]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/loop.c
UBUNTU: SAUCE: Import aufs driver
[mirror_ubuntu-zesty-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80
81 #include <linux/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
93 {
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
98
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
105 }
106
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
111
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
116 }
117
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
123 }
124
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
127 };
128
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
133 };
134
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
139 };
140
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 loff_t loopsize;
144
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
152
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
155 /*
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
158 */
159 return loopsize >> 9;
160 }
161
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
175
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
179 }
180
181 /*
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
186 *
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane appplications should be PAGE_SIZE algined
190 */
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
201 }
202
203 if (lo->use_dio == use_dio)
204 return;
205
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
208
209 /*
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
213 */
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio)
217 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 else
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 sector_t x = (sector_t)size;
228 struct block_device *bdev = lo->lo_device;
229
230 if (unlikely((loff_t)x != size))
231 return -EFBIG;
232 if (lo->lo_offset != offset)
233 lo->lo_offset = offset;
234 if (lo->lo_sizelimit != sizelimit)
235 lo->lo_sizelimit = sizelimit;
236 set_capacity(lo->lo_disk, x);
237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 /* let user-space know about the new size */
239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 return 0;
241 }
242
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 struct page *rpage, unsigned roffs,
246 struct page *lpage, unsigned loffs,
247 int size, sector_t rblock)
248 {
249 int ret;
250
251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 if (likely(!ret))
253 return 0;
254
255 printk_ratelimited(KERN_ERR
256 "loop: Transfer error at byte offset %llu, length %i.\n",
257 (unsigned long long)rblock << 9, size);
258 return ret;
259 }
260
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 struct iov_iter i;
264 ssize_t bw;
265
266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267
268 file_start_write(file);
269 bw = vfs_iter_write(file, &i, ppos);
270 file_end_write(file);
271
272 if (likely(bw == bvec->bv_len))
273 return 0;
274
275 printk_ratelimited(KERN_ERR
276 "loop: Write error at byte offset %llu, length %i.\n",
277 (unsigned long long)*ppos, bvec->bv_len);
278 if (bw >= 0)
279 bw = -EIO;
280 return bw;
281 }
282
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 loff_t pos)
285 {
286 struct bio_vec bvec;
287 struct req_iterator iter;
288 int ret = 0;
289
290 rq_for_each_segment(bvec, rq, iter) {
291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 if (ret < 0)
293 break;
294 cond_resched();
295 }
296
297 return ret;
298 }
299
300 /*
301 * This is the slow, transforming version that needs to double buffer the
302 * data as it cannot do the transformations in place without having direct
303 * access to the destination pages of the backing file.
304 */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 loff_t pos)
307 {
308 struct bio_vec bvec, b;
309 struct req_iterator iter;
310 struct page *page;
311 int ret = 0;
312
313 page = alloc_page(GFP_NOIO);
314 if (unlikely(!page))
315 return -ENOMEM;
316
317 rq_for_each_segment(bvec, rq, iter) {
318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 bvec.bv_offset, bvec.bv_len, pos >> 9);
320 if (unlikely(ret))
321 break;
322
323 b.bv_page = page;
324 b.bv_offset = 0;
325 b.bv_len = bvec.bv_len;
326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 if (ret < 0)
328 break;
329 }
330
331 __free_page(page);
332 return ret;
333 }
334
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 loff_t pos)
337 {
338 struct bio_vec bvec;
339 struct req_iterator iter;
340 struct iov_iter i;
341 ssize_t len;
342
343 rq_for_each_segment(bvec, rq, iter) {
344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 if (len < 0)
347 return len;
348
349 flush_dcache_page(bvec.bv_page);
350
351 if (len != bvec.bv_len) {
352 struct bio *bio;
353
354 __rq_for_each_bio(bio, rq)
355 zero_fill_bio(bio);
356 break;
357 }
358 cond_resched();
359 }
360
361 return 0;
362 }
363
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 loff_t pos)
366 {
367 struct bio_vec bvec, b;
368 struct req_iterator iter;
369 struct iov_iter i;
370 struct page *page;
371 ssize_t len;
372 int ret = 0;
373
374 page = alloc_page(GFP_NOIO);
375 if (unlikely(!page))
376 return -ENOMEM;
377
378 rq_for_each_segment(bvec, rq, iter) {
379 loff_t offset = pos;
380
381 b.bv_page = page;
382 b.bv_offset = 0;
383 b.bv_len = bvec.bv_len;
384
385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 if (len < 0) {
388 ret = len;
389 goto out_free_page;
390 }
391
392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 bvec.bv_offset, len, offset >> 9);
394 if (ret)
395 goto out_free_page;
396
397 flush_dcache_page(bvec.bv_page);
398
399 if (len != bvec.bv_len) {
400 struct bio *bio;
401
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
405 }
406 }
407
408 ret = 0;
409 out_free_page:
410 __free_page(page);
411 return ret;
412 }
413
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 /*
417 * We use punch hole to reclaim the free space used by the
418 * image a.k.a. discard. However we do not support discard if
419 * encryption is enabled, because it may give an attacker
420 * useful information.
421 */
422 struct file *file = lo->lo_backing_file;
423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 int ret;
425
426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 ret = -EOPNOTSUPP;
428 goto out;
429 }
430
431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 ret = -EIO;
434 out:
435 return ret;
436 }
437
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 struct file *file = lo->lo_backing_file;
441 int ret = vfs_fsync(file, 0);
442 if (unlikely(ret && ret != -EINVAL))
443 ret = -EIO;
444
445 return ret;
446 }
447
448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
449 {
450 if (bytes < 0 || op_is_write(req_op(cmd->rq)))
451 return;
452
453 if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
454 struct bio *bio = cmd->rq->bio;
455
456 bio_advance(bio, bytes);
457 zero_fill_bio(bio);
458 }
459 }
460
461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
462 {
463 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
464 struct request *rq = cmd->rq;
465
466 handle_partial_read(cmd, ret);
467
468 if (ret > 0)
469 ret = 0;
470 else if (ret < 0)
471 ret = -EIO;
472
473 blk_mq_complete_request(rq, ret);
474 }
475
476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
477 loff_t pos, bool rw)
478 {
479 struct iov_iter iter;
480 struct bio_vec *bvec;
481 struct bio *bio = cmd->rq->bio;
482 struct file *file = lo->lo_backing_file;
483 int ret;
484
485 /* nomerge for loop request queue */
486 WARN_ON(cmd->rq->bio != cmd->rq->biotail);
487
488 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
489 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
490 bio_segments(bio), blk_rq_bytes(cmd->rq));
491 /*
492 * This bio may be started from the middle of the 'bvec'
493 * because of bio splitting, so offset from the bvec must
494 * be passed to iov iterator
495 */
496 iter.iov_offset = bio->bi_iter.bi_bvec_done;
497
498 cmd->iocb.ki_pos = pos;
499 cmd->iocb.ki_filp = file;
500 cmd->iocb.ki_complete = lo_rw_aio_complete;
501 cmd->iocb.ki_flags = IOCB_DIRECT;
502
503 if (rw == WRITE)
504 ret = file->f_op->write_iter(&cmd->iocb, &iter);
505 else
506 ret = file->f_op->read_iter(&cmd->iocb, &iter);
507
508 if (ret != -EIOCBQUEUED)
509 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
510 return 0;
511 }
512
513 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
514 {
515 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
516 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
517
518 /*
519 * lo_write_simple and lo_read_simple should have been covered
520 * by io submit style function like lo_rw_aio(), one blocker
521 * is that lo_read_simple() need to call flush_dcache_page after
522 * the page is written from kernel, and it isn't easy to handle
523 * this in io submit style function which submits all segments
524 * of the req at one time. And direct read IO doesn't need to
525 * run flush_dcache_page().
526 */
527 switch (req_op(rq)) {
528 case REQ_OP_FLUSH:
529 return lo_req_flush(lo, rq);
530 case REQ_OP_DISCARD:
531 return lo_discard(lo, rq, pos);
532 case REQ_OP_WRITE:
533 if (lo->transfer)
534 return lo_write_transfer(lo, rq, pos);
535 else if (cmd->use_aio)
536 return lo_rw_aio(lo, cmd, pos, WRITE);
537 else
538 return lo_write_simple(lo, rq, pos);
539 case REQ_OP_READ:
540 if (lo->transfer)
541 return lo_read_transfer(lo, rq, pos);
542 else if (cmd->use_aio)
543 return lo_rw_aio(lo, cmd, pos, READ);
544 else
545 return lo_read_simple(lo, rq, pos);
546 default:
547 WARN_ON_ONCE(1);
548 return -EIO;
549 break;
550 }
551 }
552
553 struct switch_request {
554 struct file *file;
555 struct completion wait;
556 };
557
558 static inline void loop_update_dio(struct loop_device *lo)
559 {
560 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
561 lo->use_dio);
562 }
563
564 /*
565 * Do the actual switch; called from the BIO completion routine
566 */
567 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
568 {
569 struct file *file = p->file;
570 struct file *old_file = lo->lo_backing_file;
571 struct address_space *mapping;
572
573 /* if no new file, only flush of queued bios requested */
574 if (!file)
575 return;
576
577 mapping = file->f_mapping;
578 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
579 lo->lo_backing_file = file;
580 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
581 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
582 lo->old_gfp_mask = mapping_gfp_mask(mapping);
583 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
584 loop_update_dio(lo);
585 }
586
587 /*
588 * loop_switch performs the hard work of switching a backing store.
589 * First it needs to flush existing IO, it does this by sending a magic
590 * BIO down the pipe. The completion of this BIO does the actual switch.
591 */
592 static int loop_switch(struct loop_device *lo, struct file *file)
593 {
594 struct switch_request w;
595
596 w.file = file;
597
598 /* freeze queue and wait for completion of scheduled requests */
599 blk_mq_freeze_queue(lo->lo_queue);
600
601 /* do the switch action */
602 do_loop_switch(lo, &w);
603
604 /* unfreeze */
605 blk_mq_unfreeze_queue(lo->lo_queue);
606
607 return 0;
608 }
609
610 /*
611 * Helper to flush the IOs in loop, but keeping loop thread running
612 */
613 static int loop_flush(struct loop_device *lo)
614 {
615 return loop_switch(lo, NULL);
616 }
617
618 static void loop_reread_partitions(struct loop_device *lo,
619 struct block_device *bdev)
620 {
621 int rc;
622
623 /*
624 * bd_mutex has been held already in release path, so don't
625 * acquire it if this function is called in such case.
626 *
627 * If the reread partition isn't from release path, lo_refcnt
628 * must be at least one and it can only become zero when the
629 * current holder is released.
630 */
631 if (!atomic_read(&lo->lo_refcnt))
632 rc = __blkdev_reread_part(bdev);
633 else
634 rc = blkdev_reread_part(bdev);
635 if (rc)
636 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
637 __func__, lo->lo_number, lo->lo_file_name, rc);
638 }
639
640 /*
641 * loop_change_fd switched the backing store of a loopback device to
642 * a new file. This is useful for operating system installers to free up
643 * the original file and in High Availability environments to switch to
644 * an alternative location for the content in case of server meltdown.
645 * This can only work if the loop device is used read-only, and if the
646 * new backing store is the same size and type as the old backing store.
647 */
648 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
649 unsigned int arg)
650 {
651 struct file *file, *old_file;
652 struct inode *inode;
653 int error;
654
655 error = -ENXIO;
656 if (lo->lo_state != Lo_bound)
657 goto out;
658
659 /* the loop device has to be read-only */
660 error = -EINVAL;
661 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
662 goto out;
663
664 error = -EBADF;
665 file = fget(arg);
666 if (!file)
667 goto out;
668
669 inode = file->f_mapping->host;
670 old_file = lo->lo_backing_file;
671
672 error = -EINVAL;
673
674 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
675 goto out_putf;
676
677 /* size of the new backing store needs to be the same */
678 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
679 goto out_putf;
680
681 /* and ... switch */
682 error = loop_switch(lo, file);
683 if (error)
684 goto out_putf;
685
686 fput(old_file);
687 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
688 loop_reread_partitions(lo, bdev);
689 return 0;
690
691 out_putf:
692 fput(file);
693 out:
694 return error;
695 }
696
697 static inline int is_loop_device(struct file *file)
698 {
699 struct inode *i = file->f_mapping->host;
700
701 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
702 }
703
704 /*
705 * for AUFS
706 * no get/put for file.
707 */
708 struct file *loop_backing_file(struct super_block *sb)
709 {
710 struct file *ret;
711 struct loop_device *l;
712
713 ret = NULL;
714 if (MAJOR(sb->s_dev) == LOOP_MAJOR) {
715 l = sb->s_bdev->bd_disk->private_data;
716 ret = l->lo_backing_file;
717 }
718 return ret;
719 }
720 EXPORT_SYMBOL_GPL(loop_backing_file);
721
722 /* loop sysfs attributes */
723
724 static ssize_t loop_attr_show(struct device *dev, char *page,
725 ssize_t (*callback)(struct loop_device *, char *))
726 {
727 struct gendisk *disk = dev_to_disk(dev);
728 struct loop_device *lo = disk->private_data;
729
730 return callback(lo, page);
731 }
732
733 #define LOOP_ATTR_RO(_name) \
734 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
735 static ssize_t loop_attr_do_show_##_name(struct device *d, \
736 struct device_attribute *attr, char *b) \
737 { \
738 return loop_attr_show(d, b, loop_attr_##_name##_show); \
739 } \
740 static struct device_attribute loop_attr_##_name = \
741 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
742
743 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
744 {
745 ssize_t ret;
746 char *p = NULL;
747
748 spin_lock_irq(&lo->lo_lock);
749 if (lo->lo_backing_file)
750 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
751 spin_unlock_irq(&lo->lo_lock);
752
753 if (IS_ERR_OR_NULL(p))
754 ret = PTR_ERR(p);
755 else {
756 ret = strlen(p);
757 memmove(buf, p, ret);
758 buf[ret++] = '\n';
759 buf[ret] = 0;
760 }
761
762 return ret;
763 }
764
765 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
766 {
767 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
768 }
769
770 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
771 {
772 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
773 }
774
775 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
776 {
777 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
778
779 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
780 }
781
782 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
783 {
784 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
785
786 return sprintf(buf, "%s\n", partscan ? "1" : "0");
787 }
788
789 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
790 {
791 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
792
793 return sprintf(buf, "%s\n", dio ? "1" : "0");
794 }
795
796 LOOP_ATTR_RO(backing_file);
797 LOOP_ATTR_RO(offset);
798 LOOP_ATTR_RO(sizelimit);
799 LOOP_ATTR_RO(autoclear);
800 LOOP_ATTR_RO(partscan);
801 LOOP_ATTR_RO(dio);
802
803 static struct attribute *loop_attrs[] = {
804 &loop_attr_backing_file.attr,
805 &loop_attr_offset.attr,
806 &loop_attr_sizelimit.attr,
807 &loop_attr_autoclear.attr,
808 &loop_attr_partscan.attr,
809 &loop_attr_dio.attr,
810 NULL,
811 };
812
813 static struct attribute_group loop_attribute_group = {
814 .name = "loop",
815 .attrs= loop_attrs,
816 };
817
818 static int loop_sysfs_init(struct loop_device *lo)
819 {
820 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
821 &loop_attribute_group);
822 }
823
824 static void loop_sysfs_exit(struct loop_device *lo)
825 {
826 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
827 &loop_attribute_group);
828 }
829
830 static void loop_config_discard(struct loop_device *lo)
831 {
832 struct file *file = lo->lo_backing_file;
833 struct inode *inode = file->f_mapping->host;
834 struct request_queue *q = lo->lo_queue;
835
836 /*
837 * We use punch hole to reclaim the free space used by the
838 * image a.k.a. discard. However we do not support discard if
839 * encryption is enabled, because it may give an attacker
840 * useful information.
841 */
842 if ((!file->f_op->fallocate) ||
843 lo->lo_encrypt_key_size) {
844 q->limits.discard_granularity = 0;
845 q->limits.discard_alignment = 0;
846 blk_queue_max_discard_sectors(q, 0);
847 q->limits.discard_zeroes_data = 0;
848 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
849 return;
850 }
851
852 q->limits.discard_granularity = inode->i_sb->s_blocksize;
853 q->limits.discard_alignment = 0;
854 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
855 q->limits.discard_zeroes_data = 1;
856 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
857 }
858
859 static void loop_unprepare_queue(struct loop_device *lo)
860 {
861 kthread_flush_worker(&lo->worker);
862 kthread_stop(lo->worker_task);
863 }
864
865 static int loop_prepare_queue(struct loop_device *lo)
866 {
867 kthread_init_worker(&lo->worker);
868 lo->worker_task = kthread_run(kthread_worker_fn,
869 &lo->worker, "loop%d", lo->lo_number);
870 if (IS_ERR(lo->worker_task))
871 return -ENOMEM;
872 set_user_nice(lo->worker_task, MIN_NICE);
873 return 0;
874 }
875
876 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
877 struct block_device *bdev, unsigned int arg)
878 {
879 struct file *file, *f;
880 struct inode *inode;
881 struct address_space *mapping;
882 unsigned lo_blocksize;
883 int lo_flags = 0;
884 int error;
885 loff_t size;
886
887 /* This is safe, since we have a reference from open(). */
888 __module_get(THIS_MODULE);
889
890 error = -EBADF;
891 file = fget(arg);
892 if (!file)
893 goto out;
894
895 error = -EBUSY;
896 if (lo->lo_state != Lo_unbound)
897 goto out_putf;
898
899 /* Avoid recursion */
900 f = file;
901 while (is_loop_device(f)) {
902 struct loop_device *l;
903
904 if (f->f_mapping->host->i_bdev == bdev)
905 goto out_putf;
906
907 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
908 if (l->lo_state == Lo_unbound) {
909 error = -EINVAL;
910 goto out_putf;
911 }
912 f = l->lo_backing_file;
913 }
914
915 mapping = file->f_mapping;
916 inode = mapping->host;
917
918 error = -EINVAL;
919 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
920 goto out_putf;
921
922 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
923 !file->f_op->write_iter)
924 lo_flags |= LO_FLAGS_READ_ONLY;
925
926 lo_blocksize = S_ISBLK(inode->i_mode) ?
927 inode->i_bdev->bd_block_size : PAGE_SIZE;
928
929 error = -EFBIG;
930 size = get_loop_size(lo, file);
931 if ((loff_t)(sector_t)size != size)
932 goto out_putf;
933 error = loop_prepare_queue(lo);
934 if (error)
935 goto out_putf;
936
937 error = 0;
938
939 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
940
941 lo->use_dio = false;
942 lo->lo_blocksize = lo_blocksize;
943 lo->lo_device = bdev;
944 lo->lo_flags = lo_flags;
945 lo->lo_backing_file = file;
946 lo->transfer = NULL;
947 lo->ioctl = NULL;
948 lo->lo_sizelimit = 0;
949 lo->old_gfp_mask = mapping_gfp_mask(mapping);
950 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
951
952 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
953 blk_queue_write_cache(lo->lo_queue, true, false);
954
955 loop_update_dio(lo);
956 set_capacity(lo->lo_disk, size);
957 bd_set_size(bdev, size << 9);
958 loop_sysfs_init(lo);
959 /* let user-space know about the new size */
960 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
961
962 set_blocksize(bdev, lo_blocksize);
963
964 lo->lo_state = Lo_bound;
965 if (part_shift)
966 lo->lo_flags |= LO_FLAGS_PARTSCAN;
967 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
968 loop_reread_partitions(lo, bdev);
969
970 /* Grab the block_device to prevent its destruction after we
971 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
972 */
973 bdgrab(bdev);
974 return 0;
975
976 out_putf:
977 fput(file);
978 out:
979 /* This is safe: open() is still holding a reference. */
980 module_put(THIS_MODULE);
981 return error;
982 }
983
984 static int
985 loop_release_xfer(struct loop_device *lo)
986 {
987 int err = 0;
988 struct loop_func_table *xfer = lo->lo_encryption;
989
990 if (xfer) {
991 if (xfer->release)
992 err = xfer->release(lo);
993 lo->transfer = NULL;
994 lo->lo_encryption = NULL;
995 module_put(xfer->owner);
996 }
997 return err;
998 }
999
1000 static int
1001 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1002 const struct loop_info64 *i)
1003 {
1004 int err = 0;
1005
1006 if (xfer) {
1007 struct module *owner = xfer->owner;
1008
1009 if (!try_module_get(owner))
1010 return -EINVAL;
1011 if (xfer->init)
1012 err = xfer->init(lo, i);
1013 if (err)
1014 module_put(owner);
1015 else
1016 lo->lo_encryption = xfer;
1017 }
1018 return err;
1019 }
1020
1021 static int loop_clr_fd(struct loop_device *lo)
1022 {
1023 struct file *filp = lo->lo_backing_file;
1024 gfp_t gfp = lo->old_gfp_mask;
1025 struct block_device *bdev = lo->lo_device;
1026
1027 if (lo->lo_state != Lo_bound)
1028 return -ENXIO;
1029
1030 /*
1031 * If we've explicitly asked to tear down the loop device,
1032 * and it has an elevated reference count, set it for auto-teardown when
1033 * the last reference goes away. This stops $!~#$@ udev from
1034 * preventing teardown because it decided that it needs to run blkid on
1035 * the loopback device whenever they appear. xfstests is notorious for
1036 * failing tests because blkid via udev races with a losetup
1037 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1038 * command to fail with EBUSY.
1039 */
1040 if (atomic_read(&lo->lo_refcnt) > 1) {
1041 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1042 mutex_unlock(&lo->lo_ctl_mutex);
1043 return 0;
1044 }
1045
1046 if (filp == NULL)
1047 return -EINVAL;
1048
1049 /* freeze request queue during the transition */
1050 blk_mq_freeze_queue(lo->lo_queue);
1051
1052 spin_lock_irq(&lo->lo_lock);
1053 lo->lo_state = Lo_rundown;
1054 lo->lo_backing_file = NULL;
1055 spin_unlock_irq(&lo->lo_lock);
1056
1057 loop_release_xfer(lo);
1058 lo->transfer = NULL;
1059 lo->ioctl = NULL;
1060 lo->lo_device = NULL;
1061 lo->lo_encryption = NULL;
1062 lo->lo_offset = 0;
1063 lo->lo_sizelimit = 0;
1064 lo->lo_encrypt_key_size = 0;
1065 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1066 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1067 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1068 if (bdev) {
1069 bdput(bdev);
1070 invalidate_bdev(bdev);
1071 }
1072 set_capacity(lo->lo_disk, 0);
1073 loop_sysfs_exit(lo);
1074 if (bdev) {
1075 bd_set_size(bdev, 0);
1076 /* let user-space know about this change */
1077 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1078 }
1079 mapping_set_gfp_mask(filp->f_mapping, gfp);
1080 lo->lo_state = Lo_unbound;
1081 /* This is safe: open() is still holding a reference. */
1082 module_put(THIS_MODULE);
1083 blk_mq_unfreeze_queue(lo->lo_queue);
1084
1085 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1086 loop_reread_partitions(lo, bdev);
1087 lo->lo_flags = 0;
1088 if (!part_shift)
1089 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1090 loop_unprepare_queue(lo);
1091 mutex_unlock(&lo->lo_ctl_mutex);
1092 /*
1093 * Need not hold lo_ctl_mutex to fput backing file.
1094 * Calling fput holding lo_ctl_mutex triggers a circular
1095 * lock dependency possibility warning as fput can take
1096 * bd_mutex which is usually taken before lo_ctl_mutex.
1097 */
1098 fput(filp);
1099 return 0;
1100 }
1101
1102 static int
1103 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1104 {
1105 int err;
1106 struct loop_func_table *xfer;
1107 kuid_t uid = current_uid();
1108
1109 if (lo->lo_encrypt_key_size &&
1110 !uid_eq(lo->lo_key_owner, uid) &&
1111 !capable(CAP_SYS_ADMIN))
1112 return -EPERM;
1113 if (lo->lo_state != Lo_bound)
1114 return -ENXIO;
1115 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1116 return -EINVAL;
1117
1118 err = loop_release_xfer(lo);
1119 if (err)
1120 return err;
1121
1122 if (info->lo_encrypt_type) {
1123 unsigned int type = info->lo_encrypt_type;
1124
1125 if (type >= MAX_LO_CRYPT)
1126 return -EINVAL;
1127 xfer = xfer_funcs[type];
1128 if (xfer == NULL)
1129 return -EINVAL;
1130 } else
1131 xfer = NULL;
1132
1133 err = loop_init_xfer(lo, xfer, info);
1134 if (err)
1135 return err;
1136
1137 if (lo->lo_offset != info->lo_offset ||
1138 lo->lo_sizelimit != info->lo_sizelimit)
1139 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1140 return -EFBIG;
1141
1142 loop_config_discard(lo);
1143
1144 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1145 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1146 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1147 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1148
1149 if (!xfer)
1150 xfer = &none_funcs;
1151 lo->transfer = xfer->transfer;
1152 lo->ioctl = xfer->ioctl;
1153
1154 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1155 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1156 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1157
1158 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1159 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1160 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1161 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1162 loop_reread_partitions(lo, lo->lo_device);
1163 }
1164
1165 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1166 lo->lo_init[0] = info->lo_init[0];
1167 lo->lo_init[1] = info->lo_init[1];
1168 if (info->lo_encrypt_key_size) {
1169 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1170 info->lo_encrypt_key_size);
1171 lo->lo_key_owner = uid;
1172 }
1173
1174 /* update dio if lo_offset or transfer is changed */
1175 __loop_update_dio(lo, lo->use_dio);
1176
1177 return 0;
1178 }
1179
1180 static int
1181 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1182 {
1183 struct file *file = lo->lo_backing_file;
1184 struct kstat stat;
1185 int error;
1186
1187 if (lo->lo_state != Lo_bound)
1188 return -ENXIO;
1189 error = vfs_getattr(&file->f_path, &stat);
1190 if (error)
1191 return error;
1192 memset(info, 0, sizeof(*info));
1193 info->lo_number = lo->lo_number;
1194 info->lo_device = huge_encode_dev(stat.dev);
1195 info->lo_inode = stat.ino;
1196 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1197 info->lo_offset = lo->lo_offset;
1198 info->lo_sizelimit = lo->lo_sizelimit;
1199 info->lo_flags = lo->lo_flags;
1200 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1201 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1202 info->lo_encrypt_type =
1203 lo->lo_encryption ? lo->lo_encryption->number : 0;
1204 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1205 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1206 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1207 lo->lo_encrypt_key_size);
1208 }
1209 return 0;
1210 }
1211
1212 static void
1213 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1214 {
1215 memset(info64, 0, sizeof(*info64));
1216 info64->lo_number = info->lo_number;
1217 info64->lo_device = info->lo_device;
1218 info64->lo_inode = info->lo_inode;
1219 info64->lo_rdevice = info->lo_rdevice;
1220 info64->lo_offset = info->lo_offset;
1221 info64->lo_sizelimit = 0;
1222 info64->lo_encrypt_type = info->lo_encrypt_type;
1223 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1224 info64->lo_flags = info->lo_flags;
1225 info64->lo_init[0] = info->lo_init[0];
1226 info64->lo_init[1] = info->lo_init[1];
1227 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1228 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1229 else
1230 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1231 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1232 }
1233
1234 static int
1235 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1236 {
1237 memset(info, 0, sizeof(*info));
1238 info->lo_number = info64->lo_number;
1239 info->lo_device = info64->lo_device;
1240 info->lo_inode = info64->lo_inode;
1241 info->lo_rdevice = info64->lo_rdevice;
1242 info->lo_offset = info64->lo_offset;
1243 info->lo_encrypt_type = info64->lo_encrypt_type;
1244 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1245 info->lo_flags = info64->lo_flags;
1246 info->lo_init[0] = info64->lo_init[0];
1247 info->lo_init[1] = info64->lo_init[1];
1248 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1249 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1250 else
1251 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1252 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1253
1254 /* error in case values were truncated */
1255 if (info->lo_device != info64->lo_device ||
1256 info->lo_rdevice != info64->lo_rdevice ||
1257 info->lo_inode != info64->lo_inode ||
1258 info->lo_offset != info64->lo_offset)
1259 return -EOVERFLOW;
1260
1261 return 0;
1262 }
1263
1264 static int
1265 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1266 {
1267 struct loop_info info;
1268 struct loop_info64 info64;
1269
1270 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1271 return -EFAULT;
1272 loop_info64_from_old(&info, &info64);
1273 return loop_set_status(lo, &info64);
1274 }
1275
1276 static int
1277 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1278 {
1279 struct loop_info64 info64;
1280
1281 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1282 return -EFAULT;
1283 return loop_set_status(lo, &info64);
1284 }
1285
1286 static int
1287 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1288 struct loop_info info;
1289 struct loop_info64 info64;
1290 int err = 0;
1291
1292 if (!arg)
1293 err = -EINVAL;
1294 if (!err)
1295 err = loop_get_status(lo, &info64);
1296 if (!err)
1297 err = loop_info64_to_old(&info64, &info);
1298 if (!err && copy_to_user(arg, &info, sizeof(info)))
1299 err = -EFAULT;
1300
1301 return err;
1302 }
1303
1304 static int
1305 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1306 struct loop_info64 info64;
1307 int err = 0;
1308
1309 if (!arg)
1310 err = -EINVAL;
1311 if (!err)
1312 err = loop_get_status(lo, &info64);
1313 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1314 err = -EFAULT;
1315
1316 return err;
1317 }
1318
1319 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1320 {
1321 if (unlikely(lo->lo_state != Lo_bound))
1322 return -ENXIO;
1323
1324 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1325 }
1326
1327 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1328 {
1329 int error = -ENXIO;
1330 if (lo->lo_state != Lo_bound)
1331 goto out;
1332
1333 __loop_update_dio(lo, !!arg);
1334 if (lo->use_dio == !!arg)
1335 return 0;
1336 error = -EINVAL;
1337 out:
1338 return error;
1339 }
1340
1341 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1342 unsigned int cmd, unsigned long arg)
1343 {
1344 struct loop_device *lo = bdev->bd_disk->private_data;
1345 int err;
1346
1347 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1348 switch (cmd) {
1349 case LOOP_SET_FD:
1350 err = loop_set_fd(lo, mode, bdev, arg);
1351 break;
1352 case LOOP_CHANGE_FD:
1353 err = loop_change_fd(lo, bdev, arg);
1354 break;
1355 case LOOP_CLR_FD:
1356 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1357 err = loop_clr_fd(lo);
1358 if (!err)
1359 goto out_unlocked;
1360 break;
1361 case LOOP_SET_STATUS:
1362 err = -EPERM;
1363 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1364 err = loop_set_status_old(lo,
1365 (struct loop_info __user *)arg);
1366 break;
1367 case LOOP_GET_STATUS:
1368 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1369 break;
1370 case LOOP_SET_STATUS64:
1371 err = -EPERM;
1372 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1373 err = loop_set_status64(lo,
1374 (struct loop_info64 __user *) arg);
1375 break;
1376 case LOOP_GET_STATUS64:
1377 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1378 break;
1379 case LOOP_SET_CAPACITY:
1380 err = -EPERM;
1381 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1382 err = loop_set_capacity(lo, bdev);
1383 break;
1384 case LOOP_SET_DIRECT_IO:
1385 err = -EPERM;
1386 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1387 err = loop_set_dio(lo, arg);
1388 break;
1389 default:
1390 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1391 }
1392 mutex_unlock(&lo->lo_ctl_mutex);
1393
1394 out_unlocked:
1395 return err;
1396 }
1397
1398 #ifdef CONFIG_COMPAT
1399 struct compat_loop_info {
1400 compat_int_t lo_number; /* ioctl r/o */
1401 compat_dev_t lo_device; /* ioctl r/o */
1402 compat_ulong_t lo_inode; /* ioctl r/o */
1403 compat_dev_t lo_rdevice; /* ioctl r/o */
1404 compat_int_t lo_offset;
1405 compat_int_t lo_encrypt_type;
1406 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1407 compat_int_t lo_flags; /* ioctl r/o */
1408 char lo_name[LO_NAME_SIZE];
1409 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1410 compat_ulong_t lo_init[2];
1411 char reserved[4];
1412 };
1413
1414 /*
1415 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1416 * - noinlined to reduce stack space usage in main part of driver
1417 */
1418 static noinline int
1419 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1420 struct loop_info64 *info64)
1421 {
1422 struct compat_loop_info info;
1423
1424 if (copy_from_user(&info, arg, sizeof(info)))
1425 return -EFAULT;
1426
1427 memset(info64, 0, sizeof(*info64));
1428 info64->lo_number = info.lo_number;
1429 info64->lo_device = info.lo_device;
1430 info64->lo_inode = info.lo_inode;
1431 info64->lo_rdevice = info.lo_rdevice;
1432 info64->lo_offset = info.lo_offset;
1433 info64->lo_sizelimit = 0;
1434 info64->lo_encrypt_type = info.lo_encrypt_type;
1435 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1436 info64->lo_flags = info.lo_flags;
1437 info64->lo_init[0] = info.lo_init[0];
1438 info64->lo_init[1] = info.lo_init[1];
1439 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1440 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1441 else
1442 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1443 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1444 return 0;
1445 }
1446
1447 /*
1448 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1449 * - noinlined to reduce stack space usage in main part of driver
1450 */
1451 static noinline int
1452 loop_info64_to_compat(const struct loop_info64 *info64,
1453 struct compat_loop_info __user *arg)
1454 {
1455 struct compat_loop_info info;
1456
1457 memset(&info, 0, sizeof(info));
1458 info.lo_number = info64->lo_number;
1459 info.lo_device = info64->lo_device;
1460 info.lo_inode = info64->lo_inode;
1461 info.lo_rdevice = info64->lo_rdevice;
1462 info.lo_offset = info64->lo_offset;
1463 info.lo_encrypt_type = info64->lo_encrypt_type;
1464 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1465 info.lo_flags = info64->lo_flags;
1466 info.lo_init[0] = info64->lo_init[0];
1467 info.lo_init[1] = info64->lo_init[1];
1468 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1469 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1470 else
1471 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1472 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1473
1474 /* error in case values were truncated */
1475 if (info.lo_device != info64->lo_device ||
1476 info.lo_rdevice != info64->lo_rdevice ||
1477 info.lo_inode != info64->lo_inode ||
1478 info.lo_offset != info64->lo_offset ||
1479 info.lo_init[0] != info64->lo_init[0] ||
1480 info.lo_init[1] != info64->lo_init[1])
1481 return -EOVERFLOW;
1482
1483 if (copy_to_user(arg, &info, sizeof(info)))
1484 return -EFAULT;
1485 return 0;
1486 }
1487
1488 static int
1489 loop_set_status_compat(struct loop_device *lo,
1490 const struct compat_loop_info __user *arg)
1491 {
1492 struct loop_info64 info64;
1493 int ret;
1494
1495 ret = loop_info64_from_compat(arg, &info64);
1496 if (ret < 0)
1497 return ret;
1498 return loop_set_status(lo, &info64);
1499 }
1500
1501 static int
1502 loop_get_status_compat(struct loop_device *lo,
1503 struct compat_loop_info __user *arg)
1504 {
1505 struct loop_info64 info64;
1506 int err = 0;
1507
1508 if (!arg)
1509 err = -EINVAL;
1510 if (!err)
1511 err = loop_get_status(lo, &info64);
1512 if (!err)
1513 err = loop_info64_to_compat(&info64, arg);
1514 return err;
1515 }
1516
1517 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1518 unsigned int cmd, unsigned long arg)
1519 {
1520 struct loop_device *lo = bdev->bd_disk->private_data;
1521 int err;
1522
1523 switch(cmd) {
1524 case LOOP_SET_STATUS:
1525 mutex_lock(&lo->lo_ctl_mutex);
1526 err = loop_set_status_compat(
1527 lo, (const struct compat_loop_info __user *) arg);
1528 mutex_unlock(&lo->lo_ctl_mutex);
1529 break;
1530 case LOOP_GET_STATUS:
1531 mutex_lock(&lo->lo_ctl_mutex);
1532 err = loop_get_status_compat(
1533 lo, (struct compat_loop_info __user *) arg);
1534 mutex_unlock(&lo->lo_ctl_mutex);
1535 break;
1536 case LOOP_SET_CAPACITY:
1537 case LOOP_CLR_FD:
1538 case LOOP_GET_STATUS64:
1539 case LOOP_SET_STATUS64:
1540 arg = (unsigned long) compat_ptr(arg);
1541 case LOOP_SET_FD:
1542 case LOOP_CHANGE_FD:
1543 err = lo_ioctl(bdev, mode, cmd, arg);
1544 break;
1545 default:
1546 err = -ENOIOCTLCMD;
1547 break;
1548 }
1549 return err;
1550 }
1551 #endif
1552
1553 static int lo_open(struct block_device *bdev, fmode_t mode)
1554 {
1555 struct loop_device *lo;
1556 int err = 0;
1557
1558 mutex_lock(&loop_index_mutex);
1559 lo = bdev->bd_disk->private_data;
1560 if (!lo) {
1561 err = -ENXIO;
1562 goto out;
1563 }
1564
1565 atomic_inc(&lo->lo_refcnt);
1566 out:
1567 mutex_unlock(&loop_index_mutex);
1568 return err;
1569 }
1570
1571 static void lo_release(struct gendisk *disk, fmode_t mode)
1572 {
1573 struct loop_device *lo = disk->private_data;
1574 int err;
1575
1576 if (atomic_dec_return(&lo->lo_refcnt))
1577 return;
1578
1579 mutex_lock(&lo->lo_ctl_mutex);
1580 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1581 /*
1582 * In autoclear mode, stop the loop thread
1583 * and remove configuration after last close.
1584 */
1585 err = loop_clr_fd(lo);
1586 if (!err)
1587 return;
1588 } else {
1589 /*
1590 * Otherwise keep thread (if running) and config,
1591 * but flush possible ongoing bios in thread.
1592 */
1593 loop_flush(lo);
1594 }
1595
1596 mutex_unlock(&lo->lo_ctl_mutex);
1597 }
1598
1599 static const struct block_device_operations lo_fops = {
1600 .owner = THIS_MODULE,
1601 .open = lo_open,
1602 .release = lo_release,
1603 .ioctl = lo_ioctl,
1604 #ifdef CONFIG_COMPAT
1605 .compat_ioctl = lo_compat_ioctl,
1606 #endif
1607 };
1608
1609 /*
1610 * And now the modules code and kernel interface.
1611 */
1612 static int max_loop;
1613 module_param(max_loop, int, S_IRUGO);
1614 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1615 module_param(max_part, int, S_IRUGO);
1616 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1617 MODULE_LICENSE("GPL");
1618 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1619
1620 int loop_register_transfer(struct loop_func_table *funcs)
1621 {
1622 unsigned int n = funcs->number;
1623
1624 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1625 return -EINVAL;
1626 xfer_funcs[n] = funcs;
1627 return 0;
1628 }
1629
1630 static int unregister_transfer_cb(int id, void *ptr, void *data)
1631 {
1632 struct loop_device *lo = ptr;
1633 struct loop_func_table *xfer = data;
1634
1635 mutex_lock(&lo->lo_ctl_mutex);
1636 if (lo->lo_encryption == xfer)
1637 loop_release_xfer(lo);
1638 mutex_unlock(&lo->lo_ctl_mutex);
1639 return 0;
1640 }
1641
1642 int loop_unregister_transfer(int number)
1643 {
1644 unsigned int n = number;
1645 struct loop_func_table *xfer;
1646
1647 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1648 return -EINVAL;
1649
1650 xfer_funcs[n] = NULL;
1651 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1652 return 0;
1653 }
1654
1655 EXPORT_SYMBOL(loop_register_transfer);
1656 EXPORT_SYMBOL(loop_unregister_transfer);
1657
1658 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1659 const struct blk_mq_queue_data *bd)
1660 {
1661 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1662 struct loop_device *lo = cmd->rq->q->queuedata;
1663
1664 blk_mq_start_request(bd->rq);
1665
1666 if (lo->lo_state != Lo_bound)
1667 return BLK_MQ_RQ_QUEUE_ERROR;
1668
1669 switch (req_op(cmd->rq)) {
1670 case REQ_OP_FLUSH:
1671 case REQ_OP_DISCARD:
1672 cmd->use_aio = false;
1673 break;
1674 default:
1675 cmd->use_aio = lo->use_dio;
1676 break;
1677 }
1678
1679 kthread_queue_work(&lo->worker, &cmd->work);
1680
1681 return BLK_MQ_RQ_QUEUE_OK;
1682 }
1683
1684 static void loop_handle_cmd(struct loop_cmd *cmd)
1685 {
1686 const bool write = op_is_write(req_op(cmd->rq));
1687 struct loop_device *lo = cmd->rq->q->queuedata;
1688 int ret = 0;
1689
1690 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1691 ret = -EIO;
1692 goto failed;
1693 }
1694
1695 ret = do_req_filebacked(lo, cmd->rq);
1696 failed:
1697 /* complete non-aio request */
1698 if (!cmd->use_aio || ret)
1699 blk_mq_complete_request(cmd->rq, ret ? -EIO : 0);
1700 }
1701
1702 static void loop_queue_work(struct kthread_work *work)
1703 {
1704 struct loop_cmd *cmd =
1705 container_of(work, struct loop_cmd, work);
1706
1707 loop_handle_cmd(cmd);
1708 }
1709
1710 static int loop_init_request(void *data, struct request *rq,
1711 unsigned int hctx_idx, unsigned int request_idx,
1712 unsigned int numa_node)
1713 {
1714 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1715
1716 cmd->rq = rq;
1717 kthread_init_work(&cmd->work, loop_queue_work);
1718
1719 return 0;
1720 }
1721
1722 static struct blk_mq_ops loop_mq_ops = {
1723 .queue_rq = loop_queue_rq,
1724 .init_request = loop_init_request,
1725 };
1726
1727 static int loop_add(struct loop_device **l, int i)
1728 {
1729 struct loop_device *lo;
1730 struct gendisk *disk;
1731 int err;
1732
1733 err = -ENOMEM;
1734 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1735 if (!lo)
1736 goto out;
1737
1738 lo->lo_state = Lo_unbound;
1739
1740 /* allocate id, if @id >= 0, we're requesting that specific id */
1741 if (i >= 0) {
1742 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1743 if (err == -ENOSPC)
1744 err = -EEXIST;
1745 } else {
1746 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1747 }
1748 if (err < 0)
1749 goto out_free_dev;
1750 i = err;
1751
1752 err = -ENOMEM;
1753 lo->tag_set.ops = &loop_mq_ops;
1754 lo->tag_set.nr_hw_queues = 1;
1755 lo->tag_set.queue_depth = 128;
1756 lo->tag_set.numa_node = NUMA_NO_NODE;
1757 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1758 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1759 lo->tag_set.driver_data = lo;
1760
1761 err = blk_mq_alloc_tag_set(&lo->tag_set);
1762 if (err)
1763 goto out_free_idr;
1764
1765 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1766 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1767 err = PTR_ERR(lo->lo_queue);
1768 goto out_cleanup_tags;
1769 }
1770 lo->lo_queue->queuedata = lo;
1771
1772 /*
1773 * It doesn't make sense to enable merge because the I/O
1774 * submitted to backing file is handled page by page.
1775 */
1776 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1777
1778 err = -ENOMEM;
1779 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1780 if (!disk)
1781 goto out_free_queue;
1782
1783 /*
1784 * Disable partition scanning by default. The in-kernel partition
1785 * scanning can be requested individually per-device during its
1786 * setup. Userspace can always add and remove partitions from all
1787 * devices. The needed partition minors are allocated from the
1788 * extended minor space, the main loop device numbers will continue
1789 * to match the loop minors, regardless of the number of partitions
1790 * used.
1791 *
1792 * If max_part is given, partition scanning is globally enabled for
1793 * all loop devices. The minors for the main loop devices will be
1794 * multiples of max_part.
1795 *
1796 * Note: Global-for-all-devices, set-only-at-init, read-only module
1797 * parameteters like 'max_loop' and 'max_part' make things needlessly
1798 * complicated, are too static, inflexible and may surprise
1799 * userspace tools. Parameters like this in general should be avoided.
1800 */
1801 if (!part_shift)
1802 disk->flags |= GENHD_FL_NO_PART_SCAN;
1803 disk->flags |= GENHD_FL_EXT_DEVT;
1804 mutex_init(&lo->lo_ctl_mutex);
1805 atomic_set(&lo->lo_refcnt, 0);
1806 lo->lo_number = i;
1807 spin_lock_init(&lo->lo_lock);
1808 disk->major = LOOP_MAJOR;
1809 disk->first_minor = i << part_shift;
1810 disk->fops = &lo_fops;
1811 disk->private_data = lo;
1812 disk->queue = lo->lo_queue;
1813 sprintf(disk->disk_name, "loop%d", i);
1814 add_disk(disk);
1815 *l = lo;
1816 return lo->lo_number;
1817
1818 out_free_queue:
1819 blk_cleanup_queue(lo->lo_queue);
1820 out_cleanup_tags:
1821 blk_mq_free_tag_set(&lo->tag_set);
1822 out_free_idr:
1823 idr_remove(&loop_index_idr, i);
1824 out_free_dev:
1825 kfree(lo);
1826 out:
1827 return err;
1828 }
1829
1830 static void loop_remove(struct loop_device *lo)
1831 {
1832 blk_cleanup_queue(lo->lo_queue);
1833 del_gendisk(lo->lo_disk);
1834 blk_mq_free_tag_set(&lo->tag_set);
1835 put_disk(lo->lo_disk);
1836 kfree(lo);
1837 }
1838
1839 static int find_free_cb(int id, void *ptr, void *data)
1840 {
1841 struct loop_device *lo = ptr;
1842 struct loop_device **l = data;
1843
1844 if (lo->lo_state == Lo_unbound) {
1845 *l = lo;
1846 return 1;
1847 }
1848 return 0;
1849 }
1850
1851 static int loop_lookup(struct loop_device **l, int i)
1852 {
1853 struct loop_device *lo;
1854 int ret = -ENODEV;
1855
1856 if (i < 0) {
1857 int err;
1858
1859 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1860 if (err == 1) {
1861 *l = lo;
1862 ret = lo->lo_number;
1863 }
1864 goto out;
1865 }
1866
1867 /* lookup and return a specific i */
1868 lo = idr_find(&loop_index_idr, i);
1869 if (lo) {
1870 *l = lo;
1871 ret = lo->lo_number;
1872 }
1873 out:
1874 return ret;
1875 }
1876
1877 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1878 {
1879 struct loop_device *lo;
1880 struct kobject *kobj;
1881 int err;
1882
1883 mutex_lock(&loop_index_mutex);
1884 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1885 if (err < 0)
1886 err = loop_add(&lo, MINOR(dev) >> part_shift);
1887 if (err < 0)
1888 kobj = NULL;
1889 else
1890 kobj = get_disk(lo->lo_disk);
1891 mutex_unlock(&loop_index_mutex);
1892
1893 *part = 0;
1894 return kobj;
1895 }
1896
1897 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1898 unsigned long parm)
1899 {
1900 struct loop_device *lo;
1901 int ret = -ENOSYS;
1902
1903 mutex_lock(&loop_index_mutex);
1904 switch (cmd) {
1905 case LOOP_CTL_ADD:
1906 ret = loop_lookup(&lo, parm);
1907 if (ret >= 0) {
1908 ret = -EEXIST;
1909 break;
1910 }
1911 ret = loop_add(&lo, parm);
1912 break;
1913 case LOOP_CTL_REMOVE:
1914 ret = loop_lookup(&lo, parm);
1915 if (ret < 0)
1916 break;
1917 mutex_lock(&lo->lo_ctl_mutex);
1918 if (lo->lo_state != Lo_unbound) {
1919 ret = -EBUSY;
1920 mutex_unlock(&lo->lo_ctl_mutex);
1921 break;
1922 }
1923 if (atomic_read(&lo->lo_refcnt) > 0) {
1924 ret = -EBUSY;
1925 mutex_unlock(&lo->lo_ctl_mutex);
1926 break;
1927 }
1928 lo->lo_disk->private_data = NULL;
1929 mutex_unlock(&lo->lo_ctl_mutex);
1930 idr_remove(&loop_index_idr, lo->lo_number);
1931 loop_remove(lo);
1932 break;
1933 case LOOP_CTL_GET_FREE:
1934 ret = loop_lookup(&lo, -1);
1935 if (ret >= 0)
1936 break;
1937 ret = loop_add(&lo, -1);
1938 }
1939 mutex_unlock(&loop_index_mutex);
1940
1941 return ret;
1942 }
1943
1944 static const struct file_operations loop_ctl_fops = {
1945 .open = nonseekable_open,
1946 .unlocked_ioctl = loop_control_ioctl,
1947 .compat_ioctl = loop_control_ioctl,
1948 .owner = THIS_MODULE,
1949 .llseek = noop_llseek,
1950 };
1951
1952 static struct miscdevice loop_misc = {
1953 .minor = LOOP_CTRL_MINOR,
1954 .name = "loop-control",
1955 .fops = &loop_ctl_fops,
1956 };
1957
1958 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1959 MODULE_ALIAS("devname:loop-control");
1960
1961 static int __init loop_init(void)
1962 {
1963 int i, nr;
1964 unsigned long range;
1965 struct loop_device *lo;
1966 int err;
1967
1968 err = misc_register(&loop_misc);
1969 if (err < 0)
1970 return err;
1971
1972 part_shift = 0;
1973 if (max_part > 0) {
1974 part_shift = fls(max_part);
1975
1976 /*
1977 * Adjust max_part according to part_shift as it is exported
1978 * to user space so that user can decide correct minor number
1979 * if [s]he want to create more devices.
1980 *
1981 * Note that -1 is required because partition 0 is reserved
1982 * for the whole disk.
1983 */
1984 max_part = (1UL << part_shift) - 1;
1985 }
1986
1987 if ((1UL << part_shift) > DISK_MAX_PARTS) {
1988 err = -EINVAL;
1989 goto misc_out;
1990 }
1991
1992 if (max_loop > 1UL << (MINORBITS - part_shift)) {
1993 err = -EINVAL;
1994 goto misc_out;
1995 }
1996
1997 /*
1998 * If max_loop is specified, create that many devices upfront.
1999 * This also becomes a hard limit. If max_loop is not specified,
2000 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2001 * init time. Loop devices can be requested on-demand with the
2002 * /dev/loop-control interface, or be instantiated by accessing
2003 * a 'dead' device node.
2004 */
2005 if (max_loop) {
2006 nr = max_loop;
2007 range = max_loop << part_shift;
2008 } else {
2009 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2010 range = 1UL << MINORBITS;
2011 }
2012
2013 if (register_blkdev(LOOP_MAJOR, "loop")) {
2014 err = -EIO;
2015 goto misc_out;
2016 }
2017
2018 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2019 THIS_MODULE, loop_probe, NULL, NULL);
2020
2021 /* pre-create number of devices given by config or max_loop */
2022 mutex_lock(&loop_index_mutex);
2023 for (i = 0; i < nr; i++)
2024 loop_add(&lo, i);
2025 mutex_unlock(&loop_index_mutex);
2026
2027 printk(KERN_INFO "loop: module loaded\n");
2028 return 0;
2029
2030 misc_out:
2031 misc_deregister(&loop_misc);
2032 return err;
2033 }
2034
2035 static int loop_exit_cb(int id, void *ptr, void *data)
2036 {
2037 struct loop_device *lo = ptr;
2038
2039 loop_remove(lo);
2040 return 0;
2041 }
2042
2043 static void __exit loop_exit(void)
2044 {
2045 unsigned long range;
2046
2047 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2048
2049 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2050 idr_destroy(&loop_index_idr);
2051
2052 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2053 unregister_blkdev(LOOP_MAJOR, "loop");
2054
2055 misc_deregister(&loop_misc);
2056 }
2057
2058 module_init(loop_init);
2059 module_exit(loop_exit);
2060
2061 #ifndef MODULE
2062 static int __init max_loop_setup(char *str)
2063 {
2064 max_loop = simple_strtol(str, NULL, 0);
2065 return 1;
2066 }
2067
2068 __setup("max_loop=", max_loop_setup);
2069 #endif