]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/loop.c
x86/microcode: Do not exit early from __reload_late()
[mirror_ubuntu-bionic-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80
81 #include <linux/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
93 {
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
98
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
105 }
106
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
111
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
116 }
117
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
123 }
124
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
127 };
128
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
133 };
134
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
139 };
140
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 loff_t loopsize;
144
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
152
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
155 /*
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
158 */
159 return loopsize >> 9;
160 }
161
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
175
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
179 }
180
181 /*
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
186 *
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane applications should be PAGE_SIZE aligned
190 */
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
201 }
202
203 if (lo->use_dio == use_dio)
204 return;
205
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
208
209 /*
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
213 */
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio) {
217 queue_flag_clear_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
218 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
219 } else {
220 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
222 }
223 blk_mq_unfreeze_queue(lo->lo_queue);
224 }
225
226 static int
227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
228 {
229 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
230 sector_t x = (sector_t)size;
231 struct block_device *bdev = lo->lo_device;
232
233 if (unlikely((loff_t)x != size))
234 return -EFBIG;
235 if (lo->lo_offset != offset)
236 lo->lo_offset = offset;
237 if (lo->lo_sizelimit != sizelimit)
238 lo->lo_sizelimit = sizelimit;
239 set_capacity(lo->lo_disk, x);
240 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
241 /* let user-space know about the new size */
242 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
243 return 0;
244 }
245
246 static inline int
247 lo_do_transfer(struct loop_device *lo, int cmd,
248 struct page *rpage, unsigned roffs,
249 struct page *lpage, unsigned loffs,
250 int size, sector_t rblock)
251 {
252 int ret;
253
254 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
255 if (likely(!ret))
256 return 0;
257
258 printk_ratelimited(KERN_ERR
259 "loop: Transfer error at byte offset %llu, length %i.\n",
260 (unsigned long long)rblock << 9, size);
261 return ret;
262 }
263
264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
265 {
266 struct iov_iter i;
267 ssize_t bw;
268
269 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
270
271 file_start_write(file);
272 bw = vfs_iter_write(file, &i, ppos, 0);
273 file_end_write(file);
274
275 if (likely(bw == bvec->bv_len))
276 return 0;
277
278 printk_ratelimited(KERN_ERR
279 "loop: Write error at byte offset %llu, length %i.\n",
280 (unsigned long long)*ppos, bvec->bv_len);
281 if (bw >= 0)
282 bw = -EIO;
283 return bw;
284 }
285
286 static int lo_write_simple(struct loop_device *lo, struct request *rq,
287 loff_t pos)
288 {
289 struct bio_vec bvec;
290 struct req_iterator iter;
291 int ret = 0;
292
293 rq_for_each_segment(bvec, rq, iter) {
294 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
295 if (ret < 0)
296 break;
297 cond_resched();
298 }
299
300 return ret;
301 }
302
303 /*
304 * This is the slow, transforming version that needs to double buffer the
305 * data as it cannot do the transformations in place without having direct
306 * access to the destination pages of the backing file.
307 */
308 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
309 loff_t pos)
310 {
311 struct bio_vec bvec, b;
312 struct req_iterator iter;
313 struct page *page;
314 int ret = 0;
315
316 page = alloc_page(GFP_NOIO);
317 if (unlikely(!page))
318 return -ENOMEM;
319
320 rq_for_each_segment(bvec, rq, iter) {
321 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
322 bvec.bv_offset, bvec.bv_len, pos >> 9);
323 if (unlikely(ret))
324 break;
325
326 b.bv_page = page;
327 b.bv_offset = 0;
328 b.bv_len = bvec.bv_len;
329 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
330 if (ret < 0)
331 break;
332 }
333
334 __free_page(page);
335 return ret;
336 }
337
338 static int lo_read_simple(struct loop_device *lo, struct request *rq,
339 loff_t pos)
340 {
341 struct bio_vec bvec;
342 struct req_iterator iter;
343 struct iov_iter i;
344 ssize_t len;
345
346 rq_for_each_segment(bvec, rq, iter) {
347 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
348 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
349 if (len < 0)
350 return len;
351
352 flush_dcache_page(bvec.bv_page);
353
354 if (len != bvec.bv_len) {
355 struct bio *bio;
356
357 __rq_for_each_bio(bio, rq)
358 zero_fill_bio(bio);
359 break;
360 }
361 cond_resched();
362 }
363
364 return 0;
365 }
366
367 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
368 loff_t pos)
369 {
370 struct bio_vec bvec, b;
371 struct req_iterator iter;
372 struct iov_iter i;
373 struct page *page;
374 ssize_t len;
375 int ret = 0;
376
377 page = alloc_page(GFP_NOIO);
378 if (unlikely(!page))
379 return -ENOMEM;
380
381 rq_for_each_segment(bvec, rq, iter) {
382 loff_t offset = pos;
383
384 b.bv_page = page;
385 b.bv_offset = 0;
386 b.bv_len = bvec.bv_len;
387
388 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
389 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
390 if (len < 0) {
391 ret = len;
392 goto out_free_page;
393 }
394
395 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
396 bvec.bv_offset, len, offset >> 9);
397 if (ret)
398 goto out_free_page;
399
400 flush_dcache_page(bvec.bv_page);
401
402 if (len != bvec.bv_len) {
403 struct bio *bio;
404
405 __rq_for_each_bio(bio, rq)
406 zero_fill_bio(bio);
407 break;
408 }
409 }
410
411 ret = 0;
412 out_free_page:
413 __free_page(page);
414 return ret;
415 }
416
417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
418 {
419 /*
420 * We use punch hole to reclaim the free space used by the
421 * image a.k.a. discard. However we do not support discard if
422 * encryption is enabled, because it may give an attacker
423 * useful information.
424 */
425 struct file *file = lo->lo_backing_file;
426 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
427 int ret;
428
429 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
430 ret = -EOPNOTSUPP;
431 goto out;
432 }
433
434 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
435 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
436 ret = -EIO;
437 out:
438 return ret;
439 }
440
441 static int lo_req_flush(struct loop_device *lo, struct request *rq)
442 {
443 struct file *file = lo->lo_backing_file;
444 int ret = vfs_fsync(file, 0);
445 if (unlikely(ret && ret != -EINVAL))
446 ret = -EIO;
447
448 return ret;
449 }
450
451 static void lo_complete_rq(struct request *rq)
452 {
453 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
454
455 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
456 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
457 struct bio *bio = cmd->rq->bio;
458
459 bio_advance(bio, cmd->ret);
460 zero_fill_bio(bio);
461 }
462
463 blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
464 }
465
466 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
467 {
468 if (!atomic_dec_and_test(&cmd->ref))
469 return;
470 kfree(cmd->bvec);
471 cmd->bvec = NULL;
472 blk_mq_complete_request(cmd->rq);
473 }
474
475 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
476 {
477 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
478
479 if (cmd->css)
480 css_put(cmd->css);
481 cmd->ret = ret;
482 lo_rw_aio_do_completion(cmd);
483 }
484
485 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
486 loff_t pos, bool rw)
487 {
488 struct iov_iter iter;
489 struct bio_vec *bvec;
490 struct request *rq = cmd->rq;
491 struct bio *bio = rq->bio;
492 struct file *file = lo->lo_backing_file;
493 unsigned int offset;
494 int segments = 0;
495 int ret;
496
497 if (rq->bio != rq->biotail) {
498 struct req_iterator iter;
499 struct bio_vec tmp;
500
501 __rq_for_each_bio(bio, rq)
502 segments += bio_segments(bio);
503 bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO);
504 if (!bvec)
505 return -EIO;
506 cmd->bvec = bvec;
507
508 /*
509 * The bios of the request may be started from the middle of
510 * the 'bvec' because of bio splitting, so we can't directly
511 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
512 * API will take care of all details for us.
513 */
514 rq_for_each_segment(tmp, rq, iter) {
515 *bvec = tmp;
516 bvec++;
517 }
518 bvec = cmd->bvec;
519 offset = 0;
520 } else {
521 /*
522 * Same here, this bio may be started from the middle of the
523 * 'bvec' because of bio splitting, so offset from the bvec
524 * must be passed to iov iterator
525 */
526 offset = bio->bi_iter.bi_bvec_done;
527 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
528 segments = bio_segments(bio);
529 }
530 atomic_set(&cmd->ref, 2);
531
532 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
533 segments, blk_rq_bytes(rq));
534 iter.iov_offset = offset;
535
536 cmd->iocb.ki_pos = pos;
537 cmd->iocb.ki_filp = file;
538 cmd->iocb.ki_complete = lo_rw_aio_complete;
539 cmd->iocb.ki_flags = IOCB_DIRECT;
540 if (cmd->css)
541 kthread_associate_blkcg(cmd->css);
542
543 if (rw == WRITE)
544 ret = call_write_iter(file, &cmd->iocb, &iter);
545 else
546 ret = call_read_iter(file, &cmd->iocb, &iter);
547
548 lo_rw_aio_do_completion(cmd);
549 kthread_associate_blkcg(NULL);
550
551 if (ret != -EIOCBQUEUED)
552 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
553 return 0;
554 }
555
556 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
557 {
558 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
559 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
560
561 /*
562 * lo_write_simple and lo_read_simple should have been covered
563 * by io submit style function like lo_rw_aio(), one blocker
564 * is that lo_read_simple() need to call flush_dcache_page after
565 * the page is written from kernel, and it isn't easy to handle
566 * this in io submit style function which submits all segments
567 * of the req at one time. And direct read IO doesn't need to
568 * run flush_dcache_page().
569 */
570 switch (req_op(rq)) {
571 case REQ_OP_FLUSH:
572 return lo_req_flush(lo, rq);
573 case REQ_OP_DISCARD:
574 case REQ_OP_WRITE_ZEROES:
575 return lo_discard(lo, rq, pos);
576 case REQ_OP_WRITE:
577 if (lo->transfer)
578 return lo_write_transfer(lo, rq, pos);
579 else if (cmd->use_aio)
580 return lo_rw_aio(lo, cmd, pos, WRITE);
581 else
582 return lo_write_simple(lo, rq, pos);
583 case REQ_OP_READ:
584 if (lo->transfer)
585 return lo_read_transfer(lo, rq, pos);
586 else if (cmd->use_aio)
587 return lo_rw_aio(lo, cmd, pos, READ);
588 else
589 return lo_read_simple(lo, rq, pos);
590 default:
591 WARN_ON_ONCE(1);
592 return -EIO;
593 break;
594 }
595 }
596
597 static inline void loop_update_dio(struct loop_device *lo)
598 {
599 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
600 lo->use_dio);
601 }
602
603 static struct file *loop_real_file(struct file *file)
604 {
605 struct file *f = NULL;
606
607 if (file->f_path.dentry->d_sb->s_op->real_loop)
608 f = file->f_path.dentry->d_sb->s_op->real_loop(file);
609 return f;
610 }
611
612 static void loop_reread_partitions(struct loop_device *lo,
613 struct block_device *bdev)
614 {
615 int rc;
616
617 /*
618 * bd_mutex has been held already in release path, so don't
619 * acquire it if this function is called in such case.
620 *
621 * If the reread partition isn't from release path, lo_refcnt
622 * must be at least one and it can only become zero when the
623 * current holder is released.
624 */
625 if (!atomic_read(&lo->lo_refcnt))
626 rc = __blkdev_reread_part(bdev);
627 else
628 rc = blkdev_reread_part(bdev);
629 if (rc)
630 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
631 __func__, lo->lo_number, lo->lo_file_name, rc);
632 }
633
634 /*
635 * loop_change_fd switched the backing store of a loopback device to
636 * a new file. This is useful for operating system installers to free up
637 * the original file and in High Availability environments to switch to
638 * an alternative location for the content in case of server meltdown.
639 * This can only work if the loop device is used read-only, and if the
640 * new backing store is the same size and type as the old backing store.
641 */
642 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
643 unsigned int arg)
644 {
645 struct file *file, *old_file;
646 struct file *f, *virt_file = NULL, *old_virt_file;
647 struct inode *inode;
648 int error;
649
650 error = -ENXIO;
651 if (lo->lo_state != Lo_bound)
652 goto out;
653
654 /* the loop device has to be read-only */
655 error = -EINVAL;
656 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
657 goto out;
658
659 error = -EBADF;
660 file = fget(arg);
661 if (!file)
662 goto out;
663 f = loop_real_file(file);
664 if (f) {
665 virt_file = file;
666 file = f;
667 get_file(file);
668 }
669
670 inode = file->f_mapping->host;
671 old_file = lo->lo_backing_file;
672 old_virt_file = lo->lo_backing_virt_file;
673
674 error = -EINVAL;
675
676 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
677 goto out_putf;
678
679 /* size of the new backing store needs to be the same */
680 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
681 goto out_putf;
682
683 /* and ... switch */
684 blk_mq_freeze_queue(lo->lo_queue);
685 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
686 lo->lo_backing_file = file;
687 lo->lo_backing_virt_file = virt_file;
688 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
689 mapping_set_gfp_mask(file->f_mapping,
690 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
691 loop_update_dio(lo);
692 blk_mq_unfreeze_queue(lo->lo_queue);
693
694 fput(old_file);
695 if (old_virt_file)
696 fput(old_virt_file);
697 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
698 loop_reread_partitions(lo, bdev);
699 return 0;
700
701 out_putf:
702 fput(file);
703 if (virt_file)
704 fput(virt_file);
705 out:
706 return error;
707 }
708
709 static inline int is_loop_device(struct file *file)
710 {
711 struct inode *i = file->f_mapping->host;
712
713 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
714 }
715
716 /*
717 * for AUFS
718 * no get/put for file.
719 */
720 struct file *loop_backing_file(struct super_block *sb)
721 {
722 struct file *ret;
723 struct loop_device *l;
724
725 ret = NULL;
726 if (MAJOR(sb->s_dev) == LOOP_MAJOR) {
727 l = sb->s_bdev->bd_disk->private_data;
728 ret = l->lo_backing_file;
729 }
730 return ret;
731 }
732 EXPORT_SYMBOL_GPL(loop_backing_file);
733
734 /* loop sysfs attributes */
735
736 static ssize_t loop_attr_show(struct device *dev, char *page,
737 ssize_t (*callback)(struct loop_device *, char *))
738 {
739 struct gendisk *disk = dev_to_disk(dev);
740 struct loop_device *lo = disk->private_data;
741
742 return callback(lo, page);
743 }
744
745 #define LOOP_ATTR_RO(_name) \
746 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
747 static ssize_t loop_attr_do_show_##_name(struct device *d, \
748 struct device_attribute *attr, char *b) \
749 { \
750 return loop_attr_show(d, b, loop_attr_##_name##_show); \
751 } \
752 static struct device_attribute loop_attr_##_name = \
753 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
754
755 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
756 {
757 ssize_t ret;
758 char *p = NULL;
759
760 spin_lock_irq(&lo->lo_lock);
761 if (lo->lo_backing_file)
762 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
763 spin_unlock_irq(&lo->lo_lock);
764
765 if (IS_ERR_OR_NULL(p))
766 ret = PTR_ERR(p);
767 else {
768 ret = strlen(p);
769 memmove(buf, p, ret);
770 buf[ret++] = '\n';
771 buf[ret] = 0;
772 }
773
774 return ret;
775 }
776
777 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
778 {
779 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
780 }
781
782 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
783 {
784 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
785 }
786
787 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
788 {
789 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
790
791 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
792 }
793
794 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
795 {
796 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
797
798 return sprintf(buf, "%s\n", partscan ? "1" : "0");
799 }
800
801 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
802 {
803 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
804
805 return sprintf(buf, "%s\n", dio ? "1" : "0");
806 }
807
808 LOOP_ATTR_RO(backing_file);
809 LOOP_ATTR_RO(offset);
810 LOOP_ATTR_RO(sizelimit);
811 LOOP_ATTR_RO(autoclear);
812 LOOP_ATTR_RO(partscan);
813 LOOP_ATTR_RO(dio);
814
815 static struct attribute *loop_attrs[] = {
816 &loop_attr_backing_file.attr,
817 &loop_attr_offset.attr,
818 &loop_attr_sizelimit.attr,
819 &loop_attr_autoclear.attr,
820 &loop_attr_partscan.attr,
821 &loop_attr_dio.attr,
822 NULL,
823 };
824
825 static struct attribute_group loop_attribute_group = {
826 .name = "loop",
827 .attrs= loop_attrs,
828 };
829
830 static int loop_sysfs_init(struct loop_device *lo)
831 {
832 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
833 &loop_attribute_group);
834 }
835
836 static void loop_sysfs_exit(struct loop_device *lo)
837 {
838 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
839 &loop_attribute_group);
840 }
841
842 static void loop_config_discard(struct loop_device *lo)
843 {
844 struct file *file = lo->lo_backing_file;
845 struct inode *inode = file->f_mapping->host;
846 struct request_queue *q = lo->lo_queue;
847
848 /*
849 * We use punch hole to reclaim the free space used by the
850 * image a.k.a. discard. However we do not support discard if
851 * encryption is enabled, because it may give an attacker
852 * useful information.
853 */
854 if ((!file->f_op->fallocate) ||
855 lo->lo_encrypt_key_size) {
856 q->limits.discard_granularity = 0;
857 q->limits.discard_alignment = 0;
858 blk_queue_max_discard_sectors(q, 0);
859 blk_queue_max_write_zeroes_sectors(q, 0);
860 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
861 return;
862 }
863
864 q->limits.discard_granularity = inode->i_sb->s_blocksize;
865 q->limits.discard_alignment = 0;
866
867 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
868 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
869 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
870 }
871
872 static void loop_unprepare_queue(struct loop_device *lo)
873 {
874 kthread_flush_worker(&lo->worker);
875 kthread_stop(lo->worker_task);
876 }
877
878 static int loop_kthread_worker_fn(void *worker_ptr)
879 {
880 current->flags |= PF_LESS_THROTTLE;
881 return kthread_worker_fn(worker_ptr);
882 }
883
884 static int loop_prepare_queue(struct loop_device *lo)
885 {
886 kthread_init_worker(&lo->worker);
887 lo->worker_task = kthread_run(loop_kthread_worker_fn,
888 &lo->worker, "loop%d", lo->lo_number);
889 if (IS_ERR(lo->worker_task))
890 return -ENOMEM;
891 set_user_nice(lo->worker_task, MIN_NICE);
892 return 0;
893 }
894
895 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
896 struct block_device *bdev, unsigned int arg)
897 {
898 struct file *file, *f, *virt_file = NULL;
899 struct inode *inode;
900 struct address_space *mapping;
901 int lo_flags = 0;
902 int error;
903 loff_t size;
904
905 /* This is safe, since we have a reference from open(). */
906 __module_get(THIS_MODULE);
907
908 error = -EBADF;
909 file = fget(arg);
910 if (!file)
911 goto out;
912 f = loop_real_file(file);
913 if (f) {
914 virt_file = file;
915 file = f;
916 get_file(file);
917 }
918
919 error = -EBUSY;
920 if (lo->lo_state != Lo_unbound)
921 goto out_putf;
922
923 /* Avoid recursion */
924 f = file;
925 while (is_loop_device(f)) {
926 struct loop_device *l;
927
928 if (f->f_mapping->host->i_bdev == bdev)
929 goto out_putf;
930
931 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
932 if (l->lo_state == Lo_unbound) {
933 error = -EINVAL;
934 goto out_putf;
935 }
936 f = l->lo_backing_file;
937 }
938
939 mapping = file->f_mapping;
940 inode = mapping->host;
941
942 error = -EINVAL;
943 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
944 goto out_putf;
945
946 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
947 !file->f_op->write_iter)
948 lo_flags |= LO_FLAGS_READ_ONLY;
949
950 error = -EFBIG;
951 size = get_loop_size(lo, file);
952 if ((loff_t)(sector_t)size != size)
953 goto out_putf;
954 error = loop_prepare_queue(lo);
955 if (error)
956 goto out_putf;
957
958 error = 0;
959
960 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
961
962 lo->use_dio = false;
963 lo->lo_device = bdev;
964 lo->lo_flags = lo_flags;
965 lo->lo_backing_file = file;
966 lo->lo_backing_virt_file = virt_file;
967 lo->transfer = NULL;
968 lo->ioctl = NULL;
969 lo->lo_sizelimit = 0;
970 lo->old_gfp_mask = mapping_gfp_mask(mapping);
971 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
972
973 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
974 blk_queue_write_cache(lo->lo_queue, true, false);
975
976 loop_update_dio(lo);
977 set_capacity(lo->lo_disk, size);
978 bd_set_size(bdev, size << 9);
979 loop_sysfs_init(lo);
980 /* let user-space know about the new size */
981 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
982
983 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
984 block_size(inode->i_bdev) : PAGE_SIZE);
985
986 lo->lo_state = Lo_bound;
987 if (part_shift)
988 lo->lo_flags |= LO_FLAGS_PARTSCAN;
989 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
990 loop_reread_partitions(lo, bdev);
991
992 /* Grab the block_device to prevent its destruction after we
993 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
994 */
995 bdgrab(bdev);
996 return 0;
997
998 out_putf:
999 fput(file);
1000 if (virt_file)
1001 fput(virt_file);
1002 out:
1003 /* This is safe: open() is still holding a reference. */
1004 module_put(THIS_MODULE);
1005 return error;
1006 }
1007
1008 static int
1009 loop_release_xfer(struct loop_device *lo)
1010 {
1011 int err = 0;
1012 struct loop_func_table *xfer = lo->lo_encryption;
1013
1014 if (xfer) {
1015 if (xfer->release)
1016 err = xfer->release(lo);
1017 lo->transfer = NULL;
1018 lo->lo_encryption = NULL;
1019 module_put(xfer->owner);
1020 }
1021 return err;
1022 }
1023
1024 static int
1025 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1026 const struct loop_info64 *i)
1027 {
1028 int err = 0;
1029
1030 if (xfer) {
1031 struct module *owner = xfer->owner;
1032
1033 if (!try_module_get(owner))
1034 return -EINVAL;
1035 if (xfer->init)
1036 err = xfer->init(lo, i);
1037 if (err)
1038 module_put(owner);
1039 else
1040 lo->lo_encryption = xfer;
1041 }
1042 return err;
1043 }
1044
1045 static int loop_clr_fd(struct loop_device *lo)
1046 {
1047 struct file *filp = lo->lo_backing_file;
1048 struct file *virt_filp = lo->lo_backing_virt_file;
1049 gfp_t gfp = lo->old_gfp_mask;
1050 struct block_device *bdev = lo->lo_device;
1051
1052 if (lo->lo_state != Lo_bound)
1053 return -ENXIO;
1054
1055 /*
1056 * If we've explicitly asked to tear down the loop device,
1057 * and it has an elevated reference count, set it for auto-teardown when
1058 * the last reference goes away. This stops $!~#$@ udev from
1059 * preventing teardown because it decided that it needs to run blkid on
1060 * the loopback device whenever they appear. xfstests is notorious for
1061 * failing tests because blkid via udev races with a losetup
1062 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1063 * command to fail with EBUSY.
1064 */
1065 if (atomic_read(&lo->lo_refcnt) > 1) {
1066 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1067 mutex_unlock(&lo->lo_ctl_mutex);
1068 return 0;
1069 }
1070
1071 if (filp == NULL)
1072 return -EINVAL;
1073
1074 /* freeze request queue during the transition */
1075 blk_mq_freeze_queue(lo->lo_queue);
1076
1077 spin_lock_irq(&lo->lo_lock);
1078 lo->lo_state = Lo_rundown;
1079 lo->lo_backing_file = NULL;
1080 lo->lo_backing_virt_file = NULL;
1081 spin_unlock_irq(&lo->lo_lock);
1082
1083 loop_release_xfer(lo);
1084 lo->transfer = NULL;
1085 lo->ioctl = NULL;
1086 lo->lo_device = NULL;
1087 lo->lo_encryption = NULL;
1088 lo->lo_offset = 0;
1089 lo->lo_sizelimit = 0;
1090 lo->lo_encrypt_key_size = 0;
1091 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1092 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1093 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1094 blk_queue_logical_block_size(lo->lo_queue, 512);
1095 blk_queue_physical_block_size(lo->lo_queue, 512);
1096 blk_queue_io_min(lo->lo_queue, 512);
1097 if (bdev) {
1098 bdput(bdev);
1099 invalidate_bdev(bdev);
1100 }
1101 set_capacity(lo->lo_disk, 0);
1102 loop_sysfs_exit(lo);
1103 if (bdev) {
1104 bd_set_size(bdev, 0);
1105 /* let user-space know about this change */
1106 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1107 }
1108 mapping_set_gfp_mask(filp->f_mapping, gfp);
1109 lo->lo_state = Lo_unbound;
1110 /* This is safe: open() is still holding a reference. */
1111 module_put(THIS_MODULE);
1112 blk_mq_unfreeze_queue(lo->lo_queue);
1113
1114 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1115 loop_reread_partitions(lo, bdev);
1116 lo->lo_flags = 0;
1117 if (!part_shift)
1118 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1119 loop_unprepare_queue(lo);
1120 mutex_unlock(&lo->lo_ctl_mutex);
1121 /*
1122 * Need not hold lo_ctl_mutex to fput backing file.
1123 * Calling fput holding lo_ctl_mutex triggers a circular
1124 * lock dependency possibility warning as fput can take
1125 * bd_mutex which is usually taken before lo_ctl_mutex.
1126 */
1127 fput(filp);
1128 if (virt_filp)
1129 fput(virt_filp);
1130 return 0;
1131 }
1132
1133 static int
1134 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1135 {
1136 int err;
1137 struct loop_func_table *xfer;
1138 kuid_t uid = current_uid();
1139
1140 if (lo->lo_encrypt_key_size &&
1141 !uid_eq(lo->lo_key_owner, uid) &&
1142 !capable(CAP_SYS_ADMIN))
1143 return -EPERM;
1144 if (lo->lo_state != Lo_bound)
1145 return -ENXIO;
1146 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1147 return -EINVAL;
1148
1149 /* I/O need to be drained during transfer transition */
1150 blk_mq_freeze_queue(lo->lo_queue);
1151
1152 err = loop_release_xfer(lo);
1153 if (err)
1154 goto exit;
1155
1156 if (info->lo_encrypt_type) {
1157 unsigned int type = info->lo_encrypt_type;
1158
1159 if (type >= MAX_LO_CRYPT) {
1160 err = -EINVAL;
1161 goto exit;
1162 }
1163 xfer = xfer_funcs[type];
1164 if (xfer == NULL) {
1165 err = -EINVAL;
1166 goto exit;
1167 }
1168 } else
1169 xfer = NULL;
1170
1171 err = loop_init_xfer(lo, xfer, info);
1172 if (err)
1173 goto exit;
1174
1175 if (lo->lo_offset != info->lo_offset ||
1176 lo->lo_sizelimit != info->lo_sizelimit) {
1177 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1178 err = -EFBIG;
1179 goto exit;
1180 }
1181 }
1182
1183 loop_config_discard(lo);
1184
1185 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1186 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1187 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1188 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1189
1190 if (!xfer)
1191 xfer = &none_funcs;
1192 lo->transfer = xfer->transfer;
1193 lo->ioctl = xfer->ioctl;
1194
1195 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1196 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1197 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1198
1199 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1200 lo->lo_init[0] = info->lo_init[0];
1201 lo->lo_init[1] = info->lo_init[1];
1202 if (info->lo_encrypt_key_size) {
1203 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1204 info->lo_encrypt_key_size);
1205 lo->lo_key_owner = uid;
1206 }
1207
1208 /* update dio if lo_offset or transfer is changed */
1209 __loop_update_dio(lo, lo->use_dio);
1210
1211 exit:
1212 blk_mq_unfreeze_queue(lo->lo_queue);
1213
1214 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1215 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1216 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1217 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1218 loop_reread_partitions(lo, lo->lo_device);
1219 }
1220
1221 return err;
1222 }
1223
1224 static int
1225 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1226 {
1227 struct file *file = lo->lo_backing_file;
1228 struct kstat stat;
1229 int error;
1230
1231 if (lo->lo_state != Lo_bound)
1232 return -ENXIO;
1233 error = vfs_getattr(&file->f_path, &stat,
1234 STATX_INO, AT_STATX_SYNC_AS_STAT);
1235 if (error)
1236 return error;
1237 memset(info, 0, sizeof(*info));
1238 info->lo_number = lo->lo_number;
1239 info->lo_device = huge_encode_dev(stat.dev);
1240 info->lo_inode = stat.ino;
1241 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1242 info->lo_offset = lo->lo_offset;
1243 info->lo_sizelimit = lo->lo_sizelimit;
1244 info->lo_flags = lo->lo_flags;
1245 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1246 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1247 info->lo_encrypt_type =
1248 lo->lo_encryption ? lo->lo_encryption->number : 0;
1249 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1250 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1251 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1252 lo->lo_encrypt_key_size);
1253 }
1254 return 0;
1255 }
1256
1257 static void
1258 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1259 {
1260 memset(info64, 0, sizeof(*info64));
1261 info64->lo_number = info->lo_number;
1262 info64->lo_device = info->lo_device;
1263 info64->lo_inode = info->lo_inode;
1264 info64->lo_rdevice = info->lo_rdevice;
1265 info64->lo_offset = info->lo_offset;
1266 info64->lo_sizelimit = 0;
1267 info64->lo_encrypt_type = info->lo_encrypt_type;
1268 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1269 info64->lo_flags = info->lo_flags;
1270 info64->lo_init[0] = info->lo_init[0];
1271 info64->lo_init[1] = info->lo_init[1];
1272 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1273 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1274 else
1275 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1276 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1277 }
1278
1279 static int
1280 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1281 {
1282 memset(info, 0, sizeof(*info));
1283 info->lo_number = info64->lo_number;
1284 info->lo_device = info64->lo_device;
1285 info->lo_inode = info64->lo_inode;
1286 info->lo_rdevice = info64->lo_rdevice;
1287 info->lo_offset = info64->lo_offset;
1288 info->lo_encrypt_type = info64->lo_encrypt_type;
1289 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1290 info->lo_flags = info64->lo_flags;
1291 info->lo_init[0] = info64->lo_init[0];
1292 info->lo_init[1] = info64->lo_init[1];
1293 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1294 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1295 else
1296 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1297 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1298
1299 /* error in case values were truncated */
1300 if (info->lo_device != info64->lo_device ||
1301 info->lo_rdevice != info64->lo_rdevice ||
1302 info->lo_inode != info64->lo_inode ||
1303 info->lo_offset != info64->lo_offset)
1304 return -EOVERFLOW;
1305
1306 return 0;
1307 }
1308
1309 static int
1310 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1311 {
1312 struct loop_info info;
1313 struct loop_info64 info64;
1314
1315 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1316 return -EFAULT;
1317 loop_info64_from_old(&info, &info64);
1318 return loop_set_status(lo, &info64);
1319 }
1320
1321 static int
1322 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1323 {
1324 struct loop_info64 info64;
1325
1326 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1327 return -EFAULT;
1328 return loop_set_status(lo, &info64);
1329 }
1330
1331 static int
1332 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1333 struct loop_info info;
1334 struct loop_info64 info64;
1335 int err = 0;
1336
1337 if (!arg)
1338 err = -EINVAL;
1339 if (!err)
1340 err = loop_get_status(lo, &info64);
1341 if (!err)
1342 err = loop_info64_to_old(&info64, &info);
1343 if (!err && copy_to_user(arg, &info, sizeof(info)))
1344 err = -EFAULT;
1345
1346 return err;
1347 }
1348
1349 static int
1350 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1351 struct loop_info64 info64;
1352 int err = 0;
1353
1354 if (!arg)
1355 err = -EINVAL;
1356 if (!err)
1357 err = loop_get_status(lo, &info64);
1358 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1359 err = -EFAULT;
1360
1361 return err;
1362 }
1363
1364 static int loop_set_capacity(struct loop_device *lo)
1365 {
1366 if (unlikely(lo->lo_state != Lo_bound))
1367 return -ENXIO;
1368
1369 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1370 }
1371
1372 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1373 {
1374 int error = -ENXIO;
1375 if (lo->lo_state != Lo_bound)
1376 goto out;
1377
1378 __loop_update_dio(lo, !!arg);
1379 if (lo->use_dio == !!arg)
1380 return 0;
1381 error = -EINVAL;
1382 out:
1383 return error;
1384 }
1385
1386 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1387 {
1388 if (lo->lo_state != Lo_bound)
1389 return -ENXIO;
1390
1391 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1392 return -EINVAL;
1393
1394 blk_mq_freeze_queue(lo->lo_queue);
1395
1396 blk_queue_logical_block_size(lo->lo_queue, arg);
1397 blk_queue_physical_block_size(lo->lo_queue, arg);
1398 blk_queue_io_min(lo->lo_queue, arg);
1399 loop_update_dio(lo);
1400
1401 blk_mq_unfreeze_queue(lo->lo_queue);
1402
1403 return 0;
1404 }
1405
1406 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1407 unsigned int cmd, unsigned long arg)
1408 {
1409 struct loop_device *lo = bdev->bd_disk->private_data;
1410 int err;
1411
1412 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1413 switch (cmd) {
1414 case LOOP_SET_FD:
1415 err = loop_set_fd(lo, mode, bdev, arg);
1416 break;
1417 case LOOP_CHANGE_FD:
1418 err = loop_change_fd(lo, bdev, arg);
1419 break;
1420 case LOOP_CLR_FD:
1421 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1422 err = loop_clr_fd(lo);
1423 if (!err)
1424 goto out_unlocked;
1425 break;
1426 case LOOP_SET_STATUS:
1427 err = -EPERM;
1428 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1429 err = loop_set_status_old(lo,
1430 (struct loop_info __user *)arg);
1431 break;
1432 case LOOP_GET_STATUS:
1433 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1434 break;
1435 case LOOP_SET_STATUS64:
1436 err = -EPERM;
1437 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1438 err = loop_set_status64(lo,
1439 (struct loop_info64 __user *) arg);
1440 break;
1441 case LOOP_GET_STATUS64:
1442 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1443 break;
1444 case LOOP_SET_CAPACITY:
1445 err = -EPERM;
1446 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1447 err = loop_set_capacity(lo);
1448 break;
1449 case LOOP_SET_DIRECT_IO:
1450 err = -EPERM;
1451 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1452 err = loop_set_dio(lo, arg);
1453 break;
1454 case LOOP_SET_BLOCK_SIZE:
1455 err = -EPERM;
1456 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1457 err = loop_set_block_size(lo, arg);
1458 break;
1459 default:
1460 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1461 }
1462 mutex_unlock(&lo->lo_ctl_mutex);
1463
1464 out_unlocked:
1465 return err;
1466 }
1467
1468 #ifdef CONFIG_COMPAT
1469 struct compat_loop_info {
1470 compat_int_t lo_number; /* ioctl r/o */
1471 compat_dev_t lo_device; /* ioctl r/o */
1472 compat_ulong_t lo_inode; /* ioctl r/o */
1473 compat_dev_t lo_rdevice; /* ioctl r/o */
1474 compat_int_t lo_offset;
1475 compat_int_t lo_encrypt_type;
1476 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1477 compat_int_t lo_flags; /* ioctl r/o */
1478 char lo_name[LO_NAME_SIZE];
1479 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1480 compat_ulong_t lo_init[2];
1481 char reserved[4];
1482 };
1483
1484 /*
1485 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1486 * - noinlined to reduce stack space usage in main part of driver
1487 */
1488 static noinline int
1489 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1490 struct loop_info64 *info64)
1491 {
1492 struct compat_loop_info info;
1493
1494 if (copy_from_user(&info, arg, sizeof(info)))
1495 return -EFAULT;
1496
1497 memset(info64, 0, sizeof(*info64));
1498 info64->lo_number = info.lo_number;
1499 info64->lo_device = info.lo_device;
1500 info64->lo_inode = info.lo_inode;
1501 info64->lo_rdevice = info.lo_rdevice;
1502 info64->lo_offset = info.lo_offset;
1503 info64->lo_sizelimit = 0;
1504 info64->lo_encrypt_type = info.lo_encrypt_type;
1505 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1506 info64->lo_flags = info.lo_flags;
1507 info64->lo_init[0] = info.lo_init[0];
1508 info64->lo_init[1] = info.lo_init[1];
1509 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1510 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1511 else
1512 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1513 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1514 return 0;
1515 }
1516
1517 /*
1518 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1519 * - noinlined to reduce stack space usage in main part of driver
1520 */
1521 static noinline int
1522 loop_info64_to_compat(const struct loop_info64 *info64,
1523 struct compat_loop_info __user *arg)
1524 {
1525 struct compat_loop_info info;
1526
1527 memset(&info, 0, sizeof(info));
1528 info.lo_number = info64->lo_number;
1529 info.lo_device = info64->lo_device;
1530 info.lo_inode = info64->lo_inode;
1531 info.lo_rdevice = info64->lo_rdevice;
1532 info.lo_offset = info64->lo_offset;
1533 info.lo_encrypt_type = info64->lo_encrypt_type;
1534 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1535 info.lo_flags = info64->lo_flags;
1536 info.lo_init[0] = info64->lo_init[0];
1537 info.lo_init[1] = info64->lo_init[1];
1538 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1539 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1540 else
1541 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1542 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1543
1544 /* error in case values were truncated */
1545 if (info.lo_device != info64->lo_device ||
1546 info.lo_rdevice != info64->lo_rdevice ||
1547 info.lo_inode != info64->lo_inode ||
1548 info.lo_offset != info64->lo_offset ||
1549 info.lo_init[0] != info64->lo_init[0] ||
1550 info.lo_init[1] != info64->lo_init[1])
1551 return -EOVERFLOW;
1552
1553 if (copy_to_user(arg, &info, sizeof(info)))
1554 return -EFAULT;
1555 return 0;
1556 }
1557
1558 static int
1559 loop_set_status_compat(struct loop_device *lo,
1560 const struct compat_loop_info __user *arg)
1561 {
1562 struct loop_info64 info64;
1563 int ret;
1564
1565 ret = loop_info64_from_compat(arg, &info64);
1566 if (ret < 0)
1567 return ret;
1568 return loop_set_status(lo, &info64);
1569 }
1570
1571 static int
1572 loop_get_status_compat(struct loop_device *lo,
1573 struct compat_loop_info __user *arg)
1574 {
1575 struct loop_info64 info64;
1576 int err = 0;
1577
1578 if (!arg)
1579 err = -EINVAL;
1580 if (!err)
1581 err = loop_get_status(lo, &info64);
1582 if (!err)
1583 err = loop_info64_to_compat(&info64, arg);
1584 return err;
1585 }
1586
1587 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1588 unsigned int cmd, unsigned long arg)
1589 {
1590 struct loop_device *lo = bdev->bd_disk->private_data;
1591 int err;
1592
1593 switch(cmd) {
1594 case LOOP_SET_STATUS:
1595 mutex_lock(&lo->lo_ctl_mutex);
1596 err = loop_set_status_compat(
1597 lo, (const struct compat_loop_info __user *) arg);
1598 mutex_unlock(&lo->lo_ctl_mutex);
1599 break;
1600 case LOOP_GET_STATUS:
1601 mutex_lock(&lo->lo_ctl_mutex);
1602 err = loop_get_status_compat(
1603 lo, (struct compat_loop_info __user *) arg);
1604 mutex_unlock(&lo->lo_ctl_mutex);
1605 break;
1606 case LOOP_SET_CAPACITY:
1607 case LOOP_CLR_FD:
1608 case LOOP_GET_STATUS64:
1609 case LOOP_SET_STATUS64:
1610 arg = (unsigned long) compat_ptr(arg);
1611 case LOOP_SET_FD:
1612 case LOOP_CHANGE_FD:
1613 err = lo_ioctl(bdev, mode, cmd, arg);
1614 break;
1615 default:
1616 err = -ENOIOCTLCMD;
1617 break;
1618 }
1619 return err;
1620 }
1621 #endif
1622
1623 static int lo_open(struct block_device *bdev, fmode_t mode)
1624 {
1625 struct loop_device *lo;
1626 int err = 0;
1627
1628 mutex_lock(&loop_index_mutex);
1629 lo = bdev->bd_disk->private_data;
1630 if (!lo) {
1631 err = -ENXIO;
1632 goto out;
1633 }
1634
1635 atomic_inc(&lo->lo_refcnt);
1636 out:
1637 mutex_unlock(&loop_index_mutex);
1638 return err;
1639 }
1640
1641 static void __lo_release(struct loop_device *lo)
1642 {
1643 int err;
1644
1645 if (atomic_dec_return(&lo->lo_refcnt))
1646 return;
1647
1648 mutex_lock(&lo->lo_ctl_mutex);
1649 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1650 /*
1651 * In autoclear mode, stop the loop thread
1652 * and remove configuration after last close.
1653 */
1654 err = loop_clr_fd(lo);
1655 if (!err)
1656 return;
1657 } else if (lo->lo_state == Lo_bound) {
1658 /*
1659 * Otherwise keep thread (if running) and config,
1660 * but flush possible ongoing bios in thread.
1661 */
1662 blk_mq_freeze_queue(lo->lo_queue);
1663 blk_mq_unfreeze_queue(lo->lo_queue);
1664 }
1665
1666 mutex_unlock(&lo->lo_ctl_mutex);
1667 }
1668
1669 static void lo_release(struct gendisk *disk, fmode_t mode)
1670 {
1671 mutex_lock(&loop_index_mutex);
1672 __lo_release(disk->private_data);
1673 mutex_unlock(&loop_index_mutex);
1674 }
1675
1676 static const struct block_device_operations lo_fops = {
1677 .owner = THIS_MODULE,
1678 .open = lo_open,
1679 .release = lo_release,
1680 .ioctl = lo_ioctl,
1681 #ifdef CONFIG_COMPAT
1682 .compat_ioctl = lo_compat_ioctl,
1683 #endif
1684 };
1685
1686 /*
1687 * And now the modules code and kernel interface.
1688 */
1689 static int max_loop;
1690 module_param(max_loop, int, S_IRUGO);
1691 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1692 module_param(max_part, int, S_IRUGO);
1693 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1694 MODULE_LICENSE("GPL");
1695 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1696
1697 int loop_register_transfer(struct loop_func_table *funcs)
1698 {
1699 unsigned int n = funcs->number;
1700
1701 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1702 return -EINVAL;
1703 xfer_funcs[n] = funcs;
1704 return 0;
1705 }
1706
1707 static int unregister_transfer_cb(int id, void *ptr, void *data)
1708 {
1709 struct loop_device *lo = ptr;
1710 struct loop_func_table *xfer = data;
1711
1712 mutex_lock(&lo->lo_ctl_mutex);
1713 if (lo->lo_encryption == xfer)
1714 loop_release_xfer(lo);
1715 mutex_unlock(&lo->lo_ctl_mutex);
1716 return 0;
1717 }
1718
1719 int loop_unregister_transfer(int number)
1720 {
1721 unsigned int n = number;
1722 struct loop_func_table *xfer;
1723
1724 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1725 return -EINVAL;
1726
1727 xfer_funcs[n] = NULL;
1728 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1729 return 0;
1730 }
1731
1732 EXPORT_SYMBOL(loop_register_transfer);
1733 EXPORT_SYMBOL(loop_unregister_transfer);
1734
1735 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1736 const struct blk_mq_queue_data *bd)
1737 {
1738 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1739 struct loop_device *lo = cmd->rq->q->queuedata;
1740
1741 blk_mq_start_request(bd->rq);
1742
1743 if (lo->lo_state != Lo_bound)
1744 return BLK_STS_IOERR;
1745
1746 switch (req_op(cmd->rq)) {
1747 case REQ_OP_FLUSH:
1748 case REQ_OP_DISCARD:
1749 case REQ_OP_WRITE_ZEROES:
1750 cmd->use_aio = false;
1751 break;
1752 default:
1753 cmd->use_aio = lo->use_dio;
1754 break;
1755 }
1756
1757 /* always use the first bio's css */
1758 #ifdef CONFIG_BLK_CGROUP
1759 if (cmd->use_aio && cmd->rq->bio && cmd->rq->bio->bi_css) {
1760 cmd->css = cmd->rq->bio->bi_css;
1761 css_get(cmd->css);
1762 } else
1763 #endif
1764 cmd->css = NULL;
1765 kthread_queue_work(&lo->worker, &cmd->work);
1766
1767 return BLK_STS_OK;
1768 }
1769
1770 static void loop_handle_cmd(struct loop_cmd *cmd)
1771 {
1772 const bool write = op_is_write(req_op(cmd->rq));
1773 struct loop_device *lo = cmd->rq->q->queuedata;
1774 int ret = 0;
1775
1776 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1777 ret = -EIO;
1778 goto failed;
1779 }
1780
1781 ret = do_req_filebacked(lo, cmd->rq);
1782 failed:
1783 /* complete non-aio request */
1784 if (!cmd->use_aio || ret) {
1785 cmd->ret = ret ? -EIO : 0;
1786 blk_mq_complete_request(cmd->rq);
1787 }
1788 }
1789
1790 static void loop_queue_work(struct kthread_work *work)
1791 {
1792 struct loop_cmd *cmd =
1793 container_of(work, struct loop_cmd, work);
1794
1795 loop_handle_cmd(cmd);
1796 }
1797
1798 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1799 unsigned int hctx_idx, unsigned int numa_node)
1800 {
1801 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1802
1803 cmd->rq = rq;
1804 kthread_init_work(&cmd->work, loop_queue_work);
1805
1806 return 0;
1807 }
1808
1809 static const struct blk_mq_ops loop_mq_ops = {
1810 .queue_rq = loop_queue_rq,
1811 .init_request = loop_init_request,
1812 .complete = lo_complete_rq,
1813 };
1814
1815 static int loop_add(struct loop_device **l, int i)
1816 {
1817 struct loop_device *lo;
1818 struct gendisk *disk;
1819 int err;
1820
1821 err = -ENOMEM;
1822 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1823 if (!lo)
1824 goto out;
1825
1826 lo->lo_state = Lo_unbound;
1827
1828 /* allocate id, if @id >= 0, we're requesting that specific id */
1829 if (i >= 0) {
1830 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1831 if (err == -ENOSPC)
1832 err = -EEXIST;
1833 } else {
1834 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1835 }
1836 if (err < 0)
1837 goto out_free_dev;
1838 i = err;
1839
1840 err = -ENOMEM;
1841 lo->tag_set.ops = &loop_mq_ops;
1842 lo->tag_set.nr_hw_queues = 1;
1843 lo->tag_set.queue_depth = 128;
1844 lo->tag_set.numa_node = NUMA_NO_NODE;
1845 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1846 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1847 lo->tag_set.driver_data = lo;
1848
1849 err = blk_mq_alloc_tag_set(&lo->tag_set);
1850 if (err)
1851 goto out_free_idr;
1852
1853 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1854 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1855 err = PTR_ERR(lo->lo_queue);
1856 goto out_cleanup_tags;
1857 }
1858 lo->lo_queue->queuedata = lo;
1859
1860 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1861
1862 /*
1863 * By default, we do buffer IO, so it doesn't make sense to enable
1864 * merge because the I/O submitted to backing file is handled page by
1865 * page. For directio mode, merge does help to dispatch bigger request
1866 * to underlayer disk. We will enable merge once directio is enabled.
1867 */
1868 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1869
1870 err = -ENOMEM;
1871 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1872 if (!disk)
1873 goto out_free_queue;
1874
1875 /*
1876 * Disable partition scanning by default. The in-kernel partition
1877 * scanning can be requested individually per-device during its
1878 * setup. Userspace can always add and remove partitions from all
1879 * devices. The needed partition minors are allocated from the
1880 * extended minor space, the main loop device numbers will continue
1881 * to match the loop minors, regardless of the number of partitions
1882 * used.
1883 *
1884 * If max_part is given, partition scanning is globally enabled for
1885 * all loop devices. The minors for the main loop devices will be
1886 * multiples of max_part.
1887 *
1888 * Note: Global-for-all-devices, set-only-at-init, read-only module
1889 * parameteters like 'max_loop' and 'max_part' make things needlessly
1890 * complicated, are too static, inflexible and may surprise
1891 * userspace tools. Parameters like this in general should be avoided.
1892 */
1893 if (!part_shift)
1894 disk->flags |= GENHD_FL_NO_PART_SCAN;
1895 disk->flags |= GENHD_FL_EXT_DEVT;
1896 mutex_init(&lo->lo_ctl_mutex);
1897 atomic_set(&lo->lo_refcnt, 0);
1898 lo->lo_number = i;
1899 spin_lock_init(&lo->lo_lock);
1900 disk->major = LOOP_MAJOR;
1901 disk->first_minor = i << part_shift;
1902 disk->fops = &lo_fops;
1903 disk->private_data = lo;
1904 disk->queue = lo->lo_queue;
1905 sprintf(disk->disk_name, "loop%d", i);
1906 add_disk(disk);
1907 *l = lo;
1908 return lo->lo_number;
1909
1910 out_free_queue:
1911 blk_cleanup_queue(lo->lo_queue);
1912 out_cleanup_tags:
1913 blk_mq_free_tag_set(&lo->tag_set);
1914 out_free_idr:
1915 idr_remove(&loop_index_idr, i);
1916 out_free_dev:
1917 kfree(lo);
1918 out:
1919 return err;
1920 }
1921
1922 static void loop_remove(struct loop_device *lo)
1923 {
1924 blk_cleanup_queue(lo->lo_queue);
1925 del_gendisk(lo->lo_disk);
1926 blk_mq_free_tag_set(&lo->tag_set);
1927 put_disk(lo->lo_disk);
1928 kfree(lo);
1929 }
1930
1931 static int find_free_cb(int id, void *ptr, void *data)
1932 {
1933 struct loop_device *lo = ptr;
1934 struct loop_device **l = data;
1935
1936 if (lo->lo_state == Lo_unbound) {
1937 *l = lo;
1938 return 1;
1939 }
1940 return 0;
1941 }
1942
1943 static int loop_lookup(struct loop_device **l, int i)
1944 {
1945 struct loop_device *lo;
1946 int ret = -ENODEV;
1947
1948 if (i < 0) {
1949 int err;
1950
1951 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1952 if (err == 1) {
1953 *l = lo;
1954 ret = lo->lo_number;
1955 }
1956 goto out;
1957 }
1958
1959 /* lookup and return a specific i */
1960 lo = idr_find(&loop_index_idr, i);
1961 if (lo) {
1962 *l = lo;
1963 ret = lo->lo_number;
1964 }
1965 out:
1966 return ret;
1967 }
1968
1969 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1970 {
1971 struct loop_device *lo;
1972 struct kobject *kobj;
1973 int err;
1974
1975 mutex_lock(&loop_index_mutex);
1976 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1977 if (err < 0)
1978 err = loop_add(&lo, MINOR(dev) >> part_shift);
1979 if (err < 0)
1980 kobj = NULL;
1981 else
1982 kobj = get_disk(lo->lo_disk);
1983 mutex_unlock(&loop_index_mutex);
1984
1985 *part = 0;
1986 return kobj;
1987 }
1988
1989 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1990 unsigned long parm)
1991 {
1992 struct loop_device *lo;
1993 int ret = -ENOSYS;
1994
1995 mutex_lock(&loop_index_mutex);
1996 switch (cmd) {
1997 case LOOP_CTL_ADD:
1998 ret = loop_lookup(&lo, parm);
1999 if (ret >= 0) {
2000 ret = -EEXIST;
2001 break;
2002 }
2003 ret = loop_add(&lo, parm);
2004 break;
2005 case LOOP_CTL_REMOVE:
2006 ret = loop_lookup(&lo, parm);
2007 if (ret < 0)
2008 break;
2009 mutex_lock(&lo->lo_ctl_mutex);
2010 if (lo->lo_state != Lo_unbound) {
2011 ret = -EBUSY;
2012 mutex_unlock(&lo->lo_ctl_mutex);
2013 break;
2014 }
2015 if (atomic_read(&lo->lo_refcnt) > 0) {
2016 ret = -EBUSY;
2017 mutex_unlock(&lo->lo_ctl_mutex);
2018 break;
2019 }
2020 lo->lo_disk->private_data = NULL;
2021 mutex_unlock(&lo->lo_ctl_mutex);
2022 idr_remove(&loop_index_idr, lo->lo_number);
2023 loop_remove(lo);
2024 break;
2025 case LOOP_CTL_GET_FREE:
2026 ret = loop_lookup(&lo, -1);
2027 if (ret >= 0)
2028 break;
2029 ret = loop_add(&lo, -1);
2030 }
2031 mutex_unlock(&loop_index_mutex);
2032
2033 return ret;
2034 }
2035
2036 static const struct file_operations loop_ctl_fops = {
2037 .open = nonseekable_open,
2038 .unlocked_ioctl = loop_control_ioctl,
2039 .compat_ioctl = loop_control_ioctl,
2040 .owner = THIS_MODULE,
2041 .llseek = noop_llseek,
2042 };
2043
2044 static struct miscdevice loop_misc = {
2045 .minor = LOOP_CTRL_MINOR,
2046 .name = "loop-control",
2047 .fops = &loop_ctl_fops,
2048 };
2049
2050 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2051 MODULE_ALIAS("devname:loop-control");
2052
2053 static int __init loop_init(void)
2054 {
2055 int i, nr;
2056 unsigned long range;
2057 struct loop_device *lo;
2058 int err;
2059
2060 part_shift = 0;
2061 if (max_part > 0) {
2062 part_shift = fls(max_part);
2063
2064 /*
2065 * Adjust max_part according to part_shift as it is exported
2066 * to user space so that user can decide correct minor number
2067 * if [s]he want to create more devices.
2068 *
2069 * Note that -1 is required because partition 0 is reserved
2070 * for the whole disk.
2071 */
2072 max_part = (1UL << part_shift) - 1;
2073 }
2074
2075 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2076 err = -EINVAL;
2077 goto err_out;
2078 }
2079
2080 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2081 err = -EINVAL;
2082 goto err_out;
2083 }
2084
2085 /*
2086 * If max_loop is specified, create that many devices upfront.
2087 * This also becomes a hard limit. If max_loop is not specified,
2088 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2089 * init time. Loop devices can be requested on-demand with the
2090 * /dev/loop-control interface, or be instantiated by accessing
2091 * a 'dead' device node.
2092 */
2093 if (max_loop) {
2094 nr = max_loop;
2095 range = max_loop << part_shift;
2096 } else {
2097 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2098 range = 1UL << MINORBITS;
2099 }
2100
2101 err = misc_register(&loop_misc);
2102 if (err < 0)
2103 goto err_out;
2104
2105
2106 if (register_blkdev(LOOP_MAJOR, "loop")) {
2107 err = -EIO;
2108 goto misc_out;
2109 }
2110
2111 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2112 THIS_MODULE, loop_probe, NULL, NULL);
2113
2114 /* pre-create number of devices given by config or max_loop */
2115 mutex_lock(&loop_index_mutex);
2116 for (i = 0; i < nr; i++)
2117 loop_add(&lo, i);
2118 mutex_unlock(&loop_index_mutex);
2119
2120 printk(KERN_INFO "loop: module loaded\n");
2121 return 0;
2122
2123 misc_out:
2124 misc_deregister(&loop_misc);
2125 err_out:
2126 return err;
2127 }
2128
2129 static int loop_exit_cb(int id, void *ptr, void *data)
2130 {
2131 struct loop_device *lo = ptr;
2132
2133 loop_remove(lo);
2134 return 0;
2135 }
2136
2137 static void __exit loop_exit(void)
2138 {
2139 unsigned long range;
2140
2141 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2142
2143 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2144 idr_destroy(&loop_index_idr);
2145
2146 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2147 unregister_blkdev(LOOP_MAJOR, "loop");
2148
2149 misc_deregister(&loop_misc);
2150 }
2151
2152 module_init(loop_init);
2153 module_exit(loop_exit);
2154
2155 #ifndef MODULE
2156 static int __init max_loop_setup(char *str)
2157 {
2158 max_loop = simple_strtol(str, NULL, 0);
2159 return 1;
2160 }
2161
2162 __setup("max_loop=", max_loop_setup);
2163 #endif