2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
84 #include <linux/uaccess.h>
86 static DEFINE_IDR(loop_index_idr
);
87 static DEFINE_MUTEX(loop_index_mutex
);
90 static int part_shift
;
92 static int transfer_xor(struct loop_device
*lo
, int cmd
,
93 struct page
*raw_page
, unsigned raw_off
,
94 struct page
*loop_page
, unsigned loop_off
,
95 int size
, sector_t real_block
)
97 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
98 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
110 key
= lo
->lo_encrypt_key
;
111 keysize
= lo
->lo_encrypt_key_size
;
112 for (i
= 0; i
< size
; i
++)
113 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
115 kunmap_atomic(loop_buf
);
116 kunmap_atomic(raw_buf
);
121 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
123 if (unlikely(info
->lo_encrypt_key_size
<= 0))
128 static struct loop_func_table none_funcs
= {
129 .number
= LO_CRYPT_NONE
,
132 static struct loop_func_table xor_funcs
= {
133 .number
= LO_CRYPT_XOR
,
134 .transfer
= transfer_xor
,
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
144 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
148 /* Compute loopsize in bytes */
149 loopsize
= i_size_read(file
->f_mapping
->host
);
152 /* offset is beyond i_size, weird but possible */
156 if (sizelimit
> 0 && sizelimit
< loopsize
)
157 loopsize
= sizelimit
;
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
162 return loopsize
>> 9;
165 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
167 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
170 static void __loop_update_dio(struct loop_device
*lo
, bool dio
)
172 struct file
*file
= lo
->lo_backing_file
;
173 struct address_space
*mapping
= file
->f_mapping
;
174 struct inode
*inode
= mapping
->host
;
175 unsigned short sb_bsize
= 0;
176 unsigned dio_align
= 0;
179 if (inode
->i_sb
->s_bdev
) {
180 sb_bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
181 dio_align
= sb_bsize
- 1;
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
195 if (queue_logical_block_size(lo
->lo_queue
) >= sb_bsize
&&
196 !(lo
->lo_offset
& dio_align
) &&
197 mapping
->a_ops
->direct_IO
&&
206 if (lo
->use_dio
== use_dio
)
209 /* flush dirty pages before changing direct IO */
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
217 blk_mq_freeze_queue(lo
->lo_queue
);
218 lo
->use_dio
= use_dio
;
220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
221 lo
->lo_flags
|= LO_FLAGS_DIRECT_IO
;
223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
224 lo
->lo_flags
&= ~LO_FLAGS_DIRECT_IO
;
226 blk_mq_unfreeze_queue(lo
->lo_queue
);
230 figure_loop_size(struct loop_device
*lo
, loff_t offset
, loff_t sizelimit
)
232 loff_t size
= get_size(offset
, sizelimit
, lo
->lo_backing_file
);
233 sector_t x
= (sector_t
)size
;
234 struct block_device
*bdev
= lo
->lo_device
;
236 if (unlikely((loff_t
)x
!= size
))
238 if (lo
->lo_offset
!= offset
)
239 lo
->lo_offset
= offset
;
240 if (lo
->lo_sizelimit
!= sizelimit
)
241 lo
->lo_sizelimit
= sizelimit
;
242 set_capacity(lo
->lo_disk
, x
);
243 bd_set_size(bdev
, (loff_t
)get_capacity(bdev
->bd_disk
) << 9);
244 /* let user-space know about the new size */
245 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
250 lo_do_transfer(struct loop_device
*lo
, int cmd
,
251 struct page
*rpage
, unsigned roffs
,
252 struct page
*lpage
, unsigned loffs
,
253 int size
, sector_t rblock
)
257 ret
= lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
261 printk_ratelimited(KERN_ERR
262 "loop: Transfer error at byte offset %llu, length %i.\n",
263 (unsigned long long)rblock
<< 9, size
);
267 static int lo_write_bvec(struct file
*file
, struct bio_vec
*bvec
, loff_t
*ppos
)
272 iov_iter_bvec(&i
, ITER_BVEC
| WRITE
, bvec
, 1, bvec
->bv_len
);
274 file_start_write(file
);
275 bw
= vfs_iter_write(file
, &i
, ppos
, 0);
276 file_end_write(file
);
278 if (likely(bw
== bvec
->bv_len
))
281 printk_ratelimited(KERN_ERR
282 "loop: Write error at byte offset %llu, length %i.\n",
283 (unsigned long long)*ppos
, bvec
->bv_len
);
289 static int lo_write_simple(struct loop_device
*lo
, struct request
*rq
,
293 struct req_iterator iter
;
296 rq_for_each_segment(bvec
, rq
, iter
) {
297 ret
= lo_write_bvec(lo
->lo_backing_file
, &bvec
, &pos
);
307 * This is the slow, transforming version that needs to double buffer the
308 * data as it cannot do the transformations in place without having direct
309 * access to the destination pages of the backing file.
311 static int lo_write_transfer(struct loop_device
*lo
, struct request
*rq
,
314 struct bio_vec bvec
, b
;
315 struct req_iterator iter
;
319 page
= alloc_page(GFP_NOIO
);
323 rq_for_each_segment(bvec
, rq
, iter
) {
324 ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
.bv_page
,
325 bvec
.bv_offset
, bvec
.bv_len
, pos
>> 9);
331 b
.bv_len
= bvec
.bv_len
;
332 ret
= lo_write_bvec(lo
->lo_backing_file
, &b
, &pos
);
341 static int lo_read_simple(struct loop_device
*lo
, struct request
*rq
,
345 struct req_iterator iter
;
349 rq_for_each_segment(bvec
, rq
, iter
) {
350 iov_iter_bvec(&i
, ITER_BVEC
, &bvec
, 1, bvec
.bv_len
);
351 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
355 flush_dcache_page(bvec
.bv_page
);
357 if (len
!= bvec
.bv_len
) {
360 __rq_for_each_bio(bio
, rq
)
370 static int lo_read_transfer(struct loop_device
*lo
, struct request
*rq
,
373 struct bio_vec bvec
, b
;
374 struct req_iterator iter
;
380 page
= alloc_page(GFP_NOIO
);
384 rq_for_each_segment(bvec
, rq
, iter
) {
389 b
.bv_len
= bvec
.bv_len
;
391 iov_iter_bvec(&i
, ITER_BVEC
, &b
, 1, b
.bv_len
);
392 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
398 ret
= lo_do_transfer(lo
, READ
, page
, 0, bvec
.bv_page
,
399 bvec
.bv_offset
, len
, offset
>> 9);
403 flush_dcache_page(bvec
.bv_page
);
405 if (len
!= bvec
.bv_len
) {
408 __rq_for_each_bio(bio
, rq
)
420 static int lo_discard(struct loop_device
*lo
, struct request
*rq
, loff_t pos
)
423 * We use punch hole to reclaim the free space used by the
424 * image a.k.a. discard. However we do not support discard if
425 * encryption is enabled, because it may give an attacker
426 * useful information.
428 struct file
*file
= lo
->lo_backing_file
;
429 int mode
= FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
;
432 if ((!file
->f_op
->fallocate
) || lo
->lo_encrypt_key_size
) {
437 ret
= file
->f_op
->fallocate(file
, mode
, pos
, blk_rq_bytes(rq
));
438 if (unlikely(ret
&& ret
!= -EINVAL
&& ret
!= -EOPNOTSUPP
))
444 static int lo_req_flush(struct loop_device
*lo
, struct request
*rq
)
446 struct file
*file
= lo
->lo_backing_file
;
447 int ret
= vfs_fsync(file
, 0);
448 if (unlikely(ret
&& ret
!= -EINVAL
))
454 static void lo_complete_rq(struct request
*rq
)
456 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
457 blk_status_t ret
= BLK_STS_OK
;
459 if (!cmd
->use_aio
|| cmd
->ret
< 0 || cmd
->ret
== blk_rq_bytes(rq
) ||
460 req_op(rq
) != REQ_OP_READ
) {
467 * Short READ - if we got some data, advance our request and
468 * retry it. If we got no data, end the rest with EIO.
471 blk_update_request(rq
, BLK_STS_OK
, cmd
->ret
);
473 blk_mq_requeue_request(rq
, true);
476 struct bio
*bio
= rq
->bio
;
485 blk_mq_end_request(rq
, ret
);
489 static void lo_rw_aio_do_completion(struct loop_cmd
*cmd
)
491 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
493 if (!atomic_dec_and_test(&cmd
->ref
))
497 blk_mq_complete_request(rq
);
500 static void lo_rw_aio_complete(struct kiocb
*iocb
, long ret
, long ret2
)
502 struct loop_cmd
*cmd
= container_of(iocb
, struct loop_cmd
, iocb
);
507 lo_rw_aio_do_completion(cmd
);
510 static int lo_rw_aio(struct loop_device
*lo
, struct loop_cmd
*cmd
,
513 struct iov_iter iter
;
514 struct bio_vec
*bvec
;
515 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
516 struct bio
*bio
= rq
->bio
;
517 struct file
*file
= lo
->lo_backing_file
;
522 if (rq
->bio
!= rq
->biotail
) {
523 struct req_iterator iter
;
526 __rq_for_each_bio(bio
, rq
)
527 segments
+= bio_segments(bio
);
528 bvec
= kmalloc_array(segments
, sizeof(struct bio_vec
),
535 * The bios of the request may be started from the middle of
536 * the 'bvec' because of bio splitting, so we can't directly
537 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
538 * API will take care of all details for us.
540 rq_for_each_segment(tmp
, rq
, iter
) {
548 * Same here, this bio may be started from the middle of the
549 * 'bvec' because of bio splitting, so offset from the bvec
550 * must be passed to iov iterator
552 offset
= bio
->bi_iter
.bi_bvec_done
;
553 bvec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
554 segments
= bio_segments(bio
);
556 atomic_set(&cmd
->ref
, 2);
558 iov_iter_bvec(&iter
, ITER_BVEC
| rw
, bvec
,
559 segments
, blk_rq_bytes(rq
));
560 iter
.iov_offset
= offset
;
562 cmd
->iocb
.ki_pos
= pos
;
563 cmd
->iocb
.ki_filp
= file
;
564 cmd
->iocb
.ki_complete
= lo_rw_aio_complete
;
565 cmd
->iocb
.ki_flags
= IOCB_DIRECT
;
566 cmd
->iocb
.ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
568 kthread_associate_blkcg(cmd
->css
);
571 ret
= call_write_iter(file
, &cmd
->iocb
, &iter
);
573 ret
= call_read_iter(file
, &cmd
->iocb
, &iter
);
575 lo_rw_aio_do_completion(cmd
);
576 kthread_associate_blkcg(NULL
);
578 if (ret
!= -EIOCBQUEUED
)
579 cmd
->iocb
.ki_complete(&cmd
->iocb
, ret
, 0);
583 static int do_req_filebacked(struct loop_device
*lo
, struct request
*rq
)
585 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
586 loff_t pos
= ((loff_t
) blk_rq_pos(rq
) << 9) + lo
->lo_offset
;
589 * lo_write_simple and lo_read_simple should have been covered
590 * by io submit style function like lo_rw_aio(), one blocker
591 * is that lo_read_simple() need to call flush_dcache_page after
592 * the page is written from kernel, and it isn't easy to handle
593 * this in io submit style function which submits all segments
594 * of the req at one time. And direct read IO doesn't need to
595 * run flush_dcache_page().
597 switch (req_op(rq
)) {
599 return lo_req_flush(lo
, rq
);
601 case REQ_OP_WRITE_ZEROES
:
602 return lo_discard(lo
, rq
, pos
);
605 return lo_write_transfer(lo
, rq
, pos
);
606 else if (cmd
->use_aio
)
607 return lo_rw_aio(lo
, cmd
, pos
, WRITE
);
609 return lo_write_simple(lo
, rq
, pos
);
612 return lo_read_transfer(lo
, rq
, pos
);
613 else if (cmd
->use_aio
)
614 return lo_rw_aio(lo
, cmd
, pos
, READ
);
616 return lo_read_simple(lo
, rq
, pos
);
624 static inline void loop_update_dio(struct loop_device
*lo
)
626 __loop_update_dio(lo
, io_is_direct(lo
->lo_backing_file
) |
630 static void loop_reread_partitions(struct loop_device
*lo
,
631 struct block_device
*bdev
)
636 * bd_mutex has been held already in release path, so don't
637 * acquire it if this function is called in such case.
639 * If the reread partition isn't from release path, lo_refcnt
640 * must be at least one and it can only become zero when the
641 * current holder is released.
643 if (!atomic_read(&lo
->lo_refcnt
))
644 rc
= __blkdev_reread_part(bdev
);
646 rc
= blkdev_reread_part(bdev
);
648 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
649 __func__
, lo
->lo_number
, lo
->lo_file_name
, rc
);
652 static inline int is_loop_device(struct file
*file
)
654 struct inode
*i
= file
->f_mapping
->host
;
656 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
659 static int loop_validate_file(struct file
*file
, struct block_device
*bdev
)
661 struct inode
*inode
= file
->f_mapping
->host
;
662 struct file
*f
= file
;
664 /* Avoid recursion */
665 while (is_loop_device(f
)) {
666 struct loop_device
*l
;
668 if (f
->f_mapping
->host
->i_bdev
== bdev
)
671 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
672 if (l
->lo_state
== Lo_unbound
) {
675 f
= l
->lo_backing_file
;
677 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
683 * loop_change_fd switched the backing store of a loopback device to
684 * a new file. This is useful for operating system installers to free up
685 * the original file and in High Availability environments to switch to
686 * an alternative location for the content in case of server meltdown.
687 * This can only work if the loop device is used read-only, and if the
688 * new backing store is the same size and type as the old backing store.
690 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
693 struct file
*file
, *old_file
;
697 if (lo
->lo_state
!= Lo_bound
)
700 /* the loop device has to be read-only */
702 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
710 error
= loop_validate_file(file
, bdev
);
714 old_file
= lo
->lo_backing_file
;
718 /* size of the new backing store needs to be the same */
719 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
723 blk_mq_freeze_queue(lo
->lo_queue
);
724 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
725 lo
->lo_backing_file
= file
;
726 lo
->old_gfp_mask
= mapping_gfp_mask(file
->f_mapping
);
727 mapping_set_gfp_mask(file
->f_mapping
,
728 lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
730 blk_mq_unfreeze_queue(lo
->lo_queue
);
733 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
734 loop_reread_partitions(lo
, bdev
);
743 /* loop sysfs attributes */
745 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
746 ssize_t (*callback
)(struct loop_device
*, char *))
748 struct gendisk
*disk
= dev_to_disk(dev
);
749 struct loop_device
*lo
= disk
->private_data
;
751 return callback(lo
, page
);
754 #define LOOP_ATTR_RO(_name) \
755 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
756 static ssize_t loop_attr_do_show_##_name(struct device *d, \
757 struct device_attribute *attr, char *b) \
759 return loop_attr_show(d, b, loop_attr_##_name##_show); \
761 static struct device_attribute loop_attr_##_name = \
762 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
764 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
769 spin_lock_irq(&lo
->lo_lock
);
770 if (lo
->lo_backing_file
)
771 p
= file_path(lo
->lo_backing_file
, buf
, PAGE_SIZE
- 1);
772 spin_unlock_irq(&lo
->lo_lock
);
774 if (IS_ERR_OR_NULL(p
))
778 memmove(buf
, p
, ret
);
786 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
788 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
791 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
793 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
796 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
798 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
800 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
803 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
805 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
807 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
810 static ssize_t
loop_attr_dio_show(struct loop_device
*lo
, char *buf
)
812 int dio
= (lo
->lo_flags
& LO_FLAGS_DIRECT_IO
);
814 return sprintf(buf
, "%s\n", dio
? "1" : "0");
817 LOOP_ATTR_RO(backing_file
);
818 LOOP_ATTR_RO(offset
);
819 LOOP_ATTR_RO(sizelimit
);
820 LOOP_ATTR_RO(autoclear
);
821 LOOP_ATTR_RO(partscan
);
824 static struct attribute
*loop_attrs
[] = {
825 &loop_attr_backing_file
.attr
,
826 &loop_attr_offset
.attr
,
827 &loop_attr_sizelimit
.attr
,
828 &loop_attr_autoclear
.attr
,
829 &loop_attr_partscan
.attr
,
834 static struct attribute_group loop_attribute_group
= {
839 static void loop_sysfs_init(struct loop_device
*lo
)
841 lo
->sysfs_inited
= !sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
842 &loop_attribute_group
);
845 static void loop_sysfs_exit(struct loop_device
*lo
)
847 if (lo
->sysfs_inited
)
848 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
849 &loop_attribute_group
);
852 static void loop_config_discard(struct loop_device
*lo
)
854 struct file
*file
= lo
->lo_backing_file
;
855 struct inode
*inode
= file
->f_mapping
->host
;
856 struct request_queue
*q
= lo
->lo_queue
;
859 * We use punch hole to reclaim the free space used by the
860 * image a.k.a. discard. However we do not support discard if
861 * encryption is enabled, because it may give an attacker
862 * useful information.
864 if ((!file
->f_op
->fallocate
) ||
865 lo
->lo_encrypt_key_size
) {
866 q
->limits
.discard_granularity
= 0;
867 q
->limits
.discard_alignment
= 0;
868 blk_queue_max_discard_sectors(q
, 0);
869 blk_queue_max_write_zeroes_sectors(q
, 0);
870 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, q
);
874 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
875 q
->limits
.discard_alignment
= 0;
877 blk_queue_max_discard_sectors(q
, UINT_MAX
>> 9);
878 blk_queue_max_write_zeroes_sectors(q
, UINT_MAX
>> 9);
879 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, q
);
882 static void loop_unprepare_queue(struct loop_device
*lo
)
884 kthread_flush_worker(&lo
->worker
);
885 kthread_stop(lo
->worker_task
);
888 static int loop_kthread_worker_fn(void *worker_ptr
)
890 current
->flags
|= PF_LESS_THROTTLE
;
891 return kthread_worker_fn(worker_ptr
);
894 static int loop_prepare_queue(struct loop_device
*lo
)
896 kthread_init_worker(&lo
->worker
);
897 lo
->worker_task
= kthread_run(loop_kthread_worker_fn
,
898 &lo
->worker
, "loop%d", lo
->lo_number
);
899 if (IS_ERR(lo
->worker_task
))
901 set_user_nice(lo
->worker_task
, MIN_NICE
);
905 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
906 struct block_device
*bdev
, unsigned int arg
)
910 struct address_space
*mapping
;
915 /* This is safe, since we have a reference from open(). */
916 __module_get(THIS_MODULE
);
924 if (lo
->lo_state
!= Lo_unbound
)
927 error
= loop_validate_file(file
, bdev
);
931 mapping
= file
->f_mapping
;
932 inode
= mapping
->host
;
934 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
935 !file
->f_op
->write_iter
)
936 lo_flags
|= LO_FLAGS_READ_ONLY
;
939 size
= get_loop_size(lo
, file
);
940 if ((loff_t
)(sector_t
)size
!= size
)
942 error
= loop_prepare_queue(lo
);
948 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
951 lo
->lo_device
= bdev
;
952 lo
->lo_flags
= lo_flags
;
953 lo
->lo_backing_file
= file
;
956 lo
->lo_sizelimit
= 0;
957 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
958 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
960 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
961 blk_queue_write_cache(lo
->lo_queue
, true, false);
964 set_capacity(lo
->lo_disk
, size
);
965 bd_set_size(bdev
, size
<< 9);
967 /* let user-space know about the new size */
968 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
970 set_blocksize(bdev
, S_ISBLK(inode
->i_mode
) ?
971 block_size(inode
->i_bdev
) : PAGE_SIZE
);
973 lo
->lo_state
= Lo_bound
;
975 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
976 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
977 loop_reread_partitions(lo
, bdev
);
979 /* Grab the block_device to prevent its destruction after we
980 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
988 /* This is safe: open() is still holding a reference. */
989 module_put(THIS_MODULE
);
994 loop_release_xfer(struct loop_device
*lo
)
997 struct loop_func_table
*xfer
= lo
->lo_encryption
;
1001 err
= xfer
->release(lo
);
1002 lo
->transfer
= NULL
;
1003 lo
->lo_encryption
= NULL
;
1004 module_put(xfer
->owner
);
1010 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
1011 const struct loop_info64
*i
)
1016 struct module
*owner
= xfer
->owner
;
1018 if (!try_module_get(owner
))
1021 err
= xfer
->init(lo
, i
);
1025 lo
->lo_encryption
= xfer
;
1030 static int loop_clr_fd(struct loop_device
*lo
)
1032 struct file
*filp
= lo
->lo_backing_file
;
1033 gfp_t gfp
= lo
->old_gfp_mask
;
1034 struct block_device
*bdev
= lo
->lo_device
;
1036 if (lo
->lo_state
!= Lo_bound
)
1040 * If we've explicitly asked to tear down the loop device,
1041 * and it has an elevated reference count, set it for auto-teardown when
1042 * the last reference goes away. This stops $!~#$@ udev from
1043 * preventing teardown because it decided that it needs to run blkid on
1044 * the loopback device whenever they appear. xfstests is notorious for
1045 * failing tests because blkid via udev races with a losetup
1046 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1047 * command to fail with EBUSY.
1049 if (atomic_read(&lo
->lo_refcnt
) > 1) {
1050 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1051 mutex_unlock(&lo
->lo_ctl_mutex
);
1058 /* freeze request queue during the transition */
1059 blk_mq_freeze_queue(lo
->lo_queue
);
1061 spin_lock_irq(&lo
->lo_lock
);
1062 lo
->lo_state
= Lo_rundown
;
1063 lo
->lo_backing_file
= NULL
;
1064 spin_unlock_irq(&lo
->lo_lock
);
1066 loop_release_xfer(lo
);
1067 lo
->transfer
= NULL
;
1069 lo
->lo_device
= NULL
;
1070 lo
->lo_encryption
= NULL
;
1072 lo
->lo_sizelimit
= 0;
1073 lo
->lo_encrypt_key_size
= 0;
1074 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1075 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1076 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1077 blk_queue_logical_block_size(lo
->lo_queue
, 512);
1078 blk_queue_physical_block_size(lo
->lo_queue
, 512);
1079 blk_queue_io_min(lo
->lo_queue
, 512);
1082 invalidate_bdev(bdev
);
1083 bdev
->bd_inode
->i_mapping
->wb_err
= 0;
1085 set_capacity(lo
->lo_disk
, 0);
1086 loop_sysfs_exit(lo
);
1088 bd_set_size(bdev
, 0);
1089 /* let user-space know about this change */
1090 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1092 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1093 lo
->lo_state
= Lo_unbound
;
1094 /* This is safe: open() is still holding a reference. */
1095 module_put(THIS_MODULE
);
1096 blk_mq_unfreeze_queue(lo
->lo_queue
);
1098 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
)
1099 loop_reread_partitions(lo
, bdev
);
1102 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1103 loop_unprepare_queue(lo
);
1104 mutex_unlock(&lo
->lo_ctl_mutex
);
1106 * Need not hold lo_ctl_mutex to fput backing file.
1107 * Calling fput holding lo_ctl_mutex triggers a circular
1108 * lock dependency possibility warning as fput can take
1109 * bd_mutex which is usually taken before lo_ctl_mutex.
1116 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1119 struct loop_func_table
*xfer
;
1120 kuid_t uid
= current_uid();
1122 if (lo
->lo_encrypt_key_size
&&
1123 !uid_eq(lo
->lo_key_owner
, uid
) &&
1124 !capable(CAP_SYS_ADMIN
))
1126 if (lo
->lo_state
!= Lo_bound
)
1128 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1131 /* I/O need to be drained during transfer transition */
1132 blk_mq_freeze_queue(lo
->lo_queue
);
1134 err
= loop_release_xfer(lo
);
1138 if (info
->lo_encrypt_type
) {
1139 unsigned int type
= info
->lo_encrypt_type
;
1141 if (type
>= MAX_LO_CRYPT
) {
1145 xfer
= xfer_funcs
[type
];
1153 err
= loop_init_xfer(lo
, xfer
, info
);
1157 if (lo
->lo_offset
!= info
->lo_offset
||
1158 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1159 if (figure_loop_size(lo
, info
->lo_offset
, info
->lo_sizelimit
)) {
1165 loop_config_discard(lo
);
1167 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1168 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1169 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1170 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1174 lo
->transfer
= xfer
->transfer
;
1175 lo
->ioctl
= xfer
->ioctl
;
1177 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1178 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1179 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1181 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1182 lo
->lo_init
[0] = info
->lo_init
[0];
1183 lo
->lo_init
[1] = info
->lo_init
[1];
1184 if (info
->lo_encrypt_key_size
) {
1185 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1186 info
->lo_encrypt_key_size
);
1187 lo
->lo_key_owner
= uid
;
1190 /* update dio if lo_offset or transfer is changed */
1191 __loop_update_dio(lo
, lo
->use_dio
);
1194 blk_mq_unfreeze_queue(lo
->lo_queue
);
1196 if (!err
&& (info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1197 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1198 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1199 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1200 loop_reread_partitions(lo
, lo
->lo_device
);
1207 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1213 if (lo
->lo_state
!= Lo_bound
) {
1214 mutex_unlock(&lo
->lo_ctl_mutex
);
1218 memset(info
, 0, sizeof(*info
));
1219 info
->lo_number
= lo
->lo_number
;
1220 info
->lo_offset
= lo
->lo_offset
;
1221 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1222 info
->lo_flags
= lo
->lo_flags
;
1223 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1224 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1225 info
->lo_encrypt_type
=
1226 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1227 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1228 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1229 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1230 lo
->lo_encrypt_key_size
);
1233 /* Drop lo_ctl_mutex while we call into the filesystem. */
1234 file
= get_file(lo
->lo_backing_file
);
1235 mutex_unlock(&lo
->lo_ctl_mutex
);
1236 ret
= vfs_getattr(&file
->f_path
, &stat
, STATX_INO
,
1237 AT_STATX_SYNC_AS_STAT
);
1239 info
->lo_device
= huge_encode_dev(stat
.dev
);
1240 info
->lo_inode
= stat
.ino
;
1241 info
->lo_rdevice
= huge_encode_dev(stat
.rdev
);
1248 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1250 memset(info64
, 0, sizeof(*info64
));
1251 info64
->lo_number
= info
->lo_number
;
1252 info64
->lo_device
= info
->lo_device
;
1253 info64
->lo_inode
= info
->lo_inode
;
1254 info64
->lo_rdevice
= info
->lo_rdevice
;
1255 info64
->lo_offset
= info
->lo_offset
;
1256 info64
->lo_sizelimit
= 0;
1257 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1258 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1259 info64
->lo_flags
= info
->lo_flags
;
1260 info64
->lo_init
[0] = info
->lo_init
[0];
1261 info64
->lo_init
[1] = info
->lo_init
[1];
1262 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1263 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1265 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1266 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1270 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1272 memset(info
, 0, sizeof(*info
));
1273 info
->lo_number
= info64
->lo_number
;
1274 info
->lo_device
= info64
->lo_device
;
1275 info
->lo_inode
= info64
->lo_inode
;
1276 info
->lo_rdevice
= info64
->lo_rdevice
;
1277 info
->lo_offset
= info64
->lo_offset
;
1278 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1279 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1280 info
->lo_flags
= info64
->lo_flags
;
1281 info
->lo_init
[0] = info64
->lo_init
[0];
1282 info
->lo_init
[1] = info64
->lo_init
[1];
1283 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1284 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1286 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1287 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1289 /* error in case values were truncated */
1290 if (info
->lo_device
!= info64
->lo_device
||
1291 info
->lo_rdevice
!= info64
->lo_rdevice
||
1292 info
->lo_inode
!= info64
->lo_inode
||
1293 info
->lo_offset
!= info64
->lo_offset
)
1300 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1302 struct loop_info info
;
1303 struct loop_info64 info64
;
1305 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1307 loop_info64_from_old(&info
, &info64
);
1308 return loop_set_status(lo
, &info64
);
1312 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1314 struct loop_info64 info64
;
1316 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1318 return loop_set_status(lo
, &info64
);
1322 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1323 struct loop_info info
;
1324 struct loop_info64 info64
;
1328 mutex_unlock(&lo
->lo_ctl_mutex
);
1331 err
= loop_get_status(lo
, &info64
);
1333 err
= loop_info64_to_old(&info64
, &info
);
1334 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1341 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1342 struct loop_info64 info64
;
1346 mutex_unlock(&lo
->lo_ctl_mutex
);
1349 err
= loop_get_status(lo
, &info64
);
1350 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1356 static int loop_set_capacity(struct loop_device
*lo
)
1358 if (unlikely(lo
->lo_state
!= Lo_bound
))
1361 return figure_loop_size(lo
, lo
->lo_offset
, lo
->lo_sizelimit
);
1364 static int loop_set_dio(struct loop_device
*lo
, unsigned long arg
)
1367 if (lo
->lo_state
!= Lo_bound
)
1370 __loop_update_dio(lo
, !!arg
);
1371 if (lo
->use_dio
== !!arg
)
1378 static int loop_set_block_size(struct loop_device
*lo
, unsigned long arg
)
1380 if (lo
->lo_state
!= Lo_bound
)
1383 if (arg
< 512 || arg
> PAGE_SIZE
|| !is_power_of_2(arg
))
1386 blk_mq_freeze_queue(lo
->lo_queue
);
1388 blk_queue_logical_block_size(lo
->lo_queue
, arg
);
1389 blk_queue_physical_block_size(lo
->lo_queue
, arg
);
1390 blk_queue_io_min(lo
->lo_queue
, arg
);
1391 loop_update_dio(lo
);
1393 blk_mq_unfreeze_queue(lo
->lo_queue
);
1398 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1399 unsigned int cmd
, unsigned long arg
)
1401 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1404 err
= mutex_lock_killable_nested(&lo
->lo_ctl_mutex
, 1);
1410 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1412 case LOOP_CHANGE_FD
:
1413 err
= loop_change_fd(lo
, bdev
, arg
);
1416 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1417 err
= loop_clr_fd(lo
);
1421 case LOOP_SET_STATUS
:
1423 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1424 err
= loop_set_status_old(lo
,
1425 (struct loop_info __user
*)arg
);
1427 case LOOP_GET_STATUS
:
1428 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1429 /* loop_get_status() unlocks lo_ctl_mutex */
1431 case LOOP_SET_STATUS64
:
1433 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1434 err
= loop_set_status64(lo
,
1435 (struct loop_info64 __user
*) arg
);
1437 case LOOP_GET_STATUS64
:
1438 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1439 /* loop_get_status() unlocks lo_ctl_mutex */
1441 case LOOP_SET_CAPACITY
:
1443 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1444 err
= loop_set_capacity(lo
);
1446 case LOOP_SET_DIRECT_IO
:
1448 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1449 err
= loop_set_dio(lo
, arg
);
1451 case LOOP_SET_BLOCK_SIZE
:
1453 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1454 err
= loop_set_block_size(lo
, arg
);
1457 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1459 mutex_unlock(&lo
->lo_ctl_mutex
);
1465 #ifdef CONFIG_COMPAT
1466 struct compat_loop_info
{
1467 compat_int_t lo_number
; /* ioctl r/o */
1468 compat_dev_t lo_device
; /* ioctl r/o */
1469 compat_ulong_t lo_inode
; /* ioctl r/o */
1470 compat_dev_t lo_rdevice
; /* ioctl r/o */
1471 compat_int_t lo_offset
;
1472 compat_int_t lo_encrypt_type
;
1473 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1474 compat_int_t lo_flags
; /* ioctl r/o */
1475 char lo_name
[LO_NAME_SIZE
];
1476 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1477 compat_ulong_t lo_init
[2];
1482 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1483 * - noinlined to reduce stack space usage in main part of driver
1486 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1487 struct loop_info64
*info64
)
1489 struct compat_loop_info info
;
1491 if (copy_from_user(&info
, arg
, sizeof(info
)))
1494 memset(info64
, 0, sizeof(*info64
));
1495 info64
->lo_number
= info
.lo_number
;
1496 info64
->lo_device
= info
.lo_device
;
1497 info64
->lo_inode
= info
.lo_inode
;
1498 info64
->lo_rdevice
= info
.lo_rdevice
;
1499 info64
->lo_offset
= info
.lo_offset
;
1500 info64
->lo_sizelimit
= 0;
1501 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1502 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1503 info64
->lo_flags
= info
.lo_flags
;
1504 info64
->lo_init
[0] = info
.lo_init
[0];
1505 info64
->lo_init
[1] = info
.lo_init
[1];
1506 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1507 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1509 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1510 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1515 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1516 * - noinlined to reduce stack space usage in main part of driver
1519 loop_info64_to_compat(const struct loop_info64
*info64
,
1520 struct compat_loop_info __user
*arg
)
1522 struct compat_loop_info info
;
1524 memset(&info
, 0, sizeof(info
));
1525 info
.lo_number
= info64
->lo_number
;
1526 info
.lo_device
= info64
->lo_device
;
1527 info
.lo_inode
= info64
->lo_inode
;
1528 info
.lo_rdevice
= info64
->lo_rdevice
;
1529 info
.lo_offset
= info64
->lo_offset
;
1530 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1531 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1532 info
.lo_flags
= info64
->lo_flags
;
1533 info
.lo_init
[0] = info64
->lo_init
[0];
1534 info
.lo_init
[1] = info64
->lo_init
[1];
1535 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1536 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1538 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1539 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1541 /* error in case values were truncated */
1542 if (info
.lo_device
!= info64
->lo_device
||
1543 info
.lo_rdevice
!= info64
->lo_rdevice
||
1544 info
.lo_inode
!= info64
->lo_inode
||
1545 info
.lo_offset
!= info64
->lo_offset
||
1546 info
.lo_init
[0] != info64
->lo_init
[0] ||
1547 info
.lo_init
[1] != info64
->lo_init
[1])
1550 if (copy_to_user(arg
, &info
, sizeof(info
)))
1556 loop_set_status_compat(struct loop_device
*lo
,
1557 const struct compat_loop_info __user
*arg
)
1559 struct loop_info64 info64
;
1562 ret
= loop_info64_from_compat(arg
, &info64
);
1565 return loop_set_status(lo
, &info64
);
1569 loop_get_status_compat(struct loop_device
*lo
,
1570 struct compat_loop_info __user
*arg
)
1572 struct loop_info64 info64
;
1576 mutex_unlock(&lo
->lo_ctl_mutex
);
1579 err
= loop_get_status(lo
, &info64
);
1581 err
= loop_info64_to_compat(&info64
, arg
);
1585 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1586 unsigned int cmd
, unsigned long arg
)
1588 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1592 case LOOP_SET_STATUS
:
1593 err
= mutex_lock_killable(&lo
->lo_ctl_mutex
);
1595 err
= loop_set_status_compat(lo
,
1596 (const struct compat_loop_info __user
*)arg
);
1597 mutex_unlock(&lo
->lo_ctl_mutex
);
1600 case LOOP_GET_STATUS
:
1601 err
= mutex_lock_killable(&lo
->lo_ctl_mutex
);
1603 err
= loop_get_status_compat(lo
,
1604 (struct compat_loop_info __user
*)arg
);
1605 /* loop_get_status() unlocks lo_ctl_mutex */
1608 case LOOP_SET_CAPACITY
:
1610 case LOOP_GET_STATUS64
:
1611 case LOOP_SET_STATUS64
:
1612 arg
= (unsigned long) compat_ptr(arg
);
1615 case LOOP_CHANGE_FD
:
1616 case LOOP_SET_BLOCK_SIZE
:
1617 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1627 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1629 struct loop_device
*lo
;
1632 mutex_lock(&loop_index_mutex
);
1633 lo
= bdev
->bd_disk
->private_data
;
1639 atomic_inc(&lo
->lo_refcnt
);
1641 mutex_unlock(&loop_index_mutex
);
1645 static void __lo_release(struct loop_device
*lo
)
1649 if (atomic_dec_return(&lo
->lo_refcnt
))
1652 mutex_lock(&lo
->lo_ctl_mutex
);
1653 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1655 * In autoclear mode, stop the loop thread
1656 * and remove configuration after last close.
1658 err
= loop_clr_fd(lo
);
1661 } else if (lo
->lo_state
== Lo_bound
) {
1663 * Otherwise keep thread (if running) and config,
1664 * but flush possible ongoing bios in thread.
1666 blk_mq_freeze_queue(lo
->lo_queue
);
1667 blk_mq_unfreeze_queue(lo
->lo_queue
);
1670 mutex_unlock(&lo
->lo_ctl_mutex
);
1673 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1675 mutex_lock(&loop_index_mutex
);
1676 __lo_release(disk
->private_data
);
1677 mutex_unlock(&loop_index_mutex
);
1680 static const struct block_device_operations lo_fops
= {
1681 .owner
= THIS_MODULE
,
1683 .release
= lo_release
,
1685 #ifdef CONFIG_COMPAT
1686 .compat_ioctl
= lo_compat_ioctl
,
1691 * And now the modules code and kernel interface.
1693 static int max_loop
;
1694 module_param(max_loop
, int, 0444);
1695 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1696 module_param(max_part
, int, 0444);
1697 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1698 MODULE_LICENSE("GPL");
1699 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1701 int loop_register_transfer(struct loop_func_table
*funcs
)
1703 unsigned int n
= funcs
->number
;
1705 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1707 xfer_funcs
[n
] = funcs
;
1711 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1713 struct loop_device
*lo
= ptr
;
1714 struct loop_func_table
*xfer
= data
;
1716 mutex_lock(&lo
->lo_ctl_mutex
);
1717 if (lo
->lo_encryption
== xfer
)
1718 loop_release_xfer(lo
);
1719 mutex_unlock(&lo
->lo_ctl_mutex
);
1723 int loop_unregister_transfer(int number
)
1725 unsigned int n
= number
;
1726 struct loop_func_table
*xfer
;
1728 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1731 xfer_funcs
[n
] = NULL
;
1732 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1736 EXPORT_SYMBOL(loop_register_transfer
);
1737 EXPORT_SYMBOL(loop_unregister_transfer
);
1739 static blk_status_t
loop_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1740 const struct blk_mq_queue_data
*bd
)
1742 struct request
*rq
= bd
->rq
;
1743 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1744 struct loop_device
*lo
= rq
->q
->queuedata
;
1746 blk_mq_start_request(rq
);
1748 if (lo
->lo_state
!= Lo_bound
)
1749 return BLK_STS_IOERR
;
1751 switch (req_op(rq
)) {
1753 case REQ_OP_DISCARD
:
1754 case REQ_OP_WRITE_ZEROES
:
1755 cmd
->use_aio
= false;
1758 cmd
->use_aio
= lo
->use_dio
;
1762 /* always use the first bio's css */
1763 #ifdef CONFIG_BLK_CGROUP
1764 if (cmd
->use_aio
&& rq
->bio
&& rq
->bio
->bi_blkg
) {
1765 cmd
->css
= &bio_blkcg(rq
->bio
)->css
;
1770 kthread_queue_work(&lo
->worker
, &cmd
->work
);
1775 static void loop_handle_cmd(struct loop_cmd
*cmd
)
1777 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
1778 const bool write
= op_is_write(req_op(rq
));
1779 struct loop_device
*lo
= rq
->q
->queuedata
;
1782 if (write
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)) {
1787 ret
= do_req_filebacked(lo
, rq
);
1789 /* complete non-aio request */
1790 if (!cmd
->use_aio
|| ret
) {
1791 cmd
->ret
= ret
? -EIO
: 0;
1792 blk_mq_complete_request(rq
);
1796 static void loop_queue_work(struct kthread_work
*work
)
1798 struct loop_cmd
*cmd
=
1799 container_of(work
, struct loop_cmd
, work
);
1801 loop_handle_cmd(cmd
);
1804 static int loop_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1805 unsigned int hctx_idx
, unsigned int numa_node
)
1807 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1809 kthread_init_work(&cmd
->work
, loop_queue_work
);
1813 static const struct blk_mq_ops loop_mq_ops
= {
1814 .queue_rq
= loop_queue_rq
,
1815 .init_request
= loop_init_request
,
1816 .complete
= lo_complete_rq
,
1819 static int loop_add(struct loop_device
**l
, int i
)
1821 struct loop_device
*lo
;
1822 struct gendisk
*disk
;
1826 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1830 lo
->lo_state
= Lo_unbound
;
1832 /* allocate id, if @id >= 0, we're requesting that specific id */
1834 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
1838 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
1845 lo
->tag_set
.ops
= &loop_mq_ops
;
1846 lo
->tag_set
.nr_hw_queues
= 1;
1847 lo
->tag_set
.queue_depth
= 128;
1848 lo
->tag_set
.numa_node
= NUMA_NO_NODE
;
1849 lo
->tag_set
.cmd_size
= sizeof(struct loop_cmd
);
1850 lo
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
1851 lo
->tag_set
.driver_data
= lo
;
1853 err
= blk_mq_alloc_tag_set(&lo
->tag_set
);
1857 lo
->lo_queue
= blk_mq_init_queue(&lo
->tag_set
);
1858 if (IS_ERR_OR_NULL(lo
->lo_queue
)) {
1859 err
= PTR_ERR(lo
->lo_queue
);
1860 goto out_cleanup_tags
;
1862 lo
->lo_queue
->queuedata
= lo
;
1864 blk_queue_max_hw_sectors(lo
->lo_queue
, BLK_DEF_MAX_SECTORS
);
1867 * By default, we do buffer IO, so it doesn't make sense to enable
1868 * merge because the I/O submitted to backing file is handled page by
1869 * page. For directio mode, merge does help to dispatch bigger request
1870 * to underlayer disk. We will enable merge once directio is enabled.
1872 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
1875 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1877 goto out_free_queue
;
1880 * Disable partition scanning by default. The in-kernel partition
1881 * scanning can be requested individually per-device during its
1882 * setup. Userspace can always add and remove partitions from all
1883 * devices. The needed partition minors are allocated from the
1884 * extended minor space, the main loop device numbers will continue
1885 * to match the loop minors, regardless of the number of partitions
1888 * If max_part is given, partition scanning is globally enabled for
1889 * all loop devices. The minors for the main loop devices will be
1890 * multiples of max_part.
1892 * Note: Global-for-all-devices, set-only-at-init, read-only module
1893 * parameteters like 'max_loop' and 'max_part' make things needlessly
1894 * complicated, are too static, inflexible and may surprise
1895 * userspace tools. Parameters like this in general should be avoided.
1898 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1899 disk
->flags
|= GENHD_FL_EXT_DEVT
;
1900 mutex_init(&lo
->lo_ctl_mutex
);
1901 atomic_set(&lo
->lo_refcnt
, 0);
1903 spin_lock_init(&lo
->lo_lock
);
1904 disk
->major
= LOOP_MAJOR
;
1905 disk
->first_minor
= i
<< part_shift
;
1906 disk
->fops
= &lo_fops
;
1907 disk
->private_data
= lo
;
1908 disk
->queue
= lo
->lo_queue
;
1909 sprintf(disk
->disk_name
, "loop%d", i
);
1912 return lo
->lo_number
;
1915 blk_cleanup_queue(lo
->lo_queue
);
1917 blk_mq_free_tag_set(&lo
->tag_set
);
1919 idr_remove(&loop_index_idr
, i
);
1926 static void loop_remove(struct loop_device
*lo
)
1928 del_gendisk(lo
->lo_disk
);
1929 blk_cleanup_queue(lo
->lo_queue
);
1930 blk_mq_free_tag_set(&lo
->tag_set
);
1931 put_disk(lo
->lo_disk
);
1935 static int find_free_cb(int id
, void *ptr
, void *data
)
1937 struct loop_device
*lo
= ptr
;
1938 struct loop_device
**l
= data
;
1940 if (lo
->lo_state
== Lo_unbound
) {
1947 static int loop_lookup(struct loop_device
**l
, int i
)
1949 struct loop_device
*lo
;
1955 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
1958 ret
= lo
->lo_number
;
1963 /* lookup and return a specific i */
1964 lo
= idr_find(&loop_index_idr
, i
);
1967 ret
= lo
->lo_number
;
1973 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1975 struct loop_device
*lo
;
1976 struct kobject
*kobj
;
1979 mutex_lock(&loop_index_mutex
);
1980 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
1982 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
1986 kobj
= get_disk_and_module(lo
->lo_disk
);
1987 mutex_unlock(&loop_index_mutex
);
1993 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
1996 struct loop_device
*lo
;
1999 mutex_lock(&loop_index_mutex
);
2002 ret
= loop_lookup(&lo
, parm
);
2007 ret
= loop_add(&lo
, parm
);
2009 case LOOP_CTL_REMOVE
:
2010 ret
= loop_lookup(&lo
, parm
);
2013 ret
= mutex_lock_killable(&lo
->lo_ctl_mutex
);
2016 if (lo
->lo_state
!= Lo_unbound
) {
2018 mutex_unlock(&lo
->lo_ctl_mutex
);
2021 if (atomic_read(&lo
->lo_refcnt
) > 0) {
2023 mutex_unlock(&lo
->lo_ctl_mutex
);
2026 lo
->lo_disk
->private_data
= NULL
;
2027 mutex_unlock(&lo
->lo_ctl_mutex
);
2028 idr_remove(&loop_index_idr
, lo
->lo_number
);
2031 case LOOP_CTL_GET_FREE
:
2032 ret
= loop_lookup(&lo
, -1);
2035 ret
= loop_add(&lo
, -1);
2037 mutex_unlock(&loop_index_mutex
);
2042 static const struct file_operations loop_ctl_fops
= {
2043 .open
= nonseekable_open
,
2044 .unlocked_ioctl
= loop_control_ioctl
,
2045 .compat_ioctl
= loop_control_ioctl
,
2046 .owner
= THIS_MODULE
,
2047 .llseek
= noop_llseek
,
2050 static struct miscdevice loop_misc
= {
2051 .minor
= LOOP_CTRL_MINOR
,
2052 .name
= "loop-control",
2053 .fops
= &loop_ctl_fops
,
2056 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
2057 MODULE_ALIAS("devname:loop-control");
2059 static int __init
loop_init(void)
2062 unsigned long range
;
2063 struct loop_device
*lo
;
2068 part_shift
= fls(max_part
);
2071 * Adjust max_part according to part_shift as it is exported
2072 * to user space so that user can decide correct minor number
2073 * if [s]he want to create more devices.
2075 * Note that -1 is required because partition 0 is reserved
2076 * for the whole disk.
2078 max_part
= (1UL << part_shift
) - 1;
2081 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
2086 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
2092 * If max_loop is specified, create that many devices upfront.
2093 * This also becomes a hard limit. If max_loop is not specified,
2094 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2095 * init time. Loop devices can be requested on-demand with the
2096 * /dev/loop-control interface, or be instantiated by accessing
2097 * a 'dead' device node.
2101 range
= max_loop
<< part_shift
;
2103 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
2104 range
= 1UL << MINORBITS
;
2107 err
= misc_register(&loop_misc
);
2112 if (register_blkdev(LOOP_MAJOR
, "loop")) {
2117 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
2118 THIS_MODULE
, loop_probe
, NULL
, NULL
);
2120 /* pre-create number of devices given by config or max_loop */
2121 mutex_lock(&loop_index_mutex
);
2122 for (i
= 0; i
< nr
; i
++)
2124 mutex_unlock(&loop_index_mutex
);
2126 printk(KERN_INFO
"loop: module loaded\n");
2130 misc_deregister(&loop_misc
);
2135 static int loop_exit_cb(int id
, void *ptr
, void *data
)
2137 struct loop_device
*lo
= ptr
;
2143 static void __exit
loop_exit(void)
2145 unsigned long range
;
2147 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
2149 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
2150 idr_destroy(&loop_index_idr
);
2152 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
2153 unregister_blkdev(LOOP_MAJOR
, "loop");
2155 misc_deregister(&loop_misc
);
2158 module_init(loop_init
);
2159 module_exit(loop_exit
);
2162 static int __init
max_loop_setup(char *str
)
2164 max_loop
= simple_strtol(str
, NULL
, 0);
2168 __setup("max_loop=", max_loop_setup
);