]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/drbd/drbd_receiver.c
block: Abstract out bvec iterator
[mirror_ubuntu-zesty-kernel.git] / drivers / block / drbd / drbd_receiver.c
1 /*
2 drbd_receiver.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 drbd is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 drbd is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with drbd; see the file COPYING. If not, write to
22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25
26 #include <linux/module.h>
27
28 #include <asm/uaccess.h>
29 #include <net/sock.h>
30
31 #include <linux/drbd.h>
32 #include <linux/fs.h>
33 #include <linux/file.h>
34 #include <linux/in.h>
35 #include <linux/mm.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mm_inline.h>
38 #include <linux/slab.h>
39 #include <linux/pkt_sched.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/random.h>
44 #include <linux/string.h>
45 #include <linux/scatterlist.h>
46 #include "drbd_int.h"
47 #include "drbd_req.h"
48
49 #include "drbd_vli.h"
50
51 struct packet_info {
52 enum drbd_packet cmd;
53 unsigned int size;
54 unsigned int vnr;
55 void *data;
56 };
57
58 enum finish_epoch {
59 FE_STILL_LIVE,
60 FE_DESTROYED,
61 FE_RECYCLED,
62 };
63
64 static int drbd_do_features(struct drbd_tconn *tconn);
65 static int drbd_do_auth(struct drbd_tconn *tconn);
66 static int drbd_disconnected(struct drbd_conf *mdev);
67
68 static enum finish_epoch drbd_may_finish_epoch(struct drbd_tconn *, struct drbd_epoch *, enum epoch_event);
69 static int e_end_block(struct drbd_work *, int);
70
71
72 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
73
74 /*
75 * some helper functions to deal with single linked page lists,
76 * page->private being our "next" pointer.
77 */
78
79 /* If at least n pages are linked at head, get n pages off.
80 * Otherwise, don't modify head, and return NULL.
81 * Locking is the responsibility of the caller.
82 */
83 static struct page *page_chain_del(struct page **head, int n)
84 {
85 struct page *page;
86 struct page *tmp;
87
88 BUG_ON(!n);
89 BUG_ON(!head);
90
91 page = *head;
92
93 if (!page)
94 return NULL;
95
96 while (page) {
97 tmp = page_chain_next(page);
98 if (--n == 0)
99 break; /* found sufficient pages */
100 if (tmp == NULL)
101 /* insufficient pages, don't use any of them. */
102 return NULL;
103 page = tmp;
104 }
105
106 /* add end of list marker for the returned list */
107 set_page_private(page, 0);
108 /* actual return value, and adjustment of head */
109 page = *head;
110 *head = tmp;
111 return page;
112 }
113
114 /* may be used outside of locks to find the tail of a (usually short)
115 * "private" page chain, before adding it back to a global chain head
116 * with page_chain_add() under a spinlock. */
117 static struct page *page_chain_tail(struct page *page, int *len)
118 {
119 struct page *tmp;
120 int i = 1;
121 while ((tmp = page_chain_next(page)))
122 ++i, page = tmp;
123 if (len)
124 *len = i;
125 return page;
126 }
127
128 static int page_chain_free(struct page *page)
129 {
130 struct page *tmp;
131 int i = 0;
132 page_chain_for_each_safe(page, tmp) {
133 put_page(page);
134 ++i;
135 }
136 return i;
137 }
138
139 static void page_chain_add(struct page **head,
140 struct page *chain_first, struct page *chain_last)
141 {
142 #if 1
143 struct page *tmp;
144 tmp = page_chain_tail(chain_first, NULL);
145 BUG_ON(tmp != chain_last);
146 #endif
147
148 /* add chain to head */
149 set_page_private(chain_last, (unsigned long)*head);
150 *head = chain_first;
151 }
152
153 static struct page *__drbd_alloc_pages(struct drbd_conf *mdev,
154 unsigned int number)
155 {
156 struct page *page = NULL;
157 struct page *tmp = NULL;
158 unsigned int i = 0;
159
160 /* Yes, testing drbd_pp_vacant outside the lock is racy.
161 * So what. It saves a spin_lock. */
162 if (drbd_pp_vacant >= number) {
163 spin_lock(&drbd_pp_lock);
164 page = page_chain_del(&drbd_pp_pool, number);
165 if (page)
166 drbd_pp_vacant -= number;
167 spin_unlock(&drbd_pp_lock);
168 if (page)
169 return page;
170 }
171
172 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
173 * "criss-cross" setup, that might cause write-out on some other DRBD,
174 * which in turn might block on the other node at this very place. */
175 for (i = 0; i < number; i++) {
176 tmp = alloc_page(GFP_TRY);
177 if (!tmp)
178 break;
179 set_page_private(tmp, (unsigned long)page);
180 page = tmp;
181 }
182
183 if (i == number)
184 return page;
185
186 /* Not enough pages immediately available this time.
187 * No need to jump around here, drbd_alloc_pages will retry this
188 * function "soon". */
189 if (page) {
190 tmp = page_chain_tail(page, NULL);
191 spin_lock(&drbd_pp_lock);
192 page_chain_add(&drbd_pp_pool, page, tmp);
193 drbd_pp_vacant += i;
194 spin_unlock(&drbd_pp_lock);
195 }
196 return NULL;
197 }
198
199 static void reclaim_finished_net_peer_reqs(struct drbd_conf *mdev,
200 struct list_head *to_be_freed)
201 {
202 struct drbd_peer_request *peer_req;
203 struct list_head *le, *tle;
204
205 /* The EEs are always appended to the end of the list. Since
206 they are sent in order over the wire, they have to finish
207 in order. As soon as we see the first not finished we can
208 stop to examine the list... */
209
210 list_for_each_safe(le, tle, &mdev->net_ee) {
211 peer_req = list_entry(le, struct drbd_peer_request, w.list);
212 if (drbd_peer_req_has_active_page(peer_req))
213 break;
214 list_move(le, to_be_freed);
215 }
216 }
217
218 static void drbd_kick_lo_and_reclaim_net(struct drbd_conf *mdev)
219 {
220 LIST_HEAD(reclaimed);
221 struct drbd_peer_request *peer_req, *t;
222
223 spin_lock_irq(&mdev->tconn->req_lock);
224 reclaim_finished_net_peer_reqs(mdev, &reclaimed);
225 spin_unlock_irq(&mdev->tconn->req_lock);
226
227 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
228 drbd_free_net_peer_req(mdev, peer_req);
229 }
230
231 /**
232 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
233 * @mdev: DRBD device.
234 * @number: number of pages requested
235 * @retry: whether to retry, if not enough pages are available right now
236 *
237 * Tries to allocate number pages, first from our own page pool, then from
238 * the kernel, unless this allocation would exceed the max_buffers setting.
239 * Possibly retry until DRBD frees sufficient pages somewhere else.
240 *
241 * Returns a page chain linked via page->private.
242 */
243 struct page *drbd_alloc_pages(struct drbd_conf *mdev, unsigned int number,
244 bool retry)
245 {
246 struct page *page = NULL;
247 struct net_conf *nc;
248 DEFINE_WAIT(wait);
249 int mxb;
250
251 /* Yes, we may run up to @number over max_buffers. If we
252 * follow it strictly, the admin will get it wrong anyways. */
253 rcu_read_lock();
254 nc = rcu_dereference(mdev->tconn->net_conf);
255 mxb = nc ? nc->max_buffers : 1000000;
256 rcu_read_unlock();
257
258 if (atomic_read(&mdev->pp_in_use) < mxb)
259 page = __drbd_alloc_pages(mdev, number);
260
261 while (page == NULL) {
262 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
263
264 drbd_kick_lo_and_reclaim_net(mdev);
265
266 if (atomic_read(&mdev->pp_in_use) < mxb) {
267 page = __drbd_alloc_pages(mdev, number);
268 if (page)
269 break;
270 }
271
272 if (!retry)
273 break;
274
275 if (signal_pending(current)) {
276 dev_warn(DEV, "drbd_alloc_pages interrupted!\n");
277 break;
278 }
279
280 schedule();
281 }
282 finish_wait(&drbd_pp_wait, &wait);
283
284 if (page)
285 atomic_add(number, &mdev->pp_in_use);
286 return page;
287 }
288
289 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
290 * Is also used from inside an other spin_lock_irq(&mdev->tconn->req_lock);
291 * Either links the page chain back to the global pool,
292 * or returns all pages to the system. */
293 static void drbd_free_pages(struct drbd_conf *mdev, struct page *page, int is_net)
294 {
295 atomic_t *a = is_net ? &mdev->pp_in_use_by_net : &mdev->pp_in_use;
296 int i;
297
298 if (page == NULL)
299 return;
300
301 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count)
302 i = page_chain_free(page);
303 else {
304 struct page *tmp;
305 tmp = page_chain_tail(page, &i);
306 spin_lock(&drbd_pp_lock);
307 page_chain_add(&drbd_pp_pool, page, tmp);
308 drbd_pp_vacant += i;
309 spin_unlock(&drbd_pp_lock);
310 }
311 i = atomic_sub_return(i, a);
312 if (i < 0)
313 dev_warn(DEV, "ASSERTION FAILED: %s: %d < 0\n",
314 is_net ? "pp_in_use_by_net" : "pp_in_use", i);
315 wake_up(&drbd_pp_wait);
316 }
317
318 /*
319 You need to hold the req_lock:
320 _drbd_wait_ee_list_empty()
321
322 You must not have the req_lock:
323 drbd_free_peer_req()
324 drbd_alloc_peer_req()
325 drbd_free_peer_reqs()
326 drbd_ee_fix_bhs()
327 drbd_finish_peer_reqs()
328 drbd_clear_done_ee()
329 drbd_wait_ee_list_empty()
330 */
331
332 struct drbd_peer_request *
333 drbd_alloc_peer_req(struct drbd_conf *mdev, u64 id, sector_t sector,
334 unsigned int data_size, gfp_t gfp_mask) __must_hold(local)
335 {
336 struct drbd_peer_request *peer_req;
337 struct page *page = NULL;
338 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT;
339
340 if (drbd_insert_fault(mdev, DRBD_FAULT_AL_EE))
341 return NULL;
342
343 peer_req = mempool_alloc(drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
344 if (!peer_req) {
345 if (!(gfp_mask & __GFP_NOWARN))
346 dev_err(DEV, "%s: allocation failed\n", __func__);
347 return NULL;
348 }
349
350 if (data_size) {
351 page = drbd_alloc_pages(mdev, nr_pages, (gfp_mask & __GFP_WAIT));
352 if (!page)
353 goto fail;
354 }
355
356 drbd_clear_interval(&peer_req->i);
357 peer_req->i.size = data_size;
358 peer_req->i.sector = sector;
359 peer_req->i.local = false;
360 peer_req->i.waiting = false;
361
362 peer_req->epoch = NULL;
363 peer_req->w.mdev = mdev;
364 peer_req->pages = page;
365 atomic_set(&peer_req->pending_bios, 0);
366 peer_req->flags = 0;
367 /*
368 * The block_id is opaque to the receiver. It is not endianness
369 * converted, and sent back to the sender unchanged.
370 */
371 peer_req->block_id = id;
372
373 return peer_req;
374
375 fail:
376 mempool_free(peer_req, drbd_ee_mempool);
377 return NULL;
378 }
379
380 void __drbd_free_peer_req(struct drbd_conf *mdev, struct drbd_peer_request *peer_req,
381 int is_net)
382 {
383 if (peer_req->flags & EE_HAS_DIGEST)
384 kfree(peer_req->digest);
385 drbd_free_pages(mdev, peer_req->pages, is_net);
386 D_ASSERT(atomic_read(&peer_req->pending_bios) == 0);
387 D_ASSERT(drbd_interval_empty(&peer_req->i));
388 mempool_free(peer_req, drbd_ee_mempool);
389 }
390
391 int drbd_free_peer_reqs(struct drbd_conf *mdev, struct list_head *list)
392 {
393 LIST_HEAD(work_list);
394 struct drbd_peer_request *peer_req, *t;
395 int count = 0;
396 int is_net = list == &mdev->net_ee;
397
398 spin_lock_irq(&mdev->tconn->req_lock);
399 list_splice_init(list, &work_list);
400 spin_unlock_irq(&mdev->tconn->req_lock);
401
402 list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
403 __drbd_free_peer_req(mdev, peer_req, is_net);
404 count++;
405 }
406 return count;
407 }
408
409 /*
410 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
411 */
412 static int drbd_finish_peer_reqs(struct drbd_conf *mdev)
413 {
414 LIST_HEAD(work_list);
415 LIST_HEAD(reclaimed);
416 struct drbd_peer_request *peer_req, *t;
417 int err = 0;
418
419 spin_lock_irq(&mdev->tconn->req_lock);
420 reclaim_finished_net_peer_reqs(mdev, &reclaimed);
421 list_splice_init(&mdev->done_ee, &work_list);
422 spin_unlock_irq(&mdev->tconn->req_lock);
423
424 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
425 drbd_free_net_peer_req(mdev, peer_req);
426
427 /* possible callbacks here:
428 * e_end_block, and e_end_resync_block, e_send_superseded.
429 * all ignore the last argument.
430 */
431 list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
432 int err2;
433
434 /* list_del not necessary, next/prev members not touched */
435 err2 = peer_req->w.cb(&peer_req->w, !!err);
436 if (!err)
437 err = err2;
438 drbd_free_peer_req(mdev, peer_req);
439 }
440 wake_up(&mdev->ee_wait);
441
442 return err;
443 }
444
445 static void _drbd_wait_ee_list_empty(struct drbd_conf *mdev,
446 struct list_head *head)
447 {
448 DEFINE_WAIT(wait);
449
450 /* avoids spin_lock/unlock
451 * and calling prepare_to_wait in the fast path */
452 while (!list_empty(head)) {
453 prepare_to_wait(&mdev->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
454 spin_unlock_irq(&mdev->tconn->req_lock);
455 io_schedule();
456 finish_wait(&mdev->ee_wait, &wait);
457 spin_lock_irq(&mdev->tconn->req_lock);
458 }
459 }
460
461 static void drbd_wait_ee_list_empty(struct drbd_conf *mdev,
462 struct list_head *head)
463 {
464 spin_lock_irq(&mdev->tconn->req_lock);
465 _drbd_wait_ee_list_empty(mdev, head);
466 spin_unlock_irq(&mdev->tconn->req_lock);
467 }
468
469 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
470 {
471 mm_segment_t oldfs;
472 struct kvec iov = {
473 .iov_base = buf,
474 .iov_len = size,
475 };
476 struct msghdr msg = {
477 .msg_iovlen = 1,
478 .msg_iov = (struct iovec *)&iov,
479 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
480 };
481 int rv;
482
483 oldfs = get_fs();
484 set_fs(KERNEL_DS);
485 rv = sock_recvmsg(sock, &msg, size, msg.msg_flags);
486 set_fs(oldfs);
487
488 return rv;
489 }
490
491 static int drbd_recv(struct drbd_tconn *tconn, void *buf, size_t size)
492 {
493 int rv;
494
495 rv = drbd_recv_short(tconn->data.socket, buf, size, 0);
496
497 if (rv < 0) {
498 if (rv == -ECONNRESET)
499 conn_info(tconn, "sock was reset by peer\n");
500 else if (rv != -ERESTARTSYS)
501 conn_err(tconn, "sock_recvmsg returned %d\n", rv);
502 } else if (rv == 0) {
503 if (test_bit(DISCONNECT_SENT, &tconn->flags)) {
504 long t;
505 rcu_read_lock();
506 t = rcu_dereference(tconn->net_conf)->ping_timeo * HZ/10;
507 rcu_read_unlock();
508
509 t = wait_event_timeout(tconn->ping_wait, tconn->cstate < C_WF_REPORT_PARAMS, t);
510
511 if (t)
512 goto out;
513 }
514 conn_info(tconn, "sock was shut down by peer\n");
515 }
516
517 if (rv != size)
518 conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD);
519
520 out:
521 return rv;
522 }
523
524 static int drbd_recv_all(struct drbd_tconn *tconn, void *buf, size_t size)
525 {
526 int err;
527
528 err = drbd_recv(tconn, buf, size);
529 if (err != size) {
530 if (err >= 0)
531 err = -EIO;
532 } else
533 err = 0;
534 return err;
535 }
536
537 static int drbd_recv_all_warn(struct drbd_tconn *tconn, void *buf, size_t size)
538 {
539 int err;
540
541 err = drbd_recv_all(tconn, buf, size);
542 if (err && !signal_pending(current))
543 conn_warn(tconn, "short read (expected size %d)\n", (int)size);
544 return err;
545 }
546
547 /* quoting tcp(7):
548 * On individual connections, the socket buffer size must be set prior to the
549 * listen(2) or connect(2) calls in order to have it take effect.
550 * This is our wrapper to do so.
551 */
552 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
553 unsigned int rcv)
554 {
555 /* open coded SO_SNDBUF, SO_RCVBUF */
556 if (snd) {
557 sock->sk->sk_sndbuf = snd;
558 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
559 }
560 if (rcv) {
561 sock->sk->sk_rcvbuf = rcv;
562 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
563 }
564 }
565
566 static struct socket *drbd_try_connect(struct drbd_tconn *tconn)
567 {
568 const char *what;
569 struct socket *sock;
570 struct sockaddr_in6 src_in6;
571 struct sockaddr_in6 peer_in6;
572 struct net_conf *nc;
573 int err, peer_addr_len, my_addr_len;
574 int sndbuf_size, rcvbuf_size, connect_int;
575 int disconnect_on_error = 1;
576
577 rcu_read_lock();
578 nc = rcu_dereference(tconn->net_conf);
579 if (!nc) {
580 rcu_read_unlock();
581 return NULL;
582 }
583 sndbuf_size = nc->sndbuf_size;
584 rcvbuf_size = nc->rcvbuf_size;
585 connect_int = nc->connect_int;
586 rcu_read_unlock();
587
588 my_addr_len = min_t(int, tconn->my_addr_len, sizeof(src_in6));
589 memcpy(&src_in6, &tconn->my_addr, my_addr_len);
590
591 if (((struct sockaddr *)&tconn->my_addr)->sa_family == AF_INET6)
592 src_in6.sin6_port = 0;
593 else
594 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
595
596 peer_addr_len = min_t(int, tconn->peer_addr_len, sizeof(src_in6));
597 memcpy(&peer_in6, &tconn->peer_addr, peer_addr_len);
598
599 what = "sock_create_kern";
600 err = sock_create_kern(((struct sockaddr *)&src_in6)->sa_family,
601 SOCK_STREAM, IPPROTO_TCP, &sock);
602 if (err < 0) {
603 sock = NULL;
604 goto out;
605 }
606
607 sock->sk->sk_rcvtimeo =
608 sock->sk->sk_sndtimeo = connect_int * HZ;
609 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
610
611 /* explicitly bind to the configured IP as source IP
612 * for the outgoing connections.
613 * This is needed for multihomed hosts and to be
614 * able to use lo: interfaces for drbd.
615 * Make sure to use 0 as port number, so linux selects
616 * a free one dynamically.
617 */
618 what = "bind before connect";
619 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
620 if (err < 0)
621 goto out;
622
623 /* connect may fail, peer not yet available.
624 * stay C_WF_CONNECTION, don't go Disconnecting! */
625 disconnect_on_error = 0;
626 what = "connect";
627 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
628
629 out:
630 if (err < 0) {
631 if (sock) {
632 sock_release(sock);
633 sock = NULL;
634 }
635 switch (-err) {
636 /* timeout, busy, signal pending */
637 case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
638 case EINTR: case ERESTARTSYS:
639 /* peer not (yet) available, network problem */
640 case ECONNREFUSED: case ENETUNREACH:
641 case EHOSTDOWN: case EHOSTUNREACH:
642 disconnect_on_error = 0;
643 break;
644 default:
645 conn_err(tconn, "%s failed, err = %d\n", what, err);
646 }
647 if (disconnect_on_error)
648 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
649 }
650
651 return sock;
652 }
653
654 struct accept_wait_data {
655 struct drbd_tconn *tconn;
656 struct socket *s_listen;
657 struct completion door_bell;
658 void (*original_sk_state_change)(struct sock *sk);
659
660 };
661
662 static void drbd_incoming_connection(struct sock *sk)
663 {
664 struct accept_wait_data *ad = sk->sk_user_data;
665 void (*state_change)(struct sock *sk);
666
667 state_change = ad->original_sk_state_change;
668 if (sk->sk_state == TCP_ESTABLISHED)
669 complete(&ad->door_bell);
670 state_change(sk);
671 }
672
673 static int prepare_listen_socket(struct drbd_tconn *tconn, struct accept_wait_data *ad)
674 {
675 int err, sndbuf_size, rcvbuf_size, my_addr_len;
676 struct sockaddr_in6 my_addr;
677 struct socket *s_listen;
678 struct net_conf *nc;
679 const char *what;
680
681 rcu_read_lock();
682 nc = rcu_dereference(tconn->net_conf);
683 if (!nc) {
684 rcu_read_unlock();
685 return -EIO;
686 }
687 sndbuf_size = nc->sndbuf_size;
688 rcvbuf_size = nc->rcvbuf_size;
689 rcu_read_unlock();
690
691 my_addr_len = min_t(int, tconn->my_addr_len, sizeof(struct sockaddr_in6));
692 memcpy(&my_addr, &tconn->my_addr, my_addr_len);
693
694 what = "sock_create_kern";
695 err = sock_create_kern(((struct sockaddr *)&my_addr)->sa_family,
696 SOCK_STREAM, IPPROTO_TCP, &s_listen);
697 if (err) {
698 s_listen = NULL;
699 goto out;
700 }
701
702 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
703 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
704
705 what = "bind before listen";
706 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
707 if (err < 0)
708 goto out;
709
710 ad->s_listen = s_listen;
711 write_lock_bh(&s_listen->sk->sk_callback_lock);
712 ad->original_sk_state_change = s_listen->sk->sk_state_change;
713 s_listen->sk->sk_state_change = drbd_incoming_connection;
714 s_listen->sk->sk_user_data = ad;
715 write_unlock_bh(&s_listen->sk->sk_callback_lock);
716
717 what = "listen";
718 err = s_listen->ops->listen(s_listen, 5);
719 if (err < 0)
720 goto out;
721
722 return 0;
723 out:
724 if (s_listen)
725 sock_release(s_listen);
726 if (err < 0) {
727 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
728 conn_err(tconn, "%s failed, err = %d\n", what, err);
729 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
730 }
731 }
732
733 return -EIO;
734 }
735
736 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
737 {
738 write_lock_bh(&sk->sk_callback_lock);
739 sk->sk_state_change = ad->original_sk_state_change;
740 sk->sk_user_data = NULL;
741 write_unlock_bh(&sk->sk_callback_lock);
742 }
743
744 static struct socket *drbd_wait_for_connect(struct drbd_tconn *tconn, struct accept_wait_data *ad)
745 {
746 int timeo, connect_int, err = 0;
747 struct socket *s_estab = NULL;
748 struct net_conf *nc;
749
750 rcu_read_lock();
751 nc = rcu_dereference(tconn->net_conf);
752 if (!nc) {
753 rcu_read_unlock();
754 return NULL;
755 }
756 connect_int = nc->connect_int;
757 rcu_read_unlock();
758
759 timeo = connect_int * HZ;
760 /* 28.5% random jitter */
761 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
762
763 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
764 if (err <= 0)
765 return NULL;
766
767 err = kernel_accept(ad->s_listen, &s_estab, 0);
768 if (err < 0) {
769 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
770 conn_err(tconn, "accept failed, err = %d\n", err);
771 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
772 }
773 }
774
775 if (s_estab)
776 unregister_state_change(s_estab->sk, ad);
777
778 return s_estab;
779 }
780
781 static int decode_header(struct drbd_tconn *, void *, struct packet_info *);
782
783 static int send_first_packet(struct drbd_tconn *tconn, struct drbd_socket *sock,
784 enum drbd_packet cmd)
785 {
786 if (!conn_prepare_command(tconn, sock))
787 return -EIO;
788 return conn_send_command(tconn, sock, cmd, 0, NULL, 0);
789 }
790
791 static int receive_first_packet(struct drbd_tconn *tconn, struct socket *sock)
792 {
793 unsigned int header_size = drbd_header_size(tconn);
794 struct packet_info pi;
795 int err;
796
797 err = drbd_recv_short(sock, tconn->data.rbuf, header_size, 0);
798 if (err != header_size) {
799 if (err >= 0)
800 err = -EIO;
801 return err;
802 }
803 err = decode_header(tconn, tconn->data.rbuf, &pi);
804 if (err)
805 return err;
806 return pi.cmd;
807 }
808
809 /**
810 * drbd_socket_okay() - Free the socket if its connection is not okay
811 * @sock: pointer to the pointer to the socket.
812 */
813 static int drbd_socket_okay(struct socket **sock)
814 {
815 int rr;
816 char tb[4];
817
818 if (!*sock)
819 return false;
820
821 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
822
823 if (rr > 0 || rr == -EAGAIN) {
824 return true;
825 } else {
826 sock_release(*sock);
827 *sock = NULL;
828 return false;
829 }
830 }
831 /* Gets called if a connection is established, or if a new minor gets created
832 in a connection */
833 int drbd_connected(struct drbd_conf *mdev)
834 {
835 int err;
836
837 atomic_set(&mdev->packet_seq, 0);
838 mdev->peer_seq = 0;
839
840 mdev->state_mutex = mdev->tconn->agreed_pro_version < 100 ?
841 &mdev->tconn->cstate_mutex :
842 &mdev->own_state_mutex;
843
844 err = drbd_send_sync_param(mdev);
845 if (!err)
846 err = drbd_send_sizes(mdev, 0, 0);
847 if (!err)
848 err = drbd_send_uuids(mdev);
849 if (!err)
850 err = drbd_send_current_state(mdev);
851 clear_bit(USE_DEGR_WFC_T, &mdev->flags);
852 clear_bit(RESIZE_PENDING, &mdev->flags);
853 atomic_set(&mdev->ap_in_flight, 0);
854 mod_timer(&mdev->request_timer, jiffies + HZ); /* just start it here. */
855 return err;
856 }
857
858 /*
859 * return values:
860 * 1 yes, we have a valid connection
861 * 0 oops, did not work out, please try again
862 * -1 peer talks different language,
863 * no point in trying again, please go standalone.
864 * -2 We do not have a network config...
865 */
866 static int conn_connect(struct drbd_tconn *tconn)
867 {
868 struct drbd_socket sock, msock;
869 struct drbd_conf *mdev;
870 struct net_conf *nc;
871 int vnr, timeout, h, ok;
872 bool discard_my_data;
873 enum drbd_state_rv rv;
874 struct accept_wait_data ad = {
875 .tconn = tconn,
876 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
877 };
878
879 clear_bit(DISCONNECT_SENT, &tconn->flags);
880 if (conn_request_state(tconn, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
881 return -2;
882
883 mutex_init(&sock.mutex);
884 sock.sbuf = tconn->data.sbuf;
885 sock.rbuf = tconn->data.rbuf;
886 sock.socket = NULL;
887 mutex_init(&msock.mutex);
888 msock.sbuf = tconn->meta.sbuf;
889 msock.rbuf = tconn->meta.rbuf;
890 msock.socket = NULL;
891
892 /* Assume that the peer only understands protocol 80 until we know better. */
893 tconn->agreed_pro_version = 80;
894
895 if (prepare_listen_socket(tconn, &ad))
896 return 0;
897
898 do {
899 struct socket *s;
900
901 s = drbd_try_connect(tconn);
902 if (s) {
903 if (!sock.socket) {
904 sock.socket = s;
905 send_first_packet(tconn, &sock, P_INITIAL_DATA);
906 } else if (!msock.socket) {
907 clear_bit(RESOLVE_CONFLICTS, &tconn->flags);
908 msock.socket = s;
909 send_first_packet(tconn, &msock, P_INITIAL_META);
910 } else {
911 conn_err(tconn, "Logic error in conn_connect()\n");
912 goto out_release_sockets;
913 }
914 }
915
916 if (sock.socket && msock.socket) {
917 rcu_read_lock();
918 nc = rcu_dereference(tconn->net_conf);
919 timeout = nc->ping_timeo * HZ / 10;
920 rcu_read_unlock();
921 schedule_timeout_interruptible(timeout);
922 ok = drbd_socket_okay(&sock.socket);
923 ok = drbd_socket_okay(&msock.socket) && ok;
924 if (ok)
925 break;
926 }
927
928 retry:
929 s = drbd_wait_for_connect(tconn, &ad);
930 if (s) {
931 int fp = receive_first_packet(tconn, s);
932 drbd_socket_okay(&sock.socket);
933 drbd_socket_okay(&msock.socket);
934 switch (fp) {
935 case P_INITIAL_DATA:
936 if (sock.socket) {
937 conn_warn(tconn, "initial packet S crossed\n");
938 sock_release(sock.socket);
939 sock.socket = s;
940 goto randomize;
941 }
942 sock.socket = s;
943 break;
944 case P_INITIAL_META:
945 set_bit(RESOLVE_CONFLICTS, &tconn->flags);
946 if (msock.socket) {
947 conn_warn(tconn, "initial packet M crossed\n");
948 sock_release(msock.socket);
949 msock.socket = s;
950 goto randomize;
951 }
952 msock.socket = s;
953 break;
954 default:
955 conn_warn(tconn, "Error receiving initial packet\n");
956 sock_release(s);
957 randomize:
958 if (prandom_u32() & 1)
959 goto retry;
960 }
961 }
962
963 if (tconn->cstate <= C_DISCONNECTING)
964 goto out_release_sockets;
965 if (signal_pending(current)) {
966 flush_signals(current);
967 smp_rmb();
968 if (get_t_state(&tconn->receiver) == EXITING)
969 goto out_release_sockets;
970 }
971
972 ok = drbd_socket_okay(&sock.socket);
973 ok = drbd_socket_okay(&msock.socket) && ok;
974 } while (!ok);
975
976 if (ad.s_listen)
977 sock_release(ad.s_listen);
978
979 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
980 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
981
982 sock.socket->sk->sk_allocation = GFP_NOIO;
983 msock.socket->sk->sk_allocation = GFP_NOIO;
984
985 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
986 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
987
988 /* NOT YET ...
989 * sock.socket->sk->sk_sndtimeo = tconn->net_conf->timeout*HZ/10;
990 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
991 * first set it to the P_CONNECTION_FEATURES timeout,
992 * which we set to 4x the configured ping_timeout. */
993 rcu_read_lock();
994 nc = rcu_dereference(tconn->net_conf);
995
996 sock.socket->sk->sk_sndtimeo =
997 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
998
999 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1000 timeout = nc->timeout * HZ / 10;
1001 discard_my_data = nc->discard_my_data;
1002 rcu_read_unlock();
1003
1004 msock.socket->sk->sk_sndtimeo = timeout;
1005
1006 /* we don't want delays.
1007 * we use TCP_CORK where appropriate, though */
1008 drbd_tcp_nodelay(sock.socket);
1009 drbd_tcp_nodelay(msock.socket);
1010
1011 tconn->data.socket = sock.socket;
1012 tconn->meta.socket = msock.socket;
1013 tconn->last_received = jiffies;
1014
1015 h = drbd_do_features(tconn);
1016 if (h <= 0)
1017 return h;
1018
1019 if (tconn->cram_hmac_tfm) {
1020 /* drbd_request_state(mdev, NS(conn, WFAuth)); */
1021 switch (drbd_do_auth(tconn)) {
1022 case -1:
1023 conn_err(tconn, "Authentication of peer failed\n");
1024 return -1;
1025 case 0:
1026 conn_err(tconn, "Authentication of peer failed, trying again.\n");
1027 return 0;
1028 }
1029 }
1030
1031 tconn->data.socket->sk->sk_sndtimeo = timeout;
1032 tconn->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1033
1034 if (drbd_send_protocol(tconn) == -EOPNOTSUPP)
1035 return -1;
1036
1037 set_bit(STATE_SENT, &tconn->flags);
1038
1039 rcu_read_lock();
1040 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
1041 kref_get(&mdev->kref);
1042 rcu_read_unlock();
1043
1044 /* Prevent a race between resync-handshake and
1045 * being promoted to Primary.
1046 *
1047 * Grab and release the state mutex, so we know that any current
1048 * drbd_set_role() is finished, and any incoming drbd_set_role
1049 * will see the STATE_SENT flag, and wait for it to be cleared.
1050 */
1051 mutex_lock(mdev->state_mutex);
1052 mutex_unlock(mdev->state_mutex);
1053
1054 if (discard_my_data)
1055 set_bit(DISCARD_MY_DATA, &mdev->flags);
1056 else
1057 clear_bit(DISCARD_MY_DATA, &mdev->flags);
1058
1059 drbd_connected(mdev);
1060 kref_put(&mdev->kref, &drbd_minor_destroy);
1061 rcu_read_lock();
1062 }
1063 rcu_read_unlock();
1064
1065 rv = conn_request_state(tconn, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1066 if (rv < SS_SUCCESS || tconn->cstate != C_WF_REPORT_PARAMS) {
1067 clear_bit(STATE_SENT, &tconn->flags);
1068 return 0;
1069 }
1070
1071 drbd_thread_start(&tconn->asender);
1072
1073 mutex_lock(&tconn->conf_update);
1074 /* The discard_my_data flag is a single-shot modifier to the next
1075 * connection attempt, the handshake of which is now well underway.
1076 * No need for rcu style copying of the whole struct
1077 * just to clear a single value. */
1078 tconn->net_conf->discard_my_data = 0;
1079 mutex_unlock(&tconn->conf_update);
1080
1081 return h;
1082
1083 out_release_sockets:
1084 if (ad.s_listen)
1085 sock_release(ad.s_listen);
1086 if (sock.socket)
1087 sock_release(sock.socket);
1088 if (msock.socket)
1089 sock_release(msock.socket);
1090 return -1;
1091 }
1092
1093 static int decode_header(struct drbd_tconn *tconn, void *header, struct packet_info *pi)
1094 {
1095 unsigned int header_size = drbd_header_size(tconn);
1096
1097 if (header_size == sizeof(struct p_header100) &&
1098 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1099 struct p_header100 *h = header;
1100 if (h->pad != 0) {
1101 conn_err(tconn, "Header padding is not zero\n");
1102 return -EINVAL;
1103 }
1104 pi->vnr = be16_to_cpu(h->volume);
1105 pi->cmd = be16_to_cpu(h->command);
1106 pi->size = be32_to_cpu(h->length);
1107 } else if (header_size == sizeof(struct p_header95) &&
1108 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1109 struct p_header95 *h = header;
1110 pi->cmd = be16_to_cpu(h->command);
1111 pi->size = be32_to_cpu(h->length);
1112 pi->vnr = 0;
1113 } else if (header_size == sizeof(struct p_header80) &&
1114 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1115 struct p_header80 *h = header;
1116 pi->cmd = be16_to_cpu(h->command);
1117 pi->size = be16_to_cpu(h->length);
1118 pi->vnr = 0;
1119 } else {
1120 conn_err(tconn, "Wrong magic value 0x%08x in protocol version %d\n",
1121 be32_to_cpu(*(__be32 *)header),
1122 tconn->agreed_pro_version);
1123 return -EINVAL;
1124 }
1125 pi->data = header + header_size;
1126 return 0;
1127 }
1128
1129 static int drbd_recv_header(struct drbd_tconn *tconn, struct packet_info *pi)
1130 {
1131 void *buffer = tconn->data.rbuf;
1132 int err;
1133
1134 err = drbd_recv_all_warn(tconn, buffer, drbd_header_size(tconn));
1135 if (err)
1136 return err;
1137
1138 err = decode_header(tconn, buffer, pi);
1139 tconn->last_received = jiffies;
1140
1141 return err;
1142 }
1143
1144 static void drbd_flush(struct drbd_tconn *tconn)
1145 {
1146 int rv;
1147 struct drbd_conf *mdev;
1148 int vnr;
1149
1150 if (tconn->write_ordering >= WO_bdev_flush) {
1151 rcu_read_lock();
1152 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
1153 if (!get_ldev(mdev))
1154 continue;
1155 kref_get(&mdev->kref);
1156 rcu_read_unlock();
1157
1158 rv = blkdev_issue_flush(mdev->ldev->backing_bdev,
1159 GFP_NOIO, NULL);
1160 if (rv) {
1161 dev_info(DEV, "local disk flush failed with status %d\n", rv);
1162 /* would rather check on EOPNOTSUPP, but that is not reliable.
1163 * don't try again for ANY return value != 0
1164 * if (rv == -EOPNOTSUPP) */
1165 drbd_bump_write_ordering(tconn, WO_drain_io);
1166 }
1167 put_ldev(mdev);
1168 kref_put(&mdev->kref, &drbd_minor_destroy);
1169
1170 rcu_read_lock();
1171 if (rv)
1172 break;
1173 }
1174 rcu_read_unlock();
1175 }
1176 }
1177
1178 /**
1179 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1180 * @mdev: DRBD device.
1181 * @epoch: Epoch object.
1182 * @ev: Epoch event.
1183 */
1184 static enum finish_epoch drbd_may_finish_epoch(struct drbd_tconn *tconn,
1185 struct drbd_epoch *epoch,
1186 enum epoch_event ev)
1187 {
1188 int epoch_size;
1189 struct drbd_epoch *next_epoch;
1190 enum finish_epoch rv = FE_STILL_LIVE;
1191
1192 spin_lock(&tconn->epoch_lock);
1193 do {
1194 next_epoch = NULL;
1195
1196 epoch_size = atomic_read(&epoch->epoch_size);
1197
1198 switch (ev & ~EV_CLEANUP) {
1199 case EV_PUT:
1200 atomic_dec(&epoch->active);
1201 break;
1202 case EV_GOT_BARRIER_NR:
1203 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1204 break;
1205 case EV_BECAME_LAST:
1206 /* nothing to do*/
1207 break;
1208 }
1209
1210 if (epoch_size != 0 &&
1211 atomic_read(&epoch->active) == 0 &&
1212 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1213 if (!(ev & EV_CLEANUP)) {
1214 spin_unlock(&tconn->epoch_lock);
1215 drbd_send_b_ack(epoch->tconn, epoch->barrier_nr, epoch_size);
1216 spin_lock(&tconn->epoch_lock);
1217 }
1218 #if 0
1219 /* FIXME: dec unacked on connection, once we have
1220 * something to count pending connection packets in. */
1221 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1222 dec_unacked(epoch->tconn);
1223 #endif
1224
1225 if (tconn->current_epoch != epoch) {
1226 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1227 list_del(&epoch->list);
1228 ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1229 tconn->epochs--;
1230 kfree(epoch);
1231
1232 if (rv == FE_STILL_LIVE)
1233 rv = FE_DESTROYED;
1234 } else {
1235 epoch->flags = 0;
1236 atomic_set(&epoch->epoch_size, 0);
1237 /* atomic_set(&epoch->active, 0); is already zero */
1238 if (rv == FE_STILL_LIVE)
1239 rv = FE_RECYCLED;
1240 }
1241 }
1242
1243 if (!next_epoch)
1244 break;
1245
1246 epoch = next_epoch;
1247 } while (1);
1248
1249 spin_unlock(&tconn->epoch_lock);
1250
1251 return rv;
1252 }
1253
1254 /**
1255 * drbd_bump_write_ordering() - Fall back to an other write ordering method
1256 * @tconn: DRBD connection.
1257 * @wo: Write ordering method to try.
1258 */
1259 void drbd_bump_write_ordering(struct drbd_tconn *tconn, enum write_ordering_e wo)
1260 {
1261 struct disk_conf *dc;
1262 struct drbd_conf *mdev;
1263 enum write_ordering_e pwo;
1264 int vnr;
1265 static char *write_ordering_str[] = {
1266 [WO_none] = "none",
1267 [WO_drain_io] = "drain",
1268 [WO_bdev_flush] = "flush",
1269 };
1270
1271 pwo = tconn->write_ordering;
1272 wo = min(pwo, wo);
1273 rcu_read_lock();
1274 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
1275 if (!get_ldev_if_state(mdev, D_ATTACHING))
1276 continue;
1277 dc = rcu_dereference(mdev->ldev->disk_conf);
1278
1279 if (wo == WO_bdev_flush && !dc->disk_flushes)
1280 wo = WO_drain_io;
1281 if (wo == WO_drain_io && !dc->disk_drain)
1282 wo = WO_none;
1283 put_ldev(mdev);
1284 }
1285 rcu_read_unlock();
1286 tconn->write_ordering = wo;
1287 if (pwo != tconn->write_ordering || wo == WO_bdev_flush)
1288 conn_info(tconn, "Method to ensure write ordering: %s\n", write_ordering_str[tconn->write_ordering]);
1289 }
1290
1291 /**
1292 * drbd_submit_peer_request()
1293 * @mdev: DRBD device.
1294 * @peer_req: peer request
1295 * @rw: flag field, see bio->bi_rw
1296 *
1297 * May spread the pages to multiple bios,
1298 * depending on bio_add_page restrictions.
1299 *
1300 * Returns 0 if all bios have been submitted,
1301 * -ENOMEM if we could not allocate enough bios,
1302 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1303 * single page to an empty bio (which should never happen and likely indicates
1304 * that the lower level IO stack is in some way broken). This has been observed
1305 * on certain Xen deployments.
1306 */
1307 /* TODO allocate from our own bio_set. */
1308 int drbd_submit_peer_request(struct drbd_conf *mdev,
1309 struct drbd_peer_request *peer_req,
1310 const unsigned rw, const int fault_type)
1311 {
1312 struct bio *bios = NULL;
1313 struct bio *bio;
1314 struct page *page = peer_req->pages;
1315 sector_t sector = peer_req->i.sector;
1316 unsigned ds = peer_req->i.size;
1317 unsigned n_bios = 0;
1318 unsigned nr_pages = (ds + PAGE_SIZE -1) >> PAGE_SHIFT;
1319 int err = -ENOMEM;
1320
1321 /* In most cases, we will only need one bio. But in case the lower
1322 * level restrictions happen to be different at this offset on this
1323 * side than those of the sending peer, we may need to submit the
1324 * request in more than one bio.
1325 *
1326 * Plain bio_alloc is good enough here, this is no DRBD internally
1327 * generated bio, but a bio allocated on behalf of the peer.
1328 */
1329 next_bio:
1330 bio = bio_alloc(GFP_NOIO, nr_pages);
1331 if (!bio) {
1332 dev_err(DEV, "submit_ee: Allocation of a bio failed\n");
1333 goto fail;
1334 }
1335 /* > peer_req->i.sector, unless this is the first bio */
1336 bio->bi_iter.bi_sector = sector;
1337 bio->bi_bdev = mdev->ldev->backing_bdev;
1338 bio->bi_rw = rw;
1339 bio->bi_private = peer_req;
1340 bio->bi_end_io = drbd_peer_request_endio;
1341
1342 bio->bi_next = bios;
1343 bios = bio;
1344 ++n_bios;
1345
1346 page_chain_for_each(page) {
1347 unsigned len = min_t(unsigned, ds, PAGE_SIZE);
1348 if (!bio_add_page(bio, page, len, 0)) {
1349 /* A single page must always be possible!
1350 * But in case it fails anyways,
1351 * we deal with it, and complain (below). */
1352 if (bio->bi_vcnt == 0) {
1353 dev_err(DEV,
1354 "bio_add_page failed for len=%u, "
1355 "bi_vcnt=0 (bi_sector=%llu)\n",
1356 len, (uint64_t)bio->bi_iter.bi_sector);
1357 err = -ENOSPC;
1358 goto fail;
1359 }
1360 goto next_bio;
1361 }
1362 ds -= len;
1363 sector += len >> 9;
1364 --nr_pages;
1365 }
1366 D_ASSERT(page == NULL);
1367 D_ASSERT(ds == 0);
1368
1369 atomic_set(&peer_req->pending_bios, n_bios);
1370 do {
1371 bio = bios;
1372 bios = bios->bi_next;
1373 bio->bi_next = NULL;
1374
1375 drbd_generic_make_request(mdev, fault_type, bio);
1376 } while (bios);
1377 return 0;
1378
1379 fail:
1380 while (bios) {
1381 bio = bios;
1382 bios = bios->bi_next;
1383 bio_put(bio);
1384 }
1385 return err;
1386 }
1387
1388 static void drbd_remove_epoch_entry_interval(struct drbd_conf *mdev,
1389 struct drbd_peer_request *peer_req)
1390 {
1391 struct drbd_interval *i = &peer_req->i;
1392
1393 drbd_remove_interval(&mdev->write_requests, i);
1394 drbd_clear_interval(i);
1395
1396 /* Wake up any processes waiting for this peer request to complete. */
1397 if (i->waiting)
1398 wake_up(&mdev->misc_wait);
1399 }
1400
1401 void conn_wait_active_ee_empty(struct drbd_tconn *tconn)
1402 {
1403 struct drbd_conf *mdev;
1404 int vnr;
1405
1406 rcu_read_lock();
1407 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
1408 kref_get(&mdev->kref);
1409 rcu_read_unlock();
1410 drbd_wait_ee_list_empty(mdev, &mdev->active_ee);
1411 kref_put(&mdev->kref, &drbd_minor_destroy);
1412 rcu_read_lock();
1413 }
1414 rcu_read_unlock();
1415 }
1416
1417 static int receive_Barrier(struct drbd_tconn *tconn, struct packet_info *pi)
1418 {
1419 int rv;
1420 struct p_barrier *p = pi->data;
1421 struct drbd_epoch *epoch;
1422
1423 /* FIXME these are unacked on connection,
1424 * not a specific (peer)device.
1425 */
1426 tconn->current_epoch->barrier_nr = p->barrier;
1427 tconn->current_epoch->tconn = tconn;
1428 rv = drbd_may_finish_epoch(tconn, tconn->current_epoch, EV_GOT_BARRIER_NR);
1429
1430 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1431 * the activity log, which means it would not be resynced in case the
1432 * R_PRIMARY crashes now.
1433 * Therefore we must send the barrier_ack after the barrier request was
1434 * completed. */
1435 switch (tconn->write_ordering) {
1436 case WO_none:
1437 if (rv == FE_RECYCLED)
1438 return 0;
1439
1440 /* receiver context, in the writeout path of the other node.
1441 * avoid potential distributed deadlock */
1442 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1443 if (epoch)
1444 break;
1445 else
1446 conn_warn(tconn, "Allocation of an epoch failed, slowing down\n");
1447 /* Fall through */
1448
1449 case WO_bdev_flush:
1450 case WO_drain_io:
1451 conn_wait_active_ee_empty(tconn);
1452 drbd_flush(tconn);
1453
1454 if (atomic_read(&tconn->current_epoch->epoch_size)) {
1455 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1456 if (epoch)
1457 break;
1458 }
1459
1460 return 0;
1461 default:
1462 conn_err(tconn, "Strangeness in tconn->write_ordering %d\n", tconn->write_ordering);
1463 return -EIO;
1464 }
1465
1466 epoch->flags = 0;
1467 atomic_set(&epoch->epoch_size, 0);
1468 atomic_set(&epoch->active, 0);
1469
1470 spin_lock(&tconn->epoch_lock);
1471 if (atomic_read(&tconn->current_epoch->epoch_size)) {
1472 list_add(&epoch->list, &tconn->current_epoch->list);
1473 tconn->current_epoch = epoch;
1474 tconn->epochs++;
1475 } else {
1476 /* The current_epoch got recycled while we allocated this one... */
1477 kfree(epoch);
1478 }
1479 spin_unlock(&tconn->epoch_lock);
1480
1481 return 0;
1482 }
1483
1484 /* used from receive_RSDataReply (recv_resync_read)
1485 * and from receive_Data */
1486 static struct drbd_peer_request *
1487 read_in_block(struct drbd_conf *mdev, u64 id, sector_t sector,
1488 int data_size) __must_hold(local)
1489 {
1490 const sector_t capacity = drbd_get_capacity(mdev->this_bdev);
1491 struct drbd_peer_request *peer_req;
1492 struct page *page;
1493 int dgs, ds, err;
1494 void *dig_in = mdev->tconn->int_dig_in;
1495 void *dig_vv = mdev->tconn->int_dig_vv;
1496 unsigned long *data;
1497
1498 dgs = 0;
1499 if (mdev->tconn->peer_integrity_tfm) {
1500 dgs = crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm);
1501 /*
1502 * FIXME: Receive the incoming digest into the receive buffer
1503 * here, together with its struct p_data?
1504 */
1505 err = drbd_recv_all_warn(mdev->tconn, dig_in, dgs);
1506 if (err)
1507 return NULL;
1508 data_size -= dgs;
1509 }
1510
1511 if (!expect(IS_ALIGNED(data_size, 512)))
1512 return NULL;
1513 if (!expect(data_size <= DRBD_MAX_BIO_SIZE))
1514 return NULL;
1515
1516 /* even though we trust out peer,
1517 * we sometimes have to double check. */
1518 if (sector + (data_size>>9) > capacity) {
1519 dev_err(DEV, "request from peer beyond end of local disk: "
1520 "capacity: %llus < sector: %llus + size: %u\n",
1521 (unsigned long long)capacity,
1522 (unsigned long long)sector, data_size);
1523 return NULL;
1524 }
1525
1526 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1527 * "criss-cross" setup, that might cause write-out on some other DRBD,
1528 * which in turn might block on the other node at this very place. */
1529 peer_req = drbd_alloc_peer_req(mdev, id, sector, data_size, GFP_NOIO);
1530 if (!peer_req)
1531 return NULL;
1532
1533 if (!data_size)
1534 return peer_req;
1535
1536 ds = data_size;
1537 page = peer_req->pages;
1538 page_chain_for_each(page) {
1539 unsigned len = min_t(int, ds, PAGE_SIZE);
1540 data = kmap(page);
1541 err = drbd_recv_all_warn(mdev->tconn, data, len);
1542 if (drbd_insert_fault(mdev, DRBD_FAULT_RECEIVE)) {
1543 dev_err(DEV, "Fault injection: Corrupting data on receive\n");
1544 data[0] = data[0] ^ (unsigned long)-1;
1545 }
1546 kunmap(page);
1547 if (err) {
1548 drbd_free_peer_req(mdev, peer_req);
1549 return NULL;
1550 }
1551 ds -= len;
1552 }
1553
1554 if (dgs) {
1555 drbd_csum_ee(mdev, mdev->tconn->peer_integrity_tfm, peer_req, dig_vv);
1556 if (memcmp(dig_in, dig_vv, dgs)) {
1557 dev_err(DEV, "Digest integrity check FAILED: %llus +%u\n",
1558 (unsigned long long)sector, data_size);
1559 drbd_free_peer_req(mdev, peer_req);
1560 return NULL;
1561 }
1562 }
1563 mdev->recv_cnt += data_size>>9;
1564 return peer_req;
1565 }
1566
1567 /* drbd_drain_block() just takes a data block
1568 * out of the socket input buffer, and discards it.
1569 */
1570 static int drbd_drain_block(struct drbd_conf *mdev, int data_size)
1571 {
1572 struct page *page;
1573 int err = 0;
1574 void *data;
1575
1576 if (!data_size)
1577 return 0;
1578
1579 page = drbd_alloc_pages(mdev, 1, 1);
1580
1581 data = kmap(page);
1582 while (data_size) {
1583 unsigned int len = min_t(int, data_size, PAGE_SIZE);
1584
1585 err = drbd_recv_all_warn(mdev->tconn, data, len);
1586 if (err)
1587 break;
1588 data_size -= len;
1589 }
1590 kunmap(page);
1591 drbd_free_pages(mdev, page, 0);
1592 return err;
1593 }
1594
1595 static int recv_dless_read(struct drbd_conf *mdev, struct drbd_request *req,
1596 sector_t sector, int data_size)
1597 {
1598 struct bio_vec *bvec;
1599 struct bio *bio;
1600 int dgs, err, i, expect;
1601 void *dig_in = mdev->tconn->int_dig_in;
1602 void *dig_vv = mdev->tconn->int_dig_vv;
1603
1604 dgs = 0;
1605 if (mdev->tconn->peer_integrity_tfm) {
1606 dgs = crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm);
1607 err = drbd_recv_all_warn(mdev->tconn, dig_in, dgs);
1608 if (err)
1609 return err;
1610 data_size -= dgs;
1611 }
1612
1613 /* optimistically update recv_cnt. if receiving fails below,
1614 * we disconnect anyways, and counters will be reset. */
1615 mdev->recv_cnt += data_size>>9;
1616
1617 bio = req->master_bio;
1618 D_ASSERT(sector == bio->bi_iter.bi_sector);
1619
1620 bio_for_each_segment(bvec, bio, i) {
1621 void *mapped = kmap(bvec->bv_page) + bvec->bv_offset;
1622 expect = min_t(int, data_size, bvec->bv_len);
1623 err = drbd_recv_all_warn(mdev->tconn, mapped, expect);
1624 kunmap(bvec->bv_page);
1625 if (err)
1626 return err;
1627 data_size -= expect;
1628 }
1629
1630 if (dgs) {
1631 drbd_csum_bio(mdev, mdev->tconn->peer_integrity_tfm, bio, dig_vv);
1632 if (memcmp(dig_in, dig_vv, dgs)) {
1633 dev_err(DEV, "Digest integrity check FAILED. Broken NICs?\n");
1634 return -EINVAL;
1635 }
1636 }
1637
1638 D_ASSERT(data_size == 0);
1639 return 0;
1640 }
1641
1642 /*
1643 * e_end_resync_block() is called in asender context via
1644 * drbd_finish_peer_reqs().
1645 */
1646 static int e_end_resync_block(struct drbd_work *w, int unused)
1647 {
1648 struct drbd_peer_request *peer_req =
1649 container_of(w, struct drbd_peer_request, w);
1650 struct drbd_conf *mdev = w->mdev;
1651 sector_t sector = peer_req->i.sector;
1652 int err;
1653
1654 D_ASSERT(drbd_interval_empty(&peer_req->i));
1655
1656 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1657 drbd_set_in_sync(mdev, sector, peer_req->i.size);
1658 err = drbd_send_ack(mdev, P_RS_WRITE_ACK, peer_req);
1659 } else {
1660 /* Record failure to sync */
1661 drbd_rs_failed_io(mdev, sector, peer_req->i.size);
1662
1663 err = drbd_send_ack(mdev, P_NEG_ACK, peer_req);
1664 }
1665 dec_unacked(mdev);
1666
1667 return err;
1668 }
1669
1670 static int recv_resync_read(struct drbd_conf *mdev, sector_t sector, int data_size) __releases(local)
1671 {
1672 struct drbd_peer_request *peer_req;
1673
1674 peer_req = read_in_block(mdev, ID_SYNCER, sector, data_size);
1675 if (!peer_req)
1676 goto fail;
1677
1678 dec_rs_pending(mdev);
1679
1680 inc_unacked(mdev);
1681 /* corresponding dec_unacked() in e_end_resync_block()
1682 * respective _drbd_clear_done_ee */
1683
1684 peer_req->w.cb = e_end_resync_block;
1685
1686 spin_lock_irq(&mdev->tconn->req_lock);
1687 list_add(&peer_req->w.list, &mdev->sync_ee);
1688 spin_unlock_irq(&mdev->tconn->req_lock);
1689
1690 atomic_add(data_size >> 9, &mdev->rs_sect_ev);
1691 if (drbd_submit_peer_request(mdev, peer_req, WRITE, DRBD_FAULT_RS_WR) == 0)
1692 return 0;
1693
1694 /* don't care for the reason here */
1695 dev_err(DEV, "submit failed, triggering re-connect\n");
1696 spin_lock_irq(&mdev->tconn->req_lock);
1697 list_del(&peer_req->w.list);
1698 spin_unlock_irq(&mdev->tconn->req_lock);
1699
1700 drbd_free_peer_req(mdev, peer_req);
1701 fail:
1702 put_ldev(mdev);
1703 return -EIO;
1704 }
1705
1706 static struct drbd_request *
1707 find_request(struct drbd_conf *mdev, struct rb_root *root, u64 id,
1708 sector_t sector, bool missing_ok, const char *func)
1709 {
1710 struct drbd_request *req;
1711
1712 /* Request object according to our peer */
1713 req = (struct drbd_request *)(unsigned long)id;
1714 if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
1715 return req;
1716 if (!missing_ok) {
1717 dev_err(DEV, "%s: failed to find request 0x%lx, sector %llus\n", func,
1718 (unsigned long)id, (unsigned long long)sector);
1719 }
1720 return NULL;
1721 }
1722
1723 static int receive_DataReply(struct drbd_tconn *tconn, struct packet_info *pi)
1724 {
1725 struct drbd_conf *mdev;
1726 struct drbd_request *req;
1727 sector_t sector;
1728 int err;
1729 struct p_data *p = pi->data;
1730
1731 mdev = vnr_to_mdev(tconn, pi->vnr);
1732 if (!mdev)
1733 return -EIO;
1734
1735 sector = be64_to_cpu(p->sector);
1736
1737 spin_lock_irq(&mdev->tconn->req_lock);
1738 req = find_request(mdev, &mdev->read_requests, p->block_id, sector, false, __func__);
1739 spin_unlock_irq(&mdev->tconn->req_lock);
1740 if (unlikely(!req))
1741 return -EIO;
1742
1743 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
1744 * special casing it there for the various failure cases.
1745 * still no race with drbd_fail_pending_reads */
1746 err = recv_dless_read(mdev, req, sector, pi->size);
1747 if (!err)
1748 req_mod(req, DATA_RECEIVED);
1749 /* else: nothing. handled from drbd_disconnect...
1750 * I don't think we may complete this just yet
1751 * in case we are "on-disconnect: freeze" */
1752
1753 return err;
1754 }
1755
1756 static int receive_RSDataReply(struct drbd_tconn *tconn, struct packet_info *pi)
1757 {
1758 struct drbd_conf *mdev;
1759 sector_t sector;
1760 int err;
1761 struct p_data *p = pi->data;
1762
1763 mdev = vnr_to_mdev(tconn, pi->vnr);
1764 if (!mdev)
1765 return -EIO;
1766
1767 sector = be64_to_cpu(p->sector);
1768 D_ASSERT(p->block_id == ID_SYNCER);
1769
1770 if (get_ldev(mdev)) {
1771 /* data is submitted to disk within recv_resync_read.
1772 * corresponding put_ldev done below on error,
1773 * or in drbd_peer_request_endio. */
1774 err = recv_resync_read(mdev, sector, pi->size);
1775 } else {
1776 if (__ratelimit(&drbd_ratelimit_state))
1777 dev_err(DEV, "Can not write resync data to local disk.\n");
1778
1779 err = drbd_drain_block(mdev, pi->size);
1780
1781 drbd_send_ack_dp(mdev, P_NEG_ACK, p, pi->size);
1782 }
1783
1784 atomic_add(pi->size >> 9, &mdev->rs_sect_in);
1785
1786 return err;
1787 }
1788
1789 static void restart_conflicting_writes(struct drbd_conf *mdev,
1790 sector_t sector, int size)
1791 {
1792 struct drbd_interval *i;
1793 struct drbd_request *req;
1794
1795 drbd_for_each_overlap(i, &mdev->write_requests, sector, size) {
1796 if (!i->local)
1797 continue;
1798 req = container_of(i, struct drbd_request, i);
1799 if (req->rq_state & RQ_LOCAL_PENDING ||
1800 !(req->rq_state & RQ_POSTPONED))
1801 continue;
1802 /* as it is RQ_POSTPONED, this will cause it to
1803 * be queued on the retry workqueue. */
1804 __req_mod(req, CONFLICT_RESOLVED, NULL);
1805 }
1806 }
1807
1808 /*
1809 * e_end_block() is called in asender context via drbd_finish_peer_reqs().
1810 */
1811 static int e_end_block(struct drbd_work *w, int cancel)
1812 {
1813 struct drbd_peer_request *peer_req =
1814 container_of(w, struct drbd_peer_request, w);
1815 struct drbd_conf *mdev = w->mdev;
1816 sector_t sector = peer_req->i.sector;
1817 int err = 0, pcmd;
1818
1819 if (peer_req->flags & EE_SEND_WRITE_ACK) {
1820 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1821 pcmd = (mdev->state.conn >= C_SYNC_SOURCE &&
1822 mdev->state.conn <= C_PAUSED_SYNC_T &&
1823 peer_req->flags & EE_MAY_SET_IN_SYNC) ?
1824 P_RS_WRITE_ACK : P_WRITE_ACK;
1825 err = drbd_send_ack(mdev, pcmd, peer_req);
1826 if (pcmd == P_RS_WRITE_ACK)
1827 drbd_set_in_sync(mdev, sector, peer_req->i.size);
1828 } else {
1829 err = drbd_send_ack(mdev, P_NEG_ACK, peer_req);
1830 /* we expect it to be marked out of sync anyways...
1831 * maybe assert this? */
1832 }
1833 dec_unacked(mdev);
1834 }
1835 /* we delete from the conflict detection hash _after_ we sent out the
1836 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */
1837 if (peer_req->flags & EE_IN_INTERVAL_TREE) {
1838 spin_lock_irq(&mdev->tconn->req_lock);
1839 D_ASSERT(!drbd_interval_empty(&peer_req->i));
1840 drbd_remove_epoch_entry_interval(mdev, peer_req);
1841 if (peer_req->flags & EE_RESTART_REQUESTS)
1842 restart_conflicting_writes(mdev, sector, peer_req->i.size);
1843 spin_unlock_irq(&mdev->tconn->req_lock);
1844 } else
1845 D_ASSERT(drbd_interval_empty(&peer_req->i));
1846
1847 drbd_may_finish_epoch(mdev->tconn, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
1848
1849 return err;
1850 }
1851
1852 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
1853 {
1854 struct drbd_conf *mdev = w->mdev;
1855 struct drbd_peer_request *peer_req =
1856 container_of(w, struct drbd_peer_request, w);
1857 int err;
1858
1859 err = drbd_send_ack(mdev, ack, peer_req);
1860 dec_unacked(mdev);
1861
1862 return err;
1863 }
1864
1865 static int e_send_superseded(struct drbd_work *w, int unused)
1866 {
1867 return e_send_ack(w, P_SUPERSEDED);
1868 }
1869
1870 static int e_send_retry_write(struct drbd_work *w, int unused)
1871 {
1872 struct drbd_tconn *tconn = w->mdev->tconn;
1873
1874 return e_send_ack(w, tconn->agreed_pro_version >= 100 ?
1875 P_RETRY_WRITE : P_SUPERSEDED);
1876 }
1877
1878 static bool seq_greater(u32 a, u32 b)
1879 {
1880 /*
1881 * We assume 32-bit wrap-around here.
1882 * For 24-bit wrap-around, we would have to shift:
1883 * a <<= 8; b <<= 8;
1884 */
1885 return (s32)a - (s32)b > 0;
1886 }
1887
1888 static u32 seq_max(u32 a, u32 b)
1889 {
1890 return seq_greater(a, b) ? a : b;
1891 }
1892
1893 static void update_peer_seq(struct drbd_conf *mdev, unsigned int peer_seq)
1894 {
1895 unsigned int newest_peer_seq;
1896
1897 if (test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags)) {
1898 spin_lock(&mdev->peer_seq_lock);
1899 newest_peer_seq = seq_max(mdev->peer_seq, peer_seq);
1900 mdev->peer_seq = newest_peer_seq;
1901 spin_unlock(&mdev->peer_seq_lock);
1902 /* wake up only if we actually changed mdev->peer_seq */
1903 if (peer_seq == newest_peer_seq)
1904 wake_up(&mdev->seq_wait);
1905 }
1906 }
1907
1908 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
1909 {
1910 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
1911 }
1912
1913 /* maybe change sync_ee into interval trees as well? */
1914 static bool overlapping_resync_write(struct drbd_conf *mdev, struct drbd_peer_request *peer_req)
1915 {
1916 struct drbd_peer_request *rs_req;
1917 bool rv = 0;
1918
1919 spin_lock_irq(&mdev->tconn->req_lock);
1920 list_for_each_entry(rs_req, &mdev->sync_ee, w.list) {
1921 if (overlaps(peer_req->i.sector, peer_req->i.size,
1922 rs_req->i.sector, rs_req->i.size)) {
1923 rv = 1;
1924 break;
1925 }
1926 }
1927 spin_unlock_irq(&mdev->tconn->req_lock);
1928
1929 return rv;
1930 }
1931
1932 /* Called from receive_Data.
1933 * Synchronize packets on sock with packets on msock.
1934 *
1935 * This is here so even when a P_DATA packet traveling via sock overtook an Ack
1936 * packet traveling on msock, they are still processed in the order they have
1937 * been sent.
1938 *
1939 * Note: we don't care for Ack packets overtaking P_DATA packets.
1940 *
1941 * In case packet_seq is larger than mdev->peer_seq number, there are
1942 * outstanding packets on the msock. We wait for them to arrive.
1943 * In case we are the logically next packet, we update mdev->peer_seq
1944 * ourselves. Correctly handles 32bit wrap around.
1945 *
1946 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
1947 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
1948 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
1949 * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
1950 *
1951 * returns 0 if we may process the packet,
1952 * -ERESTARTSYS if we were interrupted (by disconnect signal). */
1953 static int wait_for_and_update_peer_seq(struct drbd_conf *mdev, const u32 peer_seq)
1954 {
1955 DEFINE_WAIT(wait);
1956 long timeout;
1957 int ret = 0, tp;
1958
1959 if (!test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags))
1960 return 0;
1961
1962 spin_lock(&mdev->peer_seq_lock);
1963 for (;;) {
1964 if (!seq_greater(peer_seq - 1, mdev->peer_seq)) {
1965 mdev->peer_seq = seq_max(mdev->peer_seq, peer_seq);
1966 break;
1967 }
1968
1969 if (signal_pending(current)) {
1970 ret = -ERESTARTSYS;
1971 break;
1972 }
1973
1974 rcu_read_lock();
1975 tp = rcu_dereference(mdev->tconn->net_conf)->two_primaries;
1976 rcu_read_unlock();
1977
1978 if (!tp)
1979 break;
1980
1981 /* Only need to wait if two_primaries is enabled */
1982 prepare_to_wait(&mdev->seq_wait, &wait, TASK_INTERRUPTIBLE);
1983 spin_unlock(&mdev->peer_seq_lock);
1984 rcu_read_lock();
1985 timeout = rcu_dereference(mdev->tconn->net_conf)->ping_timeo*HZ/10;
1986 rcu_read_unlock();
1987 timeout = schedule_timeout(timeout);
1988 spin_lock(&mdev->peer_seq_lock);
1989 if (!timeout) {
1990 ret = -ETIMEDOUT;
1991 dev_err(DEV, "Timed out waiting for missing ack packets; disconnecting\n");
1992 break;
1993 }
1994 }
1995 spin_unlock(&mdev->peer_seq_lock);
1996 finish_wait(&mdev->seq_wait, &wait);
1997 return ret;
1998 }
1999
2000 /* see also bio_flags_to_wire()
2001 * DRBD_REQ_*, because we need to semantically map the flags to data packet
2002 * flags and back. We may replicate to other kernel versions. */
2003 static unsigned long wire_flags_to_bio(struct drbd_conf *mdev, u32 dpf)
2004 {
2005 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2006 (dpf & DP_FUA ? REQ_FUA : 0) |
2007 (dpf & DP_FLUSH ? REQ_FLUSH : 0) |
2008 (dpf & DP_DISCARD ? REQ_DISCARD : 0);
2009 }
2010
2011 static void fail_postponed_requests(struct drbd_conf *mdev, sector_t sector,
2012 unsigned int size)
2013 {
2014 struct drbd_interval *i;
2015
2016 repeat:
2017 drbd_for_each_overlap(i, &mdev->write_requests, sector, size) {
2018 struct drbd_request *req;
2019 struct bio_and_error m;
2020
2021 if (!i->local)
2022 continue;
2023 req = container_of(i, struct drbd_request, i);
2024 if (!(req->rq_state & RQ_POSTPONED))
2025 continue;
2026 req->rq_state &= ~RQ_POSTPONED;
2027 __req_mod(req, NEG_ACKED, &m);
2028 spin_unlock_irq(&mdev->tconn->req_lock);
2029 if (m.bio)
2030 complete_master_bio(mdev, &m);
2031 spin_lock_irq(&mdev->tconn->req_lock);
2032 goto repeat;
2033 }
2034 }
2035
2036 static int handle_write_conflicts(struct drbd_conf *mdev,
2037 struct drbd_peer_request *peer_req)
2038 {
2039 struct drbd_tconn *tconn = mdev->tconn;
2040 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &tconn->flags);
2041 sector_t sector = peer_req->i.sector;
2042 const unsigned int size = peer_req->i.size;
2043 struct drbd_interval *i;
2044 bool equal;
2045 int err;
2046
2047 /*
2048 * Inserting the peer request into the write_requests tree will prevent
2049 * new conflicting local requests from being added.
2050 */
2051 drbd_insert_interval(&mdev->write_requests, &peer_req->i);
2052
2053 repeat:
2054 drbd_for_each_overlap(i, &mdev->write_requests, sector, size) {
2055 if (i == &peer_req->i)
2056 continue;
2057
2058 if (!i->local) {
2059 /*
2060 * Our peer has sent a conflicting remote request; this
2061 * should not happen in a two-node setup. Wait for the
2062 * earlier peer request to complete.
2063 */
2064 err = drbd_wait_misc(mdev, i);
2065 if (err)
2066 goto out;
2067 goto repeat;
2068 }
2069
2070 equal = i->sector == sector && i->size == size;
2071 if (resolve_conflicts) {
2072 /*
2073 * If the peer request is fully contained within the
2074 * overlapping request, it can be considered overwritten
2075 * and thus superseded; otherwise, it will be retried
2076 * once all overlapping requests have completed.
2077 */
2078 bool superseded = i->sector <= sector && i->sector +
2079 (i->size >> 9) >= sector + (size >> 9);
2080
2081 if (!equal)
2082 dev_alert(DEV, "Concurrent writes detected: "
2083 "local=%llus +%u, remote=%llus +%u, "
2084 "assuming %s came first\n",
2085 (unsigned long long)i->sector, i->size,
2086 (unsigned long long)sector, size,
2087 superseded ? "local" : "remote");
2088
2089 inc_unacked(mdev);
2090 peer_req->w.cb = superseded ? e_send_superseded :
2091 e_send_retry_write;
2092 list_add_tail(&peer_req->w.list, &mdev->done_ee);
2093 wake_asender(mdev->tconn);
2094
2095 err = -ENOENT;
2096 goto out;
2097 } else {
2098 struct drbd_request *req =
2099 container_of(i, struct drbd_request, i);
2100
2101 if (!equal)
2102 dev_alert(DEV, "Concurrent writes detected: "
2103 "local=%llus +%u, remote=%llus +%u\n",
2104 (unsigned long long)i->sector, i->size,
2105 (unsigned long long)sector, size);
2106
2107 if (req->rq_state & RQ_LOCAL_PENDING ||
2108 !(req->rq_state & RQ_POSTPONED)) {
2109 /*
2110 * Wait for the node with the discard flag to
2111 * decide if this request has been superseded
2112 * or needs to be retried.
2113 * Requests that have been superseded will
2114 * disappear from the write_requests tree.
2115 *
2116 * In addition, wait for the conflicting
2117 * request to finish locally before submitting
2118 * the conflicting peer request.
2119 */
2120 err = drbd_wait_misc(mdev, &req->i);
2121 if (err) {
2122 _conn_request_state(mdev->tconn,
2123 NS(conn, C_TIMEOUT),
2124 CS_HARD);
2125 fail_postponed_requests(mdev, sector, size);
2126 goto out;
2127 }
2128 goto repeat;
2129 }
2130 /*
2131 * Remember to restart the conflicting requests after
2132 * the new peer request has completed.
2133 */
2134 peer_req->flags |= EE_RESTART_REQUESTS;
2135 }
2136 }
2137 err = 0;
2138
2139 out:
2140 if (err)
2141 drbd_remove_epoch_entry_interval(mdev, peer_req);
2142 return err;
2143 }
2144
2145 /* mirrored write */
2146 static int receive_Data(struct drbd_tconn *tconn, struct packet_info *pi)
2147 {
2148 struct drbd_conf *mdev;
2149 sector_t sector;
2150 struct drbd_peer_request *peer_req;
2151 struct p_data *p = pi->data;
2152 u32 peer_seq = be32_to_cpu(p->seq_num);
2153 int rw = WRITE;
2154 u32 dp_flags;
2155 int err, tp;
2156
2157 mdev = vnr_to_mdev(tconn, pi->vnr);
2158 if (!mdev)
2159 return -EIO;
2160
2161 if (!get_ldev(mdev)) {
2162 int err2;
2163
2164 err = wait_for_and_update_peer_seq(mdev, peer_seq);
2165 drbd_send_ack_dp(mdev, P_NEG_ACK, p, pi->size);
2166 atomic_inc(&tconn->current_epoch->epoch_size);
2167 err2 = drbd_drain_block(mdev, pi->size);
2168 if (!err)
2169 err = err2;
2170 return err;
2171 }
2172
2173 /*
2174 * Corresponding put_ldev done either below (on various errors), or in
2175 * drbd_peer_request_endio, if we successfully submit the data at the
2176 * end of this function.
2177 */
2178
2179 sector = be64_to_cpu(p->sector);
2180 peer_req = read_in_block(mdev, p->block_id, sector, pi->size);
2181 if (!peer_req) {
2182 put_ldev(mdev);
2183 return -EIO;
2184 }
2185
2186 peer_req->w.cb = e_end_block;
2187
2188 dp_flags = be32_to_cpu(p->dp_flags);
2189 rw |= wire_flags_to_bio(mdev, dp_flags);
2190 if (peer_req->pages == NULL) {
2191 D_ASSERT(peer_req->i.size == 0);
2192 D_ASSERT(dp_flags & DP_FLUSH);
2193 }
2194
2195 if (dp_flags & DP_MAY_SET_IN_SYNC)
2196 peer_req->flags |= EE_MAY_SET_IN_SYNC;
2197
2198 spin_lock(&tconn->epoch_lock);
2199 peer_req->epoch = tconn->current_epoch;
2200 atomic_inc(&peer_req->epoch->epoch_size);
2201 atomic_inc(&peer_req->epoch->active);
2202 spin_unlock(&tconn->epoch_lock);
2203
2204 rcu_read_lock();
2205 tp = rcu_dereference(mdev->tconn->net_conf)->two_primaries;
2206 rcu_read_unlock();
2207 if (tp) {
2208 peer_req->flags |= EE_IN_INTERVAL_TREE;
2209 err = wait_for_and_update_peer_seq(mdev, peer_seq);
2210 if (err)
2211 goto out_interrupted;
2212 spin_lock_irq(&mdev->tconn->req_lock);
2213 err = handle_write_conflicts(mdev, peer_req);
2214 if (err) {
2215 spin_unlock_irq(&mdev->tconn->req_lock);
2216 if (err == -ENOENT) {
2217 put_ldev(mdev);
2218 return 0;
2219 }
2220 goto out_interrupted;
2221 }
2222 } else {
2223 update_peer_seq(mdev, peer_seq);
2224 spin_lock_irq(&mdev->tconn->req_lock);
2225 }
2226 list_add(&peer_req->w.list, &mdev->active_ee);
2227 spin_unlock_irq(&mdev->tconn->req_lock);
2228
2229 if (mdev->state.conn == C_SYNC_TARGET)
2230 wait_event(mdev->ee_wait, !overlapping_resync_write(mdev, peer_req));
2231
2232 if (mdev->tconn->agreed_pro_version < 100) {
2233 rcu_read_lock();
2234 switch (rcu_dereference(mdev->tconn->net_conf)->wire_protocol) {
2235 case DRBD_PROT_C:
2236 dp_flags |= DP_SEND_WRITE_ACK;
2237 break;
2238 case DRBD_PROT_B:
2239 dp_flags |= DP_SEND_RECEIVE_ACK;
2240 break;
2241 }
2242 rcu_read_unlock();
2243 }
2244
2245 if (dp_flags & DP_SEND_WRITE_ACK) {
2246 peer_req->flags |= EE_SEND_WRITE_ACK;
2247 inc_unacked(mdev);
2248 /* corresponding dec_unacked() in e_end_block()
2249 * respective _drbd_clear_done_ee */
2250 }
2251
2252 if (dp_flags & DP_SEND_RECEIVE_ACK) {
2253 /* I really don't like it that the receiver thread
2254 * sends on the msock, but anyways */
2255 drbd_send_ack(mdev, P_RECV_ACK, peer_req);
2256 }
2257
2258 if (mdev->state.pdsk < D_INCONSISTENT) {
2259 /* In case we have the only disk of the cluster, */
2260 drbd_set_out_of_sync(mdev, peer_req->i.sector, peer_req->i.size);
2261 peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2262 peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2263 drbd_al_begin_io(mdev, &peer_req->i, true);
2264 }
2265
2266 err = drbd_submit_peer_request(mdev, peer_req, rw, DRBD_FAULT_DT_WR);
2267 if (!err)
2268 return 0;
2269
2270 /* don't care for the reason here */
2271 dev_err(DEV, "submit failed, triggering re-connect\n");
2272 spin_lock_irq(&mdev->tconn->req_lock);
2273 list_del(&peer_req->w.list);
2274 drbd_remove_epoch_entry_interval(mdev, peer_req);
2275 spin_unlock_irq(&mdev->tconn->req_lock);
2276 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO)
2277 drbd_al_complete_io(mdev, &peer_req->i);
2278
2279 out_interrupted:
2280 drbd_may_finish_epoch(tconn, peer_req->epoch, EV_PUT + EV_CLEANUP);
2281 put_ldev(mdev);
2282 drbd_free_peer_req(mdev, peer_req);
2283 return err;
2284 }
2285
2286 /* We may throttle resync, if the lower device seems to be busy,
2287 * and current sync rate is above c_min_rate.
2288 *
2289 * To decide whether or not the lower device is busy, we use a scheme similar
2290 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2291 * (more than 64 sectors) of activity we cannot account for with our own resync
2292 * activity, it obviously is "busy".
2293 *
2294 * The current sync rate used here uses only the most recent two step marks,
2295 * to have a short time average so we can react faster.
2296 */
2297 int drbd_rs_should_slow_down(struct drbd_conf *mdev, sector_t sector)
2298 {
2299 struct gendisk *disk = mdev->ldev->backing_bdev->bd_contains->bd_disk;
2300 unsigned long db, dt, dbdt;
2301 struct lc_element *tmp;
2302 int curr_events;
2303 int throttle = 0;
2304 unsigned int c_min_rate;
2305
2306 rcu_read_lock();
2307 c_min_rate = rcu_dereference(mdev->ldev->disk_conf)->c_min_rate;
2308 rcu_read_unlock();
2309
2310 /* feature disabled? */
2311 if (c_min_rate == 0)
2312 return 0;
2313
2314 spin_lock_irq(&mdev->al_lock);
2315 tmp = lc_find(mdev->resync, BM_SECT_TO_EXT(sector));
2316 if (tmp) {
2317 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2318 if (test_bit(BME_PRIORITY, &bm_ext->flags)) {
2319 spin_unlock_irq(&mdev->al_lock);
2320 return 0;
2321 }
2322 /* Do not slow down if app IO is already waiting for this extent */
2323 }
2324 spin_unlock_irq(&mdev->al_lock);
2325
2326 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
2327 (int)part_stat_read(&disk->part0, sectors[1]) -
2328 atomic_read(&mdev->rs_sect_ev);
2329
2330 if (!mdev->rs_last_events || curr_events - mdev->rs_last_events > 64) {
2331 unsigned long rs_left;
2332 int i;
2333
2334 mdev->rs_last_events = curr_events;
2335
2336 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2337 * approx. */
2338 i = (mdev->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2339
2340 if (mdev->state.conn == C_VERIFY_S || mdev->state.conn == C_VERIFY_T)
2341 rs_left = mdev->ov_left;
2342 else
2343 rs_left = drbd_bm_total_weight(mdev) - mdev->rs_failed;
2344
2345 dt = ((long)jiffies - (long)mdev->rs_mark_time[i]) / HZ;
2346 if (!dt)
2347 dt++;
2348 db = mdev->rs_mark_left[i] - rs_left;
2349 dbdt = Bit2KB(db/dt);
2350
2351 if (dbdt > c_min_rate)
2352 throttle = 1;
2353 }
2354 return throttle;
2355 }
2356
2357
2358 static int receive_DataRequest(struct drbd_tconn *tconn, struct packet_info *pi)
2359 {
2360 struct drbd_conf *mdev;
2361 sector_t sector;
2362 sector_t capacity;
2363 struct drbd_peer_request *peer_req;
2364 struct digest_info *di = NULL;
2365 int size, verb;
2366 unsigned int fault_type;
2367 struct p_block_req *p = pi->data;
2368
2369 mdev = vnr_to_mdev(tconn, pi->vnr);
2370 if (!mdev)
2371 return -EIO;
2372 capacity = drbd_get_capacity(mdev->this_bdev);
2373
2374 sector = be64_to_cpu(p->sector);
2375 size = be32_to_cpu(p->blksize);
2376
2377 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2378 dev_err(DEV, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2379 (unsigned long long)sector, size);
2380 return -EINVAL;
2381 }
2382 if (sector + (size>>9) > capacity) {
2383 dev_err(DEV, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2384 (unsigned long long)sector, size);
2385 return -EINVAL;
2386 }
2387
2388 if (!get_ldev_if_state(mdev, D_UP_TO_DATE)) {
2389 verb = 1;
2390 switch (pi->cmd) {
2391 case P_DATA_REQUEST:
2392 drbd_send_ack_rp(mdev, P_NEG_DREPLY, p);
2393 break;
2394 case P_RS_DATA_REQUEST:
2395 case P_CSUM_RS_REQUEST:
2396 case P_OV_REQUEST:
2397 drbd_send_ack_rp(mdev, P_NEG_RS_DREPLY , p);
2398 break;
2399 case P_OV_REPLY:
2400 verb = 0;
2401 dec_rs_pending(mdev);
2402 drbd_send_ack_ex(mdev, P_OV_RESULT, sector, size, ID_IN_SYNC);
2403 break;
2404 default:
2405 BUG();
2406 }
2407 if (verb && __ratelimit(&drbd_ratelimit_state))
2408 dev_err(DEV, "Can not satisfy peer's read request, "
2409 "no local data.\n");
2410
2411 /* drain possibly payload */
2412 return drbd_drain_block(mdev, pi->size);
2413 }
2414
2415 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2416 * "criss-cross" setup, that might cause write-out on some other DRBD,
2417 * which in turn might block on the other node at this very place. */
2418 peer_req = drbd_alloc_peer_req(mdev, p->block_id, sector, size, GFP_NOIO);
2419 if (!peer_req) {
2420 put_ldev(mdev);
2421 return -ENOMEM;
2422 }
2423
2424 switch (pi->cmd) {
2425 case P_DATA_REQUEST:
2426 peer_req->w.cb = w_e_end_data_req;
2427 fault_type = DRBD_FAULT_DT_RD;
2428 /* application IO, don't drbd_rs_begin_io */
2429 goto submit;
2430
2431 case P_RS_DATA_REQUEST:
2432 peer_req->w.cb = w_e_end_rsdata_req;
2433 fault_type = DRBD_FAULT_RS_RD;
2434 /* used in the sector offset progress display */
2435 mdev->bm_resync_fo = BM_SECT_TO_BIT(sector);
2436 break;
2437
2438 case P_OV_REPLY:
2439 case P_CSUM_RS_REQUEST:
2440 fault_type = DRBD_FAULT_RS_RD;
2441 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2442 if (!di)
2443 goto out_free_e;
2444
2445 di->digest_size = pi->size;
2446 di->digest = (((char *)di)+sizeof(struct digest_info));
2447
2448 peer_req->digest = di;
2449 peer_req->flags |= EE_HAS_DIGEST;
2450
2451 if (drbd_recv_all(mdev->tconn, di->digest, pi->size))
2452 goto out_free_e;
2453
2454 if (pi->cmd == P_CSUM_RS_REQUEST) {
2455 D_ASSERT(mdev->tconn->agreed_pro_version >= 89);
2456 peer_req->w.cb = w_e_end_csum_rs_req;
2457 /* used in the sector offset progress display */
2458 mdev->bm_resync_fo = BM_SECT_TO_BIT(sector);
2459 } else if (pi->cmd == P_OV_REPLY) {
2460 /* track progress, we may need to throttle */
2461 atomic_add(size >> 9, &mdev->rs_sect_in);
2462 peer_req->w.cb = w_e_end_ov_reply;
2463 dec_rs_pending(mdev);
2464 /* drbd_rs_begin_io done when we sent this request,
2465 * but accounting still needs to be done. */
2466 goto submit_for_resync;
2467 }
2468 break;
2469
2470 case P_OV_REQUEST:
2471 if (mdev->ov_start_sector == ~(sector_t)0 &&
2472 mdev->tconn->agreed_pro_version >= 90) {
2473 unsigned long now = jiffies;
2474 int i;
2475 mdev->ov_start_sector = sector;
2476 mdev->ov_position = sector;
2477 mdev->ov_left = drbd_bm_bits(mdev) - BM_SECT_TO_BIT(sector);
2478 mdev->rs_total = mdev->ov_left;
2479 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2480 mdev->rs_mark_left[i] = mdev->ov_left;
2481 mdev->rs_mark_time[i] = now;
2482 }
2483 dev_info(DEV, "Online Verify start sector: %llu\n",
2484 (unsigned long long)sector);
2485 }
2486 peer_req->w.cb = w_e_end_ov_req;
2487 fault_type = DRBD_FAULT_RS_RD;
2488 break;
2489
2490 default:
2491 BUG();
2492 }
2493
2494 /* Throttle, drbd_rs_begin_io and submit should become asynchronous
2495 * wrt the receiver, but it is not as straightforward as it may seem.
2496 * Various places in the resync start and stop logic assume resync
2497 * requests are processed in order, requeuing this on the worker thread
2498 * introduces a bunch of new code for synchronization between threads.
2499 *
2500 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2501 * "forever", throttling after drbd_rs_begin_io will lock that extent
2502 * for application writes for the same time. For now, just throttle
2503 * here, where the rest of the code expects the receiver to sleep for
2504 * a while, anyways.
2505 */
2506
2507 /* Throttle before drbd_rs_begin_io, as that locks out application IO;
2508 * this defers syncer requests for some time, before letting at least
2509 * on request through. The resync controller on the receiving side
2510 * will adapt to the incoming rate accordingly.
2511 *
2512 * We cannot throttle here if remote is Primary/SyncTarget:
2513 * we would also throttle its application reads.
2514 * In that case, throttling is done on the SyncTarget only.
2515 */
2516 if (mdev->state.peer != R_PRIMARY && drbd_rs_should_slow_down(mdev, sector))
2517 schedule_timeout_uninterruptible(HZ/10);
2518 if (drbd_rs_begin_io(mdev, sector))
2519 goto out_free_e;
2520
2521 submit_for_resync:
2522 atomic_add(size >> 9, &mdev->rs_sect_ev);
2523
2524 submit:
2525 inc_unacked(mdev);
2526 spin_lock_irq(&mdev->tconn->req_lock);
2527 list_add_tail(&peer_req->w.list, &mdev->read_ee);
2528 spin_unlock_irq(&mdev->tconn->req_lock);
2529
2530 if (drbd_submit_peer_request(mdev, peer_req, READ, fault_type) == 0)
2531 return 0;
2532
2533 /* don't care for the reason here */
2534 dev_err(DEV, "submit failed, triggering re-connect\n");
2535 spin_lock_irq(&mdev->tconn->req_lock);
2536 list_del(&peer_req->w.list);
2537 spin_unlock_irq(&mdev->tconn->req_lock);
2538 /* no drbd_rs_complete_io(), we are dropping the connection anyways */
2539
2540 out_free_e:
2541 put_ldev(mdev);
2542 drbd_free_peer_req(mdev, peer_req);
2543 return -EIO;
2544 }
2545
2546 static int drbd_asb_recover_0p(struct drbd_conf *mdev) __must_hold(local)
2547 {
2548 int self, peer, rv = -100;
2549 unsigned long ch_self, ch_peer;
2550 enum drbd_after_sb_p after_sb_0p;
2551
2552 self = mdev->ldev->md.uuid[UI_BITMAP] & 1;
2553 peer = mdev->p_uuid[UI_BITMAP] & 1;
2554
2555 ch_peer = mdev->p_uuid[UI_SIZE];
2556 ch_self = mdev->comm_bm_set;
2557
2558 rcu_read_lock();
2559 after_sb_0p = rcu_dereference(mdev->tconn->net_conf)->after_sb_0p;
2560 rcu_read_unlock();
2561 switch (after_sb_0p) {
2562 case ASB_CONSENSUS:
2563 case ASB_DISCARD_SECONDARY:
2564 case ASB_CALL_HELPER:
2565 case ASB_VIOLENTLY:
2566 dev_err(DEV, "Configuration error.\n");
2567 break;
2568 case ASB_DISCONNECT:
2569 break;
2570 case ASB_DISCARD_YOUNGER_PRI:
2571 if (self == 0 && peer == 1) {
2572 rv = -1;
2573 break;
2574 }
2575 if (self == 1 && peer == 0) {
2576 rv = 1;
2577 break;
2578 }
2579 /* Else fall through to one of the other strategies... */
2580 case ASB_DISCARD_OLDER_PRI:
2581 if (self == 0 && peer == 1) {
2582 rv = 1;
2583 break;
2584 }
2585 if (self == 1 && peer == 0) {
2586 rv = -1;
2587 break;
2588 }
2589 /* Else fall through to one of the other strategies... */
2590 dev_warn(DEV, "Discard younger/older primary did not find a decision\n"
2591 "Using discard-least-changes instead\n");
2592 case ASB_DISCARD_ZERO_CHG:
2593 if (ch_peer == 0 && ch_self == 0) {
2594 rv = test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags)
2595 ? -1 : 1;
2596 break;
2597 } else {
2598 if (ch_peer == 0) { rv = 1; break; }
2599 if (ch_self == 0) { rv = -1; break; }
2600 }
2601 if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
2602 break;
2603 case ASB_DISCARD_LEAST_CHG:
2604 if (ch_self < ch_peer)
2605 rv = -1;
2606 else if (ch_self > ch_peer)
2607 rv = 1;
2608 else /* ( ch_self == ch_peer ) */
2609 /* Well, then use something else. */
2610 rv = test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags)
2611 ? -1 : 1;
2612 break;
2613 case ASB_DISCARD_LOCAL:
2614 rv = -1;
2615 break;
2616 case ASB_DISCARD_REMOTE:
2617 rv = 1;
2618 }
2619
2620 return rv;
2621 }
2622
2623 static int drbd_asb_recover_1p(struct drbd_conf *mdev) __must_hold(local)
2624 {
2625 int hg, rv = -100;
2626 enum drbd_after_sb_p after_sb_1p;
2627
2628 rcu_read_lock();
2629 after_sb_1p = rcu_dereference(mdev->tconn->net_conf)->after_sb_1p;
2630 rcu_read_unlock();
2631 switch (after_sb_1p) {
2632 case ASB_DISCARD_YOUNGER_PRI:
2633 case ASB_DISCARD_OLDER_PRI:
2634 case ASB_DISCARD_LEAST_CHG:
2635 case ASB_DISCARD_LOCAL:
2636 case ASB_DISCARD_REMOTE:
2637 case ASB_DISCARD_ZERO_CHG:
2638 dev_err(DEV, "Configuration error.\n");
2639 break;
2640 case ASB_DISCONNECT:
2641 break;
2642 case ASB_CONSENSUS:
2643 hg = drbd_asb_recover_0p(mdev);
2644 if (hg == -1 && mdev->state.role == R_SECONDARY)
2645 rv = hg;
2646 if (hg == 1 && mdev->state.role == R_PRIMARY)
2647 rv = hg;
2648 break;
2649 case ASB_VIOLENTLY:
2650 rv = drbd_asb_recover_0p(mdev);
2651 break;
2652 case ASB_DISCARD_SECONDARY:
2653 return mdev->state.role == R_PRIMARY ? 1 : -1;
2654 case ASB_CALL_HELPER:
2655 hg = drbd_asb_recover_0p(mdev);
2656 if (hg == -1 && mdev->state.role == R_PRIMARY) {
2657 enum drbd_state_rv rv2;
2658
2659 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
2660 * we might be here in C_WF_REPORT_PARAMS which is transient.
2661 * we do not need to wait for the after state change work either. */
2662 rv2 = drbd_change_state(mdev, CS_VERBOSE, NS(role, R_SECONDARY));
2663 if (rv2 != SS_SUCCESS) {
2664 drbd_khelper(mdev, "pri-lost-after-sb");
2665 } else {
2666 dev_warn(DEV, "Successfully gave up primary role.\n");
2667 rv = hg;
2668 }
2669 } else
2670 rv = hg;
2671 }
2672
2673 return rv;
2674 }
2675
2676 static int drbd_asb_recover_2p(struct drbd_conf *mdev) __must_hold(local)
2677 {
2678 int hg, rv = -100;
2679 enum drbd_after_sb_p after_sb_2p;
2680
2681 rcu_read_lock();
2682 after_sb_2p = rcu_dereference(mdev->tconn->net_conf)->after_sb_2p;
2683 rcu_read_unlock();
2684 switch (after_sb_2p) {
2685 case ASB_DISCARD_YOUNGER_PRI:
2686 case ASB_DISCARD_OLDER_PRI:
2687 case ASB_DISCARD_LEAST_CHG:
2688 case ASB_DISCARD_LOCAL:
2689 case ASB_DISCARD_REMOTE:
2690 case ASB_CONSENSUS:
2691 case ASB_DISCARD_SECONDARY:
2692 case ASB_DISCARD_ZERO_CHG:
2693 dev_err(DEV, "Configuration error.\n");
2694 break;
2695 case ASB_VIOLENTLY:
2696 rv = drbd_asb_recover_0p(mdev);
2697 break;
2698 case ASB_DISCONNECT:
2699 break;
2700 case ASB_CALL_HELPER:
2701 hg = drbd_asb_recover_0p(mdev);
2702 if (hg == -1) {
2703 enum drbd_state_rv rv2;
2704
2705 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
2706 * we might be here in C_WF_REPORT_PARAMS which is transient.
2707 * we do not need to wait for the after state change work either. */
2708 rv2 = drbd_change_state(mdev, CS_VERBOSE, NS(role, R_SECONDARY));
2709 if (rv2 != SS_SUCCESS) {
2710 drbd_khelper(mdev, "pri-lost-after-sb");
2711 } else {
2712 dev_warn(DEV, "Successfully gave up primary role.\n");
2713 rv = hg;
2714 }
2715 } else
2716 rv = hg;
2717 }
2718
2719 return rv;
2720 }
2721
2722 static void drbd_uuid_dump(struct drbd_conf *mdev, char *text, u64 *uuid,
2723 u64 bits, u64 flags)
2724 {
2725 if (!uuid) {
2726 dev_info(DEV, "%s uuid info vanished while I was looking!\n", text);
2727 return;
2728 }
2729 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
2730 text,
2731 (unsigned long long)uuid[UI_CURRENT],
2732 (unsigned long long)uuid[UI_BITMAP],
2733 (unsigned long long)uuid[UI_HISTORY_START],
2734 (unsigned long long)uuid[UI_HISTORY_END],
2735 (unsigned long long)bits,
2736 (unsigned long long)flags);
2737 }
2738
2739 /*
2740 100 after split brain try auto recover
2741 2 C_SYNC_SOURCE set BitMap
2742 1 C_SYNC_SOURCE use BitMap
2743 0 no Sync
2744 -1 C_SYNC_TARGET use BitMap
2745 -2 C_SYNC_TARGET set BitMap
2746 -100 after split brain, disconnect
2747 -1000 unrelated data
2748 -1091 requires proto 91
2749 -1096 requires proto 96
2750 */
2751 static int drbd_uuid_compare(struct drbd_conf *mdev, int *rule_nr) __must_hold(local)
2752 {
2753 u64 self, peer;
2754 int i, j;
2755
2756 self = mdev->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
2757 peer = mdev->p_uuid[UI_CURRENT] & ~((u64)1);
2758
2759 *rule_nr = 10;
2760 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
2761 return 0;
2762
2763 *rule_nr = 20;
2764 if ((self == UUID_JUST_CREATED || self == (u64)0) &&
2765 peer != UUID_JUST_CREATED)
2766 return -2;
2767
2768 *rule_nr = 30;
2769 if (self != UUID_JUST_CREATED &&
2770 (peer == UUID_JUST_CREATED || peer == (u64)0))
2771 return 2;
2772
2773 if (self == peer) {
2774 int rct, dc; /* roles at crash time */
2775
2776 if (mdev->p_uuid[UI_BITMAP] == (u64)0 && mdev->ldev->md.uuid[UI_BITMAP] != (u64)0) {
2777
2778 if (mdev->tconn->agreed_pro_version < 91)
2779 return -1091;
2780
2781 if ((mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (mdev->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
2782 (mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (mdev->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
2783 dev_info(DEV, "was SyncSource, missed the resync finished event, corrected myself:\n");
2784 drbd_uuid_move_history(mdev);
2785 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[UI_BITMAP];
2786 mdev->ldev->md.uuid[UI_BITMAP] = 0;
2787
2788 drbd_uuid_dump(mdev, "self", mdev->ldev->md.uuid,
2789 mdev->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(mdev) : 0, 0);
2790 *rule_nr = 34;
2791 } else {
2792 dev_info(DEV, "was SyncSource (peer failed to write sync_uuid)\n");
2793 *rule_nr = 36;
2794 }
2795
2796 return 1;
2797 }
2798
2799 if (mdev->ldev->md.uuid[UI_BITMAP] == (u64)0 && mdev->p_uuid[UI_BITMAP] != (u64)0) {
2800
2801 if (mdev->tconn->agreed_pro_version < 91)
2802 return -1091;
2803
2804 if ((mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (mdev->p_uuid[UI_BITMAP] & ~((u64)1)) &&
2805 (mdev->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (mdev->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
2806 dev_info(DEV, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
2807
2808 mdev->p_uuid[UI_HISTORY_START + 1] = mdev->p_uuid[UI_HISTORY_START];
2809 mdev->p_uuid[UI_HISTORY_START] = mdev->p_uuid[UI_BITMAP];
2810 mdev->p_uuid[UI_BITMAP] = 0UL;
2811
2812 drbd_uuid_dump(mdev, "peer", mdev->p_uuid, mdev->p_uuid[UI_SIZE], mdev->p_uuid[UI_FLAGS]);
2813 *rule_nr = 35;
2814 } else {
2815 dev_info(DEV, "was SyncTarget (failed to write sync_uuid)\n");
2816 *rule_nr = 37;
2817 }
2818
2819 return -1;
2820 }
2821
2822 /* Common power [off|failure] */
2823 rct = (test_bit(CRASHED_PRIMARY, &mdev->flags) ? 1 : 0) +
2824 (mdev->p_uuid[UI_FLAGS] & 2);
2825 /* lowest bit is set when we were primary,
2826 * next bit (weight 2) is set when peer was primary */
2827 *rule_nr = 40;
2828
2829 switch (rct) {
2830 case 0: /* !self_pri && !peer_pri */ return 0;
2831 case 1: /* self_pri && !peer_pri */ return 1;
2832 case 2: /* !self_pri && peer_pri */ return -1;
2833 case 3: /* self_pri && peer_pri */
2834 dc = test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags);
2835 return dc ? -1 : 1;
2836 }
2837 }
2838
2839 *rule_nr = 50;
2840 peer = mdev->p_uuid[UI_BITMAP] & ~((u64)1);
2841 if (self == peer)
2842 return -1;
2843
2844 *rule_nr = 51;
2845 peer = mdev->p_uuid[UI_HISTORY_START] & ~((u64)1);
2846 if (self == peer) {
2847 if (mdev->tconn->agreed_pro_version < 96 ?
2848 (mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
2849 (mdev->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
2850 peer + UUID_NEW_BM_OFFSET == (mdev->p_uuid[UI_BITMAP] & ~((u64)1))) {
2851 /* The last P_SYNC_UUID did not get though. Undo the last start of
2852 resync as sync source modifications of the peer's UUIDs. */
2853
2854 if (mdev->tconn->agreed_pro_version < 91)
2855 return -1091;
2856
2857 mdev->p_uuid[UI_BITMAP] = mdev->p_uuid[UI_HISTORY_START];
2858 mdev->p_uuid[UI_HISTORY_START] = mdev->p_uuid[UI_HISTORY_START + 1];
2859
2860 dev_info(DEV, "Lost last syncUUID packet, corrected:\n");
2861 drbd_uuid_dump(mdev, "peer", mdev->p_uuid, mdev->p_uuid[UI_SIZE], mdev->p_uuid[UI_FLAGS]);
2862
2863 return -1;
2864 }
2865 }
2866
2867 *rule_nr = 60;
2868 self = mdev->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
2869 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
2870 peer = mdev->p_uuid[i] & ~((u64)1);
2871 if (self == peer)
2872 return -2;
2873 }
2874
2875 *rule_nr = 70;
2876 self = mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
2877 peer = mdev->p_uuid[UI_CURRENT] & ~((u64)1);
2878 if (self == peer)
2879 return 1;
2880
2881 *rule_nr = 71;
2882 self = mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
2883 if (self == peer) {
2884 if (mdev->tconn->agreed_pro_version < 96 ?
2885 (mdev->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
2886 (mdev->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
2887 self + UUID_NEW_BM_OFFSET == (mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
2888 /* The last P_SYNC_UUID did not get though. Undo the last start of
2889 resync as sync source modifications of our UUIDs. */
2890
2891 if (mdev->tconn->agreed_pro_version < 91)
2892 return -1091;
2893
2894 __drbd_uuid_set(mdev, UI_BITMAP, mdev->ldev->md.uuid[UI_HISTORY_START]);
2895 __drbd_uuid_set(mdev, UI_HISTORY_START, mdev->ldev->md.uuid[UI_HISTORY_START + 1]);
2896
2897 dev_info(DEV, "Last syncUUID did not get through, corrected:\n");
2898 drbd_uuid_dump(mdev, "self", mdev->ldev->md.uuid,
2899 mdev->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(mdev) : 0, 0);
2900
2901 return 1;
2902 }
2903 }
2904
2905
2906 *rule_nr = 80;
2907 peer = mdev->p_uuid[UI_CURRENT] & ~((u64)1);
2908 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
2909 self = mdev->ldev->md.uuid[i] & ~((u64)1);
2910 if (self == peer)
2911 return 2;
2912 }
2913
2914 *rule_nr = 90;
2915 self = mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
2916 peer = mdev->p_uuid[UI_BITMAP] & ~((u64)1);
2917 if (self == peer && self != ((u64)0))
2918 return 100;
2919
2920 *rule_nr = 100;
2921 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
2922 self = mdev->ldev->md.uuid[i] & ~((u64)1);
2923 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
2924 peer = mdev->p_uuid[j] & ~((u64)1);
2925 if (self == peer)
2926 return -100;
2927 }
2928 }
2929
2930 return -1000;
2931 }
2932
2933 /* drbd_sync_handshake() returns the new conn state on success, or
2934 CONN_MASK (-1) on failure.
2935 */
2936 static enum drbd_conns drbd_sync_handshake(struct drbd_conf *mdev, enum drbd_role peer_role,
2937 enum drbd_disk_state peer_disk) __must_hold(local)
2938 {
2939 enum drbd_conns rv = C_MASK;
2940 enum drbd_disk_state mydisk;
2941 struct net_conf *nc;
2942 int hg, rule_nr, rr_conflict, tentative;
2943
2944 mydisk = mdev->state.disk;
2945 if (mydisk == D_NEGOTIATING)
2946 mydisk = mdev->new_state_tmp.disk;
2947
2948 dev_info(DEV, "drbd_sync_handshake:\n");
2949
2950 spin_lock_irq(&mdev->ldev->md.uuid_lock);
2951 drbd_uuid_dump(mdev, "self", mdev->ldev->md.uuid, mdev->comm_bm_set, 0);
2952 drbd_uuid_dump(mdev, "peer", mdev->p_uuid,
2953 mdev->p_uuid[UI_SIZE], mdev->p_uuid[UI_FLAGS]);
2954
2955 hg = drbd_uuid_compare(mdev, &rule_nr);
2956 spin_unlock_irq(&mdev->ldev->md.uuid_lock);
2957
2958 dev_info(DEV, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
2959
2960 if (hg == -1000) {
2961 dev_alert(DEV, "Unrelated data, aborting!\n");
2962 return C_MASK;
2963 }
2964 if (hg < -1000) {
2965 dev_alert(DEV, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
2966 return C_MASK;
2967 }
2968
2969 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
2970 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) {
2971 int f = (hg == -100) || abs(hg) == 2;
2972 hg = mydisk > D_INCONSISTENT ? 1 : -1;
2973 if (f)
2974 hg = hg*2;
2975 dev_info(DEV, "Becoming sync %s due to disk states.\n",
2976 hg > 0 ? "source" : "target");
2977 }
2978
2979 if (abs(hg) == 100)
2980 drbd_khelper(mdev, "initial-split-brain");
2981
2982 rcu_read_lock();
2983 nc = rcu_dereference(mdev->tconn->net_conf);
2984
2985 if (hg == 100 || (hg == -100 && nc->always_asbp)) {
2986 int pcount = (mdev->state.role == R_PRIMARY)
2987 + (peer_role == R_PRIMARY);
2988 int forced = (hg == -100);
2989
2990 switch (pcount) {
2991 case 0:
2992 hg = drbd_asb_recover_0p(mdev);
2993 break;
2994 case 1:
2995 hg = drbd_asb_recover_1p(mdev);
2996 break;
2997 case 2:
2998 hg = drbd_asb_recover_2p(mdev);
2999 break;
3000 }
3001 if (abs(hg) < 100) {
3002 dev_warn(DEV, "Split-Brain detected, %d primaries, "
3003 "automatically solved. Sync from %s node\n",
3004 pcount, (hg < 0) ? "peer" : "this");
3005 if (forced) {
3006 dev_warn(DEV, "Doing a full sync, since"
3007 " UUIDs where ambiguous.\n");
3008 hg = hg*2;
3009 }
3010 }
3011 }
3012
3013 if (hg == -100) {
3014 if (test_bit(DISCARD_MY_DATA, &mdev->flags) && !(mdev->p_uuid[UI_FLAGS]&1))
3015 hg = -1;
3016 if (!test_bit(DISCARD_MY_DATA, &mdev->flags) && (mdev->p_uuid[UI_FLAGS]&1))
3017 hg = 1;
3018
3019 if (abs(hg) < 100)
3020 dev_warn(DEV, "Split-Brain detected, manually solved. "
3021 "Sync from %s node\n",
3022 (hg < 0) ? "peer" : "this");
3023 }
3024 rr_conflict = nc->rr_conflict;
3025 tentative = nc->tentative;
3026 rcu_read_unlock();
3027
3028 if (hg == -100) {
3029 /* FIXME this log message is not correct if we end up here
3030 * after an attempted attach on a diskless node.
3031 * We just refuse to attach -- well, we drop the "connection"
3032 * to that disk, in a way... */
3033 dev_alert(DEV, "Split-Brain detected but unresolved, dropping connection!\n");
3034 drbd_khelper(mdev, "split-brain");
3035 return C_MASK;
3036 }
3037
3038 if (hg > 0 && mydisk <= D_INCONSISTENT) {
3039 dev_err(DEV, "I shall become SyncSource, but I am inconsistent!\n");
3040 return C_MASK;
3041 }
3042
3043 if (hg < 0 && /* by intention we do not use mydisk here. */
3044 mdev->state.role == R_PRIMARY && mdev->state.disk >= D_CONSISTENT) {
3045 switch (rr_conflict) {
3046 case ASB_CALL_HELPER:
3047 drbd_khelper(mdev, "pri-lost");
3048 /* fall through */
3049 case ASB_DISCONNECT:
3050 dev_err(DEV, "I shall become SyncTarget, but I am primary!\n");
3051 return C_MASK;
3052 case ASB_VIOLENTLY:
3053 dev_warn(DEV, "Becoming SyncTarget, violating the stable-data"
3054 "assumption\n");
3055 }
3056 }
3057
3058 if (tentative || test_bit(CONN_DRY_RUN, &mdev->tconn->flags)) {
3059 if (hg == 0)
3060 dev_info(DEV, "dry-run connect: No resync, would become Connected immediately.\n");
3061 else
3062 dev_info(DEV, "dry-run connect: Would become %s, doing a %s resync.",
3063 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3064 abs(hg) >= 2 ? "full" : "bit-map based");
3065 return C_MASK;
3066 }
3067
3068 if (abs(hg) >= 2) {
3069 dev_info(DEV, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3070 if (drbd_bitmap_io(mdev, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3071 BM_LOCKED_SET_ALLOWED))
3072 return C_MASK;
3073 }
3074
3075 if (hg > 0) { /* become sync source. */
3076 rv = C_WF_BITMAP_S;
3077 } else if (hg < 0) { /* become sync target */
3078 rv = C_WF_BITMAP_T;
3079 } else {
3080 rv = C_CONNECTED;
3081 if (drbd_bm_total_weight(mdev)) {
3082 dev_info(DEV, "No resync, but %lu bits in bitmap!\n",
3083 drbd_bm_total_weight(mdev));
3084 }
3085 }
3086
3087 return rv;
3088 }
3089
3090 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3091 {
3092 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3093 if (peer == ASB_DISCARD_REMOTE)
3094 return ASB_DISCARD_LOCAL;
3095
3096 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3097 if (peer == ASB_DISCARD_LOCAL)
3098 return ASB_DISCARD_REMOTE;
3099
3100 /* everything else is valid if they are equal on both sides. */
3101 return peer;
3102 }
3103
3104 static int receive_protocol(struct drbd_tconn *tconn, struct packet_info *pi)
3105 {
3106 struct p_protocol *p = pi->data;
3107 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3108 int p_proto, p_discard_my_data, p_two_primaries, cf;
3109 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3110 char integrity_alg[SHARED_SECRET_MAX] = "";
3111 struct crypto_hash *peer_integrity_tfm = NULL;
3112 void *int_dig_in = NULL, *int_dig_vv = NULL;
3113
3114 p_proto = be32_to_cpu(p->protocol);
3115 p_after_sb_0p = be32_to_cpu(p->after_sb_0p);
3116 p_after_sb_1p = be32_to_cpu(p->after_sb_1p);
3117 p_after_sb_2p = be32_to_cpu(p->after_sb_2p);
3118 p_two_primaries = be32_to_cpu(p->two_primaries);
3119 cf = be32_to_cpu(p->conn_flags);
3120 p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3121
3122 if (tconn->agreed_pro_version >= 87) {
3123 int err;
3124
3125 if (pi->size > sizeof(integrity_alg))
3126 return -EIO;
3127 err = drbd_recv_all(tconn, integrity_alg, pi->size);
3128 if (err)
3129 return err;
3130 integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3131 }
3132
3133 if (pi->cmd != P_PROTOCOL_UPDATE) {
3134 clear_bit(CONN_DRY_RUN, &tconn->flags);
3135
3136 if (cf & CF_DRY_RUN)
3137 set_bit(CONN_DRY_RUN, &tconn->flags);
3138
3139 rcu_read_lock();
3140 nc = rcu_dereference(tconn->net_conf);
3141
3142 if (p_proto != nc->wire_protocol) {
3143 conn_err(tconn, "incompatible %s settings\n", "protocol");
3144 goto disconnect_rcu_unlock;
3145 }
3146
3147 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3148 conn_err(tconn, "incompatible %s settings\n", "after-sb-0pri");
3149 goto disconnect_rcu_unlock;
3150 }
3151
3152 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3153 conn_err(tconn, "incompatible %s settings\n", "after-sb-1pri");
3154 goto disconnect_rcu_unlock;
3155 }
3156
3157 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3158 conn_err(tconn, "incompatible %s settings\n", "after-sb-2pri");
3159 goto disconnect_rcu_unlock;
3160 }
3161
3162 if (p_discard_my_data && nc->discard_my_data) {
3163 conn_err(tconn, "incompatible %s settings\n", "discard-my-data");
3164 goto disconnect_rcu_unlock;
3165 }
3166
3167 if (p_two_primaries != nc->two_primaries) {
3168 conn_err(tconn, "incompatible %s settings\n", "allow-two-primaries");
3169 goto disconnect_rcu_unlock;
3170 }
3171
3172 if (strcmp(integrity_alg, nc->integrity_alg)) {
3173 conn_err(tconn, "incompatible %s settings\n", "data-integrity-alg");
3174 goto disconnect_rcu_unlock;
3175 }
3176
3177 rcu_read_unlock();
3178 }
3179
3180 if (integrity_alg[0]) {
3181 int hash_size;
3182
3183 /*
3184 * We can only change the peer data integrity algorithm
3185 * here. Changing our own data integrity algorithm
3186 * requires that we send a P_PROTOCOL_UPDATE packet at
3187 * the same time; otherwise, the peer has no way to
3188 * tell between which packets the algorithm should
3189 * change.
3190 */
3191
3192 peer_integrity_tfm = crypto_alloc_hash(integrity_alg, 0, CRYPTO_ALG_ASYNC);
3193 if (!peer_integrity_tfm) {
3194 conn_err(tconn, "peer data-integrity-alg %s not supported\n",
3195 integrity_alg);
3196 goto disconnect;
3197 }
3198
3199 hash_size = crypto_hash_digestsize(peer_integrity_tfm);
3200 int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3201 int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3202 if (!(int_dig_in && int_dig_vv)) {
3203 conn_err(tconn, "Allocation of buffers for data integrity checking failed\n");
3204 goto disconnect;
3205 }
3206 }
3207
3208 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3209 if (!new_net_conf) {
3210 conn_err(tconn, "Allocation of new net_conf failed\n");
3211 goto disconnect;
3212 }
3213
3214 mutex_lock(&tconn->data.mutex);
3215 mutex_lock(&tconn->conf_update);
3216 old_net_conf = tconn->net_conf;
3217 *new_net_conf = *old_net_conf;
3218
3219 new_net_conf->wire_protocol = p_proto;
3220 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3221 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3222 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3223 new_net_conf->two_primaries = p_two_primaries;
3224
3225 rcu_assign_pointer(tconn->net_conf, new_net_conf);
3226 mutex_unlock(&tconn->conf_update);
3227 mutex_unlock(&tconn->data.mutex);
3228
3229 crypto_free_hash(tconn->peer_integrity_tfm);
3230 kfree(tconn->int_dig_in);
3231 kfree(tconn->int_dig_vv);
3232 tconn->peer_integrity_tfm = peer_integrity_tfm;
3233 tconn->int_dig_in = int_dig_in;
3234 tconn->int_dig_vv = int_dig_vv;
3235
3236 if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3237 conn_info(tconn, "peer data-integrity-alg: %s\n",
3238 integrity_alg[0] ? integrity_alg : "(none)");
3239
3240 synchronize_rcu();
3241 kfree(old_net_conf);
3242 return 0;
3243
3244 disconnect_rcu_unlock:
3245 rcu_read_unlock();
3246 disconnect:
3247 crypto_free_hash(peer_integrity_tfm);
3248 kfree(int_dig_in);
3249 kfree(int_dig_vv);
3250 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
3251 return -EIO;
3252 }
3253
3254 /* helper function
3255 * input: alg name, feature name
3256 * return: NULL (alg name was "")
3257 * ERR_PTR(error) if something goes wrong
3258 * or the crypto hash ptr, if it worked out ok. */
3259 struct crypto_hash *drbd_crypto_alloc_digest_safe(const struct drbd_conf *mdev,
3260 const char *alg, const char *name)
3261 {
3262 struct crypto_hash *tfm;
3263
3264 if (!alg[0])
3265 return NULL;
3266
3267 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
3268 if (IS_ERR(tfm)) {
3269 dev_err(DEV, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3270 alg, name, PTR_ERR(tfm));
3271 return tfm;
3272 }
3273 return tfm;
3274 }
3275
3276 static int ignore_remaining_packet(struct drbd_tconn *tconn, struct packet_info *pi)
3277 {
3278 void *buffer = tconn->data.rbuf;
3279 int size = pi->size;
3280
3281 while (size) {
3282 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3283 s = drbd_recv(tconn, buffer, s);
3284 if (s <= 0) {
3285 if (s < 0)
3286 return s;
3287 break;
3288 }
3289 size -= s;
3290 }
3291 if (size)
3292 return -EIO;
3293 return 0;
3294 }
3295
3296 /*
3297 * config_unknown_volume - device configuration command for unknown volume
3298 *
3299 * When a device is added to an existing connection, the node on which the
3300 * device is added first will send configuration commands to its peer but the
3301 * peer will not know about the device yet. It will warn and ignore these
3302 * commands. Once the device is added on the second node, the second node will
3303 * send the same device configuration commands, but in the other direction.
3304 *
3305 * (We can also end up here if drbd is misconfigured.)
3306 */
3307 static int config_unknown_volume(struct drbd_tconn *tconn, struct packet_info *pi)
3308 {
3309 conn_warn(tconn, "%s packet received for volume %u, which is not configured locally\n",
3310 cmdname(pi->cmd), pi->vnr);
3311 return ignore_remaining_packet(tconn, pi);
3312 }
3313
3314 static int receive_SyncParam(struct drbd_tconn *tconn, struct packet_info *pi)
3315 {
3316 struct drbd_conf *mdev;
3317 struct p_rs_param_95 *p;
3318 unsigned int header_size, data_size, exp_max_sz;
3319 struct crypto_hash *verify_tfm = NULL;
3320 struct crypto_hash *csums_tfm = NULL;
3321 struct net_conf *old_net_conf, *new_net_conf = NULL;
3322 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3323 const int apv = tconn->agreed_pro_version;
3324 struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3325 int fifo_size = 0;
3326 int err;
3327
3328 mdev = vnr_to_mdev(tconn, pi->vnr);
3329 if (!mdev)
3330 return config_unknown_volume(tconn, pi);
3331
3332 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param)
3333 : apv == 88 ? sizeof(struct p_rs_param)
3334 + SHARED_SECRET_MAX
3335 : apv <= 94 ? sizeof(struct p_rs_param_89)
3336 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3337
3338 if (pi->size > exp_max_sz) {
3339 dev_err(DEV, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3340 pi->size, exp_max_sz);
3341 return -EIO;
3342 }
3343
3344 if (apv <= 88) {
3345 header_size = sizeof(struct p_rs_param);
3346 data_size = pi->size - header_size;
3347 } else if (apv <= 94) {
3348 header_size = sizeof(struct p_rs_param_89);
3349 data_size = pi->size - header_size;
3350 D_ASSERT(data_size == 0);
3351 } else {
3352 header_size = sizeof(struct p_rs_param_95);
3353 data_size = pi->size - header_size;
3354 D_ASSERT(data_size == 0);
3355 }
3356
3357 /* initialize verify_alg and csums_alg */
3358 p = pi->data;
3359 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
3360
3361 err = drbd_recv_all(mdev->tconn, p, header_size);
3362 if (err)
3363 return err;
3364
3365 mutex_lock(&mdev->tconn->conf_update);
3366 old_net_conf = mdev->tconn->net_conf;
3367 if (get_ldev(mdev)) {
3368 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3369 if (!new_disk_conf) {
3370 put_ldev(mdev);
3371 mutex_unlock(&mdev->tconn->conf_update);
3372 dev_err(DEV, "Allocation of new disk_conf failed\n");
3373 return -ENOMEM;
3374 }
3375
3376 old_disk_conf = mdev->ldev->disk_conf;
3377 *new_disk_conf = *old_disk_conf;
3378
3379 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3380 }
3381
3382 if (apv >= 88) {
3383 if (apv == 88) {
3384 if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3385 dev_err(DEV, "verify-alg of wrong size, "
3386 "peer wants %u, accepting only up to %u byte\n",
3387 data_size, SHARED_SECRET_MAX);
3388 err = -EIO;
3389 goto reconnect;
3390 }
3391
3392 err = drbd_recv_all(mdev->tconn, p->verify_alg, data_size);
3393 if (err)
3394 goto reconnect;
3395 /* we expect NUL terminated string */
3396 /* but just in case someone tries to be evil */
3397 D_ASSERT(p->verify_alg[data_size-1] == 0);
3398 p->verify_alg[data_size-1] = 0;
3399
3400 } else /* apv >= 89 */ {
3401 /* we still expect NUL terminated strings */
3402 /* but just in case someone tries to be evil */
3403 D_ASSERT(p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3404 D_ASSERT(p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3405 p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3406 p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3407 }
3408
3409 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3410 if (mdev->state.conn == C_WF_REPORT_PARAMS) {
3411 dev_err(DEV, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3412 old_net_conf->verify_alg, p->verify_alg);
3413 goto disconnect;
3414 }
3415 verify_tfm = drbd_crypto_alloc_digest_safe(mdev,
3416 p->verify_alg, "verify-alg");
3417 if (IS_ERR(verify_tfm)) {
3418 verify_tfm = NULL;
3419 goto disconnect;
3420 }
3421 }
3422
3423 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3424 if (mdev->state.conn == C_WF_REPORT_PARAMS) {
3425 dev_err(DEV, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3426 old_net_conf->csums_alg, p->csums_alg);
3427 goto disconnect;
3428 }
3429 csums_tfm = drbd_crypto_alloc_digest_safe(mdev,
3430 p->csums_alg, "csums-alg");
3431 if (IS_ERR(csums_tfm)) {
3432 csums_tfm = NULL;
3433 goto disconnect;
3434 }
3435 }
3436
3437 if (apv > 94 && new_disk_conf) {
3438 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3439 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3440 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3441 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3442
3443 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3444 if (fifo_size != mdev->rs_plan_s->size) {
3445 new_plan = fifo_alloc(fifo_size);
3446 if (!new_plan) {
3447 dev_err(DEV, "kmalloc of fifo_buffer failed");
3448 put_ldev(mdev);
3449 goto disconnect;
3450 }
3451 }
3452 }
3453
3454 if (verify_tfm || csums_tfm) {
3455 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3456 if (!new_net_conf) {
3457 dev_err(DEV, "Allocation of new net_conf failed\n");
3458 goto disconnect;
3459 }
3460
3461 *new_net_conf = *old_net_conf;
3462
3463 if (verify_tfm) {
3464 strcpy(new_net_conf->verify_alg, p->verify_alg);
3465 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3466 crypto_free_hash(mdev->tconn->verify_tfm);
3467 mdev->tconn->verify_tfm = verify_tfm;
3468 dev_info(DEV, "using verify-alg: \"%s\"\n", p->verify_alg);
3469 }
3470 if (csums_tfm) {
3471 strcpy(new_net_conf->csums_alg, p->csums_alg);
3472 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
3473 crypto_free_hash(mdev->tconn->csums_tfm);
3474 mdev->tconn->csums_tfm = csums_tfm;
3475 dev_info(DEV, "using csums-alg: \"%s\"\n", p->csums_alg);
3476 }
3477 rcu_assign_pointer(tconn->net_conf, new_net_conf);
3478 }
3479 }
3480
3481 if (new_disk_conf) {
3482 rcu_assign_pointer(mdev->ldev->disk_conf, new_disk_conf);
3483 put_ldev(mdev);
3484 }
3485
3486 if (new_plan) {
3487 old_plan = mdev->rs_plan_s;
3488 rcu_assign_pointer(mdev->rs_plan_s, new_plan);
3489 }
3490
3491 mutex_unlock(&mdev->tconn->conf_update);
3492 synchronize_rcu();
3493 if (new_net_conf)
3494 kfree(old_net_conf);
3495 kfree(old_disk_conf);
3496 kfree(old_plan);
3497
3498 return 0;
3499
3500 reconnect:
3501 if (new_disk_conf) {
3502 put_ldev(mdev);
3503 kfree(new_disk_conf);
3504 }
3505 mutex_unlock(&mdev->tconn->conf_update);
3506 return -EIO;
3507
3508 disconnect:
3509 kfree(new_plan);
3510 if (new_disk_conf) {
3511 put_ldev(mdev);
3512 kfree(new_disk_conf);
3513 }
3514 mutex_unlock(&mdev->tconn->conf_update);
3515 /* just for completeness: actually not needed,
3516 * as this is not reached if csums_tfm was ok. */
3517 crypto_free_hash(csums_tfm);
3518 /* but free the verify_tfm again, if csums_tfm did not work out */
3519 crypto_free_hash(verify_tfm);
3520 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
3521 return -EIO;
3522 }
3523
3524 /* warn if the arguments differ by more than 12.5% */
3525 static void warn_if_differ_considerably(struct drbd_conf *mdev,
3526 const char *s, sector_t a, sector_t b)
3527 {
3528 sector_t d;
3529 if (a == 0 || b == 0)
3530 return;
3531 d = (a > b) ? (a - b) : (b - a);
3532 if (d > (a>>3) || d > (b>>3))
3533 dev_warn(DEV, "Considerable difference in %s: %llus vs. %llus\n", s,
3534 (unsigned long long)a, (unsigned long long)b);
3535 }
3536
3537 static int receive_sizes(struct drbd_tconn *tconn, struct packet_info *pi)
3538 {
3539 struct drbd_conf *mdev;
3540 struct p_sizes *p = pi->data;
3541 enum determine_dev_size dd = DS_UNCHANGED;
3542 sector_t p_size, p_usize, my_usize;
3543 int ldsc = 0; /* local disk size changed */
3544 enum dds_flags ddsf;
3545
3546 mdev = vnr_to_mdev(tconn, pi->vnr);
3547 if (!mdev)
3548 return config_unknown_volume(tconn, pi);
3549
3550 p_size = be64_to_cpu(p->d_size);
3551 p_usize = be64_to_cpu(p->u_size);
3552
3553 /* just store the peer's disk size for now.
3554 * we still need to figure out whether we accept that. */
3555 mdev->p_size = p_size;
3556
3557 if (get_ldev(mdev)) {
3558 rcu_read_lock();
3559 my_usize = rcu_dereference(mdev->ldev->disk_conf)->disk_size;
3560 rcu_read_unlock();
3561
3562 warn_if_differ_considerably(mdev, "lower level device sizes",
3563 p_size, drbd_get_max_capacity(mdev->ldev));
3564 warn_if_differ_considerably(mdev, "user requested size",
3565 p_usize, my_usize);
3566
3567 /* if this is the first connect, or an otherwise expected
3568 * param exchange, choose the minimum */
3569 if (mdev->state.conn == C_WF_REPORT_PARAMS)
3570 p_usize = min_not_zero(my_usize, p_usize);
3571
3572 /* Never shrink a device with usable data during connect.
3573 But allow online shrinking if we are connected. */
3574 if (drbd_new_dev_size(mdev, mdev->ldev, p_usize, 0) <
3575 drbd_get_capacity(mdev->this_bdev) &&
3576 mdev->state.disk >= D_OUTDATED &&
3577 mdev->state.conn < C_CONNECTED) {
3578 dev_err(DEV, "The peer's disk size is too small!\n");
3579 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
3580 put_ldev(mdev);
3581 return -EIO;
3582 }
3583
3584 if (my_usize != p_usize) {
3585 struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
3586
3587 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3588 if (!new_disk_conf) {
3589 dev_err(DEV, "Allocation of new disk_conf failed\n");
3590 put_ldev(mdev);
3591 return -ENOMEM;
3592 }
3593
3594 mutex_lock(&mdev->tconn->conf_update);
3595 old_disk_conf = mdev->ldev->disk_conf;
3596 *new_disk_conf = *old_disk_conf;
3597 new_disk_conf->disk_size = p_usize;
3598
3599 rcu_assign_pointer(mdev->ldev->disk_conf, new_disk_conf);
3600 mutex_unlock(&mdev->tconn->conf_update);
3601 synchronize_rcu();
3602 kfree(old_disk_conf);
3603
3604 dev_info(DEV, "Peer sets u_size to %lu sectors\n",
3605 (unsigned long)my_usize);
3606 }
3607
3608 put_ldev(mdev);
3609 }
3610
3611 ddsf = be16_to_cpu(p->dds_flags);
3612 if (get_ldev(mdev)) {
3613 dd = drbd_determine_dev_size(mdev, ddsf, NULL);
3614 put_ldev(mdev);
3615 if (dd == DS_ERROR)
3616 return -EIO;
3617 drbd_md_sync(mdev);
3618 } else {
3619 /* I am diskless, need to accept the peer's size. */
3620 drbd_set_my_capacity(mdev, p_size);
3621 }
3622
3623 mdev->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
3624 drbd_reconsider_max_bio_size(mdev);
3625
3626 if (get_ldev(mdev)) {
3627 if (mdev->ldev->known_size != drbd_get_capacity(mdev->ldev->backing_bdev)) {
3628 mdev->ldev->known_size = drbd_get_capacity(mdev->ldev->backing_bdev);
3629 ldsc = 1;
3630 }
3631
3632 put_ldev(mdev);
3633 }
3634
3635 if (mdev->state.conn > C_WF_REPORT_PARAMS) {
3636 if (be64_to_cpu(p->c_size) !=
3637 drbd_get_capacity(mdev->this_bdev) || ldsc) {
3638 /* we have different sizes, probably peer
3639 * needs to know my new size... */
3640 drbd_send_sizes(mdev, 0, ddsf);
3641 }
3642 if (test_and_clear_bit(RESIZE_PENDING, &mdev->flags) ||
3643 (dd == DS_GREW && mdev->state.conn == C_CONNECTED)) {
3644 if (mdev->state.pdsk >= D_INCONSISTENT &&
3645 mdev->state.disk >= D_INCONSISTENT) {
3646 if (ddsf & DDSF_NO_RESYNC)
3647 dev_info(DEV, "Resync of new storage suppressed with --assume-clean\n");
3648 else
3649 resync_after_online_grow(mdev);
3650 } else
3651 set_bit(RESYNC_AFTER_NEG, &mdev->flags);
3652 }
3653 }
3654
3655 return 0;
3656 }
3657
3658 static int receive_uuids(struct drbd_tconn *tconn, struct packet_info *pi)
3659 {
3660 struct drbd_conf *mdev;
3661 struct p_uuids *p = pi->data;
3662 u64 *p_uuid;
3663 int i, updated_uuids = 0;
3664
3665 mdev = vnr_to_mdev(tconn, pi->vnr);
3666 if (!mdev)
3667 return config_unknown_volume(tconn, pi);
3668
3669 p_uuid = kmalloc(sizeof(u64)*UI_EXTENDED_SIZE, GFP_NOIO);
3670 if (!p_uuid) {
3671 dev_err(DEV, "kmalloc of p_uuid failed\n");
3672 return false;
3673 }
3674
3675 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
3676 p_uuid[i] = be64_to_cpu(p->uuid[i]);
3677
3678 kfree(mdev->p_uuid);
3679 mdev->p_uuid = p_uuid;
3680
3681 if (mdev->state.conn < C_CONNECTED &&
3682 mdev->state.disk < D_INCONSISTENT &&
3683 mdev->state.role == R_PRIMARY &&
3684 (mdev->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
3685 dev_err(DEV, "Can only connect to data with current UUID=%016llX\n",
3686 (unsigned long long)mdev->ed_uuid);
3687 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
3688 return -EIO;
3689 }
3690
3691 if (get_ldev(mdev)) {
3692 int skip_initial_sync =
3693 mdev->state.conn == C_CONNECTED &&
3694 mdev->tconn->agreed_pro_version >= 90 &&
3695 mdev->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
3696 (p_uuid[UI_FLAGS] & 8);
3697 if (skip_initial_sync) {
3698 dev_info(DEV, "Accepted new current UUID, preparing to skip initial sync\n");
3699 drbd_bitmap_io(mdev, &drbd_bmio_clear_n_write,
3700 "clear_n_write from receive_uuids",
3701 BM_LOCKED_TEST_ALLOWED);
3702 _drbd_uuid_set(mdev, UI_CURRENT, p_uuid[UI_CURRENT]);
3703 _drbd_uuid_set(mdev, UI_BITMAP, 0);
3704 _drbd_set_state(_NS2(mdev, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
3705 CS_VERBOSE, NULL);
3706 drbd_md_sync(mdev);
3707 updated_uuids = 1;
3708 }
3709 put_ldev(mdev);
3710 } else if (mdev->state.disk < D_INCONSISTENT &&
3711 mdev->state.role == R_PRIMARY) {
3712 /* I am a diskless primary, the peer just created a new current UUID
3713 for me. */
3714 updated_uuids = drbd_set_ed_uuid(mdev, p_uuid[UI_CURRENT]);
3715 }
3716
3717 /* Before we test for the disk state, we should wait until an eventually
3718 ongoing cluster wide state change is finished. That is important if
3719 we are primary and are detaching from our disk. We need to see the
3720 new disk state... */
3721 mutex_lock(mdev->state_mutex);
3722 mutex_unlock(mdev->state_mutex);
3723 if (mdev->state.conn >= C_CONNECTED && mdev->state.disk < D_INCONSISTENT)
3724 updated_uuids |= drbd_set_ed_uuid(mdev, p_uuid[UI_CURRENT]);
3725
3726 if (updated_uuids)
3727 drbd_print_uuids(mdev, "receiver updated UUIDs to");
3728
3729 return 0;
3730 }
3731
3732 /**
3733 * convert_state() - Converts the peer's view of the cluster state to our point of view
3734 * @ps: The state as seen by the peer.
3735 */
3736 static union drbd_state convert_state(union drbd_state ps)
3737 {
3738 union drbd_state ms;
3739
3740 static enum drbd_conns c_tab[] = {
3741 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
3742 [C_CONNECTED] = C_CONNECTED,
3743
3744 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
3745 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
3746 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
3747 [C_VERIFY_S] = C_VERIFY_T,
3748 [C_MASK] = C_MASK,
3749 };
3750
3751 ms.i = ps.i;
3752
3753 ms.conn = c_tab[ps.conn];
3754 ms.peer = ps.role;
3755 ms.role = ps.peer;
3756 ms.pdsk = ps.disk;
3757 ms.disk = ps.pdsk;
3758 ms.peer_isp = (ps.aftr_isp | ps.user_isp);
3759
3760 return ms;
3761 }
3762
3763 static int receive_req_state(struct drbd_tconn *tconn, struct packet_info *pi)
3764 {
3765 struct drbd_conf *mdev;
3766 struct p_req_state *p = pi->data;
3767 union drbd_state mask, val;
3768 enum drbd_state_rv rv;
3769
3770 mdev = vnr_to_mdev(tconn, pi->vnr);
3771 if (!mdev)
3772 return -EIO;
3773
3774 mask.i = be32_to_cpu(p->mask);
3775 val.i = be32_to_cpu(p->val);
3776
3777 if (test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags) &&
3778 mutex_is_locked(mdev->state_mutex)) {
3779 drbd_send_sr_reply(mdev, SS_CONCURRENT_ST_CHG);
3780 return 0;
3781 }
3782
3783 mask = convert_state(mask);
3784 val = convert_state(val);
3785
3786 rv = drbd_change_state(mdev, CS_VERBOSE, mask, val);
3787 drbd_send_sr_reply(mdev, rv);
3788
3789 drbd_md_sync(mdev);
3790
3791 return 0;
3792 }
3793
3794 static int receive_req_conn_state(struct drbd_tconn *tconn, struct packet_info *pi)
3795 {
3796 struct p_req_state *p = pi->data;
3797 union drbd_state mask, val;
3798 enum drbd_state_rv rv;
3799
3800 mask.i = be32_to_cpu(p->mask);
3801 val.i = be32_to_cpu(p->val);
3802
3803 if (test_bit(RESOLVE_CONFLICTS, &tconn->flags) &&
3804 mutex_is_locked(&tconn->cstate_mutex)) {
3805 conn_send_sr_reply(tconn, SS_CONCURRENT_ST_CHG);
3806 return 0;
3807 }
3808
3809 mask = convert_state(mask);
3810 val = convert_state(val);
3811
3812 rv = conn_request_state(tconn, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
3813 conn_send_sr_reply(tconn, rv);
3814
3815 return 0;
3816 }
3817
3818 static int receive_state(struct drbd_tconn *tconn, struct packet_info *pi)
3819 {
3820 struct drbd_conf *mdev;
3821 struct p_state *p = pi->data;
3822 union drbd_state os, ns, peer_state;
3823 enum drbd_disk_state real_peer_disk;
3824 enum chg_state_flags cs_flags;
3825 int rv;
3826
3827 mdev = vnr_to_mdev(tconn, pi->vnr);
3828 if (!mdev)
3829 return config_unknown_volume(tconn, pi);
3830
3831 peer_state.i = be32_to_cpu(p->state);
3832
3833 real_peer_disk = peer_state.disk;
3834 if (peer_state.disk == D_NEGOTIATING) {
3835 real_peer_disk = mdev->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
3836 dev_info(DEV, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
3837 }
3838
3839 spin_lock_irq(&mdev->tconn->req_lock);
3840 retry:
3841 os = ns = drbd_read_state(mdev);
3842 spin_unlock_irq(&mdev->tconn->req_lock);
3843
3844 /* If some other part of the code (asender thread, timeout)
3845 * already decided to close the connection again,
3846 * we must not "re-establish" it here. */
3847 if (os.conn <= C_TEAR_DOWN)
3848 return -ECONNRESET;
3849
3850 /* If this is the "end of sync" confirmation, usually the peer disk
3851 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
3852 * set) resync started in PausedSyncT, or if the timing of pause-/
3853 * unpause-sync events has been "just right", the peer disk may
3854 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
3855 */
3856 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
3857 real_peer_disk == D_UP_TO_DATE &&
3858 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
3859 /* If we are (becoming) SyncSource, but peer is still in sync
3860 * preparation, ignore its uptodate-ness to avoid flapping, it
3861 * will change to inconsistent once the peer reaches active
3862 * syncing states.
3863 * It may have changed syncer-paused flags, however, so we
3864 * cannot ignore this completely. */
3865 if (peer_state.conn > C_CONNECTED &&
3866 peer_state.conn < C_SYNC_SOURCE)
3867 real_peer_disk = D_INCONSISTENT;
3868
3869 /* if peer_state changes to connected at the same time,
3870 * it explicitly notifies us that it finished resync.
3871 * Maybe we should finish it up, too? */
3872 else if (os.conn >= C_SYNC_SOURCE &&
3873 peer_state.conn == C_CONNECTED) {
3874 if (drbd_bm_total_weight(mdev) <= mdev->rs_failed)
3875 drbd_resync_finished(mdev);
3876 return 0;
3877 }
3878 }
3879
3880 /* explicit verify finished notification, stop sector reached. */
3881 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
3882 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
3883 ov_out_of_sync_print(mdev);
3884 drbd_resync_finished(mdev);
3885 return 0;
3886 }
3887
3888 /* peer says his disk is inconsistent, while we think it is uptodate,
3889 * and this happens while the peer still thinks we have a sync going on,
3890 * but we think we are already done with the sync.
3891 * We ignore this to avoid flapping pdsk.
3892 * This should not happen, if the peer is a recent version of drbd. */
3893 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
3894 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
3895 real_peer_disk = D_UP_TO_DATE;
3896
3897 if (ns.conn == C_WF_REPORT_PARAMS)
3898 ns.conn = C_CONNECTED;
3899
3900 if (peer_state.conn == C_AHEAD)
3901 ns.conn = C_BEHIND;
3902
3903 if (mdev->p_uuid && peer_state.disk >= D_NEGOTIATING &&
3904 get_ldev_if_state(mdev, D_NEGOTIATING)) {
3905 int cr; /* consider resync */
3906
3907 /* if we established a new connection */
3908 cr = (os.conn < C_CONNECTED);
3909 /* if we had an established connection
3910 * and one of the nodes newly attaches a disk */
3911 cr |= (os.conn == C_CONNECTED &&
3912 (peer_state.disk == D_NEGOTIATING ||
3913 os.disk == D_NEGOTIATING));
3914 /* if we have both been inconsistent, and the peer has been
3915 * forced to be UpToDate with --overwrite-data */
3916 cr |= test_bit(CONSIDER_RESYNC, &mdev->flags);
3917 /* if we had been plain connected, and the admin requested to
3918 * start a sync by "invalidate" or "invalidate-remote" */
3919 cr |= (os.conn == C_CONNECTED &&
3920 (peer_state.conn >= C_STARTING_SYNC_S &&
3921 peer_state.conn <= C_WF_BITMAP_T));
3922
3923 if (cr)
3924 ns.conn = drbd_sync_handshake(mdev, peer_state.role, real_peer_disk);
3925
3926 put_ldev(mdev);
3927 if (ns.conn == C_MASK) {
3928 ns.conn = C_CONNECTED;
3929 if (mdev->state.disk == D_NEGOTIATING) {
3930 drbd_force_state(mdev, NS(disk, D_FAILED));
3931 } else if (peer_state.disk == D_NEGOTIATING) {
3932 dev_err(DEV, "Disk attach process on the peer node was aborted.\n");
3933 peer_state.disk = D_DISKLESS;
3934 real_peer_disk = D_DISKLESS;
3935 } else {
3936 if (test_and_clear_bit(CONN_DRY_RUN, &mdev->tconn->flags))
3937 return -EIO;
3938 D_ASSERT(os.conn == C_WF_REPORT_PARAMS);
3939 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
3940 return -EIO;
3941 }
3942 }
3943 }
3944
3945 spin_lock_irq(&mdev->tconn->req_lock);
3946 if (os.i != drbd_read_state(mdev).i)
3947 goto retry;
3948 clear_bit(CONSIDER_RESYNC, &mdev->flags);
3949 ns.peer = peer_state.role;
3950 ns.pdsk = real_peer_disk;
3951 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
3952 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
3953 ns.disk = mdev->new_state_tmp.disk;
3954 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
3955 if (ns.pdsk == D_CONSISTENT && drbd_suspended(mdev) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
3956 test_bit(NEW_CUR_UUID, &mdev->flags)) {
3957 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
3958 for temporal network outages! */
3959 spin_unlock_irq(&mdev->tconn->req_lock);
3960 dev_err(DEV, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
3961 tl_clear(mdev->tconn);
3962 drbd_uuid_new_current(mdev);
3963 clear_bit(NEW_CUR_UUID, &mdev->flags);
3964 conn_request_state(mdev->tconn, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
3965 return -EIO;
3966 }
3967 rv = _drbd_set_state(mdev, ns, cs_flags, NULL);
3968 ns = drbd_read_state(mdev);
3969 spin_unlock_irq(&mdev->tconn->req_lock);
3970
3971 if (rv < SS_SUCCESS) {
3972 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD);
3973 return -EIO;
3974 }
3975
3976 if (os.conn > C_WF_REPORT_PARAMS) {
3977 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
3978 peer_state.disk != D_NEGOTIATING ) {
3979 /* we want resync, peer has not yet decided to sync... */
3980 /* Nowadays only used when forcing a node into primary role and
3981 setting its disk to UpToDate with that */
3982 drbd_send_uuids(mdev);
3983 drbd_send_current_state(mdev);
3984 }
3985 }
3986
3987 clear_bit(DISCARD_MY_DATA, &mdev->flags);
3988
3989 drbd_md_sync(mdev); /* update connected indicator, la_size_sect, ... */
3990
3991 return 0;
3992 }
3993
3994 static int receive_sync_uuid(struct drbd_tconn *tconn, struct packet_info *pi)
3995 {
3996 struct drbd_conf *mdev;
3997 struct p_rs_uuid *p = pi->data;
3998
3999 mdev = vnr_to_mdev(tconn, pi->vnr);
4000 if (!mdev)
4001 return -EIO;
4002
4003 wait_event(mdev->misc_wait,
4004 mdev->state.conn == C_WF_SYNC_UUID ||
4005 mdev->state.conn == C_BEHIND ||
4006 mdev->state.conn < C_CONNECTED ||
4007 mdev->state.disk < D_NEGOTIATING);
4008
4009 /* D_ASSERT( mdev->state.conn == C_WF_SYNC_UUID ); */
4010
4011 /* Here the _drbd_uuid_ functions are right, current should
4012 _not_ be rotated into the history */
4013 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
4014 _drbd_uuid_set(mdev, UI_CURRENT, be64_to_cpu(p->uuid));
4015 _drbd_uuid_set(mdev, UI_BITMAP, 0UL);
4016
4017 drbd_print_uuids(mdev, "updated sync uuid");
4018 drbd_start_resync(mdev, C_SYNC_TARGET);
4019
4020 put_ldev(mdev);
4021 } else
4022 dev_err(DEV, "Ignoring SyncUUID packet!\n");
4023
4024 return 0;
4025 }
4026
4027 /**
4028 * receive_bitmap_plain
4029 *
4030 * Return 0 when done, 1 when another iteration is needed, and a negative error
4031 * code upon failure.
4032 */
4033 static int
4034 receive_bitmap_plain(struct drbd_conf *mdev, unsigned int size,
4035 unsigned long *p, struct bm_xfer_ctx *c)
4036 {
4037 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4038 drbd_header_size(mdev->tconn);
4039 unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4040 c->bm_words - c->word_offset);
4041 unsigned int want = num_words * sizeof(*p);
4042 int err;
4043
4044 if (want != size) {
4045 dev_err(DEV, "%s:want (%u) != size (%u)\n", __func__, want, size);
4046 return -EIO;
4047 }
4048 if (want == 0)
4049 return 0;
4050 err = drbd_recv_all(mdev->tconn, p, want);
4051 if (err)
4052 return err;
4053
4054 drbd_bm_merge_lel(mdev, c->word_offset, num_words, p);
4055
4056 c->word_offset += num_words;
4057 c->bit_offset = c->word_offset * BITS_PER_LONG;
4058 if (c->bit_offset > c->bm_bits)
4059 c->bit_offset = c->bm_bits;
4060
4061 return 1;
4062 }
4063
4064 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4065 {
4066 return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4067 }
4068
4069 static int dcbp_get_start(struct p_compressed_bm *p)
4070 {
4071 return (p->encoding & 0x80) != 0;
4072 }
4073
4074 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4075 {
4076 return (p->encoding >> 4) & 0x7;
4077 }
4078
4079 /**
4080 * recv_bm_rle_bits
4081 *
4082 * Return 0 when done, 1 when another iteration is needed, and a negative error
4083 * code upon failure.
4084 */
4085 static int
4086 recv_bm_rle_bits(struct drbd_conf *mdev,
4087 struct p_compressed_bm *p,
4088 struct bm_xfer_ctx *c,
4089 unsigned int len)
4090 {
4091 struct bitstream bs;
4092 u64 look_ahead;
4093 u64 rl;
4094 u64 tmp;
4095 unsigned long s = c->bit_offset;
4096 unsigned long e;
4097 int toggle = dcbp_get_start(p);
4098 int have;
4099 int bits;
4100
4101 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4102
4103 bits = bitstream_get_bits(&bs, &look_ahead, 64);
4104 if (bits < 0)
4105 return -EIO;
4106
4107 for (have = bits; have > 0; s += rl, toggle = !toggle) {
4108 bits = vli_decode_bits(&rl, look_ahead);
4109 if (bits <= 0)
4110 return -EIO;
4111
4112 if (toggle) {
4113 e = s + rl -1;
4114 if (e >= c->bm_bits) {
4115 dev_err(DEV, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4116 return -EIO;
4117 }
4118 _drbd_bm_set_bits(mdev, s, e);
4119 }
4120
4121 if (have < bits) {
4122 dev_err(DEV, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4123 have, bits, look_ahead,
4124 (unsigned int)(bs.cur.b - p->code),
4125 (unsigned int)bs.buf_len);
4126 return -EIO;
4127 }
4128 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4129 if (likely(bits < 64))
4130 look_ahead >>= bits;
4131 else
4132 look_ahead = 0;
4133 have -= bits;
4134
4135 bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4136 if (bits < 0)
4137 return -EIO;
4138 look_ahead |= tmp << have;
4139 have += bits;
4140 }
4141
4142 c->bit_offset = s;
4143 bm_xfer_ctx_bit_to_word_offset(c);
4144
4145 return (s != c->bm_bits);
4146 }
4147
4148 /**
4149 * decode_bitmap_c
4150 *
4151 * Return 0 when done, 1 when another iteration is needed, and a negative error
4152 * code upon failure.
4153 */
4154 static int
4155 decode_bitmap_c(struct drbd_conf *mdev,
4156 struct p_compressed_bm *p,
4157 struct bm_xfer_ctx *c,
4158 unsigned int len)
4159 {
4160 if (dcbp_get_code(p) == RLE_VLI_Bits)
4161 return recv_bm_rle_bits(mdev, p, c, len - sizeof(*p));
4162
4163 /* other variants had been implemented for evaluation,
4164 * but have been dropped as this one turned out to be "best"
4165 * during all our tests. */
4166
4167 dev_err(DEV, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4168 conn_request_state(mdev->tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4169 return -EIO;
4170 }
4171
4172 void INFO_bm_xfer_stats(struct drbd_conf *mdev,
4173 const char *direction, struct bm_xfer_ctx *c)
4174 {
4175 /* what would it take to transfer it "plaintext" */
4176 unsigned int header_size = drbd_header_size(mdev->tconn);
4177 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4178 unsigned int plain =
4179 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4180 c->bm_words * sizeof(unsigned long);
4181 unsigned int total = c->bytes[0] + c->bytes[1];
4182 unsigned int r;
4183
4184 /* total can not be zero. but just in case: */
4185 if (total == 0)
4186 return;
4187
4188 /* don't report if not compressed */
4189 if (total >= plain)
4190 return;
4191
4192 /* total < plain. check for overflow, still */
4193 r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4194 : (1000 * total / plain);
4195
4196 if (r > 1000)
4197 r = 1000;
4198
4199 r = 1000 - r;
4200 dev_info(DEV, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4201 "total %u; compression: %u.%u%%\n",
4202 direction,
4203 c->bytes[1], c->packets[1],
4204 c->bytes[0], c->packets[0],
4205 total, r/10, r % 10);
4206 }
4207
4208 /* Since we are processing the bitfield from lower addresses to higher,
4209 it does not matter if the process it in 32 bit chunks or 64 bit
4210 chunks as long as it is little endian. (Understand it as byte stream,
4211 beginning with the lowest byte...) If we would use big endian
4212 we would need to process it from the highest address to the lowest,
4213 in order to be agnostic to the 32 vs 64 bits issue.
4214
4215 returns 0 on failure, 1 if we successfully received it. */
4216 static int receive_bitmap(struct drbd_tconn *tconn, struct packet_info *pi)
4217 {
4218 struct drbd_conf *mdev;
4219 struct bm_xfer_ctx c;
4220 int err;
4221
4222 mdev = vnr_to_mdev(tconn, pi->vnr);
4223 if (!mdev)
4224 return -EIO;
4225
4226 drbd_bm_lock(mdev, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4227 /* you are supposed to send additional out-of-sync information
4228 * if you actually set bits during this phase */
4229
4230 c = (struct bm_xfer_ctx) {
4231 .bm_bits = drbd_bm_bits(mdev),
4232 .bm_words = drbd_bm_words(mdev),
4233 };
4234
4235 for(;;) {
4236 if (pi->cmd == P_BITMAP)
4237 err = receive_bitmap_plain(mdev, pi->size, pi->data, &c);
4238 else if (pi->cmd == P_COMPRESSED_BITMAP) {
4239 /* MAYBE: sanity check that we speak proto >= 90,
4240 * and the feature is enabled! */
4241 struct p_compressed_bm *p = pi->data;
4242
4243 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(tconn)) {
4244 dev_err(DEV, "ReportCBitmap packet too large\n");
4245 err = -EIO;
4246 goto out;
4247 }
4248 if (pi->size <= sizeof(*p)) {
4249 dev_err(DEV, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4250 err = -EIO;
4251 goto out;
4252 }
4253 err = drbd_recv_all(mdev->tconn, p, pi->size);
4254 if (err)
4255 goto out;
4256 err = decode_bitmap_c(mdev, p, &c, pi->size);
4257 } else {
4258 dev_warn(DEV, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4259 err = -EIO;
4260 goto out;
4261 }
4262
4263 c.packets[pi->cmd == P_BITMAP]++;
4264 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(tconn) + pi->size;
4265
4266 if (err <= 0) {
4267 if (err < 0)
4268 goto out;
4269 break;
4270 }
4271 err = drbd_recv_header(mdev->tconn, pi);
4272 if (err)
4273 goto out;
4274 }
4275
4276 INFO_bm_xfer_stats(mdev, "receive", &c);
4277
4278 if (mdev->state.conn == C_WF_BITMAP_T) {
4279 enum drbd_state_rv rv;
4280
4281 err = drbd_send_bitmap(mdev);
4282 if (err)
4283 goto out;
4284 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4285 rv = _drbd_request_state(mdev, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4286 D_ASSERT(rv == SS_SUCCESS);
4287 } else if (mdev->state.conn != C_WF_BITMAP_S) {
4288 /* admin may have requested C_DISCONNECTING,
4289 * other threads may have noticed network errors */
4290 dev_info(DEV, "unexpected cstate (%s) in receive_bitmap\n",
4291 drbd_conn_str(mdev->state.conn));
4292 }
4293 err = 0;
4294
4295 out:
4296 drbd_bm_unlock(mdev);
4297 if (!err && mdev->state.conn == C_WF_BITMAP_S)
4298 drbd_start_resync(mdev, C_SYNC_SOURCE);
4299 return err;
4300 }
4301
4302 static int receive_skip(struct drbd_tconn *tconn, struct packet_info *pi)
4303 {
4304 conn_warn(tconn, "skipping unknown optional packet type %d, l: %d!\n",
4305 pi->cmd, pi->size);
4306
4307 return ignore_remaining_packet(tconn, pi);
4308 }
4309
4310 static int receive_UnplugRemote(struct drbd_tconn *tconn, struct packet_info *pi)
4311 {
4312 /* Make sure we've acked all the TCP data associated
4313 * with the data requests being unplugged */
4314 drbd_tcp_quickack(tconn->data.socket);
4315
4316 return 0;
4317 }
4318
4319 static int receive_out_of_sync(struct drbd_tconn *tconn, struct packet_info *pi)
4320 {
4321 struct drbd_conf *mdev;
4322 struct p_block_desc *p = pi->data;
4323
4324 mdev = vnr_to_mdev(tconn, pi->vnr);
4325 if (!mdev)
4326 return -EIO;
4327
4328 switch (mdev->state.conn) {
4329 case C_WF_SYNC_UUID:
4330 case C_WF_BITMAP_T:
4331 case C_BEHIND:
4332 break;
4333 default:
4334 dev_err(DEV, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4335 drbd_conn_str(mdev->state.conn));
4336 }
4337
4338 drbd_set_out_of_sync(mdev, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4339
4340 return 0;
4341 }
4342
4343 struct data_cmd {
4344 int expect_payload;
4345 size_t pkt_size;
4346 int (*fn)(struct drbd_tconn *, struct packet_info *);
4347 };
4348
4349 static struct data_cmd drbd_cmd_handler[] = {
4350 [P_DATA] = { 1, sizeof(struct p_data), receive_Data },
4351 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply },
4352 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } ,
4353 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } ,
4354 [P_BITMAP] = { 1, 0, receive_bitmap } ,
4355 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
4356 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote },
4357 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
4358 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
4359 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam },
4360 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam },
4361 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol },
4362 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids },
4363 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes },
4364 [P_STATE] = { 0, sizeof(struct p_state), receive_state },
4365 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state },
4366 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
4367 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
4368 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest },
4369 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
4370 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip },
4371 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
4372 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
4373 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
4374 };
4375
4376 static void drbdd(struct drbd_tconn *tconn)
4377 {
4378 struct packet_info pi;
4379 size_t shs; /* sub header size */
4380 int err;
4381
4382 while (get_t_state(&tconn->receiver) == RUNNING) {
4383 struct data_cmd *cmd;
4384
4385 drbd_thread_current_set_cpu(&tconn->receiver);
4386 if (drbd_recv_header(tconn, &pi))
4387 goto err_out;
4388
4389 cmd = &drbd_cmd_handler[pi.cmd];
4390 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
4391 conn_err(tconn, "Unexpected data packet %s (0x%04x)",
4392 cmdname(pi.cmd), pi.cmd);
4393 goto err_out;
4394 }
4395
4396 shs = cmd->pkt_size;
4397 if (pi.size > shs && !cmd->expect_payload) {
4398 conn_err(tconn, "No payload expected %s l:%d\n",
4399 cmdname(pi.cmd), pi.size);
4400 goto err_out;
4401 }
4402
4403 if (shs) {
4404 err = drbd_recv_all_warn(tconn, pi.data, shs);
4405 if (err)
4406 goto err_out;
4407 pi.size -= shs;
4408 }
4409
4410 err = cmd->fn(tconn, &pi);
4411 if (err) {
4412 conn_err(tconn, "error receiving %s, e: %d l: %d!\n",
4413 cmdname(pi.cmd), err, pi.size);
4414 goto err_out;
4415 }
4416 }
4417 return;
4418
4419 err_out:
4420 conn_request_state(tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4421 }
4422
4423 void conn_flush_workqueue(struct drbd_tconn *tconn)
4424 {
4425 struct drbd_wq_barrier barr;
4426
4427 barr.w.cb = w_prev_work_done;
4428 barr.w.tconn = tconn;
4429 init_completion(&barr.done);
4430 drbd_queue_work(&tconn->sender_work, &barr.w);
4431 wait_for_completion(&barr.done);
4432 }
4433
4434 static void conn_disconnect(struct drbd_tconn *tconn)
4435 {
4436 struct drbd_conf *mdev;
4437 enum drbd_conns oc;
4438 int vnr;
4439
4440 if (tconn->cstate == C_STANDALONE)
4441 return;
4442
4443 /* We are about to start the cleanup after connection loss.
4444 * Make sure drbd_make_request knows about that.
4445 * Usually we should be in some network failure state already,
4446 * but just in case we are not, we fix it up here.
4447 */
4448 conn_request_state(tconn, NS(conn, C_NETWORK_FAILURE), CS_HARD);
4449
4450 /* asender does not clean up anything. it must not interfere, either */
4451 drbd_thread_stop(&tconn->asender);
4452 drbd_free_sock(tconn);
4453
4454 rcu_read_lock();
4455 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
4456 kref_get(&mdev->kref);
4457 rcu_read_unlock();
4458 drbd_disconnected(mdev);
4459 kref_put(&mdev->kref, &drbd_minor_destroy);
4460 rcu_read_lock();
4461 }
4462 rcu_read_unlock();
4463
4464 if (!list_empty(&tconn->current_epoch->list))
4465 conn_err(tconn, "ASSERTION FAILED: tconn->current_epoch->list not empty\n");
4466 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */
4467 atomic_set(&tconn->current_epoch->epoch_size, 0);
4468 tconn->send.seen_any_write_yet = false;
4469
4470 conn_info(tconn, "Connection closed\n");
4471
4472 if (conn_highest_role(tconn) == R_PRIMARY && conn_highest_pdsk(tconn) >= D_UNKNOWN)
4473 conn_try_outdate_peer_async(tconn);
4474
4475 spin_lock_irq(&tconn->req_lock);
4476 oc = tconn->cstate;
4477 if (oc >= C_UNCONNECTED)
4478 _conn_request_state(tconn, NS(conn, C_UNCONNECTED), CS_VERBOSE);
4479
4480 spin_unlock_irq(&tconn->req_lock);
4481
4482 if (oc == C_DISCONNECTING)
4483 conn_request_state(tconn, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
4484 }
4485
4486 static int drbd_disconnected(struct drbd_conf *mdev)
4487 {
4488 unsigned int i;
4489
4490 /* wait for current activity to cease. */
4491 spin_lock_irq(&mdev->tconn->req_lock);
4492 _drbd_wait_ee_list_empty(mdev, &mdev->active_ee);
4493 _drbd_wait_ee_list_empty(mdev, &mdev->sync_ee);
4494 _drbd_wait_ee_list_empty(mdev, &mdev->read_ee);
4495 spin_unlock_irq(&mdev->tconn->req_lock);
4496
4497 /* We do not have data structures that would allow us to
4498 * get the rs_pending_cnt down to 0 again.
4499 * * On C_SYNC_TARGET we do not have any data structures describing
4500 * the pending RSDataRequest's we have sent.
4501 * * On C_SYNC_SOURCE there is no data structure that tracks
4502 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
4503 * And no, it is not the sum of the reference counts in the
4504 * resync_LRU. The resync_LRU tracks the whole operation including
4505 * the disk-IO, while the rs_pending_cnt only tracks the blocks
4506 * on the fly. */
4507 drbd_rs_cancel_all(mdev);
4508 mdev->rs_total = 0;
4509 mdev->rs_failed = 0;
4510 atomic_set(&mdev->rs_pending_cnt, 0);
4511 wake_up(&mdev->misc_wait);
4512
4513 del_timer_sync(&mdev->resync_timer);
4514 resync_timer_fn((unsigned long)mdev);
4515
4516 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
4517 * w_make_resync_request etc. which may still be on the worker queue
4518 * to be "canceled" */
4519 drbd_flush_workqueue(mdev);
4520
4521 drbd_finish_peer_reqs(mdev);
4522
4523 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
4524 might have issued a work again. The one before drbd_finish_peer_reqs() is
4525 necessary to reclain net_ee in drbd_finish_peer_reqs(). */
4526 drbd_flush_workqueue(mdev);
4527
4528 /* need to do it again, drbd_finish_peer_reqs() may have populated it
4529 * again via drbd_try_clear_on_disk_bm(). */
4530 drbd_rs_cancel_all(mdev);
4531
4532 kfree(mdev->p_uuid);
4533 mdev->p_uuid = NULL;
4534
4535 if (!drbd_suspended(mdev))
4536 tl_clear(mdev->tconn);
4537
4538 drbd_md_sync(mdev);
4539
4540 /* serialize with bitmap writeout triggered by the state change,
4541 * if any. */
4542 wait_event(mdev->misc_wait, !test_bit(BITMAP_IO, &mdev->flags));
4543
4544 /* tcp_close and release of sendpage pages can be deferred. I don't
4545 * want to use SO_LINGER, because apparently it can be deferred for
4546 * more than 20 seconds (longest time I checked).
4547 *
4548 * Actually we don't care for exactly when the network stack does its
4549 * put_page(), but release our reference on these pages right here.
4550 */
4551 i = drbd_free_peer_reqs(mdev, &mdev->net_ee);
4552 if (i)
4553 dev_info(DEV, "net_ee not empty, killed %u entries\n", i);
4554 i = atomic_read(&mdev->pp_in_use_by_net);
4555 if (i)
4556 dev_info(DEV, "pp_in_use_by_net = %d, expected 0\n", i);
4557 i = atomic_read(&mdev->pp_in_use);
4558 if (i)
4559 dev_info(DEV, "pp_in_use = %d, expected 0\n", i);
4560
4561 D_ASSERT(list_empty(&mdev->read_ee));
4562 D_ASSERT(list_empty(&mdev->active_ee));
4563 D_ASSERT(list_empty(&mdev->sync_ee));
4564 D_ASSERT(list_empty(&mdev->done_ee));
4565
4566 return 0;
4567 }
4568
4569 /*
4570 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
4571 * we can agree on is stored in agreed_pro_version.
4572 *
4573 * feature flags and the reserved array should be enough room for future
4574 * enhancements of the handshake protocol, and possible plugins...
4575 *
4576 * for now, they are expected to be zero, but ignored.
4577 */
4578 static int drbd_send_features(struct drbd_tconn *tconn)
4579 {
4580 struct drbd_socket *sock;
4581 struct p_connection_features *p;
4582
4583 sock = &tconn->data;
4584 p = conn_prepare_command(tconn, sock);
4585 if (!p)
4586 return -EIO;
4587 memset(p, 0, sizeof(*p));
4588 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
4589 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
4590 return conn_send_command(tconn, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
4591 }
4592
4593 /*
4594 * return values:
4595 * 1 yes, we have a valid connection
4596 * 0 oops, did not work out, please try again
4597 * -1 peer talks different language,
4598 * no point in trying again, please go standalone.
4599 */
4600 static int drbd_do_features(struct drbd_tconn *tconn)
4601 {
4602 /* ASSERT current == tconn->receiver ... */
4603 struct p_connection_features *p;
4604 const int expect = sizeof(struct p_connection_features);
4605 struct packet_info pi;
4606 int err;
4607
4608 err = drbd_send_features(tconn);
4609 if (err)
4610 return 0;
4611
4612 err = drbd_recv_header(tconn, &pi);
4613 if (err)
4614 return 0;
4615
4616 if (pi.cmd != P_CONNECTION_FEATURES) {
4617 conn_err(tconn, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
4618 cmdname(pi.cmd), pi.cmd);
4619 return -1;
4620 }
4621
4622 if (pi.size != expect) {
4623 conn_err(tconn, "expected ConnectionFeatures length: %u, received: %u\n",
4624 expect, pi.size);
4625 return -1;
4626 }
4627
4628 p = pi.data;
4629 err = drbd_recv_all_warn(tconn, p, expect);
4630 if (err)
4631 return 0;
4632
4633 p->protocol_min = be32_to_cpu(p->protocol_min);
4634 p->protocol_max = be32_to_cpu(p->protocol_max);
4635 if (p->protocol_max == 0)
4636 p->protocol_max = p->protocol_min;
4637
4638 if (PRO_VERSION_MAX < p->protocol_min ||
4639 PRO_VERSION_MIN > p->protocol_max)
4640 goto incompat;
4641
4642 tconn->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
4643
4644 conn_info(tconn, "Handshake successful: "
4645 "Agreed network protocol version %d\n", tconn->agreed_pro_version);
4646
4647 return 1;
4648
4649 incompat:
4650 conn_err(tconn, "incompatible DRBD dialects: "
4651 "I support %d-%d, peer supports %d-%d\n",
4652 PRO_VERSION_MIN, PRO_VERSION_MAX,
4653 p->protocol_min, p->protocol_max);
4654 return -1;
4655 }
4656
4657 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
4658 static int drbd_do_auth(struct drbd_tconn *tconn)
4659 {
4660 conn_err(tconn, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
4661 conn_err(tconn, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
4662 return -1;
4663 }
4664 #else
4665 #define CHALLENGE_LEN 64
4666
4667 /* Return value:
4668 1 - auth succeeded,
4669 0 - failed, try again (network error),
4670 -1 - auth failed, don't try again.
4671 */
4672
4673 static int drbd_do_auth(struct drbd_tconn *tconn)
4674 {
4675 struct drbd_socket *sock;
4676 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */
4677 struct scatterlist sg;
4678 char *response = NULL;
4679 char *right_response = NULL;
4680 char *peers_ch = NULL;
4681 unsigned int key_len;
4682 char secret[SHARED_SECRET_MAX]; /* 64 byte */
4683 unsigned int resp_size;
4684 struct hash_desc desc;
4685 struct packet_info pi;
4686 struct net_conf *nc;
4687 int err, rv;
4688
4689 /* FIXME: Put the challenge/response into the preallocated socket buffer. */
4690
4691 rcu_read_lock();
4692 nc = rcu_dereference(tconn->net_conf);
4693 key_len = strlen(nc->shared_secret);
4694 memcpy(secret, nc->shared_secret, key_len);
4695 rcu_read_unlock();
4696
4697 desc.tfm = tconn->cram_hmac_tfm;
4698 desc.flags = 0;
4699
4700 rv = crypto_hash_setkey(tconn->cram_hmac_tfm, (u8 *)secret, key_len);
4701 if (rv) {
4702 conn_err(tconn, "crypto_hash_setkey() failed with %d\n", rv);
4703 rv = -1;
4704 goto fail;
4705 }
4706
4707 get_random_bytes(my_challenge, CHALLENGE_LEN);
4708
4709 sock = &tconn->data;
4710 if (!conn_prepare_command(tconn, sock)) {
4711 rv = 0;
4712 goto fail;
4713 }
4714 rv = !conn_send_command(tconn, sock, P_AUTH_CHALLENGE, 0,
4715 my_challenge, CHALLENGE_LEN);
4716 if (!rv)
4717 goto fail;
4718
4719 err = drbd_recv_header(tconn, &pi);
4720 if (err) {
4721 rv = 0;
4722 goto fail;
4723 }
4724
4725 if (pi.cmd != P_AUTH_CHALLENGE) {
4726 conn_err(tconn, "expected AuthChallenge packet, received: %s (0x%04x)\n",
4727 cmdname(pi.cmd), pi.cmd);
4728 rv = 0;
4729 goto fail;
4730 }
4731
4732 if (pi.size > CHALLENGE_LEN * 2) {
4733 conn_err(tconn, "expected AuthChallenge payload too big.\n");
4734 rv = -1;
4735 goto fail;
4736 }
4737
4738 peers_ch = kmalloc(pi.size, GFP_NOIO);
4739 if (peers_ch == NULL) {
4740 conn_err(tconn, "kmalloc of peers_ch failed\n");
4741 rv = -1;
4742 goto fail;
4743 }
4744
4745 err = drbd_recv_all_warn(tconn, peers_ch, pi.size);
4746 if (err) {
4747 rv = 0;
4748 goto fail;
4749 }
4750
4751 resp_size = crypto_hash_digestsize(tconn->cram_hmac_tfm);
4752 response = kmalloc(resp_size, GFP_NOIO);
4753 if (response == NULL) {
4754 conn_err(tconn, "kmalloc of response failed\n");
4755 rv = -1;
4756 goto fail;
4757 }
4758
4759 sg_init_table(&sg, 1);
4760 sg_set_buf(&sg, peers_ch, pi.size);
4761
4762 rv = crypto_hash_digest(&desc, &sg, sg.length, response);
4763 if (rv) {
4764 conn_err(tconn, "crypto_hash_digest() failed with %d\n", rv);
4765 rv = -1;
4766 goto fail;
4767 }
4768
4769 if (!conn_prepare_command(tconn, sock)) {
4770 rv = 0;
4771 goto fail;
4772 }
4773 rv = !conn_send_command(tconn, sock, P_AUTH_RESPONSE, 0,
4774 response, resp_size);
4775 if (!rv)
4776 goto fail;
4777
4778 err = drbd_recv_header(tconn, &pi);
4779 if (err) {
4780 rv = 0;
4781 goto fail;
4782 }
4783
4784 if (pi.cmd != P_AUTH_RESPONSE) {
4785 conn_err(tconn, "expected AuthResponse packet, received: %s (0x%04x)\n",
4786 cmdname(pi.cmd), pi.cmd);
4787 rv = 0;
4788 goto fail;
4789 }
4790
4791 if (pi.size != resp_size) {
4792 conn_err(tconn, "expected AuthResponse payload of wrong size\n");
4793 rv = 0;
4794 goto fail;
4795 }
4796
4797 err = drbd_recv_all_warn(tconn, response , resp_size);
4798 if (err) {
4799 rv = 0;
4800 goto fail;
4801 }
4802
4803 right_response = kmalloc(resp_size, GFP_NOIO);
4804 if (right_response == NULL) {
4805 conn_err(tconn, "kmalloc of right_response failed\n");
4806 rv = -1;
4807 goto fail;
4808 }
4809
4810 sg_set_buf(&sg, my_challenge, CHALLENGE_LEN);
4811
4812 rv = crypto_hash_digest(&desc, &sg, sg.length, right_response);
4813 if (rv) {
4814 conn_err(tconn, "crypto_hash_digest() failed with %d\n", rv);
4815 rv = -1;
4816 goto fail;
4817 }
4818
4819 rv = !memcmp(response, right_response, resp_size);
4820
4821 if (rv)
4822 conn_info(tconn, "Peer authenticated using %d bytes HMAC\n",
4823 resp_size);
4824 else
4825 rv = -1;
4826
4827 fail:
4828 kfree(peers_ch);
4829 kfree(response);
4830 kfree(right_response);
4831
4832 return rv;
4833 }
4834 #endif
4835
4836 int drbdd_init(struct drbd_thread *thi)
4837 {
4838 struct drbd_tconn *tconn = thi->tconn;
4839 int h;
4840
4841 conn_info(tconn, "receiver (re)started\n");
4842
4843 do {
4844 h = conn_connect(tconn);
4845 if (h == 0) {
4846 conn_disconnect(tconn);
4847 schedule_timeout_interruptible(HZ);
4848 }
4849 if (h == -1) {
4850 conn_warn(tconn, "Discarding network configuration.\n");
4851 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
4852 }
4853 } while (h == 0);
4854
4855 if (h > 0)
4856 drbdd(tconn);
4857
4858 conn_disconnect(tconn);
4859
4860 conn_info(tconn, "receiver terminated\n");
4861 return 0;
4862 }
4863
4864 /* ********* acknowledge sender ******** */
4865
4866 static int got_conn_RqSReply(struct drbd_tconn *tconn, struct packet_info *pi)
4867 {
4868 struct p_req_state_reply *p = pi->data;
4869 int retcode = be32_to_cpu(p->retcode);
4870
4871 if (retcode >= SS_SUCCESS) {
4872 set_bit(CONN_WD_ST_CHG_OKAY, &tconn->flags);
4873 } else {
4874 set_bit(CONN_WD_ST_CHG_FAIL, &tconn->flags);
4875 conn_err(tconn, "Requested state change failed by peer: %s (%d)\n",
4876 drbd_set_st_err_str(retcode), retcode);
4877 }
4878 wake_up(&tconn->ping_wait);
4879
4880 return 0;
4881 }
4882
4883 static int got_RqSReply(struct drbd_tconn *tconn, struct packet_info *pi)
4884 {
4885 struct drbd_conf *mdev;
4886 struct p_req_state_reply *p = pi->data;
4887 int retcode = be32_to_cpu(p->retcode);
4888
4889 mdev = vnr_to_mdev(tconn, pi->vnr);
4890 if (!mdev)
4891 return -EIO;
4892
4893 if (test_bit(CONN_WD_ST_CHG_REQ, &tconn->flags)) {
4894 D_ASSERT(tconn->agreed_pro_version < 100);
4895 return got_conn_RqSReply(tconn, pi);
4896 }
4897
4898 if (retcode >= SS_SUCCESS) {
4899 set_bit(CL_ST_CHG_SUCCESS, &mdev->flags);
4900 } else {
4901 set_bit(CL_ST_CHG_FAIL, &mdev->flags);
4902 dev_err(DEV, "Requested state change failed by peer: %s (%d)\n",
4903 drbd_set_st_err_str(retcode), retcode);
4904 }
4905 wake_up(&mdev->state_wait);
4906
4907 return 0;
4908 }
4909
4910 static int got_Ping(struct drbd_tconn *tconn, struct packet_info *pi)
4911 {
4912 return drbd_send_ping_ack(tconn);
4913
4914 }
4915
4916 static int got_PingAck(struct drbd_tconn *tconn, struct packet_info *pi)
4917 {
4918 /* restore idle timeout */
4919 tconn->meta.socket->sk->sk_rcvtimeo = tconn->net_conf->ping_int*HZ;
4920 if (!test_and_set_bit(GOT_PING_ACK, &tconn->flags))
4921 wake_up(&tconn->ping_wait);
4922
4923 return 0;
4924 }
4925
4926 static int got_IsInSync(struct drbd_tconn *tconn, struct packet_info *pi)
4927 {
4928 struct drbd_conf *mdev;
4929 struct p_block_ack *p = pi->data;
4930 sector_t sector = be64_to_cpu(p->sector);
4931 int blksize = be32_to_cpu(p->blksize);
4932
4933 mdev = vnr_to_mdev(tconn, pi->vnr);
4934 if (!mdev)
4935 return -EIO;
4936
4937 D_ASSERT(mdev->tconn->agreed_pro_version >= 89);
4938
4939 update_peer_seq(mdev, be32_to_cpu(p->seq_num));
4940
4941 if (get_ldev(mdev)) {
4942 drbd_rs_complete_io(mdev, sector);
4943 drbd_set_in_sync(mdev, sector, blksize);
4944 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
4945 mdev->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
4946 put_ldev(mdev);
4947 }
4948 dec_rs_pending(mdev);
4949 atomic_add(blksize >> 9, &mdev->rs_sect_in);
4950
4951 return 0;
4952 }
4953
4954 static int
4955 validate_req_change_req_state(struct drbd_conf *mdev, u64 id, sector_t sector,
4956 struct rb_root *root, const char *func,
4957 enum drbd_req_event what, bool missing_ok)
4958 {
4959 struct drbd_request *req;
4960 struct bio_and_error m;
4961
4962 spin_lock_irq(&mdev->tconn->req_lock);
4963 req = find_request(mdev, root, id, sector, missing_ok, func);
4964 if (unlikely(!req)) {
4965 spin_unlock_irq(&mdev->tconn->req_lock);
4966 return -EIO;
4967 }
4968 __req_mod(req, what, &m);
4969 spin_unlock_irq(&mdev->tconn->req_lock);
4970
4971 if (m.bio)
4972 complete_master_bio(mdev, &m);
4973 return 0;
4974 }
4975
4976 static int got_BlockAck(struct drbd_tconn *tconn, struct packet_info *pi)
4977 {
4978 struct drbd_conf *mdev;
4979 struct p_block_ack *p = pi->data;
4980 sector_t sector = be64_to_cpu(p->sector);
4981 int blksize = be32_to_cpu(p->blksize);
4982 enum drbd_req_event what;
4983
4984 mdev = vnr_to_mdev(tconn, pi->vnr);
4985 if (!mdev)
4986 return -EIO;
4987
4988 update_peer_seq(mdev, be32_to_cpu(p->seq_num));
4989
4990 if (p->block_id == ID_SYNCER) {
4991 drbd_set_in_sync(mdev, sector, blksize);
4992 dec_rs_pending(mdev);
4993 return 0;
4994 }
4995 switch (pi->cmd) {
4996 case P_RS_WRITE_ACK:
4997 what = WRITE_ACKED_BY_PEER_AND_SIS;
4998 break;
4999 case P_WRITE_ACK:
5000 what = WRITE_ACKED_BY_PEER;
5001 break;
5002 case P_RECV_ACK:
5003 what = RECV_ACKED_BY_PEER;
5004 break;
5005 case P_SUPERSEDED:
5006 what = CONFLICT_RESOLVED;
5007 break;
5008 case P_RETRY_WRITE:
5009 what = POSTPONE_WRITE;
5010 break;
5011 default:
5012 BUG();
5013 }
5014
5015 return validate_req_change_req_state(mdev, p->block_id, sector,
5016 &mdev->write_requests, __func__,
5017 what, false);
5018 }
5019
5020 static int got_NegAck(struct drbd_tconn *tconn, struct packet_info *pi)
5021 {
5022 struct drbd_conf *mdev;
5023 struct p_block_ack *p = pi->data;
5024 sector_t sector = be64_to_cpu(p->sector);
5025 int size = be32_to_cpu(p->blksize);
5026 int err;
5027
5028 mdev = vnr_to_mdev(tconn, pi->vnr);
5029 if (!mdev)
5030 return -EIO;
5031
5032 update_peer_seq(mdev, be32_to_cpu(p->seq_num));
5033
5034 if (p->block_id == ID_SYNCER) {
5035 dec_rs_pending(mdev);
5036 drbd_rs_failed_io(mdev, sector, size);
5037 return 0;
5038 }
5039
5040 err = validate_req_change_req_state(mdev, p->block_id, sector,
5041 &mdev->write_requests, __func__,
5042 NEG_ACKED, true);
5043 if (err) {
5044 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5045 The master bio might already be completed, therefore the
5046 request is no longer in the collision hash. */
5047 /* In Protocol B we might already have got a P_RECV_ACK
5048 but then get a P_NEG_ACK afterwards. */
5049 drbd_set_out_of_sync(mdev, sector, size);
5050 }
5051 return 0;
5052 }
5053
5054 static int got_NegDReply(struct drbd_tconn *tconn, struct packet_info *pi)
5055 {
5056 struct drbd_conf *mdev;
5057 struct p_block_ack *p = pi->data;
5058 sector_t sector = be64_to_cpu(p->sector);
5059
5060 mdev = vnr_to_mdev(tconn, pi->vnr);
5061 if (!mdev)
5062 return -EIO;
5063
5064 update_peer_seq(mdev, be32_to_cpu(p->seq_num));
5065
5066 dev_err(DEV, "Got NegDReply; Sector %llus, len %u.\n",
5067 (unsigned long long)sector, be32_to_cpu(p->blksize));
5068
5069 return validate_req_change_req_state(mdev, p->block_id, sector,
5070 &mdev->read_requests, __func__,
5071 NEG_ACKED, false);
5072 }
5073
5074 static int got_NegRSDReply(struct drbd_tconn *tconn, struct packet_info *pi)
5075 {
5076 struct drbd_conf *mdev;
5077 sector_t sector;
5078 int size;
5079 struct p_block_ack *p = pi->data;
5080
5081 mdev = vnr_to_mdev(tconn, pi->vnr);
5082 if (!mdev)
5083 return -EIO;
5084
5085 sector = be64_to_cpu(p->sector);
5086 size = be32_to_cpu(p->blksize);
5087
5088 update_peer_seq(mdev, be32_to_cpu(p->seq_num));
5089
5090 dec_rs_pending(mdev);
5091
5092 if (get_ldev_if_state(mdev, D_FAILED)) {
5093 drbd_rs_complete_io(mdev, sector);
5094 switch (pi->cmd) {
5095 case P_NEG_RS_DREPLY:
5096 drbd_rs_failed_io(mdev, sector, size);
5097 case P_RS_CANCEL:
5098 break;
5099 default:
5100 BUG();
5101 }
5102 put_ldev(mdev);
5103 }
5104
5105 return 0;
5106 }
5107
5108 static int got_BarrierAck(struct drbd_tconn *tconn, struct packet_info *pi)
5109 {
5110 struct p_barrier_ack *p = pi->data;
5111 struct drbd_conf *mdev;
5112 int vnr;
5113
5114 tl_release(tconn, p->barrier, be32_to_cpu(p->set_size));
5115
5116 rcu_read_lock();
5117 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
5118 if (mdev->state.conn == C_AHEAD &&
5119 atomic_read(&mdev->ap_in_flight) == 0 &&
5120 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &mdev->flags)) {
5121 mdev->start_resync_timer.expires = jiffies + HZ;
5122 add_timer(&mdev->start_resync_timer);
5123 }
5124 }
5125 rcu_read_unlock();
5126
5127 return 0;
5128 }
5129
5130 static int got_OVResult(struct drbd_tconn *tconn, struct packet_info *pi)
5131 {
5132 struct drbd_conf *mdev;
5133 struct p_block_ack *p = pi->data;
5134 struct drbd_work *w;
5135 sector_t sector;
5136 int size;
5137
5138 mdev = vnr_to_mdev(tconn, pi->vnr);
5139 if (!mdev)
5140 return -EIO;
5141
5142 sector = be64_to_cpu(p->sector);
5143 size = be32_to_cpu(p->blksize);
5144
5145 update_peer_seq(mdev, be32_to_cpu(p->seq_num));
5146
5147 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5148 drbd_ov_out_of_sync_found(mdev, sector, size);
5149 else
5150 ov_out_of_sync_print(mdev);
5151
5152 if (!get_ldev(mdev))
5153 return 0;
5154
5155 drbd_rs_complete_io(mdev, sector);
5156 dec_rs_pending(mdev);
5157
5158 --mdev->ov_left;
5159
5160 /* let's advance progress step marks only for every other megabyte */
5161 if ((mdev->ov_left & 0x200) == 0x200)
5162 drbd_advance_rs_marks(mdev, mdev->ov_left);
5163
5164 if (mdev->ov_left == 0) {
5165 w = kmalloc(sizeof(*w), GFP_NOIO);
5166 if (w) {
5167 w->cb = w_ov_finished;
5168 w->mdev = mdev;
5169 drbd_queue_work(&mdev->tconn->sender_work, w);
5170 } else {
5171 dev_err(DEV, "kmalloc(w) failed.");
5172 ov_out_of_sync_print(mdev);
5173 drbd_resync_finished(mdev);
5174 }
5175 }
5176 put_ldev(mdev);
5177 return 0;
5178 }
5179
5180 static int got_skip(struct drbd_tconn *tconn, struct packet_info *pi)
5181 {
5182 return 0;
5183 }
5184
5185 static int tconn_finish_peer_reqs(struct drbd_tconn *tconn)
5186 {
5187 struct drbd_conf *mdev;
5188 int vnr, not_empty = 0;
5189
5190 do {
5191 clear_bit(SIGNAL_ASENDER, &tconn->flags);
5192 flush_signals(current);
5193
5194 rcu_read_lock();
5195 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
5196 kref_get(&mdev->kref);
5197 rcu_read_unlock();
5198 if (drbd_finish_peer_reqs(mdev)) {
5199 kref_put(&mdev->kref, &drbd_minor_destroy);
5200 return 1;
5201 }
5202 kref_put(&mdev->kref, &drbd_minor_destroy);
5203 rcu_read_lock();
5204 }
5205 set_bit(SIGNAL_ASENDER, &tconn->flags);
5206
5207 spin_lock_irq(&tconn->req_lock);
5208 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
5209 not_empty = !list_empty(&mdev->done_ee);
5210 if (not_empty)
5211 break;
5212 }
5213 spin_unlock_irq(&tconn->req_lock);
5214 rcu_read_unlock();
5215 } while (not_empty);
5216
5217 return 0;
5218 }
5219
5220 struct asender_cmd {
5221 size_t pkt_size;
5222 int (*fn)(struct drbd_tconn *tconn, struct packet_info *);
5223 };
5224
5225 static struct asender_cmd asender_tbl[] = {
5226 [P_PING] = { 0, got_Ping },
5227 [P_PING_ACK] = { 0, got_PingAck },
5228 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5229 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5230 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5231 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck },
5232 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck },
5233 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply },
5234 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply },
5235 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult },
5236 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck },
5237 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5238 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync },
5239 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip },
5240 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply },
5241 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5242 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck },
5243 };
5244
5245 int drbd_asender(struct drbd_thread *thi)
5246 {
5247 struct drbd_tconn *tconn = thi->tconn;
5248 struct asender_cmd *cmd = NULL;
5249 struct packet_info pi;
5250 int rv;
5251 void *buf = tconn->meta.rbuf;
5252 int received = 0;
5253 unsigned int header_size = drbd_header_size(tconn);
5254 int expect = header_size;
5255 bool ping_timeout_active = false;
5256 struct net_conf *nc;
5257 int ping_timeo, tcp_cork, ping_int;
5258 struct sched_param param = { .sched_priority = 2 };
5259
5260 rv = sched_setscheduler(current, SCHED_RR, &param);
5261 if (rv < 0)
5262 conn_err(tconn, "drbd_asender: ERROR set priority, ret=%d\n", rv);
5263
5264 while (get_t_state(thi) == RUNNING) {
5265 drbd_thread_current_set_cpu(thi);
5266
5267 rcu_read_lock();
5268 nc = rcu_dereference(tconn->net_conf);
5269 ping_timeo = nc->ping_timeo;
5270 tcp_cork = nc->tcp_cork;
5271 ping_int = nc->ping_int;
5272 rcu_read_unlock();
5273
5274 if (test_and_clear_bit(SEND_PING, &tconn->flags)) {
5275 if (drbd_send_ping(tconn)) {
5276 conn_err(tconn, "drbd_send_ping has failed\n");
5277 goto reconnect;
5278 }
5279 tconn->meta.socket->sk->sk_rcvtimeo = ping_timeo * HZ / 10;
5280 ping_timeout_active = true;
5281 }
5282
5283 /* TODO: conditionally cork; it may hurt latency if we cork without
5284 much to send */
5285 if (tcp_cork)
5286 drbd_tcp_cork(tconn->meta.socket);
5287 if (tconn_finish_peer_reqs(tconn)) {
5288 conn_err(tconn, "tconn_finish_peer_reqs() failed\n");
5289 goto reconnect;
5290 }
5291 /* but unconditionally uncork unless disabled */
5292 if (tcp_cork)
5293 drbd_tcp_uncork(tconn->meta.socket);
5294
5295 /* short circuit, recv_msg would return EINTR anyways. */
5296 if (signal_pending(current))
5297 continue;
5298
5299 rv = drbd_recv_short(tconn->meta.socket, buf, expect-received, 0);
5300 clear_bit(SIGNAL_ASENDER, &tconn->flags);
5301
5302 flush_signals(current);
5303
5304 /* Note:
5305 * -EINTR (on meta) we got a signal
5306 * -EAGAIN (on meta) rcvtimeo expired
5307 * -ECONNRESET other side closed the connection
5308 * -ERESTARTSYS (on data) we got a signal
5309 * rv < 0 other than above: unexpected error!
5310 * rv == expected: full header or command
5311 * rv < expected: "woken" by signal during receive
5312 * rv == 0 : "connection shut down by peer"
5313 */
5314 if (likely(rv > 0)) {
5315 received += rv;
5316 buf += rv;
5317 } else if (rv == 0) {
5318 if (test_bit(DISCONNECT_SENT, &tconn->flags)) {
5319 long t;
5320 rcu_read_lock();
5321 t = rcu_dereference(tconn->net_conf)->ping_timeo * HZ/10;
5322 rcu_read_unlock();
5323
5324 t = wait_event_timeout(tconn->ping_wait,
5325 tconn->cstate < C_WF_REPORT_PARAMS,
5326 t);
5327 if (t)
5328 break;
5329 }
5330 conn_err(tconn, "meta connection shut down by peer.\n");
5331 goto reconnect;
5332 } else if (rv == -EAGAIN) {
5333 /* If the data socket received something meanwhile,
5334 * that is good enough: peer is still alive. */
5335 if (time_after(tconn->last_received,
5336 jiffies - tconn->meta.socket->sk->sk_rcvtimeo))
5337 continue;
5338 if (ping_timeout_active) {
5339 conn_err(tconn, "PingAck did not arrive in time.\n");
5340 goto reconnect;
5341 }
5342 set_bit(SEND_PING, &tconn->flags);
5343 continue;
5344 } else if (rv == -EINTR) {
5345 continue;
5346 } else {
5347 conn_err(tconn, "sock_recvmsg returned %d\n", rv);
5348 goto reconnect;
5349 }
5350
5351 if (received == expect && cmd == NULL) {
5352 if (decode_header(tconn, tconn->meta.rbuf, &pi))
5353 goto reconnect;
5354 cmd = &asender_tbl[pi.cmd];
5355 if (pi.cmd >= ARRAY_SIZE(asender_tbl) || !cmd->fn) {
5356 conn_err(tconn, "Unexpected meta packet %s (0x%04x)\n",
5357 cmdname(pi.cmd), pi.cmd);
5358 goto disconnect;
5359 }
5360 expect = header_size + cmd->pkt_size;
5361 if (pi.size != expect - header_size) {
5362 conn_err(tconn, "Wrong packet size on meta (c: %d, l: %d)\n",
5363 pi.cmd, pi.size);
5364 goto reconnect;
5365 }
5366 }
5367 if (received == expect) {
5368 bool err;
5369
5370 err = cmd->fn(tconn, &pi);
5371 if (err) {
5372 conn_err(tconn, "%pf failed\n", cmd->fn);
5373 goto reconnect;
5374 }
5375
5376 tconn->last_received = jiffies;
5377
5378 if (cmd == &asender_tbl[P_PING_ACK]) {
5379 /* restore idle timeout */
5380 tconn->meta.socket->sk->sk_rcvtimeo = ping_int * HZ;
5381 ping_timeout_active = false;
5382 }
5383
5384 buf = tconn->meta.rbuf;
5385 received = 0;
5386 expect = header_size;
5387 cmd = NULL;
5388 }
5389 }
5390
5391 if (0) {
5392 reconnect:
5393 conn_request_state(tconn, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5394 conn_md_sync(tconn);
5395 }
5396 if (0) {
5397 disconnect:
5398 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD);
5399 }
5400 clear_bit(SIGNAL_ASENDER, &tconn->flags);
5401
5402 conn_info(tconn, "asender terminated\n");
5403
5404 return 0;
5405 }