]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/block/drbd/drbd_receiver.c
df45713dfbe8694772ea564976a6a6d3449bd2d1
[mirror_ubuntu-hirsute-kernel.git] / drivers / block / drbd / drbd_receiver.c
1 /*
2 drbd_receiver.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 drbd is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 drbd is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with drbd; see the file COPYING. If not, write to
22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25
26 #include <linux/module.h>
27
28 #include <linux/uaccess.h>
29 #include <net/sock.h>
30
31 #include <linux/drbd.h>
32 #include <linux/fs.h>
33 #include <linux/file.h>
34 #include <linux/in.h>
35 #include <linux/mm.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mm_inline.h>
38 #include <linux/slab.h>
39 #include <linux/pkt_sched.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/random.h>
44 #include <linux/string.h>
45 #include <linux/scatterlist.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h"
49 #include "drbd_vli.h"
50
51 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME)
52
53 struct packet_info {
54 enum drbd_packet cmd;
55 unsigned int size;
56 unsigned int vnr;
57 void *data;
58 };
59
60 enum finish_epoch {
61 FE_STILL_LIVE,
62 FE_DESTROYED,
63 FE_RECYCLED,
64 };
65
66 static int drbd_do_features(struct drbd_connection *connection);
67 static int drbd_do_auth(struct drbd_connection *connection);
68 static int drbd_disconnected(struct drbd_peer_device *);
69 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
70 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
71 static int e_end_block(struct drbd_work *, int);
72
73
74 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
75
76 /*
77 * some helper functions to deal with single linked page lists,
78 * page->private being our "next" pointer.
79 */
80
81 /* If at least n pages are linked at head, get n pages off.
82 * Otherwise, don't modify head, and return NULL.
83 * Locking is the responsibility of the caller.
84 */
85 static struct page *page_chain_del(struct page **head, int n)
86 {
87 struct page *page;
88 struct page *tmp;
89
90 BUG_ON(!n);
91 BUG_ON(!head);
92
93 page = *head;
94
95 if (!page)
96 return NULL;
97
98 while (page) {
99 tmp = page_chain_next(page);
100 if (--n == 0)
101 break; /* found sufficient pages */
102 if (tmp == NULL)
103 /* insufficient pages, don't use any of them. */
104 return NULL;
105 page = tmp;
106 }
107
108 /* add end of list marker for the returned list */
109 set_page_private(page, 0);
110 /* actual return value, and adjustment of head */
111 page = *head;
112 *head = tmp;
113 return page;
114 }
115
116 /* may be used outside of locks to find the tail of a (usually short)
117 * "private" page chain, before adding it back to a global chain head
118 * with page_chain_add() under a spinlock. */
119 static struct page *page_chain_tail(struct page *page, int *len)
120 {
121 struct page *tmp;
122 int i = 1;
123 while ((tmp = page_chain_next(page)))
124 ++i, page = tmp;
125 if (len)
126 *len = i;
127 return page;
128 }
129
130 static int page_chain_free(struct page *page)
131 {
132 struct page *tmp;
133 int i = 0;
134 page_chain_for_each_safe(page, tmp) {
135 put_page(page);
136 ++i;
137 }
138 return i;
139 }
140
141 static void page_chain_add(struct page **head,
142 struct page *chain_first, struct page *chain_last)
143 {
144 #if 1
145 struct page *tmp;
146 tmp = page_chain_tail(chain_first, NULL);
147 BUG_ON(tmp != chain_last);
148 #endif
149
150 /* add chain to head */
151 set_page_private(chain_last, (unsigned long)*head);
152 *head = chain_first;
153 }
154
155 static struct page *__drbd_alloc_pages(struct drbd_device *device,
156 unsigned int number)
157 {
158 struct page *page = NULL;
159 struct page *tmp = NULL;
160 unsigned int i = 0;
161
162 /* Yes, testing drbd_pp_vacant outside the lock is racy.
163 * So what. It saves a spin_lock. */
164 if (drbd_pp_vacant >= number) {
165 spin_lock(&drbd_pp_lock);
166 page = page_chain_del(&drbd_pp_pool, number);
167 if (page)
168 drbd_pp_vacant -= number;
169 spin_unlock(&drbd_pp_lock);
170 if (page)
171 return page;
172 }
173
174 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
175 * "criss-cross" setup, that might cause write-out on some other DRBD,
176 * which in turn might block on the other node at this very place. */
177 for (i = 0; i < number; i++) {
178 tmp = alloc_page(GFP_TRY);
179 if (!tmp)
180 break;
181 set_page_private(tmp, (unsigned long)page);
182 page = tmp;
183 }
184
185 if (i == number)
186 return page;
187
188 /* Not enough pages immediately available this time.
189 * No need to jump around here, drbd_alloc_pages will retry this
190 * function "soon". */
191 if (page) {
192 tmp = page_chain_tail(page, NULL);
193 spin_lock(&drbd_pp_lock);
194 page_chain_add(&drbd_pp_pool, page, tmp);
195 drbd_pp_vacant += i;
196 spin_unlock(&drbd_pp_lock);
197 }
198 return NULL;
199 }
200
201 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
202 struct list_head *to_be_freed)
203 {
204 struct drbd_peer_request *peer_req, *tmp;
205
206 /* The EEs are always appended to the end of the list. Since
207 they are sent in order over the wire, they have to finish
208 in order. As soon as we see the first not finished we can
209 stop to examine the list... */
210
211 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
212 if (drbd_peer_req_has_active_page(peer_req))
213 break;
214 list_move(&peer_req->w.list, to_be_freed);
215 }
216 }
217
218 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
219 {
220 LIST_HEAD(reclaimed);
221 struct drbd_peer_request *peer_req, *t;
222
223 spin_lock_irq(&device->resource->req_lock);
224 reclaim_finished_net_peer_reqs(device, &reclaimed);
225 spin_unlock_irq(&device->resource->req_lock);
226 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
227 drbd_free_net_peer_req(device, peer_req);
228 }
229
230 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
231 {
232 struct drbd_peer_device *peer_device;
233 int vnr;
234
235 rcu_read_lock();
236 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
237 struct drbd_device *device = peer_device->device;
238 if (!atomic_read(&device->pp_in_use_by_net))
239 continue;
240
241 kref_get(&device->kref);
242 rcu_read_unlock();
243 drbd_reclaim_net_peer_reqs(device);
244 kref_put(&device->kref, drbd_destroy_device);
245 rcu_read_lock();
246 }
247 rcu_read_unlock();
248 }
249
250 /**
251 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
252 * @device: DRBD device.
253 * @number: number of pages requested
254 * @retry: whether to retry, if not enough pages are available right now
255 *
256 * Tries to allocate number pages, first from our own page pool, then from
257 * the kernel.
258 * Possibly retry until DRBD frees sufficient pages somewhere else.
259 *
260 * If this allocation would exceed the max_buffers setting, we throttle
261 * allocation (schedule_timeout) to give the system some room to breathe.
262 *
263 * We do not use max-buffers as hard limit, because it could lead to
264 * congestion and further to a distributed deadlock during online-verify or
265 * (checksum based) resync, if the max-buffers, socket buffer sizes and
266 * resync-rate settings are mis-configured.
267 *
268 * Returns a page chain linked via page->private.
269 */
270 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
271 bool retry)
272 {
273 struct drbd_device *device = peer_device->device;
274 struct page *page = NULL;
275 struct net_conf *nc;
276 DEFINE_WAIT(wait);
277 unsigned int mxb;
278
279 rcu_read_lock();
280 nc = rcu_dereference(peer_device->connection->net_conf);
281 mxb = nc ? nc->max_buffers : 1000000;
282 rcu_read_unlock();
283
284 if (atomic_read(&device->pp_in_use) < mxb)
285 page = __drbd_alloc_pages(device, number);
286
287 /* Try to keep the fast path fast, but occasionally we need
288 * to reclaim the pages we lended to the network stack. */
289 if (page && atomic_read(&device->pp_in_use_by_net) > 512)
290 drbd_reclaim_net_peer_reqs(device);
291
292 while (page == NULL) {
293 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
294
295 drbd_reclaim_net_peer_reqs(device);
296
297 if (atomic_read(&device->pp_in_use) < mxb) {
298 page = __drbd_alloc_pages(device, number);
299 if (page)
300 break;
301 }
302
303 if (!retry)
304 break;
305
306 if (signal_pending(current)) {
307 drbd_warn(device, "drbd_alloc_pages interrupted!\n");
308 break;
309 }
310
311 if (schedule_timeout(HZ/10) == 0)
312 mxb = UINT_MAX;
313 }
314 finish_wait(&drbd_pp_wait, &wait);
315
316 if (page)
317 atomic_add(number, &device->pp_in_use);
318 return page;
319 }
320
321 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
322 * Is also used from inside an other spin_lock_irq(&resource->req_lock);
323 * Either links the page chain back to the global pool,
324 * or returns all pages to the system. */
325 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
326 {
327 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
328 int i;
329
330 if (page == NULL)
331 return;
332
333 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count)
334 i = page_chain_free(page);
335 else {
336 struct page *tmp;
337 tmp = page_chain_tail(page, &i);
338 spin_lock(&drbd_pp_lock);
339 page_chain_add(&drbd_pp_pool, page, tmp);
340 drbd_pp_vacant += i;
341 spin_unlock(&drbd_pp_lock);
342 }
343 i = atomic_sub_return(i, a);
344 if (i < 0)
345 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
346 is_net ? "pp_in_use_by_net" : "pp_in_use", i);
347 wake_up(&drbd_pp_wait);
348 }
349
350 /*
351 You need to hold the req_lock:
352 _drbd_wait_ee_list_empty()
353
354 You must not have the req_lock:
355 drbd_free_peer_req()
356 drbd_alloc_peer_req()
357 drbd_free_peer_reqs()
358 drbd_ee_fix_bhs()
359 drbd_finish_peer_reqs()
360 drbd_clear_done_ee()
361 drbd_wait_ee_list_empty()
362 */
363
364 /* normal: payload_size == request size (bi_size)
365 * w_same: payload_size == logical_block_size
366 * trim: payload_size == 0 */
367 struct drbd_peer_request *
368 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
369 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
370 {
371 struct drbd_device *device = peer_device->device;
372 struct drbd_peer_request *peer_req;
373 struct page *page = NULL;
374 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT;
375
376 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
377 return NULL;
378
379 peer_req = mempool_alloc(drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
380 if (!peer_req) {
381 if (!(gfp_mask & __GFP_NOWARN))
382 drbd_err(device, "%s: allocation failed\n", __func__);
383 return NULL;
384 }
385
386 if (nr_pages) {
387 page = drbd_alloc_pages(peer_device, nr_pages,
388 gfpflags_allow_blocking(gfp_mask));
389 if (!page)
390 goto fail;
391 }
392
393 memset(peer_req, 0, sizeof(*peer_req));
394 INIT_LIST_HEAD(&peer_req->w.list);
395 drbd_clear_interval(&peer_req->i);
396 peer_req->i.size = request_size;
397 peer_req->i.sector = sector;
398 peer_req->submit_jif = jiffies;
399 peer_req->peer_device = peer_device;
400 peer_req->pages = page;
401 /*
402 * The block_id is opaque to the receiver. It is not endianness
403 * converted, and sent back to the sender unchanged.
404 */
405 peer_req->block_id = id;
406
407 return peer_req;
408
409 fail:
410 mempool_free(peer_req, drbd_ee_mempool);
411 return NULL;
412 }
413
414 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
415 int is_net)
416 {
417 might_sleep();
418 if (peer_req->flags & EE_HAS_DIGEST)
419 kfree(peer_req->digest);
420 drbd_free_pages(device, peer_req->pages, is_net);
421 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
422 D_ASSERT(device, drbd_interval_empty(&peer_req->i));
423 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
424 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
425 drbd_al_complete_io(device, &peer_req->i);
426 }
427 mempool_free(peer_req, drbd_ee_mempool);
428 }
429
430 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
431 {
432 LIST_HEAD(work_list);
433 struct drbd_peer_request *peer_req, *t;
434 int count = 0;
435 int is_net = list == &device->net_ee;
436
437 spin_lock_irq(&device->resource->req_lock);
438 list_splice_init(list, &work_list);
439 spin_unlock_irq(&device->resource->req_lock);
440
441 list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
442 __drbd_free_peer_req(device, peer_req, is_net);
443 count++;
444 }
445 return count;
446 }
447
448 /*
449 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
450 */
451 static int drbd_finish_peer_reqs(struct drbd_device *device)
452 {
453 LIST_HEAD(work_list);
454 LIST_HEAD(reclaimed);
455 struct drbd_peer_request *peer_req, *t;
456 int err = 0;
457
458 spin_lock_irq(&device->resource->req_lock);
459 reclaim_finished_net_peer_reqs(device, &reclaimed);
460 list_splice_init(&device->done_ee, &work_list);
461 spin_unlock_irq(&device->resource->req_lock);
462
463 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
464 drbd_free_net_peer_req(device, peer_req);
465
466 /* possible callbacks here:
467 * e_end_block, and e_end_resync_block, e_send_superseded.
468 * all ignore the last argument.
469 */
470 list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
471 int err2;
472
473 /* list_del not necessary, next/prev members not touched */
474 err2 = peer_req->w.cb(&peer_req->w, !!err);
475 if (!err)
476 err = err2;
477 drbd_free_peer_req(device, peer_req);
478 }
479 wake_up(&device->ee_wait);
480
481 return err;
482 }
483
484 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
485 struct list_head *head)
486 {
487 DEFINE_WAIT(wait);
488
489 /* avoids spin_lock/unlock
490 * and calling prepare_to_wait in the fast path */
491 while (!list_empty(head)) {
492 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
493 spin_unlock_irq(&device->resource->req_lock);
494 io_schedule();
495 finish_wait(&device->ee_wait, &wait);
496 spin_lock_irq(&device->resource->req_lock);
497 }
498 }
499
500 static void drbd_wait_ee_list_empty(struct drbd_device *device,
501 struct list_head *head)
502 {
503 spin_lock_irq(&device->resource->req_lock);
504 _drbd_wait_ee_list_empty(device, head);
505 spin_unlock_irq(&device->resource->req_lock);
506 }
507
508 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
509 {
510 struct kvec iov = {
511 .iov_base = buf,
512 .iov_len = size,
513 };
514 struct msghdr msg = {
515 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
516 };
517 return kernel_recvmsg(sock, &msg, &iov, 1, size, msg.msg_flags);
518 }
519
520 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
521 {
522 int rv;
523
524 rv = drbd_recv_short(connection->data.socket, buf, size, 0);
525
526 if (rv < 0) {
527 if (rv == -ECONNRESET)
528 drbd_info(connection, "sock was reset by peer\n");
529 else if (rv != -ERESTARTSYS)
530 drbd_err(connection, "sock_recvmsg returned %d\n", rv);
531 } else if (rv == 0) {
532 if (test_bit(DISCONNECT_SENT, &connection->flags)) {
533 long t;
534 rcu_read_lock();
535 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
536 rcu_read_unlock();
537
538 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
539
540 if (t)
541 goto out;
542 }
543 drbd_info(connection, "sock was shut down by peer\n");
544 }
545
546 if (rv != size)
547 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
548
549 out:
550 return rv;
551 }
552
553 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
554 {
555 int err;
556
557 err = drbd_recv(connection, buf, size);
558 if (err != size) {
559 if (err >= 0)
560 err = -EIO;
561 } else
562 err = 0;
563 return err;
564 }
565
566 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
567 {
568 int err;
569
570 err = drbd_recv_all(connection, buf, size);
571 if (err && !signal_pending(current))
572 drbd_warn(connection, "short read (expected size %d)\n", (int)size);
573 return err;
574 }
575
576 /* quoting tcp(7):
577 * On individual connections, the socket buffer size must be set prior to the
578 * listen(2) or connect(2) calls in order to have it take effect.
579 * This is our wrapper to do so.
580 */
581 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
582 unsigned int rcv)
583 {
584 /* open coded SO_SNDBUF, SO_RCVBUF */
585 if (snd) {
586 sock->sk->sk_sndbuf = snd;
587 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
588 }
589 if (rcv) {
590 sock->sk->sk_rcvbuf = rcv;
591 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
592 }
593 }
594
595 static struct socket *drbd_try_connect(struct drbd_connection *connection)
596 {
597 const char *what;
598 struct socket *sock;
599 struct sockaddr_in6 src_in6;
600 struct sockaddr_in6 peer_in6;
601 struct net_conf *nc;
602 int err, peer_addr_len, my_addr_len;
603 int sndbuf_size, rcvbuf_size, connect_int;
604 int disconnect_on_error = 1;
605
606 rcu_read_lock();
607 nc = rcu_dereference(connection->net_conf);
608 if (!nc) {
609 rcu_read_unlock();
610 return NULL;
611 }
612 sndbuf_size = nc->sndbuf_size;
613 rcvbuf_size = nc->rcvbuf_size;
614 connect_int = nc->connect_int;
615 rcu_read_unlock();
616
617 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
618 memcpy(&src_in6, &connection->my_addr, my_addr_len);
619
620 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
621 src_in6.sin6_port = 0;
622 else
623 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
624
625 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
626 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
627
628 what = "sock_create_kern";
629 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
630 SOCK_STREAM, IPPROTO_TCP, &sock);
631 if (err < 0) {
632 sock = NULL;
633 goto out;
634 }
635
636 sock->sk->sk_rcvtimeo =
637 sock->sk->sk_sndtimeo = connect_int * HZ;
638 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
639
640 /* explicitly bind to the configured IP as source IP
641 * for the outgoing connections.
642 * This is needed for multihomed hosts and to be
643 * able to use lo: interfaces for drbd.
644 * Make sure to use 0 as port number, so linux selects
645 * a free one dynamically.
646 */
647 what = "bind before connect";
648 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
649 if (err < 0)
650 goto out;
651
652 /* connect may fail, peer not yet available.
653 * stay C_WF_CONNECTION, don't go Disconnecting! */
654 disconnect_on_error = 0;
655 what = "connect";
656 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
657
658 out:
659 if (err < 0) {
660 if (sock) {
661 sock_release(sock);
662 sock = NULL;
663 }
664 switch (-err) {
665 /* timeout, busy, signal pending */
666 case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
667 case EINTR: case ERESTARTSYS:
668 /* peer not (yet) available, network problem */
669 case ECONNREFUSED: case ENETUNREACH:
670 case EHOSTDOWN: case EHOSTUNREACH:
671 disconnect_on_error = 0;
672 break;
673 default:
674 drbd_err(connection, "%s failed, err = %d\n", what, err);
675 }
676 if (disconnect_on_error)
677 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
678 }
679
680 return sock;
681 }
682
683 struct accept_wait_data {
684 struct drbd_connection *connection;
685 struct socket *s_listen;
686 struct completion door_bell;
687 void (*original_sk_state_change)(struct sock *sk);
688
689 };
690
691 static void drbd_incoming_connection(struct sock *sk)
692 {
693 struct accept_wait_data *ad = sk->sk_user_data;
694 void (*state_change)(struct sock *sk);
695
696 state_change = ad->original_sk_state_change;
697 if (sk->sk_state == TCP_ESTABLISHED)
698 complete(&ad->door_bell);
699 state_change(sk);
700 }
701
702 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
703 {
704 int err, sndbuf_size, rcvbuf_size, my_addr_len;
705 struct sockaddr_in6 my_addr;
706 struct socket *s_listen;
707 struct net_conf *nc;
708 const char *what;
709
710 rcu_read_lock();
711 nc = rcu_dereference(connection->net_conf);
712 if (!nc) {
713 rcu_read_unlock();
714 return -EIO;
715 }
716 sndbuf_size = nc->sndbuf_size;
717 rcvbuf_size = nc->rcvbuf_size;
718 rcu_read_unlock();
719
720 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
721 memcpy(&my_addr, &connection->my_addr, my_addr_len);
722
723 what = "sock_create_kern";
724 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
725 SOCK_STREAM, IPPROTO_TCP, &s_listen);
726 if (err) {
727 s_listen = NULL;
728 goto out;
729 }
730
731 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
732 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
733
734 what = "bind before listen";
735 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
736 if (err < 0)
737 goto out;
738
739 ad->s_listen = s_listen;
740 write_lock_bh(&s_listen->sk->sk_callback_lock);
741 ad->original_sk_state_change = s_listen->sk->sk_state_change;
742 s_listen->sk->sk_state_change = drbd_incoming_connection;
743 s_listen->sk->sk_user_data = ad;
744 write_unlock_bh(&s_listen->sk->sk_callback_lock);
745
746 what = "listen";
747 err = s_listen->ops->listen(s_listen, 5);
748 if (err < 0)
749 goto out;
750
751 return 0;
752 out:
753 if (s_listen)
754 sock_release(s_listen);
755 if (err < 0) {
756 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
757 drbd_err(connection, "%s failed, err = %d\n", what, err);
758 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
759 }
760 }
761
762 return -EIO;
763 }
764
765 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
766 {
767 write_lock_bh(&sk->sk_callback_lock);
768 sk->sk_state_change = ad->original_sk_state_change;
769 sk->sk_user_data = NULL;
770 write_unlock_bh(&sk->sk_callback_lock);
771 }
772
773 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
774 {
775 int timeo, connect_int, err = 0;
776 struct socket *s_estab = NULL;
777 struct net_conf *nc;
778
779 rcu_read_lock();
780 nc = rcu_dereference(connection->net_conf);
781 if (!nc) {
782 rcu_read_unlock();
783 return NULL;
784 }
785 connect_int = nc->connect_int;
786 rcu_read_unlock();
787
788 timeo = connect_int * HZ;
789 /* 28.5% random jitter */
790 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
791
792 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
793 if (err <= 0)
794 return NULL;
795
796 err = kernel_accept(ad->s_listen, &s_estab, 0);
797 if (err < 0) {
798 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
799 drbd_err(connection, "accept failed, err = %d\n", err);
800 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
801 }
802 }
803
804 if (s_estab)
805 unregister_state_change(s_estab->sk, ad);
806
807 return s_estab;
808 }
809
810 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
811
812 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
813 enum drbd_packet cmd)
814 {
815 if (!conn_prepare_command(connection, sock))
816 return -EIO;
817 return conn_send_command(connection, sock, cmd, 0, NULL, 0);
818 }
819
820 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
821 {
822 unsigned int header_size = drbd_header_size(connection);
823 struct packet_info pi;
824 struct net_conf *nc;
825 int err;
826
827 rcu_read_lock();
828 nc = rcu_dereference(connection->net_conf);
829 if (!nc) {
830 rcu_read_unlock();
831 return -EIO;
832 }
833 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
834 rcu_read_unlock();
835
836 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
837 if (err != header_size) {
838 if (err >= 0)
839 err = -EIO;
840 return err;
841 }
842 err = decode_header(connection, connection->data.rbuf, &pi);
843 if (err)
844 return err;
845 return pi.cmd;
846 }
847
848 /**
849 * drbd_socket_okay() - Free the socket if its connection is not okay
850 * @sock: pointer to the pointer to the socket.
851 */
852 static bool drbd_socket_okay(struct socket **sock)
853 {
854 int rr;
855 char tb[4];
856
857 if (!*sock)
858 return false;
859
860 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
861
862 if (rr > 0 || rr == -EAGAIN) {
863 return true;
864 } else {
865 sock_release(*sock);
866 *sock = NULL;
867 return false;
868 }
869 }
870
871 static bool connection_established(struct drbd_connection *connection,
872 struct socket **sock1,
873 struct socket **sock2)
874 {
875 struct net_conf *nc;
876 int timeout;
877 bool ok;
878
879 if (!*sock1 || !*sock2)
880 return false;
881
882 rcu_read_lock();
883 nc = rcu_dereference(connection->net_conf);
884 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
885 rcu_read_unlock();
886 schedule_timeout_interruptible(timeout);
887
888 ok = drbd_socket_okay(sock1);
889 ok = drbd_socket_okay(sock2) && ok;
890
891 return ok;
892 }
893
894 /* Gets called if a connection is established, or if a new minor gets created
895 in a connection */
896 int drbd_connected(struct drbd_peer_device *peer_device)
897 {
898 struct drbd_device *device = peer_device->device;
899 int err;
900
901 atomic_set(&device->packet_seq, 0);
902 device->peer_seq = 0;
903
904 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
905 &peer_device->connection->cstate_mutex :
906 &device->own_state_mutex;
907
908 err = drbd_send_sync_param(peer_device);
909 if (!err)
910 err = drbd_send_sizes(peer_device, 0, 0);
911 if (!err)
912 err = drbd_send_uuids(peer_device);
913 if (!err)
914 err = drbd_send_current_state(peer_device);
915 clear_bit(USE_DEGR_WFC_T, &device->flags);
916 clear_bit(RESIZE_PENDING, &device->flags);
917 atomic_set(&device->ap_in_flight, 0);
918 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
919 return err;
920 }
921
922 /*
923 * return values:
924 * 1 yes, we have a valid connection
925 * 0 oops, did not work out, please try again
926 * -1 peer talks different language,
927 * no point in trying again, please go standalone.
928 * -2 We do not have a network config...
929 */
930 static int conn_connect(struct drbd_connection *connection)
931 {
932 struct drbd_socket sock, msock;
933 struct drbd_peer_device *peer_device;
934 struct net_conf *nc;
935 int vnr, timeout, h;
936 bool discard_my_data, ok;
937 enum drbd_state_rv rv;
938 struct accept_wait_data ad = {
939 .connection = connection,
940 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
941 };
942
943 clear_bit(DISCONNECT_SENT, &connection->flags);
944 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
945 return -2;
946
947 mutex_init(&sock.mutex);
948 sock.sbuf = connection->data.sbuf;
949 sock.rbuf = connection->data.rbuf;
950 sock.socket = NULL;
951 mutex_init(&msock.mutex);
952 msock.sbuf = connection->meta.sbuf;
953 msock.rbuf = connection->meta.rbuf;
954 msock.socket = NULL;
955
956 /* Assume that the peer only understands protocol 80 until we know better. */
957 connection->agreed_pro_version = 80;
958
959 if (prepare_listen_socket(connection, &ad))
960 return 0;
961
962 do {
963 struct socket *s;
964
965 s = drbd_try_connect(connection);
966 if (s) {
967 if (!sock.socket) {
968 sock.socket = s;
969 send_first_packet(connection, &sock, P_INITIAL_DATA);
970 } else if (!msock.socket) {
971 clear_bit(RESOLVE_CONFLICTS, &connection->flags);
972 msock.socket = s;
973 send_first_packet(connection, &msock, P_INITIAL_META);
974 } else {
975 drbd_err(connection, "Logic error in conn_connect()\n");
976 goto out_release_sockets;
977 }
978 }
979
980 if (connection_established(connection, &sock.socket, &msock.socket))
981 break;
982
983 retry:
984 s = drbd_wait_for_connect(connection, &ad);
985 if (s) {
986 int fp = receive_first_packet(connection, s);
987 drbd_socket_okay(&sock.socket);
988 drbd_socket_okay(&msock.socket);
989 switch (fp) {
990 case P_INITIAL_DATA:
991 if (sock.socket) {
992 drbd_warn(connection, "initial packet S crossed\n");
993 sock_release(sock.socket);
994 sock.socket = s;
995 goto randomize;
996 }
997 sock.socket = s;
998 break;
999 case P_INITIAL_META:
1000 set_bit(RESOLVE_CONFLICTS, &connection->flags);
1001 if (msock.socket) {
1002 drbd_warn(connection, "initial packet M crossed\n");
1003 sock_release(msock.socket);
1004 msock.socket = s;
1005 goto randomize;
1006 }
1007 msock.socket = s;
1008 break;
1009 default:
1010 drbd_warn(connection, "Error receiving initial packet\n");
1011 sock_release(s);
1012 randomize:
1013 if (prandom_u32() & 1)
1014 goto retry;
1015 }
1016 }
1017
1018 if (connection->cstate <= C_DISCONNECTING)
1019 goto out_release_sockets;
1020 if (signal_pending(current)) {
1021 flush_signals(current);
1022 smp_rmb();
1023 if (get_t_state(&connection->receiver) == EXITING)
1024 goto out_release_sockets;
1025 }
1026
1027 ok = connection_established(connection, &sock.socket, &msock.socket);
1028 } while (!ok);
1029
1030 if (ad.s_listen)
1031 sock_release(ad.s_listen);
1032
1033 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1034 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1035
1036 sock.socket->sk->sk_allocation = GFP_NOIO;
1037 msock.socket->sk->sk_allocation = GFP_NOIO;
1038
1039 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1040 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1041
1042 /* NOT YET ...
1043 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1044 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1045 * first set it to the P_CONNECTION_FEATURES timeout,
1046 * which we set to 4x the configured ping_timeout. */
1047 rcu_read_lock();
1048 nc = rcu_dereference(connection->net_conf);
1049
1050 sock.socket->sk->sk_sndtimeo =
1051 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1052
1053 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1054 timeout = nc->timeout * HZ / 10;
1055 discard_my_data = nc->discard_my_data;
1056 rcu_read_unlock();
1057
1058 msock.socket->sk->sk_sndtimeo = timeout;
1059
1060 /* we don't want delays.
1061 * we use TCP_CORK where appropriate, though */
1062 drbd_tcp_nodelay(sock.socket);
1063 drbd_tcp_nodelay(msock.socket);
1064
1065 connection->data.socket = sock.socket;
1066 connection->meta.socket = msock.socket;
1067 connection->last_received = jiffies;
1068
1069 h = drbd_do_features(connection);
1070 if (h <= 0)
1071 return h;
1072
1073 if (connection->cram_hmac_tfm) {
1074 /* drbd_request_state(device, NS(conn, WFAuth)); */
1075 switch (drbd_do_auth(connection)) {
1076 case -1:
1077 drbd_err(connection, "Authentication of peer failed\n");
1078 return -1;
1079 case 0:
1080 drbd_err(connection, "Authentication of peer failed, trying again.\n");
1081 return 0;
1082 }
1083 }
1084
1085 connection->data.socket->sk->sk_sndtimeo = timeout;
1086 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1087
1088 if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1089 return -1;
1090
1091 /* Prevent a race between resync-handshake and
1092 * being promoted to Primary.
1093 *
1094 * Grab and release the state mutex, so we know that any current
1095 * drbd_set_role() is finished, and any incoming drbd_set_role
1096 * will see the STATE_SENT flag, and wait for it to be cleared.
1097 */
1098 idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1099 mutex_lock(peer_device->device->state_mutex);
1100
1101 set_bit(STATE_SENT, &connection->flags);
1102
1103 idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1104 mutex_unlock(peer_device->device->state_mutex);
1105
1106 rcu_read_lock();
1107 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1108 struct drbd_device *device = peer_device->device;
1109 kref_get(&device->kref);
1110 rcu_read_unlock();
1111
1112 if (discard_my_data)
1113 set_bit(DISCARD_MY_DATA, &device->flags);
1114 else
1115 clear_bit(DISCARD_MY_DATA, &device->flags);
1116
1117 drbd_connected(peer_device);
1118 kref_put(&device->kref, drbd_destroy_device);
1119 rcu_read_lock();
1120 }
1121 rcu_read_unlock();
1122
1123 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1124 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1125 clear_bit(STATE_SENT, &connection->flags);
1126 return 0;
1127 }
1128
1129 drbd_thread_start(&connection->ack_receiver);
1130 /* opencoded create_singlethread_workqueue(),
1131 * to be able to use format string arguments */
1132 connection->ack_sender =
1133 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1134 if (!connection->ack_sender) {
1135 drbd_err(connection, "Failed to create workqueue ack_sender\n");
1136 return 0;
1137 }
1138
1139 mutex_lock(&connection->resource->conf_update);
1140 /* The discard_my_data flag is a single-shot modifier to the next
1141 * connection attempt, the handshake of which is now well underway.
1142 * No need for rcu style copying of the whole struct
1143 * just to clear a single value. */
1144 connection->net_conf->discard_my_data = 0;
1145 mutex_unlock(&connection->resource->conf_update);
1146
1147 return h;
1148
1149 out_release_sockets:
1150 if (ad.s_listen)
1151 sock_release(ad.s_listen);
1152 if (sock.socket)
1153 sock_release(sock.socket);
1154 if (msock.socket)
1155 sock_release(msock.socket);
1156 return -1;
1157 }
1158
1159 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1160 {
1161 unsigned int header_size = drbd_header_size(connection);
1162
1163 if (header_size == sizeof(struct p_header100) &&
1164 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1165 struct p_header100 *h = header;
1166 if (h->pad != 0) {
1167 drbd_err(connection, "Header padding is not zero\n");
1168 return -EINVAL;
1169 }
1170 pi->vnr = be16_to_cpu(h->volume);
1171 pi->cmd = be16_to_cpu(h->command);
1172 pi->size = be32_to_cpu(h->length);
1173 } else if (header_size == sizeof(struct p_header95) &&
1174 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1175 struct p_header95 *h = header;
1176 pi->cmd = be16_to_cpu(h->command);
1177 pi->size = be32_to_cpu(h->length);
1178 pi->vnr = 0;
1179 } else if (header_size == sizeof(struct p_header80) &&
1180 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1181 struct p_header80 *h = header;
1182 pi->cmd = be16_to_cpu(h->command);
1183 pi->size = be16_to_cpu(h->length);
1184 pi->vnr = 0;
1185 } else {
1186 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1187 be32_to_cpu(*(__be32 *)header),
1188 connection->agreed_pro_version);
1189 return -EINVAL;
1190 }
1191 pi->data = header + header_size;
1192 return 0;
1193 }
1194
1195 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1196 {
1197 void *buffer = connection->data.rbuf;
1198 int err;
1199
1200 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1201 if (err)
1202 return err;
1203
1204 err = decode_header(connection, buffer, pi);
1205 connection->last_received = jiffies;
1206
1207 return err;
1208 }
1209
1210 /* This is blkdev_issue_flush, but asynchronous.
1211 * We want to submit to all component volumes in parallel,
1212 * then wait for all completions.
1213 */
1214 struct issue_flush_context {
1215 atomic_t pending;
1216 int error;
1217 struct completion done;
1218 };
1219 struct one_flush_context {
1220 struct drbd_device *device;
1221 struct issue_flush_context *ctx;
1222 };
1223
1224 void one_flush_endio(struct bio *bio)
1225 {
1226 struct one_flush_context *octx = bio->bi_private;
1227 struct drbd_device *device = octx->device;
1228 struct issue_flush_context *ctx = octx->ctx;
1229
1230 if (bio->bi_error) {
1231 ctx->error = bio->bi_error;
1232 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_error);
1233 }
1234 kfree(octx);
1235 bio_put(bio);
1236
1237 clear_bit(FLUSH_PENDING, &device->flags);
1238 put_ldev(device);
1239 kref_put(&device->kref, drbd_destroy_device);
1240
1241 if (atomic_dec_and_test(&ctx->pending))
1242 complete(&ctx->done);
1243 }
1244
1245 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1246 {
1247 struct bio *bio = bio_alloc(GFP_NOIO, 0);
1248 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1249 if (!bio || !octx) {
1250 drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n");
1251 /* FIXME: what else can I do now? disconnecting or detaching
1252 * really does not help to improve the state of the world, either.
1253 */
1254 kfree(octx);
1255 if (bio)
1256 bio_put(bio);
1257
1258 ctx->error = -ENOMEM;
1259 put_ldev(device);
1260 kref_put(&device->kref, drbd_destroy_device);
1261 return;
1262 }
1263
1264 octx->device = device;
1265 octx->ctx = ctx;
1266 bio->bi_bdev = device->ldev->backing_bdev;
1267 bio->bi_private = octx;
1268 bio->bi_end_io = one_flush_endio;
1269 bio_set_op_attrs(bio, REQ_OP_FLUSH, WRITE_FLUSH);
1270
1271 device->flush_jif = jiffies;
1272 set_bit(FLUSH_PENDING, &device->flags);
1273 atomic_inc(&ctx->pending);
1274 submit_bio(bio);
1275 }
1276
1277 static void drbd_flush(struct drbd_connection *connection)
1278 {
1279 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1280 struct drbd_peer_device *peer_device;
1281 struct issue_flush_context ctx;
1282 int vnr;
1283
1284 atomic_set(&ctx.pending, 1);
1285 ctx.error = 0;
1286 init_completion(&ctx.done);
1287
1288 rcu_read_lock();
1289 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1290 struct drbd_device *device = peer_device->device;
1291
1292 if (!get_ldev(device))
1293 continue;
1294 kref_get(&device->kref);
1295 rcu_read_unlock();
1296
1297 submit_one_flush(device, &ctx);
1298
1299 rcu_read_lock();
1300 }
1301 rcu_read_unlock();
1302
1303 /* Do we want to add a timeout,
1304 * if disk-timeout is set? */
1305 if (!atomic_dec_and_test(&ctx.pending))
1306 wait_for_completion(&ctx.done);
1307
1308 if (ctx.error) {
1309 /* would rather check on EOPNOTSUPP, but that is not reliable.
1310 * don't try again for ANY return value != 0
1311 * if (rv == -EOPNOTSUPP) */
1312 /* Any error is already reported by bio_endio callback. */
1313 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1314 }
1315 }
1316 }
1317
1318 /**
1319 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1320 * @device: DRBD device.
1321 * @epoch: Epoch object.
1322 * @ev: Epoch event.
1323 */
1324 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1325 struct drbd_epoch *epoch,
1326 enum epoch_event ev)
1327 {
1328 int epoch_size;
1329 struct drbd_epoch *next_epoch;
1330 enum finish_epoch rv = FE_STILL_LIVE;
1331
1332 spin_lock(&connection->epoch_lock);
1333 do {
1334 next_epoch = NULL;
1335
1336 epoch_size = atomic_read(&epoch->epoch_size);
1337
1338 switch (ev & ~EV_CLEANUP) {
1339 case EV_PUT:
1340 atomic_dec(&epoch->active);
1341 break;
1342 case EV_GOT_BARRIER_NR:
1343 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1344 break;
1345 case EV_BECAME_LAST:
1346 /* nothing to do*/
1347 break;
1348 }
1349
1350 if (epoch_size != 0 &&
1351 atomic_read(&epoch->active) == 0 &&
1352 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1353 if (!(ev & EV_CLEANUP)) {
1354 spin_unlock(&connection->epoch_lock);
1355 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1356 spin_lock(&connection->epoch_lock);
1357 }
1358 #if 0
1359 /* FIXME: dec unacked on connection, once we have
1360 * something to count pending connection packets in. */
1361 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1362 dec_unacked(epoch->connection);
1363 #endif
1364
1365 if (connection->current_epoch != epoch) {
1366 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1367 list_del(&epoch->list);
1368 ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1369 connection->epochs--;
1370 kfree(epoch);
1371
1372 if (rv == FE_STILL_LIVE)
1373 rv = FE_DESTROYED;
1374 } else {
1375 epoch->flags = 0;
1376 atomic_set(&epoch->epoch_size, 0);
1377 /* atomic_set(&epoch->active, 0); is already zero */
1378 if (rv == FE_STILL_LIVE)
1379 rv = FE_RECYCLED;
1380 }
1381 }
1382
1383 if (!next_epoch)
1384 break;
1385
1386 epoch = next_epoch;
1387 } while (1);
1388
1389 spin_unlock(&connection->epoch_lock);
1390
1391 return rv;
1392 }
1393
1394 static enum write_ordering_e
1395 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1396 {
1397 struct disk_conf *dc;
1398
1399 dc = rcu_dereference(bdev->disk_conf);
1400
1401 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1402 wo = WO_DRAIN_IO;
1403 if (wo == WO_DRAIN_IO && !dc->disk_drain)
1404 wo = WO_NONE;
1405
1406 return wo;
1407 }
1408
1409 /**
1410 * drbd_bump_write_ordering() - Fall back to an other write ordering method
1411 * @connection: DRBD connection.
1412 * @wo: Write ordering method to try.
1413 */
1414 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1415 enum write_ordering_e wo)
1416 {
1417 struct drbd_device *device;
1418 enum write_ordering_e pwo;
1419 int vnr;
1420 static char *write_ordering_str[] = {
1421 [WO_NONE] = "none",
1422 [WO_DRAIN_IO] = "drain",
1423 [WO_BDEV_FLUSH] = "flush",
1424 };
1425
1426 pwo = resource->write_ordering;
1427 if (wo != WO_BDEV_FLUSH)
1428 wo = min(pwo, wo);
1429 rcu_read_lock();
1430 idr_for_each_entry(&resource->devices, device, vnr) {
1431 if (get_ldev(device)) {
1432 wo = max_allowed_wo(device->ldev, wo);
1433 if (device->ldev == bdev)
1434 bdev = NULL;
1435 put_ldev(device);
1436 }
1437 }
1438
1439 if (bdev)
1440 wo = max_allowed_wo(bdev, wo);
1441
1442 rcu_read_unlock();
1443
1444 resource->write_ordering = wo;
1445 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1446 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1447 }
1448
1449 /*
1450 * We *may* ignore the discard-zeroes-data setting, if so configured.
1451 *
1452 * Assumption is that it "discard_zeroes_data=0" is only because the backend
1453 * may ignore partial unaligned discards.
1454 *
1455 * LVM/DM thin as of at least
1456 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28)
1457 * Library version: 1.02.93-RHEL7 (2015-01-28)
1458 * Driver version: 4.29.0
1459 * still behaves this way.
1460 *
1461 * For unaligned (wrt. alignment and granularity) or too small discards,
1462 * we zero-out the initial (and/or) trailing unaligned partial chunks,
1463 * but discard all the aligned full chunks.
1464 *
1465 * At least for LVM/DM thin, the result is effectively "discard_zeroes_data=1".
1466 */
1467 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, bool discard)
1468 {
1469 struct block_device *bdev = device->ldev->backing_bdev;
1470 struct request_queue *q = bdev_get_queue(bdev);
1471 sector_t tmp, nr;
1472 unsigned int max_discard_sectors, granularity;
1473 int alignment;
1474 int err = 0;
1475
1476 if (!discard)
1477 goto zero_out;
1478
1479 /* Zero-sector (unknown) and one-sector granularities are the same. */
1480 granularity = max(q->limits.discard_granularity >> 9, 1U);
1481 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1482
1483 max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22));
1484 max_discard_sectors -= max_discard_sectors % granularity;
1485 if (unlikely(!max_discard_sectors))
1486 goto zero_out;
1487
1488 if (nr_sectors < granularity)
1489 goto zero_out;
1490
1491 tmp = start;
1492 if (sector_div(tmp, granularity) != alignment) {
1493 if (nr_sectors < 2*granularity)
1494 goto zero_out;
1495 /* start + gran - (start + gran - align) % gran */
1496 tmp = start + granularity - alignment;
1497 tmp = start + granularity - sector_div(tmp, granularity);
1498
1499 nr = tmp - start;
1500 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1501 nr_sectors -= nr;
1502 start = tmp;
1503 }
1504 while (nr_sectors >= granularity) {
1505 nr = min_t(sector_t, nr_sectors, max_discard_sectors);
1506 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0);
1507 nr_sectors -= nr;
1508 start += nr;
1509 }
1510 zero_out:
1511 if (nr_sectors) {
1512 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 0);
1513 }
1514 return err != 0;
1515 }
1516
1517 static bool can_do_reliable_discards(struct drbd_device *device)
1518 {
1519 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
1520 struct disk_conf *dc;
1521 bool can_do;
1522
1523 if (!blk_queue_discard(q))
1524 return false;
1525
1526 if (q->limits.discard_zeroes_data)
1527 return true;
1528
1529 rcu_read_lock();
1530 dc = rcu_dereference(device->ldev->disk_conf);
1531 can_do = dc->discard_zeroes_if_aligned;
1532 rcu_read_unlock();
1533 return can_do;
1534 }
1535
1536 static void drbd_issue_peer_discard(struct drbd_device *device, struct drbd_peer_request *peer_req)
1537 {
1538 /* If the backend cannot discard, or does not guarantee
1539 * read-back zeroes in discarded ranges, we fall back to
1540 * zero-out. Unless configuration specifically requested
1541 * otherwise. */
1542 if (!can_do_reliable_discards(device))
1543 peer_req->flags |= EE_IS_TRIM_USE_ZEROOUT;
1544
1545 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1546 peer_req->i.size >> 9, !(peer_req->flags & EE_IS_TRIM_USE_ZEROOUT)))
1547 peer_req->flags |= EE_WAS_ERROR;
1548 drbd_endio_write_sec_final(peer_req);
1549 }
1550
1551 static void drbd_issue_peer_wsame(struct drbd_device *device,
1552 struct drbd_peer_request *peer_req)
1553 {
1554 struct block_device *bdev = device->ldev->backing_bdev;
1555 sector_t s = peer_req->i.sector;
1556 sector_t nr = peer_req->i.size >> 9;
1557 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages))
1558 peer_req->flags |= EE_WAS_ERROR;
1559 drbd_endio_write_sec_final(peer_req);
1560 }
1561
1562
1563 /**
1564 * drbd_submit_peer_request()
1565 * @device: DRBD device.
1566 * @peer_req: peer request
1567 * @rw: flag field, see bio->bi_rw
1568 *
1569 * May spread the pages to multiple bios,
1570 * depending on bio_add_page restrictions.
1571 *
1572 * Returns 0 if all bios have been submitted,
1573 * -ENOMEM if we could not allocate enough bios,
1574 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1575 * single page to an empty bio (which should never happen and likely indicates
1576 * that the lower level IO stack is in some way broken). This has been observed
1577 * on certain Xen deployments.
1578 */
1579 /* TODO allocate from our own bio_set. */
1580 int drbd_submit_peer_request(struct drbd_device *device,
1581 struct drbd_peer_request *peer_req,
1582 const unsigned op, const unsigned op_flags,
1583 const int fault_type)
1584 {
1585 struct bio *bios = NULL;
1586 struct bio *bio;
1587 struct page *page = peer_req->pages;
1588 sector_t sector = peer_req->i.sector;
1589 unsigned data_size = peer_req->i.size;
1590 unsigned n_bios = 0;
1591 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT;
1592 int err = -ENOMEM;
1593
1594 /* TRIM/DISCARD: for now, always use the helper function
1595 * blkdev_issue_zeroout(..., discard=true).
1596 * It's synchronous, but it does the right thing wrt. bio splitting.
1597 * Correctness first, performance later. Next step is to code an
1598 * asynchronous variant of the same.
1599 */
1600 if (peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) {
1601 /* wait for all pending IO completions, before we start
1602 * zeroing things out. */
1603 conn_wait_active_ee_empty(peer_req->peer_device->connection);
1604 /* add it to the active list now,
1605 * so we can find it to present it in debugfs */
1606 peer_req->submit_jif = jiffies;
1607 peer_req->flags |= EE_SUBMITTED;
1608
1609 /* If this was a resync request from receive_rs_deallocated(),
1610 * it is already on the sync_ee list */
1611 if (list_empty(&peer_req->w.list)) {
1612 spin_lock_irq(&device->resource->req_lock);
1613 list_add_tail(&peer_req->w.list, &device->active_ee);
1614 spin_unlock_irq(&device->resource->req_lock);
1615 }
1616
1617 if (peer_req->flags & EE_IS_TRIM)
1618 drbd_issue_peer_discard(device, peer_req);
1619 else /* EE_WRITE_SAME */
1620 drbd_issue_peer_wsame(device, peer_req);
1621 return 0;
1622 }
1623
1624 /* In most cases, we will only need one bio. But in case the lower
1625 * level restrictions happen to be different at this offset on this
1626 * side than those of the sending peer, we may need to submit the
1627 * request in more than one bio.
1628 *
1629 * Plain bio_alloc is good enough here, this is no DRBD internally
1630 * generated bio, but a bio allocated on behalf of the peer.
1631 */
1632 next_bio:
1633 bio = bio_alloc(GFP_NOIO, nr_pages);
1634 if (!bio) {
1635 drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages);
1636 goto fail;
1637 }
1638 /* > peer_req->i.sector, unless this is the first bio */
1639 bio->bi_iter.bi_sector = sector;
1640 bio->bi_bdev = device->ldev->backing_bdev;
1641 bio_set_op_attrs(bio, op, op_flags);
1642 bio->bi_private = peer_req;
1643 bio->bi_end_io = drbd_peer_request_endio;
1644
1645 bio->bi_next = bios;
1646 bios = bio;
1647 ++n_bios;
1648
1649 page_chain_for_each(page) {
1650 unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1651 if (!bio_add_page(bio, page, len, 0)) {
1652 /* A single page must always be possible!
1653 * But in case it fails anyways,
1654 * we deal with it, and complain (below). */
1655 if (bio->bi_vcnt == 0) {
1656 drbd_err(device,
1657 "bio_add_page failed for len=%u, "
1658 "bi_vcnt=0 (bi_sector=%llu)\n",
1659 len, (uint64_t)bio->bi_iter.bi_sector);
1660 err = -ENOSPC;
1661 goto fail;
1662 }
1663 goto next_bio;
1664 }
1665 data_size -= len;
1666 sector += len >> 9;
1667 --nr_pages;
1668 }
1669 D_ASSERT(device, data_size == 0);
1670 D_ASSERT(device, page == NULL);
1671
1672 atomic_set(&peer_req->pending_bios, n_bios);
1673 /* for debugfs: update timestamp, mark as submitted */
1674 peer_req->submit_jif = jiffies;
1675 peer_req->flags |= EE_SUBMITTED;
1676 do {
1677 bio = bios;
1678 bios = bios->bi_next;
1679 bio->bi_next = NULL;
1680
1681 drbd_generic_make_request(device, fault_type, bio);
1682 } while (bios);
1683 return 0;
1684
1685 fail:
1686 while (bios) {
1687 bio = bios;
1688 bios = bios->bi_next;
1689 bio_put(bio);
1690 }
1691 return err;
1692 }
1693
1694 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1695 struct drbd_peer_request *peer_req)
1696 {
1697 struct drbd_interval *i = &peer_req->i;
1698
1699 drbd_remove_interval(&device->write_requests, i);
1700 drbd_clear_interval(i);
1701
1702 /* Wake up any processes waiting for this peer request to complete. */
1703 if (i->waiting)
1704 wake_up(&device->misc_wait);
1705 }
1706
1707 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1708 {
1709 struct drbd_peer_device *peer_device;
1710 int vnr;
1711
1712 rcu_read_lock();
1713 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1714 struct drbd_device *device = peer_device->device;
1715
1716 kref_get(&device->kref);
1717 rcu_read_unlock();
1718 drbd_wait_ee_list_empty(device, &device->active_ee);
1719 kref_put(&device->kref, drbd_destroy_device);
1720 rcu_read_lock();
1721 }
1722 rcu_read_unlock();
1723 }
1724
1725 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1726 {
1727 int rv;
1728 struct p_barrier *p = pi->data;
1729 struct drbd_epoch *epoch;
1730
1731 /* FIXME these are unacked on connection,
1732 * not a specific (peer)device.
1733 */
1734 connection->current_epoch->barrier_nr = p->barrier;
1735 connection->current_epoch->connection = connection;
1736 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1737
1738 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1739 * the activity log, which means it would not be resynced in case the
1740 * R_PRIMARY crashes now.
1741 * Therefore we must send the barrier_ack after the barrier request was
1742 * completed. */
1743 switch (connection->resource->write_ordering) {
1744 case WO_NONE:
1745 if (rv == FE_RECYCLED)
1746 return 0;
1747
1748 /* receiver context, in the writeout path of the other node.
1749 * avoid potential distributed deadlock */
1750 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1751 if (epoch)
1752 break;
1753 else
1754 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1755 /* Fall through */
1756
1757 case WO_BDEV_FLUSH:
1758 case WO_DRAIN_IO:
1759 conn_wait_active_ee_empty(connection);
1760 drbd_flush(connection);
1761
1762 if (atomic_read(&connection->current_epoch->epoch_size)) {
1763 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1764 if (epoch)
1765 break;
1766 }
1767
1768 return 0;
1769 default:
1770 drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1771 connection->resource->write_ordering);
1772 return -EIO;
1773 }
1774
1775 epoch->flags = 0;
1776 atomic_set(&epoch->epoch_size, 0);
1777 atomic_set(&epoch->active, 0);
1778
1779 spin_lock(&connection->epoch_lock);
1780 if (atomic_read(&connection->current_epoch->epoch_size)) {
1781 list_add(&epoch->list, &connection->current_epoch->list);
1782 connection->current_epoch = epoch;
1783 connection->epochs++;
1784 } else {
1785 /* The current_epoch got recycled while we allocated this one... */
1786 kfree(epoch);
1787 }
1788 spin_unlock(&connection->epoch_lock);
1789
1790 return 0;
1791 }
1792
1793 /* quick wrapper in case payload size != request_size (write same) */
1794 static void drbd_csum_ee_size(struct crypto_ahash *h,
1795 struct drbd_peer_request *r, void *d,
1796 unsigned int payload_size)
1797 {
1798 unsigned int tmp = r->i.size;
1799 r->i.size = payload_size;
1800 drbd_csum_ee(h, r, d);
1801 r->i.size = tmp;
1802 }
1803
1804 /* used from receive_RSDataReply (recv_resync_read)
1805 * and from receive_Data.
1806 * data_size: actual payload ("data in")
1807 * for normal writes that is bi_size.
1808 * for discards, that is zero.
1809 * for write same, it is logical_block_size.
1810 * both trim and write same have the bi_size ("data len to be affected")
1811 * as extra argument in the packet header.
1812 */
1813 static struct drbd_peer_request *
1814 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1815 struct packet_info *pi) __must_hold(local)
1816 {
1817 struct drbd_device *device = peer_device->device;
1818 const sector_t capacity = drbd_get_capacity(device->this_bdev);
1819 struct drbd_peer_request *peer_req;
1820 struct page *page;
1821 int digest_size, err;
1822 unsigned int data_size = pi->size, ds;
1823 void *dig_in = peer_device->connection->int_dig_in;
1824 void *dig_vv = peer_device->connection->int_dig_vv;
1825 unsigned long *data;
1826 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1827 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL;
1828
1829 digest_size = 0;
1830 if (!trim && peer_device->connection->peer_integrity_tfm) {
1831 digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1832 /*
1833 * FIXME: Receive the incoming digest into the receive buffer
1834 * here, together with its struct p_data?
1835 */
1836 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1837 if (err)
1838 return NULL;
1839 data_size -= digest_size;
1840 }
1841
1842 /* assume request_size == data_size, but special case trim and wsame. */
1843 ds = data_size;
1844 if (trim) {
1845 if (!expect(data_size == 0))
1846 return NULL;
1847 ds = be32_to_cpu(trim->size);
1848 } else if (wsame) {
1849 if (data_size != queue_logical_block_size(device->rq_queue)) {
1850 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n",
1851 data_size, queue_logical_block_size(device->rq_queue));
1852 return NULL;
1853 }
1854 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) {
1855 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n",
1856 data_size, bdev_logical_block_size(device->ldev->backing_bdev));
1857 return NULL;
1858 }
1859 ds = be32_to_cpu(wsame->size);
1860 }
1861
1862 if (!expect(IS_ALIGNED(ds, 512)))
1863 return NULL;
1864 if (trim || wsame) {
1865 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1866 return NULL;
1867 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
1868 return NULL;
1869
1870 /* even though we trust out peer,
1871 * we sometimes have to double check. */
1872 if (sector + (ds>>9) > capacity) {
1873 drbd_err(device, "request from peer beyond end of local disk: "
1874 "capacity: %llus < sector: %llus + size: %u\n",
1875 (unsigned long long)capacity,
1876 (unsigned long long)sector, ds);
1877 return NULL;
1878 }
1879
1880 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1881 * "criss-cross" setup, that might cause write-out on some other DRBD,
1882 * which in turn might block on the other node at this very place. */
1883 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1884 if (!peer_req)
1885 return NULL;
1886
1887 peer_req->flags |= EE_WRITE;
1888 if (trim) {
1889 peer_req->flags |= EE_IS_TRIM;
1890 return peer_req;
1891 }
1892 if (wsame)
1893 peer_req->flags |= EE_WRITE_SAME;
1894
1895 /* receive payload size bytes into page chain */
1896 ds = data_size;
1897 page = peer_req->pages;
1898 page_chain_for_each(page) {
1899 unsigned len = min_t(int, ds, PAGE_SIZE);
1900 data = kmap(page);
1901 err = drbd_recv_all_warn(peer_device->connection, data, len);
1902 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1903 drbd_err(device, "Fault injection: Corrupting data on receive\n");
1904 data[0] = data[0] ^ (unsigned long)-1;
1905 }
1906 kunmap(page);
1907 if (err) {
1908 drbd_free_peer_req(device, peer_req);
1909 return NULL;
1910 }
1911 ds -= len;
1912 }
1913
1914 if (digest_size) {
1915 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1916 if (memcmp(dig_in, dig_vv, digest_size)) {
1917 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1918 (unsigned long long)sector, data_size);
1919 drbd_free_peer_req(device, peer_req);
1920 return NULL;
1921 }
1922 }
1923 device->recv_cnt += data_size >> 9;
1924 return peer_req;
1925 }
1926
1927 /* drbd_drain_block() just takes a data block
1928 * out of the socket input buffer, and discards it.
1929 */
1930 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1931 {
1932 struct page *page;
1933 int err = 0;
1934 void *data;
1935
1936 if (!data_size)
1937 return 0;
1938
1939 page = drbd_alloc_pages(peer_device, 1, 1);
1940
1941 data = kmap(page);
1942 while (data_size) {
1943 unsigned int len = min_t(int, data_size, PAGE_SIZE);
1944
1945 err = drbd_recv_all_warn(peer_device->connection, data, len);
1946 if (err)
1947 break;
1948 data_size -= len;
1949 }
1950 kunmap(page);
1951 drbd_free_pages(peer_device->device, page, 0);
1952 return err;
1953 }
1954
1955 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1956 sector_t sector, int data_size)
1957 {
1958 struct bio_vec bvec;
1959 struct bvec_iter iter;
1960 struct bio *bio;
1961 int digest_size, err, expect;
1962 void *dig_in = peer_device->connection->int_dig_in;
1963 void *dig_vv = peer_device->connection->int_dig_vv;
1964
1965 digest_size = 0;
1966 if (peer_device->connection->peer_integrity_tfm) {
1967 digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1968 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1969 if (err)
1970 return err;
1971 data_size -= digest_size;
1972 }
1973
1974 /* optimistically update recv_cnt. if receiving fails below,
1975 * we disconnect anyways, and counters will be reset. */
1976 peer_device->device->recv_cnt += data_size>>9;
1977
1978 bio = req->master_bio;
1979 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
1980
1981 bio_for_each_segment(bvec, bio, iter) {
1982 void *mapped = kmap(bvec.bv_page) + bvec.bv_offset;
1983 expect = min_t(int, data_size, bvec.bv_len);
1984 err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
1985 kunmap(bvec.bv_page);
1986 if (err)
1987 return err;
1988 data_size -= expect;
1989 }
1990
1991 if (digest_size) {
1992 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
1993 if (memcmp(dig_in, dig_vv, digest_size)) {
1994 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
1995 return -EINVAL;
1996 }
1997 }
1998
1999 D_ASSERT(peer_device->device, data_size == 0);
2000 return 0;
2001 }
2002
2003 /*
2004 * e_end_resync_block() is called in ack_sender context via
2005 * drbd_finish_peer_reqs().
2006 */
2007 static int e_end_resync_block(struct drbd_work *w, int unused)
2008 {
2009 struct drbd_peer_request *peer_req =
2010 container_of(w, struct drbd_peer_request, w);
2011 struct drbd_peer_device *peer_device = peer_req->peer_device;
2012 struct drbd_device *device = peer_device->device;
2013 sector_t sector = peer_req->i.sector;
2014 int err;
2015
2016 D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2017
2018 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2019 drbd_set_in_sync(device, sector, peer_req->i.size);
2020 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2021 } else {
2022 /* Record failure to sync */
2023 drbd_rs_failed_io(device, sector, peer_req->i.size);
2024
2025 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2026 }
2027 dec_unacked(device);
2028
2029 return err;
2030 }
2031
2032 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2033 struct packet_info *pi) __releases(local)
2034 {
2035 struct drbd_device *device = peer_device->device;
2036 struct drbd_peer_request *peer_req;
2037
2038 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2039 if (!peer_req)
2040 goto fail;
2041
2042 dec_rs_pending(device);
2043
2044 inc_unacked(device);
2045 /* corresponding dec_unacked() in e_end_resync_block()
2046 * respective _drbd_clear_done_ee */
2047
2048 peer_req->w.cb = e_end_resync_block;
2049 peer_req->submit_jif = jiffies;
2050
2051 spin_lock_irq(&device->resource->req_lock);
2052 list_add_tail(&peer_req->w.list, &device->sync_ee);
2053 spin_unlock_irq(&device->resource->req_lock);
2054
2055 atomic_add(pi->size >> 9, &device->rs_sect_ev);
2056 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0,
2057 DRBD_FAULT_RS_WR) == 0)
2058 return 0;
2059
2060 /* don't care for the reason here */
2061 drbd_err(device, "submit failed, triggering re-connect\n");
2062 spin_lock_irq(&device->resource->req_lock);
2063 list_del(&peer_req->w.list);
2064 spin_unlock_irq(&device->resource->req_lock);
2065
2066 drbd_free_peer_req(device, peer_req);
2067 fail:
2068 put_ldev(device);
2069 return -EIO;
2070 }
2071
2072 static struct drbd_request *
2073 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2074 sector_t sector, bool missing_ok, const char *func)
2075 {
2076 struct drbd_request *req;
2077
2078 /* Request object according to our peer */
2079 req = (struct drbd_request *)(unsigned long)id;
2080 if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2081 return req;
2082 if (!missing_ok) {
2083 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2084 (unsigned long)id, (unsigned long long)sector);
2085 }
2086 return NULL;
2087 }
2088
2089 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2090 {
2091 struct drbd_peer_device *peer_device;
2092 struct drbd_device *device;
2093 struct drbd_request *req;
2094 sector_t sector;
2095 int err;
2096 struct p_data *p = pi->data;
2097
2098 peer_device = conn_peer_device(connection, pi->vnr);
2099 if (!peer_device)
2100 return -EIO;
2101 device = peer_device->device;
2102
2103 sector = be64_to_cpu(p->sector);
2104
2105 spin_lock_irq(&device->resource->req_lock);
2106 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2107 spin_unlock_irq(&device->resource->req_lock);
2108 if (unlikely(!req))
2109 return -EIO;
2110
2111 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
2112 * special casing it there for the various failure cases.
2113 * still no race with drbd_fail_pending_reads */
2114 err = recv_dless_read(peer_device, req, sector, pi->size);
2115 if (!err)
2116 req_mod(req, DATA_RECEIVED);
2117 /* else: nothing. handled from drbd_disconnect...
2118 * I don't think we may complete this just yet
2119 * in case we are "on-disconnect: freeze" */
2120
2121 return err;
2122 }
2123
2124 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2125 {
2126 struct drbd_peer_device *peer_device;
2127 struct drbd_device *device;
2128 sector_t sector;
2129 int err;
2130 struct p_data *p = pi->data;
2131
2132 peer_device = conn_peer_device(connection, pi->vnr);
2133 if (!peer_device)
2134 return -EIO;
2135 device = peer_device->device;
2136
2137 sector = be64_to_cpu(p->sector);
2138 D_ASSERT(device, p->block_id == ID_SYNCER);
2139
2140 if (get_ldev(device)) {
2141 /* data is submitted to disk within recv_resync_read.
2142 * corresponding put_ldev done below on error,
2143 * or in drbd_peer_request_endio. */
2144 err = recv_resync_read(peer_device, sector, pi);
2145 } else {
2146 if (__ratelimit(&drbd_ratelimit_state))
2147 drbd_err(device, "Can not write resync data to local disk.\n");
2148
2149 err = drbd_drain_block(peer_device, pi->size);
2150
2151 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2152 }
2153
2154 atomic_add(pi->size >> 9, &device->rs_sect_in);
2155
2156 return err;
2157 }
2158
2159 static void restart_conflicting_writes(struct drbd_device *device,
2160 sector_t sector, int size)
2161 {
2162 struct drbd_interval *i;
2163 struct drbd_request *req;
2164
2165 drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2166 if (!i->local)
2167 continue;
2168 req = container_of(i, struct drbd_request, i);
2169 if (req->rq_state & RQ_LOCAL_PENDING ||
2170 !(req->rq_state & RQ_POSTPONED))
2171 continue;
2172 /* as it is RQ_POSTPONED, this will cause it to
2173 * be queued on the retry workqueue. */
2174 __req_mod(req, CONFLICT_RESOLVED, NULL);
2175 }
2176 }
2177
2178 /*
2179 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2180 */
2181 static int e_end_block(struct drbd_work *w, int cancel)
2182 {
2183 struct drbd_peer_request *peer_req =
2184 container_of(w, struct drbd_peer_request, w);
2185 struct drbd_peer_device *peer_device = peer_req->peer_device;
2186 struct drbd_device *device = peer_device->device;
2187 sector_t sector = peer_req->i.sector;
2188 int err = 0, pcmd;
2189
2190 if (peer_req->flags & EE_SEND_WRITE_ACK) {
2191 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2192 pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2193 device->state.conn <= C_PAUSED_SYNC_T &&
2194 peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2195 P_RS_WRITE_ACK : P_WRITE_ACK;
2196 err = drbd_send_ack(peer_device, pcmd, peer_req);
2197 if (pcmd == P_RS_WRITE_ACK)
2198 drbd_set_in_sync(device, sector, peer_req->i.size);
2199 } else {
2200 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2201 /* we expect it to be marked out of sync anyways...
2202 * maybe assert this? */
2203 }
2204 dec_unacked(device);
2205 }
2206
2207 /* we delete from the conflict detection hash _after_ we sent out the
2208 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */
2209 if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2210 spin_lock_irq(&device->resource->req_lock);
2211 D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2212 drbd_remove_epoch_entry_interval(device, peer_req);
2213 if (peer_req->flags & EE_RESTART_REQUESTS)
2214 restart_conflicting_writes(device, sector, peer_req->i.size);
2215 spin_unlock_irq(&device->resource->req_lock);
2216 } else
2217 D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2218
2219 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2220
2221 return err;
2222 }
2223
2224 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2225 {
2226 struct drbd_peer_request *peer_req =
2227 container_of(w, struct drbd_peer_request, w);
2228 struct drbd_peer_device *peer_device = peer_req->peer_device;
2229 int err;
2230
2231 err = drbd_send_ack(peer_device, ack, peer_req);
2232 dec_unacked(peer_device->device);
2233
2234 return err;
2235 }
2236
2237 static int e_send_superseded(struct drbd_work *w, int unused)
2238 {
2239 return e_send_ack(w, P_SUPERSEDED);
2240 }
2241
2242 static int e_send_retry_write(struct drbd_work *w, int unused)
2243 {
2244 struct drbd_peer_request *peer_req =
2245 container_of(w, struct drbd_peer_request, w);
2246 struct drbd_connection *connection = peer_req->peer_device->connection;
2247
2248 return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2249 P_RETRY_WRITE : P_SUPERSEDED);
2250 }
2251
2252 static bool seq_greater(u32 a, u32 b)
2253 {
2254 /*
2255 * We assume 32-bit wrap-around here.
2256 * For 24-bit wrap-around, we would have to shift:
2257 * a <<= 8; b <<= 8;
2258 */
2259 return (s32)a - (s32)b > 0;
2260 }
2261
2262 static u32 seq_max(u32 a, u32 b)
2263 {
2264 return seq_greater(a, b) ? a : b;
2265 }
2266
2267 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2268 {
2269 struct drbd_device *device = peer_device->device;
2270 unsigned int newest_peer_seq;
2271
2272 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2273 spin_lock(&device->peer_seq_lock);
2274 newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2275 device->peer_seq = newest_peer_seq;
2276 spin_unlock(&device->peer_seq_lock);
2277 /* wake up only if we actually changed device->peer_seq */
2278 if (peer_seq == newest_peer_seq)
2279 wake_up(&device->seq_wait);
2280 }
2281 }
2282
2283 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2284 {
2285 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2286 }
2287
2288 /* maybe change sync_ee into interval trees as well? */
2289 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2290 {
2291 struct drbd_peer_request *rs_req;
2292 bool rv = false;
2293
2294 spin_lock_irq(&device->resource->req_lock);
2295 list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2296 if (overlaps(peer_req->i.sector, peer_req->i.size,
2297 rs_req->i.sector, rs_req->i.size)) {
2298 rv = true;
2299 break;
2300 }
2301 }
2302 spin_unlock_irq(&device->resource->req_lock);
2303
2304 return rv;
2305 }
2306
2307 /* Called from receive_Data.
2308 * Synchronize packets on sock with packets on msock.
2309 *
2310 * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2311 * packet traveling on msock, they are still processed in the order they have
2312 * been sent.
2313 *
2314 * Note: we don't care for Ack packets overtaking P_DATA packets.
2315 *
2316 * In case packet_seq is larger than device->peer_seq number, there are
2317 * outstanding packets on the msock. We wait for them to arrive.
2318 * In case we are the logically next packet, we update device->peer_seq
2319 * ourselves. Correctly handles 32bit wrap around.
2320 *
2321 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2322 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2323 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2324 * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2325 *
2326 * returns 0 if we may process the packet,
2327 * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2328 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2329 {
2330 struct drbd_device *device = peer_device->device;
2331 DEFINE_WAIT(wait);
2332 long timeout;
2333 int ret = 0, tp;
2334
2335 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2336 return 0;
2337
2338 spin_lock(&device->peer_seq_lock);
2339 for (;;) {
2340 if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2341 device->peer_seq = seq_max(device->peer_seq, peer_seq);
2342 break;
2343 }
2344
2345 if (signal_pending(current)) {
2346 ret = -ERESTARTSYS;
2347 break;
2348 }
2349
2350 rcu_read_lock();
2351 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2352 rcu_read_unlock();
2353
2354 if (!tp)
2355 break;
2356
2357 /* Only need to wait if two_primaries is enabled */
2358 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2359 spin_unlock(&device->peer_seq_lock);
2360 rcu_read_lock();
2361 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2362 rcu_read_unlock();
2363 timeout = schedule_timeout(timeout);
2364 spin_lock(&device->peer_seq_lock);
2365 if (!timeout) {
2366 ret = -ETIMEDOUT;
2367 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2368 break;
2369 }
2370 }
2371 spin_unlock(&device->peer_seq_lock);
2372 finish_wait(&device->seq_wait, &wait);
2373 return ret;
2374 }
2375
2376 /* see also bio_flags_to_wire()
2377 * DRBD_REQ_*, because we need to semantically map the flags to data packet
2378 * flags and back. We may replicate to other kernel versions. */
2379 static unsigned long wire_flags_to_bio_flags(u32 dpf)
2380 {
2381 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2382 (dpf & DP_FUA ? REQ_FUA : 0) |
2383 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2384 }
2385
2386 static unsigned long wire_flags_to_bio_op(u32 dpf)
2387 {
2388 if (dpf & DP_DISCARD)
2389 return REQ_OP_DISCARD;
2390 else
2391 return REQ_OP_WRITE;
2392 }
2393
2394 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2395 unsigned int size)
2396 {
2397 struct drbd_interval *i;
2398
2399 repeat:
2400 drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2401 struct drbd_request *req;
2402 struct bio_and_error m;
2403
2404 if (!i->local)
2405 continue;
2406 req = container_of(i, struct drbd_request, i);
2407 if (!(req->rq_state & RQ_POSTPONED))
2408 continue;
2409 req->rq_state &= ~RQ_POSTPONED;
2410 __req_mod(req, NEG_ACKED, &m);
2411 spin_unlock_irq(&device->resource->req_lock);
2412 if (m.bio)
2413 complete_master_bio(device, &m);
2414 spin_lock_irq(&device->resource->req_lock);
2415 goto repeat;
2416 }
2417 }
2418
2419 static int handle_write_conflicts(struct drbd_device *device,
2420 struct drbd_peer_request *peer_req)
2421 {
2422 struct drbd_connection *connection = peer_req->peer_device->connection;
2423 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2424 sector_t sector = peer_req->i.sector;
2425 const unsigned int size = peer_req->i.size;
2426 struct drbd_interval *i;
2427 bool equal;
2428 int err;
2429
2430 /*
2431 * Inserting the peer request into the write_requests tree will prevent
2432 * new conflicting local requests from being added.
2433 */
2434 drbd_insert_interval(&device->write_requests, &peer_req->i);
2435
2436 repeat:
2437 drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2438 if (i == &peer_req->i)
2439 continue;
2440 if (i->completed)
2441 continue;
2442
2443 if (!i->local) {
2444 /*
2445 * Our peer has sent a conflicting remote request; this
2446 * should not happen in a two-node setup. Wait for the
2447 * earlier peer request to complete.
2448 */
2449 err = drbd_wait_misc(device, i);
2450 if (err)
2451 goto out;
2452 goto repeat;
2453 }
2454
2455 equal = i->sector == sector && i->size == size;
2456 if (resolve_conflicts) {
2457 /*
2458 * If the peer request is fully contained within the
2459 * overlapping request, it can be considered overwritten
2460 * and thus superseded; otherwise, it will be retried
2461 * once all overlapping requests have completed.
2462 */
2463 bool superseded = i->sector <= sector && i->sector +
2464 (i->size >> 9) >= sector + (size >> 9);
2465
2466 if (!equal)
2467 drbd_alert(device, "Concurrent writes detected: "
2468 "local=%llus +%u, remote=%llus +%u, "
2469 "assuming %s came first\n",
2470 (unsigned long long)i->sector, i->size,
2471 (unsigned long long)sector, size,
2472 superseded ? "local" : "remote");
2473
2474 peer_req->w.cb = superseded ? e_send_superseded :
2475 e_send_retry_write;
2476 list_add_tail(&peer_req->w.list, &device->done_ee);
2477 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2478
2479 err = -ENOENT;
2480 goto out;
2481 } else {
2482 struct drbd_request *req =
2483 container_of(i, struct drbd_request, i);
2484
2485 if (!equal)
2486 drbd_alert(device, "Concurrent writes detected: "
2487 "local=%llus +%u, remote=%llus +%u\n",
2488 (unsigned long long)i->sector, i->size,
2489 (unsigned long long)sector, size);
2490
2491 if (req->rq_state & RQ_LOCAL_PENDING ||
2492 !(req->rq_state & RQ_POSTPONED)) {
2493 /*
2494 * Wait for the node with the discard flag to
2495 * decide if this request has been superseded
2496 * or needs to be retried.
2497 * Requests that have been superseded will
2498 * disappear from the write_requests tree.
2499 *
2500 * In addition, wait for the conflicting
2501 * request to finish locally before submitting
2502 * the conflicting peer request.
2503 */
2504 err = drbd_wait_misc(device, &req->i);
2505 if (err) {
2506 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2507 fail_postponed_requests(device, sector, size);
2508 goto out;
2509 }
2510 goto repeat;
2511 }
2512 /*
2513 * Remember to restart the conflicting requests after
2514 * the new peer request has completed.
2515 */
2516 peer_req->flags |= EE_RESTART_REQUESTS;
2517 }
2518 }
2519 err = 0;
2520
2521 out:
2522 if (err)
2523 drbd_remove_epoch_entry_interval(device, peer_req);
2524 return err;
2525 }
2526
2527 /* mirrored write */
2528 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2529 {
2530 struct drbd_peer_device *peer_device;
2531 struct drbd_device *device;
2532 struct net_conf *nc;
2533 sector_t sector;
2534 struct drbd_peer_request *peer_req;
2535 struct p_data *p = pi->data;
2536 u32 peer_seq = be32_to_cpu(p->seq_num);
2537 int op, op_flags;
2538 u32 dp_flags;
2539 int err, tp;
2540
2541 peer_device = conn_peer_device(connection, pi->vnr);
2542 if (!peer_device)
2543 return -EIO;
2544 device = peer_device->device;
2545
2546 if (!get_ldev(device)) {
2547 int err2;
2548
2549 err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2550 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2551 atomic_inc(&connection->current_epoch->epoch_size);
2552 err2 = drbd_drain_block(peer_device, pi->size);
2553 if (!err)
2554 err = err2;
2555 return err;
2556 }
2557
2558 /*
2559 * Corresponding put_ldev done either below (on various errors), or in
2560 * drbd_peer_request_endio, if we successfully submit the data at the
2561 * end of this function.
2562 */
2563
2564 sector = be64_to_cpu(p->sector);
2565 peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2566 if (!peer_req) {
2567 put_ldev(device);
2568 return -EIO;
2569 }
2570
2571 peer_req->w.cb = e_end_block;
2572 peer_req->submit_jif = jiffies;
2573 peer_req->flags |= EE_APPLICATION;
2574
2575 dp_flags = be32_to_cpu(p->dp_flags);
2576 op = wire_flags_to_bio_op(dp_flags);
2577 op_flags = wire_flags_to_bio_flags(dp_flags);
2578 if (pi->cmd == P_TRIM) {
2579 D_ASSERT(peer_device, peer_req->i.size > 0);
2580 D_ASSERT(peer_device, op == REQ_OP_DISCARD);
2581 D_ASSERT(peer_device, peer_req->pages == NULL);
2582 } else if (peer_req->pages == NULL) {
2583 D_ASSERT(device, peer_req->i.size == 0);
2584 D_ASSERT(device, dp_flags & DP_FLUSH);
2585 }
2586
2587 if (dp_flags & DP_MAY_SET_IN_SYNC)
2588 peer_req->flags |= EE_MAY_SET_IN_SYNC;
2589
2590 spin_lock(&connection->epoch_lock);
2591 peer_req->epoch = connection->current_epoch;
2592 atomic_inc(&peer_req->epoch->epoch_size);
2593 atomic_inc(&peer_req->epoch->active);
2594 spin_unlock(&connection->epoch_lock);
2595
2596 rcu_read_lock();
2597 nc = rcu_dereference(peer_device->connection->net_conf);
2598 tp = nc->two_primaries;
2599 if (peer_device->connection->agreed_pro_version < 100) {
2600 switch (nc->wire_protocol) {
2601 case DRBD_PROT_C:
2602 dp_flags |= DP_SEND_WRITE_ACK;
2603 break;
2604 case DRBD_PROT_B:
2605 dp_flags |= DP_SEND_RECEIVE_ACK;
2606 break;
2607 }
2608 }
2609 rcu_read_unlock();
2610
2611 if (dp_flags & DP_SEND_WRITE_ACK) {
2612 peer_req->flags |= EE_SEND_WRITE_ACK;
2613 inc_unacked(device);
2614 /* corresponding dec_unacked() in e_end_block()
2615 * respective _drbd_clear_done_ee */
2616 }
2617
2618 if (dp_flags & DP_SEND_RECEIVE_ACK) {
2619 /* I really don't like it that the receiver thread
2620 * sends on the msock, but anyways */
2621 drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2622 }
2623
2624 if (tp) {
2625 /* two primaries implies protocol C */
2626 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2627 peer_req->flags |= EE_IN_INTERVAL_TREE;
2628 err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2629 if (err)
2630 goto out_interrupted;
2631 spin_lock_irq(&device->resource->req_lock);
2632 err = handle_write_conflicts(device, peer_req);
2633 if (err) {
2634 spin_unlock_irq(&device->resource->req_lock);
2635 if (err == -ENOENT) {
2636 put_ldev(device);
2637 return 0;
2638 }
2639 goto out_interrupted;
2640 }
2641 } else {
2642 update_peer_seq(peer_device, peer_seq);
2643 spin_lock_irq(&device->resource->req_lock);
2644 }
2645 /* TRIM and WRITE_SAME are processed synchronously,
2646 * we wait for all pending requests, respectively wait for
2647 * active_ee to become empty in drbd_submit_peer_request();
2648 * better not add ourselves here. */
2649 if ((peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) == 0)
2650 list_add_tail(&peer_req->w.list, &device->active_ee);
2651 spin_unlock_irq(&device->resource->req_lock);
2652
2653 if (device->state.conn == C_SYNC_TARGET)
2654 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2655
2656 if (device->state.pdsk < D_INCONSISTENT) {
2657 /* In case we have the only disk of the cluster, */
2658 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2659 peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2660 drbd_al_begin_io(device, &peer_req->i);
2661 peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2662 }
2663
2664 err = drbd_submit_peer_request(device, peer_req, op, op_flags,
2665 DRBD_FAULT_DT_WR);
2666 if (!err)
2667 return 0;
2668
2669 /* don't care for the reason here */
2670 drbd_err(device, "submit failed, triggering re-connect\n");
2671 spin_lock_irq(&device->resource->req_lock);
2672 list_del(&peer_req->w.list);
2673 drbd_remove_epoch_entry_interval(device, peer_req);
2674 spin_unlock_irq(&device->resource->req_lock);
2675 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2676 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2677 drbd_al_complete_io(device, &peer_req->i);
2678 }
2679
2680 out_interrupted:
2681 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2682 put_ldev(device);
2683 drbd_free_peer_req(device, peer_req);
2684 return err;
2685 }
2686
2687 /* We may throttle resync, if the lower device seems to be busy,
2688 * and current sync rate is above c_min_rate.
2689 *
2690 * To decide whether or not the lower device is busy, we use a scheme similar
2691 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2692 * (more than 64 sectors) of activity we cannot account for with our own resync
2693 * activity, it obviously is "busy".
2694 *
2695 * The current sync rate used here uses only the most recent two step marks,
2696 * to have a short time average so we can react faster.
2697 */
2698 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2699 bool throttle_if_app_is_waiting)
2700 {
2701 struct lc_element *tmp;
2702 bool throttle = drbd_rs_c_min_rate_throttle(device);
2703
2704 if (!throttle || throttle_if_app_is_waiting)
2705 return throttle;
2706
2707 spin_lock_irq(&device->al_lock);
2708 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2709 if (tmp) {
2710 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2711 if (test_bit(BME_PRIORITY, &bm_ext->flags))
2712 throttle = false;
2713 /* Do not slow down if app IO is already waiting for this extent,
2714 * and our progress is necessary for application IO to complete. */
2715 }
2716 spin_unlock_irq(&device->al_lock);
2717
2718 return throttle;
2719 }
2720
2721 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2722 {
2723 struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk;
2724 unsigned long db, dt, dbdt;
2725 unsigned int c_min_rate;
2726 int curr_events;
2727
2728 rcu_read_lock();
2729 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2730 rcu_read_unlock();
2731
2732 /* feature disabled? */
2733 if (c_min_rate == 0)
2734 return false;
2735
2736 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
2737 (int)part_stat_read(&disk->part0, sectors[1]) -
2738 atomic_read(&device->rs_sect_ev);
2739
2740 if (atomic_read(&device->ap_actlog_cnt)
2741 || curr_events - device->rs_last_events > 64) {
2742 unsigned long rs_left;
2743 int i;
2744
2745 device->rs_last_events = curr_events;
2746
2747 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2748 * approx. */
2749 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2750
2751 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2752 rs_left = device->ov_left;
2753 else
2754 rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2755
2756 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2757 if (!dt)
2758 dt++;
2759 db = device->rs_mark_left[i] - rs_left;
2760 dbdt = Bit2KB(db/dt);
2761
2762 if (dbdt > c_min_rate)
2763 return true;
2764 }
2765 return false;
2766 }
2767
2768 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2769 {
2770 struct drbd_peer_device *peer_device;
2771 struct drbd_device *device;
2772 sector_t sector;
2773 sector_t capacity;
2774 struct drbd_peer_request *peer_req;
2775 struct digest_info *di = NULL;
2776 int size, verb;
2777 unsigned int fault_type;
2778 struct p_block_req *p = pi->data;
2779
2780 peer_device = conn_peer_device(connection, pi->vnr);
2781 if (!peer_device)
2782 return -EIO;
2783 device = peer_device->device;
2784 capacity = drbd_get_capacity(device->this_bdev);
2785
2786 sector = be64_to_cpu(p->sector);
2787 size = be32_to_cpu(p->blksize);
2788
2789 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2790 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2791 (unsigned long long)sector, size);
2792 return -EINVAL;
2793 }
2794 if (sector + (size>>9) > capacity) {
2795 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2796 (unsigned long long)sector, size);
2797 return -EINVAL;
2798 }
2799
2800 if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2801 verb = 1;
2802 switch (pi->cmd) {
2803 case P_DATA_REQUEST:
2804 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2805 break;
2806 case P_RS_THIN_REQ:
2807 case P_RS_DATA_REQUEST:
2808 case P_CSUM_RS_REQUEST:
2809 case P_OV_REQUEST:
2810 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2811 break;
2812 case P_OV_REPLY:
2813 verb = 0;
2814 dec_rs_pending(device);
2815 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2816 break;
2817 default:
2818 BUG();
2819 }
2820 if (verb && __ratelimit(&drbd_ratelimit_state))
2821 drbd_err(device, "Can not satisfy peer's read request, "
2822 "no local data.\n");
2823
2824 /* drain possibly payload */
2825 return drbd_drain_block(peer_device, pi->size);
2826 }
2827
2828 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2829 * "criss-cross" setup, that might cause write-out on some other DRBD,
2830 * which in turn might block on the other node at this very place. */
2831 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2832 size, GFP_NOIO);
2833 if (!peer_req) {
2834 put_ldev(device);
2835 return -ENOMEM;
2836 }
2837
2838 switch (pi->cmd) {
2839 case P_DATA_REQUEST:
2840 peer_req->w.cb = w_e_end_data_req;
2841 fault_type = DRBD_FAULT_DT_RD;
2842 /* application IO, don't drbd_rs_begin_io */
2843 peer_req->flags |= EE_APPLICATION;
2844 goto submit;
2845
2846 case P_RS_THIN_REQ:
2847 /* If at some point in the future we have a smart way to
2848 find out if this data block is completely deallocated,
2849 then we would do something smarter here than reading
2850 the block... */
2851 peer_req->flags |= EE_RS_THIN_REQ;
2852 case P_RS_DATA_REQUEST:
2853 peer_req->w.cb = w_e_end_rsdata_req;
2854 fault_type = DRBD_FAULT_RS_RD;
2855 /* used in the sector offset progress display */
2856 device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2857 break;
2858
2859 case P_OV_REPLY:
2860 case P_CSUM_RS_REQUEST:
2861 fault_type = DRBD_FAULT_RS_RD;
2862 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2863 if (!di)
2864 goto out_free_e;
2865
2866 di->digest_size = pi->size;
2867 di->digest = (((char *)di)+sizeof(struct digest_info));
2868
2869 peer_req->digest = di;
2870 peer_req->flags |= EE_HAS_DIGEST;
2871
2872 if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2873 goto out_free_e;
2874
2875 if (pi->cmd == P_CSUM_RS_REQUEST) {
2876 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2877 peer_req->w.cb = w_e_end_csum_rs_req;
2878 /* used in the sector offset progress display */
2879 device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2880 /* remember to report stats in drbd_resync_finished */
2881 device->use_csums = true;
2882 } else if (pi->cmd == P_OV_REPLY) {
2883 /* track progress, we may need to throttle */
2884 atomic_add(size >> 9, &device->rs_sect_in);
2885 peer_req->w.cb = w_e_end_ov_reply;
2886 dec_rs_pending(device);
2887 /* drbd_rs_begin_io done when we sent this request,
2888 * but accounting still needs to be done. */
2889 goto submit_for_resync;
2890 }
2891 break;
2892
2893 case P_OV_REQUEST:
2894 if (device->ov_start_sector == ~(sector_t)0 &&
2895 peer_device->connection->agreed_pro_version >= 90) {
2896 unsigned long now = jiffies;
2897 int i;
2898 device->ov_start_sector = sector;
2899 device->ov_position = sector;
2900 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2901 device->rs_total = device->ov_left;
2902 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2903 device->rs_mark_left[i] = device->ov_left;
2904 device->rs_mark_time[i] = now;
2905 }
2906 drbd_info(device, "Online Verify start sector: %llu\n",
2907 (unsigned long long)sector);
2908 }
2909 peer_req->w.cb = w_e_end_ov_req;
2910 fault_type = DRBD_FAULT_RS_RD;
2911 break;
2912
2913 default:
2914 BUG();
2915 }
2916
2917 /* Throttle, drbd_rs_begin_io and submit should become asynchronous
2918 * wrt the receiver, but it is not as straightforward as it may seem.
2919 * Various places in the resync start and stop logic assume resync
2920 * requests are processed in order, requeuing this on the worker thread
2921 * introduces a bunch of new code for synchronization between threads.
2922 *
2923 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2924 * "forever", throttling after drbd_rs_begin_io will lock that extent
2925 * for application writes for the same time. For now, just throttle
2926 * here, where the rest of the code expects the receiver to sleep for
2927 * a while, anyways.
2928 */
2929
2930 /* Throttle before drbd_rs_begin_io, as that locks out application IO;
2931 * this defers syncer requests for some time, before letting at least
2932 * on request through. The resync controller on the receiving side
2933 * will adapt to the incoming rate accordingly.
2934 *
2935 * We cannot throttle here if remote is Primary/SyncTarget:
2936 * we would also throttle its application reads.
2937 * In that case, throttling is done on the SyncTarget only.
2938 */
2939
2940 /* Even though this may be a resync request, we do add to "read_ee";
2941 * "sync_ee" is only used for resync WRITEs.
2942 * Add to list early, so debugfs can find this request
2943 * even if we have to sleep below. */
2944 spin_lock_irq(&device->resource->req_lock);
2945 list_add_tail(&peer_req->w.list, &device->read_ee);
2946 spin_unlock_irq(&device->resource->req_lock);
2947
2948 update_receiver_timing_details(connection, drbd_rs_should_slow_down);
2949 if (device->state.peer != R_PRIMARY
2950 && drbd_rs_should_slow_down(device, sector, false))
2951 schedule_timeout_uninterruptible(HZ/10);
2952 update_receiver_timing_details(connection, drbd_rs_begin_io);
2953 if (drbd_rs_begin_io(device, sector))
2954 goto out_free_e;
2955
2956 submit_for_resync:
2957 atomic_add(size >> 9, &device->rs_sect_ev);
2958
2959 submit:
2960 update_receiver_timing_details(connection, drbd_submit_peer_request);
2961 inc_unacked(device);
2962 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
2963 fault_type) == 0)
2964 return 0;
2965
2966 /* don't care for the reason here */
2967 drbd_err(device, "submit failed, triggering re-connect\n");
2968
2969 out_free_e:
2970 spin_lock_irq(&device->resource->req_lock);
2971 list_del(&peer_req->w.list);
2972 spin_unlock_irq(&device->resource->req_lock);
2973 /* no drbd_rs_complete_io(), we are dropping the connection anyways */
2974
2975 put_ldev(device);
2976 drbd_free_peer_req(device, peer_req);
2977 return -EIO;
2978 }
2979
2980 /**
2981 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries
2982 */
2983 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
2984 {
2985 struct drbd_device *device = peer_device->device;
2986 int self, peer, rv = -100;
2987 unsigned long ch_self, ch_peer;
2988 enum drbd_after_sb_p after_sb_0p;
2989
2990 self = device->ldev->md.uuid[UI_BITMAP] & 1;
2991 peer = device->p_uuid[UI_BITMAP] & 1;
2992
2993 ch_peer = device->p_uuid[UI_SIZE];
2994 ch_self = device->comm_bm_set;
2995
2996 rcu_read_lock();
2997 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
2998 rcu_read_unlock();
2999 switch (after_sb_0p) {
3000 case ASB_CONSENSUS:
3001 case ASB_DISCARD_SECONDARY:
3002 case ASB_CALL_HELPER:
3003 case ASB_VIOLENTLY:
3004 drbd_err(device, "Configuration error.\n");
3005 break;
3006 case ASB_DISCONNECT:
3007 break;
3008 case ASB_DISCARD_YOUNGER_PRI:
3009 if (self == 0 && peer == 1) {
3010 rv = -1;
3011 break;
3012 }
3013 if (self == 1 && peer == 0) {
3014 rv = 1;
3015 break;
3016 }
3017 /* Else fall through to one of the other strategies... */
3018 case ASB_DISCARD_OLDER_PRI:
3019 if (self == 0 && peer == 1) {
3020 rv = 1;
3021 break;
3022 }
3023 if (self == 1 && peer == 0) {
3024 rv = -1;
3025 break;
3026 }
3027 /* Else fall through to one of the other strategies... */
3028 drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3029 "Using discard-least-changes instead\n");
3030 case ASB_DISCARD_ZERO_CHG:
3031 if (ch_peer == 0 && ch_self == 0) {
3032 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3033 ? -1 : 1;
3034 break;
3035 } else {
3036 if (ch_peer == 0) { rv = 1; break; }
3037 if (ch_self == 0) { rv = -1; break; }
3038 }
3039 if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3040 break;
3041 case ASB_DISCARD_LEAST_CHG:
3042 if (ch_self < ch_peer)
3043 rv = -1;
3044 else if (ch_self > ch_peer)
3045 rv = 1;
3046 else /* ( ch_self == ch_peer ) */
3047 /* Well, then use something else. */
3048 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3049 ? -1 : 1;
3050 break;
3051 case ASB_DISCARD_LOCAL:
3052 rv = -1;
3053 break;
3054 case ASB_DISCARD_REMOTE:
3055 rv = 1;
3056 }
3057
3058 return rv;
3059 }
3060
3061 /**
3062 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary
3063 */
3064 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3065 {
3066 struct drbd_device *device = peer_device->device;
3067 int hg, rv = -100;
3068 enum drbd_after_sb_p after_sb_1p;
3069
3070 rcu_read_lock();
3071 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3072 rcu_read_unlock();
3073 switch (after_sb_1p) {
3074 case ASB_DISCARD_YOUNGER_PRI:
3075 case ASB_DISCARD_OLDER_PRI:
3076 case ASB_DISCARD_LEAST_CHG:
3077 case ASB_DISCARD_LOCAL:
3078 case ASB_DISCARD_REMOTE:
3079 case ASB_DISCARD_ZERO_CHG:
3080 drbd_err(device, "Configuration error.\n");
3081 break;
3082 case ASB_DISCONNECT:
3083 break;
3084 case ASB_CONSENSUS:
3085 hg = drbd_asb_recover_0p(peer_device);
3086 if (hg == -1 && device->state.role == R_SECONDARY)
3087 rv = hg;
3088 if (hg == 1 && device->state.role == R_PRIMARY)
3089 rv = hg;
3090 break;
3091 case ASB_VIOLENTLY:
3092 rv = drbd_asb_recover_0p(peer_device);
3093 break;
3094 case ASB_DISCARD_SECONDARY:
3095 return device->state.role == R_PRIMARY ? 1 : -1;
3096 case ASB_CALL_HELPER:
3097 hg = drbd_asb_recover_0p(peer_device);
3098 if (hg == -1 && device->state.role == R_PRIMARY) {
3099 enum drbd_state_rv rv2;
3100
3101 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3102 * we might be here in C_WF_REPORT_PARAMS which is transient.
3103 * we do not need to wait for the after state change work either. */
3104 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3105 if (rv2 != SS_SUCCESS) {
3106 drbd_khelper(device, "pri-lost-after-sb");
3107 } else {
3108 drbd_warn(device, "Successfully gave up primary role.\n");
3109 rv = hg;
3110 }
3111 } else
3112 rv = hg;
3113 }
3114
3115 return rv;
3116 }
3117
3118 /**
3119 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries
3120 */
3121 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3122 {
3123 struct drbd_device *device = peer_device->device;
3124 int hg, rv = -100;
3125 enum drbd_after_sb_p after_sb_2p;
3126
3127 rcu_read_lock();
3128 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3129 rcu_read_unlock();
3130 switch (after_sb_2p) {
3131 case ASB_DISCARD_YOUNGER_PRI:
3132 case ASB_DISCARD_OLDER_PRI:
3133 case ASB_DISCARD_LEAST_CHG:
3134 case ASB_DISCARD_LOCAL:
3135 case ASB_DISCARD_REMOTE:
3136 case ASB_CONSENSUS:
3137 case ASB_DISCARD_SECONDARY:
3138 case ASB_DISCARD_ZERO_CHG:
3139 drbd_err(device, "Configuration error.\n");
3140 break;
3141 case ASB_VIOLENTLY:
3142 rv = drbd_asb_recover_0p(peer_device);
3143 break;
3144 case ASB_DISCONNECT:
3145 break;
3146 case ASB_CALL_HELPER:
3147 hg = drbd_asb_recover_0p(peer_device);
3148 if (hg == -1) {
3149 enum drbd_state_rv rv2;
3150
3151 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3152 * we might be here in C_WF_REPORT_PARAMS which is transient.
3153 * we do not need to wait for the after state change work either. */
3154 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3155 if (rv2 != SS_SUCCESS) {
3156 drbd_khelper(device, "pri-lost-after-sb");
3157 } else {
3158 drbd_warn(device, "Successfully gave up primary role.\n");
3159 rv = hg;
3160 }
3161 } else
3162 rv = hg;
3163 }
3164
3165 return rv;
3166 }
3167
3168 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3169 u64 bits, u64 flags)
3170 {
3171 if (!uuid) {
3172 drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3173 return;
3174 }
3175 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3176 text,
3177 (unsigned long long)uuid[UI_CURRENT],
3178 (unsigned long long)uuid[UI_BITMAP],
3179 (unsigned long long)uuid[UI_HISTORY_START],
3180 (unsigned long long)uuid[UI_HISTORY_END],
3181 (unsigned long long)bits,
3182 (unsigned long long)flags);
3183 }
3184
3185 /*
3186 100 after split brain try auto recover
3187 2 C_SYNC_SOURCE set BitMap
3188 1 C_SYNC_SOURCE use BitMap
3189 0 no Sync
3190 -1 C_SYNC_TARGET use BitMap
3191 -2 C_SYNC_TARGET set BitMap
3192 -100 after split brain, disconnect
3193 -1000 unrelated data
3194 -1091 requires proto 91
3195 -1096 requires proto 96
3196 */
3197
3198 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3199 {
3200 struct drbd_peer_device *const peer_device = first_peer_device(device);
3201 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3202 u64 self, peer;
3203 int i, j;
3204
3205 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3206 peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3207
3208 *rule_nr = 10;
3209 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3210 return 0;
3211
3212 *rule_nr = 20;
3213 if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3214 peer != UUID_JUST_CREATED)
3215 return -2;
3216
3217 *rule_nr = 30;
3218 if (self != UUID_JUST_CREATED &&
3219 (peer == UUID_JUST_CREATED || peer == (u64)0))
3220 return 2;
3221
3222 if (self == peer) {
3223 int rct, dc; /* roles at crash time */
3224
3225 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3226
3227 if (connection->agreed_pro_version < 91)
3228 return -1091;
3229
3230 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3231 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3232 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3233 drbd_uuid_move_history(device);
3234 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3235 device->ldev->md.uuid[UI_BITMAP] = 0;
3236
3237 drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3238 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3239 *rule_nr = 34;
3240 } else {
3241 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3242 *rule_nr = 36;
3243 }
3244
3245 return 1;
3246 }
3247
3248 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3249
3250 if (connection->agreed_pro_version < 91)
3251 return -1091;
3252
3253 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3254 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3255 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3256
3257 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3258 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3259 device->p_uuid[UI_BITMAP] = 0UL;
3260
3261 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3262 *rule_nr = 35;
3263 } else {
3264 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3265 *rule_nr = 37;
3266 }
3267
3268 return -1;
3269 }
3270
3271 /* Common power [off|failure] */
3272 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3273 (device->p_uuid[UI_FLAGS] & 2);
3274 /* lowest bit is set when we were primary,
3275 * next bit (weight 2) is set when peer was primary */
3276 *rule_nr = 40;
3277
3278 /* Neither has the "crashed primary" flag set,
3279 * only a replication link hickup. */
3280 if (rct == 0)
3281 return 0;
3282
3283 /* Current UUID equal and no bitmap uuid; does not necessarily
3284 * mean this was a "simultaneous hard crash", maybe IO was
3285 * frozen, so no UUID-bump happened.
3286 * This is a protocol change, overload DRBD_FF_WSAME as flag
3287 * for "new-enough" peer DRBD version. */
3288 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3289 *rule_nr = 41;
3290 if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3291 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3292 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3293 }
3294 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3295 /* At least one has the "crashed primary" bit set,
3296 * both are primary now, but neither has rotated its UUIDs?
3297 * "Can not happen." */
3298 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3299 return -100;
3300 }
3301 if (device->state.role == R_PRIMARY)
3302 return 1;
3303 return -1;
3304 }
3305
3306 /* Both are secondary.
3307 * Really looks like recovery from simultaneous hard crash.
3308 * Check which had been primary before, and arbitrate. */
3309 switch (rct) {
3310 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3311 case 1: /* self_pri && !peer_pri */ return 1;
3312 case 2: /* !self_pri && peer_pri */ return -1;
3313 case 3: /* self_pri && peer_pri */
3314 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3315 return dc ? -1 : 1;
3316 }
3317 }
3318
3319 *rule_nr = 50;
3320 peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3321 if (self == peer)
3322 return -1;
3323
3324 *rule_nr = 51;
3325 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3326 if (self == peer) {
3327 if (connection->agreed_pro_version < 96 ?
3328 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3329 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3330 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3331 /* The last P_SYNC_UUID did not get though. Undo the last start of
3332 resync as sync source modifications of the peer's UUIDs. */
3333
3334 if (connection->agreed_pro_version < 91)
3335 return -1091;
3336
3337 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3338 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3339
3340 drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3341 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3342
3343 return -1;
3344 }
3345 }
3346
3347 *rule_nr = 60;
3348 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3349 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3350 peer = device->p_uuid[i] & ~((u64)1);
3351 if (self == peer)
3352 return -2;
3353 }
3354
3355 *rule_nr = 70;
3356 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3357 peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3358 if (self == peer)
3359 return 1;
3360
3361 *rule_nr = 71;
3362 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3363 if (self == peer) {
3364 if (connection->agreed_pro_version < 96 ?
3365 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3366 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3367 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3368 /* The last P_SYNC_UUID did not get though. Undo the last start of
3369 resync as sync source modifications of our UUIDs. */
3370
3371 if (connection->agreed_pro_version < 91)
3372 return -1091;
3373
3374 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3375 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3376
3377 drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3378 drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3379 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3380
3381 return 1;
3382 }
3383 }
3384
3385
3386 *rule_nr = 80;
3387 peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3388 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3389 self = device->ldev->md.uuid[i] & ~((u64)1);
3390 if (self == peer)
3391 return 2;
3392 }
3393
3394 *rule_nr = 90;
3395 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3396 peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3397 if (self == peer && self != ((u64)0))
3398 return 100;
3399
3400 *rule_nr = 100;
3401 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3402 self = device->ldev->md.uuid[i] & ~((u64)1);
3403 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3404 peer = device->p_uuid[j] & ~((u64)1);
3405 if (self == peer)
3406 return -100;
3407 }
3408 }
3409
3410 return -1000;
3411 }
3412
3413 /* drbd_sync_handshake() returns the new conn state on success, or
3414 CONN_MASK (-1) on failure.
3415 */
3416 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3417 enum drbd_role peer_role,
3418 enum drbd_disk_state peer_disk) __must_hold(local)
3419 {
3420 struct drbd_device *device = peer_device->device;
3421 enum drbd_conns rv = C_MASK;
3422 enum drbd_disk_state mydisk;
3423 struct net_conf *nc;
3424 int hg, rule_nr, rr_conflict, tentative;
3425
3426 mydisk = device->state.disk;
3427 if (mydisk == D_NEGOTIATING)
3428 mydisk = device->new_state_tmp.disk;
3429
3430 drbd_info(device, "drbd_sync_handshake:\n");
3431
3432 spin_lock_irq(&device->ldev->md.uuid_lock);
3433 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3434 drbd_uuid_dump(device, "peer", device->p_uuid,
3435 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3436
3437 hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3438 spin_unlock_irq(&device->ldev->md.uuid_lock);
3439
3440 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3441
3442 if (hg == -1000) {
3443 drbd_alert(device, "Unrelated data, aborting!\n");
3444 return C_MASK;
3445 }
3446 if (hg < -0x10000) {
3447 int proto, fflags;
3448 hg = -hg;
3449 proto = hg & 0xff;
3450 fflags = (hg >> 8) & 0xff;
3451 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3452 proto, fflags);
3453 return C_MASK;
3454 }
3455 if (hg < -1000) {
3456 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3457 return C_MASK;
3458 }
3459
3460 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3461 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) {
3462 int f = (hg == -100) || abs(hg) == 2;
3463 hg = mydisk > D_INCONSISTENT ? 1 : -1;
3464 if (f)
3465 hg = hg*2;
3466 drbd_info(device, "Becoming sync %s due to disk states.\n",
3467 hg > 0 ? "source" : "target");
3468 }
3469
3470 if (abs(hg) == 100)
3471 drbd_khelper(device, "initial-split-brain");
3472
3473 rcu_read_lock();
3474 nc = rcu_dereference(peer_device->connection->net_conf);
3475
3476 if (hg == 100 || (hg == -100 && nc->always_asbp)) {
3477 int pcount = (device->state.role == R_PRIMARY)
3478 + (peer_role == R_PRIMARY);
3479 int forced = (hg == -100);
3480
3481 switch (pcount) {
3482 case 0:
3483 hg = drbd_asb_recover_0p(peer_device);
3484 break;
3485 case 1:
3486 hg = drbd_asb_recover_1p(peer_device);
3487 break;
3488 case 2:
3489 hg = drbd_asb_recover_2p(peer_device);
3490 break;
3491 }
3492 if (abs(hg) < 100) {
3493 drbd_warn(device, "Split-Brain detected, %d primaries, "
3494 "automatically solved. Sync from %s node\n",
3495 pcount, (hg < 0) ? "peer" : "this");
3496 if (forced) {
3497 drbd_warn(device, "Doing a full sync, since"
3498 " UUIDs where ambiguous.\n");
3499 hg = hg*2;
3500 }
3501 }
3502 }
3503
3504 if (hg == -100) {
3505 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3506 hg = -1;
3507 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3508 hg = 1;
3509
3510 if (abs(hg) < 100)
3511 drbd_warn(device, "Split-Brain detected, manually solved. "
3512 "Sync from %s node\n",
3513 (hg < 0) ? "peer" : "this");
3514 }
3515 rr_conflict = nc->rr_conflict;
3516 tentative = nc->tentative;
3517 rcu_read_unlock();
3518
3519 if (hg == -100) {
3520 /* FIXME this log message is not correct if we end up here
3521 * after an attempted attach on a diskless node.
3522 * We just refuse to attach -- well, we drop the "connection"
3523 * to that disk, in a way... */
3524 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3525 drbd_khelper(device, "split-brain");
3526 return C_MASK;
3527 }
3528
3529 if (hg > 0 && mydisk <= D_INCONSISTENT) {
3530 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3531 return C_MASK;
3532 }
3533
3534 if (hg < 0 && /* by intention we do not use mydisk here. */
3535 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3536 switch (rr_conflict) {
3537 case ASB_CALL_HELPER:
3538 drbd_khelper(device, "pri-lost");
3539 /* fall through */
3540 case ASB_DISCONNECT:
3541 drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3542 return C_MASK;
3543 case ASB_VIOLENTLY:
3544 drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3545 "assumption\n");
3546 }
3547 }
3548
3549 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3550 if (hg == 0)
3551 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3552 else
3553 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3554 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3555 abs(hg) >= 2 ? "full" : "bit-map based");
3556 return C_MASK;
3557 }
3558
3559 if (abs(hg) >= 2) {
3560 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3561 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3562 BM_LOCKED_SET_ALLOWED))
3563 return C_MASK;
3564 }
3565
3566 if (hg > 0) { /* become sync source. */
3567 rv = C_WF_BITMAP_S;
3568 } else if (hg < 0) { /* become sync target */
3569 rv = C_WF_BITMAP_T;
3570 } else {
3571 rv = C_CONNECTED;
3572 if (drbd_bm_total_weight(device)) {
3573 drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3574 drbd_bm_total_weight(device));
3575 }
3576 }
3577
3578 return rv;
3579 }
3580
3581 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3582 {
3583 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3584 if (peer == ASB_DISCARD_REMOTE)
3585 return ASB_DISCARD_LOCAL;
3586
3587 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3588 if (peer == ASB_DISCARD_LOCAL)
3589 return ASB_DISCARD_REMOTE;
3590
3591 /* everything else is valid if they are equal on both sides. */
3592 return peer;
3593 }
3594
3595 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3596 {
3597 struct p_protocol *p = pi->data;
3598 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3599 int p_proto, p_discard_my_data, p_two_primaries, cf;
3600 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3601 char integrity_alg[SHARED_SECRET_MAX] = "";
3602 struct crypto_ahash *peer_integrity_tfm = NULL;
3603 void *int_dig_in = NULL, *int_dig_vv = NULL;
3604
3605 p_proto = be32_to_cpu(p->protocol);
3606 p_after_sb_0p = be32_to_cpu(p->after_sb_0p);
3607 p_after_sb_1p = be32_to_cpu(p->after_sb_1p);
3608 p_after_sb_2p = be32_to_cpu(p->after_sb_2p);
3609 p_two_primaries = be32_to_cpu(p->two_primaries);
3610 cf = be32_to_cpu(p->conn_flags);
3611 p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3612
3613 if (connection->agreed_pro_version >= 87) {
3614 int err;
3615
3616 if (pi->size > sizeof(integrity_alg))
3617 return -EIO;
3618 err = drbd_recv_all(connection, integrity_alg, pi->size);
3619 if (err)
3620 return err;
3621 integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3622 }
3623
3624 if (pi->cmd != P_PROTOCOL_UPDATE) {
3625 clear_bit(CONN_DRY_RUN, &connection->flags);
3626
3627 if (cf & CF_DRY_RUN)
3628 set_bit(CONN_DRY_RUN, &connection->flags);
3629
3630 rcu_read_lock();
3631 nc = rcu_dereference(connection->net_conf);
3632
3633 if (p_proto != nc->wire_protocol) {
3634 drbd_err(connection, "incompatible %s settings\n", "protocol");
3635 goto disconnect_rcu_unlock;
3636 }
3637
3638 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3639 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3640 goto disconnect_rcu_unlock;
3641 }
3642
3643 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3644 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3645 goto disconnect_rcu_unlock;
3646 }
3647
3648 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3649 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3650 goto disconnect_rcu_unlock;
3651 }
3652
3653 if (p_discard_my_data && nc->discard_my_data) {
3654 drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3655 goto disconnect_rcu_unlock;
3656 }
3657
3658 if (p_two_primaries != nc->two_primaries) {
3659 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3660 goto disconnect_rcu_unlock;
3661 }
3662
3663 if (strcmp(integrity_alg, nc->integrity_alg)) {
3664 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3665 goto disconnect_rcu_unlock;
3666 }
3667
3668 rcu_read_unlock();
3669 }
3670
3671 if (integrity_alg[0]) {
3672 int hash_size;
3673
3674 /*
3675 * We can only change the peer data integrity algorithm
3676 * here. Changing our own data integrity algorithm
3677 * requires that we send a P_PROTOCOL_UPDATE packet at
3678 * the same time; otherwise, the peer has no way to
3679 * tell between which packets the algorithm should
3680 * change.
3681 */
3682
3683 peer_integrity_tfm = crypto_alloc_ahash(integrity_alg, 0, CRYPTO_ALG_ASYNC);
3684 if (IS_ERR(peer_integrity_tfm)) {
3685 peer_integrity_tfm = NULL;
3686 drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3687 integrity_alg);
3688 goto disconnect;
3689 }
3690
3691 hash_size = crypto_ahash_digestsize(peer_integrity_tfm);
3692 int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3693 int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3694 if (!(int_dig_in && int_dig_vv)) {
3695 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3696 goto disconnect;
3697 }
3698 }
3699
3700 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3701 if (!new_net_conf) {
3702 drbd_err(connection, "Allocation of new net_conf failed\n");
3703 goto disconnect;
3704 }
3705
3706 mutex_lock(&connection->data.mutex);
3707 mutex_lock(&connection->resource->conf_update);
3708 old_net_conf = connection->net_conf;
3709 *new_net_conf = *old_net_conf;
3710
3711 new_net_conf->wire_protocol = p_proto;
3712 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3713 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3714 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3715 new_net_conf->two_primaries = p_two_primaries;
3716
3717 rcu_assign_pointer(connection->net_conf, new_net_conf);
3718 mutex_unlock(&connection->resource->conf_update);
3719 mutex_unlock(&connection->data.mutex);
3720
3721 crypto_free_ahash(connection->peer_integrity_tfm);
3722 kfree(connection->int_dig_in);
3723 kfree(connection->int_dig_vv);
3724 connection->peer_integrity_tfm = peer_integrity_tfm;
3725 connection->int_dig_in = int_dig_in;
3726 connection->int_dig_vv = int_dig_vv;
3727
3728 if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3729 drbd_info(connection, "peer data-integrity-alg: %s\n",
3730 integrity_alg[0] ? integrity_alg : "(none)");
3731
3732 synchronize_rcu();
3733 kfree(old_net_conf);
3734 return 0;
3735
3736 disconnect_rcu_unlock:
3737 rcu_read_unlock();
3738 disconnect:
3739 crypto_free_ahash(peer_integrity_tfm);
3740 kfree(int_dig_in);
3741 kfree(int_dig_vv);
3742 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3743 return -EIO;
3744 }
3745
3746 /* helper function
3747 * input: alg name, feature name
3748 * return: NULL (alg name was "")
3749 * ERR_PTR(error) if something goes wrong
3750 * or the crypto hash ptr, if it worked out ok. */
3751 static struct crypto_ahash *drbd_crypto_alloc_digest_safe(const struct drbd_device *device,
3752 const char *alg, const char *name)
3753 {
3754 struct crypto_ahash *tfm;
3755
3756 if (!alg[0])
3757 return NULL;
3758
3759 tfm = crypto_alloc_ahash(alg, 0, CRYPTO_ALG_ASYNC);
3760 if (IS_ERR(tfm)) {
3761 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3762 alg, name, PTR_ERR(tfm));
3763 return tfm;
3764 }
3765 return tfm;
3766 }
3767
3768 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3769 {
3770 void *buffer = connection->data.rbuf;
3771 int size = pi->size;
3772
3773 while (size) {
3774 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3775 s = drbd_recv(connection, buffer, s);
3776 if (s <= 0) {
3777 if (s < 0)
3778 return s;
3779 break;
3780 }
3781 size -= s;
3782 }
3783 if (size)
3784 return -EIO;
3785 return 0;
3786 }
3787
3788 /*
3789 * config_unknown_volume - device configuration command for unknown volume
3790 *
3791 * When a device is added to an existing connection, the node on which the
3792 * device is added first will send configuration commands to its peer but the
3793 * peer will not know about the device yet. It will warn and ignore these
3794 * commands. Once the device is added on the second node, the second node will
3795 * send the same device configuration commands, but in the other direction.
3796 *
3797 * (We can also end up here if drbd is misconfigured.)
3798 */
3799 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3800 {
3801 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3802 cmdname(pi->cmd), pi->vnr);
3803 return ignore_remaining_packet(connection, pi);
3804 }
3805
3806 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3807 {
3808 struct drbd_peer_device *peer_device;
3809 struct drbd_device *device;
3810 struct p_rs_param_95 *p;
3811 unsigned int header_size, data_size, exp_max_sz;
3812 struct crypto_ahash *verify_tfm = NULL;
3813 struct crypto_ahash *csums_tfm = NULL;
3814 struct net_conf *old_net_conf, *new_net_conf = NULL;
3815 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3816 const int apv = connection->agreed_pro_version;
3817 struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3818 int fifo_size = 0;
3819 int err;
3820
3821 peer_device = conn_peer_device(connection, pi->vnr);
3822 if (!peer_device)
3823 return config_unknown_volume(connection, pi);
3824 device = peer_device->device;
3825
3826 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param)
3827 : apv == 88 ? sizeof(struct p_rs_param)
3828 + SHARED_SECRET_MAX
3829 : apv <= 94 ? sizeof(struct p_rs_param_89)
3830 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3831
3832 if (pi->size > exp_max_sz) {
3833 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3834 pi->size, exp_max_sz);
3835 return -EIO;
3836 }
3837
3838 if (apv <= 88) {
3839 header_size = sizeof(struct p_rs_param);
3840 data_size = pi->size - header_size;
3841 } else if (apv <= 94) {
3842 header_size = sizeof(struct p_rs_param_89);
3843 data_size = pi->size - header_size;
3844 D_ASSERT(device, data_size == 0);
3845 } else {
3846 header_size = sizeof(struct p_rs_param_95);
3847 data_size = pi->size - header_size;
3848 D_ASSERT(device, data_size == 0);
3849 }
3850
3851 /* initialize verify_alg and csums_alg */
3852 p = pi->data;
3853 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
3854
3855 err = drbd_recv_all(peer_device->connection, p, header_size);
3856 if (err)
3857 return err;
3858
3859 mutex_lock(&connection->resource->conf_update);
3860 old_net_conf = peer_device->connection->net_conf;
3861 if (get_ldev(device)) {
3862 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3863 if (!new_disk_conf) {
3864 put_ldev(device);
3865 mutex_unlock(&connection->resource->conf_update);
3866 drbd_err(device, "Allocation of new disk_conf failed\n");
3867 return -ENOMEM;
3868 }
3869
3870 old_disk_conf = device->ldev->disk_conf;
3871 *new_disk_conf = *old_disk_conf;
3872
3873 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3874 }
3875
3876 if (apv >= 88) {
3877 if (apv == 88) {
3878 if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3879 drbd_err(device, "verify-alg of wrong size, "
3880 "peer wants %u, accepting only up to %u byte\n",
3881 data_size, SHARED_SECRET_MAX);
3882 err = -EIO;
3883 goto reconnect;
3884 }
3885
3886 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3887 if (err)
3888 goto reconnect;
3889 /* we expect NUL terminated string */
3890 /* but just in case someone tries to be evil */
3891 D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3892 p->verify_alg[data_size-1] = 0;
3893
3894 } else /* apv >= 89 */ {
3895 /* we still expect NUL terminated strings */
3896 /* but just in case someone tries to be evil */
3897 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3898 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3899 p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3900 p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3901 }
3902
3903 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3904 if (device->state.conn == C_WF_REPORT_PARAMS) {
3905 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3906 old_net_conf->verify_alg, p->verify_alg);
3907 goto disconnect;
3908 }
3909 verify_tfm = drbd_crypto_alloc_digest_safe(device,
3910 p->verify_alg, "verify-alg");
3911 if (IS_ERR(verify_tfm)) {
3912 verify_tfm = NULL;
3913 goto disconnect;
3914 }
3915 }
3916
3917 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3918 if (device->state.conn == C_WF_REPORT_PARAMS) {
3919 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3920 old_net_conf->csums_alg, p->csums_alg);
3921 goto disconnect;
3922 }
3923 csums_tfm = drbd_crypto_alloc_digest_safe(device,
3924 p->csums_alg, "csums-alg");
3925 if (IS_ERR(csums_tfm)) {
3926 csums_tfm = NULL;
3927 goto disconnect;
3928 }
3929 }
3930
3931 if (apv > 94 && new_disk_conf) {
3932 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3933 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3934 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3935 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3936
3937 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3938 if (fifo_size != device->rs_plan_s->size) {
3939 new_plan = fifo_alloc(fifo_size);
3940 if (!new_plan) {
3941 drbd_err(device, "kmalloc of fifo_buffer failed");
3942 put_ldev(device);
3943 goto disconnect;
3944 }
3945 }
3946 }
3947
3948 if (verify_tfm || csums_tfm) {
3949 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3950 if (!new_net_conf) {
3951 drbd_err(device, "Allocation of new net_conf failed\n");
3952 goto disconnect;
3953 }
3954
3955 *new_net_conf = *old_net_conf;
3956
3957 if (verify_tfm) {
3958 strcpy(new_net_conf->verify_alg, p->verify_alg);
3959 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3960 crypto_free_ahash(peer_device->connection->verify_tfm);
3961 peer_device->connection->verify_tfm = verify_tfm;
3962 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
3963 }
3964 if (csums_tfm) {
3965 strcpy(new_net_conf->csums_alg, p->csums_alg);
3966 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
3967 crypto_free_ahash(peer_device->connection->csums_tfm);
3968 peer_device->connection->csums_tfm = csums_tfm;
3969 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
3970 }
3971 rcu_assign_pointer(connection->net_conf, new_net_conf);
3972 }
3973 }
3974
3975 if (new_disk_conf) {
3976 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
3977 put_ldev(device);
3978 }
3979
3980 if (new_plan) {
3981 old_plan = device->rs_plan_s;
3982 rcu_assign_pointer(device->rs_plan_s, new_plan);
3983 }
3984
3985 mutex_unlock(&connection->resource->conf_update);
3986 synchronize_rcu();
3987 if (new_net_conf)
3988 kfree(old_net_conf);
3989 kfree(old_disk_conf);
3990 kfree(old_plan);
3991
3992 return 0;
3993
3994 reconnect:
3995 if (new_disk_conf) {
3996 put_ldev(device);
3997 kfree(new_disk_conf);
3998 }
3999 mutex_unlock(&connection->resource->conf_update);
4000 return -EIO;
4001
4002 disconnect:
4003 kfree(new_plan);
4004 if (new_disk_conf) {
4005 put_ldev(device);
4006 kfree(new_disk_conf);
4007 }
4008 mutex_unlock(&connection->resource->conf_update);
4009 /* just for completeness: actually not needed,
4010 * as this is not reached if csums_tfm was ok. */
4011 crypto_free_ahash(csums_tfm);
4012 /* but free the verify_tfm again, if csums_tfm did not work out */
4013 crypto_free_ahash(verify_tfm);
4014 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4015 return -EIO;
4016 }
4017
4018 /* warn if the arguments differ by more than 12.5% */
4019 static void warn_if_differ_considerably(struct drbd_device *device,
4020 const char *s, sector_t a, sector_t b)
4021 {
4022 sector_t d;
4023 if (a == 0 || b == 0)
4024 return;
4025 d = (a > b) ? (a - b) : (b - a);
4026 if (d > (a>>3) || d > (b>>3))
4027 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4028 (unsigned long long)a, (unsigned long long)b);
4029 }
4030
4031 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4032 {
4033 struct drbd_peer_device *peer_device;
4034 struct drbd_device *device;
4035 struct p_sizes *p = pi->data;
4036 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4037 enum determine_dev_size dd = DS_UNCHANGED;
4038 sector_t p_size, p_usize, p_csize, my_usize;
4039 int ldsc = 0; /* local disk size changed */
4040 enum dds_flags ddsf;
4041
4042 peer_device = conn_peer_device(connection, pi->vnr);
4043 if (!peer_device)
4044 return config_unknown_volume(connection, pi);
4045 device = peer_device->device;
4046
4047 p_size = be64_to_cpu(p->d_size);
4048 p_usize = be64_to_cpu(p->u_size);
4049 p_csize = be64_to_cpu(p->c_size);
4050
4051 /* just store the peer's disk size for now.
4052 * we still need to figure out whether we accept that. */
4053 device->p_size = p_size;
4054
4055 if (get_ldev(device)) {
4056 sector_t new_size, cur_size;
4057 rcu_read_lock();
4058 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4059 rcu_read_unlock();
4060
4061 warn_if_differ_considerably(device, "lower level device sizes",
4062 p_size, drbd_get_max_capacity(device->ldev));
4063 warn_if_differ_considerably(device, "user requested size",
4064 p_usize, my_usize);
4065
4066 /* if this is the first connect, or an otherwise expected
4067 * param exchange, choose the minimum */
4068 if (device->state.conn == C_WF_REPORT_PARAMS)
4069 p_usize = min_not_zero(my_usize, p_usize);
4070
4071 /* Never shrink a device with usable data during connect.
4072 But allow online shrinking if we are connected. */
4073 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4074 cur_size = drbd_get_capacity(device->this_bdev);
4075 if (new_size < cur_size &&
4076 device->state.disk >= D_OUTDATED &&
4077 device->state.conn < C_CONNECTED) {
4078 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4079 (unsigned long long)new_size, (unsigned long long)cur_size);
4080 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4081 put_ldev(device);
4082 return -EIO;
4083 }
4084
4085 if (my_usize != p_usize) {
4086 struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4087
4088 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4089 if (!new_disk_conf) {
4090 drbd_err(device, "Allocation of new disk_conf failed\n");
4091 put_ldev(device);
4092 return -ENOMEM;
4093 }
4094
4095 mutex_lock(&connection->resource->conf_update);
4096 old_disk_conf = device->ldev->disk_conf;
4097 *new_disk_conf = *old_disk_conf;
4098 new_disk_conf->disk_size = p_usize;
4099
4100 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4101 mutex_unlock(&connection->resource->conf_update);
4102 synchronize_rcu();
4103 kfree(old_disk_conf);
4104
4105 drbd_info(device, "Peer sets u_size to %lu sectors\n",
4106 (unsigned long)my_usize);
4107 }
4108
4109 put_ldev(device);
4110 }
4111
4112 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4113 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4114 In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4115 drbd_reconsider_queue_parameters(), we can be sure that after
4116 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4117
4118 ddsf = be16_to_cpu(p->dds_flags);
4119 if (get_ldev(device)) {
4120 drbd_reconsider_queue_parameters(device, device->ldev, o);
4121 dd = drbd_determine_dev_size(device, ddsf, NULL);
4122 put_ldev(device);
4123 if (dd == DS_ERROR)
4124 return -EIO;
4125 drbd_md_sync(device);
4126 } else {
4127 /*
4128 * I am diskless, need to accept the peer's *current* size.
4129 * I must NOT accept the peers backing disk size,
4130 * it may have been larger than mine all along...
4131 *
4132 * At this point, the peer knows more about my disk, or at
4133 * least about what we last agreed upon, than myself.
4134 * So if his c_size is less than his d_size, the most likely
4135 * reason is that *my* d_size was smaller last time we checked.
4136 *
4137 * However, if he sends a zero current size,
4138 * take his (user-capped or) backing disk size anyways.
4139 */
4140 drbd_reconsider_queue_parameters(device, NULL, o);
4141 drbd_set_my_capacity(device, p_csize ?: p_usize ?: p_size);
4142 }
4143
4144 if (get_ldev(device)) {
4145 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4146 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4147 ldsc = 1;
4148 }
4149
4150 put_ldev(device);
4151 }
4152
4153 if (device->state.conn > C_WF_REPORT_PARAMS) {
4154 if (be64_to_cpu(p->c_size) !=
4155 drbd_get_capacity(device->this_bdev) || ldsc) {
4156 /* we have different sizes, probably peer
4157 * needs to know my new size... */
4158 drbd_send_sizes(peer_device, 0, ddsf);
4159 }
4160 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4161 (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4162 if (device->state.pdsk >= D_INCONSISTENT &&
4163 device->state.disk >= D_INCONSISTENT) {
4164 if (ddsf & DDSF_NO_RESYNC)
4165 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4166 else
4167 resync_after_online_grow(device);
4168 } else
4169 set_bit(RESYNC_AFTER_NEG, &device->flags);
4170 }
4171 }
4172
4173 return 0;
4174 }
4175
4176 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4177 {
4178 struct drbd_peer_device *peer_device;
4179 struct drbd_device *device;
4180 struct p_uuids *p = pi->data;
4181 u64 *p_uuid;
4182 int i, updated_uuids = 0;
4183
4184 peer_device = conn_peer_device(connection, pi->vnr);
4185 if (!peer_device)
4186 return config_unknown_volume(connection, pi);
4187 device = peer_device->device;
4188
4189 p_uuid = kmalloc(sizeof(u64)*UI_EXTENDED_SIZE, GFP_NOIO);
4190 if (!p_uuid) {
4191 drbd_err(device, "kmalloc of p_uuid failed\n");
4192 return false;
4193 }
4194
4195 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4196 p_uuid[i] = be64_to_cpu(p->uuid[i]);
4197
4198 kfree(device->p_uuid);
4199 device->p_uuid = p_uuid;
4200
4201 if (device->state.conn < C_CONNECTED &&
4202 device->state.disk < D_INCONSISTENT &&
4203 device->state.role == R_PRIMARY &&
4204 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4205 drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4206 (unsigned long long)device->ed_uuid);
4207 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4208 return -EIO;
4209 }
4210
4211 if (get_ldev(device)) {
4212 int skip_initial_sync =
4213 device->state.conn == C_CONNECTED &&
4214 peer_device->connection->agreed_pro_version >= 90 &&
4215 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4216 (p_uuid[UI_FLAGS] & 8);
4217 if (skip_initial_sync) {
4218 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4219 drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4220 "clear_n_write from receive_uuids",
4221 BM_LOCKED_TEST_ALLOWED);
4222 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4223 _drbd_uuid_set(device, UI_BITMAP, 0);
4224 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4225 CS_VERBOSE, NULL);
4226 drbd_md_sync(device);
4227 updated_uuids = 1;
4228 }
4229 put_ldev(device);
4230 } else if (device->state.disk < D_INCONSISTENT &&
4231 device->state.role == R_PRIMARY) {
4232 /* I am a diskless primary, the peer just created a new current UUID
4233 for me. */
4234 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4235 }
4236
4237 /* Before we test for the disk state, we should wait until an eventually
4238 ongoing cluster wide state change is finished. That is important if
4239 we are primary and are detaching from our disk. We need to see the
4240 new disk state... */
4241 mutex_lock(device->state_mutex);
4242 mutex_unlock(device->state_mutex);
4243 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4244 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4245
4246 if (updated_uuids)
4247 drbd_print_uuids(device, "receiver updated UUIDs to");
4248
4249 return 0;
4250 }
4251
4252 /**
4253 * convert_state() - Converts the peer's view of the cluster state to our point of view
4254 * @ps: The state as seen by the peer.
4255 */
4256 static union drbd_state convert_state(union drbd_state ps)
4257 {
4258 union drbd_state ms;
4259
4260 static enum drbd_conns c_tab[] = {
4261 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4262 [C_CONNECTED] = C_CONNECTED,
4263
4264 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4265 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4266 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4267 [C_VERIFY_S] = C_VERIFY_T,
4268 [C_MASK] = C_MASK,
4269 };
4270
4271 ms.i = ps.i;
4272
4273 ms.conn = c_tab[ps.conn];
4274 ms.peer = ps.role;
4275 ms.role = ps.peer;
4276 ms.pdsk = ps.disk;
4277 ms.disk = ps.pdsk;
4278 ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4279
4280 return ms;
4281 }
4282
4283 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4284 {
4285 struct drbd_peer_device *peer_device;
4286 struct drbd_device *device;
4287 struct p_req_state *p = pi->data;
4288 union drbd_state mask, val;
4289 enum drbd_state_rv rv;
4290
4291 peer_device = conn_peer_device(connection, pi->vnr);
4292 if (!peer_device)
4293 return -EIO;
4294 device = peer_device->device;
4295
4296 mask.i = be32_to_cpu(p->mask);
4297 val.i = be32_to_cpu(p->val);
4298
4299 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4300 mutex_is_locked(device->state_mutex)) {
4301 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4302 return 0;
4303 }
4304
4305 mask = convert_state(mask);
4306 val = convert_state(val);
4307
4308 rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4309 drbd_send_sr_reply(peer_device, rv);
4310
4311 drbd_md_sync(device);
4312
4313 return 0;
4314 }
4315
4316 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4317 {
4318 struct p_req_state *p = pi->data;
4319 union drbd_state mask, val;
4320 enum drbd_state_rv rv;
4321
4322 mask.i = be32_to_cpu(p->mask);
4323 val.i = be32_to_cpu(p->val);
4324
4325 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4326 mutex_is_locked(&connection->cstate_mutex)) {
4327 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4328 return 0;
4329 }
4330
4331 mask = convert_state(mask);
4332 val = convert_state(val);
4333
4334 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4335 conn_send_sr_reply(connection, rv);
4336
4337 return 0;
4338 }
4339
4340 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4341 {
4342 struct drbd_peer_device *peer_device;
4343 struct drbd_device *device;
4344 struct p_state *p = pi->data;
4345 union drbd_state os, ns, peer_state;
4346 enum drbd_disk_state real_peer_disk;
4347 enum chg_state_flags cs_flags;
4348 int rv;
4349
4350 peer_device = conn_peer_device(connection, pi->vnr);
4351 if (!peer_device)
4352 return config_unknown_volume(connection, pi);
4353 device = peer_device->device;
4354
4355 peer_state.i = be32_to_cpu(p->state);
4356
4357 real_peer_disk = peer_state.disk;
4358 if (peer_state.disk == D_NEGOTIATING) {
4359 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4360 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4361 }
4362
4363 spin_lock_irq(&device->resource->req_lock);
4364 retry:
4365 os = ns = drbd_read_state(device);
4366 spin_unlock_irq(&device->resource->req_lock);
4367
4368 /* If some other part of the code (ack_receiver thread, timeout)
4369 * already decided to close the connection again,
4370 * we must not "re-establish" it here. */
4371 if (os.conn <= C_TEAR_DOWN)
4372 return -ECONNRESET;
4373
4374 /* If this is the "end of sync" confirmation, usually the peer disk
4375 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4376 * set) resync started in PausedSyncT, or if the timing of pause-/
4377 * unpause-sync events has been "just right", the peer disk may
4378 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4379 */
4380 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4381 real_peer_disk == D_UP_TO_DATE &&
4382 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4383 /* If we are (becoming) SyncSource, but peer is still in sync
4384 * preparation, ignore its uptodate-ness to avoid flapping, it
4385 * will change to inconsistent once the peer reaches active
4386 * syncing states.
4387 * It may have changed syncer-paused flags, however, so we
4388 * cannot ignore this completely. */
4389 if (peer_state.conn > C_CONNECTED &&
4390 peer_state.conn < C_SYNC_SOURCE)
4391 real_peer_disk = D_INCONSISTENT;
4392
4393 /* if peer_state changes to connected at the same time,
4394 * it explicitly notifies us that it finished resync.
4395 * Maybe we should finish it up, too? */
4396 else if (os.conn >= C_SYNC_SOURCE &&
4397 peer_state.conn == C_CONNECTED) {
4398 if (drbd_bm_total_weight(device) <= device->rs_failed)
4399 drbd_resync_finished(device);
4400 return 0;
4401 }
4402 }
4403
4404 /* explicit verify finished notification, stop sector reached. */
4405 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4406 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4407 ov_out_of_sync_print(device);
4408 drbd_resync_finished(device);
4409 return 0;
4410 }
4411
4412 /* peer says his disk is inconsistent, while we think it is uptodate,
4413 * and this happens while the peer still thinks we have a sync going on,
4414 * but we think we are already done with the sync.
4415 * We ignore this to avoid flapping pdsk.
4416 * This should not happen, if the peer is a recent version of drbd. */
4417 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4418 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4419 real_peer_disk = D_UP_TO_DATE;
4420
4421 if (ns.conn == C_WF_REPORT_PARAMS)
4422 ns.conn = C_CONNECTED;
4423
4424 if (peer_state.conn == C_AHEAD)
4425 ns.conn = C_BEHIND;
4426
4427 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4428 get_ldev_if_state(device, D_NEGOTIATING)) {
4429 int cr; /* consider resync */
4430
4431 /* if we established a new connection */
4432 cr = (os.conn < C_CONNECTED);
4433 /* if we had an established connection
4434 * and one of the nodes newly attaches a disk */
4435 cr |= (os.conn == C_CONNECTED &&
4436 (peer_state.disk == D_NEGOTIATING ||
4437 os.disk == D_NEGOTIATING));
4438 /* if we have both been inconsistent, and the peer has been
4439 * forced to be UpToDate with --overwrite-data */
4440 cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4441 /* if we had been plain connected, and the admin requested to
4442 * start a sync by "invalidate" or "invalidate-remote" */
4443 cr |= (os.conn == C_CONNECTED &&
4444 (peer_state.conn >= C_STARTING_SYNC_S &&
4445 peer_state.conn <= C_WF_BITMAP_T));
4446
4447 if (cr)
4448 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4449
4450 put_ldev(device);
4451 if (ns.conn == C_MASK) {
4452 ns.conn = C_CONNECTED;
4453 if (device->state.disk == D_NEGOTIATING) {
4454 drbd_force_state(device, NS(disk, D_FAILED));
4455 } else if (peer_state.disk == D_NEGOTIATING) {
4456 drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4457 peer_state.disk = D_DISKLESS;
4458 real_peer_disk = D_DISKLESS;
4459 } else {
4460 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4461 return -EIO;
4462 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4463 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4464 return -EIO;
4465 }
4466 }
4467 }
4468
4469 spin_lock_irq(&device->resource->req_lock);
4470 if (os.i != drbd_read_state(device).i)
4471 goto retry;
4472 clear_bit(CONSIDER_RESYNC, &device->flags);
4473 ns.peer = peer_state.role;
4474 ns.pdsk = real_peer_disk;
4475 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4476 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4477 ns.disk = device->new_state_tmp.disk;
4478 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4479 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4480 test_bit(NEW_CUR_UUID, &device->flags)) {
4481 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4482 for temporal network outages! */
4483 spin_unlock_irq(&device->resource->req_lock);
4484 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4485 tl_clear(peer_device->connection);
4486 drbd_uuid_new_current(device);
4487 clear_bit(NEW_CUR_UUID, &device->flags);
4488 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4489 return -EIO;
4490 }
4491 rv = _drbd_set_state(device, ns, cs_flags, NULL);
4492 ns = drbd_read_state(device);
4493 spin_unlock_irq(&device->resource->req_lock);
4494
4495 if (rv < SS_SUCCESS) {
4496 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4497 return -EIO;
4498 }
4499
4500 if (os.conn > C_WF_REPORT_PARAMS) {
4501 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4502 peer_state.disk != D_NEGOTIATING ) {
4503 /* we want resync, peer has not yet decided to sync... */
4504 /* Nowadays only used when forcing a node into primary role and
4505 setting its disk to UpToDate with that */
4506 drbd_send_uuids(peer_device);
4507 drbd_send_current_state(peer_device);
4508 }
4509 }
4510
4511 clear_bit(DISCARD_MY_DATA, &device->flags);
4512
4513 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4514
4515 return 0;
4516 }
4517
4518 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4519 {
4520 struct drbd_peer_device *peer_device;
4521 struct drbd_device *device;
4522 struct p_rs_uuid *p = pi->data;
4523
4524 peer_device = conn_peer_device(connection, pi->vnr);
4525 if (!peer_device)
4526 return -EIO;
4527 device = peer_device->device;
4528
4529 wait_event(device->misc_wait,
4530 device->state.conn == C_WF_SYNC_UUID ||
4531 device->state.conn == C_BEHIND ||
4532 device->state.conn < C_CONNECTED ||
4533 device->state.disk < D_NEGOTIATING);
4534
4535 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */
4536
4537 /* Here the _drbd_uuid_ functions are right, current should
4538 _not_ be rotated into the history */
4539 if (get_ldev_if_state(device, D_NEGOTIATING)) {
4540 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4541 _drbd_uuid_set(device, UI_BITMAP, 0UL);
4542
4543 drbd_print_uuids(device, "updated sync uuid");
4544 drbd_start_resync(device, C_SYNC_TARGET);
4545
4546 put_ldev(device);
4547 } else
4548 drbd_err(device, "Ignoring SyncUUID packet!\n");
4549
4550 return 0;
4551 }
4552
4553 /**
4554 * receive_bitmap_plain
4555 *
4556 * Return 0 when done, 1 when another iteration is needed, and a negative error
4557 * code upon failure.
4558 */
4559 static int
4560 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4561 unsigned long *p, struct bm_xfer_ctx *c)
4562 {
4563 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4564 drbd_header_size(peer_device->connection);
4565 unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4566 c->bm_words - c->word_offset);
4567 unsigned int want = num_words * sizeof(*p);
4568 int err;
4569
4570 if (want != size) {
4571 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4572 return -EIO;
4573 }
4574 if (want == 0)
4575 return 0;
4576 err = drbd_recv_all(peer_device->connection, p, want);
4577 if (err)
4578 return err;
4579
4580 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4581
4582 c->word_offset += num_words;
4583 c->bit_offset = c->word_offset * BITS_PER_LONG;
4584 if (c->bit_offset > c->bm_bits)
4585 c->bit_offset = c->bm_bits;
4586
4587 return 1;
4588 }
4589
4590 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4591 {
4592 return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4593 }
4594
4595 static int dcbp_get_start(struct p_compressed_bm *p)
4596 {
4597 return (p->encoding & 0x80) != 0;
4598 }
4599
4600 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4601 {
4602 return (p->encoding >> 4) & 0x7;
4603 }
4604
4605 /**
4606 * recv_bm_rle_bits
4607 *
4608 * Return 0 when done, 1 when another iteration is needed, and a negative error
4609 * code upon failure.
4610 */
4611 static int
4612 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4613 struct p_compressed_bm *p,
4614 struct bm_xfer_ctx *c,
4615 unsigned int len)
4616 {
4617 struct bitstream bs;
4618 u64 look_ahead;
4619 u64 rl;
4620 u64 tmp;
4621 unsigned long s = c->bit_offset;
4622 unsigned long e;
4623 int toggle = dcbp_get_start(p);
4624 int have;
4625 int bits;
4626
4627 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4628
4629 bits = bitstream_get_bits(&bs, &look_ahead, 64);
4630 if (bits < 0)
4631 return -EIO;
4632
4633 for (have = bits; have > 0; s += rl, toggle = !toggle) {
4634 bits = vli_decode_bits(&rl, look_ahead);
4635 if (bits <= 0)
4636 return -EIO;
4637
4638 if (toggle) {
4639 e = s + rl -1;
4640 if (e >= c->bm_bits) {
4641 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4642 return -EIO;
4643 }
4644 _drbd_bm_set_bits(peer_device->device, s, e);
4645 }
4646
4647 if (have < bits) {
4648 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4649 have, bits, look_ahead,
4650 (unsigned int)(bs.cur.b - p->code),
4651 (unsigned int)bs.buf_len);
4652 return -EIO;
4653 }
4654 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4655 if (likely(bits < 64))
4656 look_ahead >>= bits;
4657 else
4658 look_ahead = 0;
4659 have -= bits;
4660
4661 bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4662 if (bits < 0)
4663 return -EIO;
4664 look_ahead |= tmp << have;
4665 have += bits;
4666 }
4667
4668 c->bit_offset = s;
4669 bm_xfer_ctx_bit_to_word_offset(c);
4670
4671 return (s != c->bm_bits);
4672 }
4673
4674 /**
4675 * decode_bitmap_c
4676 *
4677 * Return 0 when done, 1 when another iteration is needed, and a negative error
4678 * code upon failure.
4679 */
4680 static int
4681 decode_bitmap_c(struct drbd_peer_device *peer_device,
4682 struct p_compressed_bm *p,
4683 struct bm_xfer_ctx *c,
4684 unsigned int len)
4685 {
4686 if (dcbp_get_code(p) == RLE_VLI_Bits)
4687 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4688
4689 /* other variants had been implemented for evaluation,
4690 * but have been dropped as this one turned out to be "best"
4691 * during all our tests. */
4692
4693 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4694 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4695 return -EIO;
4696 }
4697
4698 void INFO_bm_xfer_stats(struct drbd_device *device,
4699 const char *direction, struct bm_xfer_ctx *c)
4700 {
4701 /* what would it take to transfer it "plaintext" */
4702 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4703 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4704 unsigned int plain =
4705 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4706 c->bm_words * sizeof(unsigned long);
4707 unsigned int total = c->bytes[0] + c->bytes[1];
4708 unsigned int r;
4709
4710 /* total can not be zero. but just in case: */
4711 if (total == 0)
4712 return;
4713
4714 /* don't report if not compressed */
4715 if (total >= plain)
4716 return;
4717
4718 /* total < plain. check for overflow, still */
4719 r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4720 : (1000 * total / plain);
4721
4722 if (r > 1000)
4723 r = 1000;
4724
4725 r = 1000 - r;
4726 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4727 "total %u; compression: %u.%u%%\n",
4728 direction,
4729 c->bytes[1], c->packets[1],
4730 c->bytes[0], c->packets[0],
4731 total, r/10, r % 10);
4732 }
4733
4734 /* Since we are processing the bitfield from lower addresses to higher,
4735 it does not matter if the process it in 32 bit chunks or 64 bit
4736 chunks as long as it is little endian. (Understand it as byte stream,
4737 beginning with the lowest byte...) If we would use big endian
4738 we would need to process it from the highest address to the lowest,
4739 in order to be agnostic to the 32 vs 64 bits issue.
4740
4741 returns 0 on failure, 1 if we successfully received it. */
4742 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4743 {
4744 struct drbd_peer_device *peer_device;
4745 struct drbd_device *device;
4746 struct bm_xfer_ctx c;
4747 int err;
4748
4749 peer_device = conn_peer_device(connection, pi->vnr);
4750 if (!peer_device)
4751 return -EIO;
4752 device = peer_device->device;
4753
4754 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4755 /* you are supposed to send additional out-of-sync information
4756 * if you actually set bits during this phase */
4757
4758 c = (struct bm_xfer_ctx) {
4759 .bm_bits = drbd_bm_bits(device),
4760 .bm_words = drbd_bm_words(device),
4761 };
4762
4763 for(;;) {
4764 if (pi->cmd == P_BITMAP)
4765 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4766 else if (pi->cmd == P_COMPRESSED_BITMAP) {
4767 /* MAYBE: sanity check that we speak proto >= 90,
4768 * and the feature is enabled! */
4769 struct p_compressed_bm *p = pi->data;
4770
4771 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4772 drbd_err(device, "ReportCBitmap packet too large\n");
4773 err = -EIO;
4774 goto out;
4775 }
4776 if (pi->size <= sizeof(*p)) {
4777 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4778 err = -EIO;
4779 goto out;
4780 }
4781 err = drbd_recv_all(peer_device->connection, p, pi->size);
4782 if (err)
4783 goto out;
4784 err = decode_bitmap_c(peer_device, p, &c, pi->size);
4785 } else {
4786 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4787 err = -EIO;
4788 goto out;
4789 }
4790
4791 c.packets[pi->cmd == P_BITMAP]++;
4792 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4793
4794 if (err <= 0) {
4795 if (err < 0)
4796 goto out;
4797 break;
4798 }
4799 err = drbd_recv_header(peer_device->connection, pi);
4800 if (err)
4801 goto out;
4802 }
4803
4804 INFO_bm_xfer_stats(device, "receive", &c);
4805
4806 if (device->state.conn == C_WF_BITMAP_T) {
4807 enum drbd_state_rv rv;
4808
4809 err = drbd_send_bitmap(device);
4810 if (err)
4811 goto out;
4812 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4813 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4814 D_ASSERT(device, rv == SS_SUCCESS);
4815 } else if (device->state.conn != C_WF_BITMAP_S) {
4816 /* admin may have requested C_DISCONNECTING,
4817 * other threads may have noticed network errors */
4818 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4819 drbd_conn_str(device->state.conn));
4820 }
4821 err = 0;
4822
4823 out:
4824 drbd_bm_unlock(device);
4825 if (!err && device->state.conn == C_WF_BITMAP_S)
4826 drbd_start_resync(device, C_SYNC_SOURCE);
4827 return err;
4828 }
4829
4830 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4831 {
4832 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4833 pi->cmd, pi->size);
4834
4835 return ignore_remaining_packet(connection, pi);
4836 }
4837
4838 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4839 {
4840 /* Make sure we've acked all the TCP data associated
4841 * with the data requests being unplugged */
4842 drbd_tcp_quickack(connection->data.socket);
4843
4844 return 0;
4845 }
4846
4847 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4848 {
4849 struct drbd_peer_device *peer_device;
4850 struct drbd_device *device;
4851 struct p_block_desc *p = pi->data;
4852
4853 peer_device = conn_peer_device(connection, pi->vnr);
4854 if (!peer_device)
4855 return -EIO;
4856 device = peer_device->device;
4857
4858 switch (device->state.conn) {
4859 case C_WF_SYNC_UUID:
4860 case C_WF_BITMAP_T:
4861 case C_BEHIND:
4862 break;
4863 default:
4864 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4865 drbd_conn_str(device->state.conn));
4866 }
4867
4868 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4869
4870 return 0;
4871 }
4872
4873 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4874 {
4875 struct drbd_peer_device *peer_device;
4876 struct p_block_desc *p = pi->data;
4877 struct drbd_device *device;
4878 sector_t sector;
4879 int size, err = 0;
4880
4881 peer_device = conn_peer_device(connection, pi->vnr);
4882 if (!peer_device)
4883 return -EIO;
4884 device = peer_device->device;
4885
4886 sector = be64_to_cpu(p->sector);
4887 size = be32_to_cpu(p->blksize);
4888
4889 dec_rs_pending(device);
4890
4891 if (get_ldev(device)) {
4892 struct drbd_peer_request *peer_req;
4893 const int op = REQ_OP_DISCARD;
4894
4895 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4896 size, 0, GFP_NOIO);
4897 if (!peer_req) {
4898 put_ldev(device);
4899 return -ENOMEM;
4900 }
4901
4902 peer_req->w.cb = e_end_resync_block;
4903 peer_req->submit_jif = jiffies;
4904 peer_req->flags |= EE_IS_TRIM;
4905
4906 spin_lock_irq(&device->resource->req_lock);
4907 list_add_tail(&peer_req->w.list, &device->sync_ee);
4908 spin_unlock_irq(&device->resource->req_lock);
4909
4910 atomic_add(pi->size >> 9, &device->rs_sect_ev);
4911 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR);
4912
4913 if (err) {
4914 spin_lock_irq(&device->resource->req_lock);
4915 list_del(&peer_req->w.list);
4916 spin_unlock_irq(&device->resource->req_lock);
4917
4918 drbd_free_peer_req(device, peer_req);
4919 put_ldev(device);
4920 err = 0;
4921 goto fail;
4922 }
4923
4924 inc_unacked(device);
4925
4926 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
4927 as well as drbd_rs_complete_io() */
4928 } else {
4929 fail:
4930 drbd_rs_complete_io(device, sector);
4931 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
4932 }
4933
4934 atomic_add(size >> 9, &device->rs_sect_in);
4935
4936 return err;
4937 }
4938
4939 struct data_cmd {
4940 int expect_payload;
4941 unsigned int pkt_size;
4942 int (*fn)(struct drbd_connection *, struct packet_info *);
4943 };
4944
4945 static struct data_cmd drbd_cmd_handler[] = {
4946 [P_DATA] = { 1, sizeof(struct p_data), receive_Data },
4947 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply },
4948 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } ,
4949 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } ,
4950 [P_BITMAP] = { 1, 0, receive_bitmap } ,
4951 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
4952 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote },
4953 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
4954 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
4955 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam },
4956 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam },
4957 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol },
4958 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids },
4959 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes },
4960 [P_STATE] = { 0, sizeof(struct p_state), receive_state },
4961 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state },
4962 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
4963 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
4964 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest },
4965 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
4966 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest },
4967 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip },
4968 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
4969 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
4970 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
4971 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data },
4972 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
4973 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data },
4974 };
4975
4976 static void drbdd(struct drbd_connection *connection)
4977 {
4978 struct packet_info pi;
4979 size_t shs; /* sub header size */
4980 int err;
4981
4982 while (get_t_state(&connection->receiver) == RUNNING) {
4983 struct data_cmd const *cmd;
4984
4985 drbd_thread_current_set_cpu(&connection->receiver);
4986 update_receiver_timing_details(connection, drbd_recv_header);
4987 if (drbd_recv_header(connection, &pi))
4988 goto err_out;
4989
4990 cmd = &drbd_cmd_handler[pi.cmd];
4991 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
4992 drbd_err(connection, "Unexpected data packet %s (0x%04x)",
4993 cmdname(pi.cmd), pi.cmd);
4994 goto err_out;
4995 }
4996
4997 shs = cmd->pkt_size;
4998 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
4999 shs += sizeof(struct o_qlim);
5000 if (pi.size > shs && !cmd->expect_payload) {
5001 drbd_err(connection, "No payload expected %s l:%d\n",
5002 cmdname(pi.cmd), pi.size);
5003 goto err_out;
5004 }
5005 if (pi.size < shs) {
5006 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5007 cmdname(pi.cmd), (int)shs, pi.size);
5008 goto err_out;
5009 }
5010
5011 if (shs) {
5012 update_receiver_timing_details(connection, drbd_recv_all_warn);
5013 err = drbd_recv_all_warn(connection, pi.data, shs);
5014 if (err)
5015 goto err_out;
5016 pi.size -= shs;
5017 }
5018
5019 update_receiver_timing_details(connection, cmd->fn);
5020 err = cmd->fn(connection, &pi);
5021 if (err) {
5022 drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5023 cmdname(pi.cmd), err, pi.size);
5024 goto err_out;
5025 }
5026 }
5027 return;
5028
5029 err_out:
5030 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5031 }
5032
5033 static void conn_disconnect(struct drbd_connection *connection)
5034 {
5035 struct drbd_peer_device *peer_device;
5036 enum drbd_conns oc;
5037 int vnr;
5038
5039 if (connection->cstate == C_STANDALONE)
5040 return;
5041
5042 /* We are about to start the cleanup after connection loss.
5043 * Make sure drbd_make_request knows about that.
5044 * Usually we should be in some network failure state already,
5045 * but just in case we are not, we fix it up here.
5046 */
5047 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5048
5049 /* ack_receiver does not clean up anything. it must not interfere, either */
5050 drbd_thread_stop(&connection->ack_receiver);
5051 if (connection->ack_sender) {
5052 destroy_workqueue(connection->ack_sender);
5053 connection->ack_sender = NULL;
5054 }
5055 drbd_free_sock(connection);
5056
5057 rcu_read_lock();
5058 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5059 struct drbd_device *device = peer_device->device;
5060 kref_get(&device->kref);
5061 rcu_read_unlock();
5062 drbd_disconnected(peer_device);
5063 kref_put(&device->kref, drbd_destroy_device);
5064 rcu_read_lock();
5065 }
5066 rcu_read_unlock();
5067
5068 if (!list_empty(&connection->current_epoch->list))
5069 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5070 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5071 atomic_set(&connection->current_epoch->epoch_size, 0);
5072 connection->send.seen_any_write_yet = false;
5073
5074 drbd_info(connection, "Connection closed\n");
5075
5076 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5077 conn_try_outdate_peer_async(connection);
5078
5079 spin_lock_irq(&connection->resource->req_lock);
5080 oc = connection->cstate;
5081 if (oc >= C_UNCONNECTED)
5082 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5083
5084 spin_unlock_irq(&connection->resource->req_lock);
5085
5086 if (oc == C_DISCONNECTING)
5087 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5088 }
5089
5090 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5091 {
5092 struct drbd_device *device = peer_device->device;
5093 unsigned int i;
5094
5095 /* wait for current activity to cease. */
5096 spin_lock_irq(&device->resource->req_lock);
5097 _drbd_wait_ee_list_empty(device, &device->active_ee);
5098 _drbd_wait_ee_list_empty(device, &device->sync_ee);
5099 _drbd_wait_ee_list_empty(device, &device->read_ee);
5100 spin_unlock_irq(&device->resource->req_lock);
5101
5102 /* We do not have data structures that would allow us to
5103 * get the rs_pending_cnt down to 0 again.
5104 * * On C_SYNC_TARGET we do not have any data structures describing
5105 * the pending RSDataRequest's we have sent.
5106 * * On C_SYNC_SOURCE there is no data structure that tracks
5107 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5108 * And no, it is not the sum of the reference counts in the
5109 * resync_LRU. The resync_LRU tracks the whole operation including
5110 * the disk-IO, while the rs_pending_cnt only tracks the blocks
5111 * on the fly. */
5112 drbd_rs_cancel_all(device);
5113 device->rs_total = 0;
5114 device->rs_failed = 0;
5115 atomic_set(&device->rs_pending_cnt, 0);
5116 wake_up(&device->misc_wait);
5117
5118 del_timer_sync(&device->resync_timer);
5119 resync_timer_fn((unsigned long)device);
5120
5121 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5122 * w_make_resync_request etc. which may still be on the worker queue
5123 * to be "canceled" */
5124 drbd_flush_workqueue(&peer_device->connection->sender_work);
5125
5126 drbd_finish_peer_reqs(device);
5127
5128 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5129 might have issued a work again. The one before drbd_finish_peer_reqs() is
5130 necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5131 drbd_flush_workqueue(&peer_device->connection->sender_work);
5132
5133 /* need to do it again, drbd_finish_peer_reqs() may have populated it
5134 * again via drbd_try_clear_on_disk_bm(). */
5135 drbd_rs_cancel_all(device);
5136
5137 kfree(device->p_uuid);
5138 device->p_uuid = NULL;
5139
5140 if (!drbd_suspended(device))
5141 tl_clear(peer_device->connection);
5142
5143 drbd_md_sync(device);
5144
5145 if (get_ldev(device)) {
5146 drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5147 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5148 put_ldev(device);
5149 }
5150
5151 /* tcp_close and release of sendpage pages can be deferred. I don't
5152 * want to use SO_LINGER, because apparently it can be deferred for
5153 * more than 20 seconds (longest time I checked).
5154 *
5155 * Actually we don't care for exactly when the network stack does its
5156 * put_page(), but release our reference on these pages right here.
5157 */
5158 i = drbd_free_peer_reqs(device, &device->net_ee);
5159 if (i)
5160 drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5161 i = atomic_read(&device->pp_in_use_by_net);
5162 if (i)
5163 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5164 i = atomic_read(&device->pp_in_use);
5165 if (i)
5166 drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5167
5168 D_ASSERT(device, list_empty(&device->read_ee));
5169 D_ASSERT(device, list_empty(&device->active_ee));
5170 D_ASSERT(device, list_empty(&device->sync_ee));
5171 D_ASSERT(device, list_empty(&device->done_ee));
5172
5173 return 0;
5174 }
5175
5176 /*
5177 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5178 * we can agree on is stored in agreed_pro_version.
5179 *
5180 * feature flags and the reserved array should be enough room for future
5181 * enhancements of the handshake protocol, and possible plugins...
5182 *
5183 * for now, they are expected to be zero, but ignored.
5184 */
5185 static int drbd_send_features(struct drbd_connection *connection)
5186 {
5187 struct drbd_socket *sock;
5188 struct p_connection_features *p;
5189
5190 sock = &connection->data;
5191 p = conn_prepare_command(connection, sock);
5192 if (!p)
5193 return -EIO;
5194 memset(p, 0, sizeof(*p));
5195 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5196 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5197 p->feature_flags = cpu_to_be32(PRO_FEATURES);
5198 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5199 }
5200
5201 /*
5202 * return values:
5203 * 1 yes, we have a valid connection
5204 * 0 oops, did not work out, please try again
5205 * -1 peer talks different language,
5206 * no point in trying again, please go standalone.
5207 */
5208 static int drbd_do_features(struct drbd_connection *connection)
5209 {
5210 /* ASSERT current == connection->receiver ... */
5211 struct p_connection_features *p;
5212 const int expect = sizeof(struct p_connection_features);
5213 struct packet_info pi;
5214 int err;
5215
5216 err = drbd_send_features(connection);
5217 if (err)
5218 return 0;
5219
5220 err = drbd_recv_header(connection, &pi);
5221 if (err)
5222 return 0;
5223
5224 if (pi.cmd != P_CONNECTION_FEATURES) {
5225 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5226 cmdname(pi.cmd), pi.cmd);
5227 return -1;
5228 }
5229
5230 if (pi.size != expect) {
5231 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5232 expect, pi.size);
5233 return -1;
5234 }
5235
5236 p = pi.data;
5237 err = drbd_recv_all_warn(connection, p, expect);
5238 if (err)
5239 return 0;
5240
5241 p->protocol_min = be32_to_cpu(p->protocol_min);
5242 p->protocol_max = be32_to_cpu(p->protocol_max);
5243 if (p->protocol_max == 0)
5244 p->protocol_max = p->protocol_min;
5245
5246 if (PRO_VERSION_MAX < p->protocol_min ||
5247 PRO_VERSION_MIN > p->protocol_max)
5248 goto incompat;
5249
5250 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5251 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5252
5253 drbd_info(connection, "Handshake successful: "
5254 "Agreed network protocol version %d\n", connection->agreed_pro_version);
5255
5256 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s.\n",
5257 connection->agreed_features,
5258 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5259 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5260 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" :
5261 connection->agreed_features ? "" : " none");
5262
5263 return 1;
5264
5265 incompat:
5266 drbd_err(connection, "incompatible DRBD dialects: "
5267 "I support %d-%d, peer supports %d-%d\n",
5268 PRO_VERSION_MIN, PRO_VERSION_MAX,
5269 p->protocol_min, p->protocol_max);
5270 return -1;
5271 }
5272
5273 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5274 static int drbd_do_auth(struct drbd_connection *connection)
5275 {
5276 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5277 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5278 return -1;
5279 }
5280 #else
5281 #define CHALLENGE_LEN 64
5282
5283 /* Return value:
5284 1 - auth succeeded,
5285 0 - failed, try again (network error),
5286 -1 - auth failed, don't try again.
5287 */
5288
5289 static int drbd_do_auth(struct drbd_connection *connection)
5290 {
5291 struct drbd_socket *sock;
5292 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */
5293 char *response = NULL;
5294 char *right_response = NULL;
5295 char *peers_ch = NULL;
5296 unsigned int key_len;
5297 char secret[SHARED_SECRET_MAX]; /* 64 byte */
5298 unsigned int resp_size;
5299 SHASH_DESC_ON_STACK(desc, connection->cram_hmac_tfm);
5300 struct packet_info pi;
5301 struct net_conf *nc;
5302 int err, rv;
5303
5304 /* FIXME: Put the challenge/response into the preallocated socket buffer. */
5305
5306 rcu_read_lock();
5307 nc = rcu_dereference(connection->net_conf);
5308 key_len = strlen(nc->shared_secret);
5309 memcpy(secret, nc->shared_secret, key_len);
5310 rcu_read_unlock();
5311
5312 desc->tfm = connection->cram_hmac_tfm;
5313 desc->flags = 0;
5314
5315 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5316 if (rv) {
5317 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5318 rv = -1;
5319 goto fail;
5320 }
5321
5322 get_random_bytes(my_challenge, CHALLENGE_LEN);
5323
5324 sock = &connection->data;
5325 if (!conn_prepare_command(connection, sock)) {
5326 rv = 0;
5327 goto fail;
5328 }
5329 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5330 my_challenge, CHALLENGE_LEN);
5331 if (!rv)
5332 goto fail;
5333
5334 err = drbd_recv_header(connection, &pi);
5335 if (err) {
5336 rv = 0;
5337 goto fail;
5338 }
5339
5340 if (pi.cmd != P_AUTH_CHALLENGE) {
5341 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5342 cmdname(pi.cmd), pi.cmd);
5343 rv = 0;
5344 goto fail;
5345 }
5346
5347 if (pi.size > CHALLENGE_LEN * 2) {
5348 drbd_err(connection, "expected AuthChallenge payload too big.\n");
5349 rv = -1;
5350 goto fail;
5351 }
5352
5353 if (pi.size < CHALLENGE_LEN) {
5354 drbd_err(connection, "AuthChallenge payload too small.\n");
5355 rv = -1;
5356 goto fail;
5357 }
5358
5359 peers_ch = kmalloc(pi.size, GFP_NOIO);
5360 if (peers_ch == NULL) {
5361 drbd_err(connection, "kmalloc of peers_ch failed\n");
5362 rv = -1;
5363 goto fail;
5364 }
5365
5366 err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5367 if (err) {
5368 rv = 0;
5369 goto fail;
5370 }
5371
5372 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5373 drbd_err(connection, "Peer presented the same challenge!\n");
5374 rv = -1;
5375 goto fail;
5376 }
5377
5378 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5379 response = kmalloc(resp_size, GFP_NOIO);
5380 if (response == NULL) {
5381 drbd_err(connection, "kmalloc of response failed\n");
5382 rv = -1;
5383 goto fail;
5384 }
5385
5386 rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5387 if (rv) {
5388 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5389 rv = -1;
5390 goto fail;
5391 }
5392
5393 if (!conn_prepare_command(connection, sock)) {
5394 rv = 0;
5395 goto fail;
5396 }
5397 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5398 response, resp_size);
5399 if (!rv)
5400 goto fail;
5401
5402 err = drbd_recv_header(connection, &pi);
5403 if (err) {
5404 rv = 0;
5405 goto fail;
5406 }
5407
5408 if (pi.cmd != P_AUTH_RESPONSE) {
5409 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5410 cmdname(pi.cmd), pi.cmd);
5411 rv = 0;
5412 goto fail;
5413 }
5414
5415 if (pi.size != resp_size) {
5416 drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5417 rv = 0;
5418 goto fail;
5419 }
5420
5421 err = drbd_recv_all_warn(connection, response , resp_size);
5422 if (err) {
5423 rv = 0;
5424 goto fail;
5425 }
5426
5427 right_response = kmalloc(resp_size, GFP_NOIO);
5428 if (right_response == NULL) {
5429 drbd_err(connection, "kmalloc of right_response failed\n");
5430 rv = -1;
5431 goto fail;
5432 }
5433
5434 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5435 right_response);
5436 if (rv) {
5437 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5438 rv = -1;
5439 goto fail;
5440 }
5441
5442 rv = !memcmp(response, right_response, resp_size);
5443
5444 if (rv)
5445 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5446 resp_size);
5447 else
5448 rv = -1;
5449
5450 fail:
5451 kfree(peers_ch);
5452 kfree(response);
5453 kfree(right_response);
5454 shash_desc_zero(desc);
5455
5456 return rv;
5457 }
5458 #endif
5459
5460 int drbd_receiver(struct drbd_thread *thi)
5461 {
5462 struct drbd_connection *connection = thi->connection;
5463 int h;
5464
5465 drbd_info(connection, "receiver (re)started\n");
5466
5467 do {
5468 h = conn_connect(connection);
5469 if (h == 0) {
5470 conn_disconnect(connection);
5471 schedule_timeout_interruptible(HZ);
5472 }
5473 if (h == -1) {
5474 drbd_warn(connection, "Discarding network configuration.\n");
5475 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5476 }
5477 } while (h == 0);
5478
5479 if (h > 0)
5480 drbdd(connection);
5481
5482 conn_disconnect(connection);
5483
5484 drbd_info(connection, "receiver terminated\n");
5485 return 0;
5486 }
5487
5488 /* ********* acknowledge sender ******** */
5489
5490 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5491 {
5492 struct p_req_state_reply *p = pi->data;
5493 int retcode = be32_to_cpu(p->retcode);
5494
5495 if (retcode >= SS_SUCCESS) {
5496 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5497 } else {
5498 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5499 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5500 drbd_set_st_err_str(retcode), retcode);
5501 }
5502 wake_up(&connection->ping_wait);
5503
5504 return 0;
5505 }
5506
5507 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5508 {
5509 struct drbd_peer_device *peer_device;
5510 struct drbd_device *device;
5511 struct p_req_state_reply *p = pi->data;
5512 int retcode = be32_to_cpu(p->retcode);
5513
5514 peer_device = conn_peer_device(connection, pi->vnr);
5515 if (!peer_device)
5516 return -EIO;
5517 device = peer_device->device;
5518
5519 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5520 D_ASSERT(device, connection->agreed_pro_version < 100);
5521 return got_conn_RqSReply(connection, pi);
5522 }
5523
5524 if (retcode >= SS_SUCCESS) {
5525 set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5526 } else {
5527 set_bit(CL_ST_CHG_FAIL, &device->flags);
5528 drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5529 drbd_set_st_err_str(retcode), retcode);
5530 }
5531 wake_up(&device->state_wait);
5532
5533 return 0;
5534 }
5535
5536 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5537 {
5538 return drbd_send_ping_ack(connection);
5539
5540 }
5541
5542 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5543 {
5544 /* restore idle timeout */
5545 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5546 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5547 wake_up(&connection->ping_wait);
5548
5549 return 0;
5550 }
5551
5552 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5553 {
5554 struct drbd_peer_device *peer_device;
5555 struct drbd_device *device;
5556 struct p_block_ack *p = pi->data;
5557 sector_t sector = be64_to_cpu(p->sector);
5558 int blksize = be32_to_cpu(p->blksize);
5559
5560 peer_device = conn_peer_device(connection, pi->vnr);
5561 if (!peer_device)
5562 return -EIO;
5563 device = peer_device->device;
5564
5565 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5566
5567 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5568
5569 if (get_ldev(device)) {
5570 drbd_rs_complete_io(device, sector);
5571 drbd_set_in_sync(device, sector, blksize);
5572 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5573 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5574 put_ldev(device);
5575 }
5576 dec_rs_pending(device);
5577 atomic_add(blksize >> 9, &device->rs_sect_in);
5578
5579 return 0;
5580 }
5581
5582 static int
5583 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5584 struct rb_root *root, const char *func,
5585 enum drbd_req_event what, bool missing_ok)
5586 {
5587 struct drbd_request *req;
5588 struct bio_and_error m;
5589
5590 spin_lock_irq(&device->resource->req_lock);
5591 req = find_request(device, root, id, sector, missing_ok, func);
5592 if (unlikely(!req)) {
5593 spin_unlock_irq(&device->resource->req_lock);
5594 return -EIO;
5595 }
5596 __req_mod(req, what, &m);
5597 spin_unlock_irq(&device->resource->req_lock);
5598
5599 if (m.bio)
5600 complete_master_bio(device, &m);
5601 return 0;
5602 }
5603
5604 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5605 {
5606 struct drbd_peer_device *peer_device;
5607 struct drbd_device *device;
5608 struct p_block_ack *p = pi->data;
5609 sector_t sector = be64_to_cpu(p->sector);
5610 int blksize = be32_to_cpu(p->blksize);
5611 enum drbd_req_event what;
5612
5613 peer_device = conn_peer_device(connection, pi->vnr);
5614 if (!peer_device)
5615 return -EIO;
5616 device = peer_device->device;
5617
5618 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5619
5620 if (p->block_id == ID_SYNCER) {
5621 drbd_set_in_sync(device, sector, blksize);
5622 dec_rs_pending(device);
5623 return 0;
5624 }
5625 switch (pi->cmd) {
5626 case P_RS_WRITE_ACK:
5627 what = WRITE_ACKED_BY_PEER_AND_SIS;
5628 break;
5629 case P_WRITE_ACK:
5630 what = WRITE_ACKED_BY_PEER;
5631 break;
5632 case P_RECV_ACK:
5633 what = RECV_ACKED_BY_PEER;
5634 break;
5635 case P_SUPERSEDED:
5636 what = CONFLICT_RESOLVED;
5637 break;
5638 case P_RETRY_WRITE:
5639 what = POSTPONE_WRITE;
5640 break;
5641 default:
5642 BUG();
5643 }
5644
5645 return validate_req_change_req_state(device, p->block_id, sector,
5646 &device->write_requests, __func__,
5647 what, false);
5648 }
5649
5650 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5651 {
5652 struct drbd_peer_device *peer_device;
5653 struct drbd_device *device;
5654 struct p_block_ack *p = pi->data;
5655 sector_t sector = be64_to_cpu(p->sector);
5656 int size = be32_to_cpu(p->blksize);
5657 int err;
5658
5659 peer_device = conn_peer_device(connection, pi->vnr);
5660 if (!peer_device)
5661 return -EIO;
5662 device = peer_device->device;
5663
5664 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5665
5666 if (p->block_id == ID_SYNCER) {
5667 dec_rs_pending(device);
5668 drbd_rs_failed_io(device, sector, size);
5669 return 0;
5670 }
5671
5672 err = validate_req_change_req_state(device, p->block_id, sector,
5673 &device->write_requests, __func__,
5674 NEG_ACKED, true);
5675 if (err) {
5676 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5677 The master bio might already be completed, therefore the
5678 request is no longer in the collision hash. */
5679 /* In Protocol B we might already have got a P_RECV_ACK
5680 but then get a P_NEG_ACK afterwards. */
5681 drbd_set_out_of_sync(device, sector, size);
5682 }
5683 return 0;
5684 }
5685
5686 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5687 {
5688 struct drbd_peer_device *peer_device;
5689 struct drbd_device *device;
5690 struct p_block_ack *p = pi->data;
5691 sector_t sector = be64_to_cpu(p->sector);
5692
5693 peer_device = conn_peer_device(connection, pi->vnr);
5694 if (!peer_device)
5695 return -EIO;
5696 device = peer_device->device;
5697
5698 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5699
5700 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5701 (unsigned long long)sector, be32_to_cpu(p->blksize));
5702
5703 return validate_req_change_req_state(device, p->block_id, sector,
5704 &device->read_requests, __func__,
5705 NEG_ACKED, false);
5706 }
5707
5708 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5709 {
5710 struct drbd_peer_device *peer_device;
5711 struct drbd_device *device;
5712 sector_t sector;
5713 int size;
5714 struct p_block_ack *p = pi->data;
5715
5716 peer_device = conn_peer_device(connection, pi->vnr);
5717 if (!peer_device)
5718 return -EIO;
5719 device = peer_device->device;
5720
5721 sector = be64_to_cpu(p->sector);
5722 size = be32_to_cpu(p->blksize);
5723
5724 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5725
5726 dec_rs_pending(device);
5727
5728 if (get_ldev_if_state(device, D_FAILED)) {
5729 drbd_rs_complete_io(device, sector);
5730 switch (pi->cmd) {
5731 case P_NEG_RS_DREPLY:
5732 drbd_rs_failed_io(device, sector, size);
5733 case P_RS_CANCEL:
5734 break;
5735 default:
5736 BUG();
5737 }
5738 put_ldev(device);
5739 }
5740
5741 return 0;
5742 }
5743
5744 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5745 {
5746 struct p_barrier_ack *p = pi->data;
5747 struct drbd_peer_device *peer_device;
5748 int vnr;
5749
5750 tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5751
5752 rcu_read_lock();
5753 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5754 struct drbd_device *device = peer_device->device;
5755
5756 if (device->state.conn == C_AHEAD &&
5757 atomic_read(&device->ap_in_flight) == 0 &&
5758 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5759 device->start_resync_timer.expires = jiffies + HZ;
5760 add_timer(&device->start_resync_timer);
5761 }
5762 }
5763 rcu_read_unlock();
5764
5765 return 0;
5766 }
5767
5768 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5769 {
5770 struct drbd_peer_device *peer_device;
5771 struct drbd_device *device;
5772 struct p_block_ack *p = pi->data;
5773 struct drbd_device_work *dw;
5774 sector_t sector;
5775 int size;
5776
5777 peer_device = conn_peer_device(connection, pi->vnr);
5778 if (!peer_device)
5779 return -EIO;
5780 device = peer_device->device;
5781
5782 sector = be64_to_cpu(p->sector);
5783 size = be32_to_cpu(p->blksize);
5784
5785 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5786
5787 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5788 drbd_ov_out_of_sync_found(device, sector, size);
5789 else
5790 ov_out_of_sync_print(device);
5791
5792 if (!get_ldev(device))
5793 return 0;
5794
5795 drbd_rs_complete_io(device, sector);
5796 dec_rs_pending(device);
5797
5798 --device->ov_left;
5799
5800 /* let's advance progress step marks only for every other megabyte */
5801 if ((device->ov_left & 0x200) == 0x200)
5802 drbd_advance_rs_marks(device, device->ov_left);
5803
5804 if (device->ov_left == 0) {
5805 dw = kmalloc(sizeof(*dw), GFP_NOIO);
5806 if (dw) {
5807 dw->w.cb = w_ov_finished;
5808 dw->device = device;
5809 drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5810 } else {
5811 drbd_err(device, "kmalloc(dw) failed.");
5812 ov_out_of_sync_print(device);
5813 drbd_resync_finished(device);
5814 }
5815 }
5816 put_ldev(device);
5817 return 0;
5818 }
5819
5820 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5821 {
5822 return 0;
5823 }
5824
5825 struct meta_sock_cmd {
5826 size_t pkt_size;
5827 int (*fn)(struct drbd_connection *connection, struct packet_info *);
5828 };
5829
5830 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5831 {
5832 long t;
5833 struct net_conf *nc;
5834
5835 rcu_read_lock();
5836 nc = rcu_dereference(connection->net_conf);
5837 t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5838 rcu_read_unlock();
5839
5840 t *= HZ;
5841 if (ping_timeout)
5842 t /= 10;
5843
5844 connection->meta.socket->sk->sk_rcvtimeo = t;
5845 }
5846
5847 static void set_ping_timeout(struct drbd_connection *connection)
5848 {
5849 set_rcvtimeo(connection, 1);
5850 }
5851
5852 static void set_idle_timeout(struct drbd_connection *connection)
5853 {
5854 set_rcvtimeo(connection, 0);
5855 }
5856
5857 static struct meta_sock_cmd ack_receiver_tbl[] = {
5858 [P_PING] = { 0, got_Ping },
5859 [P_PING_ACK] = { 0, got_PingAck },
5860 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5861 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5862 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5863 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck },
5864 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck },
5865 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply },
5866 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply },
5867 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult },
5868 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck },
5869 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5870 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync },
5871 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip },
5872 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply },
5873 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5874 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck },
5875 };
5876
5877 int drbd_ack_receiver(struct drbd_thread *thi)
5878 {
5879 struct drbd_connection *connection = thi->connection;
5880 struct meta_sock_cmd *cmd = NULL;
5881 struct packet_info pi;
5882 unsigned long pre_recv_jif;
5883 int rv;
5884 void *buf = connection->meta.rbuf;
5885 int received = 0;
5886 unsigned int header_size = drbd_header_size(connection);
5887 int expect = header_size;
5888 bool ping_timeout_active = false;
5889 struct sched_param param = { .sched_priority = 2 };
5890
5891 rv = sched_setscheduler(current, SCHED_RR, &param);
5892 if (rv < 0)
5893 drbd_err(connection, "drbd_ack_receiver: ERROR set priority, ret=%d\n", rv);
5894
5895 while (get_t_state(thi) == RUNNING) {
5896 drbd_thread_current_set_cpu(thi);
5897
5898 conn_reclaim_net_peer_reqs(connection);
5899
5900 if (test_and_clear_bit(SEND_PING, &connection->flags)) {
5901 if (drbd_send_ping(connection)) {
5902 drbd_err(connection, "drbd_send_ping has failed\n");
5903 goto reconnect;
5904 }
5905 set_ping_timeout(connection);
5906 ping_timeout_active = true;
5907 }
5908
5909 pre_recv_jif = jiffies;
5910 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
5911
5912 /* Note:
5913 * -EINTR (on meta) we got a signal
5914 * -EAGAIN (on meta) rcvtimeo expired
5915 * -ECONNRESET other side closed the connection
5916 * -ERESTARTSYS (on data) we got a signal
5917 * rv < 0 other than above: unexpected error!
5918 * rv == expected: full header or command
5919 * rv < expected: "woken" by signal during receive
5920 * rv == 0 : "connection shut down by peer"
5921 */
5922 if (likely(rv > 0)) {
5923 received += rv;
5924 buf += rv;
5925 } else if (rv == 0) {
5926 if (test_bit(DISCONNECT_SENT, &connection->flags)) {
5927 long t;
5928 rcu_read_lock();
5929 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
5930 rcu_read_unlock();
5931
5932 t = wait_event_timeout(connection->ping_wait,
5933 connection->cstate < C_WF_REPORT_PARAMS,
5934 t);
5935 if (t)
5936 break;
5937 }
5938 drbd_err(connection, "meta connection shut down by peer.\n");
5939 goto reconnect;
5940 } else if (rv == -EAGAIN) {
5941 /* If the data socket received something meanwhile,
5942 * that is good enough: peer is still alive. */
5943 if (time_after(connection->last_received, pre_recv_jif))
5944 continue;
5945 if (ping_timeout_active) {
5946 drbd_err(connection, "PingAck did not arrive in time.\n");
5947 goto reconnect;
5948 }
5949 set_bit(SEND_PING, &connection->flags);
5950 continue;
5951 } else if (rv == -EINTR) {
5952 /* maybe drbd_thread_stop(): the while condition will notice.
5953 * maybe woken for send_ping: we'll send a ping above,
5954 * and change the rcvtimeo */
5955 flush_signals(current);
5956 continue;
5957 } else {
5958 drbd_err(connection, "sock_recvmsg returned %d\n", rv);
5959 goto reconnect;
5960 }
5961
5962 if (received == expect && cmd == NULL) {
5963 if (decode_header(connection, connection->meta.rbuf, &pi))
5964 goto reconnect;
5965 cmd = &ack_receiver_tbl[pi.cmd];
5966 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
5967 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
5968 cmdname(pi.cmd), pi.cmd);
5969 goto disconnect;
5970 }
5971 expect = header_size + cmd->pkt_size;
5972 if (pi.size != expect - header_size) {
5973 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
5974 pi.cmd, pi.size);
5975 goto reconnect;
5976 }
5977 }
5978 if (received == expect) {
5979 bool err;
5980
5981 err = cmd->fn(connection, &pi);
5982 if (err) {
5983 drbd_err(connection, "%pf failed\n", cmd->fn);
5984 goto reconnect;
5985 }
5986
5987 connection->last_received = jiffies;
5988
5989 if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
5990 set_idle_timeout(connection);
5991 ping_timeout_active = false;
5992 }
5993
5994 buf = connection->meta.rbuf;
5995 received = 0;
5996 expect = header_size;
5997 cmd = NULL;
5998 }
5999 }
6000
6001 if (0) {
6002 reconnect:
6003 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6004 conn_md_sync(connection);
6005 }
6006 if (0) {
6007 disconnect:
6008 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6009 }
6010
6011 drbd_info(connection, "ack_receiver terminated\n");
6012
6013 return 0;
6014 }
6015
6016 void drbd_send_acks_wf(struct work_struct *ws)
6017 {
6018 struct drbd_peer_device *peer_device =
6019 container_of(ws, struct drbd_peer_device, send_acks_work);
6020 struct drbd_connection *connection = peer_device->connection;
6021 struct drbd_device *device = peer_device->device;
6022 struct net_conf *nc;
6023 int tcp_cork, err;
6024
6025 rcu_read_lock();
6026 nc = rcu_dereference(connection->net_conf);
6027 tcp_cork = nc->tcp_cork;
6028 rcu_read_unlock();
6029
6030 if (tcp_cork)
6031 drbd_tcp_cork(connection->meta.socket);
6032
6033 err = drbd_finish_peer_reqs(device);
6034 kref_put(&device->kref, drbd_destroy_device);
6035 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6036 struct work_struct send_acks_work alive, which is in the peer_device object */
6037
6038 if (err) {
6039 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6040 return;
6041 }
6042
6043 if (tcp_cork)
6044 drbd_tcp_uncork(connection->meta.socket);
6045
6046 return;
6047 }