]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/ll_rw_blk.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[mirror_ubuntu-artful-kernel.git] / drivers / block / ll_rw_blk.c
1 /*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/blkdev.h>
32
33 /*
34 * for max sense size
35 */
36 #include <scsi/scsi_cmnd.h>
37
38 static void blk_unplug_work(void *data);
39 static void blk_unplug_timeout(unsigned long data);
40 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
41
42 /*
43 * For the allocated request tables
44 */
45 static kmem_cache_t *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 static kmem_cache_t *requestq_cachep;
51
52 /*
53 * For io context allocations
54 */
55 static kmem_cache_t *iocontext_cachep;
56
57 static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
60 };
61
62 /*
63 * Controlling structure to kblockd
64 */
65 static struct workqueue_struct *kblockd_workqueue;
66
67 unsigned long blk_max_low_pfn, blk_max_pfn;
68
69 EXPORT_SYMBOL(blk_max_low_pfn);
70 EXPORT_SYMBOL(blk_max_pfn);
71
72 /* Amount of time in which a process may batch requests */
73 #define BLK_BATCH_TIME (HZ/50UL)
74
75 /* Number of requests a "batching" process may submit */
76 #define BLK_BATCH_REQ 32
77
78 /*
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
82 */
83 static inline int queue_congestion_on_threshold(struct request_queue *q)
84 {
85 return q->nr_congestion_on;
86 }
87
88 /*
89 * The threshold at which a queue is considered to be uncongested
90 */
91 static inline int queue_congestion_off_threshold(struct request_queue *q)
92 {
93 return q->nr_congestion_off;
94 }
95
96 static void blk_queue_congestion_threshold(struct request_queue *q)
97 {
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109 }
110
111 /*
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
114 * put back.
115 */
116 static void clear_queue_congested(request_queue_t *q, int rw)
117 {
118 enum bdi_state bit;
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
120
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
125 wake_up(wqh);
126 }
127
128 /*
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
131 */
132 static void set_queue_congested(request_queue_t *q, int rw)
133 {
134 enum bdi_state bit;
135
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
138 }
139
140 /**
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * @bdev: device
143 *
144 * Locates the passed device's request queue and returns the address of its
145 * backing_dev_info
146 *
147 * Will return NULL if the request queue cannot be located.
148 */
149 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
150 {
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
153
154 if (q)
155 ret = &q->backing_dev_info;
156 return ret;
157 }
158
159 EXPORT_SYMBOL(blk_get_backing_dev_info);
160
161 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
162 {
163 q->activity_fn = fn;
164 q->activity_data = data;
165 }
166
167 EXPORT_SYMBOL(blk_queue_activity_fn);
168
169 /**
170 * blk_queue_prep_rq - set a prepare_request function for queue
171 * @q: queue
172 * @pfn: prepare_request function
173 *
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
178 *
179 */
180 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
181 {
182 q->prep_rq_fn = pfn;
183 }
184
185 EXPORT_SYMBOL(blk_queue_prep_rq);
186
187 /**
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
189 * @q: queue
190 * @mbfn: merge_bvec_fn
191 *
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 * honored.
202 */
203 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
204 {
205 q->merge_bvec_fn = mbfn;
206 }
207
208 EXPORT_SYMBOL(blk_queue_merge_bvec);
209
210 /**
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
214 *
215 * Description:
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
225 *
226 * Caveat:
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
231 **/
232 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233 {
234 /*
235 * set defaults
236 */
237 q->nr_requests = BLKDEV_MAX_RQ;
238 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
239 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
249
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
253 q->unplug_delay = 1;
254
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
256
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
259
260 /*
261 * by default assume old behaviour and bounce for any highmem page
262 */
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
264
265 blk_queue_activity_fn(q, NULL, NULL);
266
267 INIT_LIST_HEAD(&q->drain_list);
268 }
269
270 EXPORT_SYMBOL(blk_queue_make_request);
271
272 static inline void rq_init(request_queue_t *q, struct request *rq)
273 {
274 INIT_LIST_HEAD(&rq->queuelist);
275
276 rq->errors = 0;
277 rq->rq_status = RQ_ACTIVE;
278 rq->bio = rq->biotail = NULL;
279 rq->ioprio = 0;
280 rq->buffer = NULL;
281 rq->ref_count = 1;
282 rq->q = q;
283 rq->waiting = NULL;
284 rq->special = NULL;
285 rq->data_len = 0;
286 rq->data = NULL;
287 rq->nr_phys_segments = 0;
288 rq->sense = NULL;
289 rq->end_io = NULL;
290 rq->end_io_data = NULL;
291 }
292
293 /**
294 * blk_queue_ordered - does this queue support ordered writes
295 * @q: the request queue
296 * @flag: see below
297 *
298 * Description:
299 * For journalled file systems, doing ordered writes on a commit
300 * block instead of explicitly doing wait_on_buffer (which is bad
301 * for performance) can be a big win. Block drivers supporting this
302 * feature should call this function and indicate so.
303 *
304 **/
305 void blk_queue_ordered(request_queue_t *q, int flag)
306 {
307 switch (flag) {
308 case QUEUE_ORDERED_NONE:
309 if (q->flush_rq)
310 kmem_cache_free(request_cachep, q->flush_rq);
311 q->flush_rq = NULL;
312 q->ordered = flag;
313 break;
314 case QUEUE_ORDERED_TAG:
315 q->ordered = flag;
316 break;
317 case QUEUE_ORDERED_FLUSH:
318 q->ordered = flag;
319 if (!q->flush_rq)
320 q->flush_rq = kmem_cache_alloc(request_cachep,
321 GFP_KERNEL);
322 break;
323 default:
324 printk("blk_queue_ordered: bad value %d\n", flag);
325 break;
326 }
327 }
328
329 EXPORT_SYMBOL(blk_queue_ordered);
330
331 /**
332 * blk_queue_issue_flush_fn - set function for issuing a flush
333 * @q: the request queue
334 * @iff: the function to be called issuing the flush
335 *
336 * Description:
337 * If a driver supports issuing a flush command, the support is notified
338 * to the block layer by defining it through this call.
339 *
340 **/
341 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
342 {
343 q->issue_flush_fn = iff;
344 }
345
346 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
347
348 /*
349 * Cache flushing for ordered writes handling
350 */
351 static void blk_pre_flush_end_io(struct request *flush_rq)
352 {
353 struct request *rq = flush_rq->end_io_data;
354 request_queue_t *q = rq->q;
355
356 rq->flags |= REQ_BAR_PREFLUSH;
357
358 if (!flush_rq->errors)
359 elv_requeue_request(q, rq);
360 else {
361 q->end_flush_fn(q, flush_rq);
362 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
363 q->request_fn(q);
364 }
365 }
366
367 static void blk_post_flush_end_io(struct request *flush_rq)
368 {
369 struct request *rq = flush_rq->end_io_data;
370 request_queue_t *q = rq->q;
371
372 rq->flags |= REQ_BAR_POSTFLUSH;
373
374 q->end_flush_fn(q, flush_rq);
375 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
376 q->request_fn(q);
377 }
378
379 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
380 {
381 struct request *flush_rq = q->flush_rq;
382
383 BUG_ON(!blk_barrier_rq(rq));
384
385 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
386 return NULL;
387
388 rq_init(q, flush_rq);
389 flush_rq->elevator_private = NULL;
390 flush_rq->flags = REQ_BAR_FLUSH;
391 flush_rq->rq_disk = rq->rq_disk;
392 flush_rq->rl = NULL;
393
394 /*
395 * prepare_flush returns 0 if no flush is needed, just mark both
396 * pre and post flush as done in that case
397 */
398 if (!q->prepare_flush_fn(q, flush_rq)) {
399 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
400 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
401 return rq;
402 }
403
404 /*
405 * some drivers dequeue requests right away, some only after io
406 * completion. make sure the request is dequeued.
407 */
408 if (!list_empty(&rq->queuelist))
409 blkdev_dequeue_request(rq);
410
411 elv_deactivate_request(q, rq);
412
413 flush_rq->end_io_data = rq;
414 flush_rq->end_io = blk_pre_flush_end_io;
415
416 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
417 return flush_rq;
418 }
419
420 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
421 {
422 struct request *flush_rq = q->flush_rq;
423
424 BUG_ON(!blk_barrier_rq(rq));
425
426 rq_init(q, flush_rq);
427 flush_rq->elevator_private = NULL;
428 flush_rq->flags = REQ_BAR_FLUSH;
429 flush_rq->rq_disk = rq->rq_disk;
430 flush_rq->rl = NULL;
431
432 if (q->prepare_flush_fn(q, flush_rq)) {
433 flush_rq->end_io_data = rq;
434 flush_rq->end_io = blk_post_flush_end_io;
435
436 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
437 q->request_fn(q);
438 }
439 }
440
441 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
442 int sectors)
443 {
444 if (sectors > rq->nr_sectors)
445 sectors = rq->nr_sectors;
446
447 rq->nr_sectors -= sectors;
448 return rq->nr_sectors;
449 }
450
451 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
452 int sectors, int queue_locked)
453 {
454 if (q->ordered != QUEUE_ORDERED_FLUSH)
455 return 0;
456 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
457 return 0;
458 if (blk_barrier_postflush(rq))
459 return 0;
460
461 if (!blk_check_end_barrier(q, rq, sectors)) {
462 unsigned long flags = 0;
463
464 if (!queue_locked)
465 spin_lock_irqsave(q->queue_lock, flags);
466
467 blk_start_post_flush(q, rq);
468
469 if (!queue_locked)
470 spin_unlock_irqrestore(q->queue_lock, flags);
471 }
472
473 return 1;
474 }
475
476 /**
477 * blk_complete_barrier_rq - complete possible barrier request
478 * @q: the request queue for the device
479 * @rq: the request
480 * @sectors: number of sectors to complete
481 *
482 * Description:
483 * Used in driver end_io handling to determine whether to postpone
484 * completion of a barrier request until a post flush has been done. This
485 * is the unlocked variant, used if the caller doesn't already hold the
486 * queue lock.
487 **/
488 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
489 {
490 return __blk_complete_barrier_rq(q, rq, sectors, 0);
491 }
492 EXPORT_SYMBOL(blk_complete_barrier_rq);
493
494 /**
495 * blk_complete_barrier_rq_locked - complete possible barrier request
496 * @q: the request queue for the device
497 * @rq: the request
498 * @sectors: number of sectors to complete
499 *
500 * Description:
501 * See blk_complete_barrier_rq(). This variant must be used if the caller
502 * holds the queue lock.
503 **/
504 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
505 int sectors)
506 {
507 return __blk_complete_barrier_rq(q, rq, sectors, 1);
508 }
509 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
510
511 /**
512 * blk_queue_bounce_limit - set bounce buffer limit for queue
513 * @q: the request queue for the device
514 * @dma_addr: bus address limit
515 *
516 * Description:
517 * Different hardware can have different requirements as to what pages
518 * it can do I/O directly to. A low level driver can call
519 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
520 * buffers for doing I/O to pages residing above @page. By default
521 * the block layer sets this to the highest numbered "low" memory page.
522 **/
523 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
524 {
525 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
526
527 /*
528 * set appropriate bounce gfp mask -- unfortunately we don't have a
529 * full 4GB zone, so we have to resort to low memory for any bounces.
530 * ISA has its own < 16MB zone.
531 */
532 if (bounce_pfn < blk_max_low_pfn) {
533 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
534 init_emergency_isa_pool();
535 q->bounce_gfp = GFP_NOIO | GFP_DMA;
536 } else
537 q->bounce_gfp = GFP_NOIO;
538
539 q->bounce_pfn = bounce_pfn;
540 }
541
542 EXPORT_SYMBOL(blk_queue_bounce_limit);
543
544 /**
545 * blk_queue_max_sectors - set max sectors for a request for this queue
546 * @q: the request queue for the device
547 * @max_sectors: max sectors in the usual 512b unit
548 *
549 * Description:
550 * Enables a low level driver to set an upper limit on the size of
551 * received requests.
552 **/
553 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
554 {
555 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
556 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
557 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
558 }
559
560 q->max_sectors = q->max_hw_sectors = max_sectors;
561 }
562
563 EXPORT_SYMBOL(blk_queue_max_sectors);
564
565 /**
566 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
567 * @q: the request queue for the device
568 * @max_segments: max number of segments
569 *
570 * Description:
571 * Enables a low level driver to set an upper limit on the number of
572 * physical data segments in a request. This would be the largest sized
573 * scatter list the driver could handle.
574 **/
575 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
576 {
577 if (!max_segments) {
578 max_segments = 1;
579 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
580 }
581
582 q->max_phys_segments = max_segments;
583 }
584
585 EXPORT_SYMBOL(blk_queue_max_phys_segments);
586
587 /**
588 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
589 * @q: the request queue for the device
590 * @max_segments: max number of segments
591 *
592 * Description:
593 * Enables a low level driver to set an upper limit on the number of
594 * hw data segments in a request. This would be the largest number of
595 * address/length pairs the host adapter can actually give as once
596 * to the device.
597 **/
598 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
599 {
600 if (!max_segments) {
601 max_segments = 1;
602 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
603 }
604
605 q->max_hw_segments = max_segments;
606 }
607
608 EXPORT_SYMBOL(blk_queue_max_hw_segments);
609
610 /**
611 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
612 * @q: the request queue for the device
613 * @max_size: max size of segment in bytes
614 *
615 * Description:
616 * Enables a low level driver to set an upper limit on the size of a
617 * coalesced segment
618 **/
619 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
620 {
621 if (max_size < PAGE_CACHE_SIZE) {
622 max_size = PAGE_CACHE_SIZE;
623 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
624 }
625
626 q->max_segment_size = max_size;
627 }
628
629 EXPORT_SYMBOL(blk_queue_max_segment_size);
630
631 /**
632 * blk_queue_hardsect_size - set hardware sector size for the queue
633 * @q: the request queue for the device
634 * @size: the hardware sector size, in bytes
635 *
636 * Description:
637 * This should typically be set to the lowest possible sector size
638 * that the hardware can operate on (possible without reverting to
639 * even internal read-modify-write operations). Usually the default
640 * of 512 covers most hardware.
641 **/
642 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
643 {
644 q->hardsect_size = size;
645 }
646
647 EXPORT_SYMBOL(blk_queue_hardsect_size);
648
649 /*
650 * Returns the minimum that is _not_ zero, unless both are zero.
651 */
652 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
653
654 /**
655 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
656 * @t: the stacking driver (top)
657 * @b: the underlying device (bottom)
658 **/
659 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
660 {
661 /* zero is "infinity" */
662 t->max_sectors = t->max_hw_sectors =
663 min_not_zero(t->max_sectors,b->max_sectors);
664
665 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
666 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
667 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
668 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
669 }
670
671 EXPORT_SYMBOL(blk_queue_stack_limits);
672
673 /**
674 * blk_queue_segment_boundary - set boundary rules for segment merging
675 * @q: the request queue for the device
676 * @mask: the memory boundary mask
677 **/
678 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
679 {
680 if (mask < PAGE_CACHE_SIZE - 1) {
681 mask = PAGE_CACHE_SIZE - 1;
682 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
683 }
684
685 q->seg_boundary_mask = mask;
686 }
687
688 EXPORT_SYMBOL(blk_queue_segment_boundary);
689
690 /**
691 * blk_queue_dma_alignment - set dma length and memory alignment
692 * @q: the request queue for the device
693 * @mask: alignment mask
694 *
695 * description:
696 * set required memory and length aligment for direct dma transactions.
697 * this is used when buiding direct io requests for the queue.
698 *
699 **/
700 void blk_queue_dma_alignment(request_queue_t *q, int mask)
701 {
702 q->dma_alignment = mask;
703 }
704
705 EXPORT_SYMBOL(blk_queue_dma_alignment);
706
707 /**
708 * blk_queue_find_tag - find a request by its tag and queue
709 *
710 * @q: The request queue for the device
711 * @tag: The tag of the request
712 *
713 * Notes:
714 * Should be used when a device returns a tag and you want to match
715 * it with a request.
716 *
717 * no locks need be held.
718 **/
719 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
720 {
721 struct blk_queue_tag *bqt = q->queue_tags;
722
723 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
724 return NULL;
725
726 return bqt->tag_index[tag];
727 }
728
729 EXPORT_SYMBOL(blk_queue_find_tag);
730
731 /**
732 * __blk_queue_free_tags - release tag maintenance info
733 * @q: the request queue for the device
734 *
735 * Notes:
736 * blk_cleanup_queue() will take care of calling this function, if tagging
737 * has been used. So there's no need to call this directly.
738 **/
739 static void __blk_queue_free_tags(request_queue_t *q)
740 {
741 struct blk_queue_tag *bqt = q->queue_tags;
742
743 if (!bqt)
744 return;
745
746 if (atomic_dec_and_test(&bqt->refcnt)) {
747 BUG_ON(bqt->busy);
748 BUG_ON(!list_empty(&bqt->busy_list));
749
750 kfree(bqt->tag_index);
751 bqt->tag_index = NULL;
752
753 kfree(bqt->tag_map);
754 bqt->tag_map = NULL;
755
756 kfree(bqt);
757 }
758
759 q->queue_tags = NULL;
760 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
761 }
762
763 /**
764 * blk_queue_free_tags - release tag maintenance info
765 * @q: the request queue for the device
766 *
767 * Notes:
768 * This is used to disabled tagged queuing to a device, yet leave
769 * queue in function.
770 **/
771 void blk_queue_free_tags(request_queue_t *q)
772 {
773 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
774 }
775
776 EXPORT_SYMBOL(blk_queue_free_tags);
777
778 static int
779 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
780 {
781 struct request **tag_index;
782 unsigned long *tag_map;
783 int nr_ulongs;
784
785 if (depth > q->nr_requests * 2) {
786 depth = q->nr_requests * 2;
787 printk(KERN_ERR "%s: adjusted depth to %d\n",
788 __FUNCTION__, depth);
789 }
790
791 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
792 if (!tag_index)
793 goto fail;
794
795 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
796 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
797 if (!tag_map)
798 goto fail;
799
800 memset(tag_index, 0, depth * sizeof(struct request *));
801 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
802 tags->real_max_depth = depth;
803 tags->max_depth = depth;
804 tags->tag_index = tag_index;
805 tags->tag_map = tag_map;
806
807 return 0;
808 fail:
809 kfree(tag_index);
810 return -ENOMEM;
811 }
812
813 /**
814 * blk_queue_init_tags - initialize the queue tag info
815 * @q: the request queue for the device
816 * @depth: the maximum queue depth supported
817 * @tags: the tag to use
818 **/
819 int blk_queue_init_tags(request_queue_t *q, int depth,
820 struct blk_queue_tag *tags)
821 {
822 int rc;
823
824 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
825
826 if (!tags && !q->queue_tags) {
827 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
828 if (!tags)
829 goto fail;
830
831 if (init_tag_map(q, tags, depth))
832 goto fail;
833
834 INIT_LIST_HEAD(&tags->busy_list);
835 tags->busy = 0;
836 atomic_set(&tags->refcnt, 1);
837 } else if (q->queue_tags) {
838 if ((rc = blk_queue_resize_tags(q, depth)))
839 return rc;
840 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
841 return 0;
842 } else
843 atomic_inc(&tags->refcnt);
844
845 /*
846 * assign it, all done
847 */
848 q->queue_tags = tags;
849 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
850 return 0;
851 fail:
852 kfree(tags);
853 return -ENOMEM;
854 }
855
856 EXPORT_SYMBOL(blk_queue_init_tags);
857
858 /**
859 * blk_queue_resize_tags - change the queueing depth
860 * @q: the request queue for the device
861 * @new_depth: the new max command queueing depth
862 *
863 * Notes:
864 * Must be called with the queue lock held.
865 **/
866 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
867 {
868 struct blk_queue_tag *bqt = q->queue_tags;
869 struct request **tag_index;
870 unsigned long *tag_map;
871 int max_depth, nr_ulongs;
872
873 if (!bqt)
874 return -ENXIO;
875
876 /*
877 * if we already have large enough real_max_depth. just
878 * adjust max_depth. *NOTE* as requests with tag value
879 * between new_depth and real_max_depth can be in-flight, tag
880 * map can not be shrunk blindly here.
881 */
882 if (new_depth <= bqt->real_max_depth) {
883 bqt->max_depth = new_depth;
884 return 0;
885 }
886
887 /*
888 * save the old state info, so we can copy it back
889 */
890 tag_index = bqt->tag_index;
891 tag_map = bqt->tag_map;
892 max_depth = bqt->real_max_depth;
893
894 if (init_tag_map(q, bqt, new_depth))
895 return -ENOMEM;
896
897 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
898 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
899 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
900
901 kfree(tag_index);
902 kfree(tag_map);
903 return 0;
904 }
905
906 EXPORT_SYMBOL(blk_queue_resize_tags);
907
908 /**
909 * blk_queue_end_tag - end tag operations for a request
910 * @q: the request queue for the device
911 * @rq: the request that has completed
912 *
913 * Description:
914 * Typically called when end_that_request_first() returns 0, meaning
915 * all transfers have been done for a request. It's important to call
916 * this function before end_that_request_last(), as that will put the
917 * request back on the free list thus corrupting the internal tag list.
918 *
919 * Notes:
920 * queue lock must be held.
921 **/
922 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
923 {
924 struct blk_queue_tag *bqt = q->queue_tags;
925 int tag = rq->tag;
926
927 BUG_ON(tag == -1);
928
929 if (unlikely(tag >= bqt->real_max_depth))
930 /*
931 * This can happen after tag depth has been reduced.
932 * FIXME: how about a warning or info message here?
933 */
934 return;
935
936 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
937 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
938 __FUNCTION__, tag);
939 return;
940 }
941
942 list_del_init(&rq->queuelist);
943 rq->flags &= ~REQ_QUEUED;
944 rq->tag = -1;
945
946 if (unlikely(bqt->tag_index[tag] == NULL))
947 printk(KERN_ERR "%s: tag %d is missing\n",
948 __FUNCTION__, tag);
949
950 bqt->tag_index[tag] = NULL;
951 bqt->busy--;
952 }
953
954 EXPORT_SYMBOL(blk_queue_end_tag);
955
956 /**
957 * blk_queue_start_tag - find a free tag and assign it
958 * @q: the request queue for the device
959 * @rq: the block request that needs tagging
960 *
961 * Description:
962 * This can either be used as a stand-alone helper, or possibly be
963 * assigned as the queue &prep_rq_fn (in which case &struct request
964 * automagically gets a tag assigned). Note that this function
965 * assumes that any type of request can be queued! if this is not
966 * true for your device, you must check the request type before
967 * calling this function. The request will also be removed from
968 * the request queue, so it's the drivers responsibility to readd
969 * it if it should need to be restarted for some reason.
970 *
971 * Notes:
972 * queue lock must be held.
973 **/
974 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
975 {
976 struct blk_queue_tag *bqt = q->queue_tags;
977 int tag;
978
979 if (unlikely((rq->flags & REQ_QUEUED))) {
980 printk(KERN_ERR
981 "%s: request %p for device [%s] already tagged %d",
982 __FUNCTION__, rq,
983 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
984 BUG();
985 }
986
987 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
988 if (tag >= bqt->max_depth)
989 return 1;
990
991 __set_bit(tag, bqt->tag_map);
992
993 rq->flags |= REQ_QUEUED;
994 rq->tag = tag;
995 bqt->tag_index[tag] = rq;
996 blkdev_dequeue_request(rq);
997 list_add(&rq->queuelist, &bqt->busy_list);
998 bqt->busy++;
999 return 0;
1000 }
1001
1002 EXPORT_SYMBOL(blk_queue_start_tag);
1003
1004 /**
1005 * blk_queue_invalidate_tags - invalidate all pending tags
1006 * @q: the request queue for the device
1007 *
1008 * Description:
1009 * Hardware conditions may dictate a need to stop all pending requests.
1010 * In this case, we will safely clear the block side of the tag queue and
1011 * readd all requests to the request queue in the right order.
1012 *
1013 * Notes:
1014 * queue lock must be held.
1015 **/
1016 void blk_queue_invalidate_tags(request_queue_t *q)
1017 {
1018 struct blk_queue_tag *bqt = q->queue_tags;
1019 struct list_head *tmp, *n;
1020 struct request *rq;
1021
1022 list_for_each_safe(tmp, n, &bqt->busy_list) {
1023 rq = list_entry_rq(tmp);
1024
1025 if (rq->tag == -1) {
1026 printk(KERN_ERR
1027 "%s: bad tag found on list\n", __FUNCTION__);
1028 list_del_init(&rq->queuelist);
1029 rq->flags &= ~REQ_QUEUED;
1030 } else
1031 blk_queue_end_tag(q, rq);
1032
1033 rq->flags &= ~REQ_STARTED;
1034 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1035 }
1036 }
1037
1038 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1039
1040 static char *rq_flags[] = {
1041 "REQ_RW",
1042 "REQ_FAILFAST",
1043 "REQ_SOFTBARRIER",
1044 "REQ_HARDBARRIER",
1045 "REQ_CMD",
1046 "REQ_NOMERGE",
1047 "REQ_STARTED",
1048 "REQ_DONTPREP",
1049 "REQ_QUEUED",
1050 "REQ_PC",
1051 "REQ_BLOCK_PC",
1052 "REQ_SENSE",
1053 "REQ_FAILED",
1054 "REQ_QUIET",
1055 "REQ_SPECIAL",
1056 "REQ_DRIVE_CMD",
1057 "REQ_DRIVE_TASK",
1058 "REQ_DRIVE_TASKFILE",
1059 "REQ_PREEMPT",
1060 "REQ_PM_SUSPEND",
1061 "REQ_PM_RESUME",
1062 "REQ_PM_SHUTDOWN",
1063 };
1064
1065 void blk_dump_rq_flags(struct request *rq, char *msg)
1066 {
1067 int bit;
1068
1069 printk("%s: dev %s: flags = ", msg,
1070 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1071 bit = 0;
1072 do {
1073 if (rq->flags & (1 << bit))
1074 printk("%s ", rq_flags[bit]);
1075 bit++;
1076 } while (bit < __REQ_NR_BITS);
1077
1078 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1079 rq->nr_sectors,
1080 rq->current_nr_sectors);
1081 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1082
1083 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1084 printk("cdb: ");
1085 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1086 printk("%02x ", rq->cmd[bit]);
1087 printk("\n");
1088 }
1089 }
1090
1091 EXPORT_SYMBOL(blk_dump_rq_flags);
1092
1093 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1094 {
1095 struct bio_vec *bv, *bvprv = NULL;
1096 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1097 int high, highprv = 1;
1098
1099 if (unlikely(!bio->bi_io_vec))
1100 return;
1101
1102 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1103 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1104 bio_for_each_segment(bv, bio, i) {
1105 /*
1106 * the trick here is making sure that a high page is never
1107 * considered part of another segment, since that might
1108 * change with the bounce page.
1109 */
1110 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1111 if (high || highprv)
1112 goto new_hw_segment;
1113 if (cluster) {
1114 if (seg_size + bv->bv_len > q->max_segment_size)
1115 goto new_segment;
1116 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1117 goto new_segment;
1118 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1119 goto new_segment;
1120 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1121 goto new_hw_segment;
1122
1123 seg_size += bv->bv_len;
1124 hw_seg_size += bv->bv_len;
1125 bvprv = bv;
1126 continue;
1127 }
1128 new_segment:
1129 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1130 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1131 hw_seg_size += bv->bv_len;
1132 } else {
1133 new_hw_segment:
1134 if (hw_seg_size > bio->bi_hw_front_size)
1135 bio->bi_hw_front_size = hw_seg_size;
1136 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1137 nr_hw_segs++;
1138 }
1139
1140 nr_phys_segs++;
1141 bvprv = bv;
1142 seg_size = bv->bv_len;
1143 highprv = high;
1144 }
1145 if (hw_seg_size > bio->bi_hw_back_size)
1146 bio->bi_hw_back_size = hw_seg_size;
1147 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1148 bio->bi_hw_front_size = hw_seg_size;
1149 bio->bi_phys_segments = nr_phys_segs;
1150 bio->bi_hw_segments = nr_hw_segs;
1151 bio->bi_flags |= (1 << BIO_SEG_VALID);
1152 }
1153
1154
1155 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1156 struct bio *nxt)
1157 {
1158 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1159 return 0;
1160
1161 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1162 return 0;
1163 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1164 return 0;
1165
1166 /*
1167 * bio and nxt are contigous in memory, check if the queue allows
1168 * these two to be merged into one
1169 */
1170 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1171 return 1;
1172
1173 return 0;
1174 }
1175
1176 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1177 struct bio *nxt)
1178 {
1179 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1180 blk_recount_segments(q, bio);
1181 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1182 blk_recount_segments(q, nxt);
1183 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1184 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1185 return 0;
1186 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1187 return 0;
1188
1189 return 1;
1190 }
1191
1192 /*
1193 * map a request to scatterlist, return number of sg entries setup. Caller
1194 * must make sure sg can hold rq->nr_phys_segments entries
1195 */
1196 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1197 {
1198 struct bio_vec *bvec, *bvprv;
1199 struct bio *bio;
1200 int nsegs, i, cluster;
1201
1202 nsegs = 0;
1203 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1204
1205 /*
1206 * for each bio in rq
1207 */
1208 bvprv = NULL;
1209 rq_for_each_bio(bio, rq) {
1210 /*
1211 * for each segment in bio
1212 */
1213 bio_for_each_segment(bvec, bio, i) {
1214 int nbytes = bvec->bv_len;
1215
1216 if (bvprv && cluster) {
1217 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1218 goto new_segment;
1219
1220 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1221 goto new_segment;
1222 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1223 goto new_segment;
1224
1225 sg[nsegs - 1].length += nbytes;
1226 } else {
1227 new_segment:
1228 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1229 sg[nsegs].page = bvec->bv_page;
1230 sg[nsegs].length = nbytes;
1231 sg[nsegs].offset = bvec->bv_offset;
1232
1233 nsegs++;
1234 }
1235 bvprv = bvec;
1236 } /* segments in bio */
1237 } /* bios in rq */
1238
1239 return nsegs;
1240 }
1241
1242 EXPORT_SYMBOL(blk_rq_map_sg);
1243
1244 /*
1245 * the standard queue merge functions, can be overridden with device
1246 * specific ones if so desired
1247 */
1248
1249 static inline int ll_new_mergeable(request_queue_t *q,
1250 struct request *req,
1251 struct bio *bio)
1252 {
1253 int nr_phys_segs = bio_phys_segments(q, bio);
1254
1255 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1256 req->flags |= REQ_NOMERGE;
1257 if (req == q->last_merge)
1258 q->last_merge = NULL;
1259 return 0;
1260 }
1261
1262 /*
1263 * A hw segment is just getting larger, bump just the phys
1264 * counter.
1265 */
1266 req->nr_phys_segments += nr_phys_segs;
1267 return 1;
1268 }
1269
1270 static inline int ll_new_hw_segment(request_queue_t *q,
1271 struct request *req,
1272 struct bio *bio)
1273 {
1274 int nr_hw_segs = bio_hw_segments(q, bio);
1275 int nr_phys_segs = bio_phys_segments(q, bio);
1276
1277 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1278 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1279 req->flags |= REQ_NOMERGE;
1280 if (req == q->last_merge)
1281 q->last_merge = NULL;
1282 return 0;
1283 }
1284
1285 /*
1286 * This will form the start of a new hw segment. Bump both
1287 * counters.
1288 */
1289 req->nr_hw_segments += nr_hw_segs;
1290 req->nr_phys_segments += nr_phys_segs;
1291 return 1;
1292 }
1293
1294 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1295 struct bio *bio)
1296 {
1297 int len;
1298
1299 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1300 req->flags |= REQ_NOMERGE;
1301 if (req == q->last_merge)
1302 q->last_merge = NULL;
1303 return 0;
1304 }
1305 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1306 blk_recount_segments(q, req->biotail);
1307 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1308 blk_recount_segments(q, bio);
1309 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1310 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1311 !BIOVEC_VIRT_OVERSIZE(len)) {
1312 int mergeable = ll_new_mergeable(q, req, bio);
1313
1314 if (mergeable) {
1315 if (req->nr_hw_segments == 1)
1316 req->bio->bi_hw_front_size = len;
1317 if (bio->bi_hw_segments == 1)
1318 bio->bi_hw_back_size = len;
1319 }
1320 return mergeable;
1321 }
1322
1323 return ll_new_hw_segment(q, req, bio);
1324 }
1325
1326 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1327 struct bio *bio)
1328 {
1329 int len;
1330
1331 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1332 req->flags |= REQ_NOMERGE;
1333 if (req == q->last_merge)
1334 q->last_merge = NULL;
1335 return 0;
1336 }
1337 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1338 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1339 blk_recount_segments(q, bio);
1340 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1341 blk_recount_segments(q, req->bio);
1342 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1343 !BIOVEC_VIRT_OVERSIZE(len)) {
1344 int mergeable = ll_new_mergeable(q, req, bio);
1345
1346 if (mergeable) {
1347 if (bio->bi_hw_segments == 1)
1348 bio->bi_hw_front_size = len;
1349 if (req->nr_hw_segments == 1)
1350 req->biotail->bi_hw_back_size = len;
1351 }
1352 return mergeable;
1353 }
1354
1355 return ll_new_hw_segment(q, req, bio);
1356 }
1357
1358 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1359 struct request *next)
1360 {
1361 int total_phys_segments;
1362 int total_hw_segments;
1363
1364 /*
1365 * First check if the either of the requests are re-queued
1366 * requests. Can't merge them if they are.
1367 */
1368 if (req->special || next->special)
1369 return 0;
1370
1371 /*
1372 * Will it become too large?
1373 */
1374 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1375 return 0;
1376
1377 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1378 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1379 total_phys_segments--;
1380
1381 if (total_phys_segments > q->max_phys_segments)
1382 return 0;
1383
1384 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1385 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1386 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1387 /*
1388 * propagate the combined length to the end of the requests
1389 */
1390 if (req->nr_hw_segments == 1)
1391 req->bio->bi_hw_front_size = len;
1392 if (next->nr_hw_segments == 1)
1393 next->biotail->bi_hw_back_size = len;
1394 total_hw_segments--;
1395 }
1396
1397 if (total_hw_segments > q->max_hw_segments)
1398 return 0;
1399
1400 /* Merge is OK... */
1401 req->nr_phys_segments = total_phys_segments;
1402 req->nr_hw_segments = total_hw_segments;
1403 return 1;
1404 }
1405
1406 /*
1407 * "plug" the device if there are no outstanding requests: this will
1408 * force the transfer to start only after we have put all the requests
1409 * on the list.
1410 *
1411 * This is called with interrupts off and no requests on the queue and
1412 * with the queue lock held.
1413 */
1414 void blk_plug_device(request_queue_t *q)
1415 {
1416 WARN_ON(!irqs_disabled());
1417
1418 /*
1419 * don't plug a stopped queue, it must be paired with blk_start_queue()
1420 * which will restart the queueing
1421 */
1422 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1423 return;
1424
1425 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1426 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1427 }
1428
1429 EXPORT_SYMBOL(blk_plug_device);
1430
1431 /*
1432 * remove the queue from the plugged list, if present. called with
1433 * queue lock held and interrupts disabled.
1434 */
1435 int blk_remove_plug(request_queue_t *q)
1436 {
1437 WARN_ON(!irqs_disabled());
1438
1439 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1440 return 0;
1441
1442 del_timer(&q->unplug_timer);
1443 return 1;
1444 }
1445
1446 EXPORT_SYMBOL(blk_remove_plug);
1447
1448 /*
1449 * remove the plug and let it rip..
1450 */
1451 void __generic_unplug_device(request_queue_t *q)
1452 {
1453 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1454 return;
1455
1456 if (!blk_remove_plug(q))
1457 return;
1458
1459 q->request_fn(q);
1460 }
1461 EXPORT_SYMBOL(__generic_unplug_device);
1462
1463 /**
1464 * generic_unplug_device - fire a request queue
1465 * @q: The &request_queue_t in question
1466 *
1467 * Description:
1468 * Linux uses plugging to build bigger requests queues before letting
1469 * the device have at them. If a queue is plugged, the I/O scheduler
1470 * is still adding and merging requests on the queue. Once the queue
1471 * gets unplugged, the request_fn defined for the queue is invoked and
1472 * transfers started.
1473 **/
1474 void generic_unplug_device(request_queue_t *q)
1475 {
1476 spin_lock_irq(q->queue_lock);
1477 __generic_unplug_device(q);
1478 spin_unlock_irq(q->queue_lock);
1479 }
1480 EXPORT_SYMBOL(generic_unplug_device);
1481
1482 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1483 struct page *page)
1484 {
1485 request_queue_t *q = bdi->unplug_io_data;
1486
1487 /*
1488 * devices don't necessarily have an ->unplug_fn defined
1489 */
1490 if (q->unplug_fn)
1491 q->unplug_fn(q);
1492 }
1493
1494 static void blk_unplug_work(void *data)
1495 {
1496 request_queue_t *q = data;
1497
1498 q->unplug_fn(q);
1499 }
1500
1501 static void blk_unplug_timeout(unsigned long data)
1502 {
1503 request_queue_t *q = (request_queue_t *)data;
1504
1505 kblockd_schedule_work(&q->unplug_work);
1506 }
1507
1508 /**
1509 * blk_start_queue - restart a previously stopped queue
1510 * @q: The &request_queue_t in question
1511 *
1512 * Description:
1513 * blk_start_queue() will clear the stop flag on the queue, and call
1514 * the request_fn for the queue if it was in a stopped state when
1515 * entered. Also see blk_stop_queue(). Queue lock must be held.
1516 **/
1517 void blk_start_queue(request_queue_t *q)
1518 {
1519 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1520
1521 /*
1522 * one level of recursion is ok and is much faster than kicking
1523 * the unplug handling
1524 */
1525 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1526 q->request_fn(q);
1527 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1528 } else {
1529 blk_plug_device(q);
1530 kblockd_schedule_work(&q->unplug_work);
1531 }
1532 }
1533
1534 EXPORT_SYMBOL(blk_start_queue);
1535
1536 /**
1537 * blk_stop_queue - stop a queue
1538 * @q: The &request_queue_t in question
1539 *
1540 * Description:
1541 * The Linux block layer assumes that a block driver will consume all
1542 * entries on the request queue when the request_fn strategy is called.
1543 * Often this will not happen, because of hardware limitations (queue
1544 * depth settings). If a device driver gets a 'queue full' response,
1545 * or if it simply chooses not to queue more I/O at one point, it can
1546 * call this function to prevent the request_fn from being called until
1547 * the driver has signalled it's ready to go again. This happens by calling
1548 * blk_start_queue() to restart queue operations. Queue lock must be held.
1549 **/
1550 void blk_stop_queue(request_queue_t *q)
1551 {
1552 blk_remove_plug(q);
1553 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1554 }
1555 EXPORT_SYMBOL(blk_stop_queue);
1556
1557 /**
1558 * blk_sync_queue - cancel any pending callbacks on a queue
1559 * @q: the queue
1560 *
1561 * Description:
1562 * The block layer may perform asynchronous callback activity
1563 * on a queue, such as calling the unplug function after a timeout.
1564 * A block device may call blk_sync_queue to ensure that any
1565 * such activity is cancelled, thus allowing it to release resources
1566 * the the callbacks might use. The caller must already have made sure
1567 * that its ->make_request_fn will not re-add plugging prior to calling
1568 * this function.
1569 *
1570 */
1571 void blk_sync_queue(struct request_queue *q)
1572 {
1573 del_timer_sync(&q->unplug_timer);
1574 kblockd_flush();
1575 }
1576 EXPORT_SYMBOL(blk_sync_queue);
1577
1578 /**
1579 * blk_run_queue - run a single device queue
1580 * @q: The queue to run
1581 */
1582 void blk_run_queue(struct request_queue *q)
1583 {
1584 unsigned long flags;
1585
1586 spin_lock_irqsave(q->queue_lock, flags);
1587 blk_remove_plug(q);
1588 if (!elv_queue_empty(q))
1589 q->request_fn(q);
1590 spin_unlock_irqrestore(q->queue_lock, flags);
1591 }
1592 EXPORT_SYMBOL(blk_run_queue);
1593
1594 /**
1595 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1596 * @q: the request queue to be released
1597 *
1598 * Description:
1599 * blk_cleanup_queue is the pair to blk_init_queue() or
1600 * blk_queue_make_request(). It should be called when a request queue is
1601 * being released; typically when a block device is being de-registered.
1602 * Currently, its primary task it to free all the &struct request
1603 * structures that were allocated to the queue and the queue itself.
1604 *
1605 * Caveat:
1606 * Hopefully the low level driver will have finished any
1607 * outstanding requests first...
1608 **/
1609 void blk_cleanup_queue(request_queue_t * q)
1610 {
1611 struct request_list *rl = &q->rq;
1612
1613 if (!atomic_dec_and_test(&q->refcnt))
1614 return;
1615
1616 if (q->elevator)
1617 elevator_exit(q->elevator);
1618
1619 blk_sync_queue(q);
1620
1621 if (rl->rq_pool)
1622 mempool_destroy(rl->rq_pool);
1623
1624 if (q->queue_tags)
1625 __blk_queue_free_tags(q);
1626
1627 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1628
1629 kmem_cache_free(requestq_cachep, q);
1630 }
1631
1632 EXPORT_SYMBOL(blk_cleanup_queue);
1633
1634 static int blk_init_free_list(request_queue_t *q)
1635 {
1636 struct request_list *rl = &q->rq;
1637
1638 rl->count[READ] = rl->count[WRITE] = 0;
1639 rl->starved[READ] = rl->starved[WRITE] = 0;
1640 init_waitqueue_head(&rl->wait[READ]);
1641 init_waitqueue_head(&rl->wait[WRITE]);
1642 init_waitqueue_head(&rl->drain);
1643
1644 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1645 mempool_free_slab, request_cachep, q->node);
1646
1647 if (!rl->rq_pool)
1648 return -ENOMEM;
1649
1650 return 0;
1651 }
1652
1653 static int __make_request(request_queue_t *, struct bio *);
1654
1655 request_queue_t *blk_alloc_queue(int gfp_mask)
1656 {
1657 return blk_alloc_queue_node(gfp_mask, -1);
1658 }
1659 EXPORT_SYMBOL(blk_alloc_queue);
1660
1661 request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1662 {
1663 request_queue_t *q;
1664
1665 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1666 if (!q)
1667 return NULL;
1668
1669 memset(q, 0, sizeof(*q));
1670 init_timer(&q->unplug_timer);
1671 atomic_set(&q->refcnt, 1);
1672
1673 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1674 q->backing_dev_info.unplug_io_data = q;
1675
1676 return q;
1677 }
1678 EXPORT_SYMBOL(blk_alloc_queue_node);
1679
1680 /**
1681 * blk_init_queue - prepare a request queue for use with a block device
1682 * @rfn: The function to be called to process requests that have been
1683 * placed on the queue.
1684 * @lock: Request queue spin lock
1685 *
1686 * Description:
1687 * If a block device wishes to use the standard request handling procedures,
1688 * which sorts requests and coalesces adjacent requests, then it must
1689 * call blk_init_queue(). The function @rfn will be called when there
1690 * are requests on the queue that need to be processed. If the device
1691 * supports plugging, then @rfn may not be called immediately when requests
1692 * are available on the queue, but may be called at some time later instead.
1693 * Plugged queues are generally unplugged when a buffer belonging to one
1694 * of the requests on the queue is needed, or due to memory pressure.
1695 *
1696 * @rfn is not required, or even expected, to remove all requests off the
1697 * queue, but only as many as it can handle at a time. If it does leave
1698 * requests on the queue, it is responsible for arranging that the requests
1699 * get dealt with eventually.
1700 *
1701 * The queue spin lock must be held while manipulating the requests on the
1702 * request queue.
1703 *
1704 * Function returns a pointer to the initialized request queue, or NULL if
1705 * it didn't succeed.
1706 *
1707 * Note:
1708 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1709 * when the block device is deactivated (such as at module unload).
1710 **/
1711
1712 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1713 {
1714 return blk_init_queue_node(rfn, lock, -1);
1715 }
1716 EXPORT_SYMBOL(blk_init_queue);
1717
1718 request_queue_t *
1719 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1720 {
1721 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1722
1723 if (!q)
1724 return NULL;
1725
1726 q->node = node_id;
1727 if (blk_init_free_list(q))
1728 goto out_init;
1729
1730 /*
1731 * if caller didn't supply a lock, they get per-queue locking with
1732 * our embedded lock
1733 */
1734 if (!lock) {
1735 spin_lock_init(&q->__queue_lock);
1736 lock = &q->__queue_lock;
1737 }
1738
1739 q->request_fn = rfn;
1740 q->back_merge_fn = ll_back_merge_fn;
1741 q->front_merge_fn = ll_front_merge_fn;
1742 q->merge_requests_fn = ll_merge_requests_fn;
1743 q->prep_rq_fn = NULL;
1744 q->unplug_fn = generic_unplug_device;
1745 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1746 q->queue_lock = lock;
1747
1748 blk_queue_segment_boundary(q, 0xffffffff);
1749
1750 blk_queue_make_request(q, __make_request);
1751 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1752
1753 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1754 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1755
1756 /*
1757 * all done
1758 */
1759 if (!elevator_init(q, NULL)) {
1760 blk_queue_congestion_threshold(q);
1761 return q;
1762 }
1763
1764 blk_cleanup_queue(q);
1765 out_init:
1766 kmem_cache_free(requestq_cachep, q);
1767 return NULL;
1768 }
1769 EXPORT_SYMBOL(blk_init_queue_node);
1770
1771 int blk_get_queue(request_queue_t *q)
1772 {
1773 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1774 atomic_inc(&q->refcnt);
1775 return 0;
1776 }
1777
1778 return 1;
1779 }
1780
1781 EXPORT_SYMBOL(blk_get_queue);
1782
1783 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1784 {
1785 elv_put_request(q, rq);
1786 mempool_free(rq, q->rq.rq_pool);
1787 }
1788
1789 static inline struct request *
1790 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, int gfp_mask)
1791 {
1792 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1793
1794 if (!rq)
1795 return NULL;
1796
1797 /*
1798 * first three bits are identical in rq->flags and bio->bi_rw,
1799 * see bio.h and blkdev.h
1800 */
1801 rq->flags = rw;
1802
1803 if (!elv_set_request(q, rq, bio, gfp_mask))
1804 return rq;
1805
1806 mempool_free(rq, q->rq.rq_pool);
1807 return NULL;
1808 }
1809
1810 /*
1811 * ioc_batching returns true if the ioc is a valid batching request and
1812 * should be given priority access to a request.
1813 */
1814 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1815 {
1816 if (!ioc)
1817 return 0;
1818
1819 /*
1820 * Make sure the process is able to allocate at least 1 request
1821 * even if the batch times out, otherwise we could theoretically
1822 * lose wakeups.
1823 */
1824 return ioc->nr_batch_requests == q->nr_batching ||
1825 (ioc->nr_batch_requests > 0
1826 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1827 }
1828
1829 /*
1830 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1831 * will cause the process to be a "batcher" on all queues in the system. This
1832 * is the behaviour we want though - once it gets a wakeup it should be given
1833 * a nice run.
1834 */
1835 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1836 {
1837 if (!ioc || ioc_batching(q, ioc))
1838 return;
1839
1840 ioc->nr_batch_requests = q->nr_batching;
1841 ioc->last_waited = jiffies;
1842 }
1843
1844 static void __freed_request(request_queue_t *q, int rw)
1845 {
1846 struct request_list *rl = &q->rq;
1847
1848 if (rl->count[rw] < queue_congestion_off_threshold(q))
1849 clear_queue_congested(q, rw);
1850
1851 if (rl->count[rw] + 1 <= q->nr_requests) {
1852 if (waitqueue_active(&rl->wait[rw]))
1853 wake_up(&rl->wait[rw]);
1854
1855 blk_clear_queue_full(q, rw);
1856 }
1857 }
1858
1859 /*
1860 * A request has just been released. Account for it, update the full and
1861 * congestion status, wake up any waiters. Called under q->queue_lock.
1862 */
1863 static void freed_request(request_queue_t *q, int rw)
1864 {
1865 struct request_list *rl = &q->rq;
1866
1867 rl->count[rw]--;
1868
1869 __freed_request(q, rw);
1870
1871 if (unlikely(rl->starved[rw ^ 1]))
1872 __freed_request(q, rw ^ 1);
1873
1874 if (!rl->count[READ] && !rl->count[WRITE]) {
1875 smp_mb();
1876 if (unlikely(waitqueue_active(&rl->drain)))
1877 wake_up(&rl->drain);
1878 }
1879 }
1880
1881 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1882 /*
1883 * Get a free request, queue_lock must be held.
1884 * Returns NULL on failure, with queue_lock held.
1885 * Returns !NULL on success, with queue_lock *not held*.
1886 */
1887 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1888 int gfp_mask)
1889 {
1890 struct request *rq = NULL;
1891 struct request_list *rl = &q->rq;
1892 struct io_context *ioc = current_io_context(GFP_ATOMIC);
1893
1894 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1895 goto out;
1896
1897 if (rl->count[rw]+1 >= q->nr_requests) {
1898 /*
1899 * The queue will fill after this allocation, so set it as
1900 * full, and mark this process as "batching". This process
1901 * will be allowed to complete a batch of requests, others
1902 * will be blocked.
1903 */
1904 if (!blk_queue_full(q, rw)) {
1905 ioc_set_batching(q, ioc);
1906 blk_set_queue_full(q, rw);
1907 }
1908 }
1909
1910 switch (elv_may_queue(q, rw, bio)) {
1911 case ELV_MQUEUE_NO:
1912 goto rq_starved;
1913 case ELV_MQUEUE_MAY:
1914 break;
1915 case ELV_MQUEUE_MUST:
1916 goto get_rq;
1917 }
1918
1919 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1920 /*
1921 * The queue is full and the allocating process is not a
1922 * "batcher", and not exempted by the IO scheduler
1923 */
1924 goto out;
1925 }
1926
1927 get_rq:
1928 /*
1929 * Only allow batching queuers to allocate up to 50% over the defined
1930 * limit of requests, otherwise we could have thousands of requests
1931 * allocated with any setting of ->nr_requests
1932 */
1933 if (rl->count[rw] >= (3 * q->nr_requests / 2))
1934 goto out;
1935
1936 rl->count[rw]++;
1937 rl->starved[rw] = 0;
1938 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1939 set_queue_congested(q, rw);
1940 spin_unlock_irq(q->queue_lock);
1941
1942 rq = blk_alloc_request(q, rw, bio, gfp_mask);
1943 if (!rq) {
1944 /*
1945 * Allocation failed presumably due to memory. Undo anything
1946 * we might have messed up.
1947 *
1948 * Allocating task should really be put onto the front of the
1949 * wait queue, but this is pretty rare.
1950 */
1951 spin_lock_irq(q->queue_lock);
1952 freed_request(q, rw);
1953
1954 /*
1955 * in the very unlikely event that allocation failed and no
1956 * requests for this direction was pending, mark us starved
1957 * so that freeing of a request in the other direction will
1958 * notice us. another possible fix would be to split the
1959 * rq mempool into READ and WRITE
1960 */
1961 rq_starved:
1962 if (unlikely(rl->count[rw] == 0))
1963 rl->starved[rw] = 1;
1964
1965 goto out;
1966 }
1967
1968 if (ioc_batching(q, ioc))
1969 ioc->nr_batch_requests--;
1970
1971 rq_init(q, rq);
1972 rq->rl = rl;
1973 out:
1974 return rq;
1975 }
1976
1977 /*
1978 * No available requests for this queue, unplug the device and wait for some
1979 * requests to become available.
1980 *
1981 * Called with q->queue_lock held, and returns with it unlocked.
1982 */
1983 static struct request *get_request_wait(request_queue_t *q, int rw,
1984 struct bio *bio)
1985 {
1986 struct request *rq;
1987
1988 rq = get_request(q, rw, bio, GFP_NOIO);
1989 while (!rq) {
1990 DEFINE_WAIT(wait);
1991 struct request_list *rl = &q->rq;
1992
1993 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1994 TASK_UNINTERRUPTIBLE);
1995
1996 rq = get_request(q, rw, bio, GFP_NOIO);
1997
1998 if (!rq) {
1999 struct io_context *ioc;
2000
2001 __generic_unplug_device(q);
2002 spin_unlock_irq(q->queue_lock);
2003 io_schedule();
2004
2005 /*
2006 * After sleeping, we become a "batching" process and
2007 * will be able to allocate at least one request, and
2008 * up to a big batch of them for a small period time.
2009 * See ioc_batching, ioc_set_batching
2010 */
2011 ioc = current_io_context(GFP_NOIO);
2012 ioc_set_batching(q, ioc);
2013
2014 spin_lock_irq(q->queue_lock);
2015 }
2016 finish_wait(&rl->wait[rw], &wait);
2017 }
2018
2019 return rq;
2020 }
2021
2022 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2023 {
2024 struct request *rq;
2025
2026 BUG_ON(rw != READ && rw != WRITE);
2027
2028 spin_lock_irq(q->queue_lock);
2029 if (gfp_mask & __GFP_WAIT) {
2030 rq = get_request_wait(q, rw, NULL);
2031 } else {
2032 rq = get_request(q, rw, NULL, gfp_mask);
2033 if (!rq)
2034 spin_unlock_irq(q->queue_lock);
2035 }
2036 /* q->queue_lock is unlocked at this point */
2037
2038 return rq;
2039 }
2040 EXPORT_SYMBOL(blk_get_request);
2041
2042 /**
2043 * blk_requeue_request - put a request back on queue
2044 * @q: request queue where request should be inserted
2045 * @rq: request to be inserted
2046 *
2047 * Description:
2048 * Drivers often keep queueing requests until the hardware cannot accept
2049 * more, when that condition happens we need to put the request back
2050 * on the queue. Must be called with queue lock held.
2051 */
2052 void blk_requeue_request(request_queue_t *q, struct request *rq)
2053 {
2054 if (blk_rq_tagged(rq))
2055 blk_queue_end_tag(q, rq);
2056
2057 elv_requeue_request(q, rq);
2058 }
2059
2060 EXPORT_SYMBOL(blk_requeue_request);
2061
2062 /**
2063 * blk_insert_request - insert a special request in to a request queue
2064 * @q: request queue where request should be inserted
2065 * @rq: request to be inserted
2066 * @at_head: insert request at head or tail of queue
2067 * @data: private data
2068 *
2069 * Description:
2070 * Many block devices need to execute commands asynchronously, so they don't
2071 * block the whole kernel from preemption during request execution. This is
2072 * accomplished normally by inserting aritficial requests tagged as
2073 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2074 * scheduled for actual execution by the request queue.
2075 *
2076 * We have the option of inserting the head or the tail of the queue.
2077 * Typically we use the tail for new ioctls and so forth. We use the head
2078 * of the queue for things like a QUEUE_FULL message from a device, or a
2079 * host that is unable to accept a particular command.
2080 */
2081 void blk_insert_request(request_queue_t *q, struct request *rq,
2082 int at_head, void *data)
2083 {
2084 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2085 unsigned long flags;
2086
2087 /*
2088 * tell I/O scheduler that this isn't a regular read/write (ie it
2089 * must not attempt merges on this) and that it acts as a soft
2090 * barrier
2091 */
2092 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2093
2094 rq->special = data;
2095
2096 spin_lock_irqsave(q->queue_lock, flags);
2097
2098 /*
2099 * If command is tagged, release the tag
2100 */
2101 if (blk_rq_tagged(rq))
2102 blk_queue_end_tag(q, rq);
2103
2104 drive_stat_acct(rq, rq->nr_sectors, 1);
2105 __elv_add_request(q, rq, where, 0);
2106
2107 if (blk_queue_plugged(q))
2108 __generic_unplug_device(q);
2109 else
2110 q->request_fn(q);
2111 spin_unlock_irqrestore(q->queue_lock, flags);
2112 }
2113
2114 EXPORT_SYMBOL(blk_insert_request);
2115
2116 /**
2117 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2118 * @q: request queue where request should be inserted
2119 * @rq: request structure to fill
2120 * @ubuf: the user buffer
2121 * @len: length of user data
2122 *
2123 * Description:
2124 * Data will be mapped directly for zero copy io, if possible. Otherwise
2125 * a kernel bounce buffer is used.
2126 *
2127 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2128 * still in process context.
2129 *
2130 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2131 * before being submitted to the device, as pages mapped may be out of
2132 * reach. It's the callers responsibility to make sure this happens. The
2133 * original bio must be passed back in to blk_rq_unmap_user() for proper
2134 * unmapping.
2135 */
2136 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2137 unsigned int len)
2138 {
2139 unsigned long uaddr;
2140 struct bio *bio;
2141 int reading;
2142
2143 if (len > (q->max_sectors << 9))
2144 return -EINVAL;
2145 if (!len || !ubuf)
2146 return -EINVAL;
2147
2148 reading = rq_data_dir(rq) == READ;
2149
2150 /*
2151 * if alignment requirement is satisfied, map in user pages for
2152 * direct dma. else, set up kernel bounce buffers
2153 */
2154 uaddr = (unsigned long) ubuf;
2155 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2156 bio = bio_map_user(q, NULL, uaddr, len, reading);
2157 else
2158 bio = bio_copy_user(q, uaddr, len, reading);
2159
2160 if (!IS_ERR(bio)) {
2161 rq->bio = rq->biotail = bio;
2162 blk_rq_bio_prep(q, rq, bio);
2163
2164 rq->buffer = rq->data = NULL;
2165 rq->data_len = len;
2166 return 0;
2167 }
2168
2169 /*
2170 * bio is the err-ptr
2171 */
2172 return PTR_ERR(bio);
2173 }
2174
2175 EXPORT_SYMBOL(blk_rq_map_user);
2176
2177 /**
2178 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2179 * @q: request queue where request should be inserted
2180 * @rq: request to map data to
2181 * @iov: pointer to the iovec
2182 * @iov_count: number of elements in the iovec
2183 *
2184 * Description:
2185 * Data will be mapped directly for zero copy io, if possible. Otherwise
2186 * a kernel bounce buffer is used.
2187 *
2188 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2189 * still in process context.
2190 *
2191 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2192 * before being submitted to the device, as pages mapped may be out of
2193 * reach. It's the callers responsibility to make sure this happens. The
2194 * original bio must be passed back in to blk_rq_unmap_user() for proper
2195 * unmapping.
2196 */
2197 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2198 struct sg_iovec *iov, int iov_count)
2199 {
2200 struct bio *bio;
2201
2202 if (!iov || iov_count <= 0)
2203 return -EINVAL;
2204
2205 /* we don't allow misaligned data like bio_map_user() does. If the
2206 * user is using sg, they're expected to know the alignment constraints
2207 * and respect them accordingly */
2208 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2209 if (IS_ERR(bio))
2210 return PTR_ERR(bio);
2211
2212 rq->bio = rq->biotail = bio;
2213 blk_rq_bio_prep(q, rq, bio);
2214 rq->buffer = rq->data = NULL;
2215 rq->data_len = bio->bi_size;
2216 return 0;
2217 }
2218
2219 EXPORT_SYMBOL(blk_rq_map_user_iov);
2220
2221 /**
2222 * blk_rq_unmap_user - unmap a request with user data
2223 * @bio: bio to be unmapped
2224 * @ulen: length of user buffer
2225 *
2226 * Description:
2227 * Unmap a bio previously mapped by blk_rq_map_user().
2228 */
2229 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2230 {
2231 int ret = 0;
2232
2233 if (bio) {
2234 if (bio_flagged(bio, BIO_USER_MAPPED))
2235 bio_unmap_user(bio);
2236 else
2237 ret = bio_uncopy_user(bio);
2238 }
2239
2240 return 0;
2241 }
2242
2243 EXPORT_SYMBOL(blk_rq_unmap_user);
2244
2245 /**
2246 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2247 * @q: request queue where request should be inserted
2248 * @rq: request to fill
2249 * @kbuf: the kernel buffer
2250 * @len: length of user data
2251 * @gfp_mask: memory allocation flags
2252 */
2253 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2254 unsigned int len, unsigned int gfp_mask)
2255 {
2256 struct bio *bio;
2257
2258 if (len > (q->max_sectors << 9))
2259 return -EINVAL;
2260 if (!len || !kbuf)
2261 return -EINVAL;
2262
2263 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2264 if (IS_ERR(bio))
2265 return PTR_ERR(bio);
2266
2267 if (rq_data_dir(rq) == WRITE)
2268 bio->bi_rw |= (1 << BIO_RW);
2269
2270 rq->bio = rq->biotail = bio;
2271 blk_rq_bio_prep(q, rq, bio);
2272
2273 rq->buffer = rq->data = NULL;
2274 rq->data_len = len;
2275 return 0;
2276 }
2277
2278 EXPORT_SYMBOL(blk_rq_map_kern);
2279
2280 /**
2281 * blk_execute_rq_nowait - insert a request into queue for execution
2282 * @q: queue to insert the request in
2283 * @bd_disk: matching gendisk
2284 * @rq: request to insert
2285 * @at_head: insert request at head or tail of queue
2286 * @done: I/O completion handler
2287 *
2288 * Description:
2289 * Insert a fully prepared request at the back of the io scheduler queue
2290 * for execution. Don't wait for completion.
2291 */
2292 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2293 struct request *rq, int at_head,
2294 void (*done)(struct request *))
2295 {
2296 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2297
2298 rq->rq_disk = bd_disk;
2299 rq->flags |= REQ_NOMERGE;
2300 rq->end_io = done;
2301 elv_add_request(q, rq, where, 1);
2302 generic_unplug_device(q);
2303 }
2304
2305 /**
2306 * blk_execute_rq - insert a request into queue for execution
2307 * @q: queue to insert the request in
2308 * @bd_disk: matching gendisk
2309 * @rq: request to insert
2310 * @at_head: insert request at head or tail of queue
2311 *
2312 * Description:
2313 * Insert a fully prepared request at the back of the io scheduler queue
2314 * for execution and wait for completion.
2315 */
2316 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2317 struct request *rq, int at_head)
2318 {
2319 DECLARE_COMPLETION(wait);
2320 char sense[SCSI_SENSE_BUFFERSIZE];
2321 int err = 0;
2322
2323 /*
2324 * we need an extra reference to the request, so we can look at
2325 * it after io completion
2326 */
2327 rq->ref_count++;
2328
2329 if (!rq->sense) {
2330 memset(sense, 0, sizeof(sense));
2331 rq->sense = sense;
2332 rq->sense_len = 0;
2333 }
2334
2335 rq->waiting = &wait;
2336 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2337 wait_for_completion(&wait);
2338 rq->waiting = NULL;
2339
2340 if (rq->errors)
2341 err = -EIO;
2342
2343 return err;
2344 }
2345
2346 EXPORT_SYMBOL(blk_execute_rq);
2347
2348 /**
2349 * blkdev_issue_flush - queue a flush
2350 * @bdev: blockdev to issue flush for
2351 * @error_sector: error sector
2352 *
2353 * Description:
2354 * Issue a flush for the block device in question. Caller can supply
2355 * room for storing the error offset in case of a flush error, if they
2356 * wish to. Caller must run wait_for_completion() on its own.
2357 */
2358 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2359 {
2360 request_queue_t *q;
2361
2362 if (bdev->bd_disk == NULL)
2363 return -ENXIO;
2364
2365 q = bdev_get_queue(bdev);
2366 if (!q)
2367 return -ENXIO;
2368 if (!q->issue_flush_fn)
2369 return -EOPNOTSUPP;
2370
2371 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2372 }
2373
2374 EXPORT_SYMBOL(blkdev_issue_flush);
2375
2376 /**
2377 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2378 * @q: device queue
2379 * @disk: gendisk
2380 * @error_sector: error offset
2381 *
2382 * Description:
2383 * Devices understanding the SCSI command set, can use this function as
2384 * a helper for issuing a cache flush. Note: driver is required to store
2385 * the error offset (in case of error flushing) in ->sector of struct
2386 * request.
2387 */
2388 int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2389 sector_t *error_sector)
2390 {
2391 struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2392 int ret;
2393
2394 rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2395 rq->sector = 0;
2396 memset(rq->cmd, 0, sizeof(rq->cmd));
2397 rq->cmd[0] = 0x35;
2398 rq->cmd_len = 12;
2399 rq->data = NULL;
2400 rq->data_len = 0;
2401 rq->timeout = 60 * HZ;
2402
2403 ret = blk_execute_rq(q, disk, rq, 0);
2404
2405 if (ret && error_sector)
2406 *error_sector = rq->sector;
2407
2408 blk_put_request(rq);
2409 return ret;
2410 }
2411
2412 EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2413
2414 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2415 {
2416 int rw = rq_data_dir(rq);
2417
2418 if (!blk_fs_request(rq) || !rq->rq_disk)
2419 return;
2420
2421 if (rw == READ) {
2422 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2423 if (!new_io)
2424 __disk_stat_inc(rq->rq_disk, read_merges);
2425 } else if (rw == WRITE) {
2426 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2427 if (!new_io)
2428 __disk_stat_inc(rq->rq_disk, write_merges);
2429 }
2430 if (new_io) {
2431 disk_round_stats(rq->rq_disk);
2432 rq->rq_disk->in_flight++;
2433 }
2434 }
2435
2436 /*
2437 * add-request adds a request to the linked list.
2438 * queue lock is held and interrupts disabled, as we muck with the
2439 * request queue list.
2440 */
2441 static inline void add_request(request_queue_t * q, struct request * req)
2442 {
2443 drive_stat_acct(req, req->nr_sectors, 1);
2444
2445 if (q->activity_fn)
2446 q->activity_fn(q->activity_data, rq_data_dir(req));
2447
2448 /*
2449 * elevator indicated where it wants this request to be
2450 * inserted at elevator_merge time
2451 */
2452 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2453 }
2454
2455 /*
2456 * disk_round_stats() - Round off the performance stats on a struct
2457 * disk_stats.
2458 *
2459 * The average IO queue length and utilisation statistics are maintained
2460 * by observing the current state of the queue length and the amount of
2461 * time it has been in this state for.
2462 *
2463 * Normally, that accounting is done on IO completion, but that can result
2464 * in more than a second's worth of IO being accounted for within any one
2465 * second, leading to >100% utilisation. To deal with that, we call this
2466 * function to do a round-off before returning the results when reading
2467 * /proc/diskstats. This accounts immediately for all queue usage up to
2468 * the current jiffies and restarts the counters again.
2469 */
2470 void disk_round_stats(struct gendisk *disk)
2471 {
2472 unsigned long now = jiffies;
2473
2474 __disk_stat_add(disk, time_in_queue,
2475 disk->in_flight * (now - disk->stamp));
2476 disk->stamp = now;
2477
2478 if (disk->in_flight)
2479 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2480 disk->stamp_idle = now;
2481 }
2482
2483 /*
2484 * queue lock must be held
2485 */
2486 static void __blk_put_request(request_queue_t *q, struct request *req)
2487 {
2488 struct request_list *rl = req->rl;
2489
2490 if (unlikely(!q))
2491 return;
2492 if (unlikely(--req->ref_count))
2493 return;
2494
2495 req->rq_status = RQ_INACTIVE;
2496 req->rl = NULL;
2497
2498 /*
2499 * Request may not have originated from ll_rw_blk. if not,
2500 * it didn't come out of our reserved rq pools
2501 */
2502 if (rl) {
2503 int rw = rq_data_dir(req);
2504
2505 elv_completed_request(q, req);
2506
2507 BUG_ON(!list_empty(&req->queuelist));
2508
2509 blk_free_request(q, req);
2510 freed_request(q, rw);
2511 }
2512 }
2513
2514 void blk_put_request(struct request *req)
2515 {
2516 /*
2517 * if req->rl isn't set, this request didnt originate from the
2518 * block layer, so it's safe to just disregard it
2519 */
2520 if (req->rl) {
2521 unsigned long flags;
2522 request_queue_t *q = req->q;
2523
2524 spin_lock_irqsave(q->queue_lock, flags);
2525 __blk_put_request(q, req);
2526 spin_unlock_irqrestore(q->queue_lock, flags);
2527 }
2528 }
2529
2530 EXPORT_SYMBOL(blk_put_request);
2531
2532 /**
2533 * blk_end_sync_rq - executes a completion event on a request
2534 * @rq: request to complete
2535 */
2536 void blk_end_sync_rq(struct request *rq)
2537 {
2538 struct completion *waiting = rq->waiting;
2539
2540 rq->waiting = NULL;
2541 __blk_put_request(rq->q, rq);
2542
2543 /*
2544 * complete last, if this is a stack request the process (and thus
2545 * the rq pointer) could be invalid right after this complete()
2546 */
2547 complete(waiting);
2548 }
2549 EXPORT_SYMBOL(blk_end_sync_rq);
2550
2551 /**
2552 * blk_congestion_wait - wait for a queue to become uncongested
2553 * @rw: READ or WRITE
2554 * @timeout: timeout in jiffies
2555 *
2556 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2557 * If no queues are congested then just wait for the next request to be
2558 * returned.
2559 */
2560 long blk_congestion_wait(int rw, long timeout)
2561 {
2562 long ret;
2563 DEFINE_WAIT(wait);
2564 wait_queue_head_t *wqh = &congestion_wqh[rw];
2565
2566 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2567 ret = io_schedule_timeout(timeout);
2568 finish_wait(wqh, &wait);
2569 return ret;
2570 }
2571
2572 EXPORT_SYMBOL(blk_congestion_wait);
2573
2574 /*
2575 * Has to be called with the request spinlock acquired
2576 */
2577 static int attempt_merge(request_queue_t *q, struct request *req,
2578 struct request *next)
2579 {
2580 if (!rq_mergeable(req) || !rq_mergeable(next))
2581 return 0;
2582
2583 /*
2584 * not contigious
2585 */
2586 if (req->sector + req->nr_sectors != next->sector)
2587 return 0;
2588
2589 if (rq_data_dir(req) != rq_data_dir(next)
2590 || req->rq_disk != next->rq_disk
2591 || next->waiting || next->special)
2592 return 0;
2593
2594 /*
2595 * If we are allowed to merge, then append bio list
2596 * from next to rq and release next. merge_requests_fn
2597 * will have updated segment counts, update sector
2598 * counts here.
2599 */
2600 if (!q->merge_requests_fn(q, req, next))
2601 return 0;
2602
2603 /*
2604 * At this point we have either done a back merge
2605 * or front merge. We need the smaller start_time of
2606 * the merged requests to be the current request
2607 * for accounting purposes.
2608 */
2609 if (time_after(req->start_time, next->start_time))
2610 req->start_time = next->start_time;
2611
2612 req->biotail->bi_next = next->bio;
2613 req->biotail = next->biotail;
2614
2615 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2616
2617 elv_merge_requests(q, req, next);
2618
2619 if (req->rq_disk) {
2620 disk_round_stats(req->rq_disk);
2621 req->rq_disk->in_flight--;
2622 }
2623
2624 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2625
2626 __blk_put_request(q, next);
2627 return 1;
2628 }
2629
2630 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2631 {
2632 struct request *next = elv_latter_request(q, rq);
2633
2634 if (next)
2635 return attempt_merge(q, rq, next);
2636
2637 return 0;
2638 }
2639
2640 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2641 {
2642 struct request *prev = elv_former_request(q, rq);
2643
2644 if (prev)
2645 return attempt_merge(q, prev, rq);
2646
2647 return 0;
2648 }
2649
2650 /**
2651 * blk_attempt_remerge - attempt to remerge active head with next request
2652 * @q: The &request_queue_t belonging to the device
2653 * @rq: The head request (usually)
2654 *
2655 * Description:
2656 * For head-active devices, the queue can easily be unplugged so quickly
2657 * that proper merging is not done on the front request. This may hurt
2658 * performance greatly for some devices. The block layer cannot safely
2659 * do merging on that first request for these queues, but the driver can
2660 * call this function and make it happen any way. Only the driver knows
2661 * when it is safe to do so.
2662 **/
2663 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2664 {
2665 unsigned long flags;
2666
2667 spin_lock_irqsave(q->queue_lock, flags);
2668 attempt_back_merge(q, rq);
2669 spin_unlock_irqrestore(q->queue_lock, flags);
2670 }
2671
2672 EXPORT_SYMBOL(blk_attempt_remerge);
2673
2674 static int __make_request(request_queue_t *q, struct bio *bio)
2675 {
2676 struct request *req;
2677 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2678 unsigned short prio;
2679 sector_t sector;
2680
2681 sector = bio->bi_sector;
2682 nr_sectors = bio_sectors(bio);
2683 cur_nr_sectors = bio_cur_sectors(bio);
2684 prio = bio_prio(bio);
2685
2686 rw = bio_data_dir(bio);
2687 sync = bio_sync(bio);
2688
2689 /*
2690 * low level driver can indicate that it wants pages above a
2691 * certain limit bounced to low memory (ie for highmem, or even
2692 * ISA dma in theory)
2693 */
2694 blk_queue_bounce(q, &bio);
2695
2696 spin_lock_prefetch(q->queue_lock);
2697
2698 barrier = bio_barrier(bio);
2699 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
2700 err = -EOPNOTSUPP;
2701 goto end_io;
2702 }
2703
2704 spin_lock_irq(q->queue_lock);
2705
2706 if (unlikely(barrier) || elv_queue_empty(q))
2707 goto get_rq;
2708
2709 el_ret = elv_merge(q, &req, bio);
2710 switch (el_ret) {
2711 case ELEVATOR_BACK_MERGE:
2712 BUG_ON(!rq_mergeable(req));
2713
2714 if (!q->back_merge_fn(q, req, bio))
2715 break;
2716
2717 req->biotail->bi_next = bio;
2718 req->biotail = bio;
2719 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2720 req->ioprio = ioprio_best(req->ioprio, prio);
2721 drive_stat_acct(req, nr_sectors, 0);
2722 if (!attempt_back_merge(q, req))
2723 elv_merged_request(q, req);
2724 goto out;
2725
2726 case ELEVATOR_FRONT_MERGE:
2727 BUG_ON(!rq_mergeable(req));
2728
2729 if (!q->front_merge_fn(q, req, bio))
2730 break;
2731
2732 bio->bi_next = req->bio;
2733 req->bio = bio;
2734
2735 /*
2736 * may not be valid. if the low level driver said
2737 * it didn't need a bounce buffer then it better
2738 * not touch req->buffer either...
2739 */
2740 req->buffer = bio_data(bio);
2741 req->current_nr_sectors = cur_nr_sectors;
2742 req->hard_cur_sectors = cur_nr_sectors;
2743 req->sector = req->hard_sector = sector;
2744 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2745 req->ioprio = ioprio_best(req->ioprio, prio);
2746 drive_stat_acct(req, nr_sectors, 0);
2747 if (!attempt_front_merge(q, req))
2748 elv_merged_request(q, req);
2749 goto out;
2750
2751 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2752 default:
2753 ;
2754 }
2755
2756 get_rq:
2757 /*
2758 * Grab a free request. This is might sleep but can not fail.
2759 * Returns with the queue unlocked.
2760 */
2761 req = get_request_wait(q, rw, bio);
2762
2763 /*
2764 * After dropping the lock and possibly sleeping here, our request
2765 * may now be mergeable after it had proven unmergeable (above).
2766 * We don't worry about that case for efficiency. It won't happen
2767 * often, and the elevators are able to handle it.
2768 */
2769
2770 req->flags |= REQ_CMD;
2771
2772 /*
2773 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2774 */
2775 if (bio_rw_ahead(bio) || bio_failfast(bio))
2776 req->flags |= REQ_FAILFAST;
2777
2778 /*
2779 * REQ_BARRIER implies no merging, but lets make it explicit
2780 */
2781 if (unlikely(barrier))
2782 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2783
2784 req->errors = 0;
2785 req->hard_sector = req->sector = sector;
2786 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2787 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2788 req->nr_phys_segments = bio_phys_segments(q, bio);
2789 req->nr_hw_segments = bio_hw_segments(q, bio);
2790 req->buffer = bio_data(bio); /* see ->buffer comment above */
2791 req->waiting = NULL;
2792 req->bio = req->biotail = bio;
2793 req->ioprio = prio;
2794 req->rq_disk = bio->bi_bdev->bd_disk;
2795 req->start_time = jiffies;
2796
2797 spin_lock_irq(q->queue_lock);
2798 if (elv_queue_empty(q))
2799 blk_plug_device(q);
2800 add_request(q, req);
2801 out:
2802 if (sync)
2803 __generic_unplug_device(q);
2804
2805 spin_unlock_irq(q->queue_lock);
2806 return 0;
2807
2808 end_io:
2809 bio_endio(bio, nr_sectors << 9, err);
2810 return 0;
2811 }
2812
2813 /*
2814 * If bio->bi_dev is a partition, remap the location
2815 */
2816 static inline void blk_partition_remap(struct bio *bio)
2817 {
2818 struct block_device *bdev = bio->bi_bdev;
2819
2820 if (bdev != bdev->bd_contains) {
2821 struct hd_struct *p = bdev->bd_part;
2822
2823 switch (bio_data_dir(bio)) {
2824 case READ:
2825 p->read_sectors += bio_sectors(bio);
2826 p->reads++;
2827 break;
2828 case WRITE:
2829 p->write_sectors += bio_sectors(bio);
2830 p->writes++;
2831 break;
2832 }
2833 bio->bi_sector += p->start_sect;
2834 bio->bi_bdev = bdev->bd_contains;
2835 }
2836 }
2837
2838 void blk_finish_queue_drain(request_queue_t *q)
2839 {
2840 struct request_list *rl = &q->rq;
2841 struct request *rq;
2842 int requeued = 0;
2843
2844 spin_lock_irq(q->queue_lock);
2845 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2846
2847 while (!list_empty(&q->drain_list)) {
2848 rq = list_entry_rq(q->drain_list.next);
2849
2850 list_del_init(&rq->queuelist);
2851 elv_requeue_request(q, rq);
2852 requeued++;
2853 }
2854
2855 if (requeued)
2856 q->request_fn(q);
2857
2858 spin_unlock_irq(q->queue_lock);
2859
2860 wake_up(&rl->wait[0]);
2861 wake_up(&rl->wait[1]);
2862 wake_up(&rl->drain);
2863 }
2864
2865 static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2866 {
2867 int wait = rl->count[READ] + rl->count[WRITE];
2868
2869 if (dispatch)
2870 wait += !list_empty(&q->queue_head);
2871
2872 return wait;
2873 }
2874
2875 /*
2876 * We rely on the fact that only requests allocated through blk_alloc_request()
2877 * have io scheduler private data structures associated with them. Any other
2878 * type of request (allocated on stack or through kmalloc()) should not go
2879 * to the io scheduler core, but be attached to the queue head instead.
2880 */
2881 void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2882 {
2883 struct request_list *rl = &q->rq;
2884 DEFINE_WAIT(wait);
2885
2886 spin_lock_irq(q->queue_lock);
2887 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2888
2889 while (wait_drain(q, rl, wait_dispatch)) {
2890 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2891
2892 if (wait_drain(q, rl, wait_dispatch)) {
2893 __generic_unplug_device(q);
2894 spin_unlock_irq(q->queue_lock);
2895 io_schedule();
2896 spin_lock_irq(q->queue_lock);
2897 }
2898
2899 finish_wait(&rl->drain, &wait);
2900 }
2901
2902 spin_unlock_irq(q->queue_lock);
2903 }
2904
2905 /*
2906 * block waiting for the io scheduler being started again.
2907 */
2908 static inline void block_wait_queue_running(request_queue_t *q)
2909 {
2910 DEFINE_WAIT(wait);
2911
2912 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
2913 struct request_list *rl = &q->rq;
2914
2915 prepare_to_wait_exclusive(&rl->drain, &wait,
2916 TASK_UNINTERRUPTIBLE);
2917
2918 /*
2919 * re-check the condition. avoids using prepare_to_wait()
2920 * in the fast path (queue is running)
2921 */
2922 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2923 io_schedule();
2924
2925 finish_wait(&rl->drain, &wait);
2926 }
2927 }
2928
2929 static void handle_bad_sector(struct bio *bio)
2930 {
2931 char b[BDEVNAME_SIZE];
2932
2933 printk(KERN_INFO "attempt to access beyond end of device\n");
2934 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2935 bdevname(bio->bi_bdev, b),
2936 bio->bi_rw,
2937 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2938 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2939
2940 set_bit(BIO_EOF, &bio->bi_flags);
2941 }
2942
2943 /**
2944 * generic_make_request: hand a buffer to its device driver for I/O
2945 * @bio: The bio describing the location in memory and on the device.
2946 *
2947 * generic_make_request() is used to make I/O requests of block
2948 * devices. It is passed a &struct bio, which describes the I/O that needs
2949 * to be done.
2950 *
2951 * generic_make_request() does not return any status. The
2952 * success/failure status of the request, along with notification of
2953 * completion, is delivered asynchronously through the bio->bi_end_io
2954 * function described (one day) else where.
2955 *
2956 * The caller of generic_make_request must make sure that bi_io_vec
2957 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2958 * set to describe the device address, and the
2959 * bi_end_io and optionally bi_private are set to describe how
2960 * completion notification should be signaled.
2961 *
2962 * generic_make_request and the drivers it calls may use bi_next if this
2963 * bio happens to be merged with someone else, and may change bi_dev and
2964 * bi_sector for remaps as it sees fit. So the values of these fields
2965 * should NOT be depended on after the call to generic_make_request.
2966 */
2967 void generic_make_request(struct bio *bio)
2968 {
2969 request_queue_t *q;
2970 sector_t maxsector;
2971 int ret, nr_sectors = bio_sectors(bio);
2972
2973 might_sleep();
2974 /* Test device or partition size, when known. */
2975 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2976 if (maxsector) {
2977 sector_t sector = bio->bi_sector;
2978
2979 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2980 /*
2981 * This may well happen - the kernel calls bread()
2982 * without checking the size of the device, e.g., when
2983 * mounting a device.
2984 */
2985 handle_bad_sector(bio);
2986 goto end_io;
2987 }
2988 }
2989
2990 /*
2991 * Resolve the mapping until finished. (drivers are
2992 * still free to implement/resolve their own stacking
2993 * by explicitly returning 0)
2994 *
2995 * NOTE: we don't repeat the blk_size check for each new device.
2996 * Stacking drivers are expected to know what they are doing.
2997 */
2998 do {
2999 char b[BDEVNAME_SIZE];
3000
3001 q = bdev_get_queue(bio->bi_bdev);
3002 if (!q) {
3003 printk(KERN_ERR
3004 "generic_make_request: Trying to access "
3005 "nonexistent block-device %s (%Lu)\n",
3006 bdevname(bio->bi_bdev, b),
3007 (long long) bio->bi_sector);
3008 end_io:
3009 bio_endio(bio, bio->bi_size, -EIO);
3010 break;
3011 }
3012
3013 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3014 printk("bio too big device %s (%u > %u)\n",
3015 bdevname(bio->bi_bdev, b),
3016 bio_sectors(bio),
3017 q->max_hw_sectors);
3018 goto end_io;
3019 }
3020
3021 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3022 goto end_io;
3023
3024 block_wait_queue_running(q);
3025
3026 /*
3027 * If this device has partitions, remap block n
3028 * of partition p to block n+start(p) of the disk.
3029 */
3030 blk_partition_remap(bio);
3031
3032 ret = q->make_request_fn(q, bio);
3033 } while (ret);
3034 }
3035
3036 EXPORT_SYMBOL(generic_make_request);
3037
3038 /**
3039 * submit_bio: submit a bio to the block device layer for I/O
3040 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3041 * @bio: The &struct bio which describes the I/O
3042 *
3043 * submit_bio() is very similar in purpose to generic_make_request(), and
3044 * uses that function to do most of the work. Both are fairly rough
3045 * interfaces, @bio must be presetup and ready for I/O.
3046 *
3047 */
3048 void submit_bio(int rw, struct bio *bio)
3049 {
3050 int count = bio_sectors(bio);
3051
3052 BIO_BUG_ON(!bio->bi_size);
3053 BIO_BUG_ON(!bio->bi_io_vec);
3054 bio->bi_rw |= rw;
3055 if (rw & WRITE)
3056 mod_page_state(pgpgout, count);
3057 else
3058 mod_page_state(pgpgin, count);
3059
3060 if (unlikely(block_dump)) {
3061 char b[BDEVNAME_SIZE];
3062 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3063 current->comm, current->pid,
3064 (rw & WRITE) ? "WRITE" : "READ",
3065 (unsigned long long)bio->bi_sector,
3066 bdevname(bio->bi_bdev,b));
3067 }
3068
3069 generic_make_request(bio);
3070 }
3071
3072 EXPORT_SYMBOL(submit_bio);
3073
3074 static void blk_recalc_rq_segments(struct request *rq)
3075 {
3076 struct bio *bio, *prevbio = NULL;
3077 int nr_phys_segs, nr_hw_segs;
3078 unsigned int phys_size, hw_size;
3079 request_queue_t *q = rq->q;
3080
3081 if (!rq->bio)
3082 return;
3083
3084 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3085 rq_for_each_bio(bio, rq) {
3086 /* Force bio hw/phys segs to be recalculated. */
3087 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3088
3089 nr_phys_segs += bio_phys_segments(q, bio);
3090 nr_hw_segs += bio_hw_segments(q, bio);
3091 if (prevbio) {
3092 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3093 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3094
3095 if (blk_phys_contig_segment(q, prevbio, bio) &&
3096 pseg <= q->max_segment_size) {
3097 nr_phys_segs--;
3098 phys_size += prevbio->bi_size + bio->bi_size;
3099 } else
3100 phys_size = 0;
3101
3102 if (blk_hw_contig_segment(q, prevbio, bio) &&
3103 hseg <= q->max_segment_size) {
3104 nr_hw_segs--;
3105 hw_size += prevbio->bi_size + bio->bi_size;
3106 } else
3107 hw_size = 0;
3108 }
3109 prevbio = bio;
3110 }
3111
3112 rq->nr_phys_segments = nr_phys_segs;
3113 rq->nr_hw_segments = nr_hw_segs;
3114 }
3115
3116 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3117 {
3118 if (blk_fs_request(rq)) {
3119 rq->hard_sector += nsect;
3120 rq->hard_nr_sectors -= nsect;
3121
3122 /*
3123 * Move the I/O submission pointers ahead if required.
3124 */
3125 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3126 (rq->sector <= rq->hard_sector)) {
3127 rq->sector = rq->hard_sector;
3128 rq->nr_sectors = rq->hard_nr_sectors;
3129 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3130 rq->current_nr_sectors = rq->hard_cur_sectors;
3131 rq->buffer = bio_data(rq->bio);
3132 }
3133
3134 /*
3135 * if total number of sectors is less than the first segment
3136 * size, something has gone terribly wrong
3137 */
3138 if (rq->nr_sectors < rq->current_nr_sectors) {
3139 printk("blk: request botched\n");
3140 rq->nr_sectors = rq->current_nr_sectors;
3141 }
3142 }
3143 }
3144
3145 static int __end_that_request_first(struct request *req, int uptodate,
3146 int nr_bytes)
3147 {
3148 int total_bytes, bio_nbytes, error, next_idx = 0;
3149 struct bio *bio;
3150
3151 /*
3152 * extend uptodate bool to allow < 0 value to be direct io error
3153 */
3154 error = 0;
3155 if (end_io_error(uptodate))
3156 error = !uptodate ? -EIO : uptodate;
3157
3158 /*
3159 * for a REQ_BLOCK_PC request, we want to carry any eventual
3160 * sense key with us all the way through
3161 */
3162 if (!blk_pc_request(req))
3163 req->errors = 0;
3164
3165 if (!uptodate) {
3166 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3167 printk("end_request: I/O error, dev %s, sector %llu\n",
3168 req->rq_disk ? req->rq_disk->disk_name : "?",
3169 (unsigned long long)req->sector);
3170 }
3171
3172 total_bytes = bio_nbytes = 0;
3173 while ((bio = req->bio) != NULL) {
3174 int nbytes;
3175
3176 if (nr_bytes >= bio->bi_size) {
3177 req->bio = bio->bi_next;
3178 nbytes = bio->bi_size;
3179 bio_endio(bio, nbytes, error);
3180 next_idx = 0;
3181 bio_nbytes = 0;
3182 } else {
3183 int idx = bio->bi_idx + next_idx;
3184
3185 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3186 blk_dump_rq_flags(req, "__end_that");
3187 printk("%s: bio idx %d >= vcnt %d\n",
3188 __FUNCTION__,
3189 bio->bi_idx, bio->bi_vcnt);
3190 break;
3191 }
3192
3193 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3194 BIO_BUG_ON(nbytes > bio->bi_size);
3195
3196 /*
3197 * not a complete bvec done
3198 */
3199 if (unlikely(nbytes > nr_bytes)) {
3200 bio_nbytes += nr_bytes;
3201 total_bytes += nr_bytes;
3202 break;
3203 }
3204
3205 /*
3206 * advance to the next vector
3207 */
3208 next_idx++;
3209 bio_nbytes += nbytes;
3210 }
3211
3212 total_bytes += nbytes;
3213 nr_bytes -= nbytes;
3214
3215 if ((bio = req->bio)) {
3216 /*
3217 * end more in this run, or just return 'not-done'
3218 */
3219 if (unlikely(nr_bytes <= 0))
3220 break;
3221 }
3222 }
3223
3224 /*
3225 * completely done
3226 */
3227 if (!req->bio)
3228 return 0;
3229
3230 /*
3231 * if the request wasn't completed, update state
3232 */
3233 if (bio_nbytes) {
3234 bio_endio(bio, bio_nbytes, error);
3235 bio->bi_idx += next_idx;
3236 bio_iovec(bio)->bv_offset += nr_bytes;
3237 bio_iovec(bio)->bv_len -= nr_bytes;
3238 }
3239
3240 blk_recalc_rq_sectors(req, total_bytes >> 9);
3241 blk_recalc_rq_segments(req);
3242 return 1;
3243 }
3244
3245 /**
3246 * end_that_request_first - end I/O on a request
3247 * @req: the request being processed
3248 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3249 * @nr_sectors: number of sectors to end I/O on
3250 *
3251 * Description:
3252 * Ends I/O on a number of sectors attached to @req, and sets it up
3253 * for the next range of segments (if any) in the cluster.
3254 *
3255 * Return:
3256 * 0 - we are done with this request, call end_that_request_last()
3257 * 1 - still buffers pending for this request
3258 **/
3259 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3260 {
3261 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3262 }
3263
3264 EXPORT_SYMBOL(end_that_request_first);
3265
3266 /**
3267 * end_that_request_chunk - end I/O on a request
3268 * @req: the request being processed
3269 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3270 * @nr_bytes: number of bytes to complete
3271 *
3272 * Description:
3273 * Ends I/O on a number of bytes attached to @req, and sets it up
3274 * for the next range of segments (if any). Like end_that_request_first(),
3275 * but deals with bytes instead of sectors.
3276 *
3277 * Return:
3278 * 0 - we are done with this request, call end_that_request_last()
3279 * 1 - still buffers pending for this request
3280 **/
3281 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3282 {
3283 return __end_that_request_first(req, uptodate, nr_bytes);
3284 }
3285
3286 EXPORT_SYMBOL(end_that_request_chunk);
3287
3288 /*
3289 * queue lock must be held
3290 */
3291 void end_that_request_last(struct request *req)
3292 {
3293 struct gendisk *disk = req->rq_disk;
3294
3295 if (unlikely(laptop_mode) && blk_fs_request(req))
3296 laptop_io_completion();
3297
3298 if (disk && blk_fs_request(req)) {
3299 unsigned long duration = jiffies - req->start_time;
3300 switch (rq_data_dir(req)) {
3301 case WRITE:
3302 __disk_stat_inc(disk, writes);
3303 __disk_stat_add(disk, write_ticks, duration);
3304 break;
3305 case READ:
3306 __disk_stat_inc(disk, reads);
3307 __disk_stat_add(disk, read_ticks, duration);
3308 break;
3309 }
3310 disk_round_stats(disk);
3311 disk->in_flight--;
3312 }
3313 if (req->end_io)
3314 req->end_io(req);
3315 else
3316 __blk_put_request(req->q, req);
3317 }
3318
3319 EXPORT_SYMBOL(end_that_request_last);
3320
3321 void end_request(struct request *req, int uptodate)
3322 {
3323 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3324 add_disk_randomness(req->rq_disk);
3325 blkdev_dequeue_request(req);
3326 end_that_request_last(req);
3327 }
3328 }
3329
3330 EXPORT_SYMBOL(end_request);
3331
3332 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3333 {
3334 /* first three bits are identical in rq->flags and bio->bi_rw */
3335 rq->flags |= (bio->bi_rw & 7);
3336
3337 rq->nr_phys_segments = bio_phys_segments(q, bio);
3338 rq->nr_hw_segments = bio_hw_segments(q, bio);
3339 rq->current_nr_sectors = bio_cur_sectors(bio);
3340 rq->hard_cur_sectors = rq->current_nr_sectors;
3341 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3342 rq->buffer = bio_data(bio);
3343
3344 rq->bio = rq->biotail = bio;
3345 }
3346
3347 EXPORT_SYMBOL(blk_rq_bio_prep);
3348
3349 int kblockd_schedule_work(struct work_struct *work)
3350 {
3351 return queue_work(kblockd_workqueue, work);
3352 }
3353
3354 EXPORT_SYMBOL(kblockd_schedule_work);
3355
3356 void kblockd_flush(void)
3357 {
3358 flush_workqueue(kblockd_workqueue);
3359 }
3360 EXPORT_SYMBOL(kblockd_flush);
3361
3362 int __init blk_dev_init(void)
3363 {
3364 kblockd_workqueue = create_workqueue("kblockd");
3365 if (!kblockd_workqueue)
3366 panic("Failed to create kblockd\n");
3367
3368 request_cachep = kmem_cache_create("blkdev_requests",
3369 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3370
3371 requestq_cachep = kmem_cache_create("blkdev_queue",
3372 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3373
3374 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3375 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3376
3377 blk_max_low_pfn = max_low_pfn;
3378 blk_max_pfn = max_pfn;
3379
3380 return 0;
3381 }
3382
3383 /*
3384 * IO Context helper functions
3385 */
3386 void put_io_context(struct io_context *ioc)
3387 {
3388 if (ioc == NULL)
3389 return;
3390
3391 BUG_ON(atomic_read(&ioc->refcount) == 0);
3392
3393 if (atomic_dec_and_test(&ioc->refcount)) {
3394 if (ioc->aic && ioc->aic->dtor)
3395 ioc->aic->dtor(ioc->aic);
3396 if (ioc->cic && ioc->cic->dtor)
3397 ioc->cic->dtor(ioc->cic);
3398
3399 kmem_cache_free(iocontext_cachep, ioc);
3400 }
3401 }
3402 EXPORT_SYMBOL(put_io_context);
3403
3404 /* Called by the exitting task */
3405 void exit_io_context(void)
3406 {
3407 unsigned long flags;
3408 struct io_context *ioc;
3409
3410 local_irq_save(flags);
3411 task_lock(current);
3412 ioc = current->io_context;
3413 current->io_context = NULL;
3414 ioc->task = NULL;
3415 task_unlock(current);
3416 local_irq_restore(flags);
3417
3418 if (ioc->aic && ioc->aic->exit)
3419 ioc->aic->exit(ioc->aic);
3420 if (ioc->cic && ioc->cic->exit)
3421 ioc->cic->exit(ioc->cic);
3422
3423 put_io_context(ioc);
3424 }
3425
3426 /*
3427 * If the current task has no IO context then create one and initialise it.
3428 * Otherwise, return its existing IO context.
3429 *
3430 * This returned IO context doesn't have a specifically elevated refcount,
3431 * but since the current task itself holds a reference, the context can be
3432 * used in general code, so long as it stays within `current` context.
3433 */
3434 struct io_context *current_io_context(int gfp_flags)
3435 {
3436 struct task_struct *tsk = current;
3437 struct io_context *ret;
3438
3439 ret = tsk->io_context;
3440 if (likely(ret))
3441 return ret;
3442
3443 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3444 if (ret) {
3445 atomic_set(&ret->refcount, 1);
3446 ret->task = current;
3447 ret->set_ioprio = NULL;
3448 ret->last_waited = jiffies; /* doesn't matter... */
3449 ret->nr_batch_requests = 0; /* because this is 0 */
3450 ret->aic = NULL;
3451 ret->cic = NULL;
3452 tsk->io_context = ret;
3453 }
3454
3455 return ret;
3456 }
3457 EXPORT_SYMBOL(current_io_context);
3458
3459 /*
3460 * If the current task has no IO context then create one and initialise it.
3461 * If it does have a context, take a ref on it.
3462 *
3463 * This is always called in the context of the task which submitted the I/O.
3464 */
3465 struct io_context *get_io_context(int gfp_flags)
3466 {
3467 struct io_context *ret;
3468 ret = current_io_context(gfp_flags);
3469 if (likely(ret))
3470 atomic_inc(&ret->refcount);
3471 return ret;
3472 }
3473 EXPORT_SYMBOL(get_io_context);
3474
3475 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3476 {
3477 struct io_context *src = *psrc;
3478 struct io_context *dst = *pdst;
3479
3480 if (src) {
3481 BUG_ON(atomic_read(&src->refcount) == 0);
3482 atomic_inc(&src->refcount);
3483 put_io_context(dst);
3484 *pdst = src;
3485 }
3486 }
3487 EXPORT_SYMBOL(copy_io_context);
3488
3489 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3490 {
3491 struct io_context *temp;
3492 temp = *ioc1;
3493 *ioc1 = *ioc2;
3494 *ioc2 = temp;
3495 }
3496 EXPORT_SYMBOL(swap_io_context);
3497
3498 /*
3499 * sysfs parts below
3500 */
3501 struct queue_sysfs_entry {
3502 struct attribute attr;
3503 ssize_t (*show)(struct request_queue *, char *);
3504 ssize_t (*store)(struct request_queue *, const char *, size_t);
3505 };
3506
3507 static ssize_t
3508 queue_var_show(unsigned int var, char *page)
3509 {
3510 return sprintf(page, "%d\n", var);
3511 }
3512
3513 static ssize_t
3514 queue_var_store(unsigned long *var, const char *page, size_t count)
3515 {
3516 char *p = (char *) page;
3517
3518 *var = simple_strtoul(p, &p, 10);
3519 return count;
3520 }
3521
3522 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3523 {
3524 return queue_var_show(q->nr_requests, (page));
3525 }
3526
3527 static ssize_t
3528 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3529 {
3530 struct request_list *rl = &q->rq;
3531
3532 int ret = queue_var_store(&q->nr_requests, page, count);
3533 if (q->nr_requests < BLKDEV_MIN_RQ)
3534 q->nr_requests = BLKDEV_MIN_RQ;
3535 blk_queue_congestion_threshold(q);
3536
3537 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3538 set_queue_congested(q, READ);
3539 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3540 clear_queue_congested(q, READ);
3541
3542 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3543 set_queue_congested(q, WRITE);
3544 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3545 clear_queue_congested(q, WRITE);
3546
3547 if (rl->count[READ] >= q->nr_requests) {
3548 blk_set_queue_full(q, READ);
3549 } else if (rl->count[READ]+1 <= q->nr_requests) {
3550 blk_clear_queue_full(q, READ);
3551 wake_up(&rl->wait[READ]);
3552 }
3553
3554 if (rl->count[WRITE] >= q->nr_requests) {
3555 blk_set_queue_full(q, WRITE);
3556 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3557 blk_clear_queue_full(q, WRITE);
3558 wake_up(&rl->wait[WRITE]);
3559 }
3560 return ret;
3561 }
3562
3563 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3564 {
3565 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3566
3567 return queue_var_show(ra_kb, (page));
3568 }
3569
3570 static ssize_t
3571 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3572 {
3573 unsigned long ra_kb;
3574 ssize_t ret = queue_var_store(&ra_kb, page, count);
3575
3576 spin_lock_irq(q->queue_lock);
3577 if (ra_kb > (q->max_sectors >> 1))
3578 ra_kb = (q->max_sectors >> 1);
3579
3580 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3581 spin_unlock_irq(q->queue_lock);
3582
3583 return ret;
3584 }
3585
3586 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3587 {
3588 int max_sectors_kb = q->max_sectors >> 1;
3589
3590 return queue_var_show(max_sectors_kb, (page));
3591 }
3592
3593 static ssize_t
3594 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3595 {
3596 unsigned long max_sectors_kb,
3597 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3598 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3599 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3600 int ra_kb;
3601
3602 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3603 return -EINVAL;
3604 /*
3605 * Take the queue lock to update the readahead and max_sectors
3606 * values synchronously:
3607 */
3608 spin_lock_irq(q->queue_lock);
3609 /*
3610 * Trim readahead window as well, if necessary:
3611 */
3612 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3613 if (ra_kb > max_sectors_kb)
3614 q->backing_dev_info.ra_pages =
3615 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3616
3617 q->max_sectors = max_sectors_kb << 1;
3618 spin_unlock_irq(q->queue_lock);
3619
3620 return ret;
3621 }
3622
3623 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3624 {
3625 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3626
3627 return queue_var_show(max_hw_sectors_kb, (page));
3628 }
3629
3630
3631 static struct queue_sysfs_entry queue_requests_entry = {
3632 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3633 .show = queue_requests_show,
3634 .store = queue_requests_store,
3635 };
3636
3637 static struct queue_sysfs_entry queue_ra_entry = {
3638 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3639 .show = queue_ra_show,
3640 .store = queue_ra_store,
3641 };
3642
3643 static struct queue_sysfs_entry queue_max_sectors_entry = {
3644 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3645 .show = queue_max_sectors_show,
3646 .store = queue_max_sectors_store,
3647 };
3648
3649 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3650 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3651 .show = queue_max_hw_sectors_show,
3652 };
3653
3654 static struct queue_sysfs_entry queue_iosched_entry = {
3655 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3656 .show = elv_iosched_show,
3657 .store = elv_iosched_store,
3658 };
3659
3660 static struct attribute *default_attrs[] = {
3661 &queue_requests_entry.attr,
3662 &queue_ra_entry.attr,
3663 &queue_max_hw_sectors_entry.attr,
3664 &queue_max_sectors_entry.attr,
3665 &queue_iosched_entry.attr,
3666 NULL,
3667 };
3668
3669 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3670
3671 static ssize_t
3672 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3673 {
3674 struct queue_sysfs_entry *entry = to_queue(attr);
3675 struct request_queue *q;
3676
3677 q = container_of(kobj, struct request_queue, kobj);
3678 if (!entry->show)
3679 return -EIO;
3680
3681 return entry->show(q, page);
3682 }
3683
3684 static ssize_t
3685 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3686 const char *page, size_t length)
3687 {
3688 struct queue_sysfs_entry *entry = to_queue(attr);
3689 struct request_queue *q;
3690
3691 q = container_of(kobj, struct request_queue, kobj);
3692 if (!entry->store)
3693 return -EIO;
3694
3695 return entry->store(q, page, length);
3696 }
3697
3698 static struct sysfs_ops queue_sysfs_ops = {
3699 .show = queue_attr_show,
3700 .store = queue_attr_store,
3701 };
3702
3703 static struct kobj_type queue_ktype = {
3704 .sysfs_ops = &queue_sysfs_ops,
3705 .default_attrs = default_attrs,
3706 };
3707
3708 int blk_register_queue(struct gendisk *disk)
3709 {
3710 int ret;
3711
3712 request_queue_t *q = disk->queue;
3713
3714 if (!q || !q->request_fn)
3715 return -ENXIO;
3716
3717 q->kobj.parent = kobject_get(&disk->kobj);
3718 if (!q->kobj.parent)
3719 return -EBUSY;
3720
3721 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3722 q->kobj.ktype = &queue_ktype;
3723
3724 ret = kobject_register(&q->kobj);
3725 if (ret < 0)
3726 return ret;
3727
3728 ret = elv_register_queue(q);
3729 if (ret) {
3730 kobject_unregister(&q->kobj);
3731 return ret;
3732 }
3733
3734 return 0;
3735 }
3736
3737 void blk_unregister_queue(struct gendisk *disk)
3738 {
3739 request_queue_t *q = disk->queue;
3740
3741 if (q && q->request_fn) {
3742 elv_unregister_queue(q);
3743
3744 kobject_unregister(&q->kobj);
3745 kobject_put(&disk->kobj);
3746 }
3747 }