]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/drbd/drbd_main.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <linux/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55 #include <linux/sched/signal.h>
56
57 #include <linux/drbd_limits.h>
58 #include "drbd_int.h"
59 #include "drbd_protocol.h"
60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
61 #include "drbd_vli.h"
62 #include "drbd_debugfs.h"
63
64 static DEFINE_MUTEX(drbd_main_mutex);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static void drbd_release(struct gendisk *gd, fmode_t mode);
67 static void md_sync_timer_fn(unsigned long data);
68 static int w_bitmap_io(struct drbd_work *w, int unused);
69
70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
71 "Lars Ellenberg <lars@linbit.com>");
72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
73 MODULE_VERSION(REL_VERSION);
74 MODULE_LICENSE("GPL");
75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
76 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
78
79 #include <linux/moduleparam.h>
80 /* allow_open_on_secondary */
81 MODULE_PARM_DESC(allow_oos, "DONT USE!");
82 /* thanks to these macros, if compiled into the kernel (not-module),
83 * this becomes the boot parameter drbd.minor_count */
84 module_param(minor_count, uint, 0444);
85 module_param(disable_sendpage, bool, 0644);
86 module_param(allow_oos, bool, 0);
87 module_param(proc_details, int, 0644);
88
89 #ifdef CONFIG_DRBD_FAULT_INJECTION
90 int enable_faults;
91 int fault_rate;
92 static int fault_count;
93 int fault_devs;
94 /* bitmap of enabled faults */
95 module_param(enable_faults, int, 0664);
96 /* fault rate % value - applies to all enabled faults */
97 module_param(fault_rate, int, 0664);
98 /* count of faults inserted */
99 module_param(fault_count, int, 0664);
100 /* bitmap of devices to insert faults on */
101 module_param(fault_devs, int, 0644);
102 #endif
103
104 /* module parameter, defined */
105 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
106 bool disable_sendpage;
107 bool allow_oos;
108 int proc_details; /* Detail level in proc drbd*/
109
110 /* Module parameter for setting the user mode helper program
111 * to run. Default is /sbin/drbdadm */
112 char usermode_helper[80] = "/sbin/drbdadm";
113
114 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
115
116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
117 * as member "struct gendisk *vdisk;"
118 */
119 struct idr drbd_devices;
120 struct list_head drbd_resources;
121 struct mutex resources_mutex;
122
123 struct kmem_cache *drbd_request_cache;
124 struct kmem_cache *drbd_ee_cache; /* peer requests */
125 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
126 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
127 mempool_t *drbd_request_mempool;
128 mempool_t *drbd_ee_mempool;
129 mempool_t *drbd_md_io_page_pool;
130 struct bio_set *drbd_md_io_bio_set;
131 struct bio_set *drbd_io_bio_set;
132
133 /* I do not use a standard mempool, because:
134 1) I want to hand out the pre-allocated objects first.
135 2) I want to be able to interrupt sleeping allocation with a signal.
136 Note: This is a single linked list, the next pointer is the private
137 member of struct page.
138 */
139 struct page *drbd_pp_pool;
140 spinlock_t drbd_pp_lock;
141 int drbd_pp_vacant;
142 wait_queue_head_t drbd_pp_wait;
143
144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
145
146 static const struct block_device_operations drbd_ops = {
147 .owner = THIS_MODULE,
148 .open = drbd_open,
149 .release = drbd_release,
150 };
151
152 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
153 {
154 struct bio *bio;
155
156 if (!drbd_md_io_bio_set)
157 return bio_alloc(gfp_mask, 1);
158
159 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
160 if (!bio)
161 return NULL;
162 return bio;
163 }
164
165 #ifdef __CHECKER__
166 /* When checking with sparse, and this is an inline function, sparse will
167 give tons of false positives. When this is a real functions sparse works.
168 */
169 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
170 {
171 int io_allowed;
172
173 atomic_inc(&device->local_cnt);
174 io_allowed = (device->state.disk >= mins);
175 if (!io_allowed) {
176 if (atomic_dec_and_test(&device->local_cnt))
177 wake_up(&device->misc_wait);
178 }
179 return io_allowed;
180 }
181
182 #endif
183
184 /**
185 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
186 * @connection: DRBD connection.
187 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
188 * @set_size: Expected number of requests before that barrier.
189 *
190 * In case the passed barrier_nr or set_size does not match the oldest
191 * epoch of not yet barrier-acked requests, this function will cause a
192 * termination of the connection.
193 */
194 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
195 unsigned int set_size)
196 {
197 struct drbd_request *r;
198 struct drbd_request *req = NULL;
199 int expect_epoch = 0;
200 int expect_size = 0;
201
202 spin_lock_irq(&connection->resource->req_lock);
203
204 /* find oldest not yet barrier-acked write request,
205 * count writes in its epoch. */
206 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
207 const unsigned s = r->rq_state;
208 if (!req) {
209 if (!(s & RQ_WRITE))
210 continue;
211 if (!(s & RQ_NET_MASK))
212 continue;
213 if (s & RQ_NET_DONE)
214 continue;
215 req = r;
216 expect_epoch = req->epoch;
217 expect_size ++;
218 } else {
219 if (r->epoch != expect_epoch)
220 break;
221 if (!(s & RQ_WRITE))
222 continue;
223 /* if (s & RQ_DONE): not expected */
224 /* if (!(s & RQ_NET_MASK)): not expected */
225 expect_size++;
226 }
227 }
228
229 /* first some paranoia code */
230 if (req == NULL) {
231 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
232 barrier_nr);
233 goto bail;
234 }
235 if (expect_epoch != barrier_nr) {
236 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
237 barrier_nr, expect_epoch);
238 goto bail;
239 }
240
241 if (expect_size != set_size) {
242 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
243 barrier_nr, set_size, expect_size);
244 goto bail;
245 }
246
247 /* Clean up list of requests processed during current epoch. */
248 /* this extra list walk restart is paranoia,
249 * to catch requests being barrier-acked "unexpectedly".
250 * It usually should find the same req again, or some READ preceding it. */
251 list_for_each_entry(req, &connection->transfer_log, tl_requests)
252 if (req->epoch == expect_epoch)
253 break;
254 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
255 if (req->epoch != expect_epoch)
256 break;
257 _req_mod(req, BARRIER_ACKED);
258 }
259 spin_unlock_irq(&connection->resource->req_lock);
260
261 return;
262
263 bail:
264 spin_unlock_irq(&connection->resource->req_lock);
265 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
266 }
267
268
269 /**
270 * _tl_restart() - Walks the transfer log, and applies an action to all requests
271 * @connection: DRBD connection to operate on.
272 * @what: The action/event to perform with all request objects
273 *
274 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
275 * RESTART_FROZEN_DISK_IO.
276 */
277 /* must hold resource->req_lock */
278 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
279 {
280 struct drbd_request *req, *r;
281
282 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
283 _req_mod(req, what);
284 }
285
286 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
287 {
288 spin_lock_irq(&connection->resource->req_lock);
289 _tl_restart(connection, what);
290 spin_unlock_irq(&connection->resource->req_lock);
291 }
292
293 /**
294 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
295 * @device: DRBD device.
296 *
297 * This is called after the connection to the peer was lost. The storage covered
298 * by the requests on the transfer gets marked as our of sync. Called from the
299 * receiver thread and the worker thread.
300 */
301 void tl_clear(struct drbd_connection *connection)
302 {
303 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
304 }
305
306 /**
307 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
308 * @device: DRBD device.
309 */
310 void tl_abort_disk_io(struct drbd_device *device)
311 {
312 struct drbd_connection *connection = first_peer_device(device)->connection;
313 struct drbd_request *req, *r;
314
315 spin_lock_irq(&connection->resource->req_lock);
316 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
317 if (!(req->rq_state & RQ_LOCAL_PENDING))
318 continue;
319 if (req->device != device)
320 continue;
321 _req_mod(req, ABORT_DISK_IO);
322 }
323 spin_unlock_irq(&connection->resource->req_lock);
324 }
325
326 static int drbd_thread_setup(void *arg)
327 {
328 struct drbd_thread *thi = (struct drbd_thread *) arg;
329 struct drbd_resource *resource = thi->resource;
330 unsigned long flags;
331 int retval;
332
333 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
334 thi->name[0],
335 resource->name);
336
337 restart:
338 retval = thi->function(thi);
339
340 spin_lock_irqsave(&thi->t_lock, flags);
341
342 /* if the receiver has been "EXITING", the last thing it did
343 * was set the conn state to "StandAlone",
344 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
345 * and receiver thread will be "started".
346 * drbd_thread_start needs to set "RESTARTING" in that case.
347 * t_state check and assignment needs to be within the same spinlock,
348 * so either thread_start sees EXITING, and can remap to RESTARTING,
349 * or thread_start see NONE, and can proceed as normal.
350 */
351
352 if (thi->t_state == RESTARTING) {
353 drbd_info(resource, "Restarting %s thread\n", thi->name);
354 thi->t_state = RUNNING;
355 spin_unlock_irqrestore(&thi->t_lock, flags);
356 goto restart;
357 }
358
359 thi->task = NULL;
360 thi->t_state = NONE;
361 smp_mb();
362 complete_all(&thi->stop);
363 spin_unlock_irqrestore(&thi->t_lock, flags);
364
365 drbd_info(resource, "Terminating %s\n", current->comm);
366
367 /* Release mod reference taken when thread was started */
368
369 if (thi->connection)
370 kref_put(&thi->connection->kref, drbd_destroy_connection);
371 kref_put(&resource->kref, drbd_destroy_resource);
372 module_put(THIS_MODULE);
373 return retval;
374 }
375
376 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
377 int (*func) (struct drbd_thread *), const char *name)
378 {
379 spin_lock_init(&thi->t_lock);
380 thi->task = NULL;
381 thi->t_state = NONE;
382 thi->function = func;
383 thi->resource = resource;
384 thi->connection = NULL;
385 thi->name = name;
386 }
387
388 int drbd_thread_start(struct drbd_thread *thi)
389 {
390 struct drbd_resource *resource = thi->resource;
391 struct task_struct *nt;
392 unsigned long flags;
393
394 /* is used from state engine doing drbd_thread_stop_nowait,
395 * while holding the req lock irqsave */
396 spin_lock_irqsave(&thi->t_lock, flags);
397
398 switch (thi->t_state) {
399 case NONE:
400 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
401 thi->name, current->comm, current->pid);
402
403 /* Get ref on module for thread - this is released when thread exits */
404 if (!try_module_get(THIS_MODULE)) {
405 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
406 spin_unlock_irqrestore(&thi->t_lock, flags);
407 return false;
408 }
409
410 kref_get(&resource->kref);
411 if (thi->connection)
412 kref_get(&thi->connection->kref);
413
414 init_completion(&thi->stop);
415 thi->reset_cpu_mask = 1;
416 thi->t_state = RUNNING;
417 spin_unlock_irqrestore(&thi->t_lock, flags);
418 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
419
420 nt = kthread_create(drbd_thread_setup, (void *) thi,
421 "drbd_%c_%s", thi->name[0], thi->resource->name);
422
423 if (IS_ERR(nt)) {
424 drbd_err(resource, "Couldn't start thread\n");
425
426 if (thi->connection)
427 kref_put(&thi->connection->kref, drbd_destroy_connection);
428 kref_put(&resource->kref, drbd_destroy_resource);
429 module_put(THIS_MODULE);
430 return false;
431 }
432 spin_lock_irqsave(&thi->t_lock, flags);
433 thi->task = nt;
434 thi->t_state = RUNNING;
435 spin_unlock_irqrestore(&thi->t_lock, flags);
436 wake_up_process(nt);
437 break;
438 case EXITING:
439 thi->t_state = RESTARTING;
440 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
441 thi->name, current->comm, current->pid);
442 /* fall through */
443 case RUNNING:
444 case RESTARTING:
445 default:
446 spin_unlock_irqrestore(&thi->t_lock, flags);
447 break;
448 }
449
450 return true;
451 }
452
453
454 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
455 {
456 unsigned long flags;
457
458 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
459
460 /* may be called from state engine, holding the req lock irqsave */
461 spin_lock_irqsave(&thi->t_lock, flags);
462
463 if (thi->t_state == NONE) {
464 spin_unlock_irqrestore(&thi->t_lock, flags);
465 if (restart)
466 drbd_thread_start(thi);
467 return;
468 }
469
470 if (thi->t_state != ns) {
471 if (thi->task == NULL) {
472 spin_unlock_irqrestore(&thi->t_lock, flags);
473 return;
474 }
475
476 thi->t_state = ns;
477 smp_mb();
478 init_completion(&thi->stop);
479 if (thi->task != current)
480 force_sig(DRBD_SIGKILL, thi->task);
481 }
482
483 spin_unlock_irqrestore(&thi->t_lock, flags);
484
485 if (wait)
486 wait_for_completion(&thi->stop);
487 }
488
489 int conn_lowest_minor(struct drbd_connection *connection)
490 {
491 struct drbd_peer_device *peer_device;
492 int vnr = 0, minor = -1;
493
494 rcu_read_lock();
495 peer_device = idr_get_next(&connection->peer_devices, &vnr);
496 if (peer_device)
497 minor = device_to_minor(peer_device->device);
498 rcu_read_unlock();
499
500 return minor;
501 }
502
503 #ifdef CONFIG_SMP
504 /**
505 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
506 *
507 * Forces all threads of a resource onto the same CPU. This is beneficial for
508 * DRBD's performance. May be overwritten by user's configuration.
509 */
510 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
511 {
512 unsigned int *resources_per_cpu, min_index = ~0;
513
514 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
515 if (resources_per_cpu) {
516 struct drbd_resource *resource;
517 unsigned int cpu, min = ~0;
518
519 rcu_read_lock();
520 for_each_resource_rcu(resource, &drbd_resources) {
521 for_each_cpu(cpu, resource->cpu_mask)
522 resources_per_cpu[cpu]++;
523 }
524 rcu_read_unlock();
525 for_each_online_cpu(cpu) {
526 if (resources_per_cpu[cpu] < min) {
527 min = resources_per_cpu[cpu];
528 min_index = cpu;
529 }
530 }
531 kfree(resources_per_cpu);
532 }
533 if (min_index == ~0) {
534 cpumask_setall(*cpu_mask);
535 return;
536 }
537 cpumask_set_cpu(min_index, *cpu_mask);
538 }
539
540 /**
541 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
542 * @device: DRBD device.
543 * @thi: drbd_thread object
544 *
545 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
546 * prematurely.
547 */
548 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
549 {
550 struct drbd_resource *resource = thi->resource;
551 struct task_struct *p = current;
552
553 if (!thi->reset_cpu_mask)
554 return;
555 thi->reset_cpu_mask = 0;
556 set_cpus_allowed_ptr(p, resource->cpu_mask);
557 }
558 #else
559 #define drbd_calc_cpu_mask(A) ({})
560 #endif
561
562 /**
563 * drbd_header_size - size of a packet header
564 *
565 * The header size is a multiple of 8, so any payload following the header is
566 * word aligned on 64-bit architectures. (The bitmap send and receive code
567 * relies on this.)
568 */
569 unsigned int drbd_header_size(struct drbd_connection *connection)
570 {
571 if (connection->agreed_pro_version >= 100) {
572 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
573 return sizeof(struct p_header100);
574 } else {
575 BUILD_BUG_ON(sizeof(struct p_header80) !=
576 sizeof(struct p_header95));
577 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
578 return sizeof(struct p_header80);
579 }
580 }
581
582 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
583 {
584 h->magic = cpu_to_be32(DRBD_MAGIC);
585 h->command = cpu_to_be16(cmd);
586 h->length = cpu_to_be16(size);
587 return sizeof(struct p_header80);
588 }
589
590 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
591 {
592 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
593 h->command = cpu_to_be16(cmd);
594 h->length = cpu_to_be32(size);
595 return sizeof(struct p_header95);
596 }
597
598 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
599 int size, int vnr)
600 {
601 h->magic = cpu_to_be32(DRBD_MAGIC_100);
602 h->volume = cpu_to_be16(vnr);
603 h->command = cpu_to_be16(cmd);
604 h->length = cpu_to_be32(size);
605 h->pad = 0;
606 return sizeof(struct p_header100);
607 }
608
609 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
610 void *buffer, enum drbd_packet cmd, int size)
611 {
612 if (connection->agreed_pro_version >= 100)
613 return prepare_header100(buffer, cmd, size, vnr);
614 else if (connection->agreed_pro_version >= 95 &&
615 size > DRBD_MAX_SIZE_H80_PACKET)
616 return prepare_header95(buffer, cmd, size);
617 else
618 return prepare_header80(buffer, cmd, size);
619 }
620
621 static void *__conn_prepare_command(struct drbd_connection *connection,
622 struct drbd_socket *sock)
623 {
624 if (!sock->socket)
625 return NULL;
626 return sock->sbuf + drbd_header_size(connection);
627 }
628
629 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
630 {
631 void *p;
632
633 mutex_lock(&sock->mutex);
634 p = __conn_prepare_command(connection, sock);
635 if (!p)
636 mutex_unlock(&sock->mutex);
637
638 return p;
639 }
640
641 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
642 {
643 return conn_prepare_command(peer_device->connection, sock);
644 }
645
646 static int __send_command(struct drbd_connection *connection, int vnr,
647 struct drbd_socket *sock, enum drbd_packet cmd,
648 unsigned int header_size, void *data,
649 unsigned int size)
650 {
651 int msg_flags;
652 int err;
653
654 /*
655 * Called with @data == NULL and the size of the data blocks in @size
656 * for commands that send data blocks. For those commands, omit the
657 * MSG_MORE flag: this will increase the likelihood that data blocks
658 * which are page aligned on the sender will end up page aligned on the
659 * receiver.
660 */
661 msg_flags = data ? MSG_MORE : 0;
662
663 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
664 header_size + size);
665 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
666 msg_flags);
667 if (data && !err)
668 err = drbd_send_all(connection, sock->socket, data, size, 0);
669 /* DRBD protocol "pings" are latency critical.
670 * This is supposed to trigger tcp_push_pending_frames() */
671 if (!err && (cmd == P_PING || cmd == P_PING_ACK))
672 drbd_tcp_nodelay(sock->socket);
673
674 return err;
675 }
676
677 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
678 enum drbd_packet cmd, unsigned int header_size,
679 void *data, unsigned int size)
680 {
681 return __send_command(connection, 0, sock, cmd, header_size, data, size);
682 }
683
684 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
685 enum drbd_packet cmd, unsigned int header_size,
686 void *data, unsigned int size)
687 {
688 int err;
689
690 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
691 mutex_unlock(&sock->mutex);
692 return err;
693 }
694
695 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
696 enum drbd_packet cmd, unsigned int header_size,
697 void *data, unsigned int size)
698 {
699 int err;
700
701 err = __send_command(peer_device->connection, peer_device->device->vnr,
702 sock, cmd, header_size, data, size);
703 mutex_unlock(&sock->mutex);
704 return err;
705 }
706
707 int drbd_send_ping(struct drbd_connection *connection)
708 {
709 struct drbd_socket *sock;
710
711 sock = &connection->meta;
712 if (!conn_prepare_command(connection, sock))
713 return -EIO;
714 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
715 }
716
717 int drbd_send_ping_ack(struct drbd_connection *connection)
718 {
719 struct drbd_socket *sock;
720
721 sock = &connection->meta;
722 if (!conn_prepare_command(connection, sock))
723 return -EIO;
724 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
725 }
726
727 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
728 {
729 struct drbd_socket *sock;
730 struct p_rs_param_95 *p;
731 int size;
732 const int apv = peer_device->connection->agreed_pro_version;
733 enum drbd_packet cmd;
734 struct net_conf *nc;
735 struct disk_conf *dc;
736
737 sock = &peer_device->connection->data;
738 p = drbd_prepare_command(peer_device, sock);
739 if (!p)
740 return -EIO;
741
742 rcu_read_lock();
743 nc = rcu_dereference(peer_device->connection->net_conf);
744
745 size = apv <= 87 ? sizeof(struct p_rs_param)
746 : apv == 88 ? sizeof(struct p_rs_param)
747 + strlen(nc->verify_alg) + 1
748 : apv <= 94 ? sizeof(struct p_rs_param_89)
749 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
750
751 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
752
753 /* initialize verify_alg and csums_alg */
754 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
755
756 if (get_ldev(peer_device->device)) {
757 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
758 p->resync_rate = cpu_to_be32(dc->resync_rate);
759 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
760 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
761 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
762 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
763 put_ldev(peer_device->device);
764 } else {
765 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
766 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
767 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
768 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
769 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
770 }
771
772 if (apv >= 88)
773 strcpy(p->verify_alg, nc->verify_alg);
774 if (apv >= 89)
775 strcpy(p->csums_alg, nc->csums_alg);
776 rcu_read_unlock();
777
778 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
779 }
780
781 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
782 {
783 struct drbd_socket *sock;
784 struct p_protocol *p;
785 struct net_conf *nc;
786 int size, cf;
787
788 sock = &connection->data;
789 p = __conn_prepare_command(connection, sock);
790 if (!p)
791 return -EIO;
792
793 rcu_read_lock();
794 nc = rcu_dereference(connection->net_conf);
795
796 if (nc->tentative && connection->agreed_pro_version < 92) {
797 rcu_read_unlock();
798 mutex_unlock(&sock->mutex);
799 drbd_err(connection, "--dry-run is not supported by peer");
800 return -EOPNOTSUPP;
801 }
802
803 size = sizeof(*p);
804 if (connection->agreed_pro_version >= 87)
805 size += strlen(nc->integrity_alg) + 1;
806
807 p->protocol = cpu_to_be32(nc->wire_protocol);
808 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
809 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
810 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
811 p->two_primaries = cpu_to_be32(nc->two_primaries);
812 cf = 0;
813 if (nc->discard_my_data)
814 cf |= CF_DISCARD_MY_DATA;
815 if (nc->tentative)
816 cf |= CF_DRY_RUN;
817 p->conn_flags = cpu_to_be32(cf);
818
819 if (connection->agreed_pro_version >= 87)
820 strcpy(p->integrity_alg, nc->integrity_alg);
821 rcu_read_unlock();
822
823 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
824 }
825
826 int drbd_send_protocol(struct drbd_connection *connection)
827 {
828 int err;
829
830 mutex_lock(&connection->data.mutex);
831 err = __drbd_send_protocol(connection, P_PROTOCOL);
832 mutex_unlock(&connection->data.mutex);
833
834 return err;
835 }
836
837 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
838 {
839 struct drbd_device *device = peer_device->device;
840 struct drbd_socket *sock;
841 struct p_uuids *p;
842 int i;
843
844 if (!get_ldev_if_state(device, D_NEGOTIATING))
845 return 0;
846
847 sock = &peer_device->connection->data;
848 p = drbd_prepare_command(peer_device, sock);
849 if (!p) {
850 put_ldev(device);
851 return -EIO;
852 }
853 spin_lock_irq(&device->ldev->md.uuid_lock);
854 for (i = UI_CURRENT; i < UI_SIZE; i++)
855 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
856 spin_unlock_irq(&device->ldev->md.uuid_lock);
857
858 device->comm_bm_set = drbd_bm_total_weight(device);
859 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
860 rcu_read_lock();
861 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
862 rcu_read_unlock();
863 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
864 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
865 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
866
867 put_ldev(device);
868 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
869 }
870
871 int drbd_send_uuids(struct drbd_peer_device *peer_device)
872 {
873 return _drbd_send_uuids(peer_device, 0);
874 }
875
876 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
877 {
878 return _drbd_send_uuids(peer_device, 8);
879 }
880
881 void drbd_print_uuids(struct drbd_device *device, const char *text)
882 {
883 if (get_ldev_if_state(device, D_NEGOTIATING)) {
884 u64 *uuid = device->ldev->md.uuid;
885 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
886 text,
887 (unsigned long long)uuid[UI_CURRENT],
888 (unsigned long long)uuid[UI_BITMAP],
889 (unsigned long long)uuid[UI_HISTORY_START],
890 (unsigned long long)uuid[UI_HISTORY_END]);
891 put_ldev(device);
892 } else {
893 drbd_info(device, "%s effective data uuid: %016llX\n",
894 text,
895 (unsigned long long)device->ed_uuid);
896 }
897 }
898
899 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
900 {
901 struct drbd_device *device = peer_device->device;
902 struct drbd_socket *sock;
903 struct p_rs_uuid *p;
904 u64 uuid;
905
906 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
907
908 uuid = device->ldev->md.uuid[UI_BITMAP];
909 if (uuid && uuid != UUID_JUST_CREATED)
910 uuid = uuid + UUID_NEW_BM_OFFSET;
911 else
912 get_random_bytes(&uuid, sizeof(u64));
913 drbd_uuid_set(device, UI_BITMAP, uuid);
914 drbd_print_uuids(device, "updated sync UUID");
915 drbd_md_sync(device);
916
917 sock = &peer_device->connection->data;
918 p = drbd_prepare_command(peer_device, sock);
919 if (p) {
920 p->uuid = cpu_to_be64(uuid);
921 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
922 }
923 }
924
925 /* communicated if (agreed_features & DRBD_FF_WSAME) */
926 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q)
927 {
928 if (q) {
929 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
930 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
931 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
932 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
933 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
934 p->qlim->discard_enabled = blk_queue_discard(q);
935 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
936 } else {
937 q = device->rq_queue;
938 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
939 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
940 p->qlim->alignment_offset = 0;
941 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
942 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
943 p->qlim->discard_enabled = 0;
944 p->qlim->write_same_capable = 0;
945 }
946 }
947
948 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
949 {
950 struct drbd_device *device = peer_device->device;
951 struct drbd_socket *sock;
952 struct p_sizes *p;
953 sector_t d_size, u_size;
954 int q_order_type;
955 unsigned int max_bio_size;
956 unsigned int packet_size;
957
958 sock = &peer_device->connection->data;
959 p = drbd_prepare_command(peer_device, sock);
960 if (!p)
961 return -EIO;
962
963 packet_size = sizeof(*p);
964 if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
965 packet_size += sizeof(p->qlim[0]);
966
967 memset(p, 0, packet_size);
968 if (get_ldev_if_state(device, D_NEGOTIATING)) {
969 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
970 d_size = drbd_get_max_capacity(device->ldev);
971 rcu_read_lock();
972 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
973 rcu_read_unlock();
974 q_order_type = drbd_queue_order_type(device);
975 max_bio_size = queue_max_hw_sectors(q) << 9;
976 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
977 assign_p_sizes_qlim(device, p, q);
978 put_ldev(device);
979 } else {
980 d_size = 0;
981 u_size = 0;
982 q_order_type = QUEUE_ORDERED_NONE;
983 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
984 assign_p_sizes_qlim(device, p, NULL);
985 }
986
987 if (peer_device->connection->agreed_pro_version <= 94)
988 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
989 else if (peer_device->connection->agreed_pro_version < 100)
990 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
991
992 p->d_size = cpu_to_be64(d_size);
993 p->u_size = cpu_to_be64(u_size);
994 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
995 p->max_bio_size = cpu_to_be32(max_bio_size);
996 p->queue_order_type = cpu_to_be16(q_order_type);
997 p->dds_flags = cpu_to_be16(flags);
998
999 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
1000 }
1001
1002 /**
1003 * drbd_send_current_state() - Sends the drbd state to the peer
1004 * @peer_device: DRBD peer device.
1005 */
1006 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1007 {
1008 struct drbd_socket *sock;
1009 struct p_state *p;
1010
1011 sock = &peer_device->connection->data;
1012 p = drbd_prepare_command(peer_device, sock);
1013 if (!p)
1014 return -EIO;
1015 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1016 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1017 }
1018
1019 /**
1020 * drbd_send_state() - After a state change, sends the new state to the peer
1021 * @peer_device: DRBD peer device.
1022 * @state: the state to send, not necessarily the current state.
1023 *
1024 * Each state change queues an "after_state_ch" work, which will eventually
1025 * send the resulting new state to the peer. If more state changes happen
1026 * between queuing and processing of the after_state_ch work, we still
1027 * want to send each intermediary state in the order it occurred.
1028 */
1029 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1030 {
1031 struct drbd_socket *sock;
1032 struct p_state *p;
1033
1034 sock = &peer_device->connection->data;
1035 p = drbd_prepare_command(peer_device, sock);
1036 if (!p)
1037 return -EIO;
1038 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1039 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1040 }
1041
1042 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1043 {
1044 struct drbd_socket *sock;
1045 struct p_req_state *p;
1046
1047 sock = &peer_device->connection->data;
1048 p = drbd_prepare_command(peer_device, sock);
1049 if (!p)
1050 return -EIO;
1051 p->mask = cpu_to_be32(mask.i);
1052 p->val = cpu_to_be32(val.i);
1053 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1054 }
1055
1056 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1057 {
1058 enum drbd_packet cmd;
1059 struct drbd_socket *sock;
1060 struct p_req_state *p;
1061
1062 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1063 sock = &connection->data;
1064 p = conn_prepare_command(connection, sock);
1065 if (!p)
1066 return -EIO;
1067 p->mask = cpu_to_be32(mask.i);
1068 p->val = cpu_to_be32(val.i);
1069 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1070 }
1071
1072 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1073 {
1074 struct drbd_socket *sock;
1075 struct p_req_state_reply *p;
1076
1077 sock = &peer_device->connection->meta;
1078 p = drbd_prepare_command(peer_device, sock);
1079 if (p) {
1080 p->retcode = cpu_to_be32(retcode);
1081 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1082 }
1083 }
1084
1085 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1086 {
1087 struct drbd_socket *sock;
1088 struct p_req_state_reply *p;
1089 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1090
1091 sock = &connection->meta;
1092 p = conn_prepare_command(connection, sock);
1093 if (p) {
1094 p->retcode = cpu_to_be32(retcode);
1095 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1096 }
1097 }
1098
1099 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1100 {
1101 BUG_ON(code & ~0xf);
1102 p->encoding = (p->encoding & ~0xf) | code;
1103 }
1104
1105 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1106 {
1107 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1108 }
1109
1110 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1111 {
1112 BUG_ON(n & ~0x7);
1113 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1114 }
1115
1116 static int fill_bitmap_rle_bits(struct drbd_device *device,
1117 struct p_compressed_bm *p,
1118 unsigned int size,
1119 struct bm_xfer_ctx *c)
1120 {
1121 struct bitstream bs;
1122 unsigned long plain_bits;
1123 unsigned long tmp;
1124 unsigned long rl;
1125 unsigned len;
1126 unsigned toggle;
1127 int bits, use_rle;
1128
1129 /* may we use this feature? */
1130 rcu_read_lock();
1131 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1132 rcu_read_unlock();
1133 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1134 return 0;
1135
1136 if (c->bit_offset >= c->bm_bits)
1137 return 0; /* nothing to do. */
1138
1139 /* use at most thus many bytes */
1140 bitstream_init(&bs, p->code, size, 0);
1141 memset(p->code, 0, size);
1142 /* plain bits covered in this code string */
1143 plain_bits = 0;
1144
1145 /* p->encoding & 0x80 stores whether the first run length is set.
1146 * bit offset is implicit.
1147 * start with toggle == 2 to be able to tell the first iteration */
1148 toggle = 2;
1149
1150 /* see how much plain bits we can stuff into one packet
1151 * using RLE and VLI. */
1152 do {
1153 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1154 : _drbd_bm_find_next(device, c->bit_offset);
1155 if (tmp == -1UL)
1156 tmp = c->bm_bits;
1157 rl = tmp - c->bit_offset;
1158
1159 if (toggle == 2) { /* first iteration */
1160 if (rl == 0) {
1161 /* the first checked bit was set,
1162 * store start value, */
1163 dcbp_set_start(p, 1);
1164 /* but skip encoding of zero run length */
1165 toggle = !toggle;
1166 continue;
1167 }
1168 dcbp_set_start(p, 0);
1169 }
1170
1171 /* paranoia: catch zero runlength.
1172 * can only happen if bitmap is modified while we scan it. */
1173 if (rl == 0) {
1174 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1175 "t:%u bo:%lu\n", toggle, c->bit_offset);
1176 return -1;
1177 }
1178
1179 bits = vli_encode_bits(&bs, rl);
1180 if (bits == -ENOBUFS) /* buffer full */
1181 break;
1182 if (bits <= 0) {
1183 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1184 return 0;
1185 }
1186
1187 toggle = !toggle;
1188 plain_bits += rl;
1189 c->bit_offset = tmp;
1190 } while (c->bit_offset < c->bm_bits);
1191
1192 len = bs.cur.b - p->code + !!bs.cur.bit;
1193
1194 if (plain_bits < (len << 3)) {
1195 /* incompressible with this method.
1196 * we need to rewind both word and bit position. */
1197 c->bit_offset -= plain_bits;
1198 bm_xfer_ctx_bit_to_word_offset(c);
1199 c->bit_offset = c->word_offset * BITS_PER_LONG;
1200 return 0;
1201 }
1202
1203 /* RLE + VLI was able to compress it just fine.
1204 * update c->word_offset. */
1205 bm_xfer_ctx_bit_to_word_offset(c);
1206
1207 /* store pad_bits */
1208 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1209
1210 return len;
1211 }
1212
1213 /**
1214 * send_bitmap_rle_or_plain
1215 *
1216 * Return 0 when done, 1 when another iteration is needed, and a negative error
1217 * code upon failure.
1218 */
1219 static int
1220 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1221 {
1222 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1223 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1224 struct p_compressed_bm *p = sock->sbuf + header_size;
1225 int len, err;
1226
1227 len = fill_bitmap_rle_bits(device, p,
1228 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1229 if (len < 0)
1230 return -EIO;
1231
1232 if (len) {
1233 dcbp_set_code(p, RLE_VLI_Bits);
1234 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1235 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1236 NULL, 0);
1237 c->packets[0]++;
1238 c->bytes[0] += header_size + sizeof(*p) + len;
1239
1240 if (c->bit_offset >= c->bm_bits)
1241 len = 0; /* DONE */
1242 } else {
1243 /* was not compressible.
1244 * send a buffer full of plain text bits instead. */
1245 unsigned int data_size;
1246 unsigned long num_words;
1247 unsigned long *p = sock->sbuf + header_size;
1248
1249 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1250 num_words = min_t(size_t, data_size / sizeof(*p),
1251 c->bm_words - c->word_offset);
1252 len = num_words * sizeof(*p);
1253 if (len)
1254 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1255 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1256 c->word_offset += num_words;
1257 c->bit_offset = c->word_offset * BITS_PER_LONG;
1258
1259 c->packets[1]++;
1260 c->bytes[1] += header_size + len;
1261
1262 if (c->bit_offset > c->bm_bits)
1263 c->bit_offset = c->bm_bits;
1264 }
1265 if (!err) {
1266 if (len == 0) {
1267 INFO_bm_xfer_stats(device, "send", c);
1268 return 0;
1269 } else
1270 return 1;
1271 }
1272 return -EIO;
1273 }
1274
1275 /* See the comment at receive_bitmap() */
1276 static int _drbd_send_bitmap(struct drbd_device *device)
1277 {
1278 struct bm_xfer_ctx c;
1279 int err;
1280
1281 if (!expect(device->bitmap))
1282 return false;
1283
1284 if (get_ldev(device)) {
1285 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1286 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1287 drbd_bm_set_all(device);
1288 if (drbd_bm_write(device)) {
1289 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1290 * but otherwise process as per normal - need to tell other
1291 * side that a full resync is required! */
1292 drbd_err(device, "Failed to write bitmap to disk!\n");
1293 } else {
1294 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1295 drbd_md_sync(device);
1296 }
1297 }
1298 put_ldev(device);
1299 }
1300
1301 c = (struct bm_xfer_ctx) {
1302 .bm_bits = drbd_bm_bits(device),
1303 .bm_words = drbd_bm_words(device),
1304 };
1305
1306 do {
1307 err = send_bitmap_rle_or_plain(device, &c);
1308 } while (err > 0);
1309
1310 return err == 0;
1311 }
1312
1313 int drbd_send_bitmap(struct drbd_device *device)
1314 {
1315 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1316 int err = -1;
1317
1318 mutex_lock(&sock->mutex);
1319 if (sock->socket)
1320 err = !_drbd_send_bitmap(device);
1321 mutex_unlock(&sock->mutex);
1322 return err;
1323 }
1324
1325 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1326 {
1327 struct drbd_socket *sock;
1328 struct p_barrier_ack *p;
1329
1330 if (connection->cstate < C_WF_REPORT_PARAMS)
1331 return;
1332
1333 sock = &connection->meta;
1334 p = conn_prepare_command(connection, sock);
1335 if (!p)
1336 return;
1337 p->barrier = barrier_nr;
1338 p->set_size = cpu_to_be32(set_size);
1339 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1340 }
1341
1342 /**
1343 * _drbd_send_ack() - Sends an ack packet
1344 * @device: DRBD device.
1345 * @cmd: Packet command code.
1346 * @sector: sector, needs to be in big endian byte order
1347 * @blksize: size in byte, needs to be in big endian byte order
1348 * @block_id: Id, big endian byte order
1349 */
1350 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1351 u64 sector, u32 blksize, u64 block_id)
1352 {
1353 struct drbd_socket *sock;
1354 struct p_block_ack *p;
1355
1356 if (peer_device->device->state.conn < C_CONNECTED)
1357 return -EIO;
1358
1359 sock = &peer_device->connection->meta;
1360 p = drbd_prepare_command(peer_device, sock);
1361 if (!p)
1362 return -EIO;
1363 p->sector = sector;
1364 p->block_id = block_id;
1365 p->blksize = blksize;
1366 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1367 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1368 }
1369
1370 /* dp->sector and dp->block_id already/still in network byte order,
1371 * data_size is payload size according to dp->head,
1372 * and may need to be corrected for digest size. */
1373 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1374 struct p_data *dp, int data_size)
1375 {
1376 if (peer_device->connection->peer_integrity_tfm)
1377 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1378 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1379 dp->block_id);
1380 }
1381
1382 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1383 struct p_block_req *rp)
1384 {
1385 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1386 }
1387
1388 /**
1389 * drbd_send_ack() - Sends an ack packet
1390 * @device: DRBD device
1391 * @cmd: packet command code
1392 * @peer_req: peer request
1393 */
1394 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1395 struct drbd_peer_request *peer_req)
1396 {
1397 return _drbd_send_ack(peer_device, cmd,
1398 cpu_to_be64(peer_req->i.sector),
1399 cpu_to_be32(peer_req->i.size),
1400 peer_req->block_id);
1401 }
1402
1403 /* This function misuses the block_id field to signal if the blocks
1404 * are is sync or not. */
1405 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1406 sector_t sector, int blksize, u64 block_id)
1407 {
1408 return _drbd_send_ack(peer_device, cmd,
1409 cpu_to_be64(sector),
1410 cpu_to_be32(blksize),
1411 cpu_to_be64(block_id));
1412 }
1413
1414 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1415 struct drbd_peer_request *peer_req)
1416 {
1417 struct drbd_socket *sock;
1418 struct p_block_desc *p;
1419
1420 sock = &peer_device->connection->data;
1421 p = drbd_prepare_command(peer_device, sock);
1422 if (!p)
1423 return -EIO;
1424 p->sector = cpu_to_be64(peer_req->i.sector);
1425 p->blksize = cpu_to_be32(peer_req->i.size);
1426 p->pad = 0;
1427 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1428 }
1429
1430 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1431 sector_t sector, int size, u64 block_id)
1432 {
1433 struct drbd_socket *sock;
1434 struct p_block_req *p;
1435
1436 sock = &peer_device->connection->data;
1437 p = drbd_prepare_command(peer_device, sock);
1438 if (!p)
1439 return -EIO;
1440 p->sector = cpu_to_be64(sector);
1441 p->block_id = block_id;
1442 p->blksize = cpu_to_be32(size);
1443 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1444 }
1445
1446 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1447 void *digest, int digest_size, enum drbd_packet cmd)
1448 {
1449 struct drbd_socket *sock;
1450 struct p_block_req *p;
1451
1452 /* FIXME: Put the digest into the preallocated socket buffer. */
1453
1454 sock = &peer_device->connection->data;
1455 p = drbd_prepare_command(peer_device, sock);
1456 if (!p)
1457 return -EIO;
1458 p->sector = cpu_to_be64(sector);
1459 p->block_id = ID_SYNCER /* unused */;
1460 p->blksize = cpu_to_be32(size);
1461 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1462 }
1463
1464 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1465 {
1466 struct drbd_socket *sock;
1467 struct p_block_req *p;
1468
1469 sock = &peer_device->connection->data;
1470 p = drbd_prepare_command(peer_device, sock);
1471 if (!p)
1472 return -EIO;
1473 p->sector = cpu_to_be64(sector);
1474 p->block_id = ID_SYNCER /* unused */;
1475 p->blksize = cpu_to_be32(size);
1476 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1477 }
1478
1479 /* called on sndtimeo
1480 * returns false if we should retry,
1481 * true if we think connection is dead
1482 */
1483 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1484 {
1485 int drop_it;
1486 /* long elapsed = (long)(jiffies - device->last_received); */
1487
1488 drop_it = connection->meta.socket == sock
1489 || !connection->ack_receiver.task
1490 || get_t_state(&connection->ack_receiver) != RUNNING
1491 || connection->cstate < C_WF_REPORT_PARAMS;
1492
1493 if (drop_it)
1494 return true;
1495
1496 drop_it = !--connection->ko_count;
1497 if (!drop_it) {
1498 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1499 current->comm, current->pid, connection->ko_count);
1500 request_ping(connection);
1501 }
1502
1503 return drop_it; /* && (device->state == R_PRIMARY) */;
1504 }
1505
1506 static void drbd_update_congested(struct drbd_connection *connection)
1507 {
1508 struct sock *sk = connection->data.socket->sk;
1509 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1510 set_bit(NET_CONGESTED, &connection->flags);
1511 }
1512
1513 /* The idea of sendpage seems to be to put some kind of reference
1514 * to the page into the skb, and to hand it over to the NIC. In
1515 * this process get_page() gets called.
1516 *
1517 * As soon as the page was really sent over the network put_page()
1518 * gets called by some part of the network layer. [ NIC driver? ]
1519 *
1520 * [ get_page() / put_page() increment/decrement the count. If count
1521 * reaches 0 the page will be freed. ]
1522 *
1523 * This works nicely with pages from FSs.
1524 * But this means that in protocol A we might signal IO completion too early!
1525 *
1526 * In order not to corrupt data during a resync we must make sure
1527 * that we do not reuse our own buffer pages (EEs) to early, therefore
1528 * we have the net_ee list.
1529 *
1530 * XFS seems to have problems, still, it submits pages with page_count == 0!
1531 * As a workaround, we disable sendpage on pages
1532 * with page_count == 0 or PageSlab.
1533 */
1534 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1535 int offset, size_t size, unsigned msg_flags)
1536 {
1537 struct socket *socket;
1538 void *addr;
1539 int err;
1540
1541 socket = peer_device->connection->data.socket;
1542 addr = kmap(page) + offset;
1543 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1544 kunmap(page);
1545 if (!err)
1546 peer_device->device->send_cnt += size >> 9;
1547 return err;
1548 }
1549
1550 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1551 int offset, size_t size, unsigned msg_flags)
1552 {
1553 struct socket *socket = peer_device->connection->data.socket;
1554 int len = size;
1555 int err = -EIO;
1556
1557 /* e.g. XFS meta- & log-data is in slab pages, which have a
1558 * page_count of 0 and/or have PageSlab() set.
1559 * we cannot use send_page for those, as that does get_page();
1560 * put_page(); and would cause either a VM_BUG directly, or
1561 * __page_cache_release a page that would actually still be referenced
1562 * by someone, leading to some obscure delayed Oops somewhere else. */
1563 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1564 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1565
1566 msg_flags |= MSG_NOSIGNAL;
1567 drbd_update_congested(peer_device->connection);
1568 do {
1569 int sent;
1570
1571 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1572 if (sent <= 0) {
1573 if (sent == -EAGAIN) {
1574 if (we_should_drop_the_connection(peer_device->connection, socket))
1575 break;
1576 continue;
1577 }
1578 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1579 __func__, (int)size, len, sent);
1580 if (sent < 0)
1581 err = sent;
1582 break;
1583 }
1584 len -= sent;
1585 offset += sent;
1586 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1587 clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1588
1589 if (len == 0) {
1590 err = 0;
1591 peer_device->device->send_cnt += size >> 9;
1592 }
1593 return err;
1594 }
1595
1596 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1597 {
1598 struct bio_vec bvec;
1599 struct bvec_iter iter;
1600
1601 /* hint all but last page with MSG_MORE */
1602 bio_for_each_segment(bvec, bio, iter) {
1603 int err;
1604
1605 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1606 bvec.bv_offset, bvec.bv_len,
1607 bio_iter_last(bvec, iter)
1608 ? 0 : MSG_MORE);
1609 if (err)
1610 return err;
1611 /* REQ_OP_WRITE_SAME has only one segment */
1612 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1613 break;
1614 }
1615 return 0;
1616 }
1617
1618 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1619 {
1620 struct bio_vec bvec;
1621 struct bvec_iter iter;
1622
1623 /* hint all but last page with MSG_MORE */
1624 bio_for_each_segment(bvec, bio, iter) {
1625 int err;
1626
1627 err = _drbd_send_page(peer_device, bvec.bv_page,
1628 bvec.bv_offset, bvec.bv_len,
1629 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1630 if (err)
1631 return err;
1632 /* REQ_OP_WRITE_SAME has only one segment */
1633 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1634 break;
1635 }
1636 return 0;
1637 }
1638
1639 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1640 struct drbd_peer_request *peer_req)
1641 {
1642 struct page *page = peer_req->pages;
1643 unsigned len = peer_req->i.size;
1644 int err;
1645
1646 /* hint all but last page with MSG_MORE */
1647 page_chain_for_each(page) {
1648 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1649
1650 err = _drbd_send_page(peer_device, page, 0, l,
1651 page_chain_next(page) ? MSG_MORE : 0);
1652 if (err)
1653 return err;
1654 len -= l;
1655 }
1656 return 0;
1657 }
1658
1659 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1660 struct bio *bio)
1661 {
1662 if (connection->agreed_pro_version >= 95)
1663 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1664 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1665 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1666 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1667 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1668 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? DP_DISCARD : 0);
1669 else
1670 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1671 }
1672
1673 /* Used to send write or TRIM aka REQ_DISCARD requests
1674 * R_PRIMARY -> Peer (P_DATA, P_TRIM)
1675 */
1676 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1677 {
1678 struct drbd_device *device = peer_device->device;
1679 struct drbd_socket *sock;
1680 struct p_data *p;
1681 struct p_wsame *wsame = NULL;
1682 void *digest_out;
1683 unsigned int dp_flags = 0;
1684 int digest_size;
1685 int err;
1686
1687 sock = &peer_device->connection->data;
1688 p = drbd_prepare_command(peer_device, sock);
1689 digest_size = peer_device->connection->integrity_tfm ?
1690 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1691
1692 if (!p)
1693 return -EIO;
1694 p->sector = cpu_to_be64(req->i.sector);
1695 p->block_id = (unsigned long)req;
1696 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1697 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1698 if (device->state.conn >= C_SYNC_SOURCE &&
1699 device->state.conn <= C_PAUSED_SYNC_T)
1700 dp_flags |= DP_MAY_SET_IN_SYNC;
1701 if (peer_device->connection->agreed_pro_version >= 100) {
1702 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1703 dp_flags |= DP_SEND_RECEIVE_ACK;
1704 /* During resync, request an explicit write ack,
1705 * even in protocol != C */
1706 if (req->rq_state & RQ_EXP_WRITE_ACK
1707 || (dp_flags & DP_MAY_SET_IN_SYNC))
1708 dp_flags |= DP_SEND_WRITE_ACK;
1709 }
1710 p->dp_flags = cpu_to_be32(dp_flags);
1711
1712 if (dp_flags & DP_DISCARD) {
1713 struct p_trim *t = (struct p_trim*)p;
1714 t->size = cpu_to_be32(req->i.size);
1715 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1716 goto out;
1717 }
1718 if (dp_flags & DP_WSAME) {
1719 /* this will only work if DRBD_FF_WSAME is set AND the
1720 * handshake agreed that all nodes and backend devices are
1721 * WRITE_SAME capable and agree on logical_block_size */
1722 wsame = (struct p_wsame*)p;
1723 digest_out = wsame + 1;
1724 wsame->size = cpu_to_be32(req->i.size);
1725 } else
1726 digest_out = p + 1;
1727
1728 /* our digest is still only over the payload.
1729 * TRIM does not carry any payload. */
1730 if (digest_size)
1731 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1732 if (wsame) {
1733 err =
1734 __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1735 sizeof(*wsame) + digest_size, NULL,
1736 bio_iovec(req->master_bio).bv_len);
1737 } else
1738 err =
1739 __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1740 sizeof(*p) + digest_size, NULL, req->i.size);
1741 if (!err) {
1742 /* For protocol A, we have to memcpy the payload into
1743 * socket buffers, as we may complete right away
1744 * as soon as we handed it over to tcp, at which point the data
1745 * pages may become invalid.
1746 *
1747 * For data-integrity enabled, we copy it as well, so we can be
1748 * sure that even if the bio pages may still be modified, it
1749 * won't change the data on the wire, thus if the digest checks
1750 * out ok after sending on this side, but does not fit on the
1751 * receiving side, we sure have detected corruption elsewhere.
1752 */
1753 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1754 err = _drbd_send_bio(peer_device, req->master_bio);
1755 else
1756 err = _drbd_send_zc_bio(peer_device, req->master_bio);
1757
1758 /* double check digest, sometimes buffers have been modified in flight. */
1759 if (digest_size > 0 && digest_size <= 64) {
1760 /* 64 byte, 512 bit, is the largest digest size
1761 * currently supported in kernel crypto. */
1762 unsigned char digest[64];
1763 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1764 if (memcmp(p + 1, digest, digest_size)) {
1765 drbd_warn(device,
1766 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1767 (unsigned long long)req->i.sector, req->i.size);
1768 }
1769 } /* else if (digest_size > 64) {
1770 ... Be noisy about digest too large ...
1771 } */
1772 }
1773 out:
1774 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1775
1776 return err;
1777 }
1778
1779 /* answer packet, used to send data back for read requests:
1780 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1781 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1782 */
1783 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1784 struct drbd_peer_request *peer_req)
1785 {
1786 struct drbd_device *device = peer_device->device;
1787 struct drbd_socket *sock;
1788 struct p_data *p;
1789 int err;
1790 int digest_size;
1791
1792 sock = &peer_device->connection->data;
1793 p = drbd_prepare_command(peer_device, sock);
1794
1795 digest_size = peer_device->connection->integrity_tfm ?
1796 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1797
1798 if (!p)
1799 return -EIO;
1800 p->sector = cpu_to_be64(peer_req->i.sector);
1801 p->block_id = peer_req->block_id;
1802 p->seq_num = 0; /* unused */
1803 p->dp_flags = 0;
1804 if (digest_size)
1805 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1806 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1807 if (!err)
1808 err = _drbd_send_zc_ee(peer_device, peer_req);
1809 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1810
1811 return err;
1812 }
1813
1814 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1815 {
1816 struct drbd_socket *sock;
1817 struct p_block_desc *p;
1818
1819 sock = &peer_device->connection->data;
1820 p = drbd_prepare_command(peer_device, sock);
1821 if (!p)
1822 return -EIO;
1823 p->sector = cpu_to_be64(req->i.sector);
1824 p->blksize = cpu_to_be32(req->i.size);
1825 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1826 }
1827
1828 /*
1829 drbd_send distinguishes two cases:
1830
1831 Packets sent via the data socket "sock"
1832 and packets sent via the meta data socket "msock"
1833
1834 sock msock
1835 -----------------+-------------------------+------------------------------
1836 timeout conf.timeout / 2 conf.timeout / 2
1837 timeout action send a ping via msock Abort communication
1838 and close all sockets
1839 */
1840
1841 /*
1842 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1843 */
1844 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1845 void *buf, size_t size, unsigned msg_flags)
1846 {
1847 struct kvec iov = {.iov_base = buf, .iov_len = size};
1848 struct msghdr msg;
1849 int rv, sent = 0;
1850
1851 if (!sock)
1852 return -EBADR;
1853
1854 /* THINK if (signal_pending) return ... ? */
1855
1856 msg.msg_name = NULL;
1857 msg.msg_namelen = 0;
1858 msg.msg_control = NULL;
1859 msg.msg_controllen = 0;
1860 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1861
1862 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size);
1863
1864 if (sock == connection->data.socket) {
1865 rcu_read_lock();
1866 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1867 rcu_read_unlock();
1868 drbd_update_congested(connection);
1869 }
1870 do {
1871 rv = sock_sendmsg(sock, &msg);
1872 if (rv == -EAGAIN) {
1873 if (we_should_drop_the_connection(connection, sock))
1874 break;
1875 else
1876 continue;
1877 }
1878 if (rv == -EINTR) {
1879 flush_signals(current);
1880 rv = 0;
1881 }
1882 if (rv < 0)
1883 break;
1884 sent += rv;
1885 } while (sent < size);
1886
1887 if (sock == connection->data.socket)
1888 clear_bit(NET_CONGESTED, &connection->flags);
1889
1890 if (rv <= 0) {
1891 if (rv != -EAGAIN) {
1892 drbd_err(connection, "%s_sendmsg returned %d\n",
1893 sock == connection->meta.socket ? "msock" : "sock",
1894 rv);
1895 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1896 } else
1897 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1898 }
1899
1900 return sent;
1901 }
1902
1903 /**
1904 * drbd_send_all - Send an entire buffer
1905 *
1906 * Returns 0 upon success and a negative error value otherwise.
1907 */
1908 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1909 size_t size, unsigned msg_flags)
1910 {
1911 int err;
1912
1913 err = drbd_send(connection, sock, buffer, size, msg_flags);
1914 if (err < 0)
1915 return err;
1916 if (err != size)
1917 return -EIO;
1918 return 0;
1919 }
1920
1921 static int drbd_open(struct block_device *bdev, fmode_t mode)
1922 {
1923 struct drbd_device *device = bdev->bd_disk->private_data;
1924 unsigned long flags;
1925 int rv = 0;
1926
1927 mutex_lock(&drbd_main_mutex);
1928 spin_lock_irqsave(&device->resource->req_lock, flags);
1929 /* to have a stable device->state.role
1930 * and no race with updating open_cnt */
1931
1932 if (device->state.role != R_PRIMARY) {
1933 if (mode & FMODE_WRITE)
1934 rv = -EROFS;
1935 else if (!allow_oos)
1936 rv = -EMEDIUMTYPE;
1937 }
1938
1939 if (!rv)
1940 device->open_cnt++;
1941 spin_unlock_irqrestore(&device->resource->req_lock, flags);
1942 mutex_unlock(&drbd_main_mutex);
1943
1944 return rv;
1945 }
1946
1947 static void drbd_release(struct gendisk *gd, fmode_t mode)
1948 {
1949 struct drbd_device *device = gd->private_data;
1950 mutex_lock(&drbd_main_mutex);
1951 device->open_cnt--;
1952 mutex_unlock(&drbd_main_mutex);
1953 }
1954
1955 static void drbd_set_defaults(struct drbd_device *device)
1956 {
1957 /* Beware! The actual layout differs
1958 * between big endian and little endian */
1959 device->state = (union drbd_dev_state) {
1960 { .role = R_SECONDARY,
1961 .peer = R_UNKNOWN,
1962 .conn = C_STANDALONE,
1963 .disk = D_DISKLESS,
1964 .pdsk = D_UNKNOWN,
1965 } };
1966 }
1967
1968 void drbd_init_set_defaults(struct drbd_device *device)
1969 {
1970 /* the memset(,0,) did most of this.
1971 * note: only assignments, no allocation in here */
1972
1973 drbd_set_defaults(device);
1974
1975 atomic_set(&device->ap_bio_cnt, 0);
1976 atomic_set(&device->ap_actlog_cnt, 0);
1977 atomic_set(&device->ap_pending_cnt, 0);
1978 atomic_set(&device->rs_pending_cnt, 0);
1979 atomic_set(&device->unacked_cnt, 0);
1980 atomic_set(&device->local_cnt, 0);
1981 atomic_set(&device->pp_in_use_by_net, 0);
1982 atomic_set(&device->rs_sect_in, 0);
1983 atomic_set(&device->rs_sect_ev, 0);
1984 atomic_set(&device->ap_in_flight, 0);
1985 atomic_set(&device->md_io.in_use, 0);
1986
1987 mutex_init(&device->own_state_mutex);
1988 device->state_mutex = &device->own_state_mutex;
1989
1990 spin_lock_init(&device->al_lock);
1991 spin_lock_init(&device->peer_seq_lock);
1992
1993 INIT_LIST_HEAD(&device->active_ee);
1994 INIT_LIST_HEAD(&device->sync_ee);
1995 INIT_LIST_HEAD(&device->done_ee);
1996 INIT_LIST_HEAD(&device->read_ee);
1997 INIT_LIST_HEAD(&device->net_ee);
1998 INIT_LIST_HEAD(&device->resync_reads);
1999 INIT_LIST_HEAD(&device->resync_work.list);
2000 INIT_LIST_HEAD(&device->unplug_work.list);
2001 INIT_LIST_HEAD(&device->bm_io_work.w.list);
2002 INIT_LIST_HEAD(&device->pending_master_completion[0]);
2003 INIT_LIST_HEAD(&device->pending_master_completion[1]);
2004 INIT_LIST_HEAD(&device->pending_completion[0]);
2005 INIT_LIST_HEAD(&device->pending_completion[1]);
2006
2007 device->resync_work.cb = w_resync_timer;
2008 device->unplug_work.cb = w_send_write_hint;
2009 device->bm_io_work.w.cb = w_bitmap_io;
2010
2011 init_timer(&device->resync_timer);
2012 init_timer(&device->md_sync_timer);
2013 init_timer(&device->start_resync_timer);
2014 init_timer(&device->request_timer);
2015 device->resync_timer.function = resync_timer_fn;
2016 device->resync_timer.data = (unsigned long) device;
2017 device->md_sync_timer.function = md_sync_timer_fn;
2018 device->md_sync_timer.data = (unsigned long) device;
2019 device->start_resync_timer.function = start_resync_timer_fn;
2020 device->start_resync_timer.data = (unsigned long) device;
2021 device->request_timer.function = request_timer_fn;
2022 device->request_timer.data = (unsigned long) device;
2023
2024 init_waitqueue_head(&device->misc_wait);
2025 init_waitqueue_head(&device->state_wait);
2026 init_waitqueue_head(&device->ee_wait);
2027 init_waitqueue_head(&device->al_wait);
2028 init_waitqueue_head(&device->seq_wait);
2029
2030 device->resync_wenr = LC_FREE;
2031 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2032 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2033 }
2034
2035 void drbd_device_cleanup(struct drbd_device *device)
2036 {
2037 int i;
2038 if (first_peer_device(device)->connection->receiver.t_state != NONE)
2039 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2040 first_peer_device(device)->connection->receiver.t_state);
2041
2042 device->al_writ_cnt =
2043 device->bm_writ_cnt =
2044 device->read_cnt =
2045 device->recv_cnt =
2046 device->send_cnt =
2047 device->writ_cnt =
2048 device->p_size =
2049 device->rs_start =
2050 device->rs_total =
2051 device->rs_failed = 0;
2052 device->rs_last_events = 0;
2053 device->rs_last_sect_ev = 0;
2054 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2055 device->rs_mark_left[i] = 0;
2056 device->rs_mark_time[i] = 0;
2057 }
2058 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2059
2060 drbd_set_my_capacity(device, 0);
2061 if (device->bitmap) {
2062 /* maybe never allocated. */
2063 drbd_bm_resize(device, 0, 1);
2064 drbd_bm_cleanup(device);
2065 }
2066
2067 drbd_backing_dev_free(device, device->ldev);
2068 device->ldev = NULL;
2069
2070 clear_bit(AL_SUSPENDED, &device->flags);
2071
2072 D_ASSERT(device, list_empty(&device->active_ee));
2073 D_ASSERT(device, list_empty(&device->sync_ee));
2074 D_ASSERT(device, list_empty(&device->done_ee));
2075 D_ASSERT(device, list_empty(&device->read_ee));
2076 D_ASSERT(device, list_empty(&device->net_ee));
2077 D_ASSERT(device, list_empty(&device->resync_reads));
2078 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2079 D_ASSERT(device, list_empty(&device->resync_work.list));
2080 D_ASSERT(device, list_empty(&device->unplug_work.list));
2081
2082 drbd_set_defaults(device);
2083 }
2084
2085
2086 static void drbd_destroy_mempools(void)
2087 {
2088 struct page *page;
2089
2090 while (drbd_pp_pool) {
2091 page = drbd_pp_pool;
2092 drbd_pp_pool = (struct page *)page_private(page);
2093 __free_page(page);
2094 drbd_pp_vacant--;
2095 }
2096
2097 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2098
2099 if (drbd_io_bio_set)
2100 bioset_free(drbd_io_bio_set);
2101 if (drbd_md_io_bio_set)
2102 bioset_free(drbd_md_io_bio_set);
2103 if (drbd_md_io_page_pool)
2104 mempool_destroy(drbd_md_io_page_pool);
2105 if (drbd_ee_mempool)
2106 mempool_destroy(drbd_ee_mempool);
2107 if (drbd_request_mempool)
2108 mempool_destroy(drbd_request_mempool);
2109 if (drbd_ee_cache)
2110 kmem_cache_destroy(drbd_ee_cache);
2111 if (drbd_request_cache)
2112 kmem_cache_destroy(drbd_request_cache);
2113 if (drbd_bm_ext_cache)
2114 kmem_cache_destroy(drbd_bm_ext_cache);
2115 if (drbd_al_ext_cache)
2116 kmem_cache_destroy(drbd_al_ext_cache);
2117
2118 drbd_io_bio_set = NULL;
2119 drbd_md_io_bio_set = NULL;
2120 drbd_md_io_page_pool = NULL;
2121 drbd_ee_mempool = NULL;
2122 drbd_request_mempool = NULL;
2123 drbd_ee_cache = NULL;
2124 drbd_request_cache = NULL;
2125 drbd_bm_ext_cache = NULL;
2126 drbd_al_ext_cache = NULL;
2127
2128 return;
2129 }
2130
2131 static int drbd_create_mempools(void)
2132 {
2133 struct page *page;
2134 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2135 int i;
2136
2137 /* prepare our caches and mempools */
2138 drbd_request_mempool = NULL;
2139 drbd_ee_cache = NULL;
2140 drbd_request_cache = NULL;
2141 drbd_bm_ext_cache = NULL;
2142 drbd_al_ext_cache = NULL;
2143 drbd_pp_pool = NULL;
2144 drbd_md_io_page_pool = NULL;
2145 drbd_md_io_bio_set = NULL;
2146 drbd_io_bio_set = NULL;
2147
2148 /* caches */
2149 drbd_request_cache = kmem_cache_create(
2150 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2151 if (drbd_request_cache == NULL)
2152 goto Enomem;
2153
2154 drbd_ee_cache = kmem_cache_create(
2155 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2156 if (drbd_ee_cache == NULL)
2157 goto Enomem;
2158
2159 drbd_bm_ext_cache = kmem_cache_create(
2160 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2161 if (drbd_bm_ext_cache == NULL)
2162 goto Enomem;
2163
2164 drbd_al_ext_cache = kmem_cache_create(
2165 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2166 if (drbd_al_ext_cache == NULL)
2167 goto Enomem;
2168
2169 /* mempools */
2170 drbd_io_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_RESCUER);
2171 if (drbd_io_bio_set == NULL)
2172 goto Enomem;
2173
2174 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0,
2175 BIOSET_NEED_BVECS |
2176 BIOSET_NEED_RESCUER);
2177 if (drbd_md_io_bio_set == NULL)
2178 goto Enomem;
2179
2180 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2181 if (drbd_md_io_page_pool == NULL)
2182 goto Enomem;
2183
2184 drbd_request_mempool = mempool_create_slab_pool(number,
2185 drbd_request_cache);
2186 if (drbd_request_mempool == NULL)
2187 goto Enomem;
2188
2189 drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2190 if (drbd_ee_mempool == NULL)
2191 goto Enomem;
2192
2193 /* drbd's page pool */
2194 spin_lock_init(&drbd_pp_lock);
2195
2196 for (i = 0; i < number; i++) {
2197 page = alloc_page(GFP_HIGHUSER);
2198 if (!page)
2199 goto Enomem;
2200 set_page_private(page, (unsigned long)drbd_pp_pool);
2201 drbd_pp_pool = page;
2202 }
2203 drbd_pp_vacant = number;
2204
2205 return 0;
2206
2207 Enomem:
2208 drbd_destroy_mempools(); /* in case we allocated some */
2209 return -ENOMEM;
2210 }
2211
2212 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2213 {
2214 int rr;
2215
2216 rr = drbd_free_peer_reqs(device, &device->active_ee);
2217 if (rr)
2218 drbd_err(device, "%d EEs in active list found!\n", rr);
2219
2220 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2221 if (rr)
2222 drbd_err(device, "%d EEs in sync list found!\n", rr);
2223
2224 rr = drbd_free_peer_reqs(device, &device->read_ee);
2225 if (rr)
2226 drbd_err(device, "%d EEs in read list found!\n", rr);
2227
2228 rr = drbd_free_peer_reqs(device, &device->done_ee);
2229 if (rr)
2230 drbd_err(device, "%d EEs in done list found!\n", rr);
2231
2232 rr = drbd_free_peer_reqs(device, &device->net_ee);
2233 if (rr)
2234 drbd_err(device, "%d EEs in net list found!\n", rr);
2235 }
2236
2237 /* caution. no locking. */
2238 void drbd_destroy_device(struct kref *kref)
2239 {
2240 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2241 struct drbd_resource *resource = device->resource;
2242 struct drbd_peer_device *peer_device, *tmp_peer_device;
2243
2244 del_timer_sync(&device->request_timer);
2245
2246 /* paranoia asserts */
2247 D_ASSERT(device, device->open_cnt == 0);
2248 /* end paranoia asserts */
2249
2250 /* cleanup stuff that may have been allocated during
2251 * device (re-)configuration or state changes */
2252
2253 if (device->this_bdev)
2254 bdput(device->this_bdev);
2255
2256 drbd_backing_dev_free(device, device->ldev);
2257 device->ldev = NULL;
2258
2259 drbd_release_all_peer_reqs(device);
2260
2261 lc_destroy(device->act_log);
2262 lc_destroy(device->resync);
2263
2264 kfree(device->p_uuid);
2265 /* device->p_uuid = NULL; */
2266
2267 if (device->bitmap) /* should no longer be there. */
2268 drbd_bm_cleanup(device);
2269 __free_page(device->md_io.page);
2270 put_disk(device->vdisk);
2271 blk_cleanup_queue(device->rq_queue);
2272 kfree(device->rs_plan_s);
2273
2274 /* not for_each_connection(connection, resource):
2275 * those may have been cleaned up and disassociated already.
2276 */
2277 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2278 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2279 kfree(peer_device);
2280 }
2281 memset(device, 0xfd, sizeof(*device));
2282 kfree(device);
2283 kref_put(&resource->kref, drbd_destroy_resource);
2284 }
2285
2286 /* One global retry thread, if we need to push back some bio and have it
2287 * reinserted through our make request function.
2288 */
2289 static struct retry_worker {
2290 struct workqueue_struct *wq;
2291 struct work_struct worker;
2292
2293 spinlock_t lock;
2294 struct list_head writes;
2295 } retry;
2296
2297 static void do_retry(struct work_struct *ws)
2298 {
2299 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2300 LIST_HEAD(writes);
2301 struct drbd_request *req, *tmp;
2302
2303 spin_lock_irq(&retry->lock);
2304 list_splice_init(&retry->writes, &writes);
2305 spin_unlock_irq(&retry->lock);
2306
2307 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2308 struct drbd_device *device = req->device;
2309 struct bio *bio = req->master_bio;
2310 unsigned long start_jif = req->start_jif;
2311 bool expected;
2312
2313 expected =
2314 expect(atomic_read(&req->completion_ref) == 0) &&
2315 expect(req->rq_state & RQ_POSTPONED) &&
2316 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2317 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2318
2319 if (!expected)
2320 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2321 req, atomic_read(&req->completion_ref),
2322 req->rq_state);
2323
2324 /* We still need to put one kref associated with the
2325 * "completion_ref" going zero in the code path that queued it
2326 * here. The request object may still be referenced by a
2327 * frozen local req->private_bio, in case we force-detached.
2328 */
2329 kref_put(&req->kref, drbd_req_destroy);
2330
2331 /* A single suspended or otherwise blocking device may stall
2332 * all others as well. Fortunately, this code path is to
2333 * recover from a situation that "should not happen":
2334 * concurrent writes in multi-primary setup.
2335 * In a "normal" lifecycle, this workqueue is supposed to be
2336 * destroyed without ever doing anything.
2337 * If it turns out to be an issue anyways, we can do per
2338 * resource (replication group) or per device (minor) retry
2339 * workqueues instead.
2340 */
2341
2342 /* We are not just doing generic_make_request(),
2343 * as we want to keep the start_time information. */
2344 inc_ap_bio(device);
2345 __drbd_make_request(device, bio, start_jif);
2346 }
2347 }
2348
2349 /* called via drbd_req_put_completion_ref(),
2350 * holds resource->req_lock */
2351 void drbd_restart_request(struct drbd_request *req)
2352 {
2353 unsigned long flags;
2354 spin_lock_irqsave(&retry.lock, flags);
2355 list_move_tail(&req->tl_requests, &retry.writes);
2356 spin_unlock_irqrestore(&retry.lock, flags);
2357
2358 /* Drop the extra reference that would otherwise
2359 * have been dropped by complete_master_bio.
2360 * do_retry() needs to grab a new one. */
2361 dec_ap_bio(req->device);
2362
2363 queue_work(retry.wq, &retry.worker);
2364 }
2365
2366 void drbd_destroy_resource(struct kref *kref)
2367 {
2368 struct drbd_resource *resource =
2369 container_of(kref, struct drbd_resource, kref);
2370
2371 idr_destroy(&resource->devices);
2372 free_cpumask_var(resource->cpu_mask);
2373 kfree(resource->name);
2374 memset(resource, 0xf2, sizeof(*resource));
2375 kfree(resource);
2376 }
2377
2378 void drbd_free_resource(struct drbd_resource *resource)
2379 {
2380 struct drbd_connection *connection, *tmp;
2381
2382 for_each_connection_safe(connection, tmp, resource) {
2383 list_del(&connection->connections);
2384 drbd_debugfs_connection_cleanup(connection);
2385 kref_put(&connection->kref, drbd_destroy_connection);
2386 }
2387 drbd_debugfs_resource_cleanup(resource);
2388 kref_put(&resource->kref, drbd_destroy_resource);
2389 }
2390
2391 static void drbd_cleanup(void)
2392 {
2393 unsigned int i;
2394 struct drbd_device *device;
2395 struct drbd_resource *resource, *tmp;
2396
2397 /* first remove proc,
2398 * drbdsetup uses it's presence to detect
2399 * whether DRBD is loaded.
2400 * If we would get stuck in proc removal,
2401 * but have netlink already deregistered,
2402 * some drbdsetup commands may wait forever
2403 * for an answer.
2404 */
2405 if (drbd_proc)
2406 remove_proc_entry("drbd", NULL);
2407
2408 if (retry.wq)
2409 destroy_workqueue(retry.wq);
2410
2411 drbd_genl_unregister();
2412 drbd_debugfs_cleanup();
2413
2414 idr_for_each_entry(&drbd_devices, device, i)
2415 drbd_delete_device(device);
2416
2417 /* not _rcu since, no other updater anymore. Genl already unregistered */
2418 for_each_resource_safe(resource, tmp, &drbd_resources) {
2419 list_del(&resource->resources);
2420 drbd_free_resource(resource);
2421 }
2422
2423 drbd_destroy_mempools();
2424 unregister_blkdev(DRBD_MAJOR, "drbd");
2425
2426 idr_destroy(&drbd_devices);
2427
2428 pr_info("module cleanup done.\n");
2429 }
2430
2431 /**
2432 * drbd_congested() - Callback for the flusher thread
2433 * @congested_data: User data
2434 * @bdi_bits: Bits the BDI flusher thread is currently interested in
2435 *
2436 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2437 */
2438 static int drbd_congested(void *congested_data, int bdi_bits)
2439 {
2440 struct drbd_device *device = congested_data;
2441 struct request_queue *q;
2442 char reason = '-';
2443 int r = 0;
2444
2445 if (!may_inc_ap_bio(device)) {
2446 /* DRBD has frozen IO */
2447 r = bdi_bits;
2448 reason = 'd';
2449 goto out;
2450 }
2451
2452 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2453 r |= (1 << WB_async_congested);
2454 /* Without good local data, we would need to read from remote,
2455 * and that would need the worker thread as well, which is
2456 * currently blocked waiting for that usermode helper to
2457 * finish.
2458 */
2459 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2460 r |= (1 << WB_sync_congested);
2461 else
2462 put_ldev(device);
2463 r &= bdi_bits;
2464 reason = 'c';
2465 goto out;
2466 }
2467
2468 if (get_ldev(device)) {
2469 q = bdev_get_queue(device->ldev->backing_bdev);
2470 r = bdi_congested(q->backing_dev_info, bdi_bits);
2471 put_ldev(device);
2472 if (r)
2473 reason = 'b';
2474 }
2475
2476 if (bdi_bits & (1 << WB_async_congested) &&
2477 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2478 r |= (1 << WB_async_congested);
2479 reason = reason == 'b' ? 'a' : 'n';
2480 }
2481
2482 out:
2483 device->congestion_reason = reason;
2484 return r;
2485 }
2486
2487 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2488 {
2489 spin_lock_init(&wq->q_lock);
2490 INIT_LIST_HEAD(&wq->q);
2491 init_waitqueue_head(&wq->q_wait);
2492 }
2493
2494 struct completion_work {
2495 struct drbd_work w;
2496 struct completion done;
2497 };
2498
2499 static int w_complete(struct drbd_work *w, int cancel)
2500 {
2501 struct completion_work *completion_work =
2502 container_of(w, struct completion_work, w);
2503
2504 complete(&completion_work->done);
2505 return 0;
2506 }
2507
2508 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2509 {
2510 struct completion_work completion_work;
2511
2512 completion_work.w.cb = w_complete;
2513 init_completion(&completion_work.done);
2514 drbd_queue_work(work_queue, &completion_work.w);
2515 wait_for_completion(&completion_work.done);
2516 }
2517
2518 struct drbd_resource *drbd_find_resource(const char *name)
2519 {
2520 struct drbd_resource *resource;
2521
2522 if (!name || !name[0])
2523 return NULL;
2524
2525 rcu_read_lock();
2526 for_each_resource_rcu(resource, &drbd_resources) {
2527 if (!strcmp(resource->name, name)) {
2528 kref_get(&resource->kref);
2529 goto found;
2530 }
2531 }
2532 resource = NULL;
2533 found:
2534 rcu_read_unlock();
2535 return resource;
2536 }
2537
2538 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2539 void *peer_addr, int peer_addr_len)
2540 {
2541 struct drbd_resource *resource;
2542 struct drbd_connection *connection;
2543
2544 rcu_read_lock();
2545 for_each_resource_rcu(resource, &drbd_resources) {
2546 for_each_connection_rcu(connection, resource) {
2547 if (connection->my_addr_len == my_addr_len &&
2548 connection->peer_addr_len == peer_addr_len &&
2549 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2550 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2551 kref_get(&connection->kref);
2552 goto found;
2553 }
2554 }
2555 }
2556 connection = NULL;
2557 found:
2558 rcu_read_unlock();
2559 return connection;
2560 }
2561
2562 static int drbd_alloc_socket(struct drbd_socket *socket)
2563 {
2564 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2565 if (!socket->rbuf)
2566 return -ENOMEM;
2567 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2568 if (!socket->sbuf)
2569 return -ENOMEM;
2570 return 0;
2571 }
2572
2573 static void drbd_free_socket(struct drbd_socket *socket)
2574 {
2575 free_page((unsigned long) socket->sbuf);
2576 free_page((unsigned long) socket->rbuf);
2577 }
2578
2579 void conn_free_crypto(struct drbd_connection *connection)
2580 {
2581 drbd_free_sock(connection);
2582
2583 crypto_free_ahash(connection->csums_tfm);
2584 crypto_free_ahash(connection->verify_tfm);
2585 crypto_free_shash(connection->cram_hmac_tfm);
2586 crypto_free_ahash(connection->integrity_tfm);
2587 crypto_free_ahash(connection->peer_integrity_tfm);
2588 kfree(connection->int_dig_in);
2589 kfree(connection->int_dig_vv);
2590
2591 connection->csums_tfm = NULL;
2592 connection->verify_tfm = NULL;
2593 connection->cram_hmac_tfm = NULL;
2594 connection->integrity_tfm = NULL;
2595 connection->peer_integrity_tfm = NULL;
2596 connection->int_dig_in = NULL;
2597 connection->int_dig_vv = NULL;
2598 }
2599
2600 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2601 {
2602 struct drbd_connection *connection;
2603 cpumask_var_t new_cpu_mask;
2604 int err;
2605
2606 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2607 return -ENOMEM;
2608
2609 /* silently ignore cpu mask on UP kernel */
2610 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2611 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2612 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2613 if (err == -EOVERFLOW) {
2614 /* So what. mask it out. */
2615 cpumask_var_t tmp_cpu_mask;
2616 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2617 cpumask_setall(tmp_cpu_mask);
2618 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2619 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2620 res_opts->cpu_mask,
2621 strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2622 nr_cpu_ids);
2623 free_cpumask_var(tmp_cpu_mask);
2624 err = 0;
2625 }
2626 }
2627 if (err) {
2628 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2629 /* retcode = ERR_CPU_MASK_PARSE; */
2630 goto fail;
2631 }
2632 }
2633 resource->res_opts = *res_opts;
2634 if (cpumask_empty(new_cpu_mask))
2635 drbd_calc_cpu_mask(&new_cpu_mask);
2636 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2637 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2638 for_each_connection_rcu(connection, resource) {
2639 connection->receiver.reset_cpu_mask = 1;
2640 connection->ack_receiver.reset_cpu_mask = 1;
2641 connection->worker.reset_cpu_mask = 1;
2642 }
2643 }
2644 err = 0;
2645
2646 fail:
2647 free_cpumask_var(new_cpu_mask);
2648 return err;
2649
2650 }
2651
2652 struct drbd_resource *drbd_create_resource(const char *name)
2653 {
2654 struct drbd_resource *resource;
2655
2656 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2657 if (!resource)
2658 goto fail;
2659 resource->name = kstrdup(name, GFP_KERNEL);
2660 if (!resource->name)
2661 goto fail_free_resource;
2662 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2663 goto fail_free_name;
2664 kref_init(&resource->kref);
2665 idr_init(&resource->devices);
2666 INIT_LIST_HEAD(&resource->connections);
2667 resource->write_ordering = WO_BDEV_FLUSH;
2668 list_add_tail_rcu(&resource->resources, &drbd_resources);
2669 mutex_init(&resource->conf_update);
2670 mutex_init(&resource->adm_mutex);
2671 spin_lock_init(&resource->req_lock);
2672 drbd_debugfs_resource_add(resource);
2673 return resource;
2674
2675 fail_free_name:
2676 kfree(resource->name);
2677 fail_free_resource:
2678 kfree(resource);
2679 fail:
2680 return NULL;
2681 }
2682
2683 /* caller must be under adm_mutex */
2684 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2685 {
2686 struct drbd_resource *resource;
2687 struct drbd_connection *connection;
2688
2689 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2690 if (!connection)
2691 return NULL;
2692
2693 if (drbd_alloc_socket(&connection->data))
2694 goto fail;
2695 if (drbd_alloc_socket(&connection->meta))
2696 goto fail;
2697
2698 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2699 if (!connection->current_epoch)
2700 goto fail;
2701
2702 INIT_LIST_HEAD(&connection->transfer_log);
2703
2704 INIT_LIST_HEAD(&connection->current_epoch->list);
2705 connection->epochs = 1;
2706 spin_lock_init(&connection->epoch_lock);
2707
2708 connection->send.seen_any_write_yet = false;
2709 connection->send.current_epoch_nr = 0;
2710 connection->send.current_epoch_writes = 0;
2711
2712 resource = drbd_create_resource(name);
2713 if (!resource)
2714 goto fail;
2715
2716 connection->cstate = C_STANDALONE;
2717 mutex_init(&connection->cstate_mutex);
2718 init_waitqueue_head(&connection->ping_wait);
2719 idr_init(&connection->peer_devices);
2720
2721 drbd_init_workqueue(&connection->sender_work);
2722 mutex_init(&connection->data.mutex);
2723 mutex_init(&connection->meta.mutex);
2724
2725 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2726 connection->receiver.connection = connection;
2727 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2728 connection->worker.connection = connection;
2729 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2730 connection->ack_receiver.connection = connection;
2731
2732 kref_init(&connection->kref);
2733
2734 connection->resource = resource;
2735
2736 if (set_resource_options(resource, res_opts))
2737 goto fail_resource;
2738
2739 kref_get(&resource->kref);
2740 list_add_tail_rcu(&connection->connections, &resource->connections);
2741 drbd_debugfs_connection_add(connection);
2742 return connection;
2743
2744 fail_resource:
2745 list_del(&resource->resources);
2746 drbd_free_resource(resource);
2747 fail:
2748 kfree(connection->current_epoch);
2749 drbd_free_socket(&connection->meta);
2750 drbd_free_socket(&connection->data);
2751 kfree(connection);
2752 return NULL;
2753 }
2754
2755 void drbd_destroy_connection(struct kref *kref)
2756 {
2757 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2758 struct drbd_resource *resource = connection->resource;
2759
2760 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2761 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2762 kfree(connection->current_epoch);
2763
2764 idr_destroy(&connection->peer_devices);
2765
2766 drbd_free_socket(&connection->meta);
2767 drbd_free_socket(&connection->data);
2768 kfree(connection->int_dig_in);
2769 kfree(connection->int_dig_vv);
2770 memset(connection, 0xfc, sizeof(*connection));
2771 kfree(connection);
2772 kref_put(&resource->kref, drbd_destroy_resource);
2773 }
2774
2775 static int init_submitter(struct drbd_device *device)
2776 {
2777 /* opencoded create_singlethread_workqueue(),
2778 * to be able to say "drbd%d", ..., minor */
2779 device->submit.wq =
2780 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2781 if (!device->submit.wq)
2782 return -ENOMEM;
2783
2784 INIT_WORK(&device->submit.worker, do_submit);
2785 INIT_LIST_HEAD(&device->submit.writes);
2786 return 0;
2787 }
2788
2789 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2790 {
2791 struct drbd_resource *resource = adm_ctx->resource;
2792 struct drbd_connection *connection;
2793 struct drbd_device *device;
2794 struct drbd_peer_device *peer_device, *tmp_peer_device;
2795 struct gendisk *disk;
2796 struct request_queue *q;
2797 int id;
2798 int vnr = adm_ctx->volume;
2799 enum drbd_ret_code err = ERR_NOMEM;
2800
2801 device = minor_to_device(minor);
2802 if (device)
2803 return ERR_MINOR_OR_VOLUME_EXISTS;
2804
2805 /* GFP_KERNEL, we are outside of all write-out paths */
2806 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2807 if (!device)
2808 return ERR_NOMEM;
2809 kref_init(&device->kref);
2810
2811 kref_get(&resource->kref);
2812 device->resource = resource;
2813 device->minor = minor;
2814 device->vnr = vnr;
2815
2816 drbd_init_set_defaults(device);
2817
2818 q = blk_alloc_queue(GFP_KERNEL);
2819 if (!q)
2820 goto out_no_q;
2821 device->rq_queue = q;
2822 q->queuedata = device;
2823
2824 disk = alloc_disk(1);
2825 if (!disk)
2826 goto out_no_disk;
2827 device->vdisk = disk;
2828
2829 set_disk_ro(disk, true);
2830
2831 disk->queue = q;
2832 disk->major = DRBD_MAJOR;
2833 disk->first_minor = minor;
2834 disk->fops = &drbd_ops;
2835 sprintf(disk->disk_name, "drbd%d", minor);
2836 disk->private_data = device;
2837
2838 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2839 /* we have no partitions. we contain only ourselves. */
2840 device->this_bdev->bd_contains = device->this_bdev;
2841
2842 q->backing_dev_info->congested_fn = drbd_congested;
2843 q->backing_dev_info->congested_data = device;
2844
2845 blk_queue_make_request(q, drbd_make_request);
2846 blk_queue_write_cache(q, true, true);
2847 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2848 This triggers a max_bio_size message upon first attach or connect */
2849 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2850 q->queue_lock = &resource->req_lock;
2851
2852 device->md_io.page = alloc_page(GFP_KERNEL);
2853 if (!device->md_io.page)
2854 goto out_no_io_page;
2855
2856 if (drbd_bm_init(device))
2857 goto out_no_bitmap;
2858 device->read_requests = RB_ROOT;
2859 device->write_requests = RB_ROOT;
2860
2861 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2862 if (id < 0) {
2863 if (id == -ENOSPC)
2864 err = ERR_MINOR_OR_VOLUME_EXISTS;
2865 goto out_no_minor_idr;
2866 }
2867 kref_get(&device->kref);
2868
2869 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2870 if (id < 0) {
2871 if (id == -ENOSPC)
2872 err = ERR_MINOR_OR_VOLUME_EXISTS;
2873 goto out_idr_remove_minor;
2874 }
2875 kref_get(&device->kref);
2876
2877 INIT_LIST_HEAD(&device->peer_devices);
2878 INIT_LIST_HEAD(&device->pending_bitmap_io);
2879 for_each_connection(connection, resource) {
2880 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2881 if (!peer_device)
2882 goto out_idr_remove_from_resource;
2883 peer_device->connection = connection;
2884 peer_device->device = device;
2885
2886 list_add(&peer_device->peer_devices, &device->peer_devices);
2887 kref_get(&device->kref);
2888
2889 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2890 if (id < 0) {
2891 if (id == -ENOSPC)
2892 err = ERR_INVALID_REQUEST;
2893 goto out_idr_remove_from_resource;
2894 }
2895 kref_get(&connection->kref);
2896 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2897 }
2898
2899 if (init_submitter(device)) {
2900 err = ERR_NOMEM;
2901 goto out_idr_remove_vol;
2902 }
2903
2904 add_disk(disk);
2905
2906 /* inherit the connection state */
2907 device->state.conn = first_connection(resource)->cstate;
2908 if (device->state.conn == C_WF_REPORT_PARAMS) {
2909 for_each_peer_device(peer_device, device)
2910 drbd_connected(peer_device);
2911 }
2912 /* move to create_peer_device() */
2913 for_each_peer_device(peer_device, device)
2914 drbd_debugfs_peer_device_add(peer_device);
2915 drbd_debugfs_device_add(device);
2916 return NO_ERROR;
2917
2918 out_idr_remove_vol:
2919 idr_remove(&connection->peer_devices, vnr);
2920 out_idr_remove_from_resource:
2921 for_each_connection(connection, resource) {
2922 peer_device = idr_remove(&connection->peer_devices, vnr);
2923 if (peer_device)
2924 kref_put(&connection->kref, drbd_destroy_connection);
2925 }
2926 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2927 list_del(&peer_device->peer_devices);
2928 kfree(peer_device);
2929 }
2930 idr_remove(&resource->devices, vnr);
2931 out_idr_remove_minor:
2932 idr_remove(&drbd_devices, minor);
2933 synchronize_rcu();
2934 out_no_minor_idr:
2935 drbd_bm_cleanup(device);
2936 out_no_bitmap:
2937 __free_page(device->md_io.page);
2938 out_no_io_page:
2939 put_disk(disk);
2940 out_no_disk:
2941 blk_cleanup_queue(q);
2942 out_no_q:
2943 kref_put(&resource->kref, drbd_destroy_resource);
2944 kfree(device);
2945 return err;
2946 }
2947
2948 void drbd_delete_device(struct drbd_device *device)
2949 {
2950 struct drbd_resource *resource = device->resource;
2951 struct drbd_connection *connection;
2952 struct drbd_peer_device *peer_device;
2953
2954 /* move to free_peer_device() */
2955 for_each_peer_device(peer_device, device)
2956 drbd_debugfs_peer_device_cleanup(peer_device);
2957 drbd_debugfs_device_cleanup(device);
2958 for_each_connection(connection, resource) {
2959 idr_remove(&connection->peer_devices, device->vnr);
2960 kref_put(&device->kref, drbd_destroy_device);
2961 }
2962 idr_remove(&resource->devices, device->vnr);
2963 kref_put(&device->kref, drbd_destroy_device);
2964 idr_remove(&drbd_devices, device_to_minor(device));
2965 kref_put(&device->kref, drbd_destroy_device);
2966 del_gendisk(device->vdisk);
2967 synchronize_rcu();
2968 kref_put(&device->kref, drbd_destroy_device);
2969 }
2970
2971 static int __init drbd_init(void)
2972 {
2973 int err;
2974
2975 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2976 pr_err("invalid minor_count (%d)\n", minor_count);
2977 #ifdef MODULE
2978 return -EINVAL;
2979 #else
2980 minor_count = DRBD_MINOR_COUNT_DEF;
2981 #endif
2982 }
2983
2984 err = register_blkdev(DRBD_MAJOR, "drbd");
2985 if (err) {
2986 pr_err("unable to register block device major %d\n",
2987 DRBD_MAJOR);
2988 return err;
2989 }
2990
2991 /*
2992 * allocate all necessary structs
2993 */
2994 init_waitqueue_head(&drbd_pp_wait);
2995
2996 drbd_proc = NULL; /* play safe for drbd_cleanup */
2997 idr_init(&drbd_devices);
2998
2999 mutex_init(&resources_mutex);
3000 INIT_LIST_HEAD(&drbd_resources);
3001
3002 err = drbd_genl_register();
3003 if (err) {
3004 pr_err("unable to register generic netlink family\n");
3005 goto fail;
3006 }
3007
3008 err = drbd_create_mempools();
3009 if (err)
3010 goto fail;
3011
3012 err = -ENOMEM;
3013 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
3014 if (!drbd_proc) {
3015 pr_err("unable to register proc file\n");
3016 goto fail;
3017 }
3018
3019 retry.wq = create_singlethread_workqueue("drbd-reissue");
3020 if (!retry.wq) {
3021 pr_err("unable to create retry workqueue\n");
3022 goto fail;
3023 }
3024 INIT_WORK(&retry.worker, do_retry);
3025 spin_lock_init(&retry.lock);
3026 INIT_LIST_HEAD(&retry.writes);
3027
3028 if (drbd_debugfs_init())
3029 pr_notice("failed to initialize debugfs -- will not be available\n");
3030
3031 pr_info("initialized. "
3032 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3033 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3034 pr_info("%s\n", drbd_buildtag());
3035 pr_info("registered as block device major %d\n", DRBD_MAJOR);
3036 return 0; /* Success! */
3037
3038 fail:
3039 drbd_cleanup();
3040 if (err == -ENOMEM)
3041 pr_err("ran out of memory\n");
3042 else
3043 pr_err("initialization failure\n");
3044 return err;
3045 }
3046
3047 static void drbd_free_one_sock(struct drbd_socket *ds)
3048 {
3049 struct socket *s;
3050 mutex_lock(&ds->mutex);
3051 s = ds->socket;
3052 ds->socket = NULL;
3053 mutex_unlock(&ds->mutex);
3054 if (s) {
3055 /* so debugfs does not need to mutex_lock() */
3056 synchronize_rcu();
3057 kernel_sock_shutdown(s, SHUT_RDWR);
3058 sock_release(s);
3059 }
3060 }
3061
3062 void drbd_free_sock(struct drbd_connection *connection)
3063 {
3064 if (connection->data.socket)
3065 drbd_free_one_sock(&connection->data);
3066 if (connection->meta.socket)
3067 drbd_free_one_sock(&connection->meta);
3068 }
3069
3070 /* meta data management */
3071
3072 void conn_md_sync(struct drbd_connection *connection)
3073 {
3074 struct drbd_peer_device *peer_device;
3075 int vnr;
3076
3077 rcu_read_lock();
3078 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3079 struct drbd_device *device = peer_device->device;
3080
3081 kref_get(&device->kref);
3082 rcu_read_unlock();
3083 drbd_md_sync(device);
3084 kref_put(&device->kref, drbd_destroy_device);
3085 rcu_read_lock();
3086 }
3087 rcu_read_unlock();
3088 }
3089
3090 /* aligned 4kByte */
3091 struct meta_data_on_disk {
3092 u64 la_size_sect; /* last agreed size. */
3093 u64 uuid[UI_SIZE]; /* UUIDs. */
3094 u64 device_uuid;
3095 u64 reserved_u64_1;
3096 u32 flags; /* MDF */
3097 u32 magic;
3098 u32 md_size_sect;
3099 u32 al_offset; /* offset to this block */
3100 u32 al_nr_extents; /* important for restoring the AL (userspace) */
3101 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3102 u32 bm_offset; /* offset to the bitmap, from here */
3103 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
3104 u32 la_peer_max_bio_size; /* last peer max_bio_size */
3105
3106 /* see al_tr_number_to_on_disk_sector() */
3107 u32 al_stripes;
3108 u32 al_stripe_size_4k;
3109
3110 u8 reserved_u8[4096 - (7*8 + 10*4)];
3111 } __packed;
3112
3113
3114
3115 void drbd_md_write(struct drbd_device *device, void *b)
3116 {
3117 struct meta_data_on_disk *buffer = b;
3118 sector_t sector;
3119 int i;
3120
3121 memset(buffer, 0, sizeof(*buffer));
3122
3123 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3124 for (i = UI_CURRENT; i < UI_SIZE; i++)
3125 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3126 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3127 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3128
3129 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3130 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3131 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3132 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3133 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3134
3135 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3136 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3137
3138 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3139 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3140
3141 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3142 sector = device->ldev->md.md_offset;
3143
3144 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3145 /* this was a try anyways ... */
3146 drbd_err(device, "meta data update failed!\n");
3147 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3148 }
3149 }
3150
3151 /**
3152 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3153 * @device: DRBD device.
3154 */
3155 void drbd_md_sync(struct drbd_device *device)
3156 {
3157 struct meta_data_on_disk *buffer;
3158
3159 /* Don't accidentally change the DRBD meta data layout. */
3160 BUILD_BUG_ON(UI_SIZE != 4);
3161 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3162
3163 del_timer(&device->md_sync_timer);
3164 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3165 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3166 return;
3167
3168 /* We use here D_FAILED and not D_ATTACHING because we try to write
3169 * metadata even if we detach due to a disk failure! */
3170 if (!get_ldev_if_state(device, D_FAILED))
3171 return;
3172
3173 buffer = drbd_md_get_buffer(device, __func__);
3174 if (!buffer)
3175 goto out;
3176
3177 drbd_md_write(device, buffer);
3178
3179 /* Update device->ldev->md.la_size_sect,
3180 * since we updated it on metadata. */
3181 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3182
3183 drbd_md_put_buffer(device);
3184 out:
3185 put_ldev(device);
3186 }
3187
3188 static int check_activity_log_stripe_size(struct drbd_device *device,
3189 struct meta_data_on_disk *on_disk,
3190 struct drbd_md *in_core)
3191 {
3192 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3193 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3194 u64 al_size_4k;
3195
3196 /* both not set: default to old fixed size activity log */
3197 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3198 al_stripes = 1;
3199 al_stripe_size_4k = MD_32kB_SECT/8;
3200 }
3201
3202 /* some paranoia plausibility checks */
3203
3204 /* we need both values to be set */
3205 if (al_stripes == 0 || al_stripe_size_4k == 0)
3206 goto err;
3207
3208 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3209
3210 /* Upper limit of activity log area, to avoid potential overflow
3211 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3212 * than 72 * 4k blocks total only increases the amount of history,
3213 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3214 if (al_size_4k > (16 * 1024 * 1024/4))
3215 goto err;
3216
3217 /* Lower limit: we need at least 8 transaction slots (32kB)
3218 * to not break existing setups */
3219 if (al_size_4k < MD_32kB_SECT/8)
3220 goto err;
3221
3222 in_core->al_stripe_size_4k = al_stripe_size_4k;
3223 in_core->al_stripes = al_stripes;
3224 in_core->al_size_4k = al_size_4k;
3225
3226 return 0;
3227 err:
3228 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3229 al_stripes, al_stripe_size_4k);
3230 return -EINVAL;
3231 }
3232
3233 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3234 {
3235 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3236 struct drbd_md *in_core = &bdev->md;
3237 s32 on_disk_al_sect;
3238 s32 on_disk_bm_sect;
3239
3240 /* The on-disk size of the activity log, calculated from offsets, and
3241 * the size of the activity log calculated from the stripe settings,
3242 * should match.
3243 * Though we could relax this a bit: it is ok, if the striped activity log
3244 * fits in the available on-disk activity log size.
3245 * Right now, that would break how resize is implemented.
3246 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3247 * of possible unused padding space in the on disk layout. */
3248 if (in_core->al_offset < 0) {
3249 if (in_core->bm_offset > in_core->al_offset)
3250 goto err;
3251 on_disk_al_sect = -in_core->al_offset;
3252 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3253 } else {
3254 if (in_core->al_offset != MD_4kB_SECT)
3255 goto err;
3256 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3257 goto err;
3258
3259 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3260 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3261 }
3262
3263 /* old fixed size meta data is exactly that: fixed. */
3264 if (in_core->meta_dev_idx >= 0) {
3265 if (in_core->md_size_sect != MD_128MB_SECT
3266 || in_core->al_offset != MD_4kB_SECT
3267 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3268 || in_core->al_stripes != 1
3269 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3270 goto err;
3271 }
3272
3273 if (capacity < in_core->md_size_sect)
3274 goto err;
3275 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3276 goto err;
3277
3278 /* should be aligned, and at least 32k */
3279 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3280 goto err;
3281
3282 /* should fit (for now: exactly) into the available on-disk space;
3283 * overflow prevention is in check_activity_log_stripe_size() above. */
3284 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3285 goto err;
3286
3287 /* again, should be aligned */
3288 if (in_core->bm_offset & 7)
3289 goto err;
3290
3291 /* FIXME check for device grow with flex external meta data? */
3292
3293 /* can the available bitmap space cover the last agreed device size? */
3294 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3295 goto err;
3296
3297 return 0;
3298
3299 err:
3300 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3301 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3302 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3303 in_core->meta_dev_idx,
3304 in_core->al_stripes, in_core->al_stripe_size_4k,
3305 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3306 (unsigned long long)in_core->la_size_sect,
3307 (unsigned long long)capacity);
3308
3309 return -EINVAL;
3310 }
3311
3312
3313 /**
3314 * drbd_md_read() - Reads in the meta data super block
3315 * @device: DRBD device.
3316 * @bdev: Device from which the meta data should be read in.
3317 *
3318 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3319 * something goes wrong.
3320 *
3321 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3322 * even before @bdev is assigned to @device->ldev.
3323 */
3324 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3325 {
3326 struct meta_data_on_disk *buffer;
3327 u32 magic, flags;
3328 int i, rv = NO_ERROR;
3329
3330 if (device->state.disk != D_DISKLESS)
3331 return ERR_DISK_CONFIGURED;
3332
3333 buffer = drbd_md_get_buffer(device, __func__);
3334 if (!buffer)
3335 return ERR_NOMEM;
3336
3337 /* First, figure out where our meta data superblock is located,
3338 * and read it. */
3339 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3340 bdev->md.md_offset = drbd_md_ss(bdev);
3341 /* Even for (flexible or indexed) external meta data,
3342 * initially restrict us to the 4k superblock for now.
3343 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3344 bdev->md.md_size_sect = 8;
3345
3346 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3347 REQ_OP_READ)) {
3348 /* NOTE: can't do normal error processing here as this is
3349 called BEFORE disk is attached */
3350 drbd_err(device, "Error while reading metadata.\n");
3351 rv = ERR_IO_MD_DISK;
3352 goto err;
3353 }
3354
3355 magic = be32_to_cpu(buffer->magic);
3356 flags = be32_to_cpu(buffer->flags);
3357 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3358 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3359 /* btw: that's Activity Log clean, not "all" clean. */
3360 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3361 rv = ERR_MD_UNCLEAN;
3362 goto err;
3363 }
3364
3365 rv = ERR_MD_INVALID;
3366 if (magic != DRBD_MD_MAGIC_08) {
3367 if (magic == DRBD_MD_MAGIC_07)
3368 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3369 else
3370 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3371 goto err;
3372 }
3373
3374 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3375 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3376 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3377 goto err;
3378 }
3379
3380
3381 /* convert to in_core endian */
3382 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3383 for (i = UI_CURRENT; i < UI_SIZE; i++)
3384 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3385 bdev->md.flags = be32_to_cpu(buffer->flags);
3386 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3387
3388 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3389 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3390 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3391
3392 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3393 goto err;
3394 if (check_offsets_and_sizes(device, bdev))
3395 goto err;
3396
3397 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3398 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3399 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3400 goto err;
3401 }
3402 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3403 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3404 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3405 goto err;
3406 }
3407
3408 rv = NO_ERROR;
3409
3410 spin_lock_irq(&device->resource->req_lock);
3411 if (device->state.conn < C_CONNECTED) {
3412 unsigned int peer;
3413 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3414 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3415 device->peer_max_bio_size = peer;
3416 }
3417 spin_unlock_irq(&device->resource->req_lock);
3418
3419 err:
3420 drbd_md_put_buffer(device);
3421
3422 return rv;
3423 }
3424
3425 /**
3426 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3427 * @device: DRBD device.
3428 *
3429 * Call this function if you change anything that should be written to
3430 * the meta-data super block. This function sets MD_DIRTY, and starts a
3431 * timer that ensures that within five seconds you have to call drbd_md_sync().
3432 */
3433 #ifdef DEBUG
3434 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3435 {
3436 if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3437 mod_timer(&device->md_sync_timer, jiffies + HZ);
3438 device->last_md_mark_dirty.line = line;
3439 device->last_md_mark_dirty.func = func;
3440 }
3441 }
3442 #else
3443 void drbd_md_mark_dirty(struct drbd_device *device)
3444 {
3445 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3446 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3447 }
3448 #endif
3449
3450 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3451 {
3452 int i;
3453
3454 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3455 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3456 }
3457
3458 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3459 {
3460 if (idx == UI_CURRENT) {
3461 if (device->state.role == R_PRIMARY)
3462 val |= 1;
3463 else
3464 val &= ~((u64)1);
3465
3466 drbd_set_ed_uuid(device, val);
3467 }
3468
3469 device->ldev->md.uuid[idx] = val;
3470 drbd_md_mark_dirty(device);
3471 }
3472
3473 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3474 {
3475 unsigned long flags;
3476 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3477 __drbd_uuid_set(device, idx, val);
3478 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3479 }
3480
3481 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3482 {
3483 unsigned long flags;
3484 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3485 if (device->ldev->md.uuid[idx]) {
3486 drbd_uuid_move_history(device);
3487 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3488 }
3489 __drbd_uuid_set(device, idx, val);
3490 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3491 }
3492
3493 /**
3494 * drbd_uuid_new_current() - Creates a new current UUID
3495 * @device: DRBD device.
3496 *
3497 * Creates a new current UUID, and rotates the old current UUID into
3498 * the bitmap slot. Causes an incremental resync upon next connect.
3499 */
3500 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3501 {
3502 u64 val;
3503 unsigned long long bm_uuid;
3504
3505 get_random_bytes(&val, sizeof(u64));
3506
3507 spin_lock_irq(&device->ldev->md.uuid_lock);
3508 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3509
3510 if (bm_uuid)
3511 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3512
3513 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3514 __drbd_uuid_set(device, UI_CURRENT, val);
3515 spin_unlock_irq(&device->ldev->md.uuid_lock);
3516
3517 drbd_print_uuids(device, "new current UUID");
3518 /* get it to stable storage _now_ */
3519 drbd_md_sync(device);
3520 }
3521
3522 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3523 {
3524 unsigned long flags;
3525 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3526 return;
3527
3528 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3529 if (val == 0) {
3530 drbd_uuid_move_history(device);
3531 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3532 device->ldev->md.uuid[UI_BITMAP] = 0;
3533 } else {
3534 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3535 if (bm_uuid)
3536 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3537
3538 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3539 }
3540 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3541
3542 drbd_md_mark_dirty(device);
3543 }
3544
3545 /**
3546 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3547 * @device: DRBD device.
3548 *
3549 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3550 */
3551 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3552 {
3553 int rv = -EIO;
3554
3555 drbd_md_set_flag(device, MDF_FULL_SYNC);
3556 drbd_md_sync(device);
3557 drbd_bm_set_all(device);
3558
3559 rv = drbd_bm_write(device);
3560
3561 if (!rv) {
3562 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3563 drbd_md_sync(device);
3564 }
3565
3566 return rv;
3567 }
3568
3569 /**
3570 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3571 * @device: DRBD device.
3572 *
3573 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3574 */
3575 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3576 {
3577 drbd_resume_al(device);
3578 drbd_bm_clear_all(device);
3579 return drbd_bm_write(device);
3580 }
3581
3582 static int w_bitmap_io(struct drbd_work *w, int unused)
3583 {
3584 struct drbd_device *device =
3585 container_of(w, struct drbd_device, bm_io_work.w);
3586 struct bm_io_work *work = &device->bm_io_work;
3587 int rv = -EIO;
3588
3589 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3590 int cnt = atomic_read(&device->ap_bio_cnt);
3591 if (cnt)
3592 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3593 cnt, work->why);
3594 }
3595
3596 if (get_ldev(device)) {
3597 drbd_bm_lock(device, work->why, work->flags);
3598 rv = work->io_fn(device);
3599 drbd_bm_unlock(device);
3600 put_ldev(device);
3601 }
3602
3603 clear_bit_unlock(BITMAP_IO, &device->flags);
3604 wake_up(&device->misc_wait);
3605
3606 if (work->done)
3607 work->done(device, rv);
3608
3609 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3610 work->why = NULL;
3611 work->flags = 0;
3612
3613 return 0;
3614 }
3615
3616 /**
3617 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3618 * @device: DRBD device.
3619 * @io_fn: IO callback to be called when bitmap IO is possible
3620 * @done: callback to be called after the bitmap IO was performed
3621 * @why: Descriptive text of the reason for doing the IO
3622 *
3623 * While IO on the bitmap happens we freeze application IO thus we ensure
3624 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3625 * called from worker context. It MUST NOT be used while a previous such
3626 * work is still pending!
3627 *
3628 * Its worker function encloses the call of io_fn() by get_ldev() and
3629 * put_ldev().
3630 */
3631 void drbd_queue_bitmap_io(struct drbd_device *device,
3632 int (*io_fn)(struct drbd_device *),
3633 void (*done)(struct drbd_device *, int),
3634 char *why, enum bm_flag flags)
3635 {
3636 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3637
3638 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3639 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3640 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3641 if (device->bm_io_work.why)
3642 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3643 why, device->bm_io_work.why);
3644
3645 device->bm_io_work.io_fn = io_fn;
3646 device->bm_io_work.done = done;
3647 device->bm_io_work.why = why;
3648 device->bm_io_work.flags = flags;
3649
3650 spin_lock_irq(&device->resource->req_lock);
3651 set_bit(BITMAP_IO, &device->flags);
3652 /* don't wait for pending application IO if the caller indicates that
3653 * application IO does not conflict anyways. */
3654 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3655 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3656 drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3657 &device->bm_io_work.w);
3658 }
3659 spin_unlock_irq(&device->resource->req_lock);
3660 }
3661
3662 /**
3663 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3664 * @device: DRBD device.
3665 * @io_fn: IO callback to be called when bitmap IO is possible
3666 * @why: Descriptive text of the reason for doing the IO
3667 *
3668 * freezes application IO while that the actual IO operations runs. This
3669 * functions MAY NOT be called from worker context.
3670 */
3671 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3672 char *why, enum bm_flag flags)
3673 {
3674 /* Only suspend io, if some operation is supposed to be locked out */
3675 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3676 int rv;
3677
3678 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3679
3680 if (do_suspend_io)
3681 drbd_suspend_io(device);
3682
3683 drbd_bm_lock(device, why, flags);
3684 rv = io_fn(device);
3685 drbd_bm_unlock(device);
3686
3687 if (do_suspend_io)
3688 drbd_resume_io(device);
3689
3690 return rv;
3691 }
3692
3693 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3694 {
3695 if ((device->ldev->md.flags & flag) != flag) {
3696 drbd_md_mark_dirty(device);
3697 device->ldev->md.flags |= flag;
3698 }
3699 }
3700
3701 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3702 {
3703 if ((device->ldev->md.flags & flag) != 0) {
3704 drbd_md_mark_dirty(device);
3705 device->ldev->md.flags &= ~flag;
3706 }
3707 }
3708 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3709 {
3710 return (bdev->md.flags & flag) != 0;
3711 }
3712
3713 static void md_sync_timer_fn(unsigned long data)
3714 {
3715 struct drbd_device *device = (struct drbd_device *) data;
3716 drbd_device_post_work(device, MD_SYNC);
3717 }
3718
3719 const char *cmdname(enum drbd_packet cmd)
3720 {
3721 /* THINK may need to become several global tables
3722 * when we want to support more than
3723 * one PRO_VERSION */
3724 static const char *cmdnames[] = {
3725 [P_DATA] = "Data",
3726 [P_WSAME] = "WriteSame",
3727 [P_TRIM] = "Trim",
3728 [P_DATA_REPLY] = "DataReply",
3729 [P_RS_DATA_REPLY] = "RSDataReply",
3730 [P_BARRIER] = "Barrier",
3731 [P_BITMAP] = "ReportBitMap",
3732 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3733 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3734 [P_UNPLUG_REMOTE] = "UnplugRemote",
3735 [P_DATA_REQUEST] = "DataRequest",
3736 [P_RS_DATA_REQUEST] = "RSDataRequest",
3737 [P_SYNC_PARAM] = "SyncParam",
3738 [P_SYNC_PARAM89] = "SyncParam89",
3739 [P_PROTOCOL] = "ReportProtocol",
3740 [P_UUIDS] = "ReportUUIDs",
3741 [P_SIZES] = "ReportSizes",
3742 [P_STATE] = "ReportState",
3743 [P_SYNC_UUID] = "ReportSyncUUID",
3744 [P_AUTH_CHALLENGE] = "AuthChallenge",
3745 [P_AUTH_RESPONSE] = "AuthResponse",
3746 [P_PING] = "Ping",
3747 [P_PING_ACK] = "PingAck",
3748 [P_RECV_ACK] = "RecvAck",
3749 [P_WRITE_ACK] = "WriteAck",
3750 [P_RS_WRITE_ACK] = "RSWriteAck",
3751 [P_SUPERSEDED] = "Superseded",
3752 [P_NEG_ACK] = "NegAck",
3753 [P_NEG_DREPLY] = "NegDReply",
3754 [P_NEG_RS_DREPLY] = "NegRSDReply",
3755 [P_BARRIER_ACK] = "BarrierAck",
3756 [P_STATE_CHG_REQ] = "StateChgRequest",
3757 [P_STATE_CHG_REPLY] = "StateChgReply",
3758 [P_OV_REQUEST] = "OVRequest",
3759 [P_OV_REPLY] = "OVReply",
3760 [P_OV_RESULT] = "OVResult",
3761 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3762 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3763 [P_COMPRESSED_BITMAP] = "CBitmap",
3764 [P_DELAY_PROBE] = "DelayProbe",
3765 [P_OUT_OF_SYNC] = "OutOfSync",
3766 [P_RETRY_WRITE] = "RetryWrite",
3767 [P_RS_CANCEL] = "RSCancel",
3768 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3769 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3770 [P_RETRY_WRITE] = "retry_write",
3771 [P_PROTOCOL_UPDATE] = "protocol_update",
3772 [P_RS_THIN_REQ] = "rs_thin_req",
3773 [P_RS_DEALLOCATED] = "rs_deallocated",
3774
3775 /* enum drbd_packet, but not commands - obsoleted flags:
3776 * P_MAY_IGNORE
3777 * P_MAX_OPT_CMD
3778 */
3779 };
3780
3781 /* too big for the array: 0xfffX */
3782 if (cmd == P_INITIAL_META)
3783 return "InitialMeta";
3784 if (cmd == P_INITIAL_DATA)
3785 return "InitialData";
3786 if (cmd == P_CONNECTION_FEATURES)
3787 return "ConnectionFeatures";
3788 if (cmd >= ARRAY_SIZE(cmdnames))
3789 return "Unknown";
3790 return cmdnames[cmd];
3791 }
3792
3793 /**
3794 * drbd_wait_misc - wait for a request to make progress
3795 * @device: device associated with the request
3796 * @i: the struct drbd_interval embedded in struct drbd_request or
3797 * struct drbd_peer_request
3798 */
3799 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3800 {
3801 struct net_conf *nc;
3802 DEFINE_WAIT(wait);
3803 long timeout;
3804
3805 rcu_read_lock();
3806 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3807 if (!nc) {
3808 rcu_read_unlock();
3809 return -ETIMEDOUT;
3810 }
3811 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3812 rcu_read_unlock();
3813
3814 /* Indicate to wake up device->misc_wait on progress. */
3815 i->waiting = true;
3816 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3817 spin_unlock_irq(&device->resource->req_lock);
3818 timeout = schedule_timeout(timeout);
3819 finish_wait(&device->misc_wait, &wait);
3820 spin_lock_irq(&device->resource->req_lock);
3821 if (!timeout || device->state.conn < C_CONNECTED)
3822 return -ETIMEDOUT;
3823 if (signal_pending(current))
3824 return -ERESTARTSYS;
3825 return 0;
3826 }
3827
3828 void lock_all_resources(void)
3829 {
3830 struct drbd_resource *resource;
3831 int __maybe_unused i = 0;
3832
3833 mutex_lock(&resources_mutex);
3834 local_irq_disable();
3835 for_each_resource(resource, &drbd_resources)
3836 spin_lock_nested(&resource->req_lock, i++);
3837 }
3838
3839 void unlock_all_resources(void)
3840 {
3841 struct drbd_resource *resource;
3842
3843 for_each_resource(resource, &drbd_resources)
3844 spin_unlock(&resource->req_lock);
3845 local_irq_enable();
3846 mutex_unlock(&resources_mutex);
3847 }
3848
3849 #ifdef CONFIG_DRBD_FAULT_INJECTION
3850 /* Fault insertion support including random number generator shamelessly
3851 * stolen from kernel/rcutorture.c */
3852 struct fault_random_state {
3853 unsigned long state;
3854 unsigned long count;
3855 };
3856
3857 #define FAULT_RANDOM_MULT 39916801 /* prime */
3858 #define FAULT_RANDOM_ADD 479001701 /* prime */
3859 #define FAULT_RANDOM_REFRESH 10000
3860
3861 /*
3862 * Crude but fast random-number generator. Uses a linear congruential
3863 * generator, with occasional help from get_random_bytes().
3864 */
3865 static unsigned long
3866 _drbd_fault_random(struct fault_random_state *rsp)
3867 {
3868 long refresh;
3869
3870 if (!rsp->count--) {
3871 get_random_bytes(&refresh, sizeof(refresh));
3872 rsp->state += refresh;
3873 rsp->count = FAULT_RANDOM_REFRESH;
3874 }
3875 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3876 return swahw32(rsp->state);
3877 }
3878
3879 static char *
3880 _drbd_fault_str(unsigned int type) {
3881 static char *_faults[] = {
3882 [DRBD_FAULT_MD_WR] = "Meta-data write",
3883 [DRBD_FAULT_MD_RD] = "Meta-data read",
3884 [DRBD_FAULT_RS_WR] = "Resync write",
3885 [DRBD_FAULT_RS_RD] = "Resync read",
3886 [DRBD_FAULT_DT_WR] = "Data write",
3887 [DRBD_FAULT_DT_RD] = "Data read",
3888 [DRBD_FAULT_DT_RA] = "Data read ahead",
3889 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3890 [DRBD_FAULT_AL_EE] = "EE allocation",
3891 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3892 };
3893
3894 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3895 }
3896
3897 unsigned int
3898 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3899 {
3900 static struct fault_random_state rrs = {0, 0};
3901
3902 unsigned int ret = (
3903 (fault_devs == 0 ||
3904 ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3905 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3906
3907 if (ret) {
3908 fault_count++;
3909
3910 if (__ratelimit(&drbd_ratelimit_state))
3911 drbd_warn(device, "***Simulating %s failure\n",
3912 _drbd_fault_str(type));
3913 }
3914
3915 return ret;
3916 }
3917 #endif
3918
3919 const char *drbd_buildtag(void)
3920 {
3921 /* DRBD built from external sources has here a reference to the
3922 git hash of the source code. */
3923
3924 static char buildtag[38] = "\0uilt-in";
3925
3926 if (buildtag[0] == 0) {
3927 #ifdef MODULE
3928 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3929 #else
3930 buildtag[0] = 'b';
3931 #endif
3932 }
3933
3934 return buildtag;
3935 }
3936
3937 module_init(drbd_init)
3938 module_exit(drbd_cleanup)
3939
3940 EXPORT_SYMBOL(drbd_conn_str);
3941 EXPORT_SYMBOL(drbd_role_str);
3942 EXPORT_SYMBOL(drbd_disk_str);
3943 EXPORT_SYMBOL(drbd_set_st_err_str);