]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/drbd/drbd_main.c
drbd: base completion and destruction of requests on ref counts
[mirror_ubuntu-zesty-kernel.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
56
57 #include "drbd_vli.h"
58
59 static DEFINE_MUTEX(drbd_main_mutex);
60 int drbdd_init(struct drbd_thread *);
61 int drbd_worker(struct drbd_thread *);
62 int drbd_asender(struct drbd_thread *);
63
64 int drbd_init(void);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static int drbd_release(struct gendisk *gd, fmode_t mode);
67 static int w_md_sync(struct drbd_work *w, int unused);
68 static void md_sync_timer_fn(unsigned long data);
69 static int w_bitmap_io(struct drbd_work *w, int unused);
70 static int w_go_diskless(struct drbd_work *w, int unused);
71
72 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
73 "Lars Ellenberg <lars@linbit.com>");
74 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
75 MODULE_VERSION(REL_VERSION);
76 MODULE_LICENSE("GPL");
77 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
78 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
79 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
80
81 #include <linux/moduleparam.h>
82 /* allow_open_on_secondary */
83 MODULE_PARM_DESC(allow_oos, "DONT USE!");
84 /* thanks to these macros, if compiled into the kernel (not-module),
85 * this becomes the boot parameter drbd.minor_count */
86 module_param(minor_count, uint, 0444);
87 module_param(disable_sendpage, bool, 0644);
88 module_param(allow_oos, bool, 0);
89 module_param(proc_details, int, 0644);
90
91 #ifdef CONFIG_DRBD_FAULT_INJECTION
92 int enable_faults;
93 int fault_rate;
94 static int fault_count;
95 int fault_devs;
96 /* bitmap of enabled faults */
97 module_param(enable_faults, int, 0664);
98 /* fault rate % value - applies to all enabled faults */
99 module_param(fault_rate, int, 0664);
100 /* count of faults inserted */
101 module_param(fault_count, int, 0664);
102 /* bitmap of devices to insert faults on */
103 module_param(fault_devs, int, 0644);
104 #endif
105
106 /* module parameter, defined */
107 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
108 int disable_sendpage;
109 int allow_oos;
110 int proc_details; /* Detail level in proc drbd*/
111
112 /* Module parameter for setting the user mode helper program
113 * to run. Default is /sbin/drbdadm */
114 char usermode_helper[80] = "/sbin/drbdadm";
115
116 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
117
118 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
119 * as member "struct gendisk *vdisk;"
120 */
121 struct idr minors;
122 struct list_head drbd_tconns; /* list of struct drbd_tconn */
123
124 struct kmem_cache *drbd_request_cache;
125 struct kmem_cache *drbd_ee_cache; /* peer requests */
126 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
127 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
128 mempool_t *drbd_request_mempool;
129 mempool_t *drbd_ee_mempool;
130 mempool_t *drbd_md_io_page_pool;
131 struct bio_set *drbd_md_io_bio_set;
132
133 /* I do not use a standard mempool, because:
134 1) I want to hand out the pre-allocated objects first.
135 2) I want to be able to interrupt sleeping allocation with a signal.
136 Note: This is a single linked list, the next pointer is the private
137 member of struct page.
138 */
139 struct page *drbd_pp_pool;
140 spinlock_t drbd_pp_lock;
141 int drbd_pp_vacant;
142 wait_queue_head_t drbd_pp_wait;
143
144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
145
146 static const struct block_device_operations drbd_ops = {
147 .owner = THIS_MODULE,
148 .open = drbd_open,
149 .release = drbd_release,
150 };
151
152 static void bio_destructor_drbd(struct bio *bio)
153 {
154 bio_free(bio, drbd_md_io_bio_set);
155 }
156
157 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
158 {
159 struct bio *bio;
160
161 if (!drbd_md_io_bio_set)
162 return bio_alloc(gfp_mask, 1);
163
164 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
165 if (!bio)
166 return NULL;
167 bio->bi_destructor = bio_destructor_drbd;
168 return bio;
169 }
170
171 #ifdef __CHECKER__
172 /* When checking with sparse, and this is an inline function, sparse will
173 give tons of false positives. When this is a real functions sparse works.
174 */
175 int _get_ldev_if_state(struct drbd_conf *mdev, enum drbd_disk_state mins)
176 {
177 int io_allowed;
178
179 atomic_inc(&mdev->local_cnt);
180 io_allowed = (mdev->state.disk >= mins);
181 if (!io_allowed) {
182 if (atomic_dec_and_test(&mdev->local_cnt))
183 wake_up(&mdev->misc_wait);
184 }
185 return io_allowed;
186 }
187
188 #endif
189
190 /**
191 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
192 * @tconn: DRBD connection.
193 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
194 * @set_size: Expected number of requests before that barrier.
195 *
196 * In case the passed barrier_nr or set_size does not match the oldest
197 * epoch of not yet barrier-acked requests, this function will cause a
198 * termination of the connection.
199 */
200 void tl_release(struct drbd_tconn *tconn, unsigned int barrier_nr,
201 unsigned int set_size)
202 {
203 struct drbd_request *r;
204 struct drbd_request *req = NULL;
205 int expect_epoch = 0;
206 int expect_size = 0;
207
208 spin_lock_irq(&tconn->req_lock);
209
210 /* find latest not yet barrier-acked write request,
211 * count writes in its epoch. */
212 list_for_each_entry(r, &tconn->transfer_log, tl_requests) {
213 const unsigned s = r->rq_state;
214 if (!req) {
215 if (!(s & RQ_WRITE))
216 continue;
217 if (!(s & RQ_NET_MASK))
218 continue;
219 if (s & RQ_NET_DONE)
220 continue;
221 req = r;
222 expect_epoch = req->epoch;
223 expect_size ++;
224 } else {
225 if (r->epoch != expect_epoch)
226 break;
227 if (!(s & RQ_WRITE))
228 continue;
229 /* if (s & RQ_DONE): not expected */
230 /* if (!(s & RQ_NET_MASK)): not expected */
231 expect_size++;
232 }
233 }
234
235 /* first some paranoia code */
236 if (req == NULL) {
237 conn_err(tconn, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
238 barrier_nr);
239 goto bail;
240 }
241 if (expect_epoch != barrier_nr) {
242 conn_err(tconn, "BAD! BarrierAck #%u received, expected #%u!\n",
243 barrier_nr, expect_epoch);
244 goto bail;
245 }
246
247 if (expect_size != set_size) {
248 conn_err(tconn, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
249 barrier_nr, set_size, expect_size);
250 goto bail;
251 }
252
253 /* Clean up list of requests processed during current epoch */
254 list_for_each_entry_safe(req, r, &tconn->transfer_log, tl_requests) {
255 if (req->epoch != expect_epoch)
256 break;
257 _req_mod(req, BARRIER_ACKED);
258 }
259 spin_unlock_irq(&tconn->req_lock);
260
261 return;
262
263 bail:
264 spin_unlock_irq(&tconn->req_lock);
265 conn_request_state(tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
266 }
267
268
269 /**
270 * _tl_restart() - Walks the transfer log, and applies an action to all requests
271 * @mdev: DRBD device.
272 * @what: The action/event to perform with all request objects
273 *
274 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
275 * RESTART_FROZEN_DISK_IO.
276 */
277 /* must hold resource->req_lock */
278 void _tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
279 {
280 struct drbd_request *req, *r;
281
282 list_for_each_entry_safe(req, r, &tconn->transfer_log, tl_requests)
283 _req_mod(req, what);
284 }
285
286 void tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
287 {
288 spin_lock_irq(&tconn->req_lock);
289 _tl_restart(tconn, what);
290 spin_unlock_irq(&tconn->req_lock);
291 }
292
293 /**
294 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
295 * @mdev: DRBD device.
296 *
297 * This is called after the connection to the peer was lost. The storage covered
298 * by the requests on the transfer gets marked as our of sync. Called from the
299 * receiver thread and the worker thread.
300 */
301 void tl_clear(struct drbd_tconn *tconn)
302 {
303 tl_restart(tconn, CONNECTION_LOST_WHILE_PENDING);
304 }
305
306 /**
307 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain mdev in the TL
308 * @mdev: DRBD device.
309 */
310 void tl_abort_disk_io(struct drbd_conf *mdev)
311 {
312 struct drbd_tconn *tconn = mdev->tconn;
313 struct drbd_request *req, *r;
314
315 spin_lock_irq(&tconn->req_lock);
316 list_for_each_entry_safe(req, r, &tconn->transfer_log, tl_requests) {
317 if (!(req->rq_state & RQ_LOCAL_PENDING))
318 continue;
319 if (req->w.mdev != mdev)
320 continue;
321 _req_mod(req, ABORT_DISK_IO);
322 }
323 spin_unlock_irq(&tconn->req_lock);
324 }
325
326 static int drbd_thread_setup(void *arg)
327 {
328 struct drbd_thread *thi = (struct drbd_thread *) arg;
329 struct drbd_tconn *tconn = thi->tconn;
330 unsigned long flags;
331 int retval;
332
333 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
334 thi->name[0], thi->tconn->name);
335
336 restart:
337 retval = thi->function(thi);
338
339 spin_lock_irqsave(&thi->t_lock, flags);
340
341 /* if the receiver has been "EXITING", the last thing it did
342 * was set the conn state to "StandAlone",
343 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
344 * and receiver thread will be "started".
345 * drbd_thread_start needs to set "RESTARTING" in that case.
346 * t_state check and assignment needs to be within the same spinlock,
347 * so either thread_start sees EXITING, and can remap to RESTARTING,
348 * or thread_start see NONE, and can proceed as normal.
349 */
350
351 if (thi->t_state == RESTARTING) {
352 conn_info(tconn, "Restarting %s thread\n", thi->name);
353 thi->t_state = RUNNING;
354 spin_unlock_irqrestore(&thi->t_lock, flags);
355 goto restart;
356 }
357
358 thi->task = NULL;
359 thi->t_state = NONE;
360 smp_mb();
361 complete_all(&thi->stop);
362 spin_unlock_irqrestore(&thi->t_lock, flags);
363
364 conn_info(tconn, "Terminating %s\n", current->comm);
365
366 /* Release mod reference taken when thread was started */
367
368 kref_put(&tconn->kref, &conn_destroy);
369 module_put(THIS_MODULE);
370 return retval;
371 }
372
373 static void drbd_thread_init(struct drbd_tconn *tconn, struct drbd_thread *thi,
374 int (*func) (struct drbd_thread *), char *name)
375 {
376 spin_lock_init(&thi->t_lock);
377 thi->task = NULL;
378 thi->t_state = NONE;
379 thi->function = func;
380 thi->tconn = tconn;
381 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
382 }
383
384 int drbd_thread_start(struct drbd_thread *thi)
385 {
386 struct drbd_tconn *tconn = thi->tconn;
387 struct task_struct *nt;
388 unsigned long flags;
389
390 /* is used from state engine doing drbd_thread_stop_nowait,
391 * while holding the req lock irqsave */
392 spin_lock_irqsave(&thi->t_lock, flags);
393
394 switch (thi->t_state) {
395 case NONE:
396 conn_info(tconn, "Starting %s thread (from %s [%d])\n",
397 thi->name, current->comm, current->pid);
398
399 /* Get ref on module for thread - this is released when thread exits */
400 if (!try_module_get(THIS_MODULE)) {
401 conn_err(tconn, "Failed to get module reference in drbd_thread_start\n");
402 spin_unlock_irqrestore(&thi->t_lock, flags);
403 return false;
404 }
405
406 kref_get(&thi->tconn->kref);
407
408 init_completion(&thi->stop);
409 thi->reset_cpu_mask = 1;
410 thi->t_state = RUNNING;
411 spin_unlock_irqrestore(&thi->t_lock, flags);
412 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
413
414 nt = kthread_create(drbd_thread_setup, (void *) thi,
415 "drbd_%c_%s", thi->name[0], thi->tconn->name);
416
417 if (IS_ERR(nt)) {
418 conn_err(tconn, "Couldn't start thread\n");
419
420 kref_put(&tconn->kref, &conn_destroy);
421 module_put(THIS_MODULE);
422 return false;
423 }
424 spin_lock_irqsave(&thi->t_lock, flags);
425 thi->task = nt;
426 thi->t_state = RUNNING;
427 spin_unlock_irqrestore(&thi->t_lock, flags);
428 wake_up_process(nt);
429 break;
430 case EXITING:
431 thi->t_state = RESTARTING;
432 conn_info(tconn, "Restarting %s thread (from %s [%d])\n",
433 thi->name, current->comm, current->pid);
434 /* fall through */
435 case RUNNING:
436 case RESTARTING:
437 default:
438 spin_unlock_irqrestore(&thi->t_lock, flags);
439 break;
440 }
441
442 return true;
443 }
444
445
446 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
447 {
448 unsigned long flags;
449
450 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
451
452 /* may be called from state engine, holding the req lock irqsave */
453 spin_lock_irqsave(&thi->t_lock, flags);
454
455 if (thi->t_state == NONE) {
456 spin_unlock_irqrestore(&thi->t_lock, flags);
457 if (restart)
458 drbd_thread_start(thi);
459 return;
460 }
461
462 if (thi->t_state != ns) {
463 if (thi->task == NULL) {
464 spin_unlock_irqrestore(&thi->t_lock, flags);
465 return;
466 }
467
468 thi->t_state = ns;
469 smp_mb();
470 init_completion(&thi->stop);
471 if (thi->task != current)
472 force_sig(DRBD_SIGKILL, thi->task);
473 }
474
475 spin_unlock_irqrestore(&thi->t_lock, flags);
476
477 if (wait)
478 wait_for_completion(&thi->stop);
479 }
480
481 static struct drbd_thread *drbd_task_to_thread(struct drbd_tconn *tconn, struct task_struct *task)
482 {
483 struct drbd_thread *thi =
484 task == tconn->receiver.task ? &tconn->receiver :
485 task == tconn->asender.task ? &tconn->asender :
486 task == tconn->worker.task ? &tconn->worker : NULL;
487
488 return thi;
489 }
490
491 char *drbd_task_to_thread_name(struct drbd_tconn *tconn, struct task_struct *task)
492 {
493 struct drbd_thread *thi = drbd_task_to_thread(tconn, task);
494 return thi ? thi->name : task->comm;
495 }
496
497 int conn_lowest_minor(struct drbd_tconn *tconn)
498 {
499 struct drbd_conf *mdev;
500 int vnr = 0, m;
501
502 rcu_read_lock();
503 mdev = idr_get_next(&tconn->volumes, &vnr);
504 m = mdev ? mdev_to_minor(mdev) : -1;
505 rcu_read_unlock();
506
507 return m;
508 }
509
510 #ifdef CONFIG_SMP
511 /**
512 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
513 * @mdev: DRBD device.
514 *
515 * Forces all threads of a device onto the same CPU. This is beneficial for
516 * DRBD's performance. May be overwritten by user's configuration.
517 */
518 void drbd_calc_cpu_mask(struct drbd_tconn *tconn)
519 {
520 int ord, cpu;
521
522 /* user override. */
523 if (cpumask_weight(tconn->cpu_mask))
524 return;
525
526 ord = conn_lowest_minor(tconn) % cpumask_weight(cpu_online_mask);
527 for_each_online_cpu(cpu) {
528 if (ord-- == 0) {
529 cpumask_set_cpu(cpu, tconn->cpu_mask);
530 return;
531 }
532 }
533 /* should not be reached */
534 cpumask_setall(tconn->cpu_mask);
535 }
536
537 /**
538 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
539 * @mdev: DRBD device.
540 * @thi: drbd_thread object
541 *
542 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
543 * prematurely.
544 */
545 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
546 {
547 struct task_struct *p = current;
548
549 if (!thi->reset_cpu_mask)
550 return;
551 thi->reset_cpu_mask = 0;
552 set_cpus_allowed_ptr(p, thi->tconn->cpu_mask);
553 }
554 #endif
555
556 /**
557 * drbd_header_size - size of a packet header
558 *
559 * The header size is a multiple of 8, so any payload following the header is
560 * word aligned on 64-bit architectures. (The bitmap send and receive code
561 * relies on this.)
562 */
563 unsigned int drbd_header_size(struct drbd_tconn *tconn)
564 {
565 if (tconn->agreed_pro_version >= 100) {
566 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
567 return sizeof(struct p_header100);
568 } else {
569 BUILD_BUG_ON(sizeof(struct p_header80) !=
570 sizeof(struct p_header95));
571 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
572 return sizeof(struct p_header80);
573 }
574 }
575
576 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
577 {
578 h->magic = cpu_to_be32(DRBD_MAGIC);
579 h->command = cpu_to_be16(cmd);
580 h->length = cpu_to_be16(size);
581 return sizeof(struct p_header80);
582 }
583
584 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
585 {
586 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
587 h->command = cpu_to_be16(cmd);
588 h->length = cpu_to_be32(size);
589 return sizeof(struct p_header95);
590 }
591
592 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
593 int size, int vnr)
594 {
595 h->magic = cpu_to_be32(DRBD_MAGIC_100);
596 h->volume = cpu_to_be16(vnr);
597 h->command = cpu_to_be16(cmd);
598 h->length = cpu_to_be32(size);
599 h->pad = 0;
600 return sizeof(struct p_header100);
601 }
602
603 static unsigned int prepare_header(struct drbd_tconn *tconn, int vnr,
604 void *buffer, enum drbd_packet cmd, int size)
605 {
606 if (tconn->agreed_pro_version >= 100)
607 return prepare_header100(buffer, cmd, size, vnr);
608 else if (tconn->agreed_pro_version >= 95 &&
609 size > DRBD_MAX_SIZE_H80_PACKET)
610 return prepare_header95(buffer, cmd, size);
611 else
612 return prepare_header80(buffer, cmd, size);
613 }
614
615 static void *__conn_prepare_command(struct drbd_tconn *tconn,
616 struct drbd_socket *sock)
617 {
618 if (!sock->socket)
619 return NULL;
620 return sock->sbuf + drbd_header_size(tconn);
621 }
622
623 void *conn_prepare_command(struct drbd_tconn *tconn, struct drbd_socket *sock)
624 {
625 void *p;
626
627 mutex_lock(&sock->mutex);
628 p = __conn_prepare_command(tconn, sock);
629 if (!p)
630 mutex_unlock(&sock->mutex);
631
632 return p;
633 }
634
635 void *drbd_prepare_command(struct drbd_conf *mdev, struct drbd_socket *sock)
636 {
637 return conn_prepare_command(mdev->tconn, sock);
638 }
639
640 static int __send_command(struct drbd_tconn *tconn, int vnr,
641 struct drbd_socket *sock, enum drbd_packet cmd,
642 unsigned int header_size, void *data,
643 unsigned int size)
644 {
645 int msg_flags;
646 int err;
647
648 /*
649 * Called with @data == NULL and the size of the data blocks in @size
650 * for commands that send data blocks. For those commands, omit the
651 * MSG_MORE flag: this will increase the likelihood that data blocks
652 * which are page aligned on the sender will end up page aligned on the
653 * receiver.
654 */
655 msg_flags = data ? MSG_MORE : 0;
656
657 header_size += prepare_header(tconn, vnr, sock->sbuf, cmd,
658 header_size + size);
659 err = drbd_send_all(tconn, sock->socket, sock->sbuf, header_size,
660 msg_flags);
661 if (data && !err)
662 err = drbd_send_all(tconn, sock->socket, data, size, 0);
663 return err;
664 }
665
666 static int __conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
667 enum drbd_packet cmd, unsigned int header_size,
668 void *data, unsigned int size)
669 {
670 return __send_command(tconn, 0, sock, cmd, header_size, data, size);
671 }
672
673 int conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
674 enum drbd_packet cmd, unsigned int header_size,
675 void *data, unsigned int size)
676 {
677 int err;
678
679 err = __conn_send_command(tconn, sock, cmd, header_size, data, size);
680 mutex_unlock(&sock->mutex);
681 return err;
682 }
683
684 int drbd_send_command(struct drbd_conf *mdev, struct drbd_socket *sock,
685 enum drbd_packet cmd, unsigned int header_size,
686 void *data, unsigned int size)
687 {
688 int err;
689
690 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, header_size,
691 data, size);
692 mutex_unlock(&sock->mutex);
693 return err;
694 }
695
696 int drbd_send_ping(struct drbd_tconn *tconn)
697 {
698 struct drbd_socket *sock;
699
700 sock = &tconn->meta;
701 if (!conn_prepare_command(tconn, sock))
702 return -EIO;
703 return conn_send_command(tconn, sock, P_PING, 0, NULL, 0);
704 }
705
706 int drbd_send_ping_ack(struct drbd_tconn *tconn)
707 {
708 struct drbd_socket *sock;
709
710 sock = &tconn->meta;
711 if (!conn_prepare_command(tconn, sock))
712 return -EIO;
713 return conn_send_command(tconn, sock, P_PING_ACK, 0, NULL, 0);
714 }
715
716 int drbd_send_sync_param(struct drbd_conf *mdev)
717 {
718 struct drbd_socket *sock;
719 struct p_rs_param_95 *p;
720 int size;
721 const int apv = mdev->tconn->agreed_pro_version;
722 enum drbd_packet cmd;
723 struct net_conf *nc;
724 struct disk_conf *dc;
725
726 sock = &mdev->tconn->data;
727 p = drbd_prepare_command(mdev, sock);
728 if (!p)
729 return -EIO;
730
731 rcu_read_lock();
732 nc = rcu_dereference(mdev->tconn->net_conf);
733
734 size = apv <= 87 ? sizeof(struct p_rs_param)
735 : apv == 88 ? sizeof(struct p_rs_param)
736 + strlen(nc->verify_alg) + 1
737 : apv <= 94 ? sizeof(struct p_rs_param_89)
738 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
739
740 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
741
742 /* initialize verify_alg and csums_alg */
743 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
744
745 if (get_ldev(mdev)) {
746 dc = rcu_dereference(mdev->ldev->disk_conf);
747 p->resync_rate = cpu_to_be32(dc->resync_rate);
748 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
749 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
750 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
751 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
752 put_ldev(mdev);
753 } else {
754 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
755 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
756 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
757 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
758 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
759 }
760
761 if (apv >= 88)
762 strcpy(p->verify_alg, nc->verify_alg);
763 if (apv >= 89)
764 strcpy(p->csums_alg, nc->csums_alg);
765 rcu_read_unlock();
766
767 return drbd_send_command(mdev, sock, cmd, size, NULL, 0);
768 }
769
770 int __drbd_send_protocol(struct drbd_tconn *tconn, enum drbd_packet cmd)
771 {
772 struct drbd_socket *sock;
773 struct p_protocol *p;
774 struct net_conf *nc;
775 int size, cf;
776
777 sock = &tconn->data;
778 p = __conn_prepare_command(tconn, sock);
779 if (!p)
780 return -EIO;
781
782 rcu_read_lock();
783 nc = rcu_dereference(tconn->net_conf);
784
785 if (nc->tentative && tconn->agreed_pro_version < 92) {
786 rcu_read_unlock();
787 mutex_unlock(&sock->mutex);
788 conn_err(tconn, "--dry-run is not supported by peer");
789 return -EOPNOTSUPP;
790 }
791
792 size = sizeof(*p);
793 if (tconn->agreed_pro_version >= 87)
794 size += strlen(nc->integrity_alg) + 1;
795
796 p->protocol = cpu_to_be32(nc->wire_protocol);
797 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
798 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
799 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
800 p->two_primaries = cpu_to_be32(nc->two_primaries);
801 cf = 0;
802 if (nc->discard_my_data)
803 cf |= CF_DISCARD_MY_DATA;
804 if (nc->tentative)
805 cf |= CF_DRY_RUN;
806 p->conn_flags = cpu_to_be32(cf);
807
808 if (tconn->agreed_pro_version >= 87)
809 strcpy(p->integrity_alg, nc->integrity_alg);
810 rcu_read_unlock();
811
812 return __conn_send_command(tconn, sock, cmd, size, NULL, 0);
813 }
814
815 int drbd_send_protocol(struct drbd_tconn *tconn)
816 {
817 int err;
818
819 mutex_lock(&tconn->data.mutex);
820 err = __drbd_send_protocol(tconn, P_PROTOCOL);
821 mutex_unlock(&tconn->data.mutex);
822
823 return err;
824 }
825
826 int _drbd_send_uuids(struct drbd_conf *mdev, u64 uuid_flags)
827 {
828 struct drbd_socket *sock;
829 struct p_uuids *p;
830 int i;
831
832 if (!get_ldev_if_state(mdev, D_NEGOTIATING))
833 return 0;
834
835 sock = &mdev->tconn->data;
836 p = drbd_prepare_command(mdev, sock);
837 if (!p) {
838 put_ldev(mdev);
839 return -EIO;
840 }
841 for (i = UI_CURRENT; i < UI_SIZE; i++)
842 p->uuid[i] = mdev->ldev ? cpu_to_be64(mdev->ldev->md.uuid[i]) : 0;
843
844 mdev->comm_bm_set = drbd_bm_total_weight(mdev);
845 p->uuid[UI_SIZE] = cpu_to_be64(mdev->comm_bm_set);
846 rcu_read_lock();
847 uuid_flags |= rcu_dereference(mdev->tconn->net_conf)->discard_my_data ? 1 : 0;
848 rcu_read_unlock();
849 uuid_flags |= test_bit(CRASHED_PRIMARY, &mdev->flags) ? 2 : 0;
850 uuid_flags |= mdev->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
851 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
852
853 put_ldev(mdev);
854 return drbd_send_command(mdev, sock, P_UUIDS, sizeof(*p), NULL, 0);
855 }
856
857 int drbd_send_uuids(struct drbd_conf *mdev)
858 {
859 return _drbd_send_uuids(mdev, 0);
860 }
861
862 int drbd_send_uuids_skip_initial_sync(struct drbd_conf *mdev)
863 {
864 return _drbd_send_uuids(mdev, 8);
865 }
866
867 void drbd_print_uuids(struct drbd_conf *mdev, const char *text)
868 {
869 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
870 u64 *uuid = mdev->ldev->md.uuid;
871 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX\n",
872 text,
873 (unsigned long long)uuid[UI_CURRENT],
874 (unsigned long long)uuid[UI_BITMAP],
875 (unsigned long long)uuid[UI_HISTORY_START],
876 (unsigned long long)uuid[UI_HISTORY_END]);
877 put_ldev(mdev);
878 } else {
879 dev_info(DEV, "%s effective data uuid: %016llX\n",
880 text,
881 (unsigned long long)mdev->ed_uuid);
882 }
883 }
884
885 void drbd_gen_and_send_sync_uuid(struct drbd_conf *mdev)
886 {
887 struct drbd_socket *sock;
888 struct p_rs_uuid *p;
889 u64 uuid;
890
891 D_ASSERT(mdev->state.disk == D_UP_TO_DATE);
892
893 uuid = mdev->ldev->md.uuid[UI_BITMAP];
894 if (uuid && uuid != UUID_JUST_CREATED)
895 uuid = uuid + UUID_NEW_BM_OFFSET;
896 else
897 get_random_bytes(&uuid, sizeof(u64));
898 drbd_uuid_set(mdev, UI_BITMAP, uuid);
899 drbd_print_uuids(mdev, "updated sync UUID");
900 drbd_md_sync(mdev);
901
902 sock = &mdev->tconn->data;
903 p = drbd_prepare_command(mdev, sock);
904 if (p) {
905 p->uuid = cpu_to_be64(uuid);
906 drbd_send_command(mdev, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
907 }
908 }
909
910 int drbd_send_sizes(struct drbd_conf *mdev, int trigger_reply, enum dds_flags flags)
911 {
912 struct drbd_socket *sock;
913 struct p_sizes *p;
914 sector_t d_size, u_size;
915 int q_order_type, max_bio_size;
916
917 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
918 D_ASSERT(mdev->ldev->backing_bdev);
919 d_size = drbd_get_max_capacity(mdev->ldev);
920 rcu_read_lock();
921 u_size = rcu_dereference(mdev->ldev->disk_conf)->disk_size;
922 rcu_read_unlock();
923 q_order_type = drbd_queue_order_type(mdev);
924 max_bio_size = queue_max_hw_sectors(mdev->ldev->backing_bdev->bd_disk->queue) << 9;
925 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_BIO_SIZE);
926 put_ldev(mdev);
927 } else {
928 d_size = 0;
929 u_size = 0;
930 q_order_type = QUEUE_ORDERED_NONE;
931 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
932 }
933
934 sock = &mdev->tconn->data;
935 p = drbd_prepare_command(mdev, sock);
936 if (!p)
937 return -EIO;
938
939 if (mdev->tconn->agreed_pro_version <= 94)
940 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
941 else if (mdev->tconn->agreed_pro_version < 100)
942 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_BIO_SIZE_P95);
943
944 p->d_size = cpu_to_be64(d_size);
945 p->u_size = cpu_to_be64(u_size);
946 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(mdev->this_bdev));
947 p->max_bio_size = cpu_to_be32(max_bio_size);
948 p->queue_order_type = cpu_to_be16(q_order_type);
949 p->dds_flags = cpu_to_be16(flags);
950 return drbd_send_command(mdev, sock, P_SIZES, sizeof(*p), NULL, 0);
951 }
952
953 /**
954 * drbd_send_current_state() - Sends the drbd state to the peer
955 * @mdev: DRBD device.
956 */
957 int drbd_send_current_state(struct drbd_conf *mdev)
958 {
959 struct drbd_socket *sock;
960 struct p_state *p;
961
962 sock = &mdev->tconn->data;
963 p = drbd_prepare_command(mdev, sock);
964 if (!p)
965 return -EIO;
966 p->state = cpu_to_be32(mdev->state.i); /* Within the send mutex */
967 return drbd_send_command(mdev, sock, P_STATE, sizeof(*p), NULL, 0);
968 }
969
970 /**
971 * drbd_send_state() - After a state change, sends the new state to the peer
972 * @mdev: DRBD device.
973 * @state: the state to send, not necessarily the current state.
974 *
975 * Each state change queues an "after_state_ch" work, which will eventually
976 * send the resulting new state to the peer. If more state changes happen
977 * between queuing and processing of the after_state_ch work, we still
978 * want to send each intermediary state in the order it occurred.
979 */
980 int drbd_send_state(struct drbd_conf *mdev, union drbd_state state)
981 {
982 struct drbd_socket *sock;
983 struct p_state *p;
984
985 sock = &mdev->tconn->data;
986 p = drbd_prepare_command(mdev, sock);
987 if (!p)
988 return -EIO;
989 p->state = cpu_to_be32(state.i); /* Within the send mutex */
990 return drbd_send_command(mdev, sock, P_STATE, sizeof(*p), NULL, 0);
991 }
992
993 int drbd_send_state_req(struct drbd_conf *mdev, union drbd_state mask, union drbd_state val)
994 {
995 struct drbd_socket *sock;
996 struct p_req_state *p;
997
998 sock = &mdev->tconn->data;
999 p = drbd_prepare_command(mdev, sock);
1000 if (!p)
1001 return -EIO;
1002 p->mask = cpu_to_be32(mask.i);
1003 p->val = cpu_to_be32(val.i);
1004 return drbd_send_command(mdev, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1005 }
1006
1007 int conn_send_state_req(struct drbd_tconn *tconn, union drbd_state mask, union drbd_state val)
1008 {
1009 enum drbd_packet cmd;
1010 struct drbd_socket *sock;
1011 struct p_req_state *p;
1012
1013 cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1014 sock = &tconn->data;
1015 p = conn_prepare_command(tconn, sock);
1016 if (!p)
1017 return -EIO;
1018 p->mask = cpu_to_be32(mask.i);
1019 p->val = cpu_to_be32(val.i);
1020 return conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1021 }
1022
1023 void drbd_send_sr_reply(struct drbd_conf *mdev, enum drbd_state_rv retcode)
1024 {
1025 struct drbd_socket *sock;
1026 struct p_req_state_reply *p;
1027
1028 sock = &mdev->tconn->meta;
1029 p = drbd_prepare_command(mdev, sock);
1030 if (p) {
1031 p->retcode = cpu_to_be32(retcode);
1032 drbd_send_command(mdev, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1033 }
1034 }
1035
1036 void conn_send_sr_reply(struct drbd_tconn *tconn, enum drbd_state_rv retcode)
1037 {
1038 struct drbd_socket *sock;
1039 struct p_req_state_reply *p;
1040 enum drbd_packet cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1041
1042 sock = &tconn->meta;
1043 p = conn_prepare_command(tconn, sock);
1044 if (p) {
1045 p->retcode = cpu_to_be32(retcode);
1046 conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1047 }
1048 }
1049
1050 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1051 {
1052 BUG_ON(code & ~0xf);
1053 p->encoding = (p->encoding & ~0xf) | code;
1054 }
1055
1056 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1057 {
1058 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1059 }
1060
1061 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1062 {
1063 BUG_ON(n & ~0x7);
1064 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1065 }
1066
1067 int fill_bitmap_rle_bits(struct drbd_conf *mdev,
1068 struct p_compressed_bm *p,
1069 unsigned int size,
1070 struct bm_xfer_ctx *c)
1071 {
1072 struct bitstream bs;
1073 unsigned long plain_bits;
1074 unsigned long tmp;
1075 unsigned long rl;
1076 unsigned len;
1077 unsigned toggle;
1078 int bits, use_rle;
1079
1080 /* may we use this feature? */
1081 rcu_read_lock();
1082 use_rle = rcu_dereference(mdev->tconn->net_conf)->use_rle;
1083 rcu_read_unlock();
1084 if (!use_rle || mdev->tconn->agreed_pro_version < 90)
1085 return 0;
1086
1087 if (c->bit_offset >= c->bm_bits)
1088 return 0; /* nothing to do. */
1089
1090 /* use at most thus many bytes */
1091 bitstream_init(&bs, p->code, size, 0);
1092 memset(p->code, 0, size);
1093 /* plain bits covered in this code string */
1094 plain_bits = 0;
1095
1096 /* p->encoding & 0x80 stores whether the first run length is set.
1097 * bit offset is implicit.
1098 * start with toggle == 2 to be able to tell the first iteration */
1099 toggle = 2;
1100
1101 /* see how much plain bits we can stuff into one packet
1102 * using RLE and VLI. */
1103 do {
1104 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(mdev, c->bit_offset)
1105 : _drbd_bm_find_next(mdev, c->bit_offset);
1106 if (tmp == -1UL)
1107 tmp = c->bm_bits;
1108 rl = tmp - c->bit_offset;
1109
1110 if (toggle == 2) { /* first iteration */
1111 if (rl == 0) {
1112 /* the first checked bit was set,
1113 * store start value, */
1114 dcbp_set_start(p, 1);
1115 /* but skip encoding of zero run length */
1116 toggle = !toggle;
1117 continue;
1118 }
1119 dcbp_set_start(p, 0);
1120 }
1121
1122 /* paranoia: catch zero runlength.
1123 * can only happen if bitmap is modified while we scan it. */
1124 if (rl == 0) {
1125 dev_err(DEV, "unexpected zero runlength while encoding bitmap "
1126 "t:%u bo:%lu\n", toggle, c->bit_offset);
1127 return -1;
1128 }
1129
1130 bits = vli_encode_bits(&bs, rl);
1131 if (bits == -ENOBUFS) /* buffer full */
1132 break;
1133 if (bits <= 0) {
1134 dev_err(DEV, "error while encoding bitmap: %d\n", bits);
1135 return 0;
1136 }
1137
1138 toggle = !toggle;
1139 plain_bits += rl;
1140 c->bit_offset = tmp;
1141 } while (c->bit_offset < c->bm_bits);
1142
1143 len = bs.cur.b - p->code + !!bs.cur.bit;
1144
1145 if (plain_bits < (len << 3)) {
1146 /* incompressible with this method.
1147 * we need to rewind both word and bit position. */
1148 c->bit_offset -= plain_bits;
1149 bm_xfer_ctx_bit_to_word_offset(c);
1150 c->bit_offset = c->word_offset * BITS_PER_LONG;
1151 return 0;
1152 }
1153
1154 /* RLE + VLI was able to compress it just fine.
1155 * update c->word_offset. */
1156 bm_xfer_ctx_bit_to_word_offset(c);
1157
1158 /* store pad_bits */
1159 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1160
1161 return len;
1162 }
1163
1164 /**
1165 * send_bitmap_rle_or_plain
1166 *
1167 * Return 0 when done, 1 when another iteration is needed, and a negative error
1168 * code upon failure.
1169 */
1170 static int
1171 send_bitmap_rle_or_plain(struct drbd_conf *mdev, struct bm_xfer_ctx *c)
1172 {
1173 struct drbd_socket *sock = &mdev->tconn->data;
1174 unsigned int header_size = drbd_header_size(mdev->tconn);
1175 struct p_compressed_bm *p = sock->sbuf + header_size;
1176 int len, err;
1177
1178 len = fill_bitmap_rle_bits(mdev, p,
1179 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1180 if (len < 0)
1181 return -EIO;
1182
1183 if (len) {
1184 dcbp_set_code(p, RLE_VLI_Bits);
1185 err = __send_command(mdev->tconn, mdev->vnr, sock,
1186 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1187 NULL, 0);
1188 c->packets[0]++;
1189 c->bytes[0] += header_size + sizeof(*p) + len;
1190
1191 if (c->bit_offset >= c->bm_bits)
1192 len = 0; /* DONE */
1193 } else {
1194 /* was not compressible.
1195 * send a buffer full of plain text bits instead. */
1196 unsigned int data_size;
1197 unsigned long num_words;
1198 unsigned long *p = sock->sbuf + header_size;
1199
1200 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1201 num_words = min_t(size_t, data_size / sizeof(*p),
1202 c->bm_words - c->word_offset);
1203 len = num_words * sizeof(*p);
1204 if (len)
1205 drbd_bm_get_lel(mdev, c->word_offset, num_words, p);
1206 err = __send_command(mdev->tconn, mdev->vnr, sock, P_BITMAP, len, NULL, 0);
1207 c->word_offset += num_words;
1208 c->bit_offset = c->word_offset * BITS_PER_LONG;
1209
1210 c->packets[1]++;
1211 c->bytes[1] += header_size + len;
1212
1213 if (c->bit_offset > c->bm_bits)
1214 c->bit_offset = c->bm_bits;
1215 }
1216 if (!err) {
1217 if (len == 0) {
1218 INFO_bm_xfer_stats(mdev, "send", c);
1219 return 0;
1220 } else
1221 return 1;
1222 }
1223 return -EIO;
1224 }
1225
1226 /* See the comment at receive_bitmap() */
1227 static int _drbd_send_bitmap(struct drbd_conf *mdev)
1228 {
1229 struct bm_xfer_ctx c;
1230 int err;
1231
1232 if (!expect(mdev->bitmap))
1233 return false;
1234
1235 if (get_ldev(mdev)) {
1236 if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) {
1237 dev_info(DEV, "Writing the whole bitmap, MDF_FullSync was set.\n");
1238 drbd_bm_set_all(mdev);
1239 if (drbd_bm_write(mdev)) {
1240 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1241 * but otherwise process as per normal - need to tell other
1242 * side that a full resync is required! */
1243 dev_err(DEV, "Failed to write bitmap to disk!\n");
1244 } else {
1245 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
1246 drbd_md_sync(mdev);
1247 }
1248 }
1249 put_ldev(mdev);
1250 }
1251
1252 c = (struct bm_xfer_ctx) {
1253 .bm_bits = drbd_bm_bits(mdev),
1254 .bm_words = drbd_bm_words(mdev),
1255 };
1256
1257 do {
1258 err = send_bitmap_rle_or_plain(mdev, &c);
1259 } while (err > 0);
1260
1261 return err == 0;
1262 }
1263
1264 int drbd_send_bitmap(struct drbd_conf *mdev)
1265 {
1266 struct drbd_socket *sock = &mdev->tconn->data;
1267 int err = -1;
1268
1269 mutex_lock(&sock->mutex);
1270 if (sock->socket)
1271 err = !_drbd_send_bitmap(mdev);
1272 mutex_unlock(&sock->mutex);
1273 return err;
1274 }
1275
1276 void drbd_send_b_ack(struct drbd_tconn *tconn, u32 barrier_nr, u32 set_size)
1277 {
1278 struct drbd_socket *sock;
1279 struct p_barrier_ack *p;
1280
1281 if (tconn->cstate < C_WF_REPORT_PARAMS)
1282 return;
1283
1284 sock = &tconn->meta;
1285 p = conn_prepare_command(tconn, sock);
1286 if (!p)
1287 return;
1288 p->barrier = barrier_nr;
1289 p->set_size = cpu_to_be32(set_size);
1290 conn_send_command(tconn, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1291 }
1292
1293 /**
1294 * _drbd_send_ack() - Sends an ack packet
1295 * @mdev: DRBD device.
1296 * @cmd: Packet command code.
1297 * @sector: sector, needs to be in big endian byte order
1298 * @blksize: size in byte, needs to be in big endian byte order
1299 * @block_id: Id, big endian byte order
1300 */
1301 static int _drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1302 u64 sector, u32 blksize, u64 block_id)
1303 {
1304 struct drbd_socket *sock;
1305 struct p_block_ack *p;
1306
1307 if (mdev->state.conn < C_CONNECTED)
1308 return -EIO;
1309
1310 sock = &mdev->tconn->meta;
1311 p = drbd_prepare_command(mdev, sock);
1312 if (!p)
1313 return -EIO;
1314 p->sector = sector;
1315 p->block_id = block_id;
1316 p->blksize = blksize;
1317 p->seq_num = cpu_to_be32(atomic_inc_return(&mdev->packet_seq));
1318 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1319 }
1320
1321 /* dp->sector and dp->block_id already/still in network byte order,
1322 * data_size is payload size according to dp->head,
1323 * and may need to be corrected for digest size. */
1324 void drbd_send_ack_dp(struct drbd_conf *mdev, enum drbd_packet cmd,
1325 struct p_data *dp, int data_size)
1326 {
1327 if (mdev->tconn->peer_integrity_tfm)
1328 data_size -= crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm);
1329 _drbd_send_ack(mdev, cmd, dp->sector, cpu_to_be32(data_size),
1330 dp->block_id);
1331 }
1332
1333 void drbd_send_ack_rp(struct drbd_conf *mdev, enum drbd_packet cmd,
1334 struct p_block_req *rp)
1335 {
1336 _drbd_send_ack(mdev, cmd, rp->sector, rp->blksize, rp->block_id);
1337 }
1338
1339 /**
1340 * drbd_send_ack() - Sends an ack packet
1341 * @mdev: DRBD device
1342 * @cmd: packet command code
1343 * @peer_req: peer request
1344 */
1345 int drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1346 struct drbd_peer_request *peer_req)
1347 {
1348 return _drbd_send_ack(mdev, cmd,
1349 cpu_to_be64(peer_req->i.sector),
1350 cpu_to_be32(peer_req->i.size),
1351 peer_req->block_id);
1352 }
1353
1354 /* This function misuses the block_id field to signal if the blocks
1355 * are is sync or not. */
1356 int drbd_send_ack_ex(struct drbd_conf *mdev, enum drbd_packet cmd,
1357 sector_t sector, int blksize, u64 block_id)
1358 {
1359 return _drbd_send_ack(mdev, cmd,
1360 cpu_to_be64(sector),
1361 cpu_to_be32(blksize),
1362 cpu_to_be64(block_id));
1363 }
1364
1365 int drbd_send_drequest(struct drbd_conf *mdev, int cmd,
1366 sector_t sector, int size, u64 block_id)
1367 {
1368 struct drbd_socket *sock;
1369 struct p_block_req *p;
1370
1371 sock = &mdev->tconn->data;
1372 p = drbd_prepare_command(mdev, sock);
1373 if (!p)
1374 return -EIO;
1375 p->sector = cpu_to_be64(sector);
1376 p->block_id = block_id;
1377 p->blksize = cpu_to_be32(size);
1378 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1379 }
1380
1381 int drbd_send_drequest_csum(struct drbd_conf *mdev, sector_t sector, int size,
1382 void *digest, int digest_size, enum drbd_packet cmd)
1383 {
1384 struct drbd_socket *sock;
1385 struct p_block_req *p;
1386
1387 /* FIXME: Put the digest into the preallocated socket buffer. */
1388
1389 sock = &mdev->tconn->data;
1390 p = drbd_prepare_command(mdev, sock);
1391 if (!p)
1392 return -EIO;
1393 p->sector = cpu_to_be64(sector);
1394 p->block_id = ID_SYNCER /* unused */;
1395 p->blksize = cpu_to_be32(size);
1396 return drbd_send_command(mdev, sock, cmd, sizeof(*p),
1397 digest, digest_size);
1398 }
1399
1400 int drbd_send_ov_request(struct drbd_conf *mdev, sector_t sector, int size)
1401 {
1402 struct drbd_socket *sock;
1403 struct p_block_req *p;
1404
1405 sock = &mdev->tconn->data;
1406 p = drbd_prepare_command(mdev, sock);
1407 if (!p)
1408 return -EIO;
1409 p->sector = cpu_to_be64(sector);
1410 p->block_id = ID_SYNCER /* unused */;
1411 p->blksize = cpu_to_be32(size);
1412 return drbd_send_command(mdev, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1413 }
1414
1415 /* called on sndtimeo
1416 * returns false if we should retry,
1417 * true if we think connection is dead
1418 */
1419 static int we_should_drop_the_connection(struct drbd_tconn *tconn, struct socket *sock)
1420 {
1421 int drop_it;
1422 /* long elapsed = (long)(jiffies - mdev->last_received); */
1423
1424 drop_it = tconn->meta.socket == sock
1425 || !tconn->asender.task
1426 || get_t_state(&tconn->asender) != RUNNING
1427 || tconn->cstate < C_WF_REPORT_PARAMS;
1428
1429 if (drop_it)
1430 return true;
1431
1432 drop_it = !--tconn->ko_count;
1433 if (!drop_it) {
1434 conn_err(tconn, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1435 current->comm, current->pid, tconn->ko_count);
1436 request_ping(tconn);
1437 }
1438
1439 return drop_it; /* && (mdev->state == R_PRIMARY) */;
1440 }
1441
1442 static void drbd_update_congested(struct drbd_tconn *tconn)
1443 {
1444 struct sock *sk = tconn->data.socket->sk;
1445 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1446 set_bit(NET_CONGESTED, &tconn->flags);
1447 }
1448
1449 /* The idea of sendpage seems to be to put some kind of reference
1450 * to the page into the skb, and to hand it over to the NIC. In
1451 * this process get_page() gets called.
1452 *
1453 * As soon as the page was really sent over the network put_page()
1454 * gets called by some part of the network layer. [ NIC driver? ]
1455 *
1456 * [ get_page() / put_page() increment/decrement the count. If count
1457 * reaches 0 the page will be freed. ]
1458 *
1459 * This works nicely with pages from FSs.
1460 * But this means that in protocol A we might signal IO completion too early!
1461 *
1462 * In order not to corrupt data during a resync we must make sure
1463 * that we do not reuse our own buffer pages (EEs) to early, therefore
1464 * we have the net_ee list.
1465 *
1466 * XFS seems to have problems, still, it submits pages with page_count == 0!
1467 * As a workaround, we disable sendpage on pages
1468 * with page_count == 0 or PageSlab.
1469 */
1470 static int _drbd_no_send_page(struct drbd_conf *mdev, struct page *page,
1471 int offset, size_t size, unsigned msg_flags)
1472 {
1473 struct socket *socket;
1474 void *addr;
1475 int err;
1476
1477 socket = mdev->tconn->data.socket;
1478 addr = kmap(page) + offset;
1479 err = drbd_send_all(mdev->tconn, socket, addr, size, msg_flags);
1480 kunmap(page);
1481 if (!err)
1482 mdev->send_cnt += size >> 9;
1483 return err;
1484 }
1485
1486 static int _drbd_send_page(struct drbd_conf *mdev, struct page *page,
1487 int offset, size_t size, unsigned msg_flags)
1488 {
1489 struct socket *socket = mdev->tconn->data.socket;
1490 mm_segment_t oldfs = get_fs();
1491 int len = size;
1492 int err = -EIO;
1493
1494 /* e.g. XFS meta- & log-data is in slab pages, which have a
1495 * page_count of 0 and/or have PageSlab() set.
1496 * we cannot use send_page for those, as that does get_page();
1497 * put_page(); and would cause either a VM_BUG directly, or
1498 * __page_cache_release a page that would actually still be referenced
1499 * by someone, leading to some obscure delayed Oops somewhere else. */
1500 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1501 return _drbd_no_send_page(mdev, page, offset, size, msg_flags);
1502
1503 msg_flags |= MSG_NOSIGNAL;
1504 drbd_update_congested(mdev->tconn);
1505 set_fs(KERNEL_DS);
1506 do {
1507 int sent;
1508
1509 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1510 if (sent <= 0) {
1511 if (sent == -EAGAIN) {
1512 if (we_should_drop_the_connection(mdev->tconn, socket))
1513 break;
1514 continue;
1515 }
1516 dev_warn(DEV, "%s: size=%d len=%d sent=%d\n",
1517 __func__, (int)size, len, sent);
1518 if (sent < 0)
1519 err = sent;
1520 break;
1521 }
1522 len -= sent;
1523 offset += sent;
1524 } while (len > 0 /* THINK && mdev->cstate >= C_CONNECTED*/);
1525 set_fs(oldfs);
1526 clear_bit(NET_CONGESTED, &mdev->tconn->flags);
1527
1528 if (len == 0) {
1529 err = 0;
1530 mdev->send_cnt += size >> 9;
1531 }
1532 return err;
1533 }
1534
1535 static int _drbd_send_bio(struct drbd_conf *mdev, struct bio *bio)
1536 {
1537 struct bio_vec *bvec;
1538 int i;
1539 /* hint all but last page with MSG_MORE */
1540 bio_for_each_segment(bvec, bio, i) {
1541 int err;
1542
1543 err = _drbd_no_send_page(mdev, bvec->bv_page,
1544 bvec->bv_offset, bvec->bv_len,
1545 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1546 if (err)
1547 return err;
1548 }
1549 return 0;
1550 }
1551
1552 static int _drbd_send_zc_bio(struct drbd_conf *mdev, struct bio *bio)
1553 {
1554 struct bio_vec *bvec;
1555 int i;
1556 /* hint all but last page with MSG_MORE */
1557 bio_for_each_segment(bvec, bio, i) {
1558 int err;
1559
1560 err = _drbd_send_page(mdev, bvec->bv_page,
1561 bvec->bv_offset, bvec->bv_len,
1562 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1563 if (err)
1564 return err;
1565 }
1566 return 0;
1567 }
1568
1569 static int _drbd_send_zc_ee(struct drbd_conf *mdev,
1570 struct drbd_peer_request *peer_req)
1571 {
1572 struct page *page = peer_req->pages;
1573 unsigned len = peer_req->i.size;
1574 int err;
1575
1576 /* hint all but last page with MSG_MORE */
1577 page_chain_for_each(page) {
1578 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1579
1580 err = _drbd_send_page(mdev, page, 0, l,
1581 page_chain_next(page) ? MSG_MORE : 0);
1582 if (err)
1583 return err;
1584 len -= l;
1585 }
1586 return 0;
1587 }
1588
1589 static u32 bio_flags_to_wire(struct drbd_conf *mdev, unsigned long bi_rw)
1590 {
1591 if (mdev->tconn->agreed_pro_version >= 95)
1592 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1593 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1594 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1595 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1596 else
1597 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1598 }
1599
1600 /* Used to send write requests
1601 * R_PRIMARY -> Peer (P_DATA)
1602 */
1603 int drbd_send_dblock(struct drbd_conf *mdev, struct drbd_request *req)
1604 {
1605 struct drbd_socket *sock;
1606 struct p_data *p;
1607 unsigned int dp_flags = 0;
1608 int dgs;
1609 int err;
1610
1611 sock = &mdev->tconn->data;
1612 p = drbd_prepare_command(mdev, sock);
1613 dgs = mdev->tconn->integrity_tfm ? crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1614
1615 if (!p)
1616 return -EIO;
1617 p->sector = cpu_to_be64(req->i.sector);
1618 p->block_id = (unsigned long)req;
1619 p->seq_num = cpu_to_be32(atomic_inc_return(&mdev->packet_seq));
1620 dp_flags = bio_flags_to_wire(mdev, req->master_bio->bi_rw);
1621 if (mdev->state.conn >= C_SYNC_SOURCE &&
1622 mdev->state.conn <= C_PAUSED_SYNC_T)
1623 dp_flags |= DP_MAY_SET_IN_SYNC;
1624 if (mdev->tconn->agreed_pro_version >= 100) {
1625 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1626 dp_flags |= DP_SEND_RECEIVE_ACK;
1627 if (req->rq_state & RQ_EXP_WRITE_ACK)
1628 dp_flags |= DP_SEND_WRITE_ACK;
1629 }
1630 p->dp_flags = cpu_to_be32(dp_flags);
1631 if (dgs)
1632 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, p + 1);
1633 err = __send_command(mdev->tconn, mdev->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1634 if (!err) {
1635 /* For protocol A, we have to memcpy the payload into
1636 * socket buffers, as we may complete right away
1637 * as soon as we handed it over to tcp, at which point the data
1638 * pages may become invalid.
1639 *
1640 * For data-integrity enabled, we copy it as well, so we can be
1641 * sure that even if the bio pages may still be modified, it
1642 * won't change the data on the wire, thus if the digest checks
1643 * out ok after sending on this side, but does not fit on the
1644 * receiving side, we sure have detected corruption elsewhere.
1645 */
1646 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1647 err = _drbd_send_bio(mdev, req->master_bio);
1648 else
1649 err = _drbd_send_zc_bio(mdev, req->master_bio);
1650
1651 /* double check digest, sometimes buffers have been modified in flight. */
1652 if (dgs > 0 && dgs <= 64) {
1653 /* 64 byte, 512 bit, is the largest digest size
1654 * currently supported in kernel crypto. */
1655 unsigned char digest[64];
1656 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, digest);
1657 if (memcmp(p + 1, digest, dgs)) {
1658 dev_warn(DEV,
1659 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1660 (unsigned long long)req->i.sector, req->i.size);
1661 }
1662 } /* else if (dgs > 64) {
1663 ... Be noisy about digest too large ...
1664 } */
1665 }
1666 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1667
1668 return err;
1669 }
1670
1671 /* answer packet, used to send data back for read requests:
1672 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1673 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1674 */
1675 int drbd_send_block(struct drbd_conf *mdev, enum drbd_packet cmd,
1676 struct drbd_peer_request *peer_req)
1677 {
1678 struct drbd_socket *sock;
1679 struct p_data *p;
1680 int err;
1681 int dgs;
1682
1683 sock = &mdev->tconn->data;
1684 p = drbd_prepare_command(mdev, sock);
1685
1686 dgs = mdev->tconn->integrity_tfm ? crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1687
1688 if (!p)
1689 return -EIO;
1690 p->sector = cpu_to_be64(peer_req->i.sector);
1691 p->block_id = peer_req->block_id;
1692 p->seq_num = 0; /* unused */
1693 p->dp_flags = 0;
1694 if (dgs)
1695 drbd_csum_ee(mdev, mdev->tconn->integrity_tfm, peer_req, p + 1);
1696 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1697 if (!err)
1698 err = _drbd_send_zc_ee(mdev, peer_req);
1699 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1700
1701 return err;
1702 }
1703
1704 int drbd_send_out_of_sync(struct drbd_conf *mdev, struct drbd_request *req)
1705 {
1706 struct drbd_socket *sock;
1707 struct p_block_desc *p;
1708
1709 sock = &mdev->tconn->data;
1710 p = drbd_prepare_command(mdev, sock);
1711 if (!p)
1712 return -EIO;
1713 p->sector = cpu_to_be64(req->i.sector);
1714 p->blksize = cpu_to_be32(req->i.size);
1715 return drbd_send_command(mdev, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1716 }
1717
1718 /*
1719 drbd_send distinguishes two cases:
1720
1721 Packets sent via the data socket "sock"
1722 and packets sent via the meta data socket "msock"
1723
1724 sock msock
1725 -----------------+-------------------------+------------------------------
1726 timeout conf.timeout / 2 conf.timeout / 2
1727 timeout action send a ping via msock Abort communication
1728 and close all sockets
1729 */
1730
1731 /*
1732 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1733 */
1734 int drbd_send(struct drbd_tconn *tconn, struct socket *sock,
1735 void *buf, size_t size, unsigned msg_flags)
1736 {
1737 struct kvec iov;
1738 struct msghdr msg;
1739 int rv, sent = 0;
1740
1741 if (!sock)
1742 return -EBADR;
1743
1744 /* THINK if (signal_pending) return ... ? */
1745
1746 iov.iov_base = buf;
1747 iov.iov_len = size;
1748
1749 msg.msg_name = NULL;
1750 msg.msg_namelen = 0;
1751 msg.msg_control = NULL;
1752 msg.msg_controllen = 0;
1753 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1754
1755 if (sock == tconn->data.socket) {
1756 rcu_read_lock();
1757 tconn->ko_count = rcu_dereference(tconn->net_conf)->ko_count;
1758 rcu_read_unlock();
1759 drbd_update_congested(tconn);
1760 }
1761 do {
1762 /* STRANGE
1763 * tcp_sendmsg does _not_ use its size parameter at all ?
1764 *
1765 * -EAGAIN on timeout, -EINTR on signal.
1766 */
1767 /* THINK
1768 * do we need to block DRBD_SIG if sock == &meta.socket ??
1769 * otherwise wake_asender() might interrupt some send_*Ack !
1770 */
1771 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1772 if (rv == -EAGAIN) {
1773 if (we_should_drop_the_connection(tconn, sock))
1774 break;
1775 else
1776 continue;
1777 }
1778 if (rv == -EINTR) {
1779 flush_signals(current);
1780 rv = 0;
1781 }
1782 if (rv < 0)
1783 break;
1784 sent += rv;
1785 iov.iov_base += rv;
1786 iov.iov_len -= rv;
1787 } while (sent < size);
1788
1789 if (sock == tconn->data.socket)
1790 clear_bit(NET_CONGESTED, &tconn->flags);
1791
1792 if (rv <= 0) {
1793 if (rv != -EAGAIN) {
1794 conn_err(tconn, "%s_sendmsg returned %d\n",
1795 sock == tconn->meta.socket ? "msock" : "sock",
1796 rv);
1797 conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD);
1798 } else
1799 conn_request_state(tconn, NS(conn, C_TIMEOUT), CS_HARD);
1800 }
1801
1802 return sent;
1803 }
1804
1805 /**
1806 * drbd_send_all - Send an entire buffer
1807 *
1808 * Returns 0 upon success and a negative error value otherwise.
1809 */
1810 int drbd_send_all(struct drbd_tconn *tconn, struct socket *sock, void *buffer,
1811 size_t size, unsigned msg_flags)
1812 {
1813 int err;
1814
1815 err = drbd_send(tconn, sock, buffer, size, msg_flags);
1816 if (err < 0)
1817 return err;
1818 if (err != size)
1819 return -EIO;
1820 return 0;
1821 }
1822
1823 static int drbd_open(struct block_device *bdev, fmode_t mode)
1824 {
1825 struct drbd_conf *mdev = bdev->bd_disk->private_data;
1826 unsigned long flags;
1827 int rv = 0;
1828
1829 mutex_lock(&drbd_main_mutex);
1830 spin_lock_irqsave(&mdev->tconn->req_lock, flags);
1831 /* to have a stable mdev->state.role
1832 * and no race with updating open_cnt */
1833
1834 if (mdev->state.role != R_PRIMARY) {
1835 if (mode & FMODE_WRITE)
1836 rv = -EROFS;
1837 else if (!allow_oos)
1838 rv = -EMEDIUMTYPE;
1839 }
1840
1841 if (!rv)
1842 mdev->open_cnt++;
1843 spin_unlock_irqrestore(&mdev->tconn->req_lock, flags);
1844 mutex_unlock(&drbd_main_mutex);
1845
1846 return rv;
1847 }
1848
1849 static int drbd_release(struct gendisk *gd, fmode_t mode)
1850 {
1851 struct drbd_conf *mdev = gd->private_data;
1852 mutex_lock(&drbd_main_mutex);
1853 mdev->open_cnt--;
1854 mutex_unlock(&drbd_main_mutex);
1855 return 0;
1856 }
1857
1858 static void drbd_set_defaults(struct drbd_conf *mdev)
1859 {
1860 /* Beware! The actual layout differs
1861 * between big endian and little endian */
1862 mdev->state = (union drbd_dev_state) {
1863 { .role = R_SECONDARY,
1864 .peer = R_UNKNOWN,
1865 .conn = C_STANDALONE,
1866 .disk = D_DISKLESS,
1867 .pdsk = D_UNKNOWN,
1868 } };
1869 }
1870
1871 void drbd_init_set_defaults(struct drbd_conf *mdev)
1872 {
1873 /* the memset(,0,) did most of this.
1874 * note: only assignments, no allocation in here */
1875
1876 drbd_set_defaults(mdev);
1877
1878 atomic_set(&mdev->ap_bio_cnt, 0);
1879 atomic_set(&mdev->ap_pending_cnt, 0);
1880 atomic_set(&mdev->rs_pending_cnt, 0);
1881 atomic_set(&mdev->unacked_cnt, 0);
1882 atomic_set(&mdev->local_cnt, 0);
1883 atomic_set(&mdev->pp_in_use_by_net, 0);
1884 atomic_set(&mdev->rs_sect_in, 0);
1885 atomic_set(&mdev->rs_sect_ev, 0);
1886 atomic_set(&mdev->ap_in_flight, 0);
1887 atomic_set(&mdev->md_io_in_use, 0);
1888
1889 mutex_init(&mdev->own_state_mutex);
1890 mdev->state_mutex = &mdev->own_state_mutex;
1891
1892 spin_lock_init(&mdev->al_lock);
1893 spin_lock_init(&mdev->peer_seq_lock);
1894
1895 INIT_LIST_HEAD(&mdev->active_ee);
1896 INIT_LIST_HEAD(&mdev->sync_ee);
1897 INIT_LIST_HEAD(&mdev->done_ee);
1898 INIT_LIST_HEAD(&mdev->read_ee);
1899 INIT_LIST_HEAD(&mdev->net_ee);
1900 INIT_LIST_HEAD(&mdev->resync_reads);
1901 INIT_LIST_HEAD(&mdev->resync_work.list);
1902 INIT_LIST_HEAD(&mdev->unplug_work.list);
1903 INIT_LIST_HEAD(&mdev->go_diskless.list);
1904 INIT_LIST_HEAD(&mdev->md_sync_work.list);
1905 INIT_LIST_HEAD(&mdev->start_resync_work.list);
1906 INIT_LIST_HEAD(&mdev->bm_io_work.w.list);
1907
1908 mdev->resync_work.cb = w_resync_timer;
1909 mdev->unplug_work.cb = w_send_write_hint;
1910 mdev->go_diskless.cb = w_go_diskless;
1911 mdev->md_sync_work.cb = w_md_sync;
1912 mdev->bm_io_work.w.cb = w_bitmap_io;
1913 mdev->start_resync_work.cb = w_start_resync;
1914
1915 mdev->resync_work.mdev = mdev;
1916 mdev->unplug_work.mdev = mdev;
1917 mdev->go_diskless.mdev = mdev;
1918 mdev->md_sync_work.mdev = mdev;
1919 mdev->bm_io_work.w.mdev = mdev;
1920 mdev->start_resync_work.mdev = mdev;
1921
1922 init_timer(&mdev->resync_timer);
1923 init_timer(&mdev->md_sync_timer);
1924 init_timer(&mdev->start_resync_timer);
1925 init_timer(&mdev->request_timer);
1926 mdev->resync_timer.function = resync_timer_fn;
1927 mdev->resync_timer.data = (unsigned long) mdev;
1928 mdev->md_sync_timer.function = md_sync_timer_fn;
1929 mdev->md_sync_timer.data = (unsigned long) mdev;
1930 mdev->start_resync_timer.function = start_resync_timer_fn;
1931 mdev->start_resync_timer.data = (unsigned long) mdev;
1932 mdev->request_timer.function = request_timer_fn;
1933 mdev->request_timer.data = (unsigned long) mdev;
1934
1935 init_waitqueue_head(&mdev->misc_wait);
1936 init_waitqueue_head(&mdev->state_wait);
1937 init_waitqueue_head(&mdev->ee_wait);
1938 init_waitqueue_head(&mdev->al_wait);
1939 init_waitqueue_head(&mdev->seq_wait);
1940
1941 mdev->resync_wenr = LC_FREE;
1942 mdev->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1943 mdev->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1944 }
1945
1946 void drbd_mdev_cleanup(struct drbd_conf *mdev)
1947 {
1948 int i;
1949 if (mdev->tconn->receiver.t_state != NONE)
1950 dev_err(DEV, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1951 mdev->tconn->receiver.t_state);
1952
1953 mdev->al_writ_cnt =
1954 mdev->bm_writ_cnt =
1955 mdev->read_cnt =
1956 mdev->recv_cnt =
1957 mdev->send_cnt =
1958 mdev->writ_cnt =
1959 mdev->p_size =
1960 mdev->rs_start =
1961 mdev->rs_total =
1962 mdev->rs_failed = 0;
1963 mdev->rs_last_events = 0;
1964 mdev->rs_last_sect_ev = 0;
1965 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1966 mdev->rs_mark_left[i] = 0;
1967 mdev->rs_mark_time[i] = 0;
1968 }
1969 D_ASSERT(mdev->tconn->net_conf == NULL);
1970
1971 drbd_set_my_capacity(mdev, 0);
1972 if (mdev->bitmap) {
1973 /* maybe never allocated. */
1974 drbd_bm_resize(mdev, 0, 1);
1975 drbd_bm_cleanup(mdev);
1976 }
1977
1978 drbd_free_bc(mdev->ldev);
1979 mdev->ldev = NULL;
1980
1981 clear_bit(AL_SUSPENDED, &mdev->flags);
1982
1983 D_ASSERT(list_empty(&mdev->active_ee));
1984 D_ASSERT(list_empty(&mdev->sync_ee));
1985 D_ASSERT(list_empty(&mdev->done_ee));
1986 D_ASSERT(list_empty(&mdev->read_ee));
1987 D_ASSERT(list_empty(&mdev->net_ee));
1988 D_ASSERT(list_empty(&mdev->resync_reads));
1989 D_ASSERT(list_empty(&mdev->tconn->sender_work.q));
1990 D_ASSERT(list_empty(&mdev->resync_work.list));
1991 D_ASSERT(list_empty(&mdev->unplug_work.list));
1992 D_ASSERT(list_empty(&mdev->go_diskless.list));
1993
1994 drbd_set_defaults(mdev);
1995 }
1996
1997
1998 static void drbd_destroy_mempools(void)
1999 {
2000 struct page *page;
2001
2002 while (drbd_pp_pool) {
2003 page = drbd_pp_pool;
2004 drbd_pp_pool = (struct page *)page_private(page);
2005 __free_page(page);
2006 drbd_pp_vacant--;
2007 }
2008
2009 /* D_ASSERT(atomic_read(&drbd_pp_vacant)==0); */
2010
2011 if (drbd_md_io_bio_set)
2012 bioset_free(drbd_md_io_bio_set);
2013 if (drbd_md_io_page_pool)
2014 mempool_destroy(drbd_md_io_page_pool);
2015 if (drbd_ee_mempool)
2016 mempool_destroy(drbd_ee_mempool);
2017 if (drbd_request_mempool)
2018 mempool_destroy(drbd_request_mempool);
2019 if (drbd_ee_cache)
2020 kmem_cache_destroy(drbd_ee_cache);
2021 if (drbd_request_cache)
2022 kmem_cache_destroy(drbd_request_cache);
2023 if (drbd_bm_ext_cache)
2024 kmem_cache_destroy(drbd_bm_ext_cache);
2025 if (drbd_al_ext_cache)
2026 kmem_cache_destroy(drbd_al_ext_cache);
2027
2028 drbd_md_io_bio_set = NULL;
2029 drbd_md_io_page_pool = NULL;
2030 drbd_ee_mempool = NULL;
2031 drbd_request_mempool = NULL;
2032 drbd_ee_cache = NULL;
2033 drbd_request_cache = NULL;
2034 drbd_bm_ext_cache = NULL;
2035 drbd_al_ext_cache = NULL;
2036
2037 return;
2038 }
2039
2040 static int drbd_create_mempools(void)
2041 {
2042 struct page *page;
2043 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2044 int i;
2045
2046 /* prepare our caches and mempools */
2047 drbd_request_mempool = NULL;
2048 drbd_ee_cache = NULL;
2049 drbd_request_cache = NULL;
2050 drbd_bm_ext_cache = NULL;
2051 drbd_al_ext_cache = NULL;
2052 drbd_pp_pool = NULL;
2053 drbd_md_io_page_pool = NULL;
2054 drbd_md_io_bio_set = NULL;
2055
2056 /* caches */
2057 drbd_request_cache = kmem_cache_create(
2058 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2059 if (drbd_request_cache == NULL)
2060 goto Enomem;
2061
2062 drbd_ee_cache = kmem_cache_create(
2063 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2064 if (drbd_ee_cache == NULL)
2065 goto Enomem;
2066
2067 drbd_bm_ext_cache = kmem_cache_create(
2068 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2069 if (drbd_bm_ext_cache == NULL)
2070 goto Enomem;
2071
2072 drbd_al_ext_cache = kmem_cache_create(
2073 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2074 if (drbd_al_ext_cache == NULL)
2075 goto Enomem;
2076
2077 /* mempools */
2078 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2079 if (drbd_md_io_bio_set == NULL)
2080 goto Enomem;
2081
2082 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2083 if (drbd_md_io_page_pool == NULL)
2084 goto Enomem;
2085
2086 drbd_request_mempool = mempool_create(number,
2087 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2088 if (drbd_request_mempool == NULL)
2089 goto Enomem;
2090
2091 drbd_ee_mempool = mempool_create(number,
2092 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2093 if (drbd_ee_mempool == NULL)
2094 goto Enomem;
2095
2096 /* drbd's page pool */
2097 spin_lock_init(&drbd_pp_lock);
2098
2099 for (i = 0; i < number; i++) {
2100 page = alloc_page(GFP_HIGHUSER);
2101 if (!page)
2102 goto Enomem;
2103 set_page_private(page, (unsigned long)drbd_pp_pool);
2104 drbd_pp_pool = page;
2105 }
2106 drbd_pp_vacant = number;
2107
2108 return 0;
2109
2110 Enomem:
2111 drbd_destroy_mempools(); /* in case we allocated some */
2112 return -ENOMEM;
2113 }
2114
2115 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2116 void *unused)
2117 {
2118 /* just so we have it. you never know what interesting things we
2119 * might want to do here some day...
2120 */
2121
2122 return NOTIFY_DONE;
2123 }
2124
2125 static struct notifier_block drbd_notifier = {
2126 .notifier_call = drbd_notify_sys,
2127 };
2128
2129 static void drbd_release_all_peer_reqs(struct drbd_conf *mdev)
2130 {
2131 int rr;
2132
2133 rr = drbd_free_peer_reqs(mdev, &mdev->active_ee);
2134 if (rr)
2135 dev_err(DEV, "%d EEs in active list found!\n", rr);
2136
2137 rr = drbd_free_peer_reqs(mdev, &mdev->sync_ee);
2138 if (rr)
2139 dev_err(DEV, "%d EEs in sync list found!\n", rr);
2140
2141 rr = drbd_free_peer_reqs(mdev, &mdev->read_ee);
2142 if (rr)
2143 dev_err(DEV, "%d EEs in read list found!\n", rr);
2144
2145 rr = drbd_free_peer_reqs(mdev, &mdev->done_ee);
2146 if (rr)
2147 dev_err(DEV, "%d EEs in done list found!\n", rr);
2148
2149 rr = drbd_free_peer_reqs(mdev, &mdev->net_ee);
2150 if (rr)
2151 dev_err(DEV, "%d EEs in net list found!\n", rr);
2152 }
2153
2154 /* caution. no locking. */
2155 void drbd_minor_destroy(struct kref *kref)
2156 {
2157 struct drbd_conf *mdev = container_of(kref, struct drbd_conf, kref);
2158 struct drbd_tconn *tconn = mdev->tconn;
2159
2160 del_timer_sync(&mdev->request_timer);
2161
2162 /* paranoia asserts */
2163 D_ASSERT(mdev->open_cnt == 0);
2164 /* end paranoia asserts */
2165
2166 /* cleanup stuff that may have been allocated during
2167 * device (re-)configuration or state changes */
2168
2169 if (mdev->this_bdev)
2170 bdput(mdev->this_bdev);
2171
2172 drbd_free_bc(mdev->ldev);
2173 mdev->ldev = NULL;
2174
2175 drbd_release_all_peer_reqs(mdev);
2176
2177 lc_destroy(mdev->act_log);
2178 lc_destroy(mdev->resync);
2179
2180 kfree(mdev->p_uuid);
2181 /* mdev->p_uuid = NULL; */
2182
2183 if (mdev->bitmap) /* should no longer be there. */
2184 drbd_bm_cleanup(mdev);
2185 __free_page(mdev->md_io_page);
2186 put_disk(mdev->vdisk);
2187 blk_cleanup_queue(mdev->rq_queue);
2188 kfree(mdev->rs_plan_s);
2189 kfree(mdev);
2190
2191 kref_put(&tconn->kref, &conn_destroy);
2192 }
2193
2194 /* One global retry thread, if we need to push back some bio and have it
2195 * reinserted through our make request function.
2196 */
2197 static struct retry_worker {
2198 struct workqueue_struct *wq;
2199 struct work_struct worker;
2200
2201 spinlock_t lock;
2202 struct list_head writes;
2203 } retry;
2204
2205 static void do_retry(struct work_struct *ws)
2206 {
2207 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2208 LIST_HEAD(writes);
2209 struct drbd_request *req, *tmp;
2210
2211 spin_lock_irq(&retry->lock);
2212 list_splice_init(&retry->writes, &writes);
2213 spin_unlock_irq(&retry->lock);
2214
2215 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2216 struct drbd_conf *mdev = req->w.mdev;
2217 struct bio *bio = req->master_bio;
2218 unsigned long start_time = req->start_time;
2219
2220 /* We have exclusive access to this request object.
2221 * If it had not been RQ_POSTPONED, the code path which queued
2222 * it here would have completed and freed it already.
2223 */
2224 mempool_free(req, drbd_request_mempool);
2225
2226 /* A single suspended or otherwise blocking device may stall
2227 * all others as well. Fortunately, this code path is to
2228 * recover from a situation that "should not happen":
2229 * concurrent writes in multi-primary setup.
2230 * In a "normal" lifecycle, this workqueue is supposed to be
2231 * destroyed without ever doing anything.
2232 * If it turns out to be an issue anyways, we can do per
2233 * resource (replication group) or per device (minor) retry
2234 * workqueues instead.
2235 */
2236
2237 /* We are not just doing generic_make_request(),
2238 * as we want to keep the start_time information. */
2239 inc_ap_bio(mdev);
2240 __drbd_make_request(mdev, bio, start_time);
2241 }
2242 }
2243
2244 void drbd_restart_request(struct drbd_request *req)
2245 {
2246 unsigned long flags;
2247 spin_lock_irqsave(&retry.lock, flags);
2248 list_move_tail(&req->tl_requests, &retry.writes);
2249 spin_unlock_irqrestore(&retry.lock, flags);
2250
2251 /* Drop the extra reference that would otherwise
2252 * have been dropped by complete_master_bio.
2253 * do_retry() needs to grab a new one. */
2254 dec_ap_bio(req->w.mdev);
2255
2256 queue_work(retry.wq, &retry.worker);
2257 }
2258
2259
2260 static void drbd_cleanup(void)
2261 {
2262 unsigned int i;
2263 struct drbd_conf *mdev;
2264 struct drbd_tconn *tconn, *tmp;
2265
2266 unregister_reboot_notifier(&drbd_notifier);
2267
2268 /* first remove proc,
2269 * drbdsetup uses it's presence to detect
2270 * whether DRBD is loaded.
2271 * If we would get stuck in proc removal,
2272 * but have netlink already deregistered,
2273 * some drbdsetup commands may wait forever
2274 * for an answer.
2275 */
2276 if (drbd_proc)
2277 remove_proc_entry("drbd", NULL);
2278
2279 if (retry.wq)
2280 destroy_workqueue(retry.wq);
2281
2282 drbd_genl_unregister();
2283
2284 idr_for_each_entry(&minors, mdev, i) {
2285 idr_remove(&minors, mdev_to_minor(mdev));
2286 idr_remove(&mdev->tconn->volumes, mdev->vnr);
2287 del_gendisk(mdev->vdisk);
2288 /* synchronize_rcu(); No other threads running at this point */
2289 kref_put(&mdev->kref, &drbd_minor_destroy);
2290 }
2291
2292 /* not _rcu since, no other updater anymore. Genl already unregistered */
2293 list_for_each_entry_safe(tconn, tmp, &drbd_tconns, all_tconn) {
2294 list_del(&tconn->all_tconn); /* not _rcu no proc, not other threads */
2295 /* synchronize_rcu(); */
2296 kref_put(&tconn->kref, &conn_destroy);
2297 }
2298
2299 drbd_destroy_mempools();
2300 unregister_blkdev(DRBD_MAJOR, "drbd");
2301
2302 idr_destroy(&minors);
2303
2304 printk(KERN_INFO "drbd: module cleanup done.\n");
2305 }
2306
2307 /**
2308 * drbd_congested() - Callback for pdflush
2309 * @congested_data: User data
2310 * @bdi_bits: Bits pdflush is currently interested in
2311 *
2312 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2313 */
2314 static int drbd_congested(void *congested_data, int bdi_bits)
2315 {
2316 struct drbd_conf *mdev = congested_data;
2317 struct request_queue *q;
2318 char reason = '-';
2319 int r = 0;
2320
2321 if (!may_inc_ap_bio(mdev)) {
2322 /* DRBD has frozen IO */
2323 r = bdi_bits;
2324 reason = 'd';
2325 goto out;
2326 }
2327
2328 if (get_ldev(mdev)) {
2329 q = bdev_get_queue(mdev->ldev->backing_bdev);
2330 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2331 put_ldev(mdev);
2332 if (r)
2333 reason = 'b';
2334 }
2335
2336 if (bdi_bits & (1 << BDI_async_congested) && test_bit(NET_CONGESTED, &mdev->tconn->flags)) {
2337 r |= (1 << BDI_async_congested);
2338 reason = reason == 'b' ? 'a' : 'n';
2339 }
2340
2341 out:
2342 mdev->congestion_reason = reason;
2343 return r;
2344 }
2345
2346 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2347 {
2348 spin_lock_init(&wq->q_lock);
2349 INIT_LIST_HEAD(&wq->q);
2350 init_waitqueue_head(&wq->q_wait);
2351 }
2352
2353 struct drbd_tconn *conn_get_by_name(const char *name)
2354 {
2355 struct drbd_tconn *tconn;
2356
2357 if (!name || !name[0])
2358 return NULL;
2359
2360 rcu_read_lock();
2361 list_for_each_entry_rcu(tconn, &drbd_tconns, all_tconn) {
2362 if (!strcmp(tconn->name, name)) {
2363 kref_get(&tconn->kref);
2364 goto found;
2365 }
2366 }
2367 tconn = NULL;
2368 found:
2369 rcu_read_unlock();
2370 return tconn;
2371 }
2372
2373 struct drbd_tconn *conn_get_by_addrs(void *my_addr, int my_addr_len,
2374 void *peer_addr, int peer_addr_len)
2375 {
2376 struct drbd_tconn *tconn;
2377
2378 rcu_read_lock();
2379 list_for_each_entry_rcu(tconn, &drbd_tconns, all_tconn) {
2380 if (tconn->my_addr_len == my_addr_len &&
2381 tconn->peer_addr_len == peer_addr_len &&
2382 !memcmp(&tconn->my_addr, my_addr, my_addr_len) &&
2383 !memcmp(&tconn->peer_addr, peer_addr, peer_addr_len)) {
2384 kref_get(&tconn->kref);
2385 goto found;
2386 }
2387 }
2388 tconn = NULL;
2389 found:
2390 rcu_read_unlock();
2391 return tconn;
2392 }
2393
2394 static int drbd_alloc_socket(struct drbd_socket *socket)
2395 {
2396 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2397 if (!socket->rbuf)
2398 return -ENOMEM;
2399 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2400 if (!socket->sbuf)
2401 return -ENOMEM;
2402 return 0;
2403 }
2404
2405 static void drbd_free_socket(struct drbd_socket *socket)
2406 {
2407 free_page((unsigned long) socket->sbuf);
2408 free_page((unsigned long) socket->rbuf);
2409 }
2410
2411 void conn_free_crypto(struct drbd_tconn *tconn)
2412 {
2413 drbd_free_sock(tconn);
2414
2415 crypto_free_hash(tconn->csums_tfm);
2416 crypto_free_hash(tconn->verify_tfm);
2417 crypto_free_hash(tconn->cram_hmac_tfm);
2418 crypto_free_hash(tconn->integrity_tfm);
2419 crypto_free_hash(tconn->peer_integrity_tfm);
2420 kfree(tconn->int_dig_in);
2421 kfree(tconn->int_dig_vv);
2422
2423 tconn->csums_tfm = NULL;
2424 tconn->verify_tfm = NULL;
2425 tconn->cram_hmac_tfm = NULL;
2426 tconn->integrity_tfm = NULL;
2427 tconn->peer_integrity_tfm = NULL;
2428 tconn->int_dig_in = NULL;
2429 tconn->int_dig_vv = NULL;
2430 }
2431
2432 int set_resource_options(struct drbd_tconn *tconn, struct res_opts *res_opts)
2433 {
2434 cpumask_var_t new_cpu_mask;
2435 int err;
2436
2437 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2438 return -ENOMEM;
2439 /*
2440 retcode = ERR_NOMEM;
2441 drbd_msg_put_info("unable to allocate cpumask");
2442 */
2443
2444 /* silently ignore cpu mask on UP kernel */
2445 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2446 /* FIXME: Get rid of constant 32 here */
2447 err = bitmap_parse(res_opts->cpu_mask, 32,
2448 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2449 if (err) {
2450 conn_warn(tconn, "bitmap_parse() failed with %d\n", err);
2451 /* retcode = ERR_CPU_MASK_PARSE; */
2452 goto fail;
2453 }
2454 }
2455 tconn->res_opts = *res_opts;
2456 if (!cpumask_equal(tconn->cpu_mask, new_cpu_mask)) {
2457 cpumask_copy(tconn->cpu_mask, new_cpu_mask);
2458 drbd_calc_cpu_mask(tconn);
2459 tconn->receiver.reset_cpu_mask = 1;
2460 tconn->asender.reset_cpu_mask = 1;
2461 tconn->worker.reset_cpu_mask = 1;
2462 }
2463 err = 0;
2464
2465 fail:
2466 free_cpumask_var(new_cpu_mask);
2467 return err;
2468
2469 }
2470
2471 /* caller must be under genl_lock() */
2472 struct drbd_tconn *conn_create(const char *name, struct res_opts *res_opts)
2473 {
2474 struct drbd_tconn *tconn;
2475
2476 tconn = kzalloc(sizeof(struct drbd_tconn), GFP_KERNEL);
2477 if (!tconn)
2478 return NULL;
2479
2480 tconn->name = kstrdup(name, GFP_KERNEL);
2481 if (!tconn->name)
2482 goto fail;
2483
2484 if (drbd_alloc_socket(&tconn->data))
2485 goto fail;
2486 if (drbd_alloc_socket(&tconn->meta))
2487 goto fail;
2488
2489 if (!zalloc_cpumask_var(&tconn->cpu_mask, GFP_KERNEL))
2490 goto fail;
2491
2492 if (set_resource_options(tconn, res_opts))
2493 goto fail;
2494
2495 tconn->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2496 if (!tconn->current_epoch)
2497 goto fail;
2498
2499 INIT_LIST_HEAD(&tconn->transfer_log);
2500
2501 INIT_LIST_HEAD(&tconn->current_epoch->list);
2502 tconn->epochs = 1;
2503 spin_lock_init(&tconn->epoch_lock);
2504 tconn->write_ordering = WO_bdev_flush;
2505
2506 tconn->send.seen_any_write_yet = false;
2507 tconn->send.current_epoch_nr = 0;
2508 tconn->send.current_epoch_writes = 0;
2509
2510 tconn->cstate = C_STANDALONE;
2511 mutex_init(&tconn->cstate_mutex);
2512 spin_lock_init(&tconn->req_lock);
2513 mutex_init(&tconn->conf_update);
2514 init_waitqueue_head(&tconn->ping_wait);
2515 idr_init(&tconn->volumes);
2516
2517 drbd_init_workqueue(&tconn->sender_work);
2518 mutex_init(&tconn->data.mutex);
2519 mutex_init(&tconn->meta.mutex);
2520
2521 drbd_thread_init(tconn, &tconn->receiver, drbdd_init, "receiver");
2522 drbd_thread_init(tconn, &tconn->worker, drbd_worker, "worker");
2523 drbd_thread_init(tconn, &tconn->asender, drbd_asender, "asender");
2524
2525 kref_init(&tconn->kref);
2526 list_add_tail_rcu(&tconn->all_tconn, &drbd_tconns);
2527
2528 return tconn;
2529
2530 fail:
2531 kfree(tconn->current_epoch);
2532 free_cpumask_var(tconn->cpu_mask);
2533 drbd_free_socket(&tconn->meta);
2534 drbd_free_socket(&tconn->data);
2535 kfree(tconn->name);
2536 kfree(tconn);
2537
2538 return NULL;
2539 }
2540
2541 void conn_destroy(struct kref *kref)
2542 {
2543 struct drbd_tconn *tconn = container_of(kref, struct drbd_tconn, kref);
2544
2545 if (atomic_read(&tconn->current_epoch->epoch_size) != 0)
2546 conn_err(tconn, "epoch_size:%d\n", atomic_read(&tconn->current_epoch->epoch_size));
2547 kfree(tconn->current_epoch);
2548
2549 idr_destroy(&tconn->volumes);
2550
2551 free_cpumask_var(tconn->cpu_mask);
2552 drbd_free_socket(&tconn->meta);
2553 drbd_free_socket(&tconn->data);
2554 kfree(tconn->name);
2555 kfree(tconn->int_dig_in);
2556 kfree(tconn->int_dig_vv);
2557 kfree(tconn);
2558 }
2559
2560 enum drbd_ret_code conn_new_minor(struct drbd_tconn *tconn, unsigned int minor, int vnr)
2561 {
2562 struct drbd_conf *mdev;
2563 struct gendisk *disk;
2564 struct request_queue *q;
2565 int vnr_got = vnr;
2566 int minor_got = minor;
2567 enum drbd_ret_code err = ERR_NOMEM;
2568
2569 mdev = minor_to_mdev(minor);
2570 if (mdev)
2571 return ERR_MINOR_EXISTS;
2572
2573 /* GFP_KERNEL, we are outside of all write-out paths */
2574 mdev = kzalloc(sizeof(struct drbd_conf), GFP_KERNEL);
2575 if (!mdev)
2576 return ERR_NOMEM;
2577
2578 kref_get(&tconn->kref);
2579 mdev->tconn = tconn;
2580
2581 mdev->minor = minor;
2582 mdev->vnr = vnr;
2583
2584 drbd_init_set_defaults(mdev);
2585
2586 q = blk_alloc_queue(GFP_KERNEL);
2587 if (!q)
2588 goto out_no_q;
2589 mdev->rq_queue = q;
2590 q->queuedata = mdev;
2591
2592 disk = alloc_disk(1);
2593 if (!disk)
2594 goto out_no_disk;
2595 mdev->vdisk = disk;
2596
2597 set_disk_ro(disk, true);
2598
2599 disk->queue = q;
2600 disk->major = DRBD_MAJOR;
2601 disk->first_minor = minor;
2602 disk->fops = &drbd_ops;
2603 sprintf(disk->disk_name, "drbd%d", minor);
2604 disk->private_data = mdev;
2605
2606 mdev->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2607 /* we have no partitions. we contain only ourselves. */
2608 mdev->this_bdev->bd_contains = mdev->this_bdev;
2609
2610 q->backing_dev_info.congested_fn = drbd_congested;
2611 q->backing_dev_info.congested_data = mdev;
2612
2613 blk_queue_make_request(q, drbd_make_request);
2614 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2615 This triggers a max_bio_size message upon first attach or connect */
2616 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2617 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2618 blk_queue_merge_bvec(q, drbd_merge_bvec);
2619 q->queue_lock = &mdev->tconn->req_lock; /* needed since we use */
2620
2621 mdev->md_io_page = alloc_page(GFP_KERNEL);
2622 if (!mdev->md_io_page)
2623 goto out_no_io_page;
2624
2625 if (drbd_bm_init(mdev))
2626 goto out_no_bitmap;
2627 mdev->read_requests = RB_ROOT;
2628 mdev->write_requests = RB_ROOT;
2629
2630 if (!idr_pre_get(&minors, GFP_KERNEL))
2631 goto out_no_minor_idr;
2632 if (idr_get_new_above(&minors, mdev, minor, &minor_got))
2633 goto out_no_minor_idr;
2634 if (minor_got != minor) {
2635 err = ERR_MINOR_EXISTS;
2636 drbd_msg_put_info("requested minor exists already");
2637 goto out_idr_remove_minor;
2638 }
2639
2640 if (!idr_pre_get(&tconn->volumes, GFP_KERNEL))
2641 goto out_idr_remove_minor;
2642 if (idr_get_new_above(&tconn->volumes, mdev, vnr, &vnr_got))
2643 goto out_idr_remove_minor;
2644 if (vnr_got != vnr) {
2645 err = ERR_INVALID_REQUEST;
2646 drbd_msg_put_info("requested volume exists already");
2647 goto out_idr_remove_vol;
2648 }
2649 add_disk(disk);
2650 kref_init(&mdev->kref); /* one ref for both idrs and the the add_disk */
2651
2652 /* inherit the connection state */
2653 mdev->state.conn = tconn->cstate;
2654 if (mdev->state.conn == C_WF_REPORT_PARAMS)
2655 drbd_connected(mdev);
2656
2657 return NO_ERROR;
2658
2659 out_idr_remove_vol:
2660 idr_remove(&tconn->volumes, vnr_got);
2661 out_idr_remove_minor:
2662 idr_remove(&minors, minor_got);
2663 synchronize_rcu();
2664 out_no_minor_idr:
2665 drbd_bm_cleanup(mdev);
2666 out_no_bitmap:
2667 __free_page(mdev->md_io_page);
2668 out_no_io_page:
2669 put_disk(disk);
2670 out_no_disk:
2671 blk_cleanup_queue(q);
2672 out_no_q:
2673 kfree(mdev);
2674 kref_put(&tconn->kref, &conn_destroy);
2675 return err;
2676 }
2677
2678 int __init drbd_init(void)
2679 {
2680 int err;
2681
2682 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2683 printk(KERN_ERR
2684 "drbd: invalid minor_count (%d)\n", minor_count);
2685 #ifdef MODULE
2686 return -EINVAL;
2687 #else
2688 minor_count = DRBD_MINOR_COUNT_DEF;
2689 #endif
2690 }
2691
2692 err = register_blkdev(DRBD_MAJOR, "drbd");
2693 if (err) {
2694 printk(KERN_ERR
2695 "drbd: unable to register block device major %d\n",
2696 DRBD_MAJOR);
2697 return err;
2698 }
2699
2700 err = drbd_genl_register();
2701 if (err) {
2702 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2703 goto fail;
2704 }
2705
2706
2707 register_reboot_notifier(&drbd_notifier);
2708
2709 /*
2710 * allocate all necessary structs
2711 */
2712 err = -ENOMEM;
2713
2714 init_waitqueue_head(&drbd_pp_wait);
2715
2716 drbd_proc = NULL; /* play safe for drbd_cleanup */
2717 idr_init(&minors);
2718
2719 err = drbd_create_mempools();
2720 if (err)
2721 goto fail;
2722
2723 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2724 if (!drbd_proc) {
2725 printk(KERN_ERR "drbd: unable to register proc file\n");
2726 goto fail;
2727 }
2728
2729 rwlock_init(&global_state_lock);
2730 INIT_LIST_HEAD(&drbd_tconns);
2731
2732 retry.wq = create_singlethread_workqueue("drbd-reissue");
2733 if (!retry.wq) {
2734 printk(KERN_ERR "drbd: unable to create retry workqueue\n");
2735 goto fail;
2736 }
2737 INIT_WORK(&retry.worker, do_retry);
2738 spin_lock_init(&retry.lock);
2739 INIT_LIST_HEAD(&retry.writes);
2740
2741 printk(KERN_INFO "drbd: initialized. "
2742 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2743 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2744 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2745 printk(KERN_INFO "drbd: registered as block device major %d\n",
2746 DRBD_MAJOR);
2747
2748 return 0; /* Success! */
2749
2750 fail:
2751 drbd_cleanup();
2752 if (err == -ENOMEM)
2753 /* currently always the case */
2754 printk(KERN_ERR "drbd: ran out of memory\n");
2755 else
2756 printk(KERN_ERR "drbd: initialization failure\n");
2757 return err;
2758 }
2759
2760 void drbd_free_bc(struct drbd_backing_dev *ldev)
2761 {
2762 if (ldev == NULL)
2763 return;
2764
2765 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2766 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2767
2768 kfree(ldev);
2769 }
2770
2771 void drbd_free_sock(struct drbd_tconn *tconn)
2772 {
2773 if (tconn->data.socket) {
2774 mutex_lock(&tconn->data.mutex);
2775 kernel_sock_shutdown(tconn->data.socket, SHUT_RDWR);
2776 sock_release(tconn->data.socket);
2777 tconn->data.socket = NULL;
2778 mutex_unlock(&tconn->data.mutex);
2779 }
2780 if (tconn->meta.socket) {
2781 mutex_lock(&tconn->meta.mutex);
2782 kernel_sock_shutdown(tconn->meta.socket, SHUT_RDWR);
2783 sock_release(tconn->meta.socket);
2784 tconn->meta.socket = NULL;
2785 mutex_unlock(&tconn->meta.mutex);
2786 }
2787 }
2788
2789 /* meta data management */
2790
2791 struct meta_data_on_disk {
2792 u64 la_size; /* last agreed size. */
2793 u64 uuid[UI_SIZE]; /* UUIDs. */
2794 u64 device_uuid;
2795 u64 reserved_u64_1;
2796 u32 flags; /* MDF */
2797 u32 magic;
2798 u32 md_size_sect;
2799 u32 al_offset; /* offset to this block */
2800 u32 al_nr_extents; /* important for restoring the AL */
2801 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2802 u32 bm_offset; /* offset to the bitmap, from here */
2803 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2804 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2805 u32 reserved_u32[3];
2806
2807 } __packed;
2808
2809 /**
2810 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
2811 * @mdev: DRBD device.
2812 */
2813 void drbd_md_sync(struct drbd_conf *mdev)
2814 {
2815 struct meta_data_on_disk *buffer;
2816 sector_t sector;
2817 int i;
2818
2819 del_timer(&mdev->md_sync_timer);
2820 /* timer may be rearmed by drbd_md_mark_dirty() now. */
2821 if (!test_and_clear_bit(MD_DIRTY, &mdev->flags))
2822 return;
2823
2824 /* We use here D_FAILED and not D_ATTACHING because we try to write
2825 * metadata even if we detach due to a disk failure! */
2826 if (!get_ldev_if_state(mdev, D_FAILED))
2827 return;
2828
2829 buffer = drbd_md_get_buffer(mdev);
2830 if (!buffer)
2831 goto out;
2832
2833 memset(buffer, 0, 512);
2834
2835 buffer->la_size = cpu_to_be64(drbd_get_capacity(mdev->this_bdev));
2836 for (i = UI_CURRENT; i < UI_SIZE; i++)
2837 buffer->uuid[i] = cpu_to_be64(mdev->ldev->md.uuid[i]);
2838 buffer->flags = cpu_to_be32(mdev->ldev->md.flags);
2839 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
2840
2841 buffer->md_size_sect = cpu_to_be32(mdev->ldev->md.md_size_sect);
2842 buffer->al_offset = cpu_to_be32(mdev->ldev->md.al_offset);
2843 buffer->al_nr_extents = cpu_to_be32(mdev->act_log->nr_elements);
2844 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
2845 buffer->device_uuid = cpu_to_be64(mdev->ldev->md.device_uuid);
2846
2847 buffer->bm_offset = cpu_to_be32(mdev->ldev->md.bm_offset);
2848 buffer->la_peer_max_bio_size = cpu_to_be32(mdev->peer_max_bio_size);
2849
2850 D_ASSERT(drbd_md_ss__(mdev, mdev->ldev) == mdev->ldev->md.md_offset);
2851 sector = mdev->ldev->md.md_offset;
2852
2853 if (drbd_md_sync_page_io(mdev, mdev->ldev, sector, WRITE)) {
2854 /* this was a try anyways ... */
2855 dev_err(DEV, "meta data update failed!\n");
2856 drbd_chk_io_error(mdev, 1, true);
2857 }
2858
2859 /* Update mdev->ldev->md.la_size_sect,
2860 * since we updated it on metadata. */
2861 mdev->ldev->md.la_size_sect = drbd_get_capacity(mdev->this_bdev);
2862
2863 drbd_md_put_buffer(mdev);
2864 out:
2865 put_ldev(mdev);
2866 }
2867
2868 /**
2869 * drbd_md_read() - Reads in the meta data super block
2870 * @mdev: DRBD device.
2871 * @bdev: Device from which the meta data should be read in.
2872 *
2873 * Return 0 (NO_ERROR) on success, and an enum drbd_ret_code in case
2874 * something goes wrong.
2875 */
2876 int drbd_md_read(struct drbd_conf *mdev, struct drbd_backing_dev *bdev)
2877 {
2878 struct meta_data_on_disk *buffer;
2879 u32 magic, flags;
2880 int i, rv = NO_ERROR;
2881
2882 if (!get_ldev_if_state(mdev, D_ATTACHING))
2883 return ERR_IO_MD_DISK;
2884
2885 buffer = drbd_md_get_buffer(mdev);
2886 if (!buffer)
2887 goto out;
2888
2889 if (drbd_md_sync_page_io(mdev, bdev, bdev->md.md_offset, READ)) {
2890 /* NOTE: can't do normal error processing here as this is
2891 called BEFORE disk is attached */
2892 dev_err(DEV, "Error while reading metadata.\n");
2893 rv = ERR_IO_MD_DISK;
2894 goto err;
2895 }
2896
2897 magic = be32_to_cpu(buffer->magic);
2898 flags = be32_to_cpu(buffer->flags);
2899 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
2900 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
2901 /* btw: that's Activity Log clean, not "all" clean. */
2902 dev_err(DEV, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
2903 rv = ERR_MD_UNCLEAN;
2904 goto err;
2905 }
2906 if (magic != DRBD_MD_MAGIC_08) {
2907 if (magic == DRBD_MD_MAGIC_07)
2908 dev_err(DEV, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
2909 else
2910 dev_err(DEV, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
2911 rv = ERR_MD_INVALID;
2912 goto err;
2913 }
2914 if (be32_to_cpu(buffer->al_offset) != bdev->md.al_offset) {
2915 dev_err(DEV, "unexpected al_offset: %d (expected %d)\n",
2916 be32_to_cpu(buffer->al_offset), bdev->md.al_offset);
2917 rv = ERR_MD_INVALID;
2918 goto err;
2919 }
2920 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
2921 dev_err(DEV, "unexpected bm_offset: %d (expected %d)\n",
2922 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
2923 rv = ERR_MD_INVALID;
2924 goto err;
2925 }
2926 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
2927 dev_err(DEV, "unexpected md_size: %u (expected %u)\n",
2928 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
2929 rv = ERR_MD_INVALID;
2930 goto err;
2931 }
2932
2933 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
2934 dev_err(DEV, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
2935 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
2936 rv = ERR_MD_INVALID;
2937 goto err;
2938 }
2939
2940 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size);
2941 for (i = UI_CURRENT; i < UI_SIZE; i++)
2942 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
2943 bdev->md.flags = be32_to_cpu(buffer->flags);
2944 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
2945
2946 spin_lock_irq(&mdev->tconn->req_lock);
2947 if (mdev->state.conn < C_CONNECTED) {
2948 int peer;
2949 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
2950 peer = max_t(int, peer, DRBD_MAX_BIO_SIZE_SAFE);
2951 mdev->peer_max_bio_size = peer;
2952 }
2953 spin_unlock_irq(&mdev->tconn->req_lock);
2954
2955 err:
2956 drbd_md_put_buffer(mdev);
2957 out:
2958 put_ldev(mdev);
2959
2960 return rv;
2961 }
2962
2963 /**
2964 * drbd_md_mark_dirty() - Mark meta data super block as dirty
2965 * @mdev: DRBD device.
2966 *
2967 * Call this function if you change anything that should be written to
2968 * the meta-data super block. This function sets MD_DIRTY, and starts a
2969 * timer that ensures that within five seconds you have to call drbd_md_sync().
2970 */
2971 #ifdef DEBUG
2972 void drbd_md_mark_dirty_(struct drbd_conf *mdev, unsigned int line, const char *func)
2973 {
2974 if (!test_and_set_bit(MD_DIRTY, &mdev->flags)) {
2975 mod_timer(&mdev->md_sync_timer, jiffies + HZ);
2976 mdev->last_md_mark_dirty.line = line;
2977 mdev->last_md_mark_dirty.func = func;
2978 }
2979 }
2980 #else
2981 void drbd_md_mark_dirty(struct drbd_conf *mdev)
2982 {
2983 if (!test_and_set_bit(MD_DIRTY, &mdev->flags))
2984 mod_timer(&mdev->md_sync_timer, jiffies + 5*HZ);
2985 }
2986 #endif
2987
2988 static void drbd_uuid_move_history(struct drbd_conf *mdev) __must_hold(local)
2989 {
2990 int i;
2991
2992 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
2993 mdev->ldev->md.uuid[i+1] = mdev->ldev->md.uuid[i];
2994 }
2995
2996 void _drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
2997 {
2998 if (idx == UI_CURRENT) {
2999 if (mdev->state.role == R_PRIMARY)
3000 val |= 1;
3001 else
3002 val &= ~((u64)1);
3003
3004 drbd_set_ed_uuid(mdev, val);
3005 }
3006
3007 mdev->ldev->md.uuid[idx] = val;
3008 drbd_md_mark_dirty(mdev);
3009 }
3010
3011
3012 void drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
3013 {
3014 if (mdev->ldev->md.uuid[idx]) {
3015 drbd_uuid_move_history(mdev);
3016 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[idx];
3017 }
3018 _drbd_uuid_set(mdev, idx, val);
3019 }
3020
3021 /**
3022 * drbd_uuid_new_current() - Creates a new current UUID
3023 * @mdev: DRBD device.
3024 *
3025 * Creates a new current UUID, and rotates the old current UUID into
3026 * the bitmap slot. Causes an incremental resync upon next connect.
3027 */
3028 void drbd_uuid_new_current(struct drbd_conf *mdev) __must_hold(local)
3029 {
3030 u64 val;
3031 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
3032
3033 if (bm_uuid)
3034 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3035
3036 mdev->ldev->md.uuid[UI_BITMAP] = mdev->ldev->md.uuid[UI_CURRENT];
3037
3038 get_random_bytes(&val, sizeof(u64));
3039 _drbd_uuid_set(mdev, UI_CURRENT, val);
3040 drbd_print_uuids(mdev, "new current UUID");
3041 /* get it to stable storage _now_ */
3042 drbd_md_sync(mdev);
3043 }
3044
3045 void drbd_uuid_set_bm(struct drbd_conf *mdev, u64 val) __must_hold(local)
3046 {
3047 if (mdev->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3048 return;
3049
3050 if (val == 0) {
3051 drbd_uuid_move_history(mdev);
3052 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[UI_BITMAP];
3053 mdev->ldev->md.uuid[UI_BITMAP] = 0;
3054 } else {
3055 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
3056 if (bm_uuid)
3057 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3058
3059 mdev->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3060 }
3061 drbd_md_mark_dirty(mdev);
3062 }
3063
3064 /**
3065 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3066 * @mdev: DRBD device.
3067 *
3068 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3069 */
3070 int drbd_bmio_set_n_write(struct drbd_conf *mdev)
3071 {
3072 int rv = -EIO;
3073
3074 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3075 drbd_md_set_flag(mdev, MDF_FULL_SYNC);
3076 drbd_md_sync(mdev);
3077 drbd_bm_set_all(mdev);
3078
3079 rv = drbd_bm_write(mdev);
3080
3081 if (!rv) {
3082 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
3083 drbd_md_sync(mdev);
3084 }
3085
3086 put_ldev(mdev);
3087 }
3088
3089 return rv;
3090 }
3091
3092 /**
3093 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3094 * @mdev: DRBD device.
3095 *
3096 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3097 */
3098 int drbd_bmio_clear_n_write(struct drbd_conf *mdev)
3099 {
3100 int rv = -EIO;
3101
3102 drbd_resume_al(mdev);
3103 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3104 drbd_bm_clear_all(mdev);
3105 rv = drbd_bm_write(mdev);
3106 put_ldev(mdev);
3107 }
3108
3109 return rv;
3110 }
3111
3112 static int w_bitmap_io(struct drbd_work *w, int unused)
3113 {
3114 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
3115 struct drbd_conf *mdev = w->mdev;
3116 int rv = -EIO;
3117
3118 D_ASSERT(atomic_read(&mdev->ap_bio_cnt) == 0);
3119
3120 if (get_ldev(mdev)) {
3121 drbd_bm_lock(mdev, work->why, work->flags);
3122 rv = work->io_fn(mdev);
3123 drbd_bm_unlock(mdev);
3124 put_ldev(mdev);
3125 }
3126
3127 clear_bit_unlock(BITMAP_IO, &mdev->flags);
3128 wake_up(&mdev->misc_wait);
3129
3130 if (work->done)
3131 work->done(mdev, rv);
3132
3133 clear_bit(BITMAP_IO_QUEUED, &mdev->flags);
3134 work->why = NULL;
3135 work->flags = 0;
3136
3137 return 0;
3138 }
3139
3140 void drbd_ldev_destroy(struct drbd_conf *mdev)
3141 {
3142 lc_destroy(mdev->resync);
3143 mdev->resync = NULL;
3144 lc_destroy(mdev->act_log);
3145 mdev->act_log = NULL;
3146 __no_warn(local,
3147 drbd_free_bc(mdev->ldev);
3148 mdev->ldev = NULL;);
3149
3150 clear_bit(GO_DISKLESS, &mdev->flags);
3151 }
3152
3153 static int w_go_diskless(struct drbd_work *w, int unused)
3154 {
3155 struct drbd_conf *mdev = w->mdev;
3156
3157 D_ASSERT(mdev->state.disk == D_FAILED);
3158 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3159 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3160 * the protected members anymore, though, so once put_ldev reaches zero
3161 * again, it will be safe to free them. */
3162 drbd_force_state(mdev, NS(disk, D_DISKLESS));
3163 return 0;
3164 }
3165
3166 void drbd_go_diskless(struct drbd_conf *mdev)
3167 {
3168 D_ASSERT(mdev->state.disk == D_FAILED);
3169 if (!test_and_set_bit(GO_DISKLESS, &mdev->flags))
3170 drbd_queue_work(&mdev->tconn->sender_work, &mdev->go_diskless);
3171 }
3172
3173 /**
3174 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3175 * @mdev: DRBD device.
3176 * @io_fn: IO callback to be called when bitmap IO is possible
3177 * @done: callback to be called after the bitmap IO was performed
3178 * @why: Descriptive text of the reason for doing the IO
3179 *
3180 * While IO on the bitmap happens we freeze application IO thus we ensure
3181 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3182 * called from worker context. It MUST NOT be used while a previous such
3183 * work is still pending!
3184 */
3185 void drbd_queue_bitmap_io(struct drbd_conf *mdev,
3186 int (*io_fn)(struct drbd_conf *),
3187 void (*done)(struct drbd_conf *, int),
3188 char *why, enum bm_flag flags)
3189 {
3190 D_ASSERT(current == mdev->tconn->worker.task);
3191
3192 D_ASSERT(!test_bit(BITMAP_IO_QUEUED, &mdev->flags));
3193 D_ASSERT(!test_bit(BITMAP_IO, &mdev->flags));
3194 D_ASSERT(list_empty(&mdev->bm_io_work.w.list));
3195 if (mdev->bm_io_work.why)
3196 dev_err(DEV, "FIXME going to queue '%s' but '%s' still pending?\n",
3197 why, mdev->bm_io_work.why);
3198
3199 mdev->bm_io_work.io_fn = io_fn;
3200 mdev->bm_io_work.done = done;
3201 mdev->bm_io_work.why = why;
3202 mdev->bm_io_work.flags = flags;
3203
3204 spin_lock_irq(&mdev->tconn->req_lock);
3205 set_bit(BITMAP_IO, &mdev->flags);
3206 if (atomic_read(&mdev->ap_bio_cnt) == 0) {
3207 if (!test_and_set_bit(BITMAP_IO_QUEUED, &mdev->flags))
3208 drbd_queue_work(&mdev->tconn->sender_work, &mdev->bm_io_work.w);
3209 }
3210 spin_unlock_irq(&mdev->tconn->req_lock);
3211 }
3212
3213 /**
3214 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3215 * @mdev: DRBD device.
3216 * @io_fn: IO callback to be called when bitmap IO is possible
3217 * @why: Descriptive text of the reason for doing the IO
3218 *
3219 * freezes application IO while that the actual IO operations runs. This
3220 * functions MAY NOT be called from worker context.
3221 */
3222 int drbd_bitmap_io(struct drbd_conf *mdev, int (*io_fn)(struct drbd_conf *),
3223 char *why, enum bm_flag flags)
3224 {
3225 int rv;
3226
3227 D_ASSERT(current != mdev->tconn->worker.task);
3228
3229 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3230 drbd_suspend_io(mdev);
3231
3232 drbd_bm_lock(mdev, why, flags);
3233 rv = io_fn(mdev);
3234 drbd_bm_unlock(mdev);
3235
3236 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3237 drbd_resume_io(mdev);
3238
3239 return rv;
3240 }
3241
3242 void drbd_md_set_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3243 {
3244 if ((mdev->ldev->md.flags & flag) != flag) {
3245 drbd_md_mark_dirty(mdev);
3246 mdev->ldev->md.flags |= flag;
3247 }
3248 }
3249
3250 void drbd_md_clear_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3251 {
3252 if ((mdev->ldev->md.flags & flag) != 0) {
3253 drbd_md_mark_dirty(mdev);
3254 mdev->ldev->md.flags &= ~flag;
3255 }
3256 }
3257 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3258 {
3259 return (bdev->md.flags & flag) != 0;
3260 }
3261
3262 static void md_sync_timer_fn(unsigned long data)
3263 {
3264 struct drbd_conf *mdev = (struct drbd_conf *) data;
3265
3266 drbd_queue_work_front(&mdev->tconn->sender_work, &mdev->md_sync_work);
3267 }
3268
3269 static int w_md_sync(struct drbd_work *w, int unused)
3270 {
3271 struct drbd_conf *mdev = w->mdev;
3272
3273 dev_warn(DEV, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3274 #ifdef DEBUG
3275 dev_warn(DEV, "last md_mark_dirty: %s:%u\n",
3276 mdev->last_md_mark_dirty.func, mdev->last_md_mark_dirty.line);
3277 #endif
3278 drbd_md_sync(mdev);
3279 return 0;
3280 }
3281
3282 const char *cmdname(enum drbd_packet cmd)
3283 {
3284 /* THINK may need to become several global tables
3285 * when we want to support more than
3286 * one PRO_VERSION */
3287 static const char *cmdnames[] = {
3288 [P_DATA] = "Data",
3289 [P_DATA_REPLY] = "DataReply",
3290 [P_RS_DATA_REPLY] = "RSDataReply",
3291 [P_BARRIER] = "Barrier",
3292 [P_BITMAP] = "ReportBitMap",
3293 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3294 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3295 [P_UNPLUG_REMOTE] = "UnplugRemote",
3296 [P_DATA_REQUEST] = "DataRequest",
3297 [P_RS_DATA_REQUEST] = "RSDataRequest",
3298 [P_SYNC_PARAM] = "SyncParam",
3299 [P_SYNC_PARAM89] = "SyncParam89",
3300 [P_PROTOCOL] = "ReportProtocol",
3301 [P_UUIDS] = "ReportUUIDs",
3302 [P_SIZES] = "ReportSizes",
3303 [P_STATE] = "ReportState",
3304 [P_SYNC_UUID] = "ReportSyncUUID",
3305 [P_AUTH_CHALLENGE] = "AuthChallenge",
3306 [P_AUTH_RESPONSE] = "AuthResponse",
3307 [P_PING] = "Ping",
3308 [P_PING_ACK] = "PingAck",
3309 [P_RECV_ACK] = "RecvAck",
3310 [P_WRITE_ACK] = "WriteAck",
3311 [P_RS_WRITE_ACK] = "RSWriteAck",
3312 [P_DISCARD_WRITE] = "DiscardWrite",
3313 [P_NEG_ACK] = "NegAck",
3314 [P_NEG_DREPLY] = "NegDReply",
3315 [P_NEG_RS_DREPLY] = "NegRSDReply",
3316 [P_BARRIER_ACK] = "BarrierAck",
3317 [P_STATE_CHG_REQ] = "StateChgRequest",
3318 [P_STATE_CHG_REPLY] = "StateChgReply",
3319 [P_OV_REQUEST] = "OVRequest",
3320 [P_OV_REPLY] = "OVReply",
3321 [P_OV_RESULT] = "OVResult",
3322 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3323 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3324 [P_COMPRESSED_BITMAP] = "CBitmap",
3325 [P_DELAY_PROBE] = "DelayProbe",
3326 [P_OUT_OF_SYNC] = "OutOfSync",
3327 [P_RETRY_WRITE] = "RetryWrite",
3328 [P_RS_CANCEL] = "RSCancel",
3329 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3330 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3331 [P_RETRY_WRITE] = "retry_write",
3332 [P_PROTOCOL_UPDATE] = "protocol_update",
3333
3334 /* enum drbd_packet, but not commands - obsoleted flags:
3335 * P_MAY_IGNORE
3336 * P_MAX_OPT_CMD
3337 */
3338 };
3339
3340 /* too big for the array: 0xfffX */
3341 if (cmd == P_INITIAL_META)
3342 return "InitialMeta";
3343 if (cmd == P_INITIAL_DATA)
3344 return "InitialData";
3345 if (cmd == P_CONNECTION_FEATURES)
3346 return "ConnectionFeatures";
3347 if (cmd >= ARRAY_SIZE(cmdnames))
3348 return "Unknown";
3349 return cmdnames[cmd];
3350 }
3351
3352 /**
3353 * drbd_wait_misc - wait for a request to make progress
3354 * @mdev: device associated with the request
3355 * @i: the struct drbd_interval embedded in struct drbd_request or
3356 * struct drbd_peer_request
3357 */
3358 int drbd_wait_misc(struct drbd_conf *mdev, struct drbd_interval *i)
3359 {
3360 struct net_conf *nc;
3361 DEFINE_WAIT(wait);
3362 long timeout;
3363
3364 rcu_read_lock();
3365 nc = rcu_dereference(mdev->tconn->net_conf);
3366 if (!nc) {
3367 rcu_read_unlock();
3368 return -ETIMEDOUT;
3369 }
3370 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3371 rcu_read_unlock();
3372
3373 /* Indicate to wake up mdev->misc_wait on progress. */
3374 i->waiting = true;
3375 prepare_to_wait(&mdev->misc_wait, &wait, TASK_INTERRUPTIBLE);
3376 spin_unlock_irq(&mdev->tconn->req_lock);
3377 timeout = schedule_timeout(timeout);
3378 finish_wait(&mdev->misc_wait, &wait);
3379 spin_lock_irq(&mdev->tconn->req_lock);
3380 if (!timeout || mdev->state.conn < C_CONNECTED)
3381 return -ETIMEDOUT;
3382 if (signal_pending(current))
3383 return -ERESTARTSYS;
3384 return 0;
3385 }
3386
3387 #ifdef CONFIG_DRBD_FAULT_INJECTION
3388 /* Fault insertion support including random number generator shamelessly
3389 * stolen from kernel/rcutorture.c */
3390 struct fault_random_state {
3391 unsigned long state;
3392 unsigned long count;
3393 };
3394
3395 #define FAULT_RANDOM_MULT 39916801 /* prime */
3396 #define FAULT_RANDOM_ADD 479001701 /* prime */
3397 #define FAULT_RANDOM_REFRESH 10000
3398
3399 /*
3400 * Crude but fast random-number generator. Uses a linear congruential
3401 * generator, with occasional help from get_random_bytes().
3402 */
3403 static unsigned long
3404 _drbd_fault_random(struct fault_random_state *rsp)
3405 {
3406 long refresh;
3407
3408 if (!rsp->count--) {
3409 get_random_bytes(&refresh, sizeof(refresh));
3410 rsp->state += refresh;
3411 rsp->count = FAULT_RANDOM_REFRESH;
3412 }
3413 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3414 return swahw32(rsp->state);
3415 }
3416
3417 static char *
3418 _drbd_fault_str(unsigned int type) {
3419 static char *_faults[] = {
3420 [DRBD_FAULT_MD_WR] = "Meta-data write",
3421 [DRBD_FAULT_MD_RD] = "Meta-data read",
3422 [DRBD_FAULT_RS_WR] = "Resync write",
3423 [DRBD_FAULT_RS_RD] = "Resync read",
3424 [DRBD_FAULT_DT_WR] = "Data write",
3425 [DRBD_FAULT_DT_RD] = "Data read",
3426 [DRBD_FAULT_DT_RA] = "Data read ahead",
3427 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3428 [DRBD_FAULT_AL_EE] = "EE allocation",
3429 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3430 };
3431
3432 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3433 }
3434
3435 unsigned int
3436 _drbd_insert_fault(struct drbd_conf *mdev, unsigned int type)
3437 {
3438 static struct fault_random_state rrs = {0, 0};
3439
3440 unsigned int ret = (
3441 (fault_devs == 0 ||
3442 ((1 << mdev_to_minor(mdev)) & fault_devs) != 0) &&
3443 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3444
3445 if (ret) {
3446 fault_count++;
3447
3448 if (__ratelimit(&drbd_ratelimit_state))
3449 dev_warn(DEV, "***Simulating %s failure\n",
3450 _drbd_fault_str(type));
3451 }
3452
3453 return ret;
3454 }
3455 #endif
3456
3457 const char *drbd_buildtag(void)
3458 {
3459 /* DRBD built from external sources has here a reference to the
3460 git hash of the source code. */
3461
3462 static char buildtag[38] = "\0uilt-in";
3463
3464 if (buildtag[0] == 0) {
3465 #ifdef CONFIG_MODULES
3466 if (THIS_MODULE != NULL)
3467 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3468 else
3469 #endif
3470 buildtag[0] = 'b';
3471 }
3472
3473 return buildtag;
3474 }
3475
3476 module_init(drbd_init)
3477 module_exit(drbd_cleanup)
3478
3479 EXPORT_SYMBOL(drbd_conn_str);
3480 EXPORT_SYMBOL(drbd_role_str);
3481 EXPORT_SYMBOL(drbd_disk_str);
3482 EXPORT_SYMBOL(drbd_set_st_err_str);