]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/ll_rw_blk.c
[PATCH] blk: branch hints
[mirror_ubuntu-artful-kernel.git] / drivers / block / ll_rw_blk.c
1 /*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/blkdev.h>
32
33 /*
34 * for max sense size
35 */
36 #include <scsi/scsi_cmnd.h>
37
38 static void blk_unplug_work(void *data);
39 static void blk_unplug_timeout(unsigned long data);
40
41 /*
42 * For the allocated request tables
43 */
44 static kmem_cache_t *request_cachep;
45
46 /*
47 * For queue allocation
48 */
49 static kmem_cache_t *requestq_cachep;
50
51 /*
52 * For io context allocations
53 */
54 static kmem_cache_t *iocontext_cachep;
55
56 static wait_queue_head_t congestion_wqh[2] = {
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
59 };
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 unsigned long blk_max_low_pfn, blk_max_pfn;
67
68 EXPORT_SYMBOL(blk_max_low_pfn);
69 EXPORT_SYMBOL(blk_max_pfn);
70
71 /* Amount of time in which a process may batch requests */
72 #define BLK_BATCH_TIME (HZ/50UL)
73
74 /* Number of requests a "batching" process may submit */
75 #define BLK_BATCH_REQ 32
76
77 /*
78 * Return the threshold (number of used requests) at which the queue is
79 * considered to be congested. It include a little hysteresis to keep the
80 * context switch rate down.
81 */
82 static inline int queue_congestion_on_threshold(struct request_queue *q)
83 {
84 return q->nr_congestion_on;
85 }
86
87 /*
88 * The threshold at which a queue is considered to be uncongested
89 */
90 static inline int queue_congestion_off_threshold(struct request_queue *q)
91 {
92 return q->nr_congestion_off;
93 }
94
95 static void blk_queue_congestion_threshold(struct request_queue *q)
96 {
97 int nr;
98
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
101 nr = q->nr_requests;
102 q->nr_congestion_on = nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 if (nr < 1)
106 nr = 1;
107 q->nr_congestion_off = nr;
108 }
109
110 /*
111 * A queue has just exitted congestion. Note this in the global counter of
112 * congested queues, and wake up anyone who was waiting for requests to be
113 * put back.
114 */
115 static void clear_queue_congested(request_queue_t *q, int rw)
116 {
117 enum bdi_state bit;
118 wait_queue_head_t *wqh = &congestion_wqh[rw];
119
120 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
121 clear_bit(bit, &q->backing_dev_info.state);
122 smp_mb__after_clear_bit();
123 if (waitqueue_active(wqh))
124 wake_up(wqh);
125 }
126
127 /*
128 * A queue has just entered congestion. Flag that in the queue's VM-visible
129 * state flags and increment the global gounter of congested queues.
130 */
131 static void set_queue_congested(request_queue_t *q, int rw)
132 {
133 enum bdi_state bit;
134
135 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
136 set_bit(bit, &q->backing_dev_info.state);
137 }
138
139 /**
140 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
141 * @bdev: device
142 *
143 * Locates the passed device's request queue and returns the address of its
144 * backing_dev_info
145 *
146 * Will return NULL if the request queue cannot be located.
147 */
148 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
149 {
150 struct backing_dev_info *ret = NULL;
151 request_queue_t *q = bdev_get_queue(bdev);
152
153 if (q)
154 ret = &q->backing_dev_info;
155 return ret;
156 }
157
158 EXPORT_SYMBOL(blk_get_backing_dev_info);
159
160 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
161 {
162 q->activity_fn = fn;
163 q->activity_data = data;
164 }
165
166 EXPORT_SYMBOL(blk_queue_activity_fn);
167
168 /**
169 * blk_queue_prep_rq - set a prepare_request function for queue
170 * @q: queue
171 * @pfn: prepare_request function
172 *
173 * It's possible for a queue to register a prepare_request callback which
174 * is invoked before the request is handed to the request_fn. The goal of
175 * the function is to prepare a request for I/O, it can be used to build a
176 * cdb from the request data for instance.
177 *
178 */
179 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
180 {
181 q->prep_rq_fn = pfn;
182 }
183
184 EXPORT_SYMBOL(blk_queue_prep_rq);
185
186 /**
187 * blk_queue_merge_bvec - set a merge_bvec function for queue
188 * @q: queue
189 * @mbfn: merge_bvec_fn
190 *
191 * Usually queues have static limitations on the max sectors or segments that
192 * we can put in a request. Stacking drivers may have some settings that
193 * are dynamic, and thus we have to query the queue whether it is ok to
194 * add a new bio_vec to a bio at a given offset or not. If the block device
195 * has such limitations, it needs to register a merge_bvec_fn to control
196 * the size of bio's sent to it. Note that a block device *must* allow a
197 * single page to be added to an empty bio. The block device driver may want
198 * to use the bio_split() function to deal with these bio's. By default
199 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
200 * honored.
201 */
202 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
203 {
204 q->merge_bvec_fn = mbfn;
205 }
206
207 EXPORT_SYMBOL(blk_queue_merge_bvec);
208
209 /**
210 * blk_queue_make_request - define an alternate make_request function for a device
211 * @q: the request queue for the device to be affected
212 * @mfn: the alternate make_request function
213 *
214 * Description:
215 * The normal way for &struct bios to be passed to a device
216 * driver is for them to be collected into requests on a request
217 * queue, and then to allow the device driver to select requests
218 * off that queue when it is ready. This works well for many block
219 * devices. However some block devices (typically virtual devices
220 * such as md or lvm) do not benefit from the processing on the
221 * request queue, and are served best by having the requests passed
222 * directly to them. This can be achieved by providing a function
223 * to blk_queue_make_request().
224 *
225 * Caveat:
226 * The driver that does this *must* be able to deal appropriately
227 * with buffers in "highmemory". This can be accomplished by either calling
228 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
229 * blk_queue_bounce() to create a buffer in normal memory.
230 **/
231 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
232 {
233 /*
234 * set defaults
235 */
236 q->nr_requests = BLKDEV_MAX_RQ;
237 q->max_phys_segments = MAX_PHYS_SEGMENTS;
238 q->max_hw_segments = MAX_HW_SEGMENTS;
239 q->make_request_fn = mfn;
240 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
241 q->backing_dev_info.state = 0;
242 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
243 blk_queue_max_sectors(q, MAX_SECTORS);
244 blk_queue_hardsect_size(q, 512);
245 blk_queue_dma_alignment(q, 511);
246 blk_queue_congestion_threshold(q);
247 q->nr_batching = BLK_BATCH_REQ;
248
249 q->unplug_thresh = 4; /* hmm */
250 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
251 if (q->unplug_delay == 0)
252 q->unplug_delay = 1;
253
254 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
255
256 q->unplug_timer.function = blk_unplug_timeout;
257 q->unplug_timer.data = (unsigned long)q;
258
259 /*
260 * by default assume old behaviour and bounce for any highmem page
261 */
262 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
263
264 blk_queue_activity_fn(q, NULL, NULL);
265
266 INIT_LIST_HEAD(&q->drain_list);
267 }
268
269 EXPORT_SYMBOL(blk_queue_make_request);
270
271 static inline void rq_init(request_queue_t *q, struct request *rq)
272 {
273 INIT_LIST_HEAD(&rq->queuelist);
274
275 rq->errors = 0;
276 rq->rq_status = RQ_ACTIVE;
277 rq->bio = rq->biotail = NULL;
278 rq->buffer = NULL;
279 rq->ref_count = 1;
280 rq->q = q;
281 rq->waiting = NULL;
282 rq->special = NULL;
283 rq->data_len = 0;
284 rq->data = NULL;
285 rq->sense = NULL;
286 rq->end_io = NULL;
287 rq->end_io_data = NULL;
288 }
289
290 /**
291 * blk_queue_ordered - does this queue support ordered writes
292 * @q: the request queue
293 * @flag: see below
294 *
295 * Description:
296 * For journalled file systems, doing ordered writes on a commit
297 * block instead of explicitly doing wait_on_buffer (which is bad
298 * for performance) can be a big win. Block drivers supporting this
299 * feature should call this function and indicate so.
300 *
301 **/
302 void blk_queue_ordered(request_queue_t *q, int flag)
303 {
304 switch (flag) {
305 case QUEUE_ORDERED_NONE:
306 if (q->flush_rq)
307 kmem_cache_free(request_cachep, q->flush_rq);
308 q->flush_rq = NULL;
309 q->ordered = flag;
310 break;
311 case QUEUE_ORDERED_TAG:
312 q->ordered = flag;
313 break;
314 case QUEUE_ORDERED_FLUSH:
315 q->ordered = flag;
316 if (!q->flush_rq)
317 q->flush_rq = kmem_cache_alloc(request_cachep,
318 GFP_KERNEL);
319 break;
320 default:
321 printk("blk_queue_ordered: bad value %d\n", flag);
322 break;
323 }
324 }
325
326 EXPORT_SYMBOL(blk_queue_ordered);
327
328 /**
329 * blk_queue_issue_flush_fn - set function for issuing a flush
330 * @q: the request queue
331 * @iff: the function to be called issuing the flush
332 *
333 * Description:
334 * If a driver supports issuing a flush command, the support is notified
335 * to the block layer by defining it through this call.
336 *
337 **/
338 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
339 {
340 q->issue_flush_fn = iff;
341 }
342
343 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
344
345 /*
346 * Cache flushing for ordered writes handling
347 */
348 static void blk_pre_flush_end_io(struct request *flush_rq)
349 {
350 struct request *rq = flush_rq->end_io_data;
351 request_queue_t *q = rq->q;
352
353 rq->flags |= REQ_BAR_PREFLUSH;
354
355 if (!flush_rq->errors)
356 elv_requeue_request(q, rq);
357 else {
358 q->end_flush_fn(q, flush_rq);
359 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
360 q->request_fn(q);
361 }
362 }
363
364 static void blk_post_flush_end_io(struct request *flush_rq)
365 {
366 struct request *rq = flush_rq->end_io_data;
367 request_queue_t *q = rq->q;
368
369 rq->flags |= REQ_BAR_POSTFLUSH;
370
371 q->end_flush_fn(q, flush_rq);
372 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
373 q->request_fn(q);
374 }
375
376 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
377 {
378 struct request *flush_rq = q->flush_rq;
379
380 BUG_ON(!blk_barrier_rq(rq));
381
382 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
383 return NULL;
384
385 rq_init(q, flush_rq);
386 flush_rq->elevator_private = NULL;
387 flush_rq->flags = REQ_BAR_FLUSH;
388 flush_rq->rq_disk = rq->rq_disk;
389 flush_rq->rl = NULL;
390
391 /*
392 * prepare_flush returns 0 if no flush is needed, just mark both
393 * pre and post flush as done in that case
394 */
395 if (!q->prepare_flush_fn(q, flush_rq)) {
396 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
397 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
398 return rq;
399 }
400
401 /*
402 * some drivers dequeue requests right away, some only after io
403 * completion. make sure the request is dequeued.
404 */
405 if (!list_empty(&rq->queuelist))
406 blkdev_dequeue_request(rq);
407
408 elv_deactivate_request(q, rq);
409
410 flush_rq->end_io_data = rq;
411 flush_rq->end_io = blk_pre_flush_end_io;
412
413 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
414 return flush_rq;
415 }
416
417 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
418 {
419 struct request *flush_rq = q->flush_rq;
420
421 BUG_ON(!blk_barrier_rq(rq));
422
423 rq_init(q, flush_rq);
424 flush_rq->elevator_private = NULL;
425 flush_rq->flags = REQ_BAR_FLUSH;
426 flush_rq->rq_disk = rq->rq_disk;
427 flush_rq->rl = NULL;
428
429 if (q->prepare_flush_fn(q, flush_rq)) {
430 flush_rq->end_io_data = rq;
431 flush_rq->end_io = blk_post_flush_end_io;
432
433 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
434 q->request_fn(q);
435 }
436 }
437
438 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
439 int sectors)
440 {
441 if (sectors > rq->nr_sectors)
442 sectors = rq->nr_sectors;
443
444 rq->nr_sectors -= sectors;
445 return rq->nr_sectors;
446 }
447
448 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
449 int sectors, int queue_locked)
450 {
451 if (q->ordered != QUEUE_ORDERED_FLUSH)
452 return 0;
453 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
454 return 0;
455 if (blk_barrier_postflush(rq))
456 return 0;
457
458 if (!blk_check_end_barrier(q, rq, sectors)) {
459 unsigned long flags = 0;
460
461 if (!queue_locked)
462 spin_lock_irqsave(q->queue_lock, flags);
463
464 blk_start_post_flush(q, rq);
465
466 if (!queue_locked)
467 spin_unlock_irqrestore(q->queue_lock, flags);
468 }
469
470 return 1;
471 }
472
473 /**
474 * blk_complete_barrier_rq - complete possible barrier request
475 * @q: the request queue for the device
476 * @rq: the request
477 * @sectors: number of sectors to complete
478 *
479 * Description:
480 * Used in driver end_io handling to determine whether to postpone
481 * completion of a barrier request until a post flush has been done. This
482 * is the unlocked variant, used if the caller doesn't already hold the
483 * queue lock.
484 **/
485 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
486 {
487 return __blk_complete_barrier_rq(q, rq, sectors, 0);
488 }
489 EXPORT_SYMBOL(blk_complete_barrier_rq);
490
491 /**
492 * blk_complete_barrier_rq_locked - complete possible barrier request
493 * @q: the request queue for the device
494 * @rq: the request
495 * @sectors: number of sectors to complete
496 *
497 * Description:
498 * See blk_complete_barrier_rq(). This variant must be used if the caller
499 * holds the queue lock.
500 **/
501 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
502 int sectors)
503 {
504 return __blk_complete_barrier_rq(q, rq, sectors, 1);
505 }
506 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
507
508 /**
509 * blk_queue_bounce_limit - set bounce buffer limit for queue
510 * @q: the request queue for the device
511 * @dma_addr: bus address limit
512 *
513 * Description:
514 * Different hardware can have different requirements as to what pages
515 * it can do I/O directly to. A low level driver can call
516 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
517 * buffers for doing I/O to pages residing above @page. By default
518 * the block layer sets this to the highest numbered "low" memory page.
519 **/
520 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
521 {
522 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
523
524 /*
525 * set appropriate bounce gfp mask -- unfortunately we don't have a
526 * full 4GB zone, so we have to resort to low memory for any bounces.
527 * ISA has its own < 16MB zone.
528 */
529 if (bounce_pfn < blk_max_low_pfn) {
530 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
531 init_emergency_isa_pool();
532 q->bounce_gfp = GFP_NOIO | GFP_DMA;
533 } else
534 q->bounce_gfp = GFP_NOIO;
535
536 q->bounce_pfn = bounce_pfn;
537 }
538
539 EXPORT_SYMBOL(blk_queue_bounce_limit);
540
541 /**
542 * blk_queue_max_sectors - set max sectors for a request for this queue
543 * @q: the request queue for the device
544 * @max_sectors: max sectors in the usual 512b unit
545 *
546 * Description:
547 * Enables a low level driver to set an upper limit on the size of
548 * received requests.
549 **/
550 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
551 {
552 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
553 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
554 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
555 }
556
557 q->max_sectors = q->max_hw_sectors = max_sectors;
558 }
559
560 EXPORT_SYMBOL(blk_queue_max_sectors);
561
562 /**
563 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
564 * @q: the request queue for the device
565 * @max_segments: max number of segments
566 *
567 * Description:
568 * Enables a low level driver to set an upper limit on the number of
569 * physical data segments in a request. This would be the largest sized
570 * scatter list the driver could handle.
571 **/
572 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
573 {
574 if (!max_segments) {
575 max_segments = 1;
576 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
577 }
578
579 q->max_phys_segments = max_segments;
580 }
581
582 EXPORT_SYMBOL(blk_queue_max_phys_segments);
583
584 /**
585 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
586 * @q: the request queue for the device
587 * @max_segments: max number of segments
588 *
589 * Description:
590 * Enables a low level driver to set an upper limit on the number of
591 * hw data segments in a request. This would be the largest number of
592 * address/length pairs the host adapter can actually give as once
593 * to the device.
594 **/
595 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
596 {
597 if (!max_segments) {
598 max_segments = 1;
599 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
600 }
601
602 q->max_hw_segments = max_segments;
603 }
604
605 EXPORT_SYMBOL(blk_queue_max_hw_segments);
606
607 /**
608 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
609 * @q: the request queue for the device
610 * @max_size: max size of segment in bytes
611 *
612 * Description:
613 * Enables a low level driver to set an upper limit on the size of a
614 * coalesced segment
615 **/
616 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
617 {
618 if (max_size < PAGE_CACHE_SIZE) {
619 max_size = PAGE_CACHE_SIZE;
620 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
621 }
622
623 q->max_segment_size = max_size;
624 }
625
626 EXPORT_SYMBOL(blk_queue_max_segment_size);
627
628 /**
629 * blk_queue_hardsect_size - set hardware sector size for the queue
630 * @q: the request queue for the device
631 * @size: the hardware sector size, in bytes
632 *
633 * Description:
634 * This should typically be set to the lowest possible sector size
635 * that the hardware can operate on (possible without reverting to
636 * even internal read-modify-write operations). Usually the default
637 * of 512 covers most hardware.
638 **/
639 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
640 {
641 q->hardsect_size = size;
642 }
643
644 EXPORT_SYMBOL(blk_queue_hardsect_size);
645
646 /*
647 * Returns the minimum that is _not_ zero, unless both are zero.
648 */
649 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
650
651 /**
652 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
653 * @t: the stacking driver (top)
654 * @b: the underlying device (bottom)
655 **/
656 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
657 {
658 /* zero is "infinity" */
659 t->max_sectors = t->max_hw_sectors =
660 min_not_zero(t->max_sectors,b->max_sectors);
661
662 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
663 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
664 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
665 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
666 }
667
668 EXPORT_SYMBOL(blk_queue_stack_limits);
669
670 /**
671 * blk_queue_segment_boundary - set boundary rules for segment merging
672 * @q: the request queue for the device
673 * @mask: the memory boundary mask
674 **/
675 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
676 {
677 if (mask < PAGE_CACHE_SIZE - 1) {
678 mask = PAGE_CACHE_SIZE - 1;
679 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
680 }
681
682 q->seg_boundary_mask = mask;
683 }
684
685 EXPORT_SYMBOL(blk_queue_segment_boundary);
686
687 /**
688 * blk_queue_dma_alignment - set dma length and memory alignment
689 * @q: the request queue for the device
690 * @mask: alignment mask
691 *
692 * description:
693 * set required memory and length aligment for direct dma transactions.
694 * this is used when buiding direct io requests for the queue.
695 *
696 **/
697 void blk_queue_dma_alignment(request_queue_t *q, int mask)
698 {
699 q->dma_alignment = mask;
700 }
701
702 EXPORT_SYMBOL(blk_queue_dma_alignment);
703
704 /**
705 * blk_queue_find_tag - find a request by its tag and queue
706 *
707 * @q: The request queue for the device
708 * @tag: The tag of the request
709 *
710 * Notes:
711 * Should be used when a device returns a tag and you want to match
712 * it with a request.
713 *
714 * no locks need be held.
715 **/
716 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
717 {
718 struct blk_queue_tag *bqt = q->queue_tags;
719
720 if (unlikely(bqt == NULL || tag >= bqt->max_depth))
721 return NULL;
722
723 return bqt->tag_index[tag];
724 }
725
726 EXPORT_SYMBOL(blk_queue_find_tag);
727
728 /**
729 * __blk_queue_free_tags - release tag maintenance info
730 * @q: the request queue for the device
731 *
732 * Notes:
733 * blk_cleanup_queue() will take care of calling this function, if tagging
734 * has been used. So there's no need to call this directly.
735 **/
736 static void __blk_queue_free_tags(request_queue_t *q)
737 {
738 struct blk_queue_tag *bqt = q->queue_tags;
739
740 if (!bqt)
741 return;
742
743 if (atomic_dec_and_test(&bqt->refcnt)) {
744 BUG_ON(bqt->busy);
745 BUG_ON(!list_empty(&bqt->busy_list));
746
747 kfree(bqt->tag_index);
748 bqt->tag_index = NULL;
749
750 kfree(bqt->tag_map);
751 bqt->tag_map = NULL;
752
753 kfree(bqt);
754 }
755
756 q->queue_tags = NULL;
757 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
758 }
759
760 /**
761 * blk_queue_free_tags - release tag maintenance info
762 * @q: the request queue for the device
763 *
764 * Notes:
765 * This is used to disabled tagged queuing to a device, yet leave
766 * queue in function.
767 **/
768 void blk_queue_free_tags(request_queue_t *q)
769 {
770 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
771 }
772
773 EXPORT_SYMBOL(blk_queue_free_tags);
774
775 static int
776 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
777 {
778 struct request **tag_index;
779 unsigned long *tag_map;
780 int nr_ulongs;
781
782 if (depth > q->nr_requests * 2) {
783 depth = q->nr_requests * 2;
784 printk(KERN_ERR "%s: adjusted depth to %d\n",
785 __FUNCTION__, depth);
786 }
787
788 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
789 if (!tag_index)
790 goto fail;
791
792 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
793 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
794 if (!tag_map)
795 goto fail;
796
797 memset(tag_index, 0, depth * sizeof(struct request *));
798 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
799 tags->max_depth = depth;
800 tags->tag_index = tag_index;
801 tags->tag_map = tag_map;
802
803 return 0;
804 fail:
805 kfree(tag_index);
806 return -ENOMEM;
807 }
808
809 /**
810 * blk_queue_init_tags - initialize the queue tag info
811 * @q: the request queue for the device
812 * @depth: the maximum queue depth supported
813 * @tags: the tag to use
814 **/
815 int blk_queue_init_tags(request_queue_t *q, int depth,
816 struct blk_queue_tag *tags)
817 {
818 int rc;
819
820 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
821
822 if (!tags && !q->queue_tags) {
823 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
824 if (!tags)
825 goto fail;
826
827 if (init_tag_map(q, tags, depth))
828 goto fail;
829
830 INIT_LIST_HEAD(&tags->busy_list);
831 tags->busy = 0;
832 atomic_set(&tags->refcnt, 1);
833 } else if (q->queue_tags) {
834 if ((rc = blk_queue_resize_tags(q, depth)))
835 return rc;
836 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
837 return 0;
838 } else
839 atomic_inc(&tags->refcnt);
840
841 /*
842 * assign it, all done
843 */
844 q->queue_tags = tags;
845 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
846 return 0;
847 fail:
848 kfree(tags);
849 return -ENOMEM;
850 }
851
852 EXPORT_SYMBOL(blk_queue_init_tags);
853
854 /**
855 * blk_queue_resize_tags - change the queueing depth
856 * @q: the request queue for the device
857 * @new_depth: the new max command queueing depth
858 *
859 * Notes:
860 * Must be called with the queue lock held.
861 **/
862 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
863 {
864 struct blk_queue_tag *bqt = q->queue_tags;
865 struct request **tag_index;
866 unsigned long *tag_map;
867 int max_depth, nr_ulongs;
868
869 if (!bqt)
870 return -ENXIO;
871
872 /*
873 * save the old state info, so we can copy it back
874 */
875 tag_index = bqt->tag_index;
876 tag_map = bqt->tag_map;
877 max_depth = bqt->max_depth;
878
879 if (init_tag_map(q, bqt, new_depth))
880 return -ENOMEM;
881
882 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
883 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
884 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
885
886 kfree(tag_index);
887 kfree(tag_map);
888 return 0;
889 }
890
891 EXPORT_SYMBOL(blk_queue_resize_tags);
892
893 /**
894 * blk_queue_end_tag - end tag operations for a request
895 * @q: the request queue for the device
896 * @rq: the request that has completed
897 *
898 * Description:
899 * Typically called when end_that_request_first() returns 0, meaning
900 * all transfers have been done for a request. It's important to call
901 * this function before end_that_request_last(), as that will put the
902 * request back on the free list thus corrupting the internal tag list.
903 *
904 * Notes:
905 * queue lock must be held.
906 **/
907 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
908 {
909 struct blk_queue_tag *bqt = q->queue_tags;
910 int tag = rq->tag;
911
912 BUG_ON(tag == -1);
913
914 if (unlikely(tag >= bqt->max_depth))
915 /*
916 * This can happen after tag depth has been reduced.
917 * FIXME: how about a warning or info message here?
918 */
919 return;
920
921 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
922 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
923 __FUNCTION__, tag);
924 return;
925 }
926
927 list_del_init(&rq->queuelist);
928 rq->flags &= ~REQ_QUEUED;
929 rq->tag = -1;
930
931 if (unlikely(bqt->tag_index[tag] == NULL))
932 printk(KERN_ERR "%s: tag %d is missing\n",
933 __FUNCTION__, tag);
934
935 bqt->tag_index[tag] = NULL;
936 bqt->busy--;
937 }
938
939 EXPORT_SYMBOL(blk_queue_end_tag);
940
941 /**
942 * blk_queue_start_tag - find a free tag and assign it
943 * @q: the request queue for the device
944 * @rq: the block request that needs tagging
945 *
946 * Description:
947 * This can either be used as a stand-alone helper, or possibly be
948 * assigned as the queue &prep_rq_fn (in which case &struct request
949 * automagically gets a tag assigned). Note that this function
950 * assumes that any type of request can be queued! if this is not
951 * true for your device, you must check the request type before
952 * calling this function. The request will also be removed from
953 * the request queue, so it's the drivers responsibility to readd
954 * it if it should need to be restarted for some reason.
955 *
956 * Notes:
957 * queue lock must be held.
958 **/
959 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
960 {
961 struct blk_queue_tag *bqt = q->queue_tags;
962 int tag;
963
964 if (unlikely((rq->flags & REQ_QUEUED))) {
965 printk(KERN_ERR
966 "%s: request %p for device [%s] already tagged %d",
967 __FUNCTION__, rq,
968 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
969 BUG();
970 }
971
972 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
973 if (tag >= bqt->max_depth)
974 return 1;
975
976 __set_bit(tag, bqt->tag_map);
977
978 rq->flags |= REQ_QUEUED;
979 rq->tag = tag;
980 bqt->tag_index[tag] = rq;
981 blkdev_dequeue_request(rq);
982 list_add(&rq->queuelist, &bqt->busy_list);
983 bqt->busy++;
984 return 0;
985 }
986
987 EXPORT_SYMBOL(blk_queue_start_tag);
988
989 /**
990 * blk_queue_invalidate_tags - invalidate all pending tags
991 * @q: the request queue for the device
992 *
993 * Description:
994 * Hardware conditions may dictate a need to stop all pending requests.
995 * In this case, we will safely clear the block side of the tag queue and
996 * readd all requests to the request queue in the right order.
997 *
998 * Notes:
999 * queue lock must be held.
1000 **/
1001 void blk_queue_invalidate_tags(request_queue_t *q)
1002 {
1003 struct blk_queue_tag *bqt = q->queue_tags;
1004 struct list_head *tmp, *n;
1005 struct request *rq;
1006
1007 list_for_each_safe(tmp, n, &bqt->busy_list) {
1008 rq = list_entry_rq(tmp);
1009
1010 if (rq->tag == -1) {
1011 printk(KERN_ERR
1012 "%s: bad tag found on list\n", __FUNCTION__);
1013 list_del_init(&rq->queuelist);
1014 rq->flags &= ~REQ_QUEUED;
1015 } else
1016 blk_queue_end_tag(q, rq);
1017
1018 rq->flags &= ~REQ_STARTED;
1019 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1020 }
1021 }
1022
1023 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1024
1025 static char *rq_flags[] = {
1026 "REQ_RW",
1027 "REQ_FAILFAST",
1028 "REQ_SOFTBARRIER",
1029 "REQ_HARDBARRIER",
1030 "REQ_CMD",
1031 "REQ_NOMERGE",
1032 "REQ_STARTED",
1033 "REQ_DONTPREP",
1034 "REQ_QUEUED",
1035 "REQ_PC",
1036 "REQ_BLOCK_PC",
1037 "REQ_SENSE",
1038 "REQ_FAILED",
1039 "REQ_QUIET",
1040 "REQ_SPECIAL",
1041 "REQ_DRIVE_CMD",
1042 "REQ_DRIVE_TASK",
1043 "REQ_DRIVE_TASKFILE",
1044 "REQ_PREEMPT",
1045 "REQ_PM_SUSPEND",
1046 "REQ_PM_RESUME",
1047 "REQ_PM_SHUTDOWN",
1048 };
1049
1050 void blk_dump_rq_flags(struct request *rq, char *msg)
1051 {
1052 int bit;
1053
1054 printk("%s: dev %s: flags = ", msg,
1055 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1056 bit = 0;
1057 do {
1058 if (rq->flags & (1 << bit))
1059 printk("%s ", rq_flags[bit]);
1060 bit++;
1061 } while (bit < __REQ_NR_BITS);
1062
1063 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1064 rq->nr_sectors,
1065 rq->current_nr_sectors);
1066 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1067
1068 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1069 printk("cdb: ");
1070 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1071 printk("%02x ", rq->cmd[bit]);
1072 printk("\n");
1073 }
1074 }
1075
1076 EXPORT_SYMBOL(blk_dump_rq_flags);
1077
1078 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1079 {
1080 struct bio_vec *bv, *bvprv = NULL;
1081 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1082 int high, highprv = 1;
1083
1084 if (unlikely(!bio->bi_io_vec))
1085 return;
1086
1087 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1088 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1089 bio_for_each_segment(bv, bio, i) {
1090 /*
1091 * the trick here is making sure that a high page is never
1092 * considered part of another segment, since that might
1093 * change with the bounce page.
1094 */
1095 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1096 if (high || highprv)
1097 goto new_hw_segment;
1098 if (cluster) {
1099 if (seg_size + bv->bv_len > q->max_segment_size)
1100 goto new_segment;
1101 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1102 goto new_segment;
1103 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1104 goto new_segment;
1105 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1106 goto new_hw_segment;
1107
1108 seg_size += bv->bv_len;
1109 hw_seg_size += bv->bv_len;
1110 bvprv = bv;
1111 continue;
1112 }
1113 new_segment:
1114 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1115 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1116 hw_seg_size += bv->bv_len;
1117 } else {
1118 new_hw_segment:
1119 if (hw_seg_size > bio->bi_hw_front_size)
1120 bio->bi_hw_front_size = hw_seg_size;
1121 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1122 nr_hw_segs++;
1123 }
1124
1125 nr_phys_segs++;
1126 bvprv = bv;
1127 seg_size = bv->bv_len;
1128 highprv = high;
1129 }
1130 if (hw_seg_size > bio->bi_hw_back_size)
1131 bio->bi_hw_back_size = hw_seg_size;
1132 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1133 bio->bi_hw_front_size = hw_seg_size;
1134 bio->bi_phys_segments = nr_phys_segs;
1135 bio->bi_hw_segments = nr_hw_segs;
1136 bio->bi_flags |= (1 << BIO_SEG_VALID);
1137 }
1138
1139
1140 int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1141 struct bio *nxt)
1142 {
1143 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1144 return 0;
1145
1146 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1147 return 0;
1148 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1149 return 0;
1150
1151 /*
1152 * bio and nxt are contigous in memory, check if the queue allows
1153 * these two to be merged into one
1154 */
1155 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1156 return 1;
1157
1158 return 0;
1159 }
1160
1161 EXPORT_SYMBOL(blk_phys_contig_segment);
1162
1163 int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1164 struct bio *nxt)
1165 {
1166 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1167 blk_recount_segments(q, bio);
1168 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1169 blk_recount_segments(q, nxt);
1170 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1171 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1172 return 0;
1173 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1174 return 0;
1175
1176 return 1;
1177 }
1178
1179 EXPORT_SYMBOL(blk_hw_contig_segment);
1180
1181 /*
1182 * map a request to scatterlist, return number of sg entries setup. Caller
1183 * must make sure sg can hold rq->nr_phys_segments entries
1184 */
1185 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1186 {
1187 struct bio_vec *bvec, *bvprv;
1188 struct bio *bio;
1189 int nsegs, i, cluster;
1190
1191 nsegs = 0;
1192 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1193
1194 /*
1195 * for each bio in rq
1196 */
1197 bvprv = NULL;
1198 rq_for_each_bio(bio, rq) {
1199 /*
1200 * for each segment in bio
1201 */
1202 bio_for_each_segment(bvec, bio, i) {
1203 int nbytes = bvec->bv_len;
1204
1205 if (bvprv && cluster) {
1206 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1207 goto new_segment;
1208
1209 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1210 goto new_segment;
1211 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1212 goto new_segment;
1213
1214 sg[nsegs - 1].length += nbytes;
1215 } else {
1216 new_segment:
1217 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1218 sg[nsegs].page = bvec->bv_page;
1219 sg[nsegs].length = nbytes;
1220 sg[nsegs].offset = bvec->bv_offset;
1221
1222 nsegs++;
1223 }
1224 bvprv = bvec;
1225 } /* segments in bio */
1226 } /* bios in rq */
1227
1228 return nsegs;
1229 }
1230
1231 EXPORT_SYMBOL(blk_rq_map_sg);
1232
1233 /*
1234 * the standard queue merge functions, can be overridden with device
1235 * specific ones if so desired
1236 */
1237
1238 static inline int ll_new_mergeable(request_queue_t *q,
1239 struct request *req,
1240 struct bio *bio)
1241 {
1242 int nr_phys_segs = bio_phys_segments(q, bio);
1243
1244 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1245 req->flags |= REQ_NOMERGE;
1246 if (req == q->last_merge)
1247 q->last_merge = NULL;
1248 return 0;
1249 }
1250
1251 /*
1252 * A hw segment is just getting larger, bump just the phys
1253 * counter.
1254 */
1255 req->nr_phys_segments += nr_phys_segs;
1256 return 1;
1257 }
1258
1259 static inline int ll_new_hw_segment(request_queue_t *q,
1260 struct request *req,
1261 struct bio *bio)
1262 {
1263 int nr_hw_segs = bio_hw_segments(q, bio);
1264 int nr_phys_segs = bio_phys_segments(q, bio);
1265
1266 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1267 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1268 req->flags |= REQ_NOMERGE;
1269 if (req == q->last_merge)
1270 q->last_merge = NULL;
1271 return 0;
1272 }
1273
1274 /*
1275 * This will form the start of a new hw segment. Bump both
1276 * counters.
1277 */
1278 req->nr_hw_segments += nr_hw_segs;
1279 req->nr_phys_segments += nr_phys_segs;
1280 return 1;
1281 }
1282
1283 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1284 struct bio *bio)
1285 {
1286 int len;
1287
1288 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1289 req->flags |= REQ_NOMERGE;
1290 if (req == q->last_merge)
1291 q->last_merge = NULL;
1292 return 0;
1293 }
1294 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1295 blk_recount_segments(q, req->biotail);
1296 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1297 blk_recount_segments(q, bio);
1298 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1299 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1300 !BIOVEC_VIRT_OVERSIZE(len)) {
1301 int mergeable = ll_new_mergeable(q, req, bio);
1302
1303 if (mergeable) {
1304 if (req->nr_hw_segments == 1)
1305 req->bio->bi_hw_front_size = len;
1306 if (bio->bi_hw_segments == 1)
1307 bio->bi_hw_back_size = len;
1308 }
1309 return mergeable;
1310 }
1311
1312 return ll_new_hw_segment(q, req, bio);
1313 }
1314
1315 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1316 struct bio *bio)
1317 {
1318 int len;
1319
1320 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1321 req->flags |= REQ_NOMERGE;
1322 if (req == q->last_merge)
1323 q->last_merge = NULL;
1324 return 0;
1325 }
1326 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1327 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1328 blk_recount_segments(q, bio);
1329 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1330 blk_recount_segments(q, req->bio);
1331 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1332 !BIOVEC_VIRT_OVERSIZE(len)) {
1333 int mergeable = ll_new_mergeable(q, req, bio);
1334
1335 if (mergeable) {
1336 if (bio->bi_hw_segments == 1)
1337 bio->bi_hw_front_size = len;
1338 if (req->nr_hw_segments == 1)
1339 req->biotail->bi_hw_back_size = len;
1340 }
1341 return mergeable;
1342 }
1343
1344 return ll_new_hw_segment(q, req, bio);
1345 }
1346
1347 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1348 struct request *next)
1349 {
1350 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1351 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1352
1353 /*
1354 * First check if the either of the requests are re-queued
1355 * requests. Can't merge them if they are.
1356 */
1357 if (req->special || next->special)
1358 return 0;
1359
1360 /*
1361 * Will it become to large?
1362 */
1363 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1364 return 0;
1365
1366 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1367 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1368 total_phys_segments--;
1369
1370 if (total_phys_segments > q->max_phys_segments)
1371 return 0;
1372
1373 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1374 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1375 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1376 /*
1377 * propagate the combined length to the end of the requests
1378 */
1379 if (req->nr_hw_segments == 1)
1380 req->bio->bi_hw_front_size = len;
1381 if (next->nr_hw_segments == 1)
1382 next->biotail->bi_hw_back_size = len;
1383 total_hw_segments--;
1384 }
1385
1386 if (total_hw_segments > q->max_hw_segments)
1387 return 0;
1388
1389 /* Merge is OK... */
1390 req->nr_phys_segments = total_phys_segments;
1391 req->nr_hw_segments = total_hw_segments;
1392 return 1;
1393 }
1394
1395 /*
1396 * "plug" the device if there are no outstanding requests: this will
1397 * force the transfer to start only after we have put all the requests
1398 * on the list.
1399 *
1400 * This is called with interrupts off and no requests on the queue and
1401 * with the queue lock held.
1402 */
1403 void blk_plug_device(request_queue_t *q)
1404 {
1405 WARN_ON(!irqs_disabled());
1406
1407 /*
1408 * don't plug a stopped queue, it must be paired with blk_start_queue()
1409 * which will restart the queueing
1410 */
1411 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1412 return;
1413
1414 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1415 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1416 }
1417
1418 EXPORT_SYMBOL(blk_plug_device);
1419
1420 /*
1421 * remove the queue from the plugged list, if present. called with
1422 * queue lock held and interrupts disabled.
1423 */
1424 int blk_remove_plug(request_queue_t *q)
1425 {
1426 WARN_ON(!irqs_disabled());
1427
1428 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1429 return 0;
1430
1431 del_timer(&q->unplug_timer);
1432 return 1;
1433 }
1434
1435 EXPORT_SYMBOL(blk_remove_plug);
1436
1437 /*
1438 * remove the plug and let it rip..
1439 */
1440 void __generic_unplug_device(request_queue_t *q)
1441 {
1442 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1443 return;
1444
1445 if (!blk_remove_plug(q))
1446 return;
1447
1448 /*
1449 * was plugged, fire request_fn if queue has stuff to do
1450 */
1451 if (elv_next_request(q))
1452 q->request_fn(q);
1453 }
1454 EXPORT_SYMBOL(__generic_unplug_device);
1455
1456 /**
1457 * generic_unplug_device - fire a request queue
1458 * @q: The &request_queue_t in question
1459 *
1460 * Description:
1461 * Linux uses plugging to build bigger requests queues before letting
1462 * the device have at them. If a queue is plugged, the I/O scheduler
1463 * is still adding and merging requests on the queue. Once the queue
1464 * gets unplugged, the request_fn defined for the queue is invoked and
1465 * transfers started.
1466 **/
1467 void generic_unplug_device(request_queue_t *q)
1468 {
1469 spin_lock_irq(q->queue_lock);
1470 __generic_unplug_device(q);
1471 spin_unlock_irq(q->queue_lock);
1472 }
1473 EXPORT_SYMBOL(generic_unplug_device);
1474
1475 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1476 struct page *page)
1477 {
1478 request_queue_t *q = bdi->unplug_io_data;
1479
1480 /*
1481 * devices don't necessarily have an ->unplug_fn defined
1482 */
1483 if (q->unplug_fn)
1484 q->unplug_fn(q);
1485 }
1486
1487 static void blk_unplug_work(void *data)
1488 {
1489 request_queue_t *q = data;
1490
1491 q->unplug_fn(q);
1492 }
1493
1494 static void blk_unplug_timeout(unsigned long data)
1495 {
1496 request_queue_t *q = (request_queue_t *)data;
1497
1498 kblockd_schedule_work(&q->unplug_work);
1499 }
1500
1501 /**
1502 * blk_start_queue - restart a previously stopped queue
1503 * @q: The &request_queue_t in question
1504 *
1505 * Description:
1506 * blk_start_queue() will clear the stop flag on the queue, and call
1507 * the request_fn for the queue if it was in a stopped state when
1508 * entered. Also see blk_stop_queue(). Queue lock must be held.
1509 **/
1510 void blk_start_queue(request_queue_t *q)
1511 {
1512 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1513
1514 /*
1515 * one level of recursion is ok and is much faster than kicking
1516 * the unplug handling
1517 */
1518 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1519 q->request_fn(q);
1520 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1521 } else {
1522 blk_plug_device(q);
1523 kblockd_schedule_work(&q->unplug_work);
1524 }
1525 }
1526
1527 EXPORT_SYMBOL(blk_start_queue);
1528
1529 /**
1530 * blk_stop_queue - stop a queue
1531 * @q: The &request_queue_t in question
1532 *
1533 * Description:
1534 * The Linux block layer assumes that a block driver will consume all
1535 * entries on the request queue when the request_fn strategy is called.
1536 * Often this will not happen, because of hardware limitations (queue
1537 * depth settings). If a device driver gets a 'queue full' response,
1538 * or if it simply chooses not to queue more I/O at one point, it can
1539 * call this function to prevent the request_fn from being called until
1540 * the driver has signalled it's ready to go again. This happens by calling
1541 * blk_start_queue() to restart queue operations. Queue lock must be held.
1542 **/
1543 void blk_stop_queue(request_queue_t *q)
1544 {
1545 blk_remove_plug(q);
1546 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1547 }
1548 EXPORT_SYMBOL(blk_stop_queue);
1549
1550 /**
1551 * blk_sync_queue - cancel any pending callbacks on a queue
1552 * @q: the queue
1553 *
1554 * Description:
1555 * The block layer may perform asynchronous callback activity
1556 * on a queue, such as calling the unplug function after a timeout.
1557 * A block device may call blk_sync_queue to ensure that any
1558 * such activity is cancelled, thus allowing it to release resources
1559 * the the callbacks might use. The caller must already have made sure
1560 * that its ->make_request_fn will not re-add plugging prior to calling
1561 * this function.
1562 *
1563 */
1564 void blk_sync_queue(struct request_queue *q)
1565 {
1566 del_timer_sync(&q->unplug_timer);
1567 kblockd_flush();
1568 }
1569 EXPORT_SYMBOL(blk_sync_queue);
1570
1571 /**
1572 * blk_run_queue - run a single device queue
1573 * @q: The queue to run
1574 */
1575 void blk_run_queue(struct request_queue *q)
1576 {
1577 unsigned long flags;
1578
1579 spin_lock_irqsave(q->queue_lock, flags);
1580 blk_remove_plug(q);
1581 if (!elv_queue_empty(q))
1582 q->request_fn(q);
1583 spin_unlock_irqrestore(q->queue_lock, flags);
1584 }
1585 EXPORT_SYMBOL(blk_run_queue);
1586
1587 /**
1588 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1589 * @q: the request queue to be released
1590 *
1591 * Description:
1592 * blk_cleanup_queue is the pair to blk_init_queue() or
1593 * blk_queue_make_request(). It should be called when a request queue is
1594 * being released; typically when a block device is being de-registered.
1595 * Currently, its primary task it to free all the &struct request
1596 * structures that were allocated to the queue and the queue itself.
1597 *
1598 * Caveat:
1599 * Hopefully the low level driver will have finished any
1600 * outstanding requests first...
1601 **/
1602 void blk_cleanup_queue(request_queue_t * q)
1603 {
1604 struct request_list *rl = &q->rq;
1605
1606 if (!atomic_dec_and_test(&q->refcnt))
1607 return;
1608
1609 if (q->elevator)
1610 elevator_exit(q->elevator);
1611
1612 blk_sync_queue(q);
1613
1614 if (rl->rq_pool)
1615 mempool_destroy(rl->rq_pool);
1616
1617 if (q->queue_tags)
1618 __blk_queue_free_tags(q);
1619
1620 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1621
1622 kmem_cache_free(requestq_cachep, q);
1623 }
1624
1625 EXPORT_SYMBOL(blk_cleanup_queue);
1626
1627 static int blk_init_free_list(request_queue_t *q)
1628 {
1629 struct request_list *rl = &q->rq;
1630
1631 rl->count[READ] = rl->count[WRITE] = 0;
1632 rl->starved[READ] = rl->starved[WRITE] = 0;
1633 init_waitqueue_head(&rl->wait[READ]);
1634 init_waitqueue_head(&rl->wait[WRITE]);
1635 init_waitqueue_head(&rl->drain);
1636
1637 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1638 mempool_free_slab, request_cachep, q->node);
1639
1640 if (!rl->rq_pool)
1641 return -ENOMEM;
1642
1643 return 0;
1644 }
1645
1646 static int __make_request(request_queue_t *, struct bio *);
1647
1648 request_queue_t *blk_alloc_queue(int gfp_mask)
1649 {
1650 return blk_alloc_queue_node(gfp_mask, -1);
1651 }
1652 EXPORT_SYMBOL(blk_alloc_queue);
1653
1654 request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1655 {
1656 request_queue_t *q;
1657
1658 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1659 if (!q)
1660 return NULL;
1661
1662 memset(q, 0, sizeof(*q));
1663 init_timer(&q->unplug_timer);
1664 atomic_set(&q->refcnt, 1);
1665
1666 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1667 q->backing_dev_info.unplug_io_data = q;
1668
1669 return q;
1670 }
1671 EXPORT_SYMBOL(blk_alloc_queue_node);
1672
1673 /**
1674 * blk_init_queue - prepare a request queue for use with a block device
1675 * @rfn: The function to be called to process requests that have been
1676 * placed on the queue.
1677 * @lock: Request queue spin lock
1678 *
1679 * Description:
1680 * If a block device wishes to use the standard request handling procedures,
1681 * which sorts requests and coalesces adjacent requests, then it must
1682 * call blk_init_queue(). The function @rfn will be called when there
1683 * are requests on the queue that need to be processed. If the device
1684 * supports plugging, then @rfn may not be called immediately when requests
1685 * are available on the queue, but may be called at some time later instead.
1686 * Plugged queues are generally unplugged when a buffer belonging to one
1687 * of the requests on the queue is needed, or due to memory pressure.
1688 *
1689 * @rfn is not required, or even expected, to remove all requests off the
1690 * queue, but only as many as it can handle at a time. If it does leave
1691 * requests on the queue, it is responsible for arranging that the requests
1692 * get dealt with eventually.
1693 *
1694 * The queue spin lock must be held while manipulating the requests on the
1695 * request queue.
1696 *
1697 * Function returns a pointer to the initialized request queue, or NULL if
1698 * it didn't succeed.
1699 *
1700 * Note:
1701 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1702 * when the block device is deactivated (such as at module unload).
1703 **/
1704
1705 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1706 {
1707 return blk_init_queue_node(rfn, lock, -1);
1708 }
1709 EXPORT_SYMBOL(blk_init_queue);
1710
1711 request_queue_t *
1712 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1713 {
1714 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1715
1716 if (!q)
1717 return NULL;
1718
1719 q->node = node_id;
1720 if (blk_init_free_list(q))
1721 goto out_init;
1722
1723 /*
1724 * if caller didn't supply a lock, they get per-queue locking with
1725 * our embedded lock
1726 */
1727 if (!lock) {
1728 spin_lock_init(&q->__queue_lock);
1729 lock = &q->__queue_lock;
1730 }
1731
1732 q->request_fn = rfn;
1733 q->back_merge_fn = ll_back_merge_fn;
1734 q->front_merge_fn = ll_front_merge_fn;
1735 q->merge_requests_fn = ll_merge_requests_fn;
1736 q->prep_rq_fn = NULL;
1737 q->unplug_fn = generic_unplug_device;
1738 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1739 q->queue_lock = lock;
1740
1741 blk_queue_segment_boundary(q, 0xffffffff);
1742
1743 blk_queue_make_request(q, __make_request);
1744 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1745
1746 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1747 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1748
1749 /*
1750 * all done
1751 */
1752 if (!elevator_init(q, NULL)) {
1753 blk_queue_congestion_threshold(q);
1754 return q;
1755 }
1756
1757 blk_cleanup_queue(q);
1758 out_init:
1759 kmem_cache_free(requestq_cachep, q);
1760 return NULL;
1761 }
1762 EXPORT_SYMBOL(blk_init_queue_node);
1763
1764 int blk_get_queue(request_queue_t *q)
1765 {
1766 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1767 atomic_inc(&q->refcnt);
1768 return 0;
1769 }
1770
1771 return 1;
1772 }
1773
1774 EXPORT_SYMBOL(blk_get_queue);
1775
1776 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1777 {
1778 elv_put_request(q, rq);
1779 mempool_free(rq, q->rq.rq_pool);
1780 }
1781
1782 static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
1783 int gfp_mask)
1784 {
1785 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1786
1787 if (!rq)
1788 return NULL;
1789
1790 /*
1791 * first three bits are identical in rq->flags and bio->bi_rw,
1792 * see bio.h and blkdev.h
1793 */
1794 rq->flags = rw;
1795
1796 if (!elv_set_request(q, rq, gfp_mask))
1797 return rq;
1798
1799 mempool_free(rq, q->rq.rq_pool);
1800 return NULL;
1801 }
1802
1803 /*
1804 * ioc_batching returns true if the ioc is a valid batching request and
1805 * should be given priority access to a request.
1806 */
1807 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1808 {
1809 if (!ioc)
1810 return 0;
1811
1812 /*
1813 * Make sure the process is able to allocate at least 1 request
1814 * even if the batch times out, otherwise we could theoretically
1815 * lose wakeups.
1816 */
1817 return ioc->nr_batch_requests == q->nr_batching ||
1818 (ioc->nr_batch_requests > 0
1819 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1820 }
1821
1822 /*
1823 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1824 * will cause the process to be a "batcher" on all queues in the system. This
1825 * is the behaviour we want though - once it gets a wakeup it should be given
1826 * a nice run.
1827 */
1828 void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1829 {
1830 if (!ioc || ioc_batching(q, ioc))
1831 return;
1832
1833 ioc->nr_batch_requests = q->nr_batching;
1834 ioc->last_waited = jiffies;
1835 }
1836
1837 static void __freed_request(request_queue_t *q, int rw)
1838 {
1839 struct request_list *rl = &q->rq;
1840
1841 if (rl->count[rw] < queue_congestion_off_threshold(q))
1842 clear_queue_congested(q, rw);
1843
1844 if (rl->count[rw] + 1 <= q->nr_requests) {
1845 if (waitqueue_active(&rl->wait[rw]))
1846 wake_up(&rl->wait[rw]);
1847
1848 blk_clear_queue_full(q, rw);
1849 }
1850 }
1851
1852 /*
1853 * A request has just been released. Account for it, update the full and
1854 * congestion status, wake up any waiters. Called under q->queue_lock.
1855 */
1856 static void freed_request(request_queue_t *q, int rw)
1857 {
1858 struct request_list *rl = &q->rq;
1859
1860 rl->count[rw]--;
1861
1862 __freed_request(q, rw);
1863
1864 if (unlikely(rl->starved[rw ^ 1]))
1865 __freed_request(q, rw ^ 1);
1866
1867 if (!rl->count[READ] && !rl->count[WRITE]) {
1868 smp_mb();
1869 if (unlikely(waitqueue_active(&rl->drain)))
1870 wake_up(&rl->drain);
1871 }
1872 }
1873
1874 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1875 /*
1876 * Get a free request, queue_lock must not be held
1877 */
1878 static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1879 {
1880 struct request *rq = NULL;
1881 struct request_list *rl = &q->rq;
1882 struct io_context *ioc = get_io_context(gfp_mask);
1883
1884 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1885 goto out;
1886
1887 spin_lock_irq(q->queue_lock);
1888 if (rl->count[rw]+1 >= q->nr_requests) {
1889 /*
1890 * The queue will fill after this allocation, so set it as
1891 * full, and mark this process as "batching". This process
1892 * will be allowed to complete a batch of requests, others
1893 * will be blocked.
1894 */
1895 if (!blk_queue_full(q, rw)) {
1896 ioc_set_batching(q, ioc);
1897 blk_set_queue_full(q, rw);
1898 }
1899 }
1900
1901 switch (elv_may_queue(q, rw)) {
1902 case ELV_MQUEUE_NO:
1903 goto rq_starved;
1904 case ELV_MQUEUE_MAY:
1905 break;
1906 case ELV_MQUEUE_MUST:
1907 goto get_rq;
1908 }
1909
1910 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1911 /*
1912 * The queue is full and the allocating process is not a
1913 * "batcher", and not exempted by the IO scheduler
1914 */
1915 spin_unlock_irq(q->queue_lock);
1916 goto out;
1917 }
1918
1919 get_rq:
1920 rl->count[rw]++;
1921 rl->starved[rw] = 0;
1922 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1923 set_queue_congested(q, rw);
1924 spin_unlock_irq(q->queue_lock);
1925
1926 rq = blk_alloc_request(q, rw, gfp_mask);
1927 if (!rq) {
1928 /*
1929 * Allocation failed presumably due to memory. Undo anything
1930 * we might have messed up.
1931 *
1932 * Allocating task should really be put onto the front of the
1933 * wait queue, but this is pretty rare.
1934 */
1935 spin_lock_irq(q->queue_lock);
1936 freed_request(q, rw);
1937
1938 /*
1939 * in the very unlikely event that allocation failed and no
1940 * requests for this direction was pending, mark us starved
1941 * so that freeing of a request in the other direction will
1942 * notice us. another possible fix would be to split the
1943 * rq mempool into READ and WRITE
1944 */
1945 rq_starved:
1946 if (unlikely(rl->count[rw] == 0))
1947 rl->starved[rw] = 1;
1948
1949 spin_unlock_irq(q->queue_lock);
1950 goto out;
1951 }
1952
1953 if (ioc_batching(q, ioc))
1954 ioc->nr_batch_requests--;
1955
1956 rq_init(q, rq);
1957 rq->rl = rl;
1958 out:
1959 put_io_context(ioc);
1960 return rq;
1961 }
1962
1963 /*
1964 * No available requests for this queue, unplug the device and wait for some
1965 * requests to become available.
1966 */
1967 static struct request *get_request_wait(request_queue_t *q, int rw)
1968 {
1969 DEFINE_WAIT(wait);
1970 struct request *rq;
1971
1972 generic_unplug_device(q);
1973 do {
1974 struct request_list *rl = &q->rq;
1975
1976 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1977 TASK_UNINTERRUPTIBLE);
1978
1979 rq = get_request(q, rw, GFP_NOIO);
1980
1981 if (!rq) {
1982 struct io_context *ioc;
1983
1984 io_schedule();
1985
1986 /*
1987 * After sleeping, we become a "batching" process and
1988 * will be able to allocate at least one request, and
1989 * up to a big batch of them for a small period time.
1990 * See ioc_batching, ioc_set_batching
1991 */
1992 ioc = get_io_context(GFP_NOIO);
1993 ioc_set_batching(q, ioc);
1994 put_io_context(ioc);
1995 }
1996 finish_wait(&rl->wait[rw], &wait);
1997 } while (!rq);
1998
1999 return rq;
2000 }
2001
2002 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2003 {
2004 struct request *rq;
2005
2006 BUG_ON(rw != READ && rw != WRITE);
2007
2008 if (gfp_mask & __GFP_WAIT)
2009 rq = get_request_wait(q, rw);
2010 else
2011 rq = get_request(q, rw, gfp_mask);
2012
2013 return rq;
2014 }
2015
2016 EXPORT_SYMBOL(blk_get_request);
2017
2018 /**
2019 * blk_requeue_request - put a request back on queue
2020 * @q: request queue where request should be inserted
2021 * @rq: request to be inserted
2022 *
2023 * Description:
2024 * Drivers often keep queueing requests until the hardware cannot accept
2025 * more, when that condition happens we need to put the request back
2026 * on the queue. Must be called with queue lock held.
2027 */
2028 void blk_requeue_request(request_queue_t *q, struct request *rq)
2029 {
2030 if (blk_rq_tagged(rq))
2031 blk_queue_end_tag(q, rq);
2032
2033 elv_requeue_request(q, rq);
2034 }
2035
2036 EXPORT_SYMBOL(blk_requeue_request);
2037
2038 /**
2039 * blk_insert_request - insert a special request in to a request queue
2040 * @q: request queue where request should be inserted
2041 * @rq: request to be inserted
2042 * @at_head: insert request at head or tail of queue
2043 * @data: private data
2044 *
2045 * Description:
2046 * Many block devices need to execute commands asynchronously, so they don't
2047 * block the whole kernel from preemption during request execution. This is
2048 * accomplished normally by inserting aritficial requests tagged as
2049 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2050 * scheduled for actual execution by the request queue.
2051 *
2052 * We have the option of inserting the head or the tail of the queue.
2053 * Typically we use the tail for new ioctls and so forth. We use the head
2054 * of the queue for things like a QUEUE_FULL message from a device, or a
2055 * host that is unable to accept a particular command.
2056 */
2057 void blk_insert_request(request_queue_t *q, struct request *rq,
2058 int at_head, void *data)
2059 {
2060 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2061 unsigned long flags;
2062
2063 /*
2064 * tell I/O scheduler that this isn't a regular read/write (ie it
2065 * must not attempt merges on this) and that it acts as a soft
2066 * barrier
2067 */
2068 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2069
2070 rq->special = data;
2071
2072 spin_lock_irqsave(q->queue_lock, flags);
2073
2074 /*
2075 * If command is tagged, release the tag
2076 */
2077 if (blk_rq_tagged(rq))
2078 blk_queue_end_tag(q, rq);
2079
2080 drive_stat_acct(rq, rq->nr_sectors, 1);
2081 __elv_add_request(q, rq, where, 0);
2082
2083 if (blk_queue_plugged(q))
2084 __generic_unplug_device(q);
2085 else
2086 q->request_fn(q);
2087 spin_unlock_irqrestore(q->queue_lock, flags);
2088 }
2089
2090 EXPORT_SYMBOL(blk_insert_request);
2091
2092 /**
2093 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2094 * @q: request queue where request should be inserted
2095 * @rw: READ or WRITE data
2096 * @ubuf: the user buffer
2097 * @len: length of user data
2098 *
2099 * Description:
2100 * Data will be mapped directly for zero copy io, if possible. Otherwise
2101 * a kernel bounce buffer is used.
2102 *
2103 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2104 * still in process context.
2105 *
2106 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2107 * before being submitted to the device, as pages mapped may be out of
2108 * reach. It's the callers responsibility to make sure this happens. The
2109 * original bio must be passed back in to blk_rq_unmap_user() for proper
2110 * unmapping.
2111 */
2112 struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2113 unsigned int len)
2114 {
2115 unsigned long uaddr;
2116 struct request *rq;
2117 struct bio *bio;
2118
2119 if (len > (q->max_sectors << 9))
2120 return ERR_PTR(-EINVAL);
2121 if ((!len && ubuf) || (len && !ubuf))
2122 return ERR_PTR(-EINVAL);
2123
2124 rq = blk_get_request(q, rw, __GFP_WAIT);
2125 if (!rq)
2126 return ERR_PTR(-ENOMEM);
2127
2128 /*
2129 * if alignment requirement is satisfied, map in user pages for
2130 * direct dma. else, set up kernel bounce buffers
2131 */
2132 uaddr = (unsigned long) ubuf;
2133 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2134 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2135 else
2136 bio = bio_copy_user(q, uaddr, len, rw == READ);
2137
2138 if (!IS_ERR(bio)) {
2139 rq->bio = rq->biotail = bio;
2140 blk_rq_bio_prep(q, rq, bio);
2141
2142 rq->buffer = rq->data = NULL;
2143 rq->data_len = len;
2144 return rq;
2145 }
2146
2147 /*
2148 * bio is the err-ptr
2149 */
2150 blk_put_request(rq);
2151 return (struct request *) bio;
2152 }
2153
2154 EXPORT_SYMBOL(blk_rq_map_user);
2155
2156 /**
2157 * blk_rq_unmap_user - unmap a request with user data
2158 * @rq: request to be unmapped
2159 * @bio: bio for the request
2160 * @ulen: length of user buffer
2161 *
2162 * Description:
2163 * Unmap a request previously mapped by blk_rq_map_user().
2164 */
2165 int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2166 {
2167 int ret = 0;
2168
2169 if (bio) {
2170 if (bio_flagged(bio, BIO_USER_MAPPED))
2171 bio_unmap_user(bio);
2172 else
2173 ret = bio_uncopy_user(bio);
2174 }
2175
2176 blk_put_request(rq);
2177 return ret;
2178 }
2179
2180 EXPORT_SYMBOL(blk_rq_unmap_user);
2181
2182 /**
2183 * blk_execute_rq - insert a request into queue for execution
2184 * @q: queue to insert the request in
2185 * @bd_disk: matching gendisk
2186 * @rq: request to insert
2187 *
2188 * Description:
2189 * Insert a fully prepared request at the back of the io scheduler queue
2190 * for execution.
2191 */
2192 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2193 struct request *rq)
2194 {
2195 DECLARE_COMPLETION(wait);
2196 char sense[SCSI_SENSE_BUFFERSIZE];
2197 int err = 0;
2198
2199 rq->rq_disk = bd_disk;
2200
2201 /*
2202 * we need an extra reference to the request, so we can look at
2203 * it after io completion
2204 */
2205 rq->ref_count++;
2206
2207 if (!rq->sense) {
2208 memset(sense, 0, sizeof(sense));
2209 rq->sense = sense;
2210 rq->sense_len = 0;
2211 }
2212
2213 rq->flags |= REQ_NOMERGE;
2214 rq->waiting = &wait;
2215 rq->end_io = blk_end_sync_rq;
2216 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2217 generic_unplug_device(q);
2218 wait_for_completion(&wait);
2219 rq->waiting = NULL;
2220
2221 if (rq->errors)
2222 err = -EIO;
2223
2224 return err;
2225 }
2226
2227 EXPORT_SYMBOL(blk_execute_rq);
2228
2229 /**
2230 * blkdev_issue_flush - queue a flush
2231 * @bdev: blockdev to issue flush for
2232 * @error_sector: error sector
2233 *
2234 * Description:
2235 * Issue a flush for the block device in question. Caller can supply
2236 * room for storing the error offset in case of a flush error, if they
2237 * wish to. Caller must run wait_for_completion() on its own.
2238 */
2239 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2240 {
2241 request_queue_t *q;
2242
2243 if (bdev->bd_disk == NULL)
2244 return -ENXIO;
2245
2246 q = bdev_get_queue(bdev);
2247 if (!q)
2248 return -ENXIO;
2249 if (!q->issue_flush_fn)
2250 return -EOPNOTSUPP;
2251
2252 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2253 }
2254
2255 EXPORT_SYMBOL(blkdev_issue_flush);
2256
2257 /**
2258 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2259 * @q: device queue
2260 * @disk: gendisk
2261 * @error_sector: error offset
2262 *
2263 * Description:
2264 * Devices understanding the SCSI command set, can use this function as
2265 * a helper for issuing a cache flush. Note: driver is required to store
2266 * the error offset (in case of error flushing) in ->sector of struct
2267 * request.
2268 */
2269 int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2270 sector_t *error_sector)
2271 {
2272 struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2273 int ret;
2274
2275 rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2276 rq->sector = 0;
2277 memset(rq->cmd, 0, sizeof(rq->cmd));
2278 rq->cmd[0] = 0x35;
2279 rq->cmd_len = 12;
2280 rq->data = NULL;
2281 rq->data_len = 0;
2282 rq->timeout = 60 * HZ;
2283
2284 ret = blk_execute_rq(q, disk, rq);
2285
2286 if (ret && error_sector)
2287 *error_sector = rq->sector;
2288
2289 blk_put_request(rq);
2290 return ret;
2291 }
2292
2293 EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2294
2295 void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2296 {
2297 int rw = rq_data_dir(rq);
2298
2299 if (!blk_fs_request(rq) || !rq->rq_disk)
2300 return;
2301
2302 if (rw == READ) {
2303 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2304 if (!new_io)
2305 __disk_stat_inc(rq->rq_disk, read_merges);
2306 } else if (rw == WRITE) {
2307 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2308 if (!new_io)
2309 __disk_stat_inc(rq->rq_disk, write_merges);
2310 }
2311 if (new_io) {
2312 disk_round_stats(rq->rq_disk);
2313 rq->rq_disk->in_flight++;
2314 }
2315 }
2316
2317 /*
2318 * add-request adds a request to the linked list.
2319 * queue lock is held and interrupts disabled, as we muck with the
2320 * request queue list.
2321 */
2322 static inline void add_request(request_queue_t * q, struct request * req)
2323 {
2324 drive_stat_acct(req, req->nr_sectors, 1);
2325
2326 if (q->activity_fn)
2327 q->activity_fn(q->activity_data, rq_data_dir(req));
2328
2329 /*
2330 * elevator indicated where it wants this request to be
2331 * inserted at elevator_merge time
2332 */
2333 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2334 }
2335
2336 /*
2337 * disk_round_stats() - Round off the performance stats on a struct
2338 * disk_stats.
2339 *
2340 * The average IO queue length and utilisation statistics are maintained
2341 * by observing the current state of the queue length and the amount of
2342 * time it has been in this state for.
2343 *
2344 * Normally, that accounting is done on IO completion, but that can result
2345 * in more than a second's worth of IO being accounted for within any one
2346 * second, leading to >100% utilisation. To deal with that, we call this
2347 * function to do a round-off before returning the results when reading
2348 * /proc/diskstats. This accounts immediately for all queue usage up to
2349 * the current jiffies and restarts the counters again.
2350 */
2351 void disk_round_stats(struct gendisk *disk)
2352 {
2353 unsigned long now = jiffies;
2354
2355 __disk_stat_add(disk, time_in_queue,
2356 disk->in_flight * (now - disk->stamp));
2357 disk->stamp = now;
2358
2359 if (disk->in_flight)
2360 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2361 disk->stamp_idle = now;
2362 }
2363
2364 /*
2365 * queue lock must be held
2366 */
2367 static void __blk_put_request(request_queue_t *q, struct request *req)
2368 {
2369 struct request_list *rl = req->rl;
2370
2371 if (unlikely(!q))
2372 return;
2373 if (unlikely(--req->ref_count))
2374 return;
2375
2376 req->rq_status = RQ_INACTIVE;
2377 req->q = NULL;
2378 req->rl = NULL;
2379
2380 /*
2381 * Request may not have originated from ll_rw_blk. if not,
2382 * it didn't come out of our reserved rq pools
2383 */
2384 if (rl) {
2385 int rw = rq_data_dir(req);
2386
2387 elv_completed_request(q, req);
2388
2389 BUG_ON(!list_empty(&req->queuelist));
2390
2391 blk_free_request(q, req);
2392 freed_request(q, rw);
2393 }
2394 }
2395
2396 void blk_put_request(struct request *req)
2397 {
2398 /*
2399 * if req->rl isn't set, this request didnt originate from the
2400 * block layer, so it's safe to just disregard it
2401 */
2402 if (req->rl) {
2403 unsigned long flags;
2404 request_queue_t *q = req->q;
2405
2406 spin_lock_irqsave(q->queue_lock, flags);
2407 __blk_put_request(q, req);
2408 spin_unlock_irqrestore(q->queue_lock, flags);
2409 }
2410 }
2411
2412 EXPORT_SYMBOL(blk_put_request);
2413
2414 /**
2415 * blk_end_sync_rq - executes a completion event on a request
2416 * @rq: request to complete
2417 */
2418 void blk_end_sync_rq(struct request *rq)
2419 {
2420 struct completion *waiting = rq->waiting;
2421
2422 rq->waiting = NULL;
2423 __blk_put_request(rq->q, rq);
2424
2425 /*
2426 * complete last, if this is a stack request the process (and thus
2427 * the rq pointer) could be invalid right after this complete()
2428 */
2429 complete(waiting);
2430 }
2431 EXPORT_SYMBOL(blk_end_sync_rq);
2432
2433 /**
2434 * blk_congestion_wait - wait for a queue to become uncongested
2435 * @rw: READ or WRITE
2436 * @timeout: timeout in jiffies
2437 *
2438 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2439 * If no queues are congested then just wait for the next request to be
2440 * returned.
2441 */
2442 long blk_congestion_wait(int rw, long timeout)
2443 {
2444 long ret;
2445 DEFINE_WAIT(wait);
2446 wait_queue_head_t *wqh = &congestion_wqh[rw];
2447
2448 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2449 ret = io_schedule_timeout(timeout);
2450 finish_wait(wqh, &wait);
2451 return ret;
2452 }
2453
2454 EXPORT_SYMBOL(blk_congestion_wait);
2455
2456 /*
2457 * Has to be called with the request spinlock acquired
2458 */
2459 static int attempt_merge(request_queue_t *q, struct request *req,
2460 struct request *next)
2461 {
2462 if (!rq_mergeable(req) || !rq_mergeable(next))
2463 return 0;
2464
2465 /*
2466 * not contigious
2467 */
2468 if (req->sector + req->nr_sectors != next->sector)
2469 return 0;
2470
2471 if (rq_data_dir(req) != rq_data_dir(next)
2472 || req->rq_disk != next->rq_disk
2473 || next->waiting || next->special)
2474 return 0;
2475
2476 /*
2477 * If we are allowed to merge, then append bio list
2478 * from next to rq and release next. merge_requests_fn
2479 * will have updated segment counts, update sector
2480 * counts here.
2481 */
2482 if (!q->merge_requests_fn(q, req, next))
2483 return 0;
2484
2485 /*
2486 * At this point we have either done a back merge
2487 * or front merge. We need the smaller start_time of
2488 * the merged requests to be the current request
2489 * for accounting purposes.
2490 */
2491 if (time_after(req->start_time, next->start_time))
2492 req->start_time = next->start_time;
2493
2494 req->biotail->bi_next = next->bio;
2495 req->biotail = next->biotail;
2496
2497 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2498
2499 elv_merge_requests(q, req, next);
2500
2501 if (req->rq_disk) {
2502 disk_round_stats(req->rq_disk);
2503 req->rq_disk->in_flight--;
2504 }
2505
2506 __blk_put_request(q, next);
2507 return 1;
2508 }
2509
2510 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2511 {
2512 struct request *next = elv_latter_request(q, rq);
2513
2514 if (next)
2515 return attempt_merge(q, rq, next);
2516
2517 return 0;
2518 }
2519
2520 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2521 {
2522 struct request *prev = elv_former_request(q, rq);
2523
2524 if (prev)
2525 return attempt_merge(q, prev, rq);
2526
2527 return 0;
2528 }
2529
2530 /**
2531 * blk_attempt_remerge - attempt to remerge active head with next request
2532 * @q: The &request_queue_t belonging to the device
2533 * @rq: The head request (usually)
2534 *
2535 * Description:
2536 * For head-active devices, the queue can easily be unplugged so quickly
2537 * that proper merging is not done on the front request. This may hurt
2538 * performance greatly for some devices. The block layer cannot safely
2539 * do merging on that first request for these queues, but the driver can
2540 * call this function and make it happen any way. Only the driver knows
2541 * when it is safe to do so.
2542 **/
2543 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2544 {
2545 unsigned long flags;
2546
2547 spin_lock_irqsave(q->queue_lock, flags);
2548 attempt_back_merge(q, rq);
2549 spin_unlock_irqrestore(q->queue_lock, flags);
2550 }
2551
2552 EXPORT_SYMBOL(blk_attempt_remerge);
2553
2554 /*
2555 * Non-locking blk_attempt_remerge variant.
2556 */
2557 void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
2558 {
2559 attempt_back_merge(q, rq);
2560 }
2561
2562 EXPORT_SYMBOL(__blk_attempt_remerge);
2563
2564 static int __make_request(request_queue_t *q, struct bio *bio)
2565 {
2566 struct request *req, *freereq = NULL;
2567 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2568 sector_t sector;
2569
2570 sector = bio->bi_sector;
2571 nr_sectors = bio_sectors(bio);
2572 cur_nr_sectors = bio_cur_sectors(bio);
2573
2574 rw = bio_data_dir(bio);
2575 sync = bio_sync(bio);
2576
2577 /*
2578 * low level driver can indicate that it wants pages above a
2579 * certain limit bounced to low memory (ie for highmem, or even
2580 * ISA dma in theory)
2581 */
2582 blk_queue_bounce(q, &bio);
2583
2584 spin_lock_prefetch(q->queue_lock);
2585
2586 barrier = bio_barrier(bio);
2587 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
2588 err = -EOPNOTSUPP;
2589 goto end_io;
2590 }
2591
2592 again:
2593 spin_lock_irq(q->queue_lock);
2594
2595 if (elv_queue_empty(q)) {
2596 blk_plug_device(q);
2597 goto get_rq;
2598 }
2599 if (barrier)
2600 goto get_rq;
2601
2602 el_ret = elv_merge(q, &req, bio);
2603 switch (el_ret) {
2604 case ELEVATOR_BACK_MERGE:
2605 BUG_ON(!rq_mergeable(req));
2606
2607 if (!q->back_merge_fn(q, req, bio))
2608 break;
2609
2610 req->biotail->bi_next = bio;
2611 req->biotail = bio;
2612 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2613 drive_stat_acct(req, nr_sectors, 0);
2614 if (!attempt_back_merge(q, req))
2615 elv_merged_request(q, req);
2616 goto out;
2617
2618 case ELEVATOR_FRONT_MERGE:
2619 BUG_ON(!rq_mergeable(req));
2620
2621 if (!q->front_merge_fn(q, req, bio))
2622 break;
2623
2624 bio->bi_next = req->bio;
2625 req->bio = bio;
2626
2627 /*
2628 * may not be valid. if the low level driver said
2629 * it didn't need a bounce buffer then it better
2630 * not touch req->buffer either...
2631 */
2632 req->buffer = bio_data(bio);
2633 req->current_nr_sectors = cur_nr_sectors;
2634 req->hard_cur_sectors = cur_nr_sectors;
2635 req->sector = req->hard_sector = sector;
2636 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2637 drive_stat_acct(req, nr_sectors, 0);
2638 if (!attempt_front_merge(q, req))
2639 elv_merged_request(q, req);
2640 goto out;
2641
2642 /*
2643 * elevator says don't/can't merge. get new request
2644 */
2645 case ELEVATOR_NO_MERGE:
2646 break;
2647
2648 default:
2649 printk("elevator returned crap (%d)\n", el_ret);
2650 BUG();
2651 }
2652
2653 /*
2654 * Grab a free request from the freelist - if that is empty, check
2655 * if we are doing read ahead and abort instead of blocking for
2656 * a free slot.
2657 */
2658 get_rq:
2659 if (freereq) {
2660 req = freereq;
2661 freereq = NULL;
2662 } else {
2663 spin_unlock_irq(q->queue_lock);
2664 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2665 /*
2666 * READA bit set
2667 */
2668 err = -EWOULDBLOCK;
2669 if (bio_rw_ahead(bio))
2670 goto end_io;
2671
2672 freereq = get_request_wait(q, rw);
2673 }
2674 goto again;
2675 }
2676
2677 req->flags |= REQ_CMD;
2678
2679 /*
2680 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2681 */
2682 if (bio_rw_ahead(bio) || bio_failfast(bio))
2683 req->flags |= REQ_FAILFAST;
2684
2685 /*
2686 * REQ_BARRIER implies no merging, but lets make it explicit
2687 */
2688 if (unlikely(barrier))
2689 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2690
2691 req->errors = 0;
2692 req->hard_sector = req->sector = sector;
2693 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2694 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2695 req->nr_phys_segments = bio_phys_segments(q, bio);
2696 req->nr_hw_segments = bio_hw_segments(q, bio);
2697 req->buffer = bio_data(bio); /* see ->buffer comment above */
2698 req->waiting = NULL;
2699 req->bio = req->biotail = bio;
2700 req->rq_disk = bio->bi_bdev->bd_disk;
2701 req->start_time = jiffies;
2702
2703 add_request(q, req);
2704 out:
2705 if (freereq)
2706 __blk_put_request(q, freereq);
2707 if (sync)
2708 __generic_unplug_device(q);
2709
2710 spin_unlock_irq(q->queue_lock);
2711 return 0;
2712
2713 end_io:
2714 bio_endio(bio, nr_sectors << 9, err);
2715 return 0;
2716 }
2717
2718 /*
2719 * If bio->bi_dev is a partition, remap the location
2720 */
2721 static inline void blk_partition_remap(struct bio *bio)
2722 {
2723 struct block_device *bdev = bio->bi_bdev;
2724
2725 if (bdev != bdev->bd_contains) {
2726 struct hd_struct *p = bdev->bd_part;
2727
2728 switch (bio->bi_rw) {
2729 case READ:
2730 p->read_sectors += bio_sectors(bio);
2731 p->reads++;
2732 break;
2733 case WRITE:
2734 p->write_sectors += bio_sectors(bio);
2735 p->writes++;
2736 break;
2737 }
2738 bio->bi_sector += p->start_sect;
2739 bio->bi_bdev = bdev->bd_contains;
2740 }
2741 }
2742
2743 void blk_finish_queue_drain(request_queue_t *q)
2744 {
2745 struct request_list *rl = &q->rq;
2746 struct request *rq;
2747
2748 spin_lock_irq(q->queue_lock);
2749 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2750
2751 while (!list_empty(&q->drain_list)) {
2752 rq = list_entry_rq(q->drain_list.next);
2753
2754 list_del_init(&rq->queuelist);
2755 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2756 }
2757
2758 spin_unlock_irq(q->queue_lock);
2759
2760 wake_up(&rl->wait[0]);
2761 wake_up(&rl->wait[1]);
2762 wake_up(&rl->drain);
2763 }
2764
2765 static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2766 {
2767 int wait = rl->count[READ] + rl->count[WRITE];
2768
2769 if (dispatch)
2770 wait += !list_empty(&q->queue_head);
2771
2772 return wait;
2773 }
2774
2775 /*
2776 * We rely on the fact that only requests allocated through blk_alloc_request()
2777 * have io scheduler private data structures associated with them. Any other
2778 * type of request (allocated on stack or through kmalloc()) should not go
2779 * to the io scheduler core, but be attached to the queue head instead.
2780 */
2781 void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2782 {
2783 struct request_list *rl = &q->rq;
2784 DEFINE_WAIT(wait);
2785
2786 spin_lock_irq(q->queue_lock);
2787 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2788
2789 while (wait_drain(q, rl, wait_dispatch)) {
2790 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2791
2792 if (wait_drain(q, rl, wait_dispatch)) {
2793 __generic_unplug_device(q);
2794 spin_unlock_irq(q->queue_lock);
2795 io_schedule();
2796 spin_lock_irq(q->queue_lock);
2797 }
2798
2799 finish_wait(&rl->drain, &wait);
2800 }
2801
2802 spin_unlock_irq(q->queue_lock);
2803 }
2804
2805 /*
2806 * block waiting for the io scheduler being started again.
2807 */
2808 static inline void block_wait_queue_running(request_queue_t *q)
2809 {
2810 DEFINE_WAIT(wait);
2811
2812 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
2813 struct request_list *rl = &q->rq;
2814
2815 prepare_to_wait_exclusive(&rl->drain, &wait,
2816 TASK_UNINTERRUPTIBLE);
2817
2818 /*
2819 * re-check the condition. avoids using prepare_to_wait()
2820 * in the fast path (queue is running)
2821 */
2822 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2823 io_schedule();
2824
2825 finish_wait(&rl->drain, &wait);
2826 }
2827 }
2828
2829 static void handle_bad_sector(struct bio *bio)
2830 {
2831 char b[BDEVNAME_SIZE];
2832
2833 printk(KERN_INFO "attempt to access beyond end of device\n");
2834 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2835 bdevname(bio->bi_bdev, b),
2836 bio->bi_rw,
2837 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2838 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2839
2840 set_bit(BIO_EOF, &bio->bi_flags);
2841 }
2842
2843 /**
2844 * generic_make_request: hand a buffer to its device driver for I/O
2845 * @bio: The bio describing the location in memory and on the device.
2846 *
2847 * generic_make_request() is used to make I/O requests of block
2848 * devices. It is passed a &struct bio, which describes the I/O that needs
2849 * to be done.
2850 *
2851 * generic_make_request() does not return any status. The
2852 * success/failure status of the request, along with notification of
2853 * completion, is delivered asynchronously through the bio->bi_end_io
2854 * function described (one day) else where.
2855 *
2856 * The caller of generic_make_request must make sure that bi_io_vec
2857 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2858 * set to describe the device address, and the
2859 * bi_end_io and optionally bi_private are set to describe how
2860 * completion notification should be signaled.
2861 *
2862 * generic_make_request and the drivers it calls may use bi_next if this
2863 * bio happens to be merged with someone else, and may change bi_dev and
2864 * bi_sector for remaps as it sees fit. So the values of these fields
2865 * should NOT be depended on after the call to generic_make_request.
2866 */
2867 void generic_make_request(struct bio *bio)
2868 {
2869 request_queue_t *q;
2870 sector_t maxsector;
2871 int ret, nr_sectors = bio_sectors(bio);
2872
2873 might_sleep();
2874 /* Test device or partition size, when known. */
2875 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2876 if (maxsector) {
2877 sector_t sector = bio->bi_sector;
2878
2879 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2880 /*
2881 * This may well happen - the kernel calls bread()
2882 * without checking the size of the device, e.g., when
2883 * mounting a device.
2884 */
2885 handle_bad_sector(bio);
2886 goto end_io;
2887 }
2888 }
2889
2890 /*
2891 * Resolve the mapping until finished. (drivers are
2892 * still free to implement/resolve their own stacking
2893 * by explicitly returning 0)
2894 *
2895 * NOTE: we don't repeat the blk_size check for each new device.
2896 * Stacking drivers are expected to know what they are doing.
2897 */
2898 do {
2899 char b[BDEVNAME_SIZE];
2900
2901 q = bdev_get_queue(bio->bi_bdev);
2902 if (!q) {
2903 printk(KERN_ERR
2904 "generic_make_request: Trying to access "
2905 "nonexistent block-device %s (%Lu)\n",
2906 bdevname(bio->bi_bdev, b),
2907 (long long) bio->bi_sector);
2908 end_io:
2909 bio_endio(bio, bio->bi_size, -EIO);
2910 break;
2911 }
2912
2913 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2914 printk("bio too big device %s (%u > %u)\n",
2915 bdevname(bio->bi_bdev, b),
2916 bio_sectors(bio),
2917 q->max_hw_sectors);
2918 goto end_io;
2919 }
2920
2921 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
2922 goto end_io;
2923
2924 block_wait_queue_running(q);
2925
2926 /*
2927 * If this device has partitions, remap block n
2928 * of partition p to block n+start(p) of the disk.
2929 */
2930 blk_partition_remap(bio);
2931
2932 ret = q->make_request_fn(q, bio);
2933 } while (ret);
2934 }
2935
2936 EXPORT_SYMBOL(generic_make_request);
2937
2938 /**
2939 * submit_bio: submit a bio to the block device layer for I/O
2940 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2941 * @bio: The &struct bio which describes the I/O
2942 *
2943 * submit_bio() is very similar in purpose to generic_make_request(), and
2944 * uses that function to do most of the work. Both are fairly rough
2945 * interfaces, @bio must be presetup and ready for I/O.
2946 *
2947 */
2948 void submit_bio(int rw, struct bio *bio)
2949 {
2950 int count = bio_sectors(bio);
2951
2952 BIO_BUG_ON(!bio->bi_size);
2953 BIO_BUG_ON(!bio->bi_io_vec);
2954 bio->bi_rw = rw;
2955 if (rw & WRITE)
2956 mod_page_state(pgpgout, count);
2957 else
2958 mod_page_state(pgpgin, count);
2959
2960 if (unlikely(block_dump)) {
2961 char b[BDEVNAME_SIZE];
2962 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2963 current->comm, current->pid,
2964 (rw & WRITE) ? "WRITE" : "READ",
2965 (unsigned long long)bio->bi_sector,
2966 bdevname(bio->bi_bdev,b));
2967 }
2968
2969 generic_make_request(bio);
2970 }
2971
2972 EXPORT_SYMBOL(submit_bio);
2973
2974 void blk_recalc_rq_segments(struct request *rq)
2975 {
2976 struct bio *bio, *prevbio = NULL;
2977 int nr_phys_segs, nr_hw_segs;
2978 unsigned int phys_size, hw_size;
2979 request_queue_t *q = rq->q;
2980
2981 if (!rq->bio)
2982 return;
2983
2984 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2985 rq_for_each_bio(bio, rq) {
2986 /* Force bio hw/phys segs to be recalculated. */
2987 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2988
2989 nr_phys_segs += bio_phys_segments(q, bio);
2990 nr_hw_segs += bio_hw_segments(q, bio);
2991 if (prevbio) {
2992 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2993 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2994
2995 if (blk_phys_contig_segment(q, prevbio, bio) &&
2996 pseg <= q->max_segment_size) {
2997 nr_phys_segs--;
2998 phys_size += prevbio->bi_size + bio->bi_size;
2999 } else
3000 phys_size = 0;
3001
3002 if (blk_hw_contig_segment(q, prevbio, bio) &&
3003 hseg <= q->max_segment_size) {
3004 nr_hw_segs--;
3005 hw_size += prevbio->bi_size + bio->bi_size;
3006 } else
3007 hw_size = 0;
3008 }
3009 prevbio = bio;
3010 }
3011
3012 rq->nr_phys_segments = nr_phys_segs;
3013 rq->nr_hw_segments = nr_hw_segs;
3014 }
3015
3016 void blk_recalc_rq_sectors(struct request *rq, int nsect)
3017 {
3018 if (blk_fs_request(rq)) {
3019 rq->hard_sector += nsect;
3020 rq->hard_nr_sectors -= nsect;
3021
3022 /*
3023 * Move the I/O submission pointers ahead if required.
3024 */
3025 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3026 (rq->sector <= rq->hard_sector)) {
3027 rq->sector = rq->hard_sector;
3028 rq->nr_sectors = rq->hard_nr_sectors;
3029 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3030 rq->current_nr_sectors = rq->hard_cur_sectors;
3031 rq->buffer = bio_data(rq->bio);
3032 }
3033
3034 /*
3035 * if total number of sectors is less than the first segment
3036 * size, something has gone terribly wrong
3037 */
3038 if (rq->nr_sectors < rq->current_nr_sectors) {
3039 printk("blk: request botched\n");
3040 rq->nr_sectors = rq->current_nr_sectors;
3041 }
3042 }
3043 }
3044
3045 static int __end_that_request_first(struct request *req, int uptodate,
3046 int nr_bytes)
3047 {
3048 int total_bytes, bio_nbytes, error, next_idx = 0;
3049 struct bio *bio;
3050
3051 /*
3052 * extend uptodate bool to allow < 0 value to be direct io error
3053 */
3054 error = 0;
3055 if (end_io_error(uptodate))
3056 error = !uptodate ? -EIO : uptodate;
3057
3058 /*
3059 * for a REQ_BLOCK_PC request, we want to carry any eventual
3060 * sense key with us all the way through
3061 */
3062 if (!blk_pc_request(req))
3063 req->errors = 0;
3064
3065 if (!uptodate) {
3066 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3067 printk("end_request: I/O error, dev %s, sector %llu\n",
3068 req->rq_disk ? req->rq_disk->disk_name : "?",
3069 (unsigned long long)req->sector);
3070 }
3071
3072 total_bytes = bio_nbytes = 0;
3073 while ((bio = req->bio) != NULL) {
3074 int nbytes;
3075
3076 if (nr_bytes >= bio->bi_size) {
3077 req->bio = bio->bi_next;
3078 nbytes = bio->bi_size;
3079 bio_endio(bio, nbytes, error);
3080 next_idx = 0;
3081 bio_nbytes = 0;
3082 } else {
3083 int idx = bio->bi_idx + next_idx;
3084
3085 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3086 blk_dump_rq_flags(req, "__end_that");
3087 printk("%s: bio idx %d >= vcnt %d\n",
3088 __FUNCTION__,
3089 bio->bi_idx, bio->bi_vcnt);
3090 break;
3091 }
3092
3093 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3094 BIO_BUG_ON(nbytes > bio->bi_size);
3095
3096 /*
3097 * not a complete bvec done
3098 */
3099 if (unlikely(nbytes > nr_bytes)) {
3100 bio_nbytes += nr_bytes;
3101 total_bytes += nr_bytes;
3102 break;
3103 }
3104
3105 /*
3106 * advance to the next vector
3107 */
3108 next_idx++;
3109 bio_nbytes += nbytes;
3110 }
3111
3112 total_bytes += nbytes;
3113 nr_bytes -= nbytes;
3114
3115 if ((bio = req->bio)) {
3116 /*
3117 * end more in this run, or just return 'not-done'
3118 */
3119 if (unlikely(nr_bytes <= 0))
3120 break;
3121 }
3122 }
3123
3124 /*
3125 * completely done
3126 */
3127 if (!req->bio)
3128 return 0;
3129
3130 /*
3131 * if the request wasn't completed, update state
3132 */
3133 if (bio_nbytes) {
3134 bio_endio(bio, bio_nbytes, error);
3135 bio->bi_idx += next_idx;
3136 bio_iovec(bio)->bv_offset += nr_bytes;
3137 bio_iovec(bio)->bv_len -= nr_bytes;
3138 }
3139
3140 blk_recalc_rq_sectors(req, total_bytes >> 9);
3141 blk_recalc_rq_segments(req);
3142 return 1;
3143 }
3144
3145 /**
3146 * end_that_request_first - end I/O on a request
3147 * @req: the request being processed
3148 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3149 * @nr_sectors: number of sectors to end I/O on
3150 *
3151 * Description:
3152 * Ends I/O on a number of sectors attached to @req, and sets it up
3153 * for the next range of segments (if any) in the cluster.
3154 *
3155 * Return:
3156 * 0 - we are done with this request, call end_that_request_last()
3157 * 1 - still buffers pending for this request
3158 **/
3159 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3160 {
3161 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3162 }
3163
3164 EXPORT_SYMBOL(end_that_request_first);
3165
3166 /**
3167 * end_that_request_chunk - end I/O on a request
3168 * @req: the request being processed
3169 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3170 * @nr_bytes: number of bytes to complete
3171 *
3172 * Description:
3173 * Ends I/O on a number of bytes attached to @req, and sets it up
3174 * for the next range of segments (if any). Like end_that_request_first(),
3175 * but deals with bytes instead of sectors.
3176 *
3177 * Return:
3178 * 0 - we are done with this request, call end_that_request_last()
3179 * 1 - still buffers pending for this request
3180 **/
3181 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3182 {
3183 return __end_that_request_first(req, uptodate, nr_bytes);
3184 }
3185
3186 EXPORT_SYMBOL(end_that_request_chunk);
3187
3188 /*
3189 * queue lock must be held
3190 */
3191 void end_that_request_last(struct request *req)
3192 {
3193 struct gendisk *disk = req->rq_disk;
3194
3195 if (unlikely(laptop_mode) && blk_fs_request(req))
3196 laptop_io_completion();
3197
3198 if (disk && blk_fs_request(req)) {
3199 unsigned long duration = jiffies - req->start_time;
3200 switch (rq_data_dir(req)) {
3201 case WRITE:
3202 __disk_stat_inc(disk, writes);
3203 __disk_stat_add(disk, write_ticks, duration);
3204 break;
3205 case READ:
3206 __disk_stat_inc(disk, reads);
3207 __disk_stat_add(disk, read_ticks, duration);
3208 break;
3209 }
3210 disk_round_stats(disk);
3211 disk->in_flight--;
3212 }
3213 if (req->end_io)
3214 req->end_io(req);
3215 else
3216 __blk_put_request(req->q, req);
3217 }
3218
3219 EXPORT_SYMBOL(end_that_request_last);
3220
3221 void end_request(struct request *req, int uptodate)
3222 {
3223 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3224 add_disk_randomness(req->rq_disk);
3225 blkdev_dequeue_request(req);
3226 end_that_request_last(req);
3227 }
3228 }
3229
3230 EXPORT_SYMBOL(end_request);
3231
3232 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3233 {
3234 /* first three bits are identical in rq->flags and bio->bi_rw */
3235 rq->flags |= (bio->bi_rw & 7);
3236
3237 rq->nr_phys_segments = bio_phys_segments(q, bio);
3238 rq->nr_hw_segments = bio_hw_segments(q, bio);
3239 rq->current_nr_sectors = bio_cur_sectors(bio);
3240 rq->hard_cur_sectors = rq->current_nr_sectors;
3241 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3242 rq->buffer = bio_data(bio);
3243
3244 rq->bio = rq->biotail = bio;
3245 }
3246
3247 EXPORT_SYMBOL(blk_rq_bio_prep);
3248
3249 int kblockd_schedule_work(struct work_struct *work)
3250 {
3251 return queue_work(kblockd_workqueue, work);
3252 }
3253
3254 EXPORT_SYMBOL(kblockd_schedule_work);
3255
3256 void kblockd_flush(void)
3257 {
3258 flush_workqueue(kblockd_workqueue);
3259 }
3260 EXPORT_SYMBOL(kblockd_flush);
3261
3262 int __init blk_dev_init(void)
3263 {
3264 kblockd_workqueue = create_workqueue("kblockd");
3265 if (!kblockd_workqueue)
3266 panic("Failed to create kblockd\n");
3267
3268 request_cachep = kmem_cache_create("blkdev_requests",
3269 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3270
3271 requestq_cachep = kmem_cache_create("blkdev_queue",
3272 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3273
3274 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3275 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3276
3277 blk_max_low_pfn = max_low_pfn;
3278 blk_max_pfn = max_pfn;
3279
3280 return 0;
3281 }
3282
3283 /*
3284 * IO Context helper functions
3285 */
3286 void put_io_context(struct io_context *ioc)
3287 {
3288 if (ioc == NULL)
3289 return;
3290
3291 BUG_ON(atomic_read(&ioc->refcount) == 0);
3292
3293 if (atomic_dec_and_test(&ioc->refcount)) {
3294 if (ioc->aic && ioc->aic->dtor)
3295 ioc->aic->dtor(ioc->aic);
3296 if (ioc->cic && ioc->cic->dtor)
3297 ioc->cic->dtor(ioc->cic);
3298
3299 kmem_cache_free(iocontext_cachep, ioc);
3300 }
3301 }
3302 EXPORT_SYMBOL(put_io_context);
3303
3304 /* Called by the exitting task */
3305 void exit_io_context(void)
3306 {
3307 unsigned long flags;
3308 struct io_context *ioc;
3309
3310 local_irq_save(flags);
3311 ioc = current->io_context;
3312 current->io_context = NULL;
3313 local_irq_restore(flags);
3314
3315 if (ioc->aic && ioc->aic->exit)
3316 ioc->aic->exit(ioc->aic);
3317 if (ioc->cic && ioc->cic->exit)
3318 ioc->cic->exit(ioc->cic);
3319
3320 put_io_context(ioc);
3321 }
3322
3323 /*
3324 * If the current task has no IO context then create one and initialise it.
3325 * If it does have a context, take a ref on it.
3326 *
3327 * This is always called in the context of the task which submitted the I/O.
3328 * But weird things happen, so we disable local interrupts to ensure exclusive
3329 * access to *current.
3330 */
3331 struct io_context *get_io_context(int gfp_flags)
3332 {
3333 struct task_struct *tsk = current;
3334 unsigned long flags;
3335 struct io_context *ret;
3336
3337 local_irq_save(flags);
3338 ret = tsk->io_context;
3339 if (ret)
3340 goto out;
3341
3342 local_irq_restore(flags);
3343
3344 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3345 if (ret) {
3346 atomic_set(&ret->refcount, 1);
3347 ret->pid = tsk->pid;
3348 ret->last_waited = jiffies; /* doesn't matter... */
3349 ret->nr_batch_requests = 0; /* because this is 0 */
3350 ret->aic = NULL;
3351 ret->cic = NULL;
3352 spin_lock_init(&ret->lock);
3353
3354 local_irq_save(flags);
3355
3356 /*
3357 * very unlikely, someone raced with us in setting up the task
3358 * io context. free new context and just grab a reference.
3359 */
3360 if (!tsk->io_context)
3361 tsk->io_context = ret;
3362 else {
3363 kmem_cache_free(iocontext_cachep, ret);
3364 ret = tsk->io_context;
3365 }
3366
3367 out:
3368 atomic_inc(&ret->refcount);
3369 local_irq_restore(flags);
3370 }
3371
3372 return ret;
3373 }
3374 EXPORT_SYMBOL(get_io_context);
3375
3376 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3377 {
3378 struct io_context *src = *psrc;
3379 struct io_context *dst = *pdst;
3380
3381 if (src) {
3382 BUG_ON(atomic_read(&src->refcount) == 0);
3383 atomic_inc(&src->refcount);
3384 put_io_context(dst);
3385 *pdst = src;
3386 }
3387 }
3388 EXPORT_SYMBOL(copy_io_context);
3389
3390 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3391 {
3392 struct io_context *temp;
3393 temp = *ioc1;
3394 *ioc1 = *ioc2;
3395 *ioc2 = temp;
3396 }
3397 EXPORT_SYMBOL(swap_io_context);
3398
3399 /*
3400 * sysfs parts below
3401 */
3402 struct queue_sysfs_entry {
3403 struct attribute attr;
3404 ssize_t (*show)(struct request_queue *, char *);
3405 ssize_t (*store)(struct request_queue *, const char *, size_t);
3406 };
3407
3408 static ssize_t
3409 queue_var_show(unsigned int var, char *page)
3410 {
3411 return sprintf(page, "%d\n", var);
3412 }
3413
3414 static ssize_t
3415 queue_var_store(unsigned long *var, const char *page, size_t count)
3416 {
3417 char *p = (char *) page;
3418
3419 *var = simple_strtoul(p, &p, 10);
3420 return count;
3421 }
3422
3423 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3424 {
3425 return queue_var_show(q->nr_requests, (page));
3426 }
3427
3428 static ssize_t
3429 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3430 {
3431 struct request_list *rl = &q->rq;
3432
3433 int ret = queue_var_store(&q->nr_requests, page, count);
3434 if (q->nr_requests < BLKDEV_MIN_RQ)
3435 q->nr_requests = BLKDEV_MIN_RQ;
3436 blk_queue_congestion_threshold(q);
3437
3438 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3439 set_queue_congested(q, READ);
3440 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3441 clear_queue_congested(q, READ);
3442
3443 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3444 set_queue_congested(q, WRITE);
3445 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3446 clear_queue_congested(q, WRITE);
3447
3448 if (rl->count[READ] >= q->nr_requests) {
3449 blk_set_queue_full(q, READ);
3450 } else if (rl->count[READ]+1 <= q->nr_requests) {
3451 blk_clear_queue_full(q, READ);
3452 wake_up(&rl->wait[READ]);
3453 }
3454
3455 if (rl->count[WRITE] >= q->nr_requests) {
3456 blk_set_queue_full(q, WRITE);
3457 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3458 blk_clear_queue_full(q, WRITE);
3459 wake_up(&rl->wait[WRITE]);
3460 }
3461 return ret;
3462 }
3463
3464 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3465 {
3466 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3467
3468 return queue_var_show(ra_kb, (page));
3469 }
3470
3471 static ssize_t
3472 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3473 {
3474 unsigned long ra_kb;
3475 ssize_t ret = queue_var_store(&ra_kb, page, count);
3476
3477 spin_lock_irq(q->queue_lock);
3478 if (ra_kb > (q->max_sectors >> 1))
3479 ra_kb = (q->max_sectors >> 1);
3480
3481 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3482 spin_unlock_irq(q->queue_lock);
3483
3484 return ret;
3485 }
3486
3487 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3488 {
3489 int max_sectors_kb = q->max_sectors >> 1;
3490
3491 return queue_var_show(max_sectors_kb, (page));
3492 }
3493
3494 static ssize_t
3495 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3496 {
3497 unsigned long max_sectors_kb,
3498 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3499 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3500 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3501 int ra_kb;
3502
3503 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3504 return -EINVAL;
3505 /*
3506 * Take the queue lock to update the readahead and max_sectors
3507 * values synchronously:
3508 */
3509 spin_lock_irq(q->queue_lock);
3510 /*
3511 * Trim readahead window as well, if necessary:
3512 */
3513 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3514 if (ra_kb > max_sectors_kb)
3515 q->backing_dev_info.ra_pages =
3516 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3517
3518 q->max_sectors = max_sectors_kb << 1;
3519 spin_unlock_irq(q->queue_lock);
3520
3521 return ret;
3522 }
3523
3524 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3525 {
3526 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3527
3528 return queue_var_show(max_hw_sectors_kb, (page));
3529 }
3530
3531
3532 static struct queue_sysfs_entry queue_requests_entry = {
3533 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3534 .show = queue_requests_show,
3535 .store = queue_requests_store,
3536 };
3537
3538 static struct queue_sysfs_entry queue_ra_entry = {
3539 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3540 .show = queue_ra_show,
3541 .store = queue_ra_store,
3542 };
3543
3544 static struct queue_sysfs_entry queue_max_sectors_entry = {
3545 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3546 .show = queue_max_sectors_show,
3547 .store = queue_max_sectors_store,
3548 };
3549
3550 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3551 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3552 .show = queue_max_hw_sectors_show,
3553 };
3554
3555 static struct queue_sysfs_entry queue_iosched_entry = {
3556 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3557 .show = elv_iosched_show,
3558 .store = elv_iosched_store,
3559 };
3560
3561 static struct attribute *default_attrs[] = {
3562 &queue_requests_entry.attr,
3563 &queue_ra_entry.attr,
3564 &queue_max_hw_sectors_entry.attr,
3565 &queue_max_sectors_entry.attr,
3566 &queue_iosched_entry.attr,
3567 NULL,
3568 };
3569
3570 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3571
3572 static ssize_t
3573 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3574 {
3575 struct queue_sysfs_entry *entry = to_queue(attr);
3576 struct request_queue *q;
3577
3578 q = container_of(kobj, struct request_queue, kobj);
3579 if (!entry->show)
3580 return -EIO;
3581
3582 return entry->show(q, page);
3583 }
3584
3585 static ssize_t
3586 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3587 const char *page, size_t length)
3588 {
3589 struct queue_sysfs_entry *entry = to_queue(attr);
3590 struct request_queue *q;
3591
3592 q = container_of(kobj, struct request_queue, kobj);
3593 if (!entry->store)
3594 return -EIO;
3595
3596 return entry->store(q, page, length);
3597 }
3598
3599 static struct sysfs_ops queue_sysfs_ops = {
3600 .show = queue_attr_show,
3601 .store = queue_attr_store,
3602 };
3603
3604 struct kobj_type queue_ktype = {
3605 .sysfs_ops = &queue_sysfs_ops,
3606 .default_attrs = default_attrs,
3607 };
3608
3609 int blk_register_queue(struct gendisk *disk)
3610 {
3611 int ret;
3612
3613 request_queue_t *q = disk->queue;
3614
3615 if (!q || !q->request_fn)
3616 return -ENXIO;
3617
3618 q->kobj.parent = kobject_get(&disk->kobj);
3619 if (!q->kobj.parent)
3620 return -EBUSY;
3621
3622 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3623 q->kobj.ktype = &queue_ktype;
3624
3625 ret = kobject_register(&q->kobj);
3626 if (ret < 0)
3627 return ret;
3628
3629 ret = elv_register_queue(q);
3630 if (ret) {
3631 kobject_unregister(&q->kobj);
3632 return ret;
3633 }
3634
3635 return 0;
3636 }
3637
3638 void blk_unregister_queue(struct gendisk *disk)
3639 {
3640 request_queue_t *q = disk->queue;
3641
3642 if (q && q->request_fn) {
3643 elv_unregister_queue(q);
3644
3645 kobject_unregister(&q->kobj);
3646 kobject_put(&disk->kobj);
3647 }
3648 }