd_peer_request *peer_req)
1684 {
1685 struct page *page = peer_req->pages;
1686 unsigned len = peer_req->i.size;
1687 int err;
1688
1689 /* hint all but last page with MSG_MORE */
1690 page_chain_for_each(page) {
1691 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1692
1693 err = _drbd_send_page(mdev, page, 0, l,
1694 page_chain_next(page) ? MSG_MORE : 0);
1695 if (err)
1696 return err;
1697 len -= l;
1698 }
1699 return 0;
1700 }
1701
1702 static u32 bio_flags_to_wire(struct drbd_conf *mdev, unsigned long bi_rw)
1703 {
1704 if (mdev->tconn->agreed_pro_version >= 95)
1705 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1706 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1707 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1708 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1709 else
1710 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1711 }
1712
1713 /* Used to send write requests
1714 * R_PRIMARY -> Peer (P_DATA)
1715 */
1716 int drbd_send_dblock(struct drbd_conf *mdev, struct drbd_request *req)
1717 {
1718 struct drbd_socket *sock;
1719 struct p_data *p;
1720 unsigned int dp_flags = 0;
1721 int dgs;
1722 int err;
1723
1724 dgs = (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_tfm) ?
1725 crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1726
1727 sock = &mdev->tconn->data;
1728 p = drbd_prepare_command(mdev, sock);
1729 if (!p)
1730 return -EIO;
1731 p->sector = cpu_to_be64(req->i.sector);
1732 p->block_id = (unsigned long)req;
1733 p->seq_num = cpu_to_be32(req->seq_num = atomic_inc_return(&mdev->packet_seq));
1734 dp_flags = bio_flags_to_wire(mdev, req->master_bio->bi_rw);
1735 if (mdev->state.conn >= C_SYNC_SOURCE &&
1736 mdev->state.conn <= C_PAUSED_SYNC_T)
1737 dp_flags |= DP_MAY_SET_IN_SYNC;
1738 if (mdev->tconn->agreed_pro_version >= 100) {
1739 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1740 dp_flags |= DP_SEND_RECEIVE_ACK;
1741 if (req->rq_state & RQ_EXP_WRITE_ACK)
1742 dp_flags |= DP_SEND_WRITE_ACK;
1743 }
1744 p->dp_flags = cpu_to_be32(dp_flags);
1745 if (dgs)
1746 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, p + 1);
1747 err = __send_command(mdev->tconn, mdev->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1748 if (!err) {
1749 /* For protocol A, we have to memcpy the payload into
1750 * socket buffers, as we may complete right away
1751 * as soon as we handed it over to tcp, at which point the data
1752 * pages may become invalid.
1753 *
1754 * For data-integrity enabled, we copy it as well, so we can be
1755 * sure that even if the bio pages may still be modified, it
1756 * won't change the data on the wire, thus if the digest checks
1757 * out ok after sending on this side, but does not fit on the
1758 * receiving side, we sure have detected corruption elsewhere.
1759 */
1760 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1761 err = _drbd_send_bio(mdev, req->master_bio);
1762 else
1763 err = _drbd_send_zc_bio(mdev, req->master_bio);
1764
1765 /* double check digest, sometimes buffers have been modified in flight. */
1766 if (dgs > 0 && dgs <= 64) {
1767 /* 64 byte, 512 bit, is the largest digest size
1768 * currently supported in kernel crypto. */
1769 unsigned char digest[64];
1770 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, digest);
1771 if (memcmp(p + 1, digest, dgs)) {
1772 dev_warn(DEV,
1773 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1774 (unsigned long long)req->i.sector, req->i.size);
1775 }
1776 } /* else if (dgs > 64) {
1777 ... Be noisy about digest too large ...
1778 } */
1779 }
1780 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1781
1782 return err;
1783 }
1784
1785 /* answer packet, used to send data back for read requests:
1786 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1787 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1788 */
1789 int drbd_send_block(struct drbd_conf *mdev, enum drbd_packet cmd,
1790 struct drbd_peer_request *peer_req)
1791 {
1792 struct drbd_socket *sock;
1793 struct p_data *p;
1794 int err;
1795 int dgs;
1796
1797 dgs = (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_tfm) ?
1798 crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1799
1800 sock = &mdev->tconn->data;
1801 p = drbd_prepare_command(mdev, sock);
1802 if (!p)
1803 return -EIO;
1804 p->sector = cpu_to_be64(peer_req->i.sector);
1805 p->block_id = peer_req->block_id;
1806 p->seq_num = 0; /* unused */
1807 if (dgs)
1808 drbd_csum_ee(mdev, mdev->tconn->integrity_tfm, peer_req, p + 1);
1809 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1810 if (!err)
1811 err = _drbd_send_zc_ee(mdev, peer_req);
1812 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1813
1814 return err;
1815 }
1816
1817 int drbd_send_out_of_sync(struct drbd_conf *mdev, struct drbd_request *req)
1818 {
1819 struct drbd_socket *sock;
1820 struct p_block_desc *p;
1821
1822 sock = &mdev->tconn->data;
1823 p = drbd_prepare_command(mdev, sock);
1824 if (!p)
1825 return -EIO;
1826 p->sector = cpu_to_be64(req->i.sector);
1827 p->blksize = cpu_to_be32(req->i.size);
1828 return drbd_send_command(mdev, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1829 }
1830
1831 /*
1832 drbd_send distinguishes two cases:
1833
1834 Packets sent via the data socket "sock"
1835 and packets sent via the meta data socket "msock"
1836
1837 sock msock
1838 -----------------+-------------------------+------------------------------
1839 timeout conf.timeout / 2 conf.timeout / 2
1840 timeout action send a ping via msock Abort communication
1841 and close all sockets
1842 */
1843
1844 /*
1845 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1846 */
1847 int drbd_send(struct drbd_tconn *tconn, struct socket *sock,
1848 void *buf, size_t size, unsigned msg_flags)
1849 {
1850 struct kvec iov;
1851 struct msghdr msg;
1852 int rv, sent = 0;
1853
1854 if (!sock)
1855 return -EBADR;
1856
1857 /* THINK if (signal_pending) return ... ? */
1858
1859 iov.iov_base = buf;
1860 iov.iov_len = size;
1861
1862 msg.msg_name = NULL;
1863 msg.msg_namelen = 0;
1864 msg.msg_control = NULL;
1865 msg.msg_controllen = 0;
1866 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1867
1868 if (sock == tconn->data.socket) {
1869 rcu_read_lock();
1870 tconn->ko_count = rcu_dereference(tconn->net_conf)->ko_count;
1871 rcu_read_unlock();
1872 drbd_update_congested(tconn);
1873 }
1874 do {
1875 /* STRANGE
1876 * tcp_sendmsg does _not_ use its size parameter at all ?
1877 *
1878 * -EAGAIN on timeout, -EINTR on signal.
1879 */
1880 /* THINK
1881 * do we need to block DRBD_SIG if sock == &meta.socket ??
1882 * otherwise wake_asender() might interrupt some send_*Ack !
1883 */
1884 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1885 if (rv == -EAGAIN) {
1886 if (we_should_drop_the_connection(tconn, sock))
1887 break;
1888 else
1889 continue;
1890 }
1891 if (rv == -EINTR) {
1892 flush_signals(current);
1893 rv = 0;
1894 }
1895 if (rv < 0)
1896 break;
1897 sent += rv;
1898 iov.iov_base += rv;
1899 iov.iov_len -= rv;
1900 } while (sent < size);
1901
1902 if (sock == tconn->data.socket)
1903 clear_bit(NET_CONGESTED, &tconn->flags);
1904
1905 if (rv <= 0) {
1906 if (rv != -EAGAIN) {
1907 conn_err(tconn, "%s_sendmsg returned %d\n",
1908 sock == tconn->meta.socket ? "msock" : "sock",
1909 rv);
1910 conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD);
1911 } else
1912 conn_request_state(tconn, NS(conn, C_TIMEOUT), CS_HARD);
1913 }
1914
1915 return sent;
1916 }
1917
1918 /**
1919 * drbd_send_all - Send an entire buffer
1920 *
1921 * Returns 0 upon success and a negative error value otherwise.
1922 */
1923 int drbd_send_all(struct drbd_tconn *tconn, struct socket *sock, void *buffer,
1924 size_t size, unsigned msg_flags)
1925 {
1926 int err;
1927
1928 err = drbd_send(tconn, sock, buffer, size, msg_flags);
1929 if (err < 0)
1930 return err;
1931 if (err != size)
1932 return -EIO;
1933 return 0;
1934 }
1935
1936 static int drbd_open(struct block_device *bdev, fmode_t mode)
1937 {
1938 struct drbd_conf *mdev = bdev->bd_disk->private_data;
1939 unsigned long flags;
1940 int rv = 0;
1941
1942 mutex_lock(&drbd_main_mutex);
1943 spin_lock_irqsave(&mdev->tconn->req_lock, flags);
1944 /* to have a stable mdev->state.role
1945 * and no race with updating open_cnt */
1946
1947 if (mdev->state.role != R_PRIMARY) {
1948 if (mode & FMODE_WRITE)
1949 rv = -EROFS;
1950 else if (!allow_oos)
1951 rv = -EMEDIUMTYPE;
1952 }
1953
1954 if (!rv)
1955 mdev->open_cnt++;
1956 spin_unlock_irqrestore(&mdev->tconn->req_lock, flags);
1957 mutex_unlock(&drbd_main_mutex);
1958
1959 return rv;
1960 }
1961
1962 static int drbd_release(struct gendisk *gd, fmode_t mode)
1963 {
1964 struct drbd_conf *mdev = gd->private_data;
1965 mutex_lock(&drbd_main_mutex);
1966 mdev->open_cnt--;
1967 mutex_unlock(&drbd_main_mutex);
1968 return 0;
1969 }
1970
1971 static void drbd_set_defaults(struct drbd_conf *mdev)
1972 {
1973 /* Beware! The actual layout differs
1974 * between big endian and little endian */
1975 mdev->state = (union drbd_dev_state) {
1976 { .role = R_SECONDARY,
1977 .peer = R_UNKNOWN,
1978 .conn = C_STANDALONE,
1979 .disk = D_DISKLESS,
1980 .pdsk = D_UNKNOWN,
1981 } };
1982 }
1983
1984 void drbd_init_set_defaults(struct drbd_conf *mdev)
1985 {
1986 /* the memset(,0,) did most of this.
1987 * note: only assignments, no allocation in here */
1988
1989 drbd_set_defaults(mdev);
1990
1991 atomic_set(&mdev->ap_bio_cnt, 0);
1992 atomic_set(&mdev->ap_pending_cnt, 0);
1993 atomic_set(&mdev->rs_pending_cnt, 0);
1994 atomic_set(&mdev->unacked_cnt, 0);
1995 atomic_set(&mdev->local_cnt, 0);
1996 atomic_set(&mdev->pp_in_use_by_net, 0);
1997 atomic_set(&mdev->rs_sect_in, 0);
1998 atomic_set(&mdev->rs_sect_ev, 0);
1999 atomic_set(&mdev->ap_in_flight, 0);
2000
2001 mutex_init(&mdev->md_io_mutex);
2002 mutex_init(&mdev->own_state_mutex);
2003 mdev->state_mutex = &mdev->own_state_mutex;
2004
2005 spin_lock_init(&mdev->al_lock);
2006 spin_lock_init(&mdev->peer_seq_lock);
2007 spin_lock_init(&mdev->epoch_lock);
2008
2009 INIT_LIST_HEAD(&mdev->active_ee);
2010 INIT_LIST_HEAD(&mdev->sync_ee);
2011 INIT_LIST_HEAD(&mdev->done_ee);
2012 INIT_LIST_HEAD(&mdev->read_ee);
2013 INIT_LIST_HEAD(&mdev->net_ee);
2014 INIT_LIST_HEAD(&mdev->resync_reads);
2015 INIT_LIST_HEAD(&mdev->resync_work.list);
2016 INIT_LIST_HEAD(&mdev->unplug_work.list);
2017 INIT_LIST_HEAD(&mdev->go_diskless.list);
2018 INIT_LIST_HEAD(&mdev->md_sync_work.list);
2019 INIT_LIST_HEAD(&mdev->start_resync_work.list);
2020 INIT_LIST_HEAD(&mdev->bm_io_work.w.list);
2021
2022 mdev->resync_work.cb = w_resync_timer;
2023 mdev->unplug_work.cb = w_send_write_hint;
2024 mdev->go_diskless.cb = w_go_diskless;
2025 mdev->md_sync_work.cb = w_md_sync;
2026 mdev->bm_io_work.w.cb = w_bitmap_io;
2027 mdev->start_resync_work.cb = w_start_resync;
2028
2029 mdev->resync_work.mdev = mdev;
2030 mdev->unplug_work.mdev = mdev;
2031 mdev->go_diskless.mdev = mdev;
2032 mdev->md_sync_work.mdev = mdev;
2033 mdev->bm_io_work.w.mdev = mdev;
2034 mdev->start_resync_work.mdev = mdev;
2035
2036 init_timer(&mdev->resync_timer);
2037 init_timer(&mdev->md_sync_timer);
2038 init_timer(&mdev->start_resync_timer);
2039 init_timer(&mdev->request_timer);
2040 mdev->resync_timer.function = resync_timer_fn;
2041 mdev->resync_timer.data = (unsigned long) mdev;
2042 mdev->md_sync_timer.function = md_sync_timer_fn;
2043 mdev->md_sync_timer.data = (unsigned long) mdev;
2044 mdev->start_resync_timer.function = start_resync_timer_fn;
2045 mdev->start_resync_timer.data = (unsigned long) mdev;
2046 mdev->request_timer.function = request_timer_fn;
2047 mdev->request_timer.data = (unsigned long) mdev;
2048
2049 init_waitqueue_head(&mdev->misc_wait);
2050 init_waitqueue_head(&mdev->state_wait);
2051 init_waitqueue_head(&mdev->ee_wait);
2052 init_waitqueue_head(&mdev->al_wait);
2053 init_waitqueue_head(&mdev->seq_wait);
2054
2055 mdev->write_ordering = WO_bdev_flush;
2056 mdev->resync_wenr = LC_FREE;
2057 mdev->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2058 mdev->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2059 }
2060
2061 void drbd_mdev_cleanup(struct drbd_conf *mdev)
2062 {
2063 int i;
2064 if (mdev->tconn->receiver.t_state != NONE)
2065 dev_err(DEV, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2066 mdev->tconn->receiver.t_state);
2067
2068 /* no need to lock it, I'm the only thread alive */
2069 if (atomic_read(&mdev->current_epoch->epoch_size) != 0)
2070 dev_err(DEV, "epoch_size:%d\n", atomic_read(&mdev->current_epoch->epoch_size));
2071 mdev->al_writ_cnt =
2072 mdev->bm_writ_cnt =
2073 mdev->read_cnt =
2074 mdev->recv_cnt =
2075 mdev->send_cnt =
2076 mdev->writ_cnt =
2077 mdev->p_size =
2078 mdev->rs_start =
2079 mdev->rs_total =
2080 mdev->rs_failed = 0;
2081 mdev->rs_last_events = 0;
2082 mdev->rs_last_sect_ev = 0;
2083 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2084 mdev->rs_mark_left[i] = 0;
2085 mdev->rs_mark_time[i] = 0;
2086 }
2087 D_ASSERT(mdev->tconn->net_conf == NULL);
2088
2089 drbd_set_my_capacity(mdev, 0);
2090 if (mdev->bitmap) {
2091 /* maybe never allocated. */
2092 drbd_bm_resize(mdev, 0, 1);
2093 drbd_bm_cleanup(mdev);
2094 }
2095
2096 drbd_free_bc(mdev->ldev);
2097 mdev->ldev = NULL;
2098
2099 clear_bit(AL_SUSPENDED, &mdev->flags);
2100
2101 D_ASSERT(list_empty(&mdev->active_ee));
2102 D_ASSERT(list_empty(&mdev->sync_ee));
2103 D_ASSERT(list_empty(&mdev->done_ee));
2104 D_ASSERT(list_empty(&mdev->read_ee));
2105 D_ASSERT(list_empty(&mdev->net_ee));
2106 D_ASSERT(list_empty(&mdev->resync_reads));
2107 D_ASSERT(list_empty(&mdev->tconn->data.work.q));
2108 D_ASSERT(list_empty(&mdev->tconn->meta.work.q));
2109 D_ASSERT(list_empty(&mdev->resync_work.list));
2110 D_ASSERT(list_empty(&mdev->unplug_work.list));
2111 D_ASSERT(list_empty(&mdev->go_diskless.list));
2112
2113 drbd_set_defaults(mdev);
2114 }
2115
2116
2117 static void drbd_destroy_mempools(void)
2118 {
2119 struct page *page;
2120
2121 while (drbd_pp_pool) {
2122 page = drbd_pp_pool;
2123 drbd_pp_pool = (struct page *)page_private(page);
2124 __free_page(page);
2125 drbd_pp_vacant--;
2126 }
2127
2128 /* D_ASSERT(atomic_read(&drbd_pp_vacant)==0); */
2129
2130 if (drbd_md_io_bio_set)
2131 bioset_free(drbd_md_io_bio_set);
2132 if (drbd_md_io_page_pool)
2133 mempool_destroy(drbd_md_io_page_pool);
2134 if (drbd_ee_mempool)
2135 mempool_destroy(drbd_ee_mempool);
2136 if (drbd_request_mempool)
2137 mempool_destroy(drbd_request_mempool);
2138 if (drbd_ee_cache)
2139 kmem_cache_destroy(drbd_ee_cache);
2140 if (drbd_request_cache)
2141 kmem_cache_destroy(drbd_request_cache);
2142 if (drbd_bm_ext_cache)
2143 kmem_cache_destroy(drbd_bm_ext_cache);
2144 if (drbd_al_ext_cache)
2145 kmem_cache_destroy(drbd_al_ext_cache);
2146
2147 drbd_md_io_bio_set = NULL;
2148 drbd_md_io_page_pool = NULL;
2149 drbd_ee_mempool = NULL;
2150 drbd_request_mempool = NULL;
2151 drbd_ee_cache = NULL;
2152 drbd_request_cache = NULL;
2153 drbd_bm_ext_cache = NULL;
2154 drbd_al_ext_cache = NULL;
2155
2156 return;
2157 }
2158
2159 static int drbd_create_mempools(void)
2160 {
2161 struct page *page;
2162 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2163 int i;
2164
2165 /* prepare our caches and mempools */
2166 drbd_request_mempool = NULL;
2167 drbd_ee_cache = NULL;
2168 drbd_request_cache = NULL;
2169 drbd_bm_ext_cache = NULL;
2170 drbd_al_ext_cache = NULL;
2171 drbd_pp_pool = NULL;
2172 drbd_md_io_page_pool = NULL;
2173 drbd_md_io_bio_set = NULL;
2174
2175 /* caches */
2176 drbd_request_cache = kmem_cache_create(
2177 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2178 if (drbd_request_cache == NULL)
2179 goto Enomem;
2180
2181 drbd_ee_cache = kmem_cache_create(
2182 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2183 if (drbd_ee_cache == NULL)
2184 goto Enomem;
2185
2186 drbd_bm_ext_cache = kmem_cache_create(
2187 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2188 if (drbd_bm_ext_cache == NULL)
2189 goto Enomem;
2190
2191 drbd_al_ext_cache = kmem_cache_create(
2192 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2193 if (drbd_al_ext_cache == NULL)
2194 goto Enomem;
2195
2196 /* mempools */
2197 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2198 if (drbd_md_io_bio_set == NULL)
2199 goto Enomem;
2200
2201 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2202 if (drbd_md_io_page_pool == NULL)
2203 goto Enomem;
2204
2205 drbd_request_mempool = mempool_create(number,
2206 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2207 if (drbd_request_mempool == NULL)
2208 goto Enomem;
2209
2210 drbd_ee_mempool = mempool_create(number,
2211 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2212 if (drbd_ee_mempool == NULL)
2213 goto Enomem;
2214
2215 /* drbd's page pool */
2216 spin_lock_init(&drbd_pp_lock);
2217
2218 for (i = 0; i < number; i++) {
2219 page = alloc_page(GFP_HIGHUSER);
2220 if (!page)
2221 goto Enomem;
2222 set_page_private(page, (unsigned long)drbd_pp_pool);
2223 drbd_pp_pool = page;
2224 }
2225 drbd_pp_vacant = number;
2226
2227 return 0;
2228
2229 Enomem:
2230 drbd_destroy_mempools(); /* in case we allocated some */
2231 return -ENOMEM;
2232 }
2233
2234 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2235 void *unused)
2236 {
2237 /* just so we have it. you never know what interesting things we
2238 * might want to do here some day...
2239 */
2240
2241 return NOTIFY_DONE;
2242 }
2243
2244 static struct notifier_block drbd_notifier = {
2245 .notifier_call = drbd_notify_sys,
2246 };
2247
2248 static void drbd_release_all_peer_reqs(struct drbd_conf *mdev)
2249 {
2250 int rr;
2251
2252 rr = drbd_free_peer_reqs(mdev, &mdev->active_ee);
2253 if (rr)
2254 dev_err(DEV, "%d EEs in active list found!\n", rr);
2255
2256 rr = drbd_free_peer_reqs(mdev, &mdev->sync_ee);
2257 if (rr)
2258 dev_err(DEV, "%d EEs in sync list found!\n", rr);
2259
2260 rr = drbd_free_peer_reqs(mdev, &mdev->read_ee);
2261 if (rr)
2262 dev_err(DEV, "%d EEs in read list found!\n", rr);
2263
2264 rr = drbd_free_peer_reqs(mdev, &mdev->done_ee);
2265 if (rr)
2266 dev_err(DEV, "%d EEs in done list found!\n", rr);
2267
2268 rr = drbd_free_peer_reqs(mdev, &mdev->net_ee);
2269 if (rr)
2270 dev_err(DEV, "%d EEs in net list found!\n", rr);
2271 }
2272
2273 /* caution. no locking. */
2274 void drbd_minor_destroy(struct kref *kref)
2275 {
2276 struct drbd_conf *mdev = container_of(kref, struct drbd_conf, kref);
2277 struct drbd_tconn *tconn = mdev->tconn;
2278
2279 /* paranoia asserts */
2280 D_ASSERT(mdev->open_cnt == 0);
2281 D_ASSERT(list_empty(&mdev->tconn->data.work.q));
2282 /* end paranoia asserts */
2283
2284 /* cleanup stuff that may have been allocated during
2285 * device (re-)configuration or state changes */
2286
2287 if (mdev->this_bdev)
2288 bdput(mdev->this_bdev);
2289
2290 drbd_free_bc(mdev->ldev);
2291 mdev->ldev = NULL;
2292
2293 drbd_release_all_peer_reqs(mdev);
2294
2295 lc_destroy(mdev->act_log);
2296 lc_destroy(mdev->resync);
2297
2298 kfree(mdev->p_uuid);
2299 /* mdev->p_uuid = NULL; */
2300
2301 kfree(mdev->current_epoch);
2302 if (mdev->bitmap) /* should no longer be there. */
2303 drbd_bm_cleanup(mdev);
2304 __free_page(mdev->md_io_page);
2305 put_disk(mdev->vdisk);
2306 blk_cleanup_queue(mdev->rq_queue);
2307 kfree(mdev->rs_plan_s);
2308 kfree(mdev);
2309
2310 kref_put(&tconn->kref, &conn_destroy);
2311 }
2312
2313 static void drbd_cleanup(void)
2314 {
2315 unsigned int i;
2316 struct drbd_conf *mdev;
2317 struct drbd_tconn *tconn, *tmp;
2318
2319 unregister_reboot_notifier(&drbd_notifier);
2320
2321 /* first remove proc,
2322 * drbdsetup uses it's presence to detect
2323 * whether DRBD is loaded.
2324 * If we would get stuck in proc removal,
2325 * but have netlink already deregistered,
2326 * some drbdsetup commands may wait forever
2327 * for an answer.
2328 */
2329 if (drbd_proc)
2330 remove_proc_entry("drbd", NULL);
2331
2332 drbd_genl_unregister();
2333
2334 down_write(&drbd_cfg_rwsem);
2335 idr_for_each_entry(&minors, mdev, i) {
2336 idr_remove(&minors, mdev_to_minor(mdev));
2337 idr_remove(&mdev->tconn->volumes, mdev->vnr);
2338 del_gendisk(mdev->vdisk);
2339 synchronize_rcu();
2340 kref_put(&mdev->kref, &drbd_minor_destroy);
2341 }
2342
2343 list_for_each_entry_safe(tconn, tmp, &drbd_tconns, all_tconn) {
2344 list_del(&tconn->all_tconn);
2345 synchronize_rcu();
2346 kref_put(&tconn->kref, &conn_destroy);
2347 }
2348 up_write(&drbd_cfg_rwsem);
2349
2350 drbd_destroy_mempools();
2351 unregister_blkdev(DRBD_MAJOR, "drbd");
2352
2353 idr_destroy(&minors);
2354
2355 printk(KERN_INFO "drbd: module cleanup done.\n");
2356 }
2357
2358 /**
2359 * drbd_congested() - Callback for pdflush
2360 * @congested_data: User data
2361 * @bdi_bits: Bits pdflush is currently interested in
2362 *
2363 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2364 */
2365 static int drbd_congested(void *congested_data, int bdi_bits)
2366 {
2367 struct drbd_conf *mdev = congested_data;
2368 struct request_queue *q;
2369 char reason = '-';
2370 int r = 0;
2371
2372 if (!may_inc_ap_bio(mdev)) {
2373 /* DRBD has frozen IO */
2374 r = bdi_bits;
2375 reason = 'd';
2376 goto out;
2377 }
2378
2379 if (get_ldev(mdev)) {
2380 q = bdev_get_queue(mdev->ldev->backing_bdev);
2381 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2382 put_ldev(mdev);
2383 if (r)
2384 reason = 'b';
2385 }
2386
2387 if (bdi_bits & (1 << BDI_async_congested) && test_bit(NET_CONGESTED, &mdev->tconn->flags)) {
2388 r |= (1 << BDI_async_congested);
2389 reason = reason == 'b' ? 'a' : 'n';
2390 }
2391
2392 out:
2393 mdev->congestion_reason = reason;
2394 return r;
2395 }
2396
2397 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2398 {
2399 sema_init(&wq->s, 0);
2400 spin_lock_init(&wq->q_lock);
2401 INIT_LIST_HEAD(&wq->q);
2402 }
2403
2404 struct drbd_tconn *conn_get_by_name(const char *name)
2405 {
2406 struct drbd_tconn *tconn;
2407
2408 if (!name || !name[0])
2409 return NULL;
2410
2411 down_read(&drbd_cfg_rwsem);
2412 list_for_each_entry(tconn, &drbd_tconns, all_tconn) {
2413 if (!strcmp(tconn->name, name)) {
2414 kref_get(&tconn->kref);
2415 goto found;
2416 }
2417 }
2418 tconn = NULL;
2419 found:
2420 up_read(&drbd_cfg_rwsem);
2421 return tconn;
2422 }
2423
2424 static int drbd_alloc_socket(struct drbd_socket *socket)
2425 {
2426 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2427 if (!socket->rbuf)
2428 return -ENOMEM;
2429 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2430 if (!socket->sbuf)
2431 return -ENOMEM;
2432 return 0;
2433 }
2434
2435 static void drbd_free_socket(struct drbd_socket *socket)
2436 {
2437 free_page((unsigned long) socket->sbuf);
2438 free_page((unsigned long) socket->rbuf);
2439 }
2440
2441 void conn_free_crypto(struct drbd_tconn *tconn)
2442 {
2443 drbd_free_sock(tconn);
2444
2445 crypto_free_hash(tconn->csums_tfm);
2446 crypto_free_hash(tconn->verify_tfm);
2447 crypto_free_hash(tconn->cram_hmac_tfm);
2448 crypto_free_hash(tconn->integrity_tfm);
2449 crypto_free_hash(tconn->peer_integrity_tfm);
2450 kfree(tconn->int_dig_in);
2451 kfree(tconn->int_dig_vv);
2452
2453 tconn->csums_tfm = NULL;
2454 tconn->verify_tfm = NULL;
2455 tconn->cram_hmac_tfm = NULL;
2456 tconn->integrity_tfm = NULL;
2457 tconn->peer_integrity_tfm = NULL;
2458 tconn->int_dig_in = NULL;
2459 tconn->int_dig_vv = NULL;
2460 }
2461
2462 struct drbd_tconn *conn_create(const char *name)
2463 {
2464 struct drbd_tconn *tconn;
2465
2466 tconn = kzalloc(sizeof(struct drbd_tconn), GFP_KERNEL);
2467 if (!tconn)
2468 return NULL;
2469
2470 tconn->name = kstrdup(name, GFP_KERNEL);
2471 if (!tconn->name)
2472 goto fail;
2473
2474 if (drbd_alloc_socket(&tconn->data))
2475 goto fail;
2476 if (drbd_alloc_socket(&tconn->meta))
2477 goto fail;
2478
2479 if (!zalloc_cpumask_var(&tconn->cpu_mask, GFP_KERNEL))
2480 goto fail;
2481
2482 if (!tl_init(tconn))
2483 goto fail;
2484
2485 tconn->cstate = C_STANDALONE;
2486 mutex_init(&tconn->cstate_mutex);
2487 spin_lock_init(&tconn->req_lock);
2488 mutex_init(&tconn->conf_update);
2489 init_waitqueue_head(&tconn->ping_wait);
2490 idr_init(&tconn->volumes);
2491
2492 drbd_init_workqueue(&tconn->data.work);
2493 mutex_init(&tconn->data.mutex);
2494
2495 drbd_init_workqueue(&tconn->meta.work);
2496 mutex_init(&tconn->meta.mutex);
2497
2498 drbd_thread_init(tconn, &tconn->receiver, drbdd_init, "receiver");
2499 drbd_thread_init(tconn, &tconn->worker, drbd_worker, "worker");
2500 drbd_thread_init(tconn, &tconn->asender, drbd_asender, "asender");
2501
2502 drbd_set_res_opts_defaults(&tconn->res_opts);
2503
2504 down_write(&drbd_cfg_rwsem);
2505 kref_init(&tconn->kref);
2506 list_add_tail(&tconn->all_tconn, &drbd_tconns);
2507 up_write(&drbd_cfg_rwsem);
2508
2509 return tconn;
2510
2511 fail:
2512 tl_cleanup(tconn);
2513 free_cpumask_var(tconn->cpu_mask);
2514 drbd_free_socket(&tconn->meta);
2515 drbd_free_socket(&tconn->data);
2516 kfree(tconn->name);
2517 kfree(tconn);
2518
2519 return NULL;
2520 }
2521
2522 void conn_destroy(struct kref *kref)
2523 {
2524 struct drbd_tconn *tconn = container_of(kref, struct drbd_tconn, kref);
2525
2526 idr_destroy(&tconn->volumes);
2527
2528 free_cpumask_var(tconn->cpu_mask);
2529 drbd_free_socket(&tconn->meta);
2530 drbd_free_socket(&tconn->data);
2531 kfree(tconn->name);
2532 kfree(tconn->int_dig_in);
2533 kfree(tconn->int_dig_vv);
2534 kfree(tconn);
2535 }
2536
2537 enum drbd_ret_code conn_new_minor(struct drbd_tconn *tconn, unsigned int minor, int vnr)
2538 {
2539 struct drbd_conf *mdev;
2540 struct gendisk *disk;
2541 struct request_queue *q;
2542 int vnr_got = vnr;
2543 int minor_got = minor;
2544 enum drbd_ret_code err = ERR_NOMEM;
2545
2546 mdev = minor_to_mdev(minor);
2547 if (mdev)
2548 return ERR_MINOR_EXISTS;
2549
2550 /* GFP_KERNEL, we are outside of all write-out paths */
2551 mdev = kzalloc(sizeof(struct drbd_conf), GFP_KERNEL);
2552 if (!mdev)
2553 return ERR_NOMEM;
2554
2555 kref_get(&tconn->kref);
2556 mdev->tconn = tconn;
2557
2558 mdev->minor = minor;
2559 mdev->vnr = vnr;
2560
2561 drbd_init_set_defaults(mdev);
2562
2563 q = blk_alloc_queue(GFP_KERNEL);
2564 if (!q)
2565 goto out_no_q;
2566 mdev->rq_queue = q;
2567 q->queuedata = mdev;
2568
2569 disk = alloc_disk(1);
2570 if (!disk)
2571 goto out_no_disk;
2572 mdev->vdisk = disk;
2573
2574 set_disk_ro(disk, true);
2575
2576 disk->queue = q;
2577 disk->major = DRBD_MAJOR;
2578 disk->first_minor = minor;
2579 disk->fops = &drbd_ops;
2580 sprintf(disk->disk_name, "drbd%d", minor);
2581 disk->private_data = mdev;
2582
2583 mdev->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2584 /* we have no partitions. we contain only ourselves. */
2585 mdev->this_bdev->bd_contains = mdev->this_bdev;
2586
2587 q->backing_dev_info.congested_fn = drbd_congested;
2588 q->backing_dev_info.congested_data = mdev;
2589
2590 blk_queue_make_request(q, drbd_make_request);
2591 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2592 This triggers a max_bio_size message upon first attach or connect */
2593 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2594 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2595 blk_queue_merge_bvec(q, drbd_merge_bvec);
2596 q->queue_lock = &mdev->tconn->req_lock; /* needed since we use */
2597
2598 mdev->md_io_page = alloc_page(GFP_KERNEL);
2599 if (!mdev->md_io_page)
2600 goto out_no_io_page;
2601
2602 if (drbd_bm_init(mdev))
2603 goto out_no_bitmap;
2604 mdev->read_requests = RB_ROOT;
2605 mdev->write_requests = RB_ROOT;
2606
2607 mdev->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2608 if (!mdev->current_epoch)
2609 goto out_no_epoch;
2610
2611 INIT_LIST_HEAD(&mdev->current_epoch->list);
2612 mdev->epochs = 1;
2613
2614 if (!idr_pre_get(&minors, GFP_KERNEL))
2615 goto out_no_minor_idr;
2616 if (idr_get_new_above(&minors, mdev, minor, &minor_got))
2617 goto out_no_minor_idr;
2618 if (minor_got != minor) {
2619 err = ERR_MINOR_EXISTS;
2620 drbd_msg_put_info("requested minor exists already");
2621 goto out_idr_remove_minor;
2622 }
2623
2624 if (!idr_pre_get(&tconn->volumes, GFP_KERNEL))
2625 goto out_idr_remove_minor;
2626 if (idr_get_new_above(&tconn->volumes, mdev, vnr, &vnr_got))
2627 goto out_idr_remove_minor;
2628 if (vnr_got != vnr) {
2629 err = ERR_INVALID_REQUEST;
2630 drbd_msg_put_info("requested volume exists already");
2631 goto out_idr_remove_vol;
2632 }
2633 add_disk(disk);
2634 kref_init(&mdev->kref); /* one ref for both idrs and the the add_disk */
2635
2636 /* inherit the connection state */
2637 mdev->state.conn = tconn->cstate;
2638 if (mdev->state.conn == C_WF_REPORT_PARAMS)
2639 drbd_connected(vnr, mdev, tconn);
2640
2641 return NO_ERROR;
2642
2643 out_idr_remove_vol:
2644 idr_remove(&tconn->volumes, vnr_got);
2645 out_idr_remove_minor:
2646 idr_remove(&minors, minor_got);
2647 synchronize_rcu();
2648 out_no_minor_idr:
2649 kfree(mdev->current_epoch);
2650 out_no_epoch:
2651 drbd_bm_cleanup(mdev);
2652 out_no_bitmap:
2653 __free_page(mdev->md_io_page);
2654 out_no_io_page:
2655 put_disk(disk);
2656 out_no_disk:
2657 blk_cleanup_queue(q);
2658 out_no_q:
2659 kfree(mdev);
2660 kref_put(&tconn->kref, &conn_destroy);
2661 return err;
2662 }
2663
2664 int __init drbd_init(void)
2665 {
2666 int err;
2667
2668 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2669 printk(KERN_ERR
2670 "drbd: invalid minor_count (%d)\n", minor_count);
2671 #ifdef MODULE
2672 return -EINVAL;
2673 #else
2674 minor_count = 8;
2675 #endif
2676 }
2677
2678 err = register_blkdev(DRBD_MAJOR, "drbd");
2679 if (err) {
2680 printk(KERN_ERR
2681 "drbd: unable to register block device major %d\n",
2682 DRBD_MAJOR);
2683 return err;
2684 }
2685
2686 err = drbd_genl_register();
2687 if (err) {
2688 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2689 goto fail;
2690 }
2691
2692
2693 register_reboot_notifier(&drbd_notifier);
2694
2695 /*
2696 * allocate all necessary structs
2697 */
2698 err = -ENOMEM;
2699
2700 init_waitqueue_head(&drbd_pp_wait);
2701
2702 drbd_proc = NULL; /* play safe for drbd_cleanup */
2703 idr_init(&minors);
2704
2705 err = drbd_create_mempools();
2706 if (err)
2707 goto fail;
2708
2709 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2710 if (!drbd_proc) {
2711 printk(KERN_ERR "drbd: unable to register proc file\n");
2712 goto fail;
2713 }
2714
2715 rwlock_init(&global_state_lock);
2716 INIT_LIST_HEAD(&drbd_tconns);
2717
2718 printk(KERN_INFO "drbd: initialized. "
2719 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2720 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2721 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2722 printk(KERN_INFO "drbd: registered as block device major %d\n",
2723 DRBD_MAJOR);
2724
2725 return 0; /* Success! */
2726
2727 fail:
2728 drbd_cleanup();
2729 if (err == -ENOMEM)
2730 /* currently always the case */
2731 printk(KERN_ERR "drbd: ran out of memory\n");
2732 else
2733 printk(KERN_ERR "drbd: initialization failure\n");
2734 return err;
2735 }
2736
2737 void drbd_free_bc(struct drbd_backing_dev *ldev)
2738 {
2739 if (ldev == NULL)
2740 return;
2741
2742 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2743 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2744
2745 kfree(ldev);
2746 }
2747
2748 void drbd_free_sock(struct drbd_tconn *tconn)
2749 {
2750 if (tconn->data.socket) {
2751 mutex_lock(&tconn->data.mutex);
2752 kernel_sock_shutdown(tconn->data.socket, SHUT_RDWR);
2753 sock_release(tconn->data.socket);
2754 tconn->data.socket = NULL;
2755 mutex_unlock(&tconn->data.mutex);
2756 }
2757 if (tconn->meta.socket) {
2758 mutex_lock(&tconn->meta.mutex);
2759 kernel_sock_shutdown(tconn->meta.socket, SHUT_RDWR);
2760 sock_release(tconn->meta.socket);
2761 tconn->meta.socket = NULL;
2762 mutex_unlock(&tconn->meta.mutex);
2763 }
2764 }
2765
2766 /* meta data management */
2767
2768 struct meta_data_on_disk {
2769 u64 la_size; /* last agreed size. */
2770 u64 uuid[UI_SIZE]; /* UUIDs. */
2771 u64 device_uuid;
2772 u64 reserved_u64_1;
2773 u32 flags; /* MDF */
2774 u32 magic;
2775 u32 md_size_sect;
2776 u32 al_offset; /* offset to this block */
2777 u32 al_nr_extents; /* important for restoring the AL */
2778 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2779 u32 bm_offset; /* offset to the bitmap, from here */
2780 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2781 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2782 u32 reserved_u32[3];
2783
2784 } __packed;
2785
2786 /**
2787 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
2788 * @mdev: DRBD device.
2789 */
2790 void drbd_md_sync(struct drbd_conf *mdev)
2791 {
2792 struct meta_data_on_disk *buffer;
2793 sector_t sector;
2794 int i;
2795
2796 del_timer(&mdev->md_sync_timer);
2797 /* timer may be rearmed by drbd_md_mark_dirty() now. */
2798 if (!test_and_clear_bit(MD_DIRTY, &mdev->flags))
2799 return;
2800
2801 /* We use here D_FAILED and not D_ATTACHING because we try to write
2802 * metadata even if we detach due to a disk failure! */
2803 if (!get_ldev_if_state(mdev, D_FAILED))
2804 return;
2805
2806 mutex_lock(&mdev->md_io_mutex);
2807 buffer = (struct meta_data_on_disk *)page_address(mdev->md_io_page);
2808 memset(buffer, 0, 512);
2809
2810 buffer->la_size = cpu_to_be64(drbd_get_capacity(mdev->this_bdev));
2811 for (i = UI_CURRENT; i < UI_SIZE; i++)
2812 buffer->uuid[i] = cpu_to_be64(mdev->ldev->md.uuid[i]);
2813 buffer->flags = cpu_to_be32(mdev->ldev->md.flags);
2814 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC);
2815
2816 buffer->md_size_sect = cpu_to_be32(mdev->ldev->md.md_size_sect);
2817 buffer->al_offset = cpu_to_be32(mdev->ldev->md.al_offset);
2818 buffer->al_nr_extents = cpu_to_be32(mdev->act_log->nr_elements);
2819 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
2820 buffer->device_uuid = cpu_to_be64(mdev->ldev->md.device_uuid);
2821
2822 buffer->bm_offset = cpu_to_be32(mdev->ldev->md.bm_offset);
2823 buffer->la_peer_max_bio_size = cpu_to_be32(mdev->peer_max_bio_size);
2824
2825 D_ASSERT(drbd_md_ss__(mdev, mdev->ldev) == mdev->ldev->md.md_offset);
2826 sector = mdev->ldev->md.md_offset;
2827
2828 if (drbd_md_sync_page_io(mdev, mdev->ldev, sector, WRITE)) {
2829 /* this was a try anyways ... */
2830 dev_err(DEV, "meta data update failed!\n");
2831 drbd_chk_io_error(mdev, 1, true);
2832 }
2833
2834 /* Update mdev->ldev->md.la_size_sect,
2835 * since we updated it on metadata. */
2836 mdev->ldev->md.la_size_sect = drbd_get_capacity(mdev->this_bdev);
2837
2838 mutex_unlock(&mdev->md_io_mutex);
2839 put_ldev(mdev);
2840 }
2841
2842 /**
2843 * drbd_md_read() - Reads in the meta data super block
2844 * @mdev: DRBD device.
2845 * @bdev: Device from which the meta data should be read in.
2846 *
2847 * Return 0 (NO_ERROR) on success, and an enum drbd_ret_code in case
2848 * something goes wrong. Currently only: ERR_IO_MD_DISK, ERR_MD_INVALID.
2849 */
2850 int drbd_md_read(struct drbd_conf *mdev, struct drbd_backing_dev *bdev)
2851 {
2852 struct meta_data_on_disk *buffer;
2853 int i, rv = NO_ERROR;
2854
2855 if (!get_ldev_if_state(mdev, D_ATTACHING))
2856 return ERR_IO_MD_DISK;
2857
2858 mutex_lock(&mdev->md_io_mutex);
2859 buffer = (struct meta_data_on_disk *)page_address(mdev->md_io_page);
2860
2861 if (drbd_md_sync_page_io(mdev, bdev, bdev->md.md_offset, READ)) {
2862 /* NOTE: can't do normal error processing here as this is
2863 called BEFORE disk is attached */
2864 dev_err(DEV, "Error while reading metadata.\n");
2865 rv = ERR_IO_MD_DISK;
2866 goto err;
2867 }
2868
2869 if (buffer->magic != cpu_to_be32(DRBD_MD_MAGIC)) {
2870 dev_err(DEV, "Error while reading metadata, magic not found.\n");
2871 rv = ERR_MD_INVALID;
2872 goto err;
2873 }
2874 if (be32_to_cpu(buffer->al_offset) != bdev->md.al_offset) {
2875 dev_err(DEV, "unexpected al_offset: %d (expected %d)\n",
2876 be32_to_cpu(buffer->al_offset), bdev->md.al_offset);
2877 rv = ERR_MD_INVALID;
2878 goto err;
2879 }
2880 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
2881 dev_err(DEV, "unexpected bm_offset: %d (expected %d)\n",
2882 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
2883 rv = ERR_MD_INVALID;
2884 goto err;
2885 }
2886 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
2887 dev_err(DEV, "unexpected md_size: %u (expected %u)\n",
2888 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
2889 rv = ERR_MD_INVALID;
2890 goto err;
2891 }
2892
2893 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
2894 dev_err(DEV, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
2895 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
2896 rv = ERR_MD_INVALID;
2897 goto err;
2898 }
2899
2900 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size);
2901 for (i = UI_CURRENT; i < UI_SIZE; i++)
2902 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
2903 bdev->md.flags = be32_to_cpu(buffer->flags);
2904 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
2905
2906 spin_lock_irq(&mdev->tconn->req_lock);
2907 if (mdev->state.conn < C_CONNECTED) {
2908 int peer;
2909 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
2910 peer = max_t(int, peer, DRBD_MAX_BIO_SIZE_SAFE);
2911 mdev->peer_max_bio_size = peer;
2912 }
2913 spin_unlock_irq(&mdev->tconn->req_lock);
2914
2915 mutex_lock(&mdev->tconn->conf_update);
2916 /* This blocks wants to be get removed... */
2917 bdev->disk_conf->al_extents = be32_to_cpu(buffer->al_nr_extents);
2918 if (bdev->disk_conf->al_extents < DRBD_AL_EXTENTS_MIN)
2919 bdev->disk_conf->al_extents = DRBD_AL_EXTENTS_DEF;
2920 mutex_unlock(&mdev->tconn->conf_update);
2921
2922 err:
2923 mutex_unlock(&mdev->md_io_mutex);
2924 put_ldev(mdev);
2925
2926 return rv;
2927 }
2928
2929 /**
2930 * drbd_md_mark_dirty() - Mark meta data super block as dirty
2931 * @mdev: DRBD device.
2932 *
2933 * Call this function if you change anything that should be written to
2934 * the meta-data super block. This function sets MD_DIRTY, and starts a
2935 * timer that ensures that within five seconds you have to call drbd_md_sync().
2936 */
2937 #ifdef DEBUG
2938 void drbd_md_mark_dirty_(struct drbd_conf *mdev, unsigned int line, const char *func)
2939 {
2940 if (!test_and_set_bit(MD_DIRTY, &mdev->flags)) {
2941 mod_timer(&mdev->md_sync_timer, jiffies + HZ);
2942 mdev->last_md_mark_dirty.line = line;
2943 mdev->last_md_mark_dirty.func = func;
2944 }
2945 }
2946 #else
2947 void drbd_md_mark_dirty(struct drbd_conf *mdev)
2948 {
2949 if (!test_and_set_bit(MD_DIRTY, &mdev->flags))
2950 mod_timer(&mdev->md_sync_timer, jiffies + 5*HZ);
2951 }
2952 #endif
2953
2954 static void drbd_uuid_move_history(struct drbd_conf *mdev) __must_hold(local)
2955 {
2956 int i;
2957
2958 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
2959 mdev->ldev->md.uuid[i+1] = mdev->ldev->md.uuid[i];
2960 }
2961
2962 void _drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
2963 {
2964 if (idx == UI_CURRENT) {
2965 if (mdev->state.role == R_PRIMARY)
2966 val |= 1;
2967 else
2968 val &= ~((u64)1);
2969
2970 drbd_set_ed_uuid(mdev, val);
2971 }
2972
2973 mdev->ldev->md.uuid[idx] = val;
2974 drbd_md_mark_dirty(mdev);
2975 }
2976
2977
2978 void drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
2979 {
2980 if (mdev->ldev->md.uuid[idx]) {
2981 drbd_uuid_move_history(mdev);
2982 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[idx];
2983 }
2984 _drbd_uuid_set(mdev, idx, val);
2985 }
2986
2987 /**
2988 * drbd_uuid_new_current() - Creates a new current UUID
2989 * @mdev: DRBD device.
2990 *
2991 * Creates a new current UUID, and rotates the old current UUID into
2992 * the bitmap slot. Causes an incremental resync upon next connect.
2993 */
2994 void drbd_uuid_new_current(struct drbd_conf *mdev) __must_hold(local)
2995 {
2996 u64 val;
2997 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
2998
2999 if (bm_uuid)
3000 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3001
3002 mdev->ldev->md.uuid[UI_BITMAP] = mdev->ldev->md.uuid[UI_CURRENT];
3003
3004 get_random_bytes(&val, sizeof(u64));
3005 _drbd_uuid_set(mdev, UI_CURRENT, val);
3006 drbd_print_uuids(mdev, "new current UUID");
3007 /* get it to stable storage _now_ */
3008 drbd_md_sync(mdev);
3009 }
3010
3011 void drbd_uuid_set_bm(struct drbd_conf *mdev, u64 val) __must_hold(local)
3012 {
3013 if (mdev->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3014 return;
3015
3016 if (val == 0) {
3017 drbd_uuid_move_history(mdev);
3018 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[UI_BITMAP];
3019 mdev->ldev->md.uuid[UI_BITMAP] = 0;
3020 } else {
3021 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
3022 if (bm_uuid)
3023 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3024
3025 mdev->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3026 }
3027 drbd_md_mark_dirty(mdev);
3028 }
3029
3030 /**
3031 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3032 * @mdev: DRBD device.
3033 *
3034 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3035 */
3036 int drbd_bmio_set_n_write(struct drbd_conf *mdev)
3037 {
3038 int rv = -EIO;
3039
3040 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3041 drbd_md_set_flag(mdev, MDF_FULL_SYNC);
3042 drbd_md_sync(mdev);
3043 drbd_bm_set_all(mdev);
3044
3045 rv = drbd_bm_write(mdev);
3046
3047 if (!rv) {
3048 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
3049 drbd_md_sync(mdev);
3050 }
3051
3052 put_ldev(mdev);
3053 }
3054
3055 return rv;
3056 }
3057
3058 /**
3059 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3060 * @mdev: DRBD device.
3061 *
3062 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3063 */
3064 int drbd_bmio_clear_n_write(struct drbd_conf *mdev)
3065 {
3066 int rv = -EIO;
3067
3068 drbd_resume_al(mdev);
3069 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3070 drbd_bm_clear_all(mdev);
3071 rv = drbd_bm_write(mdev);
3072 put_ldev(mdev);
3073 }
3074
3075 return rv;
3076 }
3077
3078 static int w_bitmap_io(struct drbd_work *w, int unused)
3079 {
3080 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
3081 struct drbd_conf *mdev = w->mdev;
3082 int rv = -EIO;
3083
3084 D_ASSERT(atomic_read(&mdev->ap_bio_cnt) == 0);
3085
3086 if (get_ldev(mdev)) {
3087 drbd_bm_lock(mdev, work->why, work->flags);
3088 rv = work->io_fn(mdev);
3089 drbd_bm_unlock(mdev);
3090 put_ldev(mdev);
3091 }
3092
3093 clear_bit_unlock(BITMAP_IO, &mdev->flags);
3094 wake_up(&mdev->misc_wait);
3095
3096 if (work->done)
3097 work->done(mdev, rv);
3098
3099 clear_bit(BITMAP_IO_QUEUED, &mdev->flags);
3100 work->why = NULL;
3101 work->flags = 0;
3102
3103 return 0;
3104 }
3105
3106 void drbd_ldev_destroy(struct drbd_conf *mdev)
3107 {
3108 lc_destroy(mdev->resync);
3109 mdev->resync = NULL;
3110 lc_destroy(mdev->act_log);
3111 mdev->act_log = NULL;
3112 __no_warn(local,
3113 drbd_free_bc(mdev->ldev);
3114 mdev->ldev = NULL;);
3115
3116 clear_bit(GO_DISKLESS, &mdev->flags);
3117 }
3118
3119 static int w_go_diskless(struct drbd_work *w, int unused)
3120 {
3121 struct drbd_conf *mdev = w->mdev;
3122
3123 D_ASSERT(mdev->state.disk == D_FAILED);
3124 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3125 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3126 * the protected members anymore, though, so once put_ldev reaches zero
3127 * again, it will be safe to free them. */
3128 drbd_force_state(mdev, NS(disk, D_DISKLESS));
3129 return 0;
3130 }
3131
3132 void drbd_go_diskless(struct drbd_conf *mdev)
3133 {
3134 D_ASSERT(mdev->state.disk == D_FAILED);
3135 if (!test_and_set_bit(GO_DISKLESS, &mdev->flags))
3136 drbd_queue_work(&mdev->tconn->data.work, &mdev->go_diskless);
3137 }
3138
3139 /**
3140 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3141 * @mdev: DRBD device.
3142 * @io_fn: IO callback to be called when bitmap IO is possible
3143 * @done: callback to be called after the bitmap IO was performed
3144 * @why: Descriptive text of the reason for doing the IO
3145 *
3146 * While IO on the bitmap happens we freeze application IO thus we ensure
3147 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3148 * called from worker context. It MUST NOT be used while a previous such
3149 * work is still pending!
3150 */
3151 void drbd_queue_bitmap_io(struct drbd_conf *mdev,
3152 int (*io_fn)(struct drbd_conf *),
3153 void (*done)(struct drbd_conf *, int),
3154 char *why, enum bm_flag flags)
3155 {
3156 D_ASSERT(current == mdev->tconn->worker.task);
3157
3158 D_ASSERT(!test_bit(BITMAP_IO_QUEUED, &mdev->flags));
3159 D_ASSERT(!test_bit(BITMAP_IO, &mdev->flags));
3160 D_ASSERT(list_empty(&mdev->bm_io_work.w.list));
3161 if (mdev->bm_io_work.why)
3162 dev_err(DEV, "FIXME going to queue '%s' but '%s' still pending?\n",
3163 why, mdev->bm_io_work.why);
3164
3165 mdev->bm_io_work.io_fn = io_fn;
3166 mdev->bm_io_work.done = done;
3167 mdev->bm_io_work.why = why;
3168 mdev->bm_io_work.flags = flags;
3169
3170 spin_lock_irq(&mdev->tconn->req_lock);
3171 set_bit(BITMAP_IO, &mdev->flags);
3172 if (atomic_read(&mdev->ap_bio_cnt) == 0) {
3173 if (!test_and_set_bit(BITMAP_IO_QUEUED, &mdev->flags))
3174 drbd_queue_work(&mdev->tconn->data.work, &mdev->bm_io_work.w);
3175 }
3176 spin_unlock_irq(&mdev->tconn->req_lock);
3177 }
3178
3179 /**
3180 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3181 * @mdev: DRBD device.
3182 * @io_fn: IO callback to be called when bitmap IO is possible
3183 * @why: Descriptive text of the reason for doing the IO
3184 *
3185 * freezes application IO while that the actual IO operations runs. This
3186 * functions MAY NOT be called from worker context.
3187 */
3188 int drbd_bitmap_io(struct drbd_conf *mdev, int (*io_fn)(struct drbd_conf *),
3189 char *why, enum bm_flag flags)
3190 {
3191 int rv;
3192
3193 D_ASSERT(current != mdev->tconn->worker.task);
3194
3195 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3196 drbd_suspend_io(mdev);
3197
3198 drbd_bm_lock(mdev, why, flags);
3199 rv = io_fn(mdev);
3200 drbd_bm_unlock(mdev);
3201
3202 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3203 drbd_resume_io(mdev);
3204
3205 return rv;
3206 }
3207
3208 void drbd_md_set_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3209 {
3210 if ((mdev->ldev->md.flags & flag) != flag) {
3211 drbd_md_mark_dirty(mdev);
3212 mdev->ldev->md.flags |= flag;
3213 }
3214 }
3215
3216 void drbd_md_clear_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3217 {
3218 if ((mdev->ldev->md.flags & flag) != 0) {
3219 drbd_md_mark_dirty(mdev);
3220 mdev->ldev->md.flags &= ~flag;
3221 }
3222 }
3223 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3224 {
3225 return (bdev->md.flags & flag) != 0;
3226 }
3227
3228 static void md_sync_timer_fn(unsigned long data)
3229 {
3230 struct drbd_conf *mdev = (struct drbd_conf *) data;
3231
3232 drbd_queue_work_front(&mdev->tconn->data.work, &mdev->md_sync_work);
3233 }
3234
3235 static int w_md_sync(struct drbd_work *w, int unused)
3236 {
3237 struct drbd_conf *mdev = w->mdev;
3238
3239 dev_warn(DEV, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3240 #ifdef DEBUG
3241 dev_warn(DEV, "last md_mark_dirty: %s:%u\n",
3242 mdev->last_md_mark_dirty.func, mdev->last_md_mark_dirty.line);
3243 #endif
3244 drbd_md_sync(mdev);
3245 return 0;
3246 }
3247
3248 const char *cmdname(enum drbd_packet cmd)
3249 {
3250 /* THINK may need to become several global tables
3251 * when we want to support more than
3252 * one PRO_VERSION */
3253 static const char *cmdnames[] = {
3254 [P_DATA] = "Data",
3255 [P_DATA_REPLY] = "DataReply",
3256 [P_RS_DATA_REPLY] = "RSDataReply",
3257 [P_BARRIER] = "Barrier",
3258 [P_BITMAP] = "ReportBitMap",
3259 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3260 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3261 [P_UNPLUG_REMOTE] = "UnplugRemote",
3262 [P_DATA_REQUEST] = "DataRequest",
3263 [P_RS_DATA_REQUEST] = "RSDataRequest",
3264 [P_SYNC_PARAM] = "SyncParam",
3265 [P_SYNC_PARAM89] = "SyncParam89",
3266 [P_PROTOCOL] = "ReportProtocol",
3267 [P_UUIDS] = "ReportUUIDs",
3268 [P_SIZES] = "ReportSizes",
3269 [P_STATE] = "ReportState",
3270 [P_SYNC_UUID] = "ReportSyncUUID",
3271 [P_AUTH_CHALLENGE] = "AuthChallenge",
3272 [P_AUTH_RESPONSE] = "AuthResponse",
3273 [P_PING] = "Ping",
3274 [P_PING_ACK] = "PingAck",
3275 [P_RECV_ACK] = "RecvAck",
3276 [P_WRITE_ACK] = "WriteAck",
3277 [P_RS_WRITE_ACK] = "RSWriteAck",
3278 [P_DISCARD_WRITE] = "DiscardWrite",
3279 [P_NEG_ACK] = "NegAck",
3280 [P_NEG_DREPLY] = "NegDReply",
3281 [P_NEG_RS_DREPLY] = "NegRSDReply",
3282 [P_BARRIER_ACK] = "BarrierAck",
3283 [P_STATE_CHG_REQ] = "StateChgRequest",
3284 [P_STATE_CHG_REPLY] = "StateChgReply",
3285 [P_OV_REQUEST] = "OVRequest",
3286 [P_OV_REPLY] = "OVReply",
3287 [P_OV_RESULT] = "OVResult",
3288 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3289 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3290 [P_COMPRESSED_BITMAP] = "CBitmap",
3291 [P_DELAY_PROBE] = "DelayProbe",
3292 [P_OUT_OF_SYNC] = "OutOfSync",
3293 [P_RETRY_WRITE] = "RetryWrite",
3294 [P_RS_CANCEL] = "RSCancel",
3295 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3296 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3297
3298 /* enum drbd_packet, but not commands - obsoleted flags:
3299 * P_MAY_IGNORE
3300 * P_MAX_OPT_CMD
3301 */
3302 };
3303
3304 /* too big for the array: 0xfffX */
3305 if (cmd == P_INITIAL_META)
3306 return "InitialMeta";
3307 if (cmd == P_INITIAL_DATA)
3308 return "InitialData";
3309 if (cmd == P_CONNECTION_FEATURES)
3310 return "ConnectionFeatures";
3311 if (cmd >= ARRAY_SIZE(cmdnames))
3312 return "Unknown";
3313 return cmdnames[cmd];
3314 }
3315
3316 /**
3317 * drbd_wait_misc - wait for a request to make progress
3318 * @mdev: device associated with the request
3319 * @i: the struct drbd_interval embedded in struct drbd_request or
3320 * struct drbd_peer_request
3321 */
3322 int drbd_wait_misc(struct drbd_conf *mdev, struct drbd_interval *i)
3323 {
3324 struct net_conf *nc;
3325 DEFINE_WAIT(wait);
3326 long timeout;
3327
3328 rcu_read_lock();
3329 nc = rcu_dereference(mdev->tconn->net_conf);
3330 if (!nc) {
3331 rcu_read_unlock();
3332 return -ETIMEDOUT;
3333 }
3334 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3335 rcu_read_unlock();
3336
3337 /* Indicate to wake up mdev->misc_wait on progress. */
3338 i->waiting = true;
3339 prepare_to_wait(&mdev->misc_wait, &wait, TASK_INTERRUPTIBLE);
3340 spin_unlock_irq(&mdev->tconn->req_lock);
3341 timeout = schedule_timeout(timeout);
3342 finish_wait(&mdev->misc_wait, &wait);
3343 spin_lock_irq(&mdev->tconn->req_lock);
3344 if (!timeout || mdev->state.conn < C_CONNECTED)
3345 return -ETIMEDOUT;
3346 if (signal_pending(current))
3347 return -ERESTARTSYS;
3348 return 0;
3349 }
3350
3351 #ifdef CONFIG_DRBD_FAULT_INJECTION
3352 /* Fault insertion support including random number generator shamelessly
3353 * stolen from kernel/rcutorture.c */
3354 struct fault_random_state {
3355 unsigned long state;
3356 unsigned long count;
3357 };
3358
3359 #define FAULT_RANDOM_MULT 39916801 /* prime */
3360 #define FAULT_RANDOM_ADD 479001701 /* prime */
3361 #define FAULT_RANDOM_REFRESH 10000
3362
3363 /*
3364 * Crude but fast random-number generator. Uses a linear congruential
3365 * generator, with occasional help from get_random_bytes().
3366 */
3367 static unsigned long
3368 _drbd_fault_random(struct fault_random_state *rsp)
3369 {
3370 long refresh;
3371
3372 if (!rsp->count--) {
3373 get_random_bytes(&refresh, sizeof(refresh));
3374 rsp->state += refresh;
3375 rsp->count = FAULT_RANDOM_REFRESH;
3376 }
3377 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3378 return swahw32(rsp->state);
3379 }
3380
3381 static char *
3382 _drbd_fault_str(unsigned int type) {
3383 static char *_faults[] = {
3384 [DRBD_FAULT_MD_WR] = "Meta-data write",
3385 [DRBD_FAULT_MD_RD] = "Meta-data read",
3386 [DRBD_FAULT_RS_WR] = "Resync write",
3387 [DRBD_FAULT_RS_RD] = "Resync read",
3388 [DRBD_FAULT_DT_WR] = "Data write",
3389 [DRBD_FAULT_DT_RD] = "Data read",
3390 [DRBD_FAULT_DT_RA] = "Data read ahead",
3391 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3392 [DRBD_FAULT_AL_EE] = "EE allocation",
3393 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3394 };
3395
3396 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3397 }
3398
3399 unsigned int
3400 _drbd_insert_fault(struct drbd_conf *mdev, unsigned int type)
3401 {
3402 static struct fault_random_state rrs = {0, 0};
3403
3404 unsigned int ret = (
3405 (fault_devs == 0 ||
3406 ((1 << mdev_to_minor(mdev)) & fault_devs) != 0) &&
3407 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3408
3409 if (ret) {
3410 fault_count++;
3411
3412 if (__ratelimit(&drbd_ratelimit_state))
3413 dev_warn(DEV, "***Simulating %s failure\n",
3414 _drbd_fault_str(type));
3415 }
3416
3417 return ret;
3418 }
3419 #endif
3420
3421 const char *drbd_buildtag(void)
3422 {
3423 /* DRBD built from external sources has here a reference to the
3424 git hash of the source code. */
3425
3426 static char buildtag[38] = "\0uilt-in";
3427
3428 if (buildtag[0] == 0) {
3429 #ifdef CONFIG_MODULES
3430 if (THIS_MODULE != NULL)
3431 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3432 else
3433 #endif
3434 buildtag[0] = 'b';
3435 }
3436
3437 return buildtag;
3438 }
3439
3440 module_init(drbd_init)
3441 module_exit(drbd_cleanup)
3442
3443 EXPORT_SYMBOL(drbd_conn_str);
3444 EXPORT_SYMBOL(drbd_role_str);
3445 EXPORT_SYMBOL(drbd_disk_str);
3446 EXPORT_SYMBOL(drbd_set_st_err_str);