]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/block/loop.c
loop: Move loop_set_status_from_info() and friends up
[mirror_ubuntu-hirsute-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81
82 #include "loop.h"
83
84 #include <linux/uaccess.h>
85
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88
89 static int max_part;
90 static int part_shift;
91
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
96 {
97 char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 char *in, *out, *key;
100 int i, keysize;
101
102 if (cmd == READ) {
103 in = raw_buf;
104 out = loop_buf;
105 } else {
106 in = loop_buf;
107 out = raw_buf;
108 }
109
110 key = lo->lo_encrypt_key;
111 keysize = lo->lo_encrypt_key_size;
112 for (i = 0; i < size; i++)
113 *out++ = *in++ ^ key[(i & 511) % keysize];
114
115 kunmap_atomic(loop_buf);
116 kunmap_atomic(raw_buf);
117 cond_resched();
118 return 0;
119 }
120
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 if (unlikely(info->lo_encrypt_key_size <= 0))
124 return -EINVAL;
125 return 0;
126 }
127
128 static struct loop_func_table none_funcs = {
129 .number = LO_CRYPT_NONE,
130 };
131
132 static struct loop_func_table xor_funcs = {
133 .number = LO_CRYPT_XOR,
134 .transfer = transfer_xor,
135 .init = xor_init
136 };
137
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 &none_funcs,
141 &xor_funcs
142 };
143
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 loff_t loopsize;
147
148 /* Compute loopsize in bytes */
149 loopsize = i_size_read(file->f_mapping->host);
150 if (offset > 0)
151 loopsize -= offset;
152 /* offset is beyond i_size, weird but possible */
153 if (loopsize < 0)
154 return 0;
155
156 if (sizelimit > 0 && sizelimit < loopsize)
157 loopsize = sizelimit;
158 /*
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
161 */
162 return loopsize >> 9;
163 }
164
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 struct file *file = lo->lo_backing_file;
173 struct address_space *mapping = file->f_mapping;
174 struct inode *inode = mapping->host;
175 unsigned short sb_bsize = 0;
176 unsigned dio_align = 0;
177 bool use_dio;
178
179 if (inode->i_sb->s_bdev) {
180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 dio_align = sb_bsize - 1;
182 }
183
184 /*
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
189 *
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
193 */
194 if (dio) {
195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 !(lo->lo_offset & dio_align) &&
197 mapping->a_ops->direct_IO &&
198 !lo->transfer)
199 use_dio = true;
200 else
201 use_dio = false;
202 } else {
203 use_dio = false;
204 }
205
206 if (lo->use_dio == use_dio)
207 return;
208
209 /* flush dirty pages before changing direct IO */
210 vfs_fsync(file, 0);
211
212 /*
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
216 */
217 if (lo->lo_state == Lo_bound)
218 blk_mq_freeze_queue(lo->lo_queue);
219 lo->use_dio = use_dio;
220 if (use_dio) {
221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 } else {
224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 }
227 if (lo->lo_state == Lo_bound)
228 blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230
231 /**
232 * loop_set_size() - sets device size and notifies userspace
233 * @lo: struct loop_device to set the size for
234 * @size: new size of the loop device
235 *
236 * Callers must validate that the size passed into this function fits into
237 * a sector_t, eg using loop_validate_size()
238 */
239 static void loop_set_size(struct loop_device *lo, loff_t size)
240 {
241 struct block_device *bdev = lo->lo_device;
242
243 bd_set_size(bdev, size << SECTOR_SHIFT);
244
245 set_capacity_revalidate_and_notify(lo->lo_disk, size, false);
246 }
247
248 static inline int
249 lo_do_transfer(struct loop_device *lo, int cmd,
250 struct page *rpage, unsigned roffs,
251 struct page *lpage, unsigned loffs,
252 int size, sector_t rblock)
253 {
254 int ret;
255
256 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
257 if (likely(!ret))
258 return 0;
259
260 printk_ratelimited(KERN_ERR
261 "loop: Transfer error at byte offset %llu, length %i.\n",
262 (unsigned long long)rblock << 9, size);
263 return ret;
264 }
265
266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
267 {
268 struct iov_iter i;
269 ssize_t bw;
270
271 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
272
273 file_start_write(file);
274 bw = vfs_iter_write(file, &i, ppos, 0);
275 file_end_write(file);
276
277 if (likely(bw == bvec->bv_len))
278 return 0;
279
280 printk_ratelimited(KERN_ERR
281 "loop: Write error at byte offset %llu, length %i.\n",
282 (unsigned long long)*ppos, bvec->bv_len);
283 if (bw >= 0)
284 bw = -EIO;
285 return bw;
286 }
287
288 static int lo_write_simple(struct loop_device *lo, struct request *rq,
289 loff_t pos)
290 {
291 struct bio_vec bvec;
292 struct req_iterator iter;
293 int ret = 0;
294
295 rq_for_each_segment(bvec, rq, iter) {
296 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
297 if (ret < 0)
298 break;
299 cond_resched();
300 }
301
302 return ret;
303 }
304
305 /*
306 * This is the slow, transforming version that needs to double buffer the
307 * data as it cannot do the transformations in place without having direct
308 * access to the destination pages of the backing file.
309 */
310 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
311 loff_t pos)
312 {
313 struct bio_vec bvec, b;
314 struct req_iterator iter;
315 struct page *page;
316 int ret = 0;
317
318 page = alloc_page(GFP_NOIO);
319 if (unlikely(!page))
320 return -ENOMEM;
321
322 rq_for_each_segment(bvec, rq, iter) {
323 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
324 bvec.bv_offset, bvec.bv_len, pos >> 9);
325 if (unlikely(ret))
326 break;
327
328 b.bv_page = page;
329 b.bv_offset = 0;
330 b.bv_len = bvec.bv_len;
331 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
332 if (ret < 0)
333 break;
334 }
335
336 __free_page(page);
337 return ret;
338 }
339
340 static int lo_read_simple(struct loop_device *lo, struct request *rq,
341 loff_t pos)
342 {
343 struct bio_vec bvec;
344 struct req_iterator iter;
345 struct iov_iter i;
346 ssize_t len;
347
348 rq_for_each_segment(bvec, rq, iter) {
349 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
350 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
351 if (len < 0)
352 return len;
353
354 flush_dcache_page(bvec.bv_page);
355
356 if (len != bvec.bv_len) {
357 struct bio *bio;
358
359 __rq_for_each_bio(bio, rq)
360 zero_fill_bio(bio);
361 break;
362 }
363 cond_resched();
364 }
365
366 return 0;
367 }
368
369 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
370 loff_t pos)
371 {
372 struct bio_vec bvec, b;
373 struct req_iterator iter;
374 struct iov_iter i;
375 struct page *page;
376 ssize_t len;
377 int ret = 0;
378
379 page = alloc_page(GFP_NOIO);
380 if (unlikely(!page))
381 return -ENOMEM;
382
383 rq_for_each_segment(bvec, rq, iter) {
384 loff_t offset = pos;
385
386 b.bv_page = page;
387 b.bv_offset = 0;
388 b.bv_len = bvec.bv_len;
389
390 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
391 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
392 if (len < 0) {
393 ret = len;
394 goto out_free_page;
395 }
396
397 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
398 bvec.bv_offset, len, offset >> 9);
399 if (ret)
400 goto out_free_page;
401
402 flush_dcache_page(bvec.bv_page);
403
404 if (len != bvec.bv_len) {
405 struct bio *bio;
406
407 __rq_for_each_bio(bio, rq)
408 zero_fill_bio(bio);
409 break;
410 }
411 }
412
413 ret = 0;
414 out_free_page:
415 __free_page(page);
416 return ret;
417 }
418
419 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
420 int mode)
421 {
422 /*
423 * We use fallocate to manipulate the space mappings used by the image
424 * a.k.a. discard/zerorange. However we do not support this if
425 * encryption is enabled, because it may give an attacker useful
426 * information.
427 */
428 struct file *file = lo->lo_backing_file;
429 struct request_queue *q = lo->lo_queue;
430 int ret;
431
432 mode |= FALLOC_FL_KEEP_SIZE;
433
434 if (!blk_queue_discard(q)) {
435 ret = -EOPNOTSUPP;
436 goto out;
437 }
438
439 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
440 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
441 ret = -EIO;
442 out:
443 return ret;
444 }
445
446 static int lo_req_flush(struct loop_device *lo, struct request *rq)
447 {
448 struct file *file = lo->lo_backing_file;
449 int ret = vfs_fsync(file, 0);
450 if (unlikely(ret && ret != -EINVAL))
451 ret = -EIO;
452
453 return ret;
454 }
455
456 static void lo_complete_rq(struct request *rq)
457 {
458 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
459 blk_status_t ret = BLK_STS_OK;
460
461 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
462 req_op(rq) != REQ_OP_READ) {
463 if (cmd->ret < 0)
464 ret = errno_to_blk_status(cmd->ret);
465 goto end_io;
466 }
467
468 /*
469 * Short READ - if we got some data, advance our request and
470 * retry it. If we got no data, end the rest with EIO.
471 */
472 if (cmd->ret) {
473 blk_update_request(rq, BLK_STS_OK, cmd->ret);
474 cmd->ret = 0;
475 blk_mq_requeue_request(rq, true);
476 } else {
477 if (cmd->use_aio) {
478 struct bio *bio = rq->bio;
479
480 while (bio) {
481 zero_fill_bio(bio);
482 bio = bio->bi_next;
483 }
484 }
485 ret = BLK_STS_IOERR;
486 end_io:
487 blk_mq_end_request(rq, ret);
488 }
489 }
490
491 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
492 {
493 struct request *rq = blk_mq_rq_from_pdu(cmd);
494
495 if (!atomic_dec_and_test(&cmd->ref))
496 return;
497 kfree(cmd->bvec);
498 cmd->bvec = NULL;
499 blk_mq_complete_request(rq);
500 }
501
502 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
503 {
504 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
505
506 if (cmd->css)
507 css_put(cmd->css);
508 cmd->ret = ret;
509 lo_rw_aio_do_completion(cmd);
510 }
511
512 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
513 loff_t pos, bool rw)
514 {
515 struct iov_iter iter;
516 struct req_iterator rq_iter;
517 struct bio_vec *bvec;
518 struct request *rq = blk_mq_rq_from_pdu(cmd);
519 struct bio *bio = rq->bio;
520 struct file *file = lo->lo_backing_file;
521 struct bio_vec tmp;
522 unsigned int offset;
523 int nr_bvec = 0;
524 int ret;
525
526 rq_for_each_bvec(tmp, rq, rq_iter)
527 nr_bvec++;
528
529 if (rq->bio != rq->biotail) {
530
531 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
532 GFP_NOIO);
533 if (!bvec)
534 return -EIO;
535 cmd->bvec = bvec;
536
537 /*
538 * The bios of the request may be started from the middle of
539 * the 'bvec' because of bio splitting, so we can't directly
540 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
541 * API will take care of all details for us.
542 */
543 rq_for_each_bvec(tmp, rq, rq_iter) {
544 *bvec = tmp;
545 bvec++;
546 }
547 bvec = cmd->bvec;
548 offset = 0;
549 } else {
550 /*
551 * Same here, this bio may be started from the middle of the
552 * 'bvec' because of bio splitting, so offset from the bvec
553 * must be passed to iov iterator
554 */
555 offset = bio->bi_iter.bi_bvec_done;
556 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
557 }
558 atomic_set(&cmd->ref, 2);
559
560 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
561 iter.iov_offset = offset;
562
563 cmd->iocb.ki_pos = pos;
564 cmd->iocb.ki_filp = file;
565 cmd->iocb.ki_complete = lo_rw_aio_complete;
566 cmd->iocb.ki_flags = IOCB_DIRECT;
567 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
568 if (cmd->css)
569 kthread_associate_blkcg(cmd->css);
570
571 if (rw == WRITE)
572 ret = call_write_iter(file, &cmd->iocb, &iter);
573 else
574 ret = call_read_iter(file, &cmd->iocb, &iter);
575
576 lo_rw_aio_do_completion(cmd);
577 kthread_associate_blkcg(NULL);
578
579 if (ret != -EIOCBQUEUED)
580 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
581 return 0;
582 }
583
584 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
585 {
586 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
587 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
588
589 /*
590 * lo_write_simple and lo_read_simple should have been covered
591 * by io submit style function like lo_rw_aio(), one blocker
592 * is that lo_read_simple() need to call flush_dcache_page after
593 * the page is written from kernel, and it isn't easy to handle
594 * this in io submit style function which submits all segments
595 * of the req at one time. And direct read IO doesn't need to
596 * run flush_dcache_page().
597 */
598 switch (req_op(rq)) {
599 case REQ_OP_FLUSH:
600 return lo_req_flush(lo, rq);
601 case REQ_OP_WRITE_ZEROES:
602 /*
603 * If the caller doesn't want deallocation, call zeroout to
604 * write zeroes the range. Otherwise, punch them out.
605 */
606 return lo_fallocate(lo, rq, pos,
607 (rq->cmd_flags & REQ_NOUNMAP) ?
608 FALLOC_FL_ZERO_RANGE :
609 FALLOC_FL_PUNCH_HOLE);
610 case REQ_OP_DISCARD:
611 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
612 case REQ_OP_WRITE:
613 if (lo->transfer)
614 return lo_write_transfer(lo, rq, pos);
615 else if (cmd->use_aio)
616 return lo_rw_aio(lo, cmd, pos, WRITE);
617 else
618 return lo_write_simple(lo, rq, pos);
619 case REQ_OP_READ:
620 if (lo->transfer)
621 return lo_read_transfer(lo, rq, pos);
622 else if (cmd->use_aio)
623 return lo_rw_aio(lo, cmd, pos, READ);
624 else
625 return lo_read_simple(lo, rq, pos);
626 default:
627 WARN_ON_ONCE(1);
628 return -EIO;
629 }
630 }
631
632 static inline void loop_update_dio(struct loop_device *lo)
633 {
634 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
635 lo->use_dio);
636 }
637
638 static void loop_reread_partitions(struct loop_device *lo,
639 struct block_device *bdev)
640 {
641 int rc;
642
643 mutex_lock(&bdev->bd_mutex);
644 rc = bdev_disk_changed(bdev, false);
645 mutex_unlock(&bdev->bd_mutex);
646 if (rc)
647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 __func__, lo->lo_number, lo->lo_file_name, rc);
649 }
650
651 static inline int is_loop_device(struct file *file)
652 {
653 struct inode *i = file->f_mapping->host;
654
655 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
656 }
657
658 static int loop_validate_file(struct file *file, struct block_device *bdev)
659 {
660 struct inode *inode = file->f_mapping->host;
661 struct file *f = file;
662
663 /* Avoid recursion */
664 while (is_loop_device(f)) {
665 struct loop_device *l;
666
667 if (f->f_mapping->host->i_bdev == bdev)
668 return -EBADF;
669
670 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
671 if (l->lo_state != Lo_bound) {
672 return -EINVAL;
673 }
674 f = l->lo_backing_file;
675 }
676 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
677 return -EINVAL;
678 return 0;
679 }
680
681 /*
682 * loop_change_fd switched the backing store of a loopback device to
683 * a new file. This is useful for operating system installers to free up
684 * the original file and in High Availability environments to switch to
685 * an alternative location for the content in case of server meltdown.
686 * This can only work if the loop device is used read-only, and if the
687 * new backing store is the same size and type as the old backing store.
688 */
689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
690 unsigned int arg)
691 {
692 struct file *file = NULL, *old_file;
693 int error;
694 bool partscan;
695
696 error = mutex_lock_killable(&loop_ctl_mutex);
697 if (error)
698 return error;
699 error = -ENXIO;
700 if (lo->lo_state != Lo_bound)
701 goto out_err;
702
703 /* the loop device has to be read-only */
704 error = -EINVAL;
705 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
706 goto out_err;
707
708 error = -EBADF;
709 file = fget(arg);
710 if (!file)
711 goto out_err;
712
713 error = loop_validate_file(file, bdev);
714 if (error)
715 goto out_err;
716
717 old_file = lo->lo_backing_file;
718
719 error = -EINVAL;
720
721 /* size of the new backing store needs to be the same */
722 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
723 goto out_err;
724
725 /* and ... switch */
726 blk_mq_freeze_queue(lo->lo_queue);
727 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
728 lo->lo_backing_file = file;
729 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
730 mapping_set_gfp_mask(file->f_mapping,
731 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
732 loop_update_dio(lo);
733 blk_mq_unfreeze_queue(lo->lo_queue);
734 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
735 mutex_unlock(&loop_ctl_mutex);
736 /*
737 * We must drop file reference outside of loop_ctl_mutex as dropping
738 * the file ref can take bd_mutex which creates circular locking
739 * dependency.
740 */
741 fput(old_file);
742 if (partscan)
743 loop_reread_partitions(lo, bdev);
744 return 0;
745
746 out_err:
747 mutex_unlock(&loop_ctl_mutex);
748 if (file)
749 fput(file);
750 return error;
751 }
752
753 /* loop sysfs attributes */
754
755 static ssize_t loop_attr_show(struct device *dev, char *page,
756 ssize_t (*callback)(struct loop_device *, char *))
757 {
758 struct gendisk *disk = dev_to_disk(dev);
759 struct loop_device *lo = disk->private_data;
760
761 return callback(lo, page);
762 }
763
764 #define LOOP_ATTR_RO(_name) \
765 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
766 static ssize_t loop_attr_do_show_##_name(struct device *d, \
767 struct device_attribute *attr, char *b) \
768 { \
769 return loop_attr_show(d, b, loop_attr_##_name##_show); \
770 } \
771 static struct device_attribute loop_attr_##_name = \
772 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
773
774 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
775 {
776 ssize_t ret;
777 char *p = NULL;
778
779 spin_lock_irq(&lo->lo_lock);
780 if (lo->lo_backing_file)
781 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
782 spin_unlock_irq(&lo->lo_lock);
783
784 if (IS_ERR_OR_NULL(p))
785 ret = PTR_ERR(p);
786 else {
787 ret = strlen(p);
788 memmove(buf, p, ret);
789 buf[ret++] = '\n';
790 buf[ret] = 0;
791 }
792
793 return ret;
794 }
795
796 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
797 {
798 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
799 }
800
801 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
802 {
803 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
804 }
805
806 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
807 {
808 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
809
810 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
811 }
812
813 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
814 {
815 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
816
817 return sprintf(buf, "%s\n", partscan ? "1" : "0");
818 }
819
820 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
821 {
822 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
823
824 return sprintf(buf, "%s\n", dio ? "1" : "0");
825 }
826
827 LOOP_ATTR_RO(backing_file);
828 LOOP_ATTR_RO(offset);
829 LOOP_ATTR_RO(sizelimit);
830 LOOP_ATTR_RO(autoclear);
831 LOOP_ATTR_RO(partscan);
832 LOOP_ATTR_RO(dio);
833
834 static struct attribute *loop_attrs[] = {
835 &loop_attr_backing_file.attr,
836 &loop_attr_offset.attr,
837 &loop_attr_sizelimit.attr,
838 &loop_attr_autoclear.attr,
839 &loop_attr_partscan.attr,
840 &loop_attr_dio.attr,
841 NULL,
842 };
843
844 static struct attribute_group loop_attribute_group = {
845 .name = "loop",
846 .attrs= loop_attrs,
847 };
848
849 static void loop_sysfs_init(struct loop_device *lo)
850 {
851 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
852 &loop_attribute_group);
853 }
854
855 static void loop_sysfs_exit(struct loop_device *lo)
856 {
857 if (lo->sysfs_inited)
858 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
859 &loop_attribute_group);
860 }
861
862 static void loop_config_discard(struct loop_device *lo)
863 {
864 struct file *file = lo->lo_backing_file;
865 struct inode *inode = file->f_mapping->host;
866 struct request_queue *q = lo->lo_queue;
867
868 /*
869 * If the backing device is a block device, mirror its zeroing
870 * capability. Set the discard sectors to the block device's zeroing
871 * capabilities because loop discards result in blkdev_issue_zeroout(),
872 * not blkdev_issue_discard(). This maintains consistent behavior with
873 * file-backed loop devices: discarded regions read back as zero.
874 */
875 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
876 struct request_queue *backingq;
877
878 backingq = bdev_get_queue(inode->i_bdev);
879 blk_queue_max_discard_sectors(q,
880 backingq->limits.max_write_zeroes_sectors);
881
882 blk_queue_max_write_zeroes_sectors(q,
883 backingq->limits.max_write_zeroes_sectors);
884
885 /*
886 * We use punch hole to reclaim the free space used by the
887 * image a.k.a. discard. However we do not support discard if
888 * encryption is enabled, because it may give an attacker
889 * useful information.
890 */
891 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
892 q->limits.discard_granularity = 0;
893 q->limits.discard_alignment = 0;
894 blk_queue_max_discard_sectors(q, 0);
895 blk_queue_max_write_zeroes_sectors(q, 0);
896
897 } else {
898 q->limits.discard_granularity = inode->i_sb->s_blocksize;
899 q->limits.discard_alignment = 0;
900
901 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
902 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
903 }
904
905 if (q->limits.max_write_zeroes_sectors)
906 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
907 else
908 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
909 }
910
911 static void loop_unprepare_queue(struct loop_device *lo)
912 {
913 kthread_flush_worker(&lo->worker);
914 kthread_stop(lo->worker_task);
915 }
916
917 static int loop_kthread_worker_fn(void *worker_ptr)
918 {
919 current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO;
920 return kthread_worker_fn(worker_ptr);
921 }
922
923 static int loop_prepare_queue(struct loop_device *lo)
924 {
925 kthread_init_worker(&lo->worker);
926 lo->worker_task = kthread_run(loop_kthread_worker_fn,
927 &lo->worker, "loop%d", lo->lo_number);
928 if (IS_ERR(lo->worker_task))
929 return -ENOMEM;
930 set_user_nice(lo->worker_task, MIN_NICE);
931 return 0;
932 }
933
934 static void loop_update_rotational(struct loop_device *lo)
935 {
936 struct file *file = lo->lo_backing_file;
937 struct inode *file_inode = file->f_mapping->host;
938 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
939 struct request_queue *q = lo->lo_queue;
940 bool nonrot = true;
941
942 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
943 if (file_bdev)
944 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
945
946 if (nonrot)
947 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
948 else
949 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
950 }
951
952 static int
953 loop_release_xfer(struct loop_device *lo)
954 {
955 int err = 0;
956 struct loop_func_table *xfer = lo->lo_encryption;
957
958 if (xfer) {
959 if (xfer->release)
960 err = xfer->release(lo);
961 lo->transfer = NULL;
962 lo->lo_encryption = NULL;
963 module_put(xfer->owner);
964 }
965 return err;
966 }
967
968 static int
969 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
970 const struct loop_info64 *i)
971 {
972 int err = 0;
973
974 if (xfer) {
975 struct module *owner = xfer->owner;
976
977 if (!try_module_get(owner))
978 return -EINVAL;
979 if (xfer->init)
980 err = xfer->init(lo, i);
981 if (err)
982 module_put(owner);
983 else
984 lo->lo_encryption = xfer;
985 }
986 return err;
987 }
988
989 /**
990 * loop_set_status_from_info - configure device from loop_info
991 * @lo: struct loop_device to configure
992 * @info: struct loop_info64 to configure the device with
993 *
994 * Configures the loop device parameters according to the passed
995 * in loop_info64 configuration.
996 */
997 static int
998 loop_set_status_from_info(struct loop_device *lo,
999 const struct loop_info64 *info)
1000 {
1001 int err;
1002 struct loop_func_table *xfer;
1003 kuid_t uid = current_uid();
1004
1005 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1006 return -EINVAL;
1007
1008 err = loop_release_xfer(lo);
1009 if (err)
1010 return err;
1011
1012 if (info->lo_encrypt_type) {
1013 unsigned int type = info->lo_encrypt_type;
1014
1015 if (type >= MAX_LO_CRYPT)
1016 return -EINVAL;
1017 xfer = xfer_funcs[type];
1018 if (xfer == NULL)
1019 return -EINVAL;
1020 } else
1021 xfer = NULL;
1022
1023 err = loop_init_xfer(lo, xfer, info);
1024 if (err)
1025 return err;
1026
1027 lo->lo_offset = info->lo_offset;
1028 lo->lo_sizelimit = info->lo_sizelimit;
1029 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1030 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1031 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1032 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1033
1034 if (!xfer)
1035 xfer = &none_funcs;
1036 lo->transfer = xfer->transfer;
1037 lo->ioctl = xfer->ioctl;
1038
1039 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1040 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1041 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1042
1043 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1044 lo->lo_init[0] = info->lo_init[0];
1045 lo->lo_init[1] = info->lo_init[1];
1046 if (info->lo_encrypt_key_size) {
1047 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1048 info->lo_encrypt_key_size);
1049 lo->lo_key_owner = uid;
1050 }
1051
1052 return 0;
1053 }
1054
1055 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
1056 struct block_device *bdev, unsigned int arg)
1057 {
1058 struct file *file;
1059 struct inode *inode;
1060 struct address_space *mapping;
1061 struct block_device *claimed_bdev = NULL;
1062 int lo_flags = 0;
1063 int error;
1064 loff_t size;
1065 bool partscan;
1066
1067 /* This is safe, since we have a reference from open(). */
1068 __module_get(THIS_MODULE);
1069
1070 error = -EBADF;
1071 file = fget(arg);
1072 if (!file)
1073 goto out;
1074
1075 /*
1076 * If we don't hold exclusive handle for the device, upgrade to it
1077 * here to avoid changing device under exclusive owner.
1078 */
1079 if (!(mode & FMODE_EXCL)) {
1080 claimed_bdev = bd_start_claiming(bdev, loop_set_fd);
1081 if (IS_ERR(claimed_bdev)) {
1082 error = PTR_ERR(claimed_bdev);
1083 goto out_putf;
1084 }
1085 }
1086
1087 error = mutex_lock_killable(&loop_ctl_mutex);
1088 if (error)
1089 goto out_bdev;
1090
1091 error = -EBUSY;
1092 if (lo->lo_state != Lo_unbound)
1093 goto out_unlock;
1094
1095 error = loop_validate_file(file, bdev);
1096 if (error)
1097 goto out_unlock;
1098
1099 mapping = file->f_mapping;
1100 inode = mapping->host;
1101
1102 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1103 !file->f_op->write_iter)
1104 lo_flags |= LO_FLAGS_READ_ONLY;
1105
1106 size = get_loop_size(lo, file);
1107
1108 error = loop_prepare_queue(lo);
1109 if (error)
1110 goto out_unlock;
1111
1112 error = 0;
1113
1114 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
1115
1116 lo->use_dio = false;
1117 lo->lo_device = bdev;
1118 lo->lo_flags = lo_flags;
1119 lo->lo_backing_file = file;
1120 lo->transfer = NULL;
1121 lo->ioctl = NULL;
1122 lo->lo_sizelimit = 0;
1123 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1124 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1125
1126 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1127 blk_queue_write_cache(lo->lo_queue, true, false);
1128
1129 if (io_is_direct(lo->lo_backing_file) && inode->i_sb->s_bdev) {
1130 /* In case of direct I/O, match underlying block size */
1131 unsigned short bsize = bdev_logical_block_size(
1132 inode->i_sb->s_bdev);
1133
1134 blk_queue_logical_block_size(lo->lo_queue, bsize);
1135 blk_queue_physical_block_size(lo->lo_queue, bsize);
1136 blk_queue_io_min(lo->lo_queue, bsize);
1137 }
1138
1139 loop_update_rotational(lo);
1140 loop_update_dio(lo);
1141 loop_sysfs_init(lo);
1142 loop_set_size(lo, size);
1143
1144 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1145 block_size(inode->i_bdev) : PAGE_SIZE);
1146
1147 lo->lo_state = Lo_bound;
1148 if (part_shift)
1149 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1150 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1151
1152 /* Grab the block_device to prevent its destruction after we
1153 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1154 */
1155 bdgrab(bdev);
1156 mutex_unlock(&loop_ctl_mutex);
1157 if (partscan)
1158 loop_reread_partitions(lo, bdev);
1159 if (claimed_bdev)
1160 bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1161 return 0;
1162
1163 out_unlock:
1164 mutex_unlock(&loop_ctl_mutex);
1165 out_bdev:
1166 if (claimed_bdev)
1167 bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1168 out_putf:
1169 fput(file);
1170 out:
1171 /* This is safe: open() is still holding a reference. */
1172 module_put(THIS_MODULE);
1173 return error;
1174 }
1175
1176 static int __loop_clr_fd(struct loop_device *lo, bool release)
1177 {
1178 struct file *filp = NULL;
1179 gfp_t gfp = lo->old_gfp_mask;
1180 struct block_device *bdev = lo->lo_device;
1181 int err = 0;
1182 bool partscan = false;
1183 int lo_number;
1184
1185 mutex_lock(&loop_ctl_mutex);
1186 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1187 err = -ENXIO;
1188 goto out_unlock;
1189 }
1190
1191 filp = lo->lo_backing_file;
1192 if (filp == NULL) {
1193 err = -EINVAL;
1194 goto out_unlock;
1195 }
1196
1197 /* freeze request queue during the transition */
1198 blk_mq_freeze_queue(lo->lo_queue);
1199
1200 spin_lock_irq(&lo->lo_lock);
1201 lo->lo_backing_file = NULL;
1202 spin_unlock_irq(&lo->lo_lock);
1203
1204 loop_release_xfer(lo);
1205 lo->transfer = NULL;
1206 lo->ioctl = NULL;
1207 lo->lo_device = NULL;
1208 lo->lo_encryption = NULL;
1209 lo->lo_offset = 0;
1210 lo->lo_sizelimit = 0;
1211 lo->lo_encrypt_key_size = 0;
1212 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1213 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1214 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1215 blk_queue_logical_block_size(lo->lo_queue, 512);
1216 blk_queue_physical_block_size(lo->lo_queue, 512);
1217 blk_queue_io_min(lo->lo_queue, 512);
1218 if (bdev) {
1219 bdput(bdev);
1220 invalidate_bdev(bdev);
1221 bdev->bd_inode->i_mapping->wb_err = 0;
1222 }
1223 set_capacity(lo->lo_disk, 0);
1224 loop_sysfs_exit(lo);
1225 if (bdev) {
1226 bd_set_size(bdev, 0);
1227 /* let user-space know about this change */
1228 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1229 }
1230 mapping_set_gfp_mask(filp->f_mapping, gfp);
1231 /* This is safe: open() is still holding a reference. */
1232 module_put(THIS_MODULE);
1233 blk_mq_unfreeze_queue(lo->lo_queue);
1234
1235 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1236 lo_number = lo->lo_number;
1237 loop_unprepare_queue(lo);
1238 out_unlock:
1239 mutex_unlock(&loop_ctl_mutex);
1240 if (partscan) {
1241 /*
1242 * bd_mutex has been held already in release path, so don't
1243 * acquire it if this function is called in such case.
1244 *
1245 * If the reread partition isn't from release path, lo_refcnt
1246 * must be at least one and it can only become zero when the
1247 * current holder is released.
1248 */
1249 if (!release)
1250 mutex_lock(&bdev->bd_mutex);
1251 err = bdev_disk_changed(bdev, false);
1252 if (!release)
1253 mutex_unlock(&bdev->bd_mutex);
1254 if (err)
1255 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1256 __func__, lo_number, err);
1257 /* Device is gone, no point in returning error */
1258 err = 0;
1259 }
1260
1261 /*
1262 * lo->lo_state is set to Lo_unbound here after above partscan has
1263 * finished.
1264 *
1265 * There cannot be anybody else entering __loop_clr_fd() as
1266 * lo->lo_backing_file is already cleared and Lo_rundown state
1267 * protects us from all the other places trying to change the 'lo'
1268 * device.
1269 */
1270 mutex_lock(&loop_ctl_mutex);
1271 lo->lo_flags = 0;
1272 if (!part_shift)
1273 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1274 lo->lo_state = Lo_unbound;
1275 mutex_unlock(&loop_ctl_mutex);
1276
1277 /*
1278 * Need not hold loop_ctl_mutex to fput backing file.
1279 * Calling fput holding loop_ctl_mutex triggers a circular
1280 * lock dependency possibility warning as fput can take
1281 * bd_mutex which is usually taken before loop_ctl_mutex.
1282 */
1283 if (filp)
1284 fput(filp);
1285 return err;
1286 }
1287
1288 static int loop_clr_fd(struct loop_device *lo)
1289 {
1290 int err;
1291
1292 err = mutex_lock_killable(&loop_ctl_mutex);
1293 if (err)
1294 return err;
1295 if (lo->lo_state != Lo_bound) {
1296 mutex_unlock(&loop_ctl_mutex);
1297 return -ENXIO;
1298 }
1299 /*
1300 * If we've explicitly asked to tear down the loop device,
1301 * and it has an elevated reference count, set it for auto-teardown when
1302 * the last reference goes away. This stops $!~#$@ udev from
1303 * preventing teardown because it decided that it needs to run blkid on
1304 * the loopback device whenever they appear. xfstests is notorious for
1305 * failing tests because blkid via udev races with a losetup
1306 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1307 * command to fail with EBUSY.
1308 */
1309 if (atomic_read(&lo->lo_refcnt) > 1) {
1310 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1311 mutex_unlock(&loop_ctl_mutex);
1312 return 0;
1313 }
1314 lo->lo_state = Lo_rundown;
1315 mutex_unlock(&loop_ctl_mutex);
1316
1317 return __loop_clr_fd(lo, false);
1318 }
1319
1320 static int
1321 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1322 {
1323 int err;
1324 struct block_device *bdev;
1325 kuid_t uid = current_uid();
1326 bool partscan = false;
1327 bool size_changed = false;
1328
1329 err = mutex_lock_killable(&loop_ctl_mutex);
1330 if (err)
1331 return err;
1332 if (lo->lo_encrypt_key_size &&
1333 !uid_eq(lo->lo_key_owner, uid) &&
1334 !capable(CAP_SYS_ADMIN)) {
1335 err = -EPERM;
1336 goto out_unlock;
1337 }
1338 if (lo->lo_state != Lo_bound) {
1339 err = -ENXIO;
1340 goto out_unlock;
1341 }
1342
1343 if (lo->lo_offset != info->lo_offset ||
1344 lo->lo_sizelimit != info->lo_sizelimit) {
1345 size_changed = true;
1346 sync_blockdev(lo->lo_device);
1347 kill_bdev(lo->lo_device);
1348 }
1349
1350 /* I/O need to be drained during transfer transition */
1351 blk_mq_freeze_queue(lo->lo_queue);
1352
1353 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1354 /* If any pages were dirtied after kill_bdev(), try again */
1355 err = -EAGAIN;
1356 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1357 __func__, lo->lo_number, lo->lo_file_name,
1358 lo->lo_device->bd_inode->i_mapping->nrpages);
1359 goto out_unfreeze;
1360 }
1361
1362 err = loop_set_status_from_info(lo, info);
1363 if (err)
1364 goto out_unfreeze;
1365
1366 if (size_changed) {
1367 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1368 lo->lo_backing_file);
1369 loop_set_size(lo, new_size);
1370 }
1371
1372 loop_config_discard(lo);
1373
1374 /* update dio if lo_offset or transfer is changed */
1375 __loop_update_dio(lo, lo->use_dio);
1376
1377 out_unfreeze:
1378 blk_mq_unfreeze_queue(lo->lo_queue);
1379
1380 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1381 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1382 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1383 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1384 bdev = lo->lo_device;
1385 partscan = true;
1386 }
1387 out_unlock:
1388 mutex_unlock(&loop_ctl_mutex);
1389 if (partscan)
1390 loop_reread_partitions(lo, bdev);
1391
1392 return err;
1393 }
1394
1395 static int
1396 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1397 {
1398 struct path path;
1399 struct kstat stat;
1400 int ret;
1401
1402 ret = mutex_lock_killable(&loop_ctl_mutex);
1403 if (ret)
1404 return ret;
1405 if (lo->lo_state != Lo_bound) {
1406 mutex_unlock(&loop_ctl_mutex);
1407 return -ENXIO;
1408 }
1409
1410 memset(info, 0, sizeof(*info));
1411 info->lo_number = lo->lo_number;
1412 info->lo_offset = lo->lo_offset;
1413 info->lo_sizelimit = lo->lo_sizelimit;
1414 info->lo_flags = lo->lo_flags;
1415 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1416 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1417 info->lo_encrypt_type =
1418 lo->lo_encryption ? lo->lo_encryption->number : 0;
1419 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1420 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1421 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1422 lo->lo_encrypt_key_size);
1423 }
1424
1425 /* Drop loop_ctl_mutex while we call into the filesystem. */
1426 path = lo->lo_backing_file->f_path;
1427 path_get(&path);
1428 mutex_unlock(&loop_ctl_mutex);
1429 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1430 if (!ret) {
1431 info->lo_device = huge_encode_dev(stat.dev);
1432 info->lo_inode = stat.ino;
1433 info->lo_rdevice = huge_encode_dev(stat.rdev);
1434 }
1435 path_put(&path);
1436 return ret;
1437 }
1438
1439 static void
1440 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1441 {
1442 memset(info64, 0, sizeof(*info64));
1443 info64->lo_number = info->lo_number;
1444 info64->lo_device = info->lo_device;
1445 info64->lo_inode = info->lo_inode;
1446 info64->lo_rdevice = info->lo_rdevice;
1447 info64->lo_offset = info->lo_offset;
1448 info64->lo_sizelimit = 0;
1449 info64->lo_encrypt_type = info->lo_encrypt_type;
1450 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1451 info64->lo_flags = info->lo_flags;
1452 info64->lo_init[0] = info->lo_init[0];
1453 info64->lo_init[1] = info->lo_init[1];
1454 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1455 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1456 else
1457 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1458 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1459 }
1460
1461 static int
1462 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1463 {
1464 memset(info, 0, sizeof(*info));
1465 info->lo_number = info64->lo_number;
1466 info->lo_device = info64->lo_device;
1467 info->lo_inode = info64->lo_inode;
1468 info->lo_rdevice = info64->lo_rdevice;
1469 info->lo_offset = info64->lo_offset;
1470 info->lo_encrypt_type = info64->lo_encrypt_type;
1471 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1472 info->lo_flags = info64->lo_flags;
1473 info->lo_init[0] = info64->lo_init[0];
1474 info->lo_init[1] = info64->lo_init[1];
1475 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1476 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1477 else
1478 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1479 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1480
1481 /* error in case values were truncated */
1482 if (info->lo_device != info64->lo_device ||
1483 info->lo_rdevice != info64->lo_rdevice ||
1484 info->lo_inode != info64->lo_inode ||
1485 info->lo_offset != info64->lo_offset)
1486 return -EOVERFLOW;
1487
1488 return 0;
1489 }
1490
1491 static int
1492 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1493 {
1494 struct loop_info info;
1495 struct loop_info64 info64;
1496
1497 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1498 return -EFAULT;
1499 loop_info64_from_old(&info, &info64);
1500 return loop_set_status(lo, &info64);
1501 }
1502
1503 static int
1504 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1505 {
1506 struct loop_info64 info64;
1507
1508 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1509 return -EFAULT;
1510 return loop_set_status(lo, &info64);
1511 }
1512
1513 static int
1514 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1515 struct loop_info info;
1516 struct loop_info64 info64;
1517 int err;
1518
1519 if (!arg)
1520 return -EINVAL;
1521 err = loop_get_status(lo, &info64);
1522 if (!err)
1523 err = loop_info64_to_old(&info64, &info);
1524 if (!err && copy_to_user(arg, &info, sizeof(info)))
1525 err = -EFAULT;
1526
1527 return err;
1528 }
1529
1530 static int
1531 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1532 struct loop_info64 info64;
1533 int err;
1534
1535 if (!arg)
1536 return -EINVAL;
1537 err = loop_get_status(lo, &info64);
1538 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1539 err = -EFAULT;
1540
1541 return err;
1542 }
1543
1544 static int loop_set_capacity(struct loop_device *lo)
1545 {
1546 loff_t size;
1547
1548 if (unlikely(lo->lo_state != Lo_bound))
1549 return -ENXIO;
1550
1551 size = get_loop_size(lo, lo->lo_backing_file);
1552 loop_set_size(lo, size);
1553
1554 return 0;
1555 }
1556
1557 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1558 {
1559 int error = -ENXIO;
1560 if (lo->lo_state != Lo_bound)
1561 goto out;
1562
1563 __loop_update_dio(lo, !!arg);
1564 if (lo->use_dio == !!arg)
1565 return 0;
1566 error = -EINVAL;
1567 out:
1568 return error;
1569 }
1570
1571 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1572 {
1573 int err = 0;
1574
1575 if (lo->lo_state != Lo_bound)
1576 return -ENXIO;
1577
1578 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1579 return -EINVAL;
1580
1581 if (lo->lo_queue->limits.logical_block_size == arg)
1582 return 0;
1583
1584 sync_blockdev(lo->lo_device);
1585 kill_bdev(lo->lo_device);
1586
1587 blk_mq_freeze_queue(lo->lo_queue);
1588
1589 /* kill_bdev should have truncated all the pages */
1590 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1591 err = -EAGAIN;
1592 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1593 __func__, lo->lo_number, lo->lo_file_name,
1594 lo->lo_device->bd_inode->i_mapping->nrpages);
1595 goto out_unfreeze;
1596 }
1597
1598 blk_queue_logical_block_size(lo->lo_queue, arg);
1599 blk_queue_physical_block_size(lo->lo_queue, arg);
1600 blk_queue_io_min(lo->lo_queue, arg);
1601 loop_update_dio(lo);
1602 out_unfreeze:
1603 blk_mq_unfreeze_queue(lo->lo_queue);
1604
1605 return err;
1606 }
1607
1608 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1609 unsigned long arg)
1610 {
1611 int err;
1612
1613 err = mutex_lock_killable(&loop_ctl_mutex);
1614 if (err)
1615 return err;
1616 switch (cmd) {
1617 case LOOP_SET_CAPACITY:
1618 err = loop_set_capacity(lo);
1619 break;
1620 case LOOP_SET_DIRECT_IO:
1621 err = loop_set_dio(lo, arg);
1622 break;
1623 case LOOP_SET_BLOCK_SIZE:
1624 err = loop_set_block_size(lo, arg);
1625 break;
1626 default:
1627 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1628 }
1629 mutex_unlock(&loop_ctl_mutex);
1630 return err;
1631 }
1632
1633 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1634 unsigned int cmd, unsigned long arg)
1635 {
1636 struct loop_device *lo = bdev->bd_disk->private_data;
1637 int err;
1638
1639 switch (cmd) {
1640 case LOOP_SET_FD:
1641 return loop_set_fd(lo, mode, bdev, arg);
1642 case LOOP_CHANGE_FD:
1643 return loop_change_fd(lo, bdev, arg);
1644 case LOOP_CLR_FD:
1645 return loop_clr_fd(lo);
1646 case LOOP_SET_STATUS:
1647 err = -EPERM;
1648 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1649 err = loop_set_status_old(lo,
1650 (struct loop_info __user *)arg);
1651 }
1652 break;
1653 case LOOP_GET_STATUS:
1654 return loop_get_status_old(lo, (struct loop_info __user *) arg);
1655 case LOOP_SET_STATUS64:
1656 err = -EPERM;
1657 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1658 err = loop_set_status64(lo,
1659 (struct loop_info64 __user *) arg);
1660 }
1661 break;
1662 case LOOP_GET_STATUS64:
1663 return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1664 case LOOP_SET_CAPACITY:
1665 case LOOP_SET_DIRECT_IO:
1666 case LOOP_SET_BLOCK_SIZE:
1667 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1668 return -EPERM;
1669 /* Fall through */
1670 default:
1671 err = lo_simple_ioctl(lo, cmd, arg);
1672 break;
1673 }
1674
1675 return err;
1676 }
1677
1678 #ifdef CONFIG_COMPAT
1679 struct compat_loop_info {
1680 compat_int_t lo_number; /* ioctl r/o */
1681 compat_dev_t lo_device; /* ioctl r/o */
1682 compat_ulong_t lo_inode; /* ioctl r/o */
1683 compat_dev_t lo_rdevice; /* ioctl r/o */
1684 compat_int_t lo_offset;
1685 compat_int_t lo_encrypt_type;
1686 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1687 compat_int_t lo_flags; /* ioctl r/o */
1688 char lo_name[LO_NAME_SIZE];
1689 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1690 compat_ulong_t lo_init[2];
1691 char reserved[4];
1692 };
1693
1694 /*
1695 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1696 * - noinlined to reduce stack space usage in main part of driver
1697 */
1698 static noinline int
1699 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1700 struct loop_info64 *info64)
1701 {
1702 struct compat_loop_info info;
1703
1704 if (copy_from_user(&info, arg, sizeof(info)))
1705 return -EFAULT;
1706
1707 memset(info64, 0, sizeof(*info64));
1708 info64->lo_number = info.lo_number;
1709 info64->lo_device = info.lo_device;
1710 info64->lo_inode = info.lo_inode;
1711 info64->lo_rdevice = info.lo_rdevice;
1712 info64->lo_offset = info.lo_offset;
1713 info64->lo_sizelimit = 0;
1714 info64->lo_encrypt_type = info.lo_encrypt_type;
1715 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1716 info64->lo_flags = info.lo_flags;
1717 info64->lo_init[0] = info.lo_init[0];
1718 info64->lo_init[1] = info.lo_init[1];
1719 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1720 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1721 else
1722 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1723 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1724 return 0;
1725 }
1726
1727 /*
1728 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1729 * - noinlined to reduce stack space usage in main part of driver
1730 */
1731 static noinline int
1732 loop_info64_to_compat(const struct loop_info64 *info64,
1733 struct compat_loop_info __user *arg)
1734 {
1735 struct compat_loop_info info;
1736
1737 memset(&info, 0, sizeof(info));
1738 info.lo_number = info64->lo_number;
1739 info.lo_device = info64->lo_device;
1740 info.lo_inode = info64->lo_inode;
1741 info.lo_rdevice = info64->lo_rdevice;
1742 info.lo_offset = info64->lo_offset;
1743 info.lo_encrypt_type = info64->lo_encrypt_type;
1744 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1745 info.lo_flags = info64->lo_flags;
1746 info.lo_init[0] = info64->lo_init[0];
1747 info.lo_init[1] = info64->lo_init[1];
1748 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1749 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1750 else
1751 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1752 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1753
1754 /* error in case values were truncated */
1755 if (info.lo_device != info64->lo_device ||
1756 info.lo_rdevice != info64->lo_rdevice ||
1757 info.lo_inode != info64->lo_inode ||
1758 info.lo_offset != info64->lo_offset ||
1759 info.lo_init[0] != info64->lo_init[0] ||
1760 info.lo_init[1] != info64->lo_init[1])
1761 return -EOVERFLOW;
1762
1763 if (copy_to_user(arg, &info, sizeof(info)))
1764 return -EFAULT;
1765 return 0;
1766 }
1767
1768 static int
1769 loop_set_status_compat(struct loop_device *lo,
1770 const struct compat_loop_info __user *arg)
1771 {
1772 struct loop_info64 info64;
1773 int ret;
1774
1775 ret = loop_info64_from_compat(arg, &info64);
1776 if (ret < 0)
1777 return ret;
1778 return loop_set_status(lo, &info64);
1779 }
1780
1781 static int
1782 loop_get_status_compat(struct loop_device *lo,
1783 struct compat_loop_info __user *arg)
1784 {
1785 struct loop_info64 info64;
1786 int err;
1787
1788 if (!arg)
1789 return -EINVAL;
1790 err = loop_get_status(lo, &info64);
1791 if (!err)
1792 err = loop_info64_to_compat(&info64, arg);
1793 return err;
1794 }
1795
1796 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1797 unsigned int cmd, unsigned long arg)
1798 {
1799 struct loop_device *lo = bdev->bd_disk->private_data;
1800 int err;
1801
1802 switch(cmd) {
1803 case LOOP_SET_STATUS:
1804 err = loop_set_status_compat(lo,
1805 (const struct compat_loop_info __user *)arg);
1806 break;
1807 case LOOP_GET_STATUS:
1808 err = loop_get_status_compat(lo,
1809 (struct compat_loop_info __user *)arg);
1810 break;
1811 case LOOP_SET_CAPACITY:
1812 case LOOP_CLR_FD:
1813 case LOOP_GET_STATUS64:
1814 case LOOP_SET_STATUS64:
1815 arg = (unsigned long) compat_ptr(arg);
1816 /* fall through */
1817 case LOOP_SET_FD:
1818 case LOOP_CHANGE_FD:
1819 case LOOP_SET_BLOCK_SIZE:
1820 case LOOP_SET_DIRECT_IO:
1821 err = lo_ioctl(bdev, mode, cmd, arg);
1822 break;
1823 default:
1824 err = -ENOIOCTLCMD;
1825 break;
1826 }
1827 return err;
1828 }
1829 #endif
1830
1831 static int lo_open(struct block_device *bdev, fmode_t mode)
1832 {
1833 struct loop_device *lo;
1834 int err;
1835
1836 err = mutex_lock_killable(&loop_ctl_mutex);
1837 if (err)
1838 return err;
1839 lo = bdev->bd_disk->private_data;
1840 if (!lo) {
1841 err = -ENXIO;
1842 goto out;
1843 }
1844
1845 atomic_inc(&lo->lo_refcnt);
1846 out:
1847 mutex_unlock(&loop_ctl_mutex);
1848 return err;
1849 }
1850
1851 static void lo_release(struct gendisk *disk, fmode_t mode)
1852 {
1853 struct loop_device *lo;
1854
1855 mutex_lock(&loop_ctl_mutex);
1856 lo = disk->private_data;
1857 if (atomic_dec_return(&lo->lo_refcnt))
1858 goto out_unlock;
1859
1860 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1861 if (lo->lo_state != Lo_bound)
1862 goto out_unlock;
1863 lo->lo_state = Lo_rundown;
1864 mutex_unlock(&loop_ctl_mutex);
1865 /*
1866 * In autoclear mode, stop the loop thread
1867 * and remove configuration after last close.
1868 */
1869 __loop_clr_fd(lo, true);
1870 return;
1871 } else if (lo->lo_state == Lo_bound) {
1872 /*
1873 * Otherwise keep thread (if running) and config,
1874 * but flush possible ongoing bios in thread.
1875 */
1876 blk_mq_freeze_queue(lo->lo_queue);
1877 blk_mq_unfreeze_queue(lo->lo_queue);
1878 }
1879
1880 out_unlock:
1881 mutex_unlock(&loop_ctl_mutex);
1882 }
1883
1884 static const struct block_device_operations lo_fops = {
1885 .owner = THIS_MODULE,
1886 .open = lo_open,
1887 .release = lo_release,
1888 .ioctl = lo_ioctl,
1889 #ifdef CONFIG_COMPAT
1890 .compat_ioctl = lo_compat_ioctl,
1891 #endif
1892 };
1893
1894 /*
1895 * And now the modules code and kernel interface.
1896 */
1897 static int max_loop;
1898 module_param(max_loop, int, 0444);
1899 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1900 module_param(max_part, int, 0444);
1901 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1902 MODULE_LICENSE("GPL");
1903 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1904
1905 int loop_register_transfer(struct loop_func_table *funcs)
1906 {
1907 unsigned int n = funcs->number;
1908
1909 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1910 return -EINVAL;
1911 xfer_funcs[n] = funcs;
1912 return 0;
1913 }
1914
1915 static int unregister_transfer_cb(int id, void *ptr, void *data)
1916 {
1917 struct loop_device *lo = ptr;
1918 struct loop_func_table *xfer = data;
1919
1920 mutex_lock(&loop_ctl_mutex);
1921 if (lo->lo_encryption == xfer)
1922 loop_release_xfer(lo);
1923 mutex_unlock(&loop_ctl_mutex);
1924 return 0;
1925 }
1926
1927 int loop_unregister_transfer(int number)
1928 {
1929 unsigned int n = number;
1930 struct loop_func_table *xfer;
1931
1932 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1933 return -EINVAL;
1934
1935 xfer_funcs[n] = NULL;
1936 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1937 return 0;
1938 }
1939
1940 EXPORT_SYMBOL(loop_register_transfer);
1941 EXPORT_SYMBOL(loop_unregister_transfer);
1942
1943 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1944 const struct blk_mq_queue_data *bd)
1945 {
1946 struct request *rq = bd->rq;
1947 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1948 struct loop_device *lo = rq->q->queuedata;
1949
1950 blk_mq_start_request(rq);
1951
1952 if (lo->lo_state != Lo_bound)
1953 return BLK_STS_IOERR;
1954
1955 switch (req_op(rq)) {
1956 case REQ_OP_FLUSH:
1957 case REQ_OP_DISCARD:
1958 case REQ_OP_WRITE_ZEROES:
1959 cmd->use_aio = false;
1960 break;
1961 default:
1962 cmd->use_aio = lo->use_dio;
1963 break;
1964 }
1965
1966 /* always use the first bio's css */
1967 #ifdef CONFIG_BLK_CGROUP
1968 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1969 cmd->css = &bio_blkcg(rq->bio)->css;
1970 css_get(cmd->css);
1971 } else
1972 #endif
1973 cmd->css = NULL;
1974 kthread_queue_work(&lo->worker, &cmd->work);
1975
1976 return BLK_STS_OK;
1977 }
1978
1979 static void loop_handle_cmd(struct loop_cmd *cmd)
1980 {
1981 struct request *rq = blk_mq_rq_from_pdu(cmd);
1982 const bool write = op_is_write(req_op(rq));
1983 struct loop_device *lo = rq->q->queuedata;
1984 int ret = 0;
1985
1986 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1987 ret = -EIO;
1988 goto failed;
1989 }
1990
1991 ret = do_req_filebacked(lo, rq);
1992 failed:
1993 /* complete non-aio request */
1994 if (!cmd->use_aio || ret) {
1995 if (ret == -EOPNOTSUPP)
1996 cmd->ret = ret;
1997 else
1998 cmd->ret = ret ? -EIO : 0;
1999 blk_mq_complete_request(rq);
2000 }
2001 }
2002
2003 static void loop_queue_work(struct kthread_work *work)
2004 {
2005 struct loop_cmd *cmd =
2006 container_of(work, struct loop_cmd, work);
2007
2008 loop_handle_cmd(cmd);
2009 }
2010
2011 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2012 unsigned int hctx_idx, unsigned int numa_node)
2013 {
2014 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2015
2016 kthread_init_work(&cmd->work, loop_queue_work);
2017 return 0;
2018 }
2019
2020 static const struct blk_mq_ops loop_mq_ops = {
2021 .queue_rq = loop_queue_rq,
2022 .init_request = loop_init_request,
2023 .complete = lo_complete_rq,
2024 };
2025
2026 static int loop_add(struct loop_device **l, int i)
2027 {
2028 struct loop_device *lo;
2029 struct gendisk *disk;
2030 int err;
2031
2032 err = -ENOMEM;
2033 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2034 if (!lo)
2035 goto out;
2036
2037 lo->lo_state = Lo_unbound;
2038
2039 /* allocate id, if @id >= 0, we're requesting that specific id */
2040 if (i >= 0) {
2041 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2042 if (err == -ENOSPC)
2043 err = -EEXIST;
2044 } else {
2045 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2046 }
2047 if (err < 0)
2048 goto out_free_dev;
2049 i = err;
2050
2051 err = -ENOMEM;
2052 lo->tag_set.ops = &loop_mq_ops;
2053 lo->tag_set.nr_hw_queues = 1;
2054 lo->tag_set.queue_depth = 128;
2055 lo->tag_set.numa_node = NUMA_NO_NODE;
2056 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2057 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2058 lo->tag_set.driver_data = lo;
2059
2060 err = blk_mq_alloc_tag_set(&lo->tag_set);
2061 if (err)
2062 goto out_free_idr;
2063
2064 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2065 if (IS_ERR(lo->lo_queue)) {
2066 err = PTR_ERR(lo->lo_queue);
2067 goto out_cleanup_tags;
2068 }
2069 lo->lo_queue->queuedata = lo;
2070
2071 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2072
2073 /*
2074 * By default, we do buffer IO, so it doesn't make sense to enable
2075 * merge because the I/O submitted to backing file is handled page by
2076 * page. For directio mode, merge does help to dispatch bigger request
2077 * to underlayer disk. We will enable merge once directio is enabled.
2078 */
2079 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2080
2081 err = -ENOMEM;
2082 disk = lo->lo_disk = alloc_disk(1 << part_shift);
2083 if (!disk)
2084 goto out_free_queue;
2085
2086 /*
2087 * Disable partition scanning by default. The in-kernel partition
2088 * scanning can be requested individually per-device during its
2089 * setup. Userspace can always add and remove partitions from all
2090 * devices. The needed partition minors are allocated from the
2091 * extended minor space, the main loop device numbers will continue
2092 * to match the loop minors, regardless of the number of partitions
2093 * used.
2094 *
2095 * If max_part is given, partition scanning is globally enabled for
2096 * all loop devices. The minors for the main loop devices will be
2097 * multiples of max_part.
2098 *
2099 * Note: Global-for-all-devices, set-only-at-init, read-only module
2100 * parameteters like 'max_loop' and 'max_part' make things needlessly
2101 * complicated, are too static, inflexible and may surprise
2102 * userspace tools. Parameters like this in general should be avoided.
2103 */
2104 if (!part_shift)
2105 disk->flags |= GENHD_FL_NO_PART_SCAN;
2106 disk->flags |= GENHD_FL_EXT_DEVT;
2107 atomic_set(&lo->lo_refcnt, 0);
2108 lo->lo_number = i;
2109 spin_lock_init(&lo->lo_lock);
2110 disk->major = LOOP_MAJOR;
2111 disk->first_minor = i << part_shift;
2112 disk->fops = &lo_fops;
2113 disk->private_data = lo;
2114 disk->queue = lo->lo_queue;
2115 sprintf(disk->disk_name, "loop%d", i);
2116 add_disk(disk);
2117 *l = lo;
2118 return lo->lo_number;
2119
2120 out_free_queue:
2121 blk_cleanup_queue(lo->lo_queue);
2122 out_cleanup_tags:
2123 blk_mq_free_tag_set(&lo->tag_set);
2124 out_free_idr:
2125 idr_remove(&loop_index_idr, i);
2126 out_free_dev:
2127 kfree(lo);
2128 out:
2129 return err;
2130 }
2131
2132 static void loop_remove(struct loop_device *lo)
2133 {
2134 del_gendisk(lo->lo_disk);
2135 blk_cleanup_queue(lo->lo_queue);
2136 blk_mq_free_tag_set(&lo->tag_set);
2137 put_disk(lo->lo_disk);
2138 kfree(lo);
2139 }
2140
2141 static int find_free_cb(int id, void *ptr, void *data)
2142 {
2143 struct loop_device *lo = ptr;
2144 struct loop_device **l = data;
2145
2146 if (lo->lo_state == Lo_unbound) {
2147 *l = lo;
2148 return 1;
2149 }
2150 return 0;
2151 }
2152
2153 static int loop_lookup(struct loop_device **l, int i)
2154 {
2155 struct loop_device *lo;
2156 int ret = -ENODEV;
2157
2158 if (i < 0) {
2159 int err;
2160
2161 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2162 if (err == 1) {
2163 *l = lo;
2164 ret = lo->lo_number;
2165 }
2166 goto out;
2167 }
2168
2169 /* lookup and return a specific i */
2170 lo = idr_find(&loop_index_idr, i);
2171 if (lo) {
2172 *l = lo;
2173 ret = lo->lo_number;
2174 }
2175 out:
2176 return ret;
2177 }
2178
2179 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2180 {
2181 struct loop_device *lo;
2182 struct kobject *kobj;
2183 int err;
2184
2185 mutex_lock(&loop_ctl_mutex);
2186 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2187 if (err < 0)
2188 err = loop_add(&lo, MINOR(dev) >> part_shift);
2189 if (err < 0)
2190 kobj = NULL;
2191 else
2192 kobj = get_disk_and_module(lo->lo_disk);
2193 mutex_unlock(&loop_ctl_mutex);
2194
2195 *part = 0;
2196 return kobj;
2197 }
2198
2199 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2200 unsigned long parm)
2201 {
2202 struct loop_device *lo;
2203 int ret;
2204
2205 ret = mutex_lock_killable(&loop_ctl_mutex);
2206 if (ret)
2207 return ret;
2208
2209 ret = -ENOSYS;
2210 switch (cmd) {
2211 case LOOP_CTL_ADD:
2212 ret = loop_lookup(&lo, parm);
2213 if (ret >= 0) {
2214 ret = -EEXIST;
2215 break;
2216 }
2217 ret = loop_add(&lo, parm);
2218 break;
2219 case LOOP_CTL_REMOVE:
2220 ret = loop_lookup(&lo, parm);
2221 if (ret < 0)
2222 break;
2223 if (lo->lo_state != Lo_unbound) {
2224 ret = -EBUSY;
2225 break;
2226 }
2227 if (atomic_read(&lo->lo_refcnt) > 0) {
2228 ret = -EBUSY;
2229 break;
2230 }
2231 lo->lo_disk->private_data = NULL;
2232 idr_remove(&loop_index_idr, lo->lo_number);
2233 loop_remove(lo);
2234 break;
2235 case LOOP_CTL_GET_FREE:
2236 ret = loop_lookup(&lo, -1);
2237 if (ret >= 0)
2238 break;
2239 ret = loop_add(&lo, -1);
2240 }
2241 mutex_unlock(&loop_ctl_mutex);
2242
2243 return ret;
2244 }
2245
2246 static const struct file_operations loop_ctl_fops = {
2247 .open = nonseekable_open,
2248 .unlocked_ioctl = loop_control_ioctl,
2249 .compat_ioctl = loop_control_ioctl,
2250 .owner = THIS_MODULE,
2251 .llseek = noop_llseek,
2252 };
2253
2254 static struct miscdevice loop_misc = {
2255 .minor = LOOP_CTRL_MINOR,
2256 .name = "loop-control",
2257 .fops = &loop_ctl_fops,
2258 };
2259
2260 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2261 MODULE_ALIAS("devname:loop-control");
2262
2263 static int __init loop_init(void)
2264 {
2265 int i, nr;
2266 unsigned long range;
2267 struct loop_device *lo;
2268 int err;
2269
2270 part_shift = 0;
2271 if (max_part > 0) {
2272 part_shift = fls(max_part);
2273
2274 /*
2275 * Adjust max_part according to part_shift as it is exported
2276 * to user space so that user can decide correct minor number
2277 * if [s]he want to create more devices.
2278 *
2279 * Note that -1 is required because partition 0 is reserved
2280 * for the whole disk.
2281 */
2282 max_part = (1UL << part_shift) - 1;
2283 }
2284
2285 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2286 err = -EINVAL;
2287 goto err_out;
2288 }
2289
2290 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2291 err = -EINVAL;
2292 goto err_out;
2293 }
2294
2295 /*
2296 * If max_loop is specified, create that many devices upfront.
2297 * This also becomes a hard limit. If max_loop is not specified,
2298 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2299 * init time. Loop devices can be requested on-demand with the
2300 * /dev/loop-control interface, or be instantiated by accessing
2301 * a 'dead' device node.
2302 */
2303 if (max_loop) {
2304 nr = max_loop;
2305 range = max_loop << part_shift;
2306 } else {
2307 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2308 range = 1UL << MINORBITS;
2309 }
2310
2311 err = misc_register(&loop_misc);
2312 if (err < 0)
2313 goto err_out;
2314
2315
2316 if (register_blkdev(LOOP_MAJOR, "loop")) {
2317 err = -EIO;
2318 goto misc_out;
2319 }
2320
2321 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2322 THIS_MODULE, loop_probe, NULL, NULL);
2323
2324 /* pre-create number of devices given by config or max_loop */
2325 mutex_lock(&loop_ctl_mutex);
2326 for (i = 0; i < nr; i++)
2327 loop_add(&lo, i);
2328 mutex_unlock(&loop_ctl_mutex);
2329
2330 printk(KERN_INFO "loop: module loaded\n");
2331 return 0;
2332
2333 misc_out:
2334 misc_deregister(&loop_misc);
2335 err_out:
2336 return err;
2337 }
2338
2339 static int loop_exit_cb(int id, void *ptr, void *data)
2340 {
2341 struct loop_device *lo = ptr;
2342
2343 loop_remove(lo);
2344 return 0;
2345 }
2346
2347 static void __exit loop_exit(void)
2348 {
2349 unsigned long range;
2350
2351 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2352
2353 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2354 idr_destroy(&loop_index_idr);
2355
2356 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2357 unregister_blkdev(LOOP_MAJOR, "loop");
2358
2359 misc_deregister(&loop_misc);
2360 }
2361
2362 module_init(loop_init);
2363 module_exit(loop_exit);
2364
2365 #ifndef MODULE
2366 static int __init max_loop_setup(char *str)
2367 {
2368 max_loop = simple_strtol(str, NULL, 0);
2369 return 1;
2370 }
2371
2372 __setup("max_loop=", max_loop_setup);
2373 #endif