]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/block/loop.c
memblock: replace free_bootmem_late with memblock_free_late
[mirror_ubuntu-jammy-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81
82 #include "loop.h"
83
84 #include <linux/uaccess.h>
85
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_index_mutex);
88
89 static int max_part;
90 static int part_shift;
91
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
96 {
97 char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 char *in, *out, *key;
100 int i, keysize;
101
102 if (cmd == READ) {
103 in = raw_buf;
104 out = loop_buf;
105 } else {
106 in = loop_buf;
107 out = raw_buf;
108 }
109
110 key = lo->lo_encrypt_key;
111 keysize = lo->lo_encrypt_key_size;
112 for (i = 0; i < size; i++)
113 *out++ = *in++ ^ key[(i & 511) % keysize];
114
115 kunmap_atomic(loop_buf);
116 kunmap_atomic(raw_buf);
117 cond_resched();
118 return 0;
119 }
120
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 if (unlikely(info->lo_encrypt_key_size <= 0))
124 return -EINVAL;
125 return 0;
126 }
127
128 static struct loop_func_table none_funcs = {
129 .number = LO_CRYPT_NONE,
130 };
131
132 static struct loop_func_table xor_funcs = {
133 .number = LO_CRYPT_XOR,
134 .transfer = transfer_xor,
135 .init = xor_init
136 };
137
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 &none_funcs,
141 &xor_funcs
142 };
143
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 loff_t loopsize;
147
148 /* Compute loopsize in bytes */
149 loopsize = i_size_read(file->f_mapping->host);
150 if (offset > 0)
151 loopsize -= offset;
152 /* offset is beyond i_size, weird but possible */
153 if (loopsize < 0)
154 return 0;
155
156 if (sizelimit > 0 && sizelimit < loopsize)
157 loopsize = sizelimit;
158 /*
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
161 */
162 return loopsize >> 9;
163 }
164
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 struct file *file = lo->lo_backing_file;
173 struct address_space *mapping = file->f_mapping;
174 struct inode *inode = mapping->host;
175 unsigned short sb_bsize = 0;
176 unsigned dio_align = 0;
177 bool use_dio;
178
179 if (inode->i_sb->s_bdev) {
180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 dio_align = sb_bsize - 1;
182 }
183
184 /*
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
189 *
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
193 */
194 if (dio) {
195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 !(lo->lo_offset & dio_align) &&
197 mapping->a_ops->direct_IO &&
198 !lo->transfer)
199 use_dio = true;
200 else
201 use_dio = false;
202 } else {
203 use_dio = false;
204 }
205
206 if (lo->use_dio == use_dio)
207 return;
208
209 /* flush dirty pages before changing direct IO */
210 vfs_fsync(file, 0);
211
212 /*
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
216 */
217 blk_mq_freeze_queue(lo->lo_queue);
218 lo->use_dio = use_dio;
219 if (use_dio) {
220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
222 } else {
223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
224 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
225 }
226 blk_mq_unfreeze_queue(lo->lo_queue);
227 }
228
229 static int
230 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
231 {
232 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
233 sector_t x = (sector_t)size;
234 struct block_device *bdev = lo->lo_device;
235
236 if (unlikely((loff_t)x != size))
237 return -EFBIG;
238 if (lo->lo_offset != offset)
239 lo->lo_offset = offset;
240 if (lo->lo_sizelimit != sizelimit)
241 lo->lo_sizelimit = sizelimit;
242 set_capacity(lo->lo_disk, x);
243 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
244 /* let user-space know about the new size */
245 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
246 return 0;
247 }
248
249 static inline int
250 lo_do_transfer(struct loop_device *lo, int cmd,
251 struct page *rpage, unsigned roffs,
252 struct page *lpage, unsigned loffs,
253 int size, sector_t rblock)
254 {
255 int ret;
256
257 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
258 if (likely(!ret))
259 return 0;
260
261 printk_ratelimited(KERN_ERR
262 "loop: Transfer error at byte offset %llu, length %i.\n",
263 (unsigned long long)rblock << 9, size);
264 return ret;
265 }
266
267 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
268 {
269 struct iov_iter i;
270 ssize_t bw;
271
272 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
273
274 file_start_write(file);
275 bw = vfs_iter_write(file, &i, ppos, 0);
276 file_end_write(file);
277
278 if (likely(bw == bvec->bv_len))
279 return 0;
280
281 printk_ratelimited(KERN_ERR
282 "loop: Write error at byte offset %llu, length %i.\n",
283 (unsigned long long)*ppos, bvec->bv_len);
284 if (bw >= 0)
285 bw = -EIO;
286 return bw;
287 }
288
289 static int lo_write_simple(struct loop_device *lo, struct request *rq,
290 loff_t pos)
291 {
292 struct bio_vec bvec;
293 struct req_iterator iter;
294 int ret = 0;
295
296 rq_for_each_segment(bvec, rq, iter) {
297 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
298 if (ret < 0)
299 break;
300 cond_resched();
301 }
302
303 return ret;
304 }
305
306 /*
307 * This is the slow, transforming version that needs to double buffer the
308 * data as it cannot do the transformations in place without having direct
309 * access to the destination pages of the backing file.
310 */
311 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
312 loff_t pos)
313 {
314 struct bio_vec bvec, b;
315 struct req_iterator iter;
316 struct page *page;
317 int ret = 0;
318
319 page = alloc_page(GFP_NOIO);
320 if (unlikely(!page))
321 return -ENOMEM;
322
323 rq_for_each_segment(bvec, rq, iter) {
324 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
325 bvec.bv_offset, bvec.bv_len, pos >> 9);
326 if (unlikely(ret))
327 break;
328
329 b.bv_page = page;
330 b.bv_offset = 0;
331 b.bv_len = bvec.bv_len;
332 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
333 if (ret < 0)
334 break;
335 }
336
337 __free_page(page);
338 return ret;
339 }
340
341 static int lo_read_simple(struct loop_device *lo, struct request *rq,
342 loff_t pos)
343 {
344 struct bio_vec bvec;
345 struct req_iterator iter;
346 struct iov_iter i;
347 ssize_t len;
348
349 rq_for_each_segment(bvec, rq, iter) {
350 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
351 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
352 if (len < 0)
353 return len;
354
355 flush_dcache_page(bvec.bv_page);
356
357 if (len != bvec.bv_len) {
358 struct bio *bio;
359
360 __rq_for_each_bio(bio, rq)
361 zero_fill_bio(bio);
362 break;
363 }
364 cond_resched();
365 }
366
367 return 0;
368 }
369
370 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
371 loff_t pos)
372 {
373 struct bio_vec bvec, b;
374 struct req_iterator iter;
375 struct iov_iter i;
376 struct page *page;
377 ssize_t len;
378 int ret = 0;
379
380 page = alloc_page(GFP_NOIO);
381 if (unlikely(!page))
382 return -ENOMEM;
383
384 rq_for_each_segment(bvec, rq, iter) {
385 loff_t offset = pos;
386
387 b.bv_page = page;
388 b.bv_offset = 0;
389 b.bv_len = bvec.bv_len;
390
391 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
392 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
393 if (len < 0) {
394 ret = len;
395 goto out_free_page;
396 }
397
398 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
399 bvec.bv_offset, len, offset >> 9);
400 if (ret)
401 goto out_free_page;
402
403 flush_dcache_page(bvec.bv_page);
404
405 if (len != bvec.bv_len) {
406 struct bio *bio;
407
408 __rq_for_each_bio(bio, rq)
409 zero_fill_bio(bio);
410 break;
411 }
412 }
413
414 ret = 0;
415 out_free_page:
416 __free_page(page);
417 return ret;
418 }
419
420 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
421 {
422 /*
423 * We use punch hole to reclaim the free space used by the
424 * image a.k.a. discard. However we do not support discard if
425 * encryption is enabled, because it may give an attacker
426 * useful information.
427 */
428 struct file *file = lo->lo_backing_file;
429 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
430 int ret;
431
432 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
433 ret = -EOPNOTSUPP;
434 goto out;
435 }
436
437 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
438 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
439 ret = -EIO;
440 out:
441 return ret;
442 }
443
444 static int lo_req_flush(struct loop_device *lo, struct request *rq)
445 {
446 struct file *file = lo->lo_backing_file;
447 int ret = vfs_fsync(file, 0);
448 if (unlikely(ret && ret != -EINVAL))
449 ret = -EIO;
450
451 return ret;
452 }
453
454 static void lo_complete_rq(struct request *rq)
455 {
456 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
457 blk_status_t ret = BLK_STS_OK;
458
459 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
460 req_op(rq) != REQ_OP_READ) {
461 if (cmd->ret < 0)
462 ret = BLK_STS_IOERR;
463 goto end_io;
464 }
465
466 /*
467 * Short READ - if we got some data, advance our request and
468 * retry it. If we got no data, end the rest with EIO.
469 */
470 if (cmd->ret) {
471 blk_update_request(rq, BLK_STS_OK, cmd->ret);
472 cmd->ret = 0;
473 blk_mq_requeue_request(rq, true);
474 } else {
475 if (cmd->use_aio) {
476 struct bio *bio = rq->bio;
477
478 while (bio) {
479 zero_fill_bio(bio);
480 bio = bio->bi_next;
481 }
482 }
483 ret = BLK_STS_IOERR;
484 end_io:
485 blk_mq_end_request(rq, ret);
486 }
487 }
488
489 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
490 {
491 struct request *rq = blk_mq_rq_from_pdu(cmd);
492
493 if (!atomic_dec_and_test(&cmd->ref))
494 return;
495 kfree(cmd->bvec);
496 cmd->bvec = NULL;
497 blk_mq_complete_request(rq);
498 }
499
500 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
501 {
502 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
503
504 if (cmd->css)
505 css_put(cmd->css);
506 cmd->ret = ret;
507 lo_rw_aio_do_completion(cmd);
508 }
509
510 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
511 loff_t pos, bool rw)
512 {
513 struct iov_iter iter;
514 struct bio_vec *bvec;
515 struct request *rq = blk_mq_rq_from_pdu(cmd);
516 struct bio *bio = rq->bio;
517 struct file *file = lo->lo_backing_file;
518 unsigned int offset;
519 int segments = 0;
520 int ret;
521
522 if (rq->bio != rq->biotail) {
523 struct req_iterator iter;
524 struct bio_vec tmp;
525
526 __rq_for_each_bio(bio, rq)
527 segments += bio_segments(bio);
528 bvec = kmalloc_array(segments, sizeof(struct bio_vec),
529 GFP_NOIO);
530 if (!bvec)
531 return -EIO;
532 cmd->bvec = bvec;
533
534 /*
535 * The bios of the request may be started from the middle of
536 * the 'bvec' because of bio splitting, so we can't directly
537 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
538 * API will take care of all details for us.
539 */
540 rq_for_each_segment(tmp, rq, iter) {
541 *bvec = tmp;
542 bvec++;
543 }
544 bvec = cmd->bvec;
545 offset = 0;
546 } else {
547 /*
548 * Same here, this bio may be started from the middle of the
549 * 'bvec' because of bio splitting, so offset from the bvec
550 * must be passed to iov iterator
551 */
552 offset = bio->bi_iter.bi_bvec_done;
553 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
554 segments = bio_segments(bio);
555 }
556 atomic_set(&cmd->ref, 2);
557
558 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
559 segments, blk_rq_bytes(rq));
560 iter.iov_offset = offset;
561
562 cmd->iocb.ki_pos = pos;
563 cmd->iocb.ki_filp = file;
564 cmd->iocb.ki_complete = lo_rw_aio_complete;
565 cmd->iocb.ki_flags = IOCB_DIRECT;
566 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
567 if (cmd->css)
568 kthread_associate_blkcg(cmd->css);
569
570 if (rw == WRITE)
571 ret = call_write_iter(file, &cmd->iocb, &iter);
572 else
573 ret = call_read_iter(file, &cmd->iocb, &iter);
574
575 lo_rw_aio_do_completion(cmd);
576 kthread_associate_blkcg(NULL);
577
578 if (ret != -EIOCBQUEUED)
579 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
580 return 0;
581 }
582
583 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
584 {
585 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
586 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
587
588 /*
589 * lo_write_simple and lo_read_simple should have been covered
590 * by io submit style function like lo_rw_aio(), one blocker
591 * is that lo_read_simple() need to call flush_dcache_page after
592 * the page is written from kernel, and it isn't easy to handle
593 * this in io submit style function which submits all segments
594 * of the req at one time. And direct read IO doesn't need to
595 * run flush_dcache_page().
596 */
597 switch (req_op(rq)) {
598 case REQ_OP_FLUSH:
599 return lo_req_flush(lo, rq);
600 case REQ_OP_DISCARD:
601 case REQ_OP_WRITE_ZEROES:
602 return lo_discard(lo, rq, pos);
603 case REQ_OP_WRITE:
604 if (lo->transfer)
605 return lo_write_transfer(lo, rq, pos);
606 else if (cmd->use_aio)
607 return lo_rw_aio(lo, cmd, pos, WRITE);
608 else
609 return lo_write_simple(lo, rq, pos);
610 case REQ_OP_READ:
611 if (lo->transfer)
612 return lo_read_transfer(lo, rq, pos);
613 else if (cmd->use_aio)
614 return lo_rw_aio(lo, cmd, pos, READ);
615 else
616 return lo_read_simple(lo, rq, pos);
617 default:
618 WARN_ON_ONCE(1);
619 return -EIO;
620 break;
621 }
622 }
623
624 static inline void loop_update_dio(struct loop_device *lo)
625 {
626 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
627 lo->use_dio);
628 }
629
630 static void loop_reread_partitions(struct loop_device *lo,
631 struct block_device *bdev)
632 {
633 int rc;
634
635 /*
636 * bd_mutex has been held already in release path, so don't
637 * acquire it if this function is called in such case.
638 *
639 * If the reread partition isn't from release path, lo_refcnt
640 * must be at least one and it can only become zero when the
641 * current holder is released.
642 */
643 if (!atomic_read(&lo->lo_refcnt))
644 rc = __blkdev_reread_part(bdev);
645 else
646 rc = blkdev_reread_part(bdev);
647 if (rc)
648 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
649 __func__, lo->lo_number, lo->lo_file_name, rc);
650 }
651
652 static inline int is_loop_device(struct file *file)
653 {
654 struct inode *i = file->f_mapping->host;
655
656 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
657 }
658
659 static int loop_validate_file(struct file *file, struct block_device *bdev)
660 {
661 struct inode *inode = file->f_mapping->host;
662 struct file *f = file;
663
664 /* Avoid recursion */
665 while (is_loop_device(f)) {
666 struct loop_device *l;
667
668 if (f->f_mapping->host->i_bdev == bdev)
669 return -EBADF;
670
671 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
672 if (l->lo_state == Lo_unbound) {
673 return -EINVAL;
674 }
675 f = l->lo_backing_file;
676 }
677 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
678 return -EINVAL;
679 return 0;
680 }
681
682 /*
683 * loop_change_fd switched the backing store of a loopback device to
684 * a new file. This is useful for operating system installers to free up
685 * the original file and in High Availability environments to switch to
686 * an alternative location for the content in case of server meltdown.
687 * This can only work if the loop device is used read-only, and if the
688 * new backing store is the same size and type as the old backing store.
689 */
690 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
691 unsigned int arg)
692 {
693 struct file *file, *old_file;
694 int error;
695
696 error = -ENXIO;
697 if (lo->lo_state != Lo_bound)
698 goto out;
699
700 /* the loop device has to be read-only */
701 error = -EINVAL;
702 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
703 goto out;
704
705 error = -EBADF;
706 file = fget(arg);
707 if (!file)
708 goto out;
709
710 error = loop_validate_file(file, bdev);
711 if (error)
712 goto out_putf;
713
714 old_file = lo->lo_backing_file;
715
716 error = -EINVAL;
717
718 /* size of the new backing store needs to be the same */
719 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
720 goto out_putf;
721
722 /* and ... switch */
723 blk_mq_freeze_queue(lo->lo_queue);
724 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
725 lo->lo_backing_file = file;
726 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
727 mapping_set_gfp_mask(file->f_mapping,
728 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
729 loop_update_dio(lo);
730 blk_mq_unfreeze_queue(lo->lo_queue);
731
732 fput(old_file);
733 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
734 loop_reread_partitions(lo, bdev);
735 return 0;
736
737 out_putf:
738 fput(file);
739 out:
740 return error;
741 }
742
743 /* loop sysfs attributes */
744
745 static ssize_t loop_attr_show(struct device *dev, char *page,
746 ssize_t (*callback)(struct loop_device *, char *))
747 {
748 struct gendisk *disk = dev_to_disk(dev);
749 struct loop_device *lo = disk->private_data;
750
751 return callback(lo, page);
752 }
753
754 #define LOOP_ATTR_RO(_name) \
755 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
756 static ssize_t loop_attr_do_show_##_name(struct device *d, \
757 struct device_attribute *attr, char *b) \
758 { \
759 return loop_attr_show(d, b, loop_attr_##_name##_show); \
760 } \
761 static struct device_attribute loop_attr_##_name = \
762 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
763
764 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
765 {
766 ssize_t ret;
767 char *p = NULL;
768
769 spin_lock_irq(&lo->lo_lock);
770 if (lo->lo_backing_file)
771 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
772 spin_unlock_irq(&lo->lo_lock);
773
774 if (IS_ERR_OR_NULL(p))
775 ret = PTR_ERR(p);
776 else {
777 ret = strlen(p);
778 memmove(buf, p, ret);
779 buf[ret++] = '\n';
780 buf[ret] = 0;
781 }
782
783 return ret;
784 }
785
786 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
787 {
788 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
789 }
790
791 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
792 {
793 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
794 }
795
796 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
797 {
798 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
799
800 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
801 }
802
803 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
804 {
805 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
806
807 return sprintf(buf, "%s\n", partscan ? "1" : "0");
808 }
809
810 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
811 {
812 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
813
814 return sprintf(buf, "%s\n", dio ? "1" : "0");
815 }
816
817 LOOP_ATTR_RO(backing_file);
818 LOOP_ATTR_RO(offset);
819 LOOP_ATTR_RO(sizelimit);
820 LOOP_ATTR_RO(autoclear);
821 LOOP_ATTR_RO(partscan);
822 LOOP_ATTR_RO(dio);
823
824 static struct attribute *loop_attrs[] = {
825 &loop_attr_backing_file.attr,
826 &loop_attr_offset.attr,
827 &loop_attr_sizelimit.attr,
828 &loop_attr_autoclear.attr,
829 &loop_attr_partscan.attr,
830 &loop_attr_dio.attr,
831 NULL,
832 };
833
834 static struct attribute_group loop_attribute_group = {
835 .name = "loop",
836 .attrs= loop_attrs,
837 };
838
839 static void loop_sysfs_init(struct loop_device *lo)
840 {
841 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
842 &loop_attribute_group);
843 }
844
845 static void loop_sysfs_exit(struct loop_device *lo)
846 {
847 if (lo->sysfs_inited)
848 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
849 &loop_attribute_group);
850 }
851
852 static void loop_config_discard(struct loop_device *lo)
853 {
854 struct file *file = lo->lo_backing_file;
855 struct inode *inode = file->f_mapping->host;
856 struct request_queue *q = lo->lo_queue;
857
858 /*
859 * We use punch hole to reclaim the free space used by the
860 * image a.k.a. discard. However we do not support discard if
861 * encryption is enabled, because it may give an attacker
862 * useful information.
863 */
864 if ((!file->f_op->fallocate) ||
865 lo->lo_encrypt_key_size) {
866 q->limits.discard_granularity = 0;
867 q->limits.discard_alignment = 0;
868 blk_queue_max_discard_sectors(q, 0);
869 blk_queue_max_write_zeroes_sectors(q, 0);
870 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
871 return;
872 }
873
874 q->limits.discard_granularity = inode->i_sb->s_blocksize;
875 q->limits.discard_alignment = 0;
876
877 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
878 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
879 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
880 }
881
882 static void loop_unprepare_queue(struct loop_device *lo)
883 {
884 kthread_flush_worker(&lo->worker);
885 kthread_stop(lo->worker_task);
886 }
887
888 static int loop_kthread_worker_fn(void *worker_ptr)
889 {
890 current->flags |= PF_LESS_THROTTLE;
891 return kthread_worker_fn(worker_ptr);
892 }
893
894 static int loop_prepare_queue(struct loop_device *lo)
895 {
896 kthread_init_worker(&lo->worker);
897 lo->worker_task = kthread_run(loop_kthread_worker_fn,
898 &lo->worker, "loop%d", lo->lo_number);
899 if (IS_ERR(lo->worker_task))
900 return -ENOMEM;
901 set_user_nice(lo->worker_task, MIN_NICE);
902 return 0;
903 }
904
905 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
906 struct block_device *bdev, unsigned int arg)
907 {
908 struct file *file;
909 struct inode *inode;
910 struct address_space *mapping;
911 int lo_flags = 0;
912 int error;
913 loff_t size;
914
915 /* This is safe, since we have a reference from open(). */
916 __module_get(THIS_MODULE);
917
918 error = -EBADF;
919 file = fget(arg);
920 if (!file)
921 goto out;
922
923 error = -EBUSY;
924 if (lo->lo_state != Lo_unbound)
925 goto out_putf;
926
927 error = loop_validate_file(file, bdev);
928 if (error)
929 goto out_putf;
930
931 mapping = file->f_mapping;
932 inode = mapping->host;
933
934 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
935 !file->f_op->write_iter)
936 lo_flags |= LO_FLAGS_READ_ONLY;
937
938 error = -EFBIG;
939 size = get_loop_size(lo, file);
940 if ((loff_t)(sector_t)size != size)
941 goto out_putf;
942 error = loop_prepare_queue(lo);
943 if (error)
944 goto out_putf;
945
946 error = 0;
947
948 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
949
950 lo->use_dio = false;
951 lo->lo_device = bdev;
952 lo->lo_flags = lo_flags;
953 lo->lo_backing_file = file;
954 lo->transfer = NULL;
955 lo->ioctl = NULL;
956 lo->lo_sizelimit = 0;
957 lo->old_gfp_mask = mapping_gfp_mask(mapping);
958 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
959
960 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
961 blk_queue_write_cache(lo->lo_queue, true, false);
962
963 loop_update_dio(lo);
964 set_capacity(lo->lo_disk, size);
965 bd_set_size(bdev, size << 9);
966 loop_sysfs_init(lo);
967 /* let user-space know about the new size */
968 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
969
970 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
971 block_size(inode->i_bdev) : PAGE_SIZE);
972
973 lo->lo_state = Lo_bound;
974 if (part_shift)
975 lo->lo_flags |= LO_FLAGS_PARTSCAN;
976 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
977 loop_reread_partitions(lo, bdev);
978
979 /* Grab the block_device to prevent its destruction after we
980 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
981 */
982 bdgrab(bdev);
983 return 0;
984
985 out_putf:
986 fput(file);
987 out:
988 /* This is safe: open() is still holding a reference. */
989 module_put(THIS_MODULE);
990 return error;
991 }
992
993 static int
994 loop_release_xfer(struct loop_device *lo)
995 {
996 int err = 0;
997 struct loop_func_table *xfer = lo->lo_encryption;
998
999 if (xfer) {
1000 if (xfer->release)
1001 err = xfer->release(lo);
1002 lo->transfer = NULL;
1003 lo->lo_encryption = NULL;
1004 module_put(xfer->owner);
1005 }
1006 return err;
1007 }
1008
1009 static int
1010 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1011 const struct loop_info64 *i)
1012 {
1013 int err = 0;
1014
1015 if (xfer) {
1016 struct module *owner = xfer->owner;
1017
1018 if (!try_module_get(owner))
1019 return -EINVAL;
1020 if (xfer->init)
1021 err = xfer->init(lo, i);
1022 if (err)
1023 module_put(owner);
1024 else
1025 lo->lo_encryption = xfer;
1026 }
1027 return err;
1028 }
1029
1030 static int loop_clr_fd(struct loop_device *lo)
1031 {
1032 struct file *filp = lo->lo_backing_file;
1033 gfp_t gfp = lo->old_gfp_mask;
1034 struct block_device *bdev = lo->lo_device;
1035
1036 if (lo->lo_state != Lo_bound)
1037 return -ENXIO;
1038
1039 /*
1040 * If we've explicitly asked to tear down the loop device,
1041 * and it has an elevated reference count, set it for auto-teardown when
1042 * the last reference goes away. This stops $!~#$@ udev from
1043 * preventing teardown because it decided that it needs to run blkid on
1044 * the loopback device whenever they appear. xfstests is notorious for
1045 * failing tests because blkid via udev races with a losetup
1046 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1047 * command to fail with EBUSY.
1048 */
1049 if (atomic_read(&lo->lo_refcnt) > 1) {
1050 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1051 mutex_unlock(&lo->lo_ctl_mutex);
1052 return 0;
1053 }
1054
1055 if (filp == NULL)
1056 return -EINVAL;
1057
1058 /* freeze request queue during the transition */
1059 blk_mq_freeze_queue(lo->lo_queue);
1060
1061 spin_lock_irq(&lo->lo_lock);
1062 lo->lo_state = Lo_rundown;
1063 lo->lo_backing_file = NULL;
1064 spin_unlock_irq(&lo->lo_lock);
1065
1066 loop_release_xfer(lo);
1067 lo->transfer = NULL;
1068 lo->ioctl = NULL;
1069 lo->lo_device = NULL;
1070 lo->lo_encryption = NULL;
1071 lo->lo_offset = 0;
1072 lo->lo_sizelimit = 0;
1073 lo->lo_encrypt_key_size = 0;
1074 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1075 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1076 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1077 blk_queue_logical_block_size(lo->lo_queue, 512);
1078 blk_queue_physical_block_size(lo->lo_queue, 512);
1079 blk_queue_io_min(lo->lo_queue, 512);
1080 if (bdev) {
1081 bdput(bdev);
1082 invalidate_bdev(bdev);
1083 bdev->bd_inode->i_mapping->wb_err = 0;
1084 }
1085 set_capacity(lo->lo_disk, 0);
1086 loop_sysfs_exit(lo);
1087 if (bdev) {
1088 bd_set_size(bdev, 0);
1089 /* let user-space know about this change */
1090 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1091 }
1092 mapping_set_gfp_mask(filp->f_mapping, gfp);
1093 lo->lo_state = Lo_unbound;
1094 /* This is safe: open() is still holding a reference. */
1095 module_put(THIS_MODULE);
1096 blk_mq_unfreeze_queue(lo->lo_queue);
1097
1098 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1099 loop_reread_partitions(lo, bdev);
1100 lo->lo_flags = 0;
1101 if (!part_shift)
1102 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1103 loop_unprepare_queue(lo);
1104 mutex_unlock(&lo->lo_ctl_mutex);
1105 /*
1106 * Need not hold lo_ctl_mutex to fput backing file.
1107 * Calling fput holding lo_ctl_mutex triggers a circular
1108 * lock dependency possibility warning as fput can take
1109 * bd_mutex which is usually taken before lo_ctl_mutex.
1110 */
1111 fput(filp);
1112 return 0;
1113 }
1114
1115 static int
1116 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1117 {
1118 int err;
1119 struct loop_func_table *xfer;
1120 kuid_t uid = current_uid();
1121
1122 if (lo->lo_encrypt_key_size &&
1123 !uid_eq(lo->lo_key_owner, uid) &&
1124 !capable(CAP_SYS_ADMIN))
1125 return -EPERM;
1126 if (lo->lo_state != Lo_bound)
1127 return -ENXIO;
1128 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1129 return -EINVAL;
1130
1131 /* I/O need to be drained during transfer transition */
1132 blk_mq_freeze_queue(lo->lo_queue);
1133
1134 err = loop_release_xfer(lo);
1135 if (err)
1136 goto exit;
1137
1138 if (info->lo_encrypt_type) {
1139 unsigned int type = info->lo_encrypt_type;
1140
1141 if (type >= MAX_LO_CRYPT) {
1142 err = -EINVAL;
1143 goto exit;
1144 }
1145 xfer = xfer_funcs[type];
1146 if (xfer == NULL) {
1147 err = -EINVAL;
1148 goto exit;
1149 }
1150 } else
1151 xfer = NULL;
1152
1153 err = loop_init_xfer(lo, xfer, info);
1154 if (err)
1155 goto exit;
1156
1157 if (lo->lo_offset != info->lo_offset ||
1158 lo->lo_sizelimit != info->lo_sizelimit) {
1159 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1160 err = -EFBIG;
1161 goto exit;
1162 }
1163 }
1164
1165 loop_config_discard(lo);
1166
1167 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1168 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1169 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1170 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1171
1172 if (!xfer)
1173 xfer = &none_funcs;
1174 lo->transfer = xfer->transfer;
1175 lo->ioctl = xfer->ioctl;
1176
1177 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1178 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1179 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1180
1181 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1182 lo->lo_init[0] = info->lo_init[0];
1183 lo->lo_init[1] = info->lo_init[1];
1184 if (info->lo_encrypt_key_size) {
1185 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1186 info->lo_encrypt_key_size);
1187 lo->lo_key_owner = uid;
1188 }
1189
1190 /* update dio if lo_offset or transfer is changed */
1191 __loop_update_dio(lo, lo->use_dio);
1192
1193 exit:
1194 blk_mq_unfreeze_queue(lo->lo_queue);
1195
1196 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1197 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1198 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1199 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1200 loop_reread_partitions(lo, lo->lo_device);
1201 }
1202
1203 return err;
1204 }
1205
1206 static int
1207 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1208 {
1209 struct file *file;
1210 struct kstat stat;
1211 int ret;
1212
1213 if (lo->lo_state != Lo_bound) {
1214 mutex_unlock(&lo->lo_ctl_mutex);
1215 return -ENXIO;
1216 }
1217
1218 memset(info, 0, sizeof(*info));
1219 info->lo_number = lo->lo_number;
1220 info->lo_offset = lo->lo_offset;
1221 info->lo_sizelimit = lo->lo_sizelimit;
1222 info->lo_flags = lo->lo_flags;
1223 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1224 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1225 info->lo_encrypt_type =
1226 lo->lo_encryption ? lo->lo_encryption->number : 0;
1227 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1228 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1229 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1230 lo->lo_encrypt_key_size);
1231 }
1232
1233 /* Drop lo_ctl_mutex while we call into the filesystem. */
1234 file = get_file(lo->lo_backing_file);
1235 mutex_unlock(&lo->lo_ctl_mutex);
1236 ret = vfs_getattr(&file->f_path, &stat, STATX_INO,
1237 AT_STATX_SYNC_AS_STAT);
1238 if (!ret) {
1239 info->lo_device = huge_encode_dev(stat.dev);
1240 info->lo_inode = stat.ino;
1241 info->lo_rdevice = huge_encode_dev(stat.rdev);
1242 }
1243 fput(file);
1244 return ret;
1245 }
1246
1247 static void
1248 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1249 {
1250 memset(info64, 0, sizeof(*info64));
1251 info64->lo_number = info->lo_number;
1252 info64->lo_device = info->lo_device;
1253 info64->lo_inode = info->lo_inode;
1254 info64->lo_rdevice = info->lo_rdevice;
1255 info64->lo_offset = info->lo_offset;
1256 info64->lo_sizelimit = 0;
1257 info64->lo_encrypt_type = info->lo_encrypt_type;
1258 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1259 info64->lo_flags = info->lo_flags;
1260 info64->lo_init[0] = info->lo_init[0];
1261 info64->lo_init[1] = info->lo_init[1];
1262 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1263 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1264 else
1265 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1266 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1267 }
1268
1269 static int
1270 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1271 {
1272 memset(info, 0, sizeof(*info));
1273 info->lo_number = info64->lo_number;
1274 info->lo_device = info64->lo_device;
1275 info->lo_inode = info64->lo_inode;
1276 info->lo_rdevice = info64->lo_rdevice;
1277 info->lo_offset = info64->lo_offset;
1278 info->lo_encrypt_type = info64->lo_encrypt_type;
1279 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1280 info->lo_flags = info64->lo_flags;
1281 info->lo_init[0] = info64->lo_init[0];
1282 info->lo_init[1] = info64->lo_init[1];
1283 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1284 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1285 else
1286 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1287 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1288
1289 /* error in case values were truncated */
1290 if (info->lo_device != info64->lo_device ||
1291 info->lo_rdevice != info64->lo_rdevice ||
1292 info->lo_inode != info64->lo_inode ||
1293 info->lo_offset != info64->lo_offset)
1294 return -EOVERFLOW;
1295
1296 return 0;
1297 }
1298
1299 static int
1300 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1301 {
1302 struct loop_info info;
1303 struct loop_info64 info64;
1304
1305 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1306 return -EFAULT;
1307 loop_info64_from_old(&info, &info64);
1308 return loop_set_status(lo, &info64);
1309 }
1310
1311 static int
1312 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1313 {
1314 struct loop_info64 info64;
1315
1316 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1317 return -EFAULT;
1318 return loop_set_status(lo, &info64);
1319 }
1320
1321 static int
1322 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1323 struct loop_info info;
1324 struct loop_info64 info64;
1325 int err;
1326
1327 if (!arg) {
1328 mutex_unlock(&lo->lo_ctl_mutex);
1329 return -EINVAL;
1330 }
1331 err = loop_get_status(lo, &info64);
1332 if (!err)
1333 err = loop_info64_to_old(&info64, &info);
1334 if (!err && copy_to_user(arg, &info, sizeof(info)))
1335 err = -EFAULT;
1336
1337 return err;
1338 }
1339
1340 static int
1341 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1342 struct loop_info64 info64;
1343 int err;
1344
1345 if (!arg) {
1346 mutex_unlock(&lo->lo_ctl_mutex);
1347 return -EINVAL;
1348 }
1349 err = loop_get_status(lo, &info64);
1350 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1351 err = -EFAULT;
1352
1353 return err;
1354 }
1355
1356 static int loop_set_capacity(struct loop_device *lo)
1357 {
1358 if (unlikely(lo->lo_state != Lo_bound))
1359 return -ENXIO;
1360
1361 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1362 }
1363
1364 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1365 {
1366 int error = -ENXIO;
1367 if (lo->lo_state != Lo_bound)
1368 goto out;
1369
1370 __loop_update_dio(lo, !!arg);
1371 if (lo->use_dio == !!arg)
1372 return 0;
1373 error = -EINVAL;
1374 out:
1375 return error;
1376 }
1377
1378 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1379 {
1380 if (lo->lo_state != Lo_bound)
1381 return -ENXIO;
1382
1383 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1384 return -EINVAL;
1385
1386 blk_mq_freeze_queue(lo->lo_queue);
1387
1388 blk_queue_logical_block_size(lo->lo_queue, arg);
1389 blk_queue_physical_block_size(lo->lo_queue, arg);
1390 blk_queue_io_min(lo->lo_queue, arg);
1391 loop_update_dio(lo);
1392
1393 blk_mq_unfreeze_queue(lo->lo_queue);
1394
1395 return 0;
1396 }
1397
1398 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1399 unsigned int cmd, unsigned long arg)
1400 {
1401 struct loop_device *lo = bdev->bd_disk->private_data;
1402 int err;
1403
1404 err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1);
1405 if (err)
1406 goto out_unlocked;
1407
1408 switch (cmd) {
1409 case LOOP_SET_FD:
1410 err = loop_set_fd(lo, mode, bdev, arg);
1411 break;
1412 case LOOP_CHANGE_FD:
1413 err = loop_change_fd(lo, bdev, arg);
1414 break;
1415 case LOOP_CLR_FD:
1416 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1417 err = loop_clr_fd(lo);
1418 if (!err)
1419 goto out_unlocked;
1420 break;
1421 case LOOP_SET_STATUS:
1422 err = -EPERM;
1423 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1424 err = loop_set_status_old(lo,
1425 (struct loop_info __user *)arg);
1426 break;
1427 case LOOP_GET_STATUS:
1428 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1429 /* loop_get_status() unlocks lo_ctl_mutex */
1430 goto out_unlocked;
1431 case LOOP_SET_STATUS64:
1432 err = -EPERM;
1433 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1434 err = loop_set_status64(lo,
1435 (struct loop_info64 __user *) arg);
1436 break;
1437 case LOOP_GET_STATUS64:
1438 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1439 /* loop_get_status() unlocks lo_ctl_mutex */
1440 goto out_unlocked;
1441 case LOOP_SET_CAPACITY:
1442 err = -EPERM;
1443 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1444 err = loop_set_capacity(lo);
1445 break;
1446 case LOOP_SET_DIRECT_IO:
1447 err = -EPERM;
1448 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1449 err = loop_set_dio(lo, arg);
1450 break;
1451 case LOOP_SET_BLOCK_SIZE:
1452 err = -EPERM;
1453 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1454 err = loop_set_block_size(lo, arg);
1455 break;
1456 default:
1457 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1458 }
1459 mutex_unlock(&lo->lo_ctl_mutex);
1460
1461 out_unlocked:
1462 return err;
1463 }
1464
1465 #ifdef CONFIG_COMPAT
1466 struct compat_loop_info {
1467 compat_int_t lo_number; /* ioctl r/o */
1468 compat_dev_t lo_device; /* ioctl r/o */
1469 compat_ulong_t lo_inode; /* ioctl r/o */
1470 compat_dev_t lo_rdevice; /* ioctl r/o */
1471 compat_int_t lo_offset;
1472 compat_int_t lo_encrypt_type;
1473 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1474 compat_int_t lo_flags; /* ioctl r/o */
1475 char lo_name[LO_NAME_SIZE];
1476 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1477 compat_ulong_t lo_init[2];
1478 char reserved[4];
1479 };
1480
1481 /*
1482 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1483 * - noinlined to reduce stack space usage in main part of driver
1484 */
1485 static noinline int
1486 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1487 struct loop_info64 *info64)
1488 {
1489 struct compat_loop_info info;
1490
1491 if (copy_from_user(&info, arg, sizeof(info)))
1492 return -EFAULT;
1493
1494 memset(info64, 0, sizeof(*info64));
1495 info64->lo_number = info.lo_number;
1496 info64->lo_device = info.lo_device;
1497 info64->lo_inode = info.lo_inode;
1498 info64->lo_rdevice = info.lo_rdevice;
1499 info64->lo_offset = info.lo_offset;
1500 info64->lo_sizelimit = 0;
1501 info64->lo_encrypt_type = info.lo_encrypt_type;
1502 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1503 info64->lo_flags = info.lo_flags;
1504 info64->lo_init[0] = info.lo_init[0];
1505 info64->lo_init[1] = info.lo_init[1];
1506 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1507 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1508 else
1509 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1510 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1511 return 0;
1512 }
1513
1514 /*
1515 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1516 * - noinlined to reduce stack space usage in main part of driver
1517 */
1518 static noinline int
1519 loop_info64_to_compat(const struct loop_info64 *info64,
1520 struct compat_loop_info __user *arg)
1521 {
1522 struct compat_loop_info info;
1523
1524 memset(&info, 0, sizeof(info));
1525 info.lo_number = info64->lo_number;
1526 info.lo_device = info64->lo_device;
1527 info.lo_inode = info64->lo_inode;
1528 info.lo_rdevice = info64->lo_rdevice;
1529 info.lo_offset = info64->lo_offset;
1530 info.lo_encrypt_type = info64->lo_encrypt_type;
1531 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1532 info.lo_flags = info64->lo_flags;
1533 info.lo_init[0] = info64->lo_init[0];
1534 info.lo_init[1] = info64->lo_init[1];
1535 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1536 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1537 else
1538 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1539 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1540
1541 /* error in case values were truncated */
1542 if (info.lo_device != info64->lo_device ||
1543 info.lo_rdevice != info64->lo_rdevice ||
1544 info.lo_inode != info64->lo_inode ||
1545 info.lo_offset != info64->lo_offset ||
1546 info.lo_init[0] != info64->lo_init[0] ||
1547 info.lo_init[1] != info64->lo_init[1])
1548 return -EOVERFLOW;
1549
1550 if (copy_to_user(arg, &info, sizeof(info)))
1551 return -EFAULT;
1552 return 0;
1553 }
1554
1555 static int
1556 loop_set_status_compat(struct loop_device *lo,
1557 const struct compat_loop_info __user *arg)
1558 {
1559 struct loop_info64 info64;
1560 int ret;
1561
1562 ret = loop_info64_from_compat(arg, &info64);
1563 if (ret < 0)
1564 return ret;
1565 return loop_set_status(lo, &info64);
1566 }
1567
1568 static int
1569 loop_get_status_compat(struct loop_device *lo,
1570 struct compat_loop_info __user *arg)
1571 {
1572 struct loop_info64 info64;
1573 int err;
1574
1575 if (!arg) {
1576 mutex_unlock(&lo->lo_ctl_mutex);
1577 return -EINVAL;
1578 }
1579 err = loop_get_status(lo, &info64);
1580 if (!err)
1581 err = loop_info64_to_compat(&info64, arg);
1582 return err;
1583 }
1584
1585 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1586 unsigned int cmd, unsigned long arg)
1587 {
1588 struct loop_device *lo = bdev->bd_disk->private_data;
1589 int err;
1590
1591 switch(cmd) {
1592 case LOOP_SET_STATUS:
1593 err = mutex_lock_killable(&lo->lo_ctl_mutex);
1594 if (!err) {
1595 err = loop_set_status_compat(lo,
1596 (const struct compat_loop_info __user *)arg);
1597 mutex_unlock(&lo->lo_ctl_mutex);
1598 }
1599 break;
1600 case LOOP_GET_STATUS:
1601 err = mutex_lock_killable(&lo->lo_ctl_mutex);
1602 if (!err) {
1603 err = loop_get_status_compat(lo,
1604 (struct compat_loop_info __user *)arg);
1605 /* loop_get_status() unlocks lo_ctl_mutex */
1606 }
1607 break;
1608 case LOOP_SET_CAPACITY:
1609 case LOOP_CLR_FD:
1610 case LOOP_GET_STATUS64:
1611 case LOOP_SET_STATUS64:
1612 arg = (unsigned long) compat_ptr(arg);
1613 /* fall through */
1614 case LOOP_SET_FD:
1615 case LOOP_CHANGE_FD:
1616 case LOOP_SET_BLOCK_SIZE:
1617 err = lo_ioctl(bdev, mode, cmd, arg);
1618 break;
1619 default:
1620 err = -ENOIOCTLCMD;
1621 break;
1622 }
1623 return err;
1624 }
1625 #endif
1626
1627 static int lo_open(struct block_device *bdev, fmode_t mode)
1628 {
1629 struct loop_device *lo;
1630 int err = 0;
1631
1632 mutex_lock(&loop_index_mutex);
1633 lo = bdev->bd_disk->private_data;
1634 if (!lo) {
1635 err = -ENXIO;
1636 goto out;
1637 }
1638
1639 atomic_inc(&lo->lo_refcnt);
1640 out:
1641 mutex_unlock(&loop_index_mutex);
1642 return err;
1643 }
1644
1645 static void __lo_release(struct loop_device *lo)
1646 {
1647 int err;
1648
1649 if (atomic_dec_return(&lo->lo_refcnt))
1650 return;
1651
1652 mutex_lock(&lo->lo_ctl_mutex);
1653 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1654 /*
1655 * In autoclear mode, stop the loop thread
1656 * and remove configuration after last close.
1657 */
1658 err = loop_clr_fd(lo);
1659 if (!err)
1660 return;
1661 } else if (lo->lo_state == Lo_bound) {
1662 /*
1663 * Otherwise keep thread (if running) and config,
1664 * but flush possible ongoing bios in thread.
1665 */
1666 blk_mq_freeze_queue(lo->lo_queue);
1667 blk_mq_unfreeze_queue(lo->lo_queue);
1668 }
1669
1670 mutex_unlock(&lo->lo_ctl_mutex);
1671 }
1672
1673 static void lo_release(struct gendisk *disk, fmode_t mode)
1674 {
1675 mutex_lock(&loop_index_mutex);
1676 __lo_release(disk->private_data);
1677 mutex_unlock(&loop_index_mutex);
1678 }
1679
1680 static const struct block_device_operations lo_fops = {
1681 .owner = THIS_MODULE,
1682 .open = lo_open,
1683 .release = lo_release,
1684 .ioctl = lo_ioctl,
1685 #ifdef CONFIG_COMPAT
1686 .compat_ioctl = lo_compat_ioctl,
1687 #endif
1688 };
1689
1690 /*
1691 * And now the modules code and kernel interface.
1692 */
1693 static int max_loop;
1694 module_param(max_loop, int, 0444);
1695 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1696 module_param(max_part, int, 0444);
1697 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1698 MODULE_LICENSE("GPL");
1699 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1700
1701 int loop_register_transfer(struct loop_func_table *funcs)
1702 {
1703 unsigned int n = funcs->number;
1704
1705 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1706 return -EINVAL;
1707 xfer_funcs[n] = funcs;
1708 return 0;
1709 }
1710
1711 static int unregister_transfer_cb(int id, void *ptr, void *data)
1712 {
1713 struct loop_device *lo = ptr;
1714 struct loop_func_table *xfer = data;
1715
1716 mutex_lock(&lo->lo_ctl_mutex);
1717 if (lo->lo_encryption == xfer)
1718 loop_release_xfer(lo);
1719 mutex_unlock(&lo->lo_ctl_mutex);
1720 return 0;
1721 }
1722
1723 int loop_unregister_transfer(int number)
1724 {
1725 unsigned int n = number;
1726 struct loop_func_table *xfer;
1727
1728 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1729 return -EINVAL;
1730
1731 xfer_funcs[n] = NULL;
1732 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1733 return 0;
1734 }
1735
1736 EXPORT_SYMBOL(loop_register_transfer);
1737 EXPORT_SYMBOL(loop_unregister_transfer);
1738
1739 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1740 const struct blk_mq_queue_data *bd)
1741 {
1742 struct request *rq = bd->rq;
1743 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1744 struct loop_device *lo = rq->q->queuedata;
1745
1746 blk_mq_start_request(rq);
1747
1748 if (lo->lo_state != Lo_bound)
1749 return BLK_STS_IOERR;
1750
1751 switch (req_op(rq)) {
1752 case REQ_OP_FLUSH:
1753 case REQ_OP_DISCARD:
1754 case REQ_OP_WRITE_ZEROES:
1755 cmd->use_aio = false;
1756 break;
1757 default:
1758 cmd->use_aio = lo->use_dio;
1759 break;
1760 }
1761
1762 /* always use the first bio's css */
1763 #ifdef CONFIG_BLK_CGROUP
1764 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1765 cmd->css = &bio_blkcg(rq->bio)->css;
1766 css_get(cmd->css);
1767 } else
1768 #endif
1769 cmd->css = NULL;
1770 kthread_queue_work(&lo->worker, &cmd->work);
1771
1772 return BLK_STS_OK;
1773 }
1774
1775 static void loop_handle_cmd(struct loop_cmd *cmd)
1776 {
1777 struct request *rq = blk_mq_rq_from_pdu(cmd);
1778 const bool write = op_is_write(req_op(rq));
1779 struct loop_device *lo = rq->q->queuedata;
1780 int ret = 0;
1781
1782 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1783 ret = -EIO;
1784 goto failed;
1785 }
1786
1787 ret = do_req_filebacked(lo, rq);
1788 failed:
1789 /* complete non-aio request */
1790 if (!cmd->use_aio || ret) {
1791 cmd->ret = ret ? -EIO : 0;
1792 blk_mq_complete_request(rq);
1793 }
1794 }
1795
1796 static void loop_queue_work(struct kthread_work *work)
1797 {
1798 struct loop_cmd *cmd =
1799 container_of(work, struct loop_cmd, work);
1800
1801 loop_handle_cmd(cmd);
1802 }
1803
1804 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1805 unsigned int hctx_idx, unsigned int numa_node)
1806 {
1807 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1808
1809 kthread_init_work(&cmd->work, loop_queue_work);
1810 return 0;
1811 }
1812
1813 static const struct blk_mq_ops loop_mq_ops = {
1814 .queue_rq = loop_queue_rq,
1815 .init_request = loop_init_request,
1816 .complete = lo_complete_rq,
1817 };
1818
1819 static int loop_add(struct loop_device **l, int i)
1820 {
1821 struct loop_device *lo;
1822 struct gendisk *disk;
1823 int err;
1824
1825 err = -ENOMEM;
1826 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1827 if (!lo)
1828 goto out;
1829
1830 lo->lo_state = Lo_unbound;
1831
1832 /* allocate id, if @id >= 0, we're requesting that specific id */
1833 if (i >= 0) {
1834 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1835 if (err == -ENOSPC)
1836 err = -EEXIST;
1837 } else {
1838 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1839 }
1840 if (err < 0)
1841 goto out_free_dev;
1842 i = err;
1843
1844 err = -ENOMEM;
1845 lo->tag_set.ops = &loop_mq_ops;
1846 lo->tag_set.nr_hw_queues = 1;
1847 lo->tag_set.queue_depth = 128;
1848 lo->tag_set.numa_node = NUMA_NO_NODE;
1849 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1850 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1851 lo->tag_set.driver_data = lo;
1852
1853 err = blk_mq_alloc_tag_set(&lo->tag_set);
1854 if (err)
1855 goto out_free_idr;
1856
1857 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1858 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1859 err = PTR_ERR(lo->lo_queue);
1860 goto out_cleanup_tags;
1861 }
1862 lo->lo_queue->queuedata = lo;
1863
1864 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1865
1866 /*
1867 * By default, we do buffer IO, so it doesn't make sense to enable
1868 * merge because the I/O submitted to backing file is handled page by
1869 * page. For directio mode, merge does help to dispatch bigger request
1870 * to underlayer disk. We will enable merge once directio is enabled.
1871 */
1872 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1873
1874 err = -ENOMEM;
1875 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1876 if (!disk)
1877 goto out_free_queue;
1878
1879 /*
1880 * Disable partition scanning by default. The in-kernel partition
1881 * scanning can be requested individually per-device during its
1882 * setup. Userspace can always add and remove partitions from all
1883 * devices. The needed partition minors are allocated from the
1884 * extended minor space, the main loop device numbers will continue
1885 * to match the loop minors, regardless of the number of partitions
1886 * used.
1887 *
1888 * If max_part is given, partition scanning is globally enabled for
1889 * all loop devices. The minors for the main loop devices will be
1890 * multiples of max_part.
1891 *
1892 * Note: Global-for-all-devices, set-only-at-init, read-only module
1893 * parameteters like 'max_loop' and 'max_part' make things needlessly
1894 * complicated, are too static, inflexible and may surprise
1895 * userspace tools. Parameters like this in general should be avoided.
1896 */
1897 if (!part_shift)
1898 disk->flags |= GENHD_FL_NO_PART_SCAN;
1899 disk->flags |= GENHD_FL_EXT_DEVT;
1900 mutex_init(&lo->lo_ctl_mutex);
1901 atomic_set(&lo->lo_refcnt, 0);
1902 lo->lo_number = i;
1903 spin_lock_init(&lo->lo_lock);
1904 disk->major = LOOP_MAJOR;
1905 disk->first_minor = i << part_shift;
1906 disk->fops = &lo_fops;
1907 disk->private_data = lo;
1908 disk->queue = lo->lo_queue;
1909 sprintf(disk->disk_name, "loop%d", i);
1910 add_disk(disk);
1911 *l = lo;
1912 return lo->lo_number;
1913
1914 out_free_queue:
1915 blk_cleanup_queue(lo->lo_queue);
1916 out_cleanup_tags:
1917 blk_mq_free_tag_set(&lo->tag_set);
1918 out_free_idr:
1919 idr_remove(&loop_index_idr, i);
1920 out_free_dev:
1921 kfree(lo);
1922 out:
1923 return err;
1924 }
1925
1926 static void loop_remove(struct loop_device *lo)
1927 {
1928 del_gendisk(lo->lo_disk);
1929 blk_cleanup_queue(lo->lo_queue);
1930 blk_mq_free_tag_set(&lo->tag_set);
1931 put_disk(lo->lo_disk);
1932 kfree(lo);
1933 }
1934
1935 static int find_free_cb(int id, void *ptr, void *data)
1936 {
1937 struct loop_device *lo = ptr;
1938 struct loop_device **l = data;
1939
1940 if (lo->lo_state == Lo_unbound) {
1941 *l = lo;
1942 return 1;
1943 }
1944 return 0;
1945 }
1946
1947 static int loop_lookup(struct loop_device **l, int i)
1948 {
1949 struct loop_device *lo;
1950 int ret = -ENODEV;
1951
1952 if (i < 0) {
1953 int err;
1954
1955 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1956 if (err == 1) {
1957 *l = lo;
1958 ret = lo->lo_number;
1959 }
1960 goto out;
1961 }
1962
1963 /* lookup and return a specific i */
1964 lo = idr_find(&loop_index_idr, i);
1965 if (lo) {
1966 *l = lo;
1967 ret = lo->lo_number;
1968 }
1969 out:
1970 return ret;
1971 }
1972
1973 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1974 {
1975 struct loop_device *lo;
1976 struct kobject *kobj;
1977 int err;
1978
1979 mutex_lock(&loop_index_mutex);
1980 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1981 if (err < 0)
1982 err = loop_add(&lo, MINOR(dev) >> part_shift);
1983 if (err < 0)
1984 kobj = NULL;
1985 else
1986 kobj = get_disk_and_module(lo->lo_disk);
1987 mutex_unlock(&loop_index_mutex);
1988
1989 *part = 0;
1990 return kobj;
1991 }
1992
1993 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1994 unsigned long parm)
1995 {
1996 struct loop_device *lo;
1997 int ret = -ENOSYS;
1998
1999 mutex_lock(&loop_index_mutex);
2000 switch (cmd) {
2001 case LOOP_CTL_ADD:
2002 ret = loop_lookup(&lo, parm);
2003 if (ret >= 0) {
2004 ret = -EEXIST;
2005 break;
2006 }
2007 ret = loop_add(&lo, parm);
2008 break;
2009 case LOOP_CTL_REMOVE:
2010 ret = loop_lookup(&lo, parm);
2011 if (ret < 0)
2012 break;
2013 ret = mutex_lock_killable(&lo->lo_ctl_mutex);
2014 if (ret)
2015 break;
2016 if (lo->lo_state != Lo_unbound) {
2017 ret = -EBUSY;
2018 mutex_unlock(&lo->lo_ctl_mutex);
2019 break;
2020 }
2021 if (atomic_read(&lo->lo_refcnt) > 0) {
2022 ret = -EBUSY;
2023 mutex_unlock(&lo->lo_ctl_mutex);
2024 break;
2025 }
2026 lo->lo_disk->private_data = NULL;
2027 mutex_unlock(&lo->lo_ctl_mutex);
2028 idr_remove(&loop_index_idr, lo->lo_number);
2029 loop_remove(lo);
2030 break;
2031 case LOOP_CTL_GET_FREE:
2032 ret = loop_lookup(&lo, -1);
2033 if (ret >= 0)
2034 break;
2035 ret = loop_add(&lo, -1);
2036 }
2037 mutex_unlock(&loop_index_mutex);
2038
2039 return ret;
2040 }
2041
2042 static const struct file_operations loop_ctl_fops = {
2043 .open = nonseekable_open,
2044 .unlocked_ioctl = loop_control_ioctl,
2045 .compat_ioctl = loop_control_ioctl,
2046 .owner = THIS_MODULE,
2047 .llseek = noop_llseek,
2048 };
2049
2050 static struct miscdevice loop_misc = {
2051 .minor = LOOP_CTRL_MINOR,
2052 .name = "loop-control",
2053 .fops = &loop_ctl_fops,
2054 };
2055
2056 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2057 MODULE_ALIAS("devname:loop-control");
2058
2059 static int __init loop_init(void)
2060 {
2061 int i, nr;
2062 unsigned long range;
2063 struct loop_device *lo;
2064 int err;
2065
2066 part_shift = 0;
2067 if (max_part > 0) {
2068 part_shift = fls(max_part);
2069
2070 /*
2071 * Adjust max_part according to part_shift as it is exported
2072 * to user space so that user can decide correct minor number
2073 * if [s]he want to create more devices.
2074 *
2075 * Note that -1 is required because partition 0 is reserved
2076 * for the whole disk.
2077 */
2078 max_part = (1UL << part_shift) - 1;
2079 }
2080
2081 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2082 err = -EINVAL;
2083 goto err_out;
2084 }
2085
2086 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2087 err = -EINVAL;
2088 goto err_out;
2089 }
2090
2091 /*
2092 * If max_loop is specified, create that many devices upfront.
2093 * This also becomes a hard limit. If max_loop is not specified,
2094 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2095 * init time. Loop devices can be requested on-demand with the
2096 * /dev/loop-control interface, or be instantiated by accessing
2097 * a 'dead' device node.
2098 */
2099 if (max_loop) {
2100 nr = max_loop;
2101 range = max_loop << part_shift;
2102 } else {
2103 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2104 range = 1UL << MINORBITS;
2105 }
2106
2107 err = misc_register(&loop_misc);
2108 if (err < 0)
2109 goto err_out;
2110
2111
2112 if (register_blkdev(LOOP_MAJOR, "loop")) {
2113 err = -EIO;
2114 goto misc_out;
2115 }
2116
2117 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2118 THIS_MODULE, loop_probe, NULL, NULL);
2119
2120 /* pre-create number of devices given by config or max_loop */
2121 mutex_lock(&loop_index_mutex);
2122 for (i = 0; i < nr; i++)
2123 loop_add(&lo, i);
2124 mutex_unlock(&loop_index_mutex);
2125
2126 printk(KERN_INFO "loop: module loaded\n");
2127 return 0;
2128
2129 misc_out:
2130 misc_deregister(&loop_misc);
2131 err_out:
2132 return err;
2133 }
2134
2135 static int loop_exit_cb(int id, void *ptr, void *data)
2136 {
2137 struct loop_device *lo = ptr;
2138
2139 loop_remove(lo);
2140 return 0;
2141 }
2142
2143 static void __exit loop_exit(void)
2144 {
2145 unsigned long range;
2146
2147 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2148
2149 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2150 idr_destroy(&loop_index_idr);
2151
2152 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2153 unregister_blkdev(LOOP_MAJOR, "loop");
2154
2155 misc_deregister(&loop_misc);
2156 }
2157
2158 module_init(loop_init);
2159 module_exit(loop_exit);
2160
2161 #ifndef MODULE
2162 static int __init max_loop_setup(char *str)
2163 {
2164 max_loop = simple_strtol(str, NULL, 0);
2165 return 1;
2166 }
2167
2168 __setup("max_loop=", max_loop_setup);
2169 #endif