]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/loop.c
blk-mq: remove the error argument to blk_mq_complete_request
[mirror_ubuntu-bionic-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80
81 #include <linux/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
93 {
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
98
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
105 }
106
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
111
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
116 }
117
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
123 }
124
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
127 };
128
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
133 };
134
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
139 };
140
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 loff_t loopsize;
144
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
152
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
155 /*
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
158 */
159 return loopsize >> 9;
160 }
161
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
175
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
179 }
180
181 /*
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
186 *
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane applications should be PAGE_SIZE aligned
190 */
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
201 }
202
203 if (lo->use_dio == use_dio)
204 return;
205
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
208
209 /*
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
213 */
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio)
217 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 else
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 sector_t x = (sector_t)size;
228 struct block_device *bdev = lo->lo_device;
229
230 if (unlikely((loff_t)x != size))
231 return -EFBIG;
232 if (lo->lo_offset != offset)
233 lo->lo_offset = offset;
234 if (lo->lo_sizelimit != sizelimit)
235 lo->lo_sizelimit = sizelimit;
236 set_capacity(lo->lo_disk, x);
237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 /* let user-space know about the new size */
239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 return 0;
241 }
242
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 struct page *rpage, unsigned roffs,
246 struct page *lpage, unsigned loffs,
247 int size, sector_t rblock)
248 {
249 int ret;
250
251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 if (likely(!ret))
253 return 0;
254
255 printk_ratelimited(KERN_ERR
256 "loop: Transfer error at byte offset %llu, length %i.\n",
257 (unsigned long long)rblock << 9, size);
258 return ret;
259 }
260
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 struct iov_iter i;
264 ssize_t bw;
265
266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267
268 file_start_write(file);
269 bw = vfs_iter_write(file, &i, ppos);
270 file_end_write(file);
271
272 if (likely(bw == bvec->bv_len))
273 return 0;
274
275 printk_ratelimited(KERN_ERR
276 "loop: Write error at byte offset %llu, length %i.\n",
277 (unsigned long long)*ppos, bvec->bv_len);
278 if (bw >= 0)
279 bw = -EIO;
280 return bw;
281 }
282
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 loff_t pos)
285 {
286 struct bio_vec bvec;
287 struct req_iterator iter;
288 int ret = 0;
289
290 rq_for_each_segment(bvec, rq, iter) {
291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 if (ret < 0)
293 break;
294 cond_resched();
295 }
296
297 return ret;
298 }
299
300 /*
301 * This is the slow, transforming version that needs to double buffer the
302 * data as it cannot do the transformations in place without having direct
303 * access to the destination pages of the backing file.
304 */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 loff_t pos)
307 {
308 struct bio_vec bvec, b;
309 struct req_iterator iter;
310 struct page *page;
311 int ret = 0;
312
313 page = alloc_page(GFP_NOIO);
314 if (unlikely(!page))
315 return -ENOMEM;
316
317 rq_for_each_segment(bvec, rq, iter) {
318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 bvec.bv_offset, bvec.bv_len, pos >> 9);
320 if (unlikely(ret))
321 break;
322
323 b.bv_page = page;
324 b.bv_offset = 0;
325 b.bv_len = bvec.bv_len;
326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 if (ret < 0)
328 break;
329 }
330
331 __free_page(page);
332 return ret;
333 }
334
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 loff_t pos)
337 {
338 struct bio_vec bvec;
339 struct req_iterator iter;
340 struct iov_iter i;
341 ssize_t len;
342
343 rq_for_each_segment(bvec, rq, iter) {
344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 if (len < 0)
347 return len;
348
349 flush_dcache_page(bvec.bv_page);
350
351 if (len != bvec.bv_len) {
352 struct bio *bio;
353
354 __rq_for_each_bio(bio, rq)
355 zero_fill_bio(bio);
356 break;
357 }
358 cond_resched();
359 }
360
361 return 0;
362 }
363
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 loff_t pos)
366 {
367 struct bio_vec bvec, b;
368 struct req_iterator iter;
369 struct iov_iter i;
370 struct page *page;
371 ssize_t len;
372 int ret = 0;
373
374 page = alloc_page(GFP_NOIO);
375 if (unlikely(!page))
376 return -ENOMEM;
377
378 rq_for_each_segment(bvec, rq, iter) {
379 loff_t offset = pos;
380
381 b.bv_page = page;
382 b.bv_offset = 0;
383 b.bv_len = bvec.bv_len;
384
385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 if (len < 0) {
388 ret = len;
389 goto out_free_page;
390 }
391
392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 bvec.bv_offset, len, offset >> 9);
394 if (ret)
395 goto out_free_page;
396
397 flush_dcache_page(bvec.bv_page);
398
399 if (len != bvec.bv_len) {
400 struct bio *bio;
401
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
405 }
406 }
407
408 ret = 0;
409 out_free_page:
410 __free_page(page);
411 return ret;
412 }
413
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 /*
417 * We use punch hole to reclaim the free space used by the
418 * image a.k.a. discard. However we do not support discard if
419 * encryption is enabled, because it may give an attacker
420 * useful information.
421 */
422 struct file *file = lo->lo_backing_file;
423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 int ret;
425
426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 ret = -EOPNOTSUPP;
428 goto out;
429 }
430
431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 ret = -EIO;
434 out:
435 return ret;
436 }
437
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 struct file *file = lo->lo_backing_file;
441 int ret = vfs_fsync(file, 0);
442 if (unlikely(ret && ret != -EINVAL))
443 ret = -EIO;
444
445 return ret;
446 }
447
448 static void lo_complete_rq(struct request *rq)
449 {
450 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
451
452 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
453 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
454 struct bio *bio = cmd->rq->bio;
455
456 bio_advance(bio, cmd->ret);
457 zero_fill_bio(bio);
458 }
459
460 blk_mq_end_request(rq, cmd->ret < 0 ? -EIO : 0);
461 }
462
463 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
464 {
465 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
466
467 cmd->ret = ret;
468 blk_mq_complete_request(cmd->rq);
469 }
470
471 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
472 loff_t pos, bool rw)
473 {
474 struct iov_iter iter;
475 struct bio_vec *bvec;
476 struct bio *bio = cmd->rq->bio;
477 struct file *file = lo->lo_backing_file;
478 int ret;
479
480 /* nomerge for loop request queue */
481 WARN_ON(cmd->rq->bio != cmd->rq->biotail);
482
483 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
484 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
485 bio_segments(bio), blk_rq_bytes(cmd->rq));
486 /*
487 * This bio may be started from the middle of the 'bvec'
488 * because of bio splitting, so offset from the bvec must
489 * be passed to iov iterator
490 */
491 iter.iov_offset = bio->bi_iter.bi_bvec_done;
492
493 cmd->iocb.ki_pos = pos;
494 cmd->iocb.ki_filp = file;
495 cmd->iocb.ki_complete = lo_rw_aio_complete;
496 cmd->iocb.ki_flags = IOCB_DIRECT;
497
498 if (rw == WRITE)
499 ret = call_write_iter(file, &cmd->iocb, &iter);
500 else
501 ret = call_read_iter(file, &cmd->iocb, &iter);
502
503 if (ret != -EIOCBQUEUED)
504 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
505 return 0;
506 }
507
508 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
509 {
510 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
511 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
512
513 /*
514 * lo_write_simple and lo_read_simple should have been covered
515 * by io submit style function like lo_rw_aio(), one blocker
516 * is that lo_read_simple() need to call flush_dcache_page after
517 * the page is written from kernel, and it isn't easy to handle
518 * this in io submit style function which submits all segments
519 * of the req at one time. And direct read IO doesn't need to
520 * run flush_dcache_page().
521 */
522 switch (req_op(rq)) {
523 case REQ_OP_FLUSH:
524 return lo_req_flush(lo, rq);
525 case REQ_OP_DISCARD:
526 case REQ_OP_WRITE_ZEROES:
527 return lo_discard(lo, rq, pos);
528 case REQ_OP_WRITE:
529 if (lo->transfer)
530 return lo_write_transfer(lo, rq, pos);
531 else if (cmd->use_aio)
532 return lo_rw_aio(lo, cmd, pos, WRITE);
533 else
534 return lo_write_simple(lo, rq, pos);
535 case REQ_OP_READ:
536 if (lo->transfer)
537 return lo_read_transfer(lo, rq, pos);
538 else if (cmd->use_aio)
539 return lo_rw_aio(lo, cmd, pos, READ);
540 else
541 return lo_read_simple(lo, rq, pos);
542 default:
543 WARN_ON_ONCE(1);
544 return -EIO;
545 break;
546 }
547 }
548
549 struct switch_request {
550 struct file *file;
551 struct completion wait;
552 };
553
554 static inline void loop_update_dio(struct loop_device *lo)
555 {
556 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
557 lo->use_dio);
558 }
559
560 /*
561 * Do the actual switch; called from the BIO completion routine
562 */
563 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
564 {
565 struct file *file = p->file;
566 struct file *old_file = lo->lo_backing_file;
567 struct address_space *mapping;
568
569 /* if no new file, only flush of queued bios requested */
570 if (!file)
571 return;
572
573 mapping = file->f_mapping;
574 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
575 lo->lo_backing_file = file;
576 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
577 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
578 lo->old_gfp_mask = mapping_gfp_mask(mapping);
579 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
580 loop_update_dio(lo);
581 }
582
583 /*
584 * loop_switch performs the hard work of switching a backing store.
585 * First it needs to flush existing IO, it does this by sending a magic
586 * BIO down the pipe. The completion of this BIO does the actual switch.
587 */
588 static int loop_switch(struct loop_device *lo, struct file *file)
589 {
590 struct switch_request w;
591
592 w.file = file;
593
594 /* freeze queue and wait for completion of scheduled requests */
595 blk_mq_freeze_queue(lo->lo_queue);
596
597 /* do the switch action */
598 do_loop_switch(lo, &w);
599
600 /* unfreeze */
601 blk_mq_unfreeze_queue(lo->lo_queue);
602
603 return 0;
604 }
605
606 /*
607 * Helper to flush the IOs in loop, but keeping loop thread running
608 */
609 static int loop_flush(struct loop_device *lo)
610 {
611 return loop_switch(lo, NULL);
612 }
613
614 static void loop_reread_partitions(struct loop_device *lo,
615 struct block_device *bdev)
616 {
617 int rc;
618
619 /*
620 * bd_mutex has been held already in release path, so don't
621 * acquire it if this function is called in such case.
622 *
623 * If the reread partition isn't from release path, lo_refcnt
624 * must be at least one and it can only become zero when the
625 * current holder is released.
626 */
627 if (!atomic_read(&lo->lo_refcnt))
628 rc = __blkdev_reread_part(bdev);
629 else
630 rc = blkdev_reread_part(bdev);
631 if (rc)
632 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
633 __func__, lo->lo_number, lo->lo_file_name, rc);
634 }
635
636 /*
637 * loop_change_fd switched the backing store of a loopback device to
638 * a new file. This is useful for operating system installers to free up
639 * the original file and in High Availability environments to switch to
640 * an alternative location for the content in case of server meltdown.
641 * This can only work if the loop device is used read-only, and if the
642 * new backing store is the same size and type as the old backing store.
643 */
644 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
645 unsigned int arg)
646 {
647 struct file *file, *old_file;
648 struct inode *inode;
649 int error;
650
651 error = -ENXIO;
652 if (lo->lo_state != Lo_bound)
653 goto out;
654
655 /* the loop device has to be read-only */
656 error = -EINVAL;
657 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
658 goto out;
659
660 error = -EBADF;
661 file = fget(arg);
662 if (!file)
663 goto out;
664
665 inode = file->f_mapping->host;
666 old_file = lo->lo_backing_file;
667
668 error = -EINVAL;
669
670 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
671 goto out_putf;
672
673 /* size of the new backing store needs to be the same */
674 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
675 goto out_putf;
676
677 /* and ... switch */
678 error = loop_switch(lo, file);
679 if (error)
680 goto out_putf;
681
682 fput(old_file);
683 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
684 loop_reread_partitions(lo, bdev);
685 return 0;
686
687 out_putf:
688 fput(file);
689 out:
690 return error;
691 }
692
693 static inline int is_loop_device(struct file *file)
694 {
695 struct inode *i = file->f_mapping->host;
696
697 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
698 }
699
700 /* loop sysfs attributes */
701
702 static ssize_t loop_attr_show(struct device *dev, char *page,
703 ssize_t (*callback)(struct loop_device *, char *))
704 {
705 struct gendisk *disk = dev_to_disk(dev);
706 struct loop_device *lo = disk->private_data;
707
708 return callback(lo, page);
709 }
710
711 #define LOOP_ATTR_RO(_name) \
712 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
713 static ssize_t loop_attr_do_show_##_name(struct device *d, \
714 struct device_attribute *attr, char *b) \
715 { \
716 return loop_attr_show(d, b, loop_attr_##_name##_show); \
717 } \
718 static struct device_attribute loop_attr_##_name = \
719 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
720
721 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
722 {
723 ssize_t ret;
724 char *p = NULL;
725
726 spin_lock_irq(&lo->lo_lock);
727 if (lo->lo_backing_file)
728 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
729 spin_unlock_irq(&lo->lo_lock);
730
731 if (IS_ERR_OR_NULL(p))
732 ret = PTR_ERR(p);
733 else {
734 ret = strlen(p);
735 memmove(buf, p, ret);
736 buf[ret++] = '\n';
737 buf[ret] = 0;
738 }
739
740 return ret;
741 }
742
743 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
744 {
745 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
746 }
747
748 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
749 {
750 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
751 }
752
753 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
754 {
755 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
756
757 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
758 }
759
760 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
761 {
762 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
763
764 return sprintf(buf, "%s\n", partscan ? "1" : "0");
765 }
766
767 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
768 {
769 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
770
771 return sprintf(buf, "%s\n", dio ? "1" : "0");
772 }
773
774 LOOP_ATTR_RO(backing_file);
775 LOOP_ATTR_RO(offset);
776 LOOP_ATTR_RO(sizelimit);
777 LOOP_ATTR_RO(autoclear);
778 LOOP_ATTR_RO(partscan);
779 LOOP_ATTR_RO(dio);
780
781 static struct attribute *loop_attrs[] = {
782 &loop_attr_backing_file.attr,
783 &loop_attr_offset.attr,
784 &loop_attr_sizelimit.attr,
785 &loop_attr_autoclear.attr,
786 &loop_attr_partscan.attr,
787 &loop_attr_dio.attr,
788 NULL,
789 };
790
791 static struct attribute_group loop_attribute_group = {
792 .name = "loop",
793 .attrs= loop_attrs,
794 };
795
796 static int loop_sysfs_init(struct loop_device *lo)
797 {
798 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
799 &loop_attribute_group);
800 }
801
802 static void loop_sysfs_exit(struct loop_device *lo)
803 {
804 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
805 &loop_attribute_group);
806 }
807
808 static void loop_config_discard(struct loop_device *lo)
809 {
810 struct file *file = lo->lo_backing_file;
811 struct inode *inode = file->f_mapping->host;
812 struct request_queue *q = lo->lo_queue;
813
814 /*
815 * We use punch hole to reclaim the free space used by the
816 * image a.k.a. discard. However we do not support discard if
817 * encryption is enabled, because it may give an attacker
818 * useful information.
819 */
820 if ((!file->f_op->fallocate) ||
821 lo->lo_encrypt_key_size) {
822 q->limits.discard_granularity = 0;
823 q->limits.discard_alignment = 0;
824 blk_queue_max_discard_sectors(q, 0);
825 blk_queue_max_write_zeroes_sectors(q, 0);
826 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
827 return;
828 }
829
830 q->limits.discard_granularity = inode->i_sb->s_blocksize;
831 q->limits.discard_alignment = 0;
832 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
833 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
834 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
835 }
836
837 static void loop_unprepare_queue(struct loop_device *lo)
838 {
839 kthread_flush_worker(&lo->worker);
840 kthread_stop(lo->worker_task);
841 }
842
843 static int loop_prepare_queue(struct loop_device *lo)
844 {
845 kthread_init_worker(&lo->worker);
846 lo->worker_task = kthread_run(kthread_worker_fn,
847 &lo->worker, "loop%d", lo->lo_number);
848 if (IS_ERR(lo->worker_task))
849 return -ENOMEM;
850 set_user_nice(lo->worker_task, MIN_NICE);
851 return 0;
852 }
853
854 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
855 struct block_device *bdev, unsigned int arg)
856 {
857 struct file *file, *f;
858 struct inode *inode;
859 struct address_space *mapping;
860 unsigned lo_blocksize;
861 int lo_flags = 0;
862 int error;
863 loff_t size;
864
865 /* This is safe, since we have a reference from open(). */
866 __module_get(THIS_MODULE);
867
868 error = -EBADF;
869 file = fget(arg);
870 if (!file)
871 goto out;
872
873 error = -EBUSY;
874 if (lo->lo_state != Lo_unbound)
875 goto out_putf;
876
877 /* Avoid recursion */
878 f = file;
879 while (is_loop_device(f)) {
880 struct loop_device *l;
881
882 if (f->f_mapping->host->i_bdev == bdev)
883 goto out_putf;
884
885 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
886 if (l->lo_state == Lo_unbound) {
887 error = -EINVAL;
888 goto out_putf;
889 }
890 f = l->lo_backing_file;
891 }
892
893 mapping = file->f_mapping;
894 inode = mapping->host;
895
896 error = -EINVAL;
897 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
898 goto out_putf;
899
900 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
901 !file->f_op->write_iter)
902 lo_flags |= LO_FLAGS_READ_ONLY;
903
904 lo_blocksize = S_ISBLK(inode->i_mode) ?
905 inode->i_bdev->bd_block_size : PAGE_SIZE;
906
907 error = -EFBIG;
908 size = get_loop_size(lo, file);
909 if ((loff_t)(sector_t)size != size)
910 goto out_putf;
911 error = loop_prepare_queue(lo);
912 if (error)
913 goto out_putf;
914
915 error = 0;
916
917 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
918
919 lo->use_dio = false;
920 lo->lo_blocksize = lo_blocksize;
921 lo->lo_device = bdev;
922 lo->lo_flags = lo_flags;
923 lo->lo_backing_file = file;
924 lo->transfer = NULL;
925 lo->ioctl = NULL;
926 lo->lo_sizelimit = 0;
927 lo->old_gfp_mask = mapping_gfp_mask(mapping);
928 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
929
930 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
931 blk_queue_write_cache(lo->lo_queue, true, false);
932
933 loop_update_dio(lo);
934 set_capacity(lo->lo_disk, size);
935 bd_set_size(bdev, size << 9);
936 loop_sysfs_init(lo);
937 /* let user-space know about the new size */
938 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
939
940 set_blocksize(bdev, lo_blocksize);
941
942 lo->lo_state = Lo_bound;
943 if (part_shift)
944 lo->lo_flags |= LO_FLAGS_PARTSCAN;
945 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
946 loop_reread_partitions(lo, bdev);
947
948 /* Grab the block_device to prevent its destruction after we
949 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
950 */
951 bdgrab(bdev);
952 return 0;
953
954 out_putf:
955 fput(file);
956 out:
957 /* This is safe: open() is still holding a reference. */
958 module_put(THIS_MODULE);
959 return error;
960 }
961
962 static int
963 loop_release_xfer(struct loop_device *lo)
964 {
965 int err = 0;
966 struct loop_func_table *xfer = lo->lo_encryption;
967
968 if (xfer) {
969 if (xfer->release)
970 err = xfer->release(lo);
971 lo->transfer = NULL;
972 lo->lo_encryption = NULL;
973 module_put(xfer->owner);
974 }
975 return err;
976 }
977
978 static int
979 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
980 const struct loop_info64 *i)
981 {
982 int err = 0;
983
984 if (xfer) {
985 struct module *owner = xfer->owner;
986
987 if (!try_module_get(owner))
988 return -EINVAL;
989 if (xfer->init)
990 err = xfer->init(lo, i);
991 if (err)
992 module_put(owner);
993 else
994 lo->lo_encryption = xfer;
995 }
996 return err;
997 }
998
999 static int loop_clr_fd(struct loop_device *lo)
1000 {
1001 struct file *filp = lo->lo_backing_file;
1002 gfp_t gfp = lo->old_gfp_mask;
1003 struct block_device *bdev = lo->lo_device;
1004
1005 if (lo->lo_state != Lo_bound)
1006 return -ENXIO;
1007
1008 /*
1009 * If we've explicitly asked to tear down the loop device,
1010 * and it has an elevated reference count, set it for auto-teardown when
1011 * the last reference goes away. This stops $!~#$@ udev from
1012 * preventing teardown because it decided that it needs to run blkid on
1013 * the loopback device whenever they appear. xfstests is notorious for
1014 * failing tests because blkid via udev races with a losetup
1015 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1016 * command to fail with EBUSY.
1017 */
1018 if (atomic_read(&lo->lo_refcnt) > 1) {
1019 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1020 mutex_unlock(&lo->lo_ctl_mutex);
1021 return 0;
1022 }
1023
1024 if (filp == NULL)
1025 return -EINVAL;
1026
1027 /* freeze request queue during the transition */
1028 blk_mq_freeze_queue(lo->lo_queue);
1029
1030 spin_lock_irq(&lo->lo_lock);
1031 lo->lo_state = Lo_rundown;
1032 lo->lo_backing_file = NULL;
1033 spin_unlock_irq(&lo->lo_lock);
1034
1035 loop_release_xfer(lo);
1036 lo->transfer = NULL;
1037 lo->ioctl = NULL;
1038 lo->lo_device = NULL;
1039 lo->lo_encryption = NULL;
1040 lo->lo_offset = 0;
1041 lo->lo_sizelimit = 0;
1042 lo->lo_encrypt_key_size = 0;
1043 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1044 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1045 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1046 if (bdev) {
1047 bdput(bdev);
1048 invalidate_bdev(bdev);
1049 }
1050 set_capacity(lo->lo_disk, 0);
1051 loop_sysfs_exit(lo);
1052 if (bdev) {
1053 bd_set_size(bdev, 0);
1054 /* let user-space know about this change */
1055 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1056 }
1057 mapping_set_gfp_mask(filp->f_mapping, gfp);
1058 lo->lo_state = Lo_unbound;
1059 /* This is safe: open() is still holding a reference. */
1060 module_put(THIS_MODULE);
1061 blk_mq_unfreeze_queue(lo->lo_queue);
1062
1063 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1064 loop_reread_partitions(lo, bdev);
1065 lo->lo_flags = 0;
1066 if (!part_shift)
1067 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1068 loop_unprepare_queue(lo);
1069 mutex_unlock(&lo->lo_ctl_mutex);
1070 /*
1071 * Need not hold lo_ctl_mutex to fput backing file.
1072 * Calling fput holding lo_ctl_mutex triggers a circular
1073 * lock dependency possibility warning as fput can take
1074 * bd_mutex which is usually taken before lo_ctl_mutex.
1075 */
1076 fput(filp);
1077 return 0;
1078 }
1079
1080 static int
1081 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1082 {
1083 int err;
1084 struct loop_func_table *xfer;
1085 kuid_t uid = current_uid();
1086
1087 if (lo->lo_encrypt_key_size &&
1088 !uid_eq(lo->lo_key_owner, uid) &&
1089 !capable(CAP_SYS_ADMIN))
1090 return -EPERM;
1091 if (lo->lo_state != Lo_bound)
1092 return -ENXIO;
1093 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1094 return -EINVAL;
1095
1096 /* I/O need to be drained during transfer transition */
1097 blk_mq_freeze_queue(lo->lo_queue);
1098
1099 err = loop_release_xfer(lo);
1100 if (err)
1101 goto exit;
1102
1103 if (info->lo_encrypt_type) {
1104 unsigned int type = info->lo_encrypt_type;
1105
1106 if (type >= MAX_LO_CRYPT)
1107 return -EINVAL;
1108 xfer = xfer_funcs[type];
1109 if (xfer == NULL)
1110 return -EINVAL;
1111 } else
1112 xfer = NULL;
1113
1114 err = loop_init_xfer(lo, xfer, info);
1115 if (err)
1116 goto exit;
1117
1118 if (lo->lo_offset != info->lo_offset ||
1119 lo->lo_sizelimit != info->lo_sizelimit)
1120 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1121 err = -EFBIG;
1122 goto exit;
1123 }
1124
1125 loop_config_discard(lo);
1126
1127 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1128 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1129 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1130 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1131
1132 if (!xfer)
1133 xfer = &none_funcs;
1134 lo->transfer = xfer->transfer;
1135 lo->ioctl = xfer->ioctl;
1136
1137 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1138 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1139 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1140
1141 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1142 lo->lo_init[0] = info->lo_init[0];
1143 lo->lo_init[1] = info->lo_init[1];
1144 if (info->lo_encrypt_key_size) {
1145 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1146 info->lo_encrypt_key_size);
1147 lo->lo_key_owner = uid;
1148 }
1149
1150 /* update dio if lo_offset or transfer is changed */
1151 __loop_update_dio(lo, lo->use_dio);
1152
1153 exit:
1154 blk_mq_unfreeze_queue(lo->lo_queue);
1155
1156 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1157 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1158 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1159 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1160 loop_reread_partitions(lo, lo->lo_device);
1161 }
1162
1163 return err;
1164 }
1165
1166 static int
1167 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1168 {
1169 struct file *file = lo->lo_backing_file;
1170 struct kstat stat;
1171 int error;
1172
1173 if (lo->lo_state != Lo_bound)
1174 return -ENXIO;
1175 error = vfs_getattr(&file->f_path, &stat,
1176 STATX_INO, AT_STATX_SYNC_AS_STAT);
1177 if (error)
1178 return error;
1179 memset(info, 0, sizeof(*info));
1180 info->lo_number = lo->lo_number;
1181 info->lo_device = huge_encode_dev(stat.dev);
1182 info->lo_inode = stat.ino;
1183 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1184 info->lo_offset = lo->lo_offset;
1185 info->lo_sizelimit = lo->lo_sizelimit;
1186 info->lo_flags = lo->lo_flags;
1187 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1188 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1189 info->lo_encrypt_type =
1190 lo->lo_encryption ? lo->lo_encryption->number : 0;
1191 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1192 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1193 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1194 lo->lo_encrypt_key_size);
1195 }
1196 return 0;
1197 }
1198
1199 static void
1200 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1201 {
1202 memset(info64, 0, sizeof(*info64));
1203 info64->lo_number = info->lo_number;
1204 info64->lo_device = info->lo_device;
1205 info64->lo_inode = info->lo_inode;
1206 info64->lo_rdevice = info->lo_rdevice;
1207 info64->lo_offset = info->lo_offset;
1208 info64->lo_sizelimit = 0;
1209 info64->lo_encrypt_type = info->lo_encrypt_type;
1210 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1211 info64->lo_flags = info->lo_flags;
1212 info64->lo_init[0] = info->lo_init[0];
1213 info64->lo_init[1] = info->lo_init[1];
1214 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1215 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1216 else
1217 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1218 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1219 }
1220
1221 static int
1222 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1223 {
1224 memset(info, 0, sizeof(*info));
1225 info->lo_number = info64->lo_number;
1226 info->lo_device = info64->lo_device;
1227 info->lo_inode = info64->lo_inode;
1228 info->lo_rdevice = info64->lo_rdevice;
1229 info->lo_offset = info64->lo_offset;
1230 info->lo_encrypt_type = info64->lo_encrypt_type;
1231 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1232 info->lo_flags = info64->lo_flags;
1233 info->lo_init[0] = info64->lo_init[0];
1234 info->lo_init[1] = info64->lo_init[1];
1235 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1236 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1237 else
1238 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1239 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1240
1241 /* error in case values were truncated */
1242 if (info->lo_device != info64->lo_device ||
1243 info->lo_rdevice != info64->lo_rdevice ||
1244 info->lo_inode != info64->lo_inode ||
1245 info->lo_offset != info64->lo_offset)
1246 return -EOVERFLOW;
1247
1248 return 0;
1249 }
1250
1251 static int
1252 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1253 {
1254 struct loop_info info;
1255 struct loop_info64 info64;
1256
1257 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1258 return -EFAULT;
1259 loop_info64_from_old(&info, &info64);
1260 return loop_set_status(lo, &info64);
1261 }
1262
1263 static int
1264 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1265 {
1266 struct loop_info64 info64;
1267
1268 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1269 return -EFAULT;
1270 return loop_set_status(lo, &info64);
1271 }
1272
1273 static int
1274 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1275 struct loop_info info;
1276 struct loop_info64 info64;
1277 int err = 0;
1278
1279 if (!arg)
1280 err = -EINVAL;
1281 if (!err)
1282 err = loop_get_status(lo, &info64);
1283 if (!err)
1284 err = loop_info64_to_old(&info64, &info);
1285 if (!err && copy_to_user(arg, &info, sizeof(info)))
1286 err = -EFAULT;
1287
1288 return err;
1289 }
1290
1291 static int
1292 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1293 struct loop_info64 info64;
1294 int err = 0;
1295
1296 if (!arg)
1297 err = -EINVAL;
1298 if (!err)
1299 err = loop_get_status(lo, &info64);
1300 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1301 err = -EFAULT;
1302
1303 return err;
1304 }
1305
1306 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1307 {
1308 if (unlikely(lo->lo_state != Lo_bound))
1309 return -ENXIO;
1310
1311 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1312 }
1313
1314 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1315 {
1316 int error = -ENXIO;
1317 if (lo->lo_state != Lo_bound)
1318 goto out;
1319
1320 __loop_update_dio(lo, !!arg);
1321 if (lo->use_dio == !!arg)
1322 return 0;
1323 error = -EINVAL;
1324 out:
1325 return error;
1326 }
1327
1328 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1329 unsigned int cmd, unsigned long arg)
1330 {
1331 struct loop_device *lo = bdev->bd_disk->private_data;
1332 int err;
1333
1334 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1335 switch (cmd) {
1336 case LOOP_SET_FD:
1337 err = loop_set_fd(lo, mode, bdev, arg);
1338 break;
1339 case LOOP_CHANGE_FD:
1340 err = loop_change_fd(lo, bdev, arg);
1341 break;
1342 case LOOP_CLR_FD:
1343 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1344 err = loop_clr_fd(lo);
1345 if (!err)
1346 goto out_unlocked;
1347 break;
1348 case LOOP_SET_STATUS:
1349 err = -EPERM;
1350 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1351 err = loop_set_status_old(lo,
1352 (struct loop_info __user *)arg);
1353 break;
1354 case LOOP_GET_STATUS:
1355 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1356 break;
1357 case LOOP_SET_STATUS64:
1358 err = -EPERM;
1359 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1360 err = loop_set_status64(lo,
1361 (struct loop_info64 __user *) arg);
1362 break;
1363 case LOOP_GET_STATUS64:
1364 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1365 break;
1366 case LOOP_SET_CAPACITY:
1367 err = -EPERM;
1368 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1369 err = loop_set_capacity(lo, bdev);
1370 break;
1371 case LOOP_SET_DIRECT_IO:
1372 err = -EPERM;
1373 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1374 err = loop_set_dio(lo, arg);
1375 break;
1376 default:
1377 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1378 }
1379 mutex_unlock(&lo->lo_ctl_mutex);
1380
1381 out_unlocked:
1382 return err;
1383 }
1384
1385 #ifdef CONFIG_COMPAT
1386 struct compat_loop_info {
1387 compat_int_t lo_number; /* ioctl r/o */
1388 compat_dev_t lo_device; /* ioctl r/o */
1389 compat_ulong_t lo_inode; /* ioctl r/o */
1390 compat_dev_t lo_rdevice; /* ioctl r/o */
1391 compat_int_t lo_offset;
1392 compat_int_t lo_encrypt_type;
1393 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1394 compat_int_t lo_flags; /* ioctl r/o */
1395 char lo_name[LO_NAME_SIZE];
1396 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1397 compat_ulong_t lo_init[2];
1398 char reserved[4];
1399 };
1400
1401 /*
1402 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1403 * - noinlined to reduce stack space usage in main part of driver
1404 */
1405 static noinline int
1406 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1407 struct loop_info64 *info64)
1408 {
1409 struct compat_loop_info info;
1410
1411 if (copy_from_user(&info, arg, sizeof(info)))
1412 return -EFAULT;
1413
1414 memset(info64, 0, sizeof(*info64));
1415 info64->lo_number = info.lo_number;
1416 info64->lo_device = info.lo_device;
1417 info64->lo_inode = info.lo_inode;
1418 info64->lo_rdevice = info.lo_rdevice;
1419 info64->lo_offset = info.lo_offset;
1420 info64->lo_sizelimit = 0;
1421 info64->lo_encrypt_type = info.lo_encrypt_type;
1422 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1423 info64->lo_flags = info.lo_flags;
1424 info64->lo_init[0] = info.lo_init[0];
1425 info64->lo_init[1] = info.lo_init[1];
1426 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1427 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1428 else
1429 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1430 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1431 return 0;
1432 }
1433
1434 /*
1435 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1436 * - noinlined to reduce stack space usage in main part of driver
1437 */
1438 static noinline int
1439 loop_info64_to_compat(const struct loop_info64 *info64,
1440 struct compat_loop_info __user *arg)
1441 {
1442 struct compat_loop_info info;
1443
1444 memset(&info, 0, sizeof(info));
1445 info.lo_number = info64->lo_number;
1446 info.lo_device = info64->lo_device;
1447 info.lo_inode = info64->lo_inode;
1448 info.lo_rdevice = info64->lo_rdevice;
1449 info.lo_offset = info64->lo_offset;
1450 info.lo_encrypt_type = info64->lo_encrypt_type;
1451 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1452 info.lo_flags = info64->lo_flags;
1453 info.lo_init[0] = info64->lo_init[0];
1454 info.lo_init[1] = info64->lo_init[1];
1455 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1456 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1457 else
1458 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1459 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1460
1461 /* error in case values were truncated */
1462 if (info.lo_device != info64->lo_device ||
1463 info.lo_rdevice != info64->lo_rdevice ||
1464 info.lo_inode != info64->lo_inode ||
1465 info.lo_offset != info64->lo_offset ||
1466 info.lo_init[0] != info64->lo_init[0] ||
1467 info.lo_init[1] != info64->lo_init[1])
1468 return -EOVERFLOW;
1469
1470 if (copy_to_user(arg, &info, sizeof(info)))
1471 return -EFAULT;
1472 return 0;
1473 }
1474
1475 static int
1476 loop_set_status_compat(struct loop_device *lo,
1477 const struct compat_loop_info __user *arg)
1478 {
1479 struct loop_info64 info64;
1480 int ret;
1481
1482 ret = loop_info64_from_compat(arg, &info64);
1483 if (ret < 0)
1484 return ret;
1485 return loop_set_status(lo, &info64);
1486 }
1487
1488 static int
1489 loop_get_status_compat(struct loop_device *lo,
1490 struct compat_loop_info __user *arg)
1491 {
1492 struct loop_info64 info64;
1493 int err = 0;
1494
1495 if (!arg)
1496 err = -EINVAL;
1497 if (!err)
1498 err = loop_get_status(lo, &info64);
1499 if (!err)
1500 err = loop_info64_to_compat(&info64, arg);
1501 return err;
1502 }
1503
1504 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1505 unsigned int cmd, unsigned long arg)
1506 {
1507 struct loop_device *lo = bdev->bd_disk->private_data;
1508 int err;
1509
1510 switch(cmd) {
1511 case LOOP_SET_STATUS:
1512 mutex_lock(&lo->lo_ctl_mutex);
1513 err = loop_set_status_compat(
1514 lo, (const struct compat_loop_info __user *) arg);
1515 mutex_unlock(&lo->lo_ctl_mutex);
1516 break;
1517 case LOOP_GET_STATUS:
1518 mutex_lock(&lo->lo_ctl_mutex);
1519 err = loop_get_status_compat(
1520 lo, (struct compat_loop_info __user *) arg);
1521 mutex_unlock(&lo->lo_ctl_mutex);
1522 break;
1523 case LOOP_SET_CAPACITY:
1524 case LOOP_CLR_FD:
1525 case LOOP_GET_STATUS64:
1526 case LOOP_SET_STATUS64:
1527 arg = (unsigned long) compat_ptr(arg);
1528 case LOOP_SET_FD:
1529 case LOOP_CHANGE_FD:
1530 err = lo_ioctl(bdev, mode, cmd, arg);
1531 break;
1532 default:
1533 err = -ENOIOCTLCMD;
1534 break;
1535 }
1536 return err;
1537 }
1538 #endif
1539
1540 static int lo_open(struct block_device *bdev, fmode_t mode)
1541 {
1542 struct loop_device *lo;
1543 int err = 0;
1544
1545 mutex_lock(&loop_index_mutex);
1546 lo = bdev->bd_disk->private_data;
1547 if (!lo) {
1548 err = -ENXIO;
1549 goto out;
1550 }
1551
1552 atomic_inc(&lo->lo_refcnt);
1553 out:
1554 mutex_unlock(&loop_index_mutex);
1555 return err;
1556 }
1557
1558 static void lo_release(struct gendisk *disk, fmode_t mode)
1559 {
1560 struct loop_device *lo = disk->private_data;
1561 int err;
1562
1563 if (atomic_dec_return(&lo->lo_refcnt))
1564 return;
1565
1566 mutex_lock(&lo->lo_ctl_mutex);
1567 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1568 /*
1569 * In autoclear mode, stop the loop thread
1570 * and remove configuration after last close.
1571 */
1572 err = loop_clr_fd(lo);
1573 if (!err)
1574 return;
1575 } else {
1576 /*
1577 * Otherwise keep thread (if running) and config,
1578 * but flush possible ongoing bios in thread.
1579 */
1580 loop_flush(lo);
1581 }
1582
1583 mutex_unlock(&lo->lo_ctl_mutex);
1584 }
1585
1586 static const struct block_device_operations lo_fops = {
1587 .owner = THIS_MODULE,
1588 .open = lo_open,
1589 .release = lo_release,
1590 .ioctl = lo_ioctl,
1591 #ifdef CONFIG_COMPAT
1592 .compat_ioctl = lo_compat_ioctl,
1593 #endif
1594 };
1595
1596 /*
1597 * And now the modules code and kernel interface.
1598 */
1599 static int max_loop;
1600 module_param(max_loop, int, S_IRUGO);
1601 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1602 module_param(max_part, int, S_IRUGO);
1603 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1604 MODULE_LICENSE("GPL");
1605 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1606
1607 int loop_register_transfer(struct loop_func_table *funcs)
1608 {
1609 unsigned int n = funcs->number;
1610
1611 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1612 return -EINVAL;
1613 xfer_funcs[n] = funcs;
1614 return 0;
1615 }
1616
1617 static int unregister_transfer_cb(int id, void *ptr, void *data)
1618 {
1619 struct loop_device *lo = ptr;
1620 struct loop_func_table *xfer = data;
1621
1622 mutex_lock(&lo->lo_ctl_mutex);
1623 if (lo->lo_encryption == xfer)
1624 loop_release_xfer(lo);
1625 mutex_unlock(&lo->lo_ctl_mutex);
1626 return 0;
1627 }
1628
1629 int loop_unregister_transfer(int number)
1630 {
1631 unsigned int n = number;
1632 struct loop_func_table *xfer;
1633
1634 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1635 return -EINVAL;
1636
1637 xfer_funcs[n] = NULL;
1638 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1639 return 0;
1640 }
1641
1642 EXPORT_SYMBOL(loop_register_transfer);
1643 EXPORT_SYMBOL(loop_unregister_transfer);
1644
1645 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1646 const struct blk_mq_queue_data *bd)
1647 {
1648 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1649 struct loop_device *lo = cmd->rq->q->queuedata;
1650
1651 blk_mq_start_request(bd->rq);
1652
1653 if (lo->lo_state != Lo_bound)
1654 return BLK_MQ_RQ_QUEUE_ERROR;
1655
1656 switch (req_op(cmd->rq)) {
1657 case REQ_OP_FLUSH:
1658 case REQ_OP_DISCARD:
1659 case REQ_OP_WRITE_ZEROES:
1660 cmd->use_aio = false;
1661 break;
1662 default:
1663 cmd->use_aio = lo->use_dio;
1664 break;
1665 }
1666
1667 kthread_queue_work(&lo->worker, &cmd->work);
1668
1669 return BLK_MQ_RQ_QUEUE_OK;
1670 }
1671
1672 static void loop_handle_cmd(struct loop_cmd *cmd)
1673 {
1674 const bool write = op_is_write(req_op(cmd->rq));
1675 struct loop_device *lo = cmd->rq->q->queuedata;
1676 int ret = 0;
1677
1678 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1679 ret = -EIO;
1680 goto failed;
1681 }
1682
1683 ret = do_req_filebacked(lo, cmd->rq);
1684 failed:
1685 /* complete non-aio request */
1686 if (!cmd->use_aio || ret) {
1687 cmd->ret = ret ? -EIO : 0;
1688 blk_mq_complete_request(cmd->rq);
1689 }
1690 }
1691
1692 static void loop_queue_work(struct kthread_work *work)
1693 {
1694 struct loop_cmd *cmd =
1695 container_of(work, struct loop_cmd, work);
1696
1697 loop_handle_cmd(cmd);
1698 }
1699
1700 static int loop_init_request(void *data, struct request *rq,
1701 unsigned int hctx_idx, unsigned int request_idx,
1702 unsigned int numa_node)
1703 {
1704 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1705
1706 cmd->rq = rq;
1707 kthread_init_work(&cmd->work, loop_queue_work);
1708
1709 return 0;
1710 }
1711
1712 static const struct blk_mq_ops loop_mq_ops = {
1713 .queue_rq = loop_queue_rq,
1714 .init_request = loop_init_request,
1715 .complete = lo_complete_rq,
1716 };
1717
1718 static int loop_add(struct loop_device **l, int i)
1719 {
1720 struct loop_device *lo;
1721 struct gendisk *disk;
1722 int err;
1723
1724 err = -ENOMEM;
1725 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1726 if (!lo)
1727 goto out;
1728
1729 lo->lo_state = Lo_unbound;
1730
1731 /* allocate id, if @id >= 0, we're requesting that specific id */
1732 if (i >= 0) {
1733 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1734 if (err == -ENOSPC)
1735 err = -EEXIST;
1736 } else {
1737 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1738 }
1739 if (err < 0)
1740 goto out_free_dev;
1741 i = err;
1742
1743 err = -ENOMEM;
1744 lo->tag_set.ops = &loop_mq_ops;
1745 lo->tag_set.nr_hw_queues = 1;
1746 lo->tag_set.queue_depth = 128;
1747 lo->tag_set.numa_node = NUMA_NO_NODE;
1748 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1749 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1750 lo->tag_set.driver_data = lo;
1751
1752 err = blk_mq_alloc_tag_set(&lo->tag_set);
1753 if (err)
1754 goto out_free_idr;
1755
1756 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1757 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1758 err = PTR_ERR(lo->lo_queue);
1759 goto out_cleanup_tags;
1760 }
1761 lo->lo_queue->queuedata = lo;
1762
1763 /*
1764 * It doesn't make sense to enable merge because the I/O
1765 * submitted to backing file is handled page by page.
1766 */
1767 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1768
1769 err = -ENOMEM;
1770 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1771 if (!disk)
1772 goto out_free_queue;
1773
1774 /*
1775 * Disable partition scanning by default. The in-kernel partition
1776 * scanning can be requested individually per-device during its
1777 * setup. Userspace can always add and remove partitions from all
1778 * devices. The needed partition minors are allocated from the
1779 * extended minor space, the main loop device numbers will continue
1780 * to match the loop minors, regardless of the number of partitions
1781 * used.
1782 *
1783 * If max_part is given, partition scanning is globally enabled for
1784 * all loop devices. The minors for the main loop devices will be
1785 * multiples of max_part.
1786 *
1787 * Note: Global-for-all-devices, set-only-at-init, read-only module
1788 * parameteters like 'max_loop' and 'max_part' make things needlessly
1789 * complicated, are too static, inflexible and may surprise
1790 * userspace tools. Parameters like this in general should be avoided.
1791 */
1792 if (!part_shift)
1793 disk->flags |= GENHD_FL_NO_PART_SCAN;
1794 disk->flags |= GENHD_FL_EXT_DEVT;
1795 mutex_init(&lo->lo_ctl_mutex);
1796 atomic_set(&lo->lo_refcnt, 0);
1797 lo->lo_number = i;
1798 spin_lock_init(&lo->lo_lock);
1799 disk->major = LOOP_MAJOR;
1800 disk->first_minor = i << part_shift;
1801 disk->fops = &lo_fops;
1802 disk->private_data = lo;
1803 disk->queue = lo->lo_queue;
1804 sprintf(disk->disk_name, "loop%d", i);
1805 add_disk(disk);
1806 *l = lo;
1807 return lo->lo_number;
1808
1809 out_free_queue:
1810 blk_cleanup_queue(lo->lo_queue);
1811 out_cleanup_tags:
1812 blk_mq_free_tag_set(&lo->tag_set);
1813 out_free_idr:
1814 idr_remove(&loop_index_idr, i);
1815 out_free_dev:
1816 kfree(lo);
1817 out:
1818 return err;
1819 }
1820
1821 static void loop_remove(struct loop_device *lo)
1822 {
1823 blk_cleanup_queue(lo->lo_queue);
1824 del_gendisk(lo->lo_disk);
1825 blk_mq_free_tag_set(&lo->tag_set);
1826 put_disk(lo->lo_disk);
1827 kfree(lo);
1828 }
1829
1830 static int find_free_cb(int id, void *ptr, void *data)
1831 {
1832 struct loop_device *lo = ptr;
1833 struct loop_device **l = data;
1834
1835 if (lo->lo_state == Lo_unbound) {
1836 *l = lo;
1837 return 1;
1838 }
1839 return 0;
1840 }
1841
1842 static int loop_lookup(struct loop_device **l, int i)
1843 {
1844 struct loop_device *lo;
1845 int ret = -ENODEV;
1846
1847 if (i < 0) {
1848 int err;
1849
1850 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1851 if (err == 1) {
1852 *l = lo;
1853 ret = lo->lo_number;
1854 }
1855 goto out;
1856 }
1857
1858 /* lookup and return a specific i */
1859 lo = idr_find(&loop_index_idr, i);
1860 if (lo) {
1861 *l = lo;
1862 ret = lo->lo_number;
1863 }
1864 out:
1865 return ret;
1866 }
1867
1868 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1869 {
1870 struct loop_device *lo;
1871 struct kobject *kobj;
1872 int err;
1873
1874 mutex_lock(&loop_index_mutex);
1875 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1876 if (err < 0)
1877 err = loop_add(&lo, MINOR(dev) >> part_shift);
1878 if (err < 0)
1879 kobj = NULL;
1880 else
1881 kobj = get_disk(lo->lo_disk);
1882 mutex_unlock(&loop_index_mutex);
1883
1884 *part = 0;
1885 return kobj;
1886 }
1887
1888 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1889 unsigned long parm)
1890 {
1891 struct loop_device *lo;
1892 int ret = -ENOSYS;
1893
1894 mutex_lock(&loop_index_mutex);
1895 switch (cmd) {
1896 case LOOP_CTL_ADD:
1897 ret = loop_lookup(&lo, parm);
1898 if (ret >= 0) {
1899 ret = -EEXIST;
1900 break;
1901 }
1902 ret = loop_add(&lo, parm);
1903 break;
1904 case LOOP_CTL_REMOVE:
1905 ret = loop_lookup(&lo, parm);
1906 if (ret < 0)
1907 break;
1908 mutex_lock(&lo->lo_ctl_mutex);
1909 if (lo->lo_state != Lo_unbound) {
1910 ret = -EBUSY;
1911 mutex_unlock(&lo->lo_ctl_mutex);
1912 break;
1913 }
1914 if (atomic_read(&lo->lo_refcnt) > 0) {
1915 ret = -EBUSY;
1916 mutex_unlock(&lo->lo_ctl_mutex);
1917 break;
1918 }
1919 lo->lo_disk->private_data = NULL;
1920 mutex_unlock(&lo->lo_ctl_mutex);
1921 idr_remove(&loop_index_idr, lo->lo_number);
1922 loop_remove(lo);
1923 break;
1924 case LOOP_CTL_GET_FREE:
1925 ret = loop_lookup(&lo, -1);
1926 if (ret >= 0)
1927 break;
1928 ret = loop_add(&lo, -1);
1929 }
1930 mutex_unlock(&loop_index_mutex);
1931
1932 return ret;
1933 }
1934
1935 static const struct file_operations loop_ctl_fops = {
1936 .open = nonseekable_open,
1937 .unlocked_ioctl = loop_control_ioctl,
1938 .compat_ioctl = loop_control_ioctl,
1939 .owner = THIS_MODULE,
1940 .llseek = noop_llseek,
1941 };
1942
1943 static struct miscdevice loop_misc = {
1944 .minor = LOOP_CTRL_MINOR,
1945 .name = "loop-control",
1946 .fops = &loop_ctl_fops,
1947 };
1948
1949 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1950 MODULE_ALIAS("devname:loop-control");
1951
1952 static int __init loop_init(void)
1953 {
1954 int i, nr;
1955 unsigned long range;
1956 struct loop_device *lo;
1957 int err;
1958
1959 err = misc_register(&loop_misc);
1960 if (err < 0)
1961 return err;
1962
1963 part_shift = 0;
1964 if (max_part > 0) {
1965 part_shift = fls(max_part);
1966
1967 /*
1968 * Adjust max_part according to part_shift as it is exported
1969 * to user space so that user can decide correct minor number
1970 * if [s]he want to create more devices.
1971 *
1972 * Note that -1 is required because partition 0 is reserved
1973 * for the whole disk.
1974 */
1975 max_part = (1UL << part_shift) - 1;
1976 }
1977
1978 if ((1UL << part_shift) > DISK_MAX_PARTS) {
1979 err = -EINVAL;
1980 goto misc_out;
1981 }
1982
1983 if (max_loop > 1UL << (MINORBITS - part_shift)) {
1984 err = -EINVAL;
1985 goto misc_out;
1986 }
1987
1988 /*
1989 * If max_loop is specified, create that many devices upfront.
1990 * This also becomes a hard limit. If max_loop is not specified,
1991 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1992 * init time. Loop devices can be requested on-demand with the
1993 * /dev/loop-control interface, or be instantiated by accessing
1994 * a 'dead' device node.
1995 */
1996 if (max_loop) {
1997 nr = max_loop;
1998 range = max_loop << part_shift;
1999 } else {
2000 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2001 range = 1UL << MINORBITS;
2002 }
2003
2004 if (register_blkdev(LOOP_MAJOR, "loop")) {
2005 err = -EIO;
2006 goto misc_out;
2007 }
2008
2009 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2010 THIS_MODULE, loop_probe, NULL, NULL);
2011
2012 /* pre-create number of devices given by config or max_loop */
2013 mutex_lock(&loop_index_mutex);
2014 for (i = 0; i < nr; i++)
2015 loop_add(&lo, i);
2016 mutex_unlock(&loop_index_mutex);
2017
2018 printk(KERN_INFO "loop: module loaded\n");
2019 return 0;
2020
2021 misc_out:
2022 misc_deregister(&loop_misc);
2023 return err;
2024 }
2025
2026 static int loop_exit_cb(int id, void *ptr, void *data)
2027 {
2028 struct loop_device *lo = ptr;
2029
2030 loop_remove(lo);
2031 return 0;
2032 }
2033
2034 static void __exit loop_exit(void)
2035 {
2036 unsigned long range;
2037
2038 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2039
2040 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2041 idr_destroy(&loop_index_idr);
2042
2043 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2044 unregister_blkdev(LOOP_MAJOR, "loop");
2045
2046 misc_deregister(&loop_misc);
2047 }
2048
2049 module_init(loop_init);
2050 module_exit(loop_exit);
2051
2052 #ifndef MODULE
2053 static int __init max_loop_setup(char *str)
2054 {
2055 max_loop = simple_strtol(str, NULL, 0);
2056 return 1;
2057 }
2058
2059 __setup("max_loop=", max_loop_setup);
2060 #endif