]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/loop.c
KVM: SVM: Move spec control call after restore of GS
[mirror_ubuntu-artful-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80
81 #include <linux/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
93 {
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
98
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
105 }
106
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
111
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
116 }
117
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
123 }
124
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
127 };
128
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
133 };
134
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
139 };
140
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 loff_t loopsize;
144
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
152
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
155 /*
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
158 */
159 return loopsize >> 9;
160 }
161
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
175
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
179 }
180
181 /*
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
186 *
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane applications should be PAGE_SIZE aligned
190 */
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
201 }
202
203 if (lo->use_dio == use_dio)
204 return;
205
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
208
209 /*
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
213 */
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio)
217 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 else
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 sector_t x = (sector_t)size;
228 struct block_device *bdev = lo->lo_device;
229
230 if (unlikely((loff_t)x != size))
231 return -EFBIG;
232 if (lo->lo_offset != offset)
233 lo->lo_offset = offset;
234 if (lo->lo_sizelimit != sizelimit)
235 lo->lo_sizelimit = sizelimit;
236 set_capacity(lo->lo_disk, x);
237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 /* let user-space know about the new size */
239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 return 0;
241 }
242
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 struct page *rpage, unsigned roffs,
246 struct page *lpage, unsigned loffs,
247 int size, sector_t rblock)
248 {
249 int ret;
250
251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 if (likely(!ret))
253 return 0;
254
255 printk_ratelimited(KERN_ERR
256 "loop: Transfer error at byte offset %llu, length %i.\n",
257 (unsigned long long)rblock << 9, size);
258 return ret;
259 }
260
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 struct iov_iter i;
264 ssize_t bw;
265
266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267
268 file_start_write(file);
269 bw = vfs_iter_write(file, &i, ppos, 0);
270 file_end_write(file);
271
272 if (likely(bw == bvec->bv_len))
273 return 0;
274
275 printk_ratelimited(KERN_ERR
276 "loop: Write error at byte offset %llu, length %i.\n",
277 (unsigned long long)*ppos, bvec->bv_len);
278 if (bw >= 0)
279 bw = -EIO;
280 return bw;
281 }
282
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 loff_t pos)
285 {
286 struct bio_vec bvec;
287 struct req_iterator iter;
288 int ret = 0;
289
290 rq_for_each_segment(bvec, rq, iter) {
291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 if (ret < 0)
293 break;
294 cond_resched();
295 }
296
297 return ret;
298 }
299
300 /*
301 * This is the slow, transforming version that needs to double buffer the
302 * data as it cannot do the transformations in place without having direct
303 * access to the destination pages of the backing file.
304 */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 loff_t pos)
307 {
308 struct bio_vec bvec, b;
309 struct req_iterator iter;
310 struct page *page;
311 int ret = 0;
312
313 page = alloc_page(GFP_NOIO);
314 if (unlikely(!page))
315 return -ENOMEM;
316
317 rq_for_each_segment(bvec, rq, iter) {
318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 bvec.bv_offset, bvec.bv_len, pos >> 9);
320 if (unlikely(ret))
321 break;
322
323 b.bv_page = page;
324 b.bv_offset = 0;
325 b.bv_len = bvec.bv_len;
326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 if (ret < 0)
328 break;
329 }
330
331 __free_page(page);
332 return ret;
333 }
334
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 loff_t pos)
337 {
338 struct bio_vec bvec;
339 struct req_iterator iter;
340 struct iov_iter i;
341 ssize_t len;
342
343 rq_for_each_segment(bvec, rq, iter) {
344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
346 if (len < 0)
347 return len;
348
349 flush_dcache_page(bvec.bv_page);
350
351 if (len != bvec.bv_len) {
352 struct bio *bio;
353
354 __rq_for_each_bio(bio, rq)
355 zero_fill_bio(bio);
356 break;
357 }
358 cond_resched();
359 }
360
361 return 0;
362 }
363
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 loff_t pos)
366 {
367 struct bio_vec bvec, b;
368 struct req_iterator iter;
369 struct iov_iter i;
370 struct page *page;
371 ssize_t len;
372 int ret = 0;
373
374 page = alloc_page(GFP_NOIO);
375 if (unlikely(!page))
376 return -ENOMEM;
377
378 rq_for_each_segment(bvec, rq, iter) {
379 loff_t offset = pos;
380
381 b.bv_page = page;
382 b.bv_offset = 0;
383 b.bv_len = bvec.bv_len;
384
385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
387 if (len < 0) {
388 ret = len;
389 goto out_free_page;
390 }
391
392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 bvec.bv_offset, len, offset >> 9);
394 if (ret)
395 goto out_free_page;
396
397 flush_dcache_page(bvec.bv_page);
398
399 if (len != bvec.bv_len) {
400 struct bio *bio;
401
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
405 }
406 }
407
408 ret = 0;
409 out_free_page:
410 __free_page(page);
411 return ret;
412 }
413
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 /*
417 * We use punch hole to reclaim the free space used by the
418 * image a.k.a. discard. However we do not support discard if
419 * encryption is enabled, because it may give an attacker
420 * useful information.
421 */
422 struct file *file = lo->lo_backing_file;
423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 int ret;
425
426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 ret = -EOPNOTSUPP;
428 goto out;
429 }
430
431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 ret = -EIO;
434 out:
435 return ret;
436 }
437
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 struct file *file = lo->lo_backing_file;
441 int ret = vfs_fsync(file, 0);
442 if (unlikely(ret && ret != -EINVAL))
443 ret = -EIO;
444
445 return ret;
446 }
447
448 static void lo_complete_rq(struct request *rq)
449 {
450 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
451
452 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
453 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
454 struct bio *bio = cmd->rq->bio;
455
456 bio_advance(bio, cmd->ret);
457 zero_fill_bio(bio);
458 }
459
460 blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
461 }
462
463 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
464 {
465 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
466
467 cmd->ret = ret;
468 blk_mq_complete_request(cmd->rq);
469 }
470
471 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
472 loff_t pos, bool rw)
473 {
474 struct iov_iter iter;
475 struct bio_vec *bvec;
476 struct bio *bio = cmd->rq->bio;
477 struct file *file = lo->lo_backing_file;
478 int ret;
479
480 /* nomerge for loop request queue */
481 WARN_ON(cmd->rq->bio != cmd->rq->biotail);
482
483 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
484 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
485 bio_segments(bio), blk_rq_bytes(cmd->rq));
486 /*
487 * This bio may be started from the middle of the 'bvec'
488 * because of bio splitting, so offset from the bvec must
489 * be passed to iov iterator
490 */
491 iter.iov_offset = bio->bi_iter.bi_bvec_done;
492
493 cmd->iocb.ki_pos = pos;
494 cmd->iocb.ki_filp = file;
495 cmd->iocb.ki_complete = lo_rw_aio_complete;
496 cmd->iocb.ki_flags = IOCB_DIRECT;
497
498 if (rw == WRITE)
499 ret = call_write_iter(file, &cmd->iocb, &iter);
500 else
501 ret = call_read_iter(file, &cmd->iocb, &iter);
502
503 if (ret != -EIOCBQUEUED)
504 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
505 return 0;
506 }
507
508 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
509 {
510 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
511 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
512
513 /*
514 * lo_write_simple and lo_read_simple should have been covered
515 * by io submit style function like lo_rw_aio(), one blocker
516 * is that lo_read_simple() need to call flush_dcache_page after
517 * the page is written from kernel, and it isn't easy to handle
518 * this in io submit style function which submits all segments
519 * of the req at one time. And direct read IO doesn't need to
520 * run flush_dcache_page().
521 */
522 switch (req_op(rq)) {
523 case REQ_OP_FLUSH:
524 return lo_req_flush(lo, rq);
525 case REQ_OP_DISCARD:
526 case REQ_OP_WRITE_ZEROES:
527 return lo_discard(lo, rq, pos);
528 case REQ_OP_WRITE:
529 if (lo->transfer)
530 return lo_write_transfer(lo, rq, pos);
531 else if (cmd->use_aio)
532 return lo_rw_aio(lo, cmd, pos, WRITE);
533 else
534 return lo_write_simple(lo, rq, pos);
535 case REQ_OP_READ:
536 if (lo->transfer)
537 return lo_read_transfer(lo, rq, pos);
538 else if (cmd->use_aio)
539 return lo_rw_aio(lo, cmd, pos, READ);
540 else
541 return lo_read_simple(lo, rq, pos);
542 default:
543 WARN_ON_ONCE(1);
544 return -EIO;
545 break;
546 }
547 }
548
549 struct switch_request {
550 struct file *file, *virt_file;
551 struct completion wait;
552 };
553
554 static inline void loop_update_dio(struct loop_device *lo)
555 {
556 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
557 lo->use_dio);
558 }
559
560 /*
561 * Do the actual switch; called from the BIO completion routine
562 */
563 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
564 {
565 struct file *file = p->file;
566 struct file *old_file = lo->lo_backing_file;
567 struct address_space *mapping;
568
569 /* if no new file, only flush of queued bios requested */
570 if (!file)
571 return;
572
573 mapping = file->f_mapping;
574 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
575 lo->lo_backing_file = file;
576 lo->lo_backing_virt_file = p->virt_file;
577 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
578 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
579 lo->old_gfp_mask = mapping_gfp_mask(mapping);
580 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
581 loop_update_dio(lo);
582 }
583
584 /*
585 * loop_switch performs the hard work of switching a backing store.
586 * First it needs to flush existing IO, it does this by sending a magic
587 * BIO down the pipe. The completion of this BIO does the actual switch.
588 */
589 static int loop_switch(struct loop_device *lo, struct file *file,
590 struct file *virt_file)
591 {
592 struct switch_request w;
593
594 w.file = file;
595 w.virt_file = virt_file;
596
597 /* freeze queue and wait for completion of scheduled requests */
598 blk_mq_freeze_queue(lo->lo_queue);
599
600 /* do the switch action */
601 do_loop_switch(lo, &w);
602
603 /* unfreeze */
604 blk_mq_unfreeze_queue(lo->lo_queue);
605
606 return 0;
607 }
608
609 /*
610 * Helper to flush the IOs in loop, but keeping loop thread running
611 */
612 static int loop_flush(struct loop_device *lo)
613 {
614 /* loop not yet configured, no running thread, nothing to flush */
615 if (lo->lo_state != Lo_bound)
616 return 0;
617 return loop_switch(lo, NULL, NULL);
618 }
619
620 static struct file *loop_real_file(struct file *file)
621 {
622 struct file *f = NULL;
623
624 if (file->f_path.dentry->d_sb->s_op->real_loop)
625 f = file->f_path.dentry->d_sb->s_op->real_loop(file);
626 return f;
627 }
628
629 static void loop_reread_partitions(struct loop_device *lo,
630 struct block_device *bdev)
631 {
632 int rc;
633
634 /*
635 * bd_mutex has been held already in release path, so don't
636 * acquire it if this function is called in such case.
637 *
638 * If the reread partition isn't from release path, lo_refcnt
639 * must be at least one and it can only become zero when the
640 * current holder is released.
641 */
642 if (!atomic_read(&lo->lo_refcnt))
643 rc = __blkdev_reread_part(bdev);
644 else
645 rc = blkdev_reread_part(bdev);
646 if (rc)
647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 __func__, lo->lo_number, lo->lo_file_name, rc);
649 }
650
651 /*
652 * loop_change_fd switched the backing store of a loopback device to
653 * a new file. This is useful for operating system installers to free up
654 * the original file and in High Availability environments to switch to
655 * an alternative location for the content in case of server meltdown.
656 * This can only work if the loop device is used read-only, and if the
657 * new backing store is the same size and type as the old backing store.
658 */
659 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
660 unsigned int arg)
661 {
662 struct file *file, *old_file;
663 struct file *f, *virt_file = NULL, *old_virt_file;
664 struct inode *inode;
665 int error;
666
667 error = -ENXIO;
668 if (lo->lo_state != Lo_bound)
669 goto out;
670
671 /* the loop device has to be read-only */
672 error = -EINVAL;
673 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
674 goto out;
675
676 error = -EBADF;
677 file = fget(arg);
678 if (!file)
679 goto out;
680 f = loop_real_file(file);
681 if (f) {
682 virt_file = file;
683 file = f;
684 get_file(file);
685 }
686
687 inode = file->f_mapping->host;
688 old_file = lo->lo_backing_file;
689 old_virt_file = lo->lo_backing_virt_file;
690
691 error = -EINVAL;
692
693 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
694 goto out_putf;
695
696 /* size of the new backing store needs to be the same */
697 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
698 goto out_putf;
699
700 /* and ... switch */
701 error = loop_switch(lo, file, virt_file);
702 if (error)
703 goto out_putf;
704
705 fput(old_file);
706 if (old_virt_file)
707 fput(old_virt_file);
708 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
709 loop_reread_partitions(lo, bdev);
710 return 0;
711
712 out_putf:
713 fput(file);
714 if (virt_file)
715 fput(virt_file);
716 out:
717 return error;
718 }
719
720 static inline int is_loop_device(struct file *file)
721 {
722 struct inode *i = file->f_mapping->host;
723
724 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
725 }
726
727 /*
728 * for AUFS
729 * no get/put for file.
730 */
731 struct file *loop_backing_file(struct super_block *sb)
732 {
733 struct file *ret;
734 struct loop_device *l;
735
736 ret = NULL;
737 if (MAJOR(sb->s_dev) == LOOP_MAJOR) {
738 l = sb->s_bdev->bd_disk->private_data;
739 ret = l->lo_backing_file;
740 }
741 return ret;
742 }
743 EXPORT_SYMBOL_GPL(loop_backing_file);
744
745 /* loop sysfs attributes */
746
747 static ssize_t loop_attr_show(struct device *dev, char *page,
748 ssize_t (*callback)(struct loop_device *, char *))
749 {
750 struct gendisk *disk = dev_to_disk(dev);
751 struct loop_device *lo = disk->private_data;
752
753 return callback(lo, page);
754 }
755
756 #define LOOP_ATTR_RO(_name) \
757 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
758 static ssize_t loop_attr_do_show_##_name(struct device *d, \
759 struct device_attribute *attr, char *b) \
760 { \
761 return loop_attr_show(d, b, loop_attr_##_name##_show); \
762 } \
763 static struct device_attribute loop_attr_##_name = \
764 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
765
766 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
767 {
768 ssize_t ret;
769 char *p = NULL;
770
771 spin_lock_irq(&lo->lo_lock);
772 if (lo->lo_backing_file)
773 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
774 spin_unlock_irq(&lo->lo_lock);
775
776 if (IS_ERR_OR_NULL(p))
777 ret = PTR_ERR(p);
778 else {
779 ret = strlen(p);
780 memmove(buf, p, ret);
781 buf[ret++] = '\n';
782 buf[ret] = 0;
783 }
784
785 return ret;
786 }
787
788 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
789 {
790 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
791 }
792
793 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
794 {
795 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
796 }
797
798 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
799 {
800 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
801
802 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
803 }
804
805 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
806 {
807 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
808
809 return sprintf(buf, "%s\n", partscan ? "1" : "0");
810 }
811
812 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
813 {
814 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
815
816 return sprintf(buf, "%s\n", dio ? "1" : "0");
817 }
818
819 LOOP_ATTR_RO(backing_file);
820 LOOP_ATTR_RO(offset);
821 LOOP_ATTR_RO(sizelimit);
822 LOOP_ATTR_RO(autoclear);
823 LOOP_ATTR_RO(partscan);
824 LOOP_ATTR_RO(dio);
825
826 static struct attribute *loop_attrs[] = {
827 &loop_attr_backing_file.attr,
828 &loop_attr_offset.attr,
829 &loop_attr_sizelimit.attr,
830 &loop_attr_autoclear.attr,
831 &loop_attr_partscan.attr,
832 &loop_attr_dio.attr,
833 NULL,
834 };
835
836 static struct attribute_group loop_attribute_group = {
837 .name = "loop",
838 .attrs= loop_attrs,
839 };
840
841 static int loop_sysfs_init(struct loop_device *lo)
842 {
843 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
844 &loop_attribute_group);
845 }
846
847 static void loop_sysfs_exit(struct loop_device *lo)
848 {
849 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
850 &loop_attribute_group);
851 }
852
853 static void loop_config_discard(struct loop_device *lo)
854 {
855 struct file *file = lo->lo_backing_file;
856 struct inode *inode = file->f_mapping->host;
857 struct request_queue *q = lo->lo_queue;
858
859 /*
860 * We use punch hole to reclaim the free space used by the
861 * image a.k.a. discard. However we do not support discard if
862 * encryption is enabled, because it may give an attacker
863 * useful information.
864 */
865 if ((!file->f_op->fallocate) ||
866 lo->lo_encrypt_key_size) {
867 q->limits.discard_granularity = 0;
868 q->limits.discard_alignment = 0;
869 blk_queue_max_discard_sectors(q, 0);
870 blk_queue_max_write_zeroes_sectors(q, 0);
871 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
872 return;
873 }
874
875 q->limits.discard_granularity = inode->i_sb->s_blocksize;
876 q->limits.discard_alignment = 0;
877
878 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
879 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
880 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
881 }
882
883 static void loop_unprepare_queue(struct loop_device *lo)
884 {
885 kthread_flush_worker(&lo->worker);
886 kthread_stop(lo->worker_task);
887 }
888
889 static int loop_kthread_worker_fn(void *worker_ptr)
890 {
891 current->flags |= PF_LESS_THROTTLE;
892 return kthread_worker_fn(worker_ptr);
893 }
894
895 static int loop_prepare_queue(struct loop_device *lo)
896 {
897 kthread_init_worker(&lo->worker);
898 lo->worker_task = kthread_run(loop_kthread_worker_fn,
899 &lo->worker, "loop%d", lo->lo_number);
900 if (IS_ERR(lo->worker_task))
901 return -ENOMEM;
902 set_user_nice(lo->worker_task, MIN_NICE);
903 return 0;
904 }
905
906 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
907 struct block_device *bdev, unsigned int arg)
908 {
909 struct file *file, *f, *virt_file = NULL;
910 struct inode *inode;
911 struct address_space *mapping;
912 unsigned lo_blocksize;
913 int lo_flags = 0;
914 int error;
915 loff_t size;
916
917 /* This is safe, since we have a reference from open(). */
918 __module_get(THIS_MODULE);
919
920 error = -EBADF;
921 file = fget(arg);
922 if (!file)
923 goto out;
924 f = loop_real_file(file);
925 if (f) {
926 virt_file = file;
927 file = f;
928 get_file(file);
929 }
930
931 error = -EBUSY;
932 if (lo->lo_state != Lo_unbound)
933 goto out_putf;
934
935 /* Avoid recursion */
936 f = file;
937 while (is_loop_device(f)) {
938 struct loop_device *l;
939
940 if (f->f_mapping->host->i_bdev == bdev)
941 goto out_putf;
942
943 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
944 if (l->lo_state == Lo_unbound) {
945 error = -EINVAL;
946 goto out_putf;
947 }
948 f = l->lo_backing_file;
949 }
950
951 mapping = file->f_mapping;
952 inode = mapping->host;
953
954 error = -EINVAL;
955 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
956 goto out_putf;
957
958 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
959 !file->f_op->write_iter)
960 lo_flags |= LO_FLAGS_READ_ONLY;
961
962 lo_blocksize = S_ISBLK(inode->i_mode) ?
963 inode->i_bdev->bd_block_size : PAGE_SIZE;
964
965 error = -EFBIG;
966 size = get_loop_size(lo, file);
967 if ((loff_t)(sector_t)size != size)
968 goto out_putf;
969 error = loop_prepare_queue(lo);
970 if (error)
971 goto out_putf;
972
973 error = 0;
974
975 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
976
977 lo->use_dio = false;
978 lo->lo_blocksize = lo_blocksize;
979 lo->lo_device = bdev;
980 lo->lo_flags = lo_flags;
981 lo->lo_backing_file = file;
982 lo->lo_backing_virt_file = virt_file;
983 lo->transfer = NULL;
984 lo->ioctl = NULL;
985 lo->lo_sizelimit = 0;
986 lo->old_gfp_mask = mapping_gfp_mask(mapping);
987 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
988
989 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
990 blk_queue_write_cache(lo->lo_queue, true, false);
991
992 loop_update_dio(lo);
993 set_capacity(lo->lo_disk, size);
994 bd_set_size(bdev, size << 9);
995 loop_sysfs_init(lo);
996 /* let user-space know about the new size */
997 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
998
999 set_blocksize(bdev, lo_blocksize);
1000
1001 lo->lo_state = Lo_bound;
1002 if (part_shift)
1003 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1004 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
1005 loop_reread_partitions(lo, bdev);
1006
1007 /* Grab the block_device to prevent its destruction after we
1008 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
1009 */
1010 bdgrab(bdev);
1011 return 0;
1012
1013 out_putf:
1014 fput(file);
1015 if (virt_file)
1016 fput(virt_file);
1017 out:
1018 /* This is safe: open() is still holding a reference. */
1019 module_put(THIS_MODULE);
1020 return error;
1021 }
1022
1023 static int
1024 loop_release_xfer(struct loop_device *lo)
1025 {
1026 int err = 0;
1027 struct loop_func_table *xfer = lo->lo_encryption;
1028
1029 if (xfer) {
1030 if (xfer->release)
1031 err = xfer->release(lo);
1032 lo->transfer = NULL;
1033 lo->lo_encryption = NULL;
1034 module_put(xfer->owner);
1035 }
1036 return err;
1037 }
1038
1039 static int
1040 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1041 const struct loop_info64 *i)
1042 {
1043 int err = 0;
1044
1045 if (xfer) {
1046 struct module *owner = xfer->owner;
1047
1048 if (!try_module_get(owner))
1049 return -EINVAL;
1050 if (xfer->init)
1051 err = xfer->init(lo, i);
1052 if (err)
1053 module_put(owner);
1054 else
1055 lo->lo_encryption = xfer;
1056 }
1057 return err;
1058 }
1059
1060 static int loop_clr_fd(struct loop_device *lo)
1061 {
1062 struct file *filp = lo->lo_backing_file;
1063 struct file *virt_filp = lo->lo_backing_virt_file;
1064 gfp_t gfp = lo->old_gfp_mask;
1065 struct block_device *bdev = lo->lo_device;
1066
1067 if (lo->lo_state != Lo_bound)
1068 return -ENXIO;
1069
1070 /*
1071 * If we've explicitly asked to tear down the loop device,
1072 * and it has an elevated reference count, set it for auto-teardown when
1073 * the last reference goes away. This stops $!~#$@ udev from
1074 * preventing teardown because it decided that it needs to run blkid on
1075 * the loopback device whenever they appear. xfstests is notorious for
1076 * failing tests because blkid via udev races with a losetup
1077 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1078 * command to fail with EBUSY.
1079 */
1080 if (atomic_read(&lo->lo_refcnt) > 1) {
1081 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1082 mutex_unlock(&lo->lo_ctl_mutex);
1083 return 0;
1084 }
1085
1086 if (filp == NULL)
1087 return -EINVAL;
1088
1089 /* freeze request queue during the transition */
1090 blk_mq_freeze_queue(lo->lo_queue);
1091
1092 spin_lock_irq(&lo->lo_lock);
1093 lo->lo_state = Lo_rundown;
1094 lo->lo_backing_file = NULL;
1095 lo->lo_backing_virt_file = NULL;
1096 spin_unlock_irq(&lo->lo_lock);
1097
1098 loop_release_xfer(lo);
1099 lo->transfer = NULL;
1100 lo->ioctl = NULL;
1101 lo->lo_device = NULL;
1102 lo->lo_encryption = NULL;
1103 lo->lo_offset = 0;
1104 lo->lo_sizelimit = 0;
1105 lo->lo_encrypt_key_size = 0;
1106 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1107 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1108 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1109 if (bdev) {
1110 bdput(bdev);
1111 invalidate_bdev(bdev);
1112 }
1113 set_capacity(lo->lo_disk, 0);
1114 loop_sysfs_exit(lo);
1115 if (bdev) {
1116 bd_set_size(bdev, 0);
1117 /* let user-space know about this change */
1118 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1119 }
1120 mapping_set_gfp_mask(filp->f_mapping, gfp);
1121 lo->lo_state = Lo_unbound;
1122 /* This is safe: open() is still holding a reference. */
1123 module_put(THIS_MODULE);
1124 blk_mq_unfreeze_queue(lo->lo_queue);
1125
1126 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1127 loop_reread_partitions(lo, bdev);
1128 lo->lo_flags = 0;
1129 if (!part_shift)
1130 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1131 loop_unprepare_queue(lo);
1132 mutex_unlock(&lo->lo_ctl_mutex);
1133 /*
1134 * Need not hold lo_ctl_mutex to fput backing file.
1135 * Calling fput holding lo_ctl_mutex triggers a circular
1136 * lock dependency possibility warning as fput can take
1137 * bd_mutex which is usually taken before lo_ctl_mutex.
1138 */
1139 fput(filp);
1140 if (virt_filp)
1141 fput(virt_filp);
1142 return 0;
1143 }
1144
1145 static int
1146 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1147 {
1148 int err;
1149 struct loop_func_table *xfer;
1150 kuid_t uid = current_uid();
1151
1152 if (lo->lo_encrypt_key_size &&
1153 !uid_eq(lo->lo_key_owner, uid) &&
1154 !capable(CAP_SYS_ADMIN))
1155 return -EPERM;
1156 if (lo->lo_state != Lo_bound)
1157 return -ENXIO;
1158 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1159 return -EINVAL;
1160
1161 /* I/O need to be drained during transfer transition */
1162 blk_mq_freeze_queue(lo->lo_queue);
1163
1164 err = loop_release_xfer(lo);
1165 if (err)
1166 goto exit;
1167
1168 if (info->lo_encrypt_type) {
1169 unsigned int type = info->lo_encrypt_type;
1170
1171 if (type >= MAX_LO_CRYPT)
1172 return -EINVAL;
1173 xfer = xfer_funcs[type];
1174 if (xfer == NULL)
1175 return -EINVAL;
1176 } else
1177 xfer = NULL;
1178
1179 err = loop_init_xfer(lo, xfer, info);
1180 if (err)
1181 goto exit;
1182
1183 if (lo->lo_offset != info->lo_offset ||
1184 lo->lo_sizelimit != info->lo_sizelimit) {
1185 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1186 err = -EFBIG;
1187 goto exit;
1188 }
1189 }
1190
1191 loop_config_discard(lo);
1192
1193 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1194 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1195 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1196 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1197
1198 if (!xfer)
1199 xfer = &none_funcs;
1200 lo->transfer = xfer->transfer;
1201 lo->ioctl = xfer->ioctl;
1202
1203 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1204 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1205 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1206
1207 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1208 lo->lo_init[0] = info->lo_init[0];
1209 lo->lo_init[1] = info->lo_init[1];
1210 if (info->lo_encrypt_key_size) {
1211 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1212 info->lo_encrypt_key_size);
1213 lo->lo_key_owner = uid;
1214 }
1215
1216 /* update dio if lo_offset or transfer is changed */
1217 __loop_update_dio(lo, lo->use_dio);
1218
1219 exit:
1220 blk_mq_unfreeze_queue(lo->lo_queue);
1221
1222 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1223 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1224 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1225 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1226 loop_reread_partitions(lo, lo->lo_device);
1227 }
1228
1229 return err;
1230 }
1231
1232 static int
1233 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1234 {
1235 struct file *file = lo->lo_backing_file;
1236 struct kstat stat;
1237 int error;
1238
1239 if (lo->lo_state != Lo_bound)
1240 return -ENXIO;
1241 error = vfs_getattr(&file->f_path, &stat,
1242 STATX_INO, AT_STATX_SYNC_AS_STAT);
1243 if (error)
1244 return error;
1245 memset(info, 0, sizeof(*info));
1246 info->lo_number = lo->lo_number;
1247 info->lo_device = huge_encode_dev(stat.dev);
1248 info->lo_inode = stat.ino;
1249 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1250 info->lo_offset = lo->lo_offset;
1251 info->lo_sizelimit = lo->lo_sizelimit;
1252 info->lo_flags = lo->lo_flags;
1253 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1254 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1255 info->lo_encrypt_type =
1256 lo->lo_encryption ? lo->lo_encryption->number : 0;
1257 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1258 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1259 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1260 lo->lo_encrypt_key_size);
1261 }
1262 return 0;
1263 }
1264
1265 static void
1266 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1267 {
1268 memset(info64, 0, sizeof(*info64));
1269 info64->lo_number = info->lo_number;
1270 info64->lo_device = info->lo_device;
1271 info64->lo_inode = info->lo_inode;
1272 info64->lo_rdevice = info->lo_rdevice;
1273 info64->lo_offset = info->lo_offset;
1274 info64->lo_sizelimit = 0;
1275 info64->lo_encrypt_type = info->lo_encrypt_type;
1276 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1277 info64->lo_flags = info->lo_flags;
1278 info64->lo_init[0] = info->lo_init[0];
1279 info64->lo_init[1] = info->lo_init[1];
1280 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1281 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1282 else
1283 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1284 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1285 }
1286
1287 static int
1288 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1289 {
1290 memset(info, 0, sizeof(*info));
1291 info->lo_number = info64->lo_number;
1292 info->lo_device = info64->lo_device;
1293 info->lo_inode = info64->lo_inode;
1294 info->lo_rdevice = info64->lo_rdevice;
1295 info->lo_offset = info64->lo_offset;
1296 info->lo_encrypt_type = info64->lo_encrypt_type;
1297 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1298 info->lo_flags = info64->lo_flags;
1299 info->lo_init[0] = info64->lo_init[0];
1300 info->lo_init[1] = info64->lo_init[1];
1301 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1302 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1303 else
1304 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1305 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1306
1307 /* error in case values were truncated */
1308 if (info->lo_device != info64->lo_device ||
1309 info->lo_rdevice != info64->lo_rdevice ||
1310 info->lo_inode != info64->lo_inode ||
1311 info->lo_offset != info64->lo_offset)
1312 return -EOVERFLOW;
1313
1314 return 0;
1315 }
1316
1317 static int
1318 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1319 {
1320 struct loop_info info;
1321 struct loop_info64 info64;
1322
1323 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1324 return -EFAULT;
1325 loop_info64_from_old(&info, &info64);
1326 return loop_set_status(lo, &info64);
1327 }
1328
1329 static int
1330 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1331 {
1332 struct loop_info64 info64;
1333
1334 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1335 return -EFAULT;
1336 return loop_set_status(lo, &info64);
1337 }
1338
1339 static int
1340 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1341 struct loop_info info;
1342 struct loop_info64 info64;
1343 int err = 0;
1344
1345 if (!arg)
1346 err = -EINVAL;
1347 if (!err)
1348 err = loop_get_status(lo, &info64);
1349 if (!err)
1350 err = loop_info64_to_old(&info64, &info);
1351 if (!err && copy_to_user(arg, &info, sizeof(info)))
1352 err = -EFAULT;
1353
1354 return err;
1355 }
1356
1357 static int
1358 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1359 struct loop_info64 info64;
1360 int err = 0;
1361
1362 if (!arg)
1363 err = -EINVAL;
1364 if (!err)
1365 err = loop_get_status(lo, &info64);
1366 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1367 err = -EFAULT;
1368
1369 return err;
1370 }
1371
1372 static int loop_set_capacity(struct loop_device *lo)
1373 {
1374 if (unlikely(lo->lo_state != Lo_bound))
1375 return -ENXIO;
1376
1377 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1378 }
1379
1380 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1381 {
1382 int error = -ENXIO;
1383 if (lo->lo_state != Lo_bound)
1384 goto out;
1385
1386 __loop_update_dio(lo, !!arg);
1387 if (lo->use_dio == !!arg)
1388 return 0;
1389 error = -EINVAL;
1390 out:
1391 return error;
1392 }
1393
1394 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1395 unsigned int cmd, unsigned long arg)
1396 {
1397 struct loop_device *lo = bdev->bd_disk->private_data;
1398 int err;
1399
1400 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1401 switch (cmd) {
1402 case LOOP_SET_FD:
1403 err = loop_set_fd(lo, mode, bdev, arg);
1404 break;
1405 case LOOP_CHANGE_FD:
1406 err = loop_change_fd(lo, bdev, arg);
1407 break;
1408 case LOOP_CLR_FD:
1409 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1410 err = loop_clr_fd(lo);
1411 if (!err)
1412 goto out_unlocked;
1413 break;
1414 case LOOP_SET_STATUS:
1415 err = -EPERM;
1416 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1417 err = loop_set_status_old(lo,
1418 (struct loop_info __user *)arg);
1419 break;
1420 case LOOP_GET_STATUS:
1421 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1422 break;
1423 case LOOP_SET_STATUS64:
1424 err = -EPERM;
1425 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1426 err = loop_set_status64(lo,
1427 (struct loop_info64 __user *) arg);
1428 break;
1429 case LOOP_GET_STATUS64:
1430 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1431 break;
1432 case LOOP_SET_CAPACITY:
1433 err = -EPERM;
1434 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1435 err = loop_set_capacity(lo);
1436 break;
1437 case LOOP_SET_DIRECT_IO:
1438 err = -EPERM;
1439 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1440 err = loop_set_dio(lo, arg);
1441 break;
1442 default:
1443 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1444 }
1445 mutex_unlock(&lo->lo_ctl_mutex);
1446
1447 out_unlocked:
1448 return err;
1449 }
1450
1451 #ifdef CONFIG_COMPAT
1452 struct compat_loop_info {
1453 compat_int_t lo_number; /* ioctl r/o */
1454 compat_dev_t lo_device; /* ioctl r/o */
1455 compat_ulong_t lo_inode; /* ioctl r/o */
1456 compat_dev_t lo_rdevice; /* ioctl r/o */
1457 compat_int_t lo_offset;
1458 compat_int_t lo_encrypt_type;
1459 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1460 compat_int_t lo_flags; /* ioctl r/o */
1461 char lo_name[LO_NAME_SIZE];
1462 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1463 compat_ulong_t lo_init[2];
1464 char reserved[4];
1465 };
1466
1467 /*
1468 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1469 * - noinlined to reduce stack space usage in main part of driver
1470 */
1471 static noinline int
1472 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1473 struct loop_info64 *info64)
1474 {
1475 struct compat_loop_info info;
1476
1477 if (copy_from_user(&info, arg, sizeof(info)))
1478 return -EFAULT;
1479
1480 memset(info64, 0, sizeof(*info64));
1481 info64->lo_number = info.lo_number;
1482 info64->lo_device = info.lo_device;
1483 info64->lo_inode = info.lo_inode;
1484 info64->lo_rdevice = info.lo_rdevice;
1485 info64->lo_offset = info.lo_offset;
1486 info64->lo_sizelimit = 0;
1487 info64->lo_encrypt_type = info.lo_encrypt_type;
1488 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1489 info64->lo_flags = info.lo_flags;
1490 info64->lo_init[0] = info.lo_init[0];
1491 info64->lo_init[1] = info.lo_init[1];
1492 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1493 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1494 else
1495 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1496 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1497 return 0;
1498 }
1499
1500 /*
1501 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1502 * - noinlined to reduce stack space usage in main part of driver
1503 */
1504 static noinline int
1505 loop_info64_to_compat(const struct loop_info64 *info64,
1506 struct compat_loop_info __user *arg)
1507 {
1508 struct compat_loop_info info;
1509
1510 memset(&info, 0, sizeof(info));
1511 info.lo_number = info64->lo_number;
1512 info.lo_device = info64->lo_device;
1513 info.lo_inode = info64->lo_inode;
1514 info.lo_rdevice = info64->lo_rdevice;
1515 info.lo_offset = info64->lo_offset;
1516 info.lo_encrypt_type = info64->lo_encrypt_type;
1517 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1518 info.lo_flags = info64->lo_flags;
1519 info.lo_init[0] = info64->lo_init[0];
1520 info.lo_init[1] = info64->lo_init[1];
1521 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1522 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1523 else
1524 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1525 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1526
1527 /* error in case values were truncated */
1528 if (info.lo_device != info64->lo_device ||
1529 info.lo_rdevice != info64->lo_rdevice ||
1530 info.lo_inode != info64->lo_inode ||
1531 info.lo_offset != info64->lo_offset ||
1532 info.lo_init[0] != info64->lo_init[0] ||
1533 info.lo_init[1] != info64->lo_init[1])
1534 return -EOVERFLOW;
1535
1536 if (copy_to_user(arg, &info, sizeof(info)))
1537 return -EFAULT;
1538 return 0;
1539 }
1540
1541 static int
1542 loop_set_status_compat(struct loop_device *lo,
1543 const struct compat_loop_info __user *arg)
1544 {
1545 struct loop_info64 info64;
1546 int ret;
1547
1548 ret = loop_info64_from_compat(arg, &info64);
1549 if (ret < 0)
1550 return ret;
1551 return loop_set_status(lo, &info64);
1552 }
1553
1554 static int
1555 loop_get_status_compat(struct loop_device *lo,
1556 struct compat_loop_info __user *arg)
1557 {
1558 struct loop_info64 info64;
1559 int err = 0;
1560
1561 if (!arg)
1562 err = -EINVAL;
1563 if (!err)
1564 err = loop_get_status(lo, &info64);
1565 if (!err)
1566 err = loop_info64_to_compat(&info64, arg);
1567 return err;
1568 }
1569
1570 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1571 unsigned int cmd, unsigned long arg)
1572 {
1573 struct loop_device *lo = bdev->bd_disk->private_data;
1574 int err;
1575
1576 switch(cmd) {
1577 case LOOP_SET_STATUS:
1578 mutex_lock(&lo->lo_ctl_mutex);
1579 err = loop_set_status_compat(
1580 lo, (const struct compat_loop_info __user *) arg);
1581 mutex_unlock(&lo->lo_ctl_mutex);
1582 break;
1583 case LOOP_GET_STATUS:
1584 mutex_lock(&lo->lo_ctl_mutex);
1585 err = loop_get_status_compat(
1586 lo, (struct compat_loop_info __user *) arg);
1587 mutex_unlock(&lo->lo_ctl_mutex);
1588 break;
1589 case LOOP_SET_CAPACITY:
1590 case LOOP_CLR_FD:
1591 case LOOP_GET_STATUS64:
1592 case LOOP_SET_STATUS64:
1593 arg = (unsigned long) compat_ptr(arg);
1594 case LOOP_SET_FD:
1595 case LOOP_CHANGE_FD:
1596 err = lo_ioctl(bdev, mode, cmd, arg);
1597 break;
1598 default:
1599 err = -ENOIOCTLCMD;
1600 break;
1601 }
1602 return err;
1603 }
1604 #endif
1605
1606 static int lo_open(struct block_device *bdev, fmode_t mode)
1607 {
1608 struct loop_device *lo;
1609 int err = 0;
1610
1611 mutex_lock(&loop_index_mutex);
1612 lo = bdev->bd_disk->private_data;
1613 if (!lo) {
1614 err = -ENXIO;
1615 goto out;
1616 }
1617
1618 atomic_inc(&lo->lo_refcnt);
1619 out:
1620 mutex_unlock(&loop_index_mutex);
1621 return err;
1622 }
1623
1624 static void __lo_release(struct loop_device *lo)
1625 {
1626 int err;
1627
1628 if (atomic_dec_return(&lo->lo_refcnt))
1629 return;
1630
1631 mutex_lock(&lo->lo_ctl_mutex);
1632 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1633 /*
1634 * In autoclear mode, stop the loop thread
1635 * and remove configuration after last close.
1636 */
1637 err = loop_clr_fd(lo);
1638 if (!err)
1639 return;
1640 } else {
1641 /*
1642 * Otherwise keep thread (if running) and config,
1643 * but flush possible ongoing bios in thread.
1644 */
1645 loop_flush(lo);
1646 }
1647
1648 mutex_unlock(&lo->lo_ctl_mutex);
1649 }
1650
1651 static void lo_release(struct gendisk *disk, fmode_t mode)
1652 {
1653 mutex_lock(&loop_index_mutex);
1654 __lo_release(disk->private_data);
1655 mutex_unlock(&loop_index_mutex);
1656 }
1657
1658 static const struct block_device_operations lo_fops = {
1659 .owner = THIS_MODULE,
1660 .open = lo_open,
1661 .release = lo_release,
1662 .ioctl = lo_ioctl,
1663 #ifdef CONFIG_COMPAT
1664 .compat_ioctl = lo_compat_ioctl,
1665 #endif
1666 };
1667
1668 /*
1669 * And now the modules code and kernel interface.
1670 */
1671 static int max_loop;
1672 module_param(max_loop, int, S_IRUGO);
1673 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1674 module_param(max_part, int, S_IRUGO);
1675 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1676 MODULE_LICENSE("GPL");
1677 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1678
1679 int loop_register_transfer(struct loop_func_table *funcs)
1680 {
1681 unsigned int n = funcs->number;
1682
1683 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1684 return -EINVAL;
1685 xfer_funcs[n] = funcs;
1686 return 0;
1687 }
1688
1689 static int unregister_transfer_cb(int id, void *ptr, void *data)
1690 {
1691 struct loop_device *lo = ptr;
1692 struct loop_func_table *xfer = data;
1693
1694 mutex_lock(&lo->lo_ctl_mutex);
1695 if (lo->lo_encryption == xfer)
1696 loop_release_xfer(lo);
1697 mutex_unlock(&lo->lo_ctl_mutex);
1698 return 0;
1699 }
1700
1701 int loop_unregister_transfer(int number)
1702 {
1703 unsigned int n = number;
1704 struct loop_func_table *xfer;
1705
1706 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1707 return -EINVAL;
1708
1709 xfer_funcs[n] = NULL;
1710 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1711 return 0;
1712 }
1713
1714 EXPORT_SYMBOL(loop_register_transfer);
1715 EXPORT_SYMBOL(loop_unregister_transfer);
1716
1717 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1718 const struct blk_mq_queue_data *bd)
1719 {
1720 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1721 struct loop_device *lo = cmd->rq->q->queuedata;
1722
1723 blk_mq_start_request(bd->rq);
1724
1725 if (lo->lo_state != Lo_bound)
1726 return BLK_STS_IOERR;
1727
1728 switch (req_op(cmd->rq)) {
1729 case REQ_OP_FLUSH:
1730 case REQ_OP_DISCARD:
1731 case REQ_OP_WRITE_ZEROES:
1732 cmd->use_aio = false;
1733 break;
1734 default:
1735 cmd->use_aio = lo->use_dio;
1736 break;
1737 }
1738
1739 kthread_queue_work(&lo->worker, &cmd->work);
1740
1741 return BLK_STS_OK;
1742 }
1743
1744 static void loop_handle_cmd(struct loop_cmd *cmd)
1745 {
1746 const bool write = op_is_write(req_op(cmd->rq));
1747 struct loop_device *lo = cmd->rq->q->queuedata;
1748 int ret = 0;
1749
1750 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1751 ret = -EIO;
1752 goto failed;
1753 }
1754
1755 ret = do_req_filebacked(lo, cmd->rq);
1756 failed:
1757 /* complete non-aio request */
1758 if (!cmd->use_aio || ret) {
1759 cmd->ret = ret ? -EIO : 0;
1760 blk_mq_complete_request(cmd->rq);
1761 }
1762 }
1763
1764 static void loop_queue_work(struct kthread_work *work)
1765 {
1766 struct loop_cmd *cmd =
1767 container_of(work, struct loop_cmd, work);
1768
1769 loop_handle_cmd(cmd);
1770 }
1771
1772 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1773 unsigned int hctx_idx, unsigned int numa_node)
1774 {
1775 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1776
1777 cmd->rq = rq;
1778 kthread_init_work(&cmd->work, loop_queue_work);
1779
1780 return 0;
1781 }
1782
1783 static const struct blk_mq_ops loop_mq_ops = {
1784 .queue_rq = loop_queue_rq,
1785 .init_request = loop_init_request,
1786 .complete = lo_complete_rq,
1787 };
1788
1789 static int loop_add(struct loop_device **l, int i)
1790 {
1791 struct loop_device *lo;
1792 struct gendisk *disk;
1793 int err;
1794
1795 err = -ENOMEM;
1796 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1797 if (!lo)
1798 goto out;
1799
1800 lo->lo_state = Lo_unbound;
1801
1802 /* allocate id, if @id >= 0, we're requesting that specific id */
1803 if (i >= 0) {
1804 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1805 if (err == -ENOSPC)
1806 err = -EEXIST;
1807 } else {
1808 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1809 }
1810 if (err < 0)
1811 goto out_free_dev;
1812 i = err;
1813
1814 err = -ENOMEM;
1815 lo->tag_set.ops = &loop_mq_ops;
1816 lo->tag_set.nr_hw_queues = 1;
1817 lo->tag_set.queue_depth = 128;
1818 lo->tag_set.numa_node = NUMA_NO_NODE;
1819 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1820 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1821 lo->tag_set.driver_data = lo;
1822
1823 err = blk_mq_alloc_tag_set(&lo->tag_set);
1824 if (err)
1825 goto out_free_idr;
1826
1827 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1828 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1829 err = PTR_ERR(lo->lo_queue);
1830 goto out_cleanup_tags;
1831 }
1832 lo->lo_queue->queuedata = lo;
1833
1834 /*
1835 * It doesn't make sense to enable merge because the I/O
1836 * submitted to backing file is handled page by page.
1837 */
1838 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1839
1840 err = -ENOMEM;
1841 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1842 if (!disk)
1843 goto out_free_queue;
1844
1845 /*
1846 * Disable partition scanning by default. The in-kernel partition
1847 * scanning can be requested individually per-device during its
1848 * setup. Userspace can always add and remove partitions from all
1849 * devices. The needed partition minors are allocated from the
1850 * extended minor space, the main loop device numbers will continue
1851 * to match the loop minors, regardless of the number of partitions
1852 * used.
1853 *
1854 * If max_part is given, partition scanning is globally enabled for
1855 * all loop devices. The minors for the main loop devices will be
1856 * multiples of max_part.
1857 *
1858 * Note: Global-for-all-devices, set-only-at-init, read-only module
1859 * parameteters like 'max_loop' and 'max_part' make things needlessly
1860 * complicated, are too static, inflexible and may surprise
1861 * userspace tools. Parameters like this in general should be avoided.
1862 */
1863 if (!part_shift)
1864 disk->flags |= GENHD_FL_NO_PART_SCAN;
1865 disk->flags |= GENHD_FL_EXT_DEVT;
1866 mutex_init(&lo->lo_ctl_mutex);
1867 atomic_set(&lo->lo_refcnt, 0);
1868 lo->lo_number = i;
1869 spin_lock_init(&lo->lo_lock);
1870 disk->major = LOOP_MAJOR;
1871 disk->first_minor = i << part_shift;
1872 disk->fops = &lo_fops;
1873 disk->private_data = lo;
1874 disk->queue = lo->lo_queue;
1875 sprintf(disk->disk_name, "loop%d", i);
1876 add_disk(disk);
1877 *l = lo;
1878 return lo->lo_number;
1879
1880 out_free_queue:
1881 blk_cleanup_queue(lo->lo_queue);
1882 out_cleanup_tags:
1883 blk_mq_free_tag_set(&lo->tag_set);
1884 out_free_idr:
1885 idr_remove(&loop_index_idr, i);
1886 out_free_dev:
1887 kfree(lo);
1888 out:
1889 return err;
1890 }
1891
1892 static void loop_remove(struct loop_device *lo)
1893 {
1894 blk_cleanup_queue(lo->lo_queue);
1895 del_gendisk(lo->lo_disk);
1896 blk_mq_free_tag_set(&lo->tag_set);
1897 put_disk(lo->lo_disk);
1898 kfree(lo);
1899 }
1900
1901 static int find_free_cb(int id, void *ptr, void *data)
1902 {
1903 struct loop_device *lo = ptr;
1904 struct loop_device **l = data;
1905
1906 if (lo->lo_state == Lo_unbound) {
1907 *l = lo;
1908 return 1;
1909 }
1910 return 0;
1911 }
1912
1913 static int loop_lookup(struct loop_device **l, int i)
1914 {
1915 struct loop_device *lo;
1916 int ret = -ENODEV;
1917
1918 if (i < 0) {
1919 int err;
1920
1921 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1922 if (err == 1) {
1923 *l = lo;
1924 ret = lo->lo_number;
1925 }
1926 goto out;
1927 }
1928
1929 /* lookup and return a specific i */
1930 lo = idr_find(&loop_index_idr, i);
1931 if (lo) {
1932 *l = lo;
1933 ret = lo->lo_number;
1934 }
1935 out:
1936 return ret;
1937 }
1938
1939 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1940 {
1941 struct loop_device *lo;
1942 struct kobject *kobj;
1943 int err;
1944
1945 mutex_lock(&loop_index_mutex);
1946 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1947 if (err < 0)
1948 err = loop_add(&lo, MINOR(dev) >> part_shift);
1949 if (err < 0)
1950 kobj = NULL;
1951 else
1952 kobj = get_disk(lo->lo_disk);
1953 mutex_unlock(&loop_index_mutex);
1954
1955 *part = 0;
1956 return kobj;
1957 }
1958
1959 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1960 unsigned long parm)
1961 {
1962 struct loop_device *lo;
1963 int ret = -ENOSYS;
1964
1965 mutex_lock(&loop_index_mutex);
1966 switch (cmd) {
1967 case LOOP_CTL_ADD:
1968 ret = loop_lookup(&lo, parm);
1969 if (ret >= 0) {
1970 ret = -EEXIST;
1971 break;
1972 }
1973 ret = loop_add(&lo, parm);
1974 break;
1975 case LOOP_CTL_REMOVE:
1976 ret = loop_lookup(&lo, parm);
1977 if (ret < 0)
1978 break;
1979 mutex_lock(&lo->lo_ctl_mutex);
1980 if (lo->lo_state != Lo_unbound) {
1981 ret = -EBUSY;
1982 mutex_unlock(&lo->lo_ctl_mutex);
1983 break;
1984 }
1985 if (atomic_read(&lo->lo_refcnt) > 0) {
1986 ret = -EBUSY;
1987 mutex_unlock(&lo->lo_ctl_mutex);
1988 break;
1989 }
1990 lo->lo_disk->private_data = NULL;
1991 mutex_unlock(&lo->lo_ctl_mutex);
1992 idr_remove(&loop_index_idr, lo->lo_number);
1993 loop_remove(lo);
1994 break;
1995 case LOOP_CTL_GET_FREE:
1996 ret = loop_lookup(&lo, -1);
1997 if (ret >= 0)
1998 break;
1999 ret = loop_add(&lo, -1);
2000 }
2001 mutex_unlock(&loop_index_mutex);
2002
2003 return ret;
2004 }
2005
2006 static const struct file_operations loop_ctl_fops = {
2007 .open = nonseekable_open,
2008 .unlocked_ioctl = loop_control_ioctl,
2009 .compat_ioctl = loop_control_ioctl,
2010 .owner = THIS_MODULE,
2011 .llseek = noop_llseek,
2012 };
2013
2014 static struct miscdevice loop_misc = {
2015 .minor = LOOP_CTRL_MINOR,
2016 .name = "loop-control",
2017 .fops = &loop_ctl_fops,
2018 };
2019
2020 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2021 MODULE_ALIAS("devname:loop-control");
2022
2023 static int __init loop_init(void)
2024 {
2025 int i, nr;
2026 unsigned long range;
2027 struct loop_device *lo;
2028 int err;
2029
2030 err = misc_register(&loop_misc);
2031 if (err < 0)
2032 return err;
2033
2034 part_shift = 0;
2035 if (max_part > 0) {
2036 part_shift = fls(max_part);
2037
2038 /*
2039 * Adjust max_part according to part_shift as it is exported
2040 * to user space so that user can decide correct minor number
2041 * if [s]he want to create more devices.
2042 *
2043 * Note that -1 is required because partition 0 is reserved
2044 * for the whole disk.
2045 */
2046 max_part = (1UL << part_shift) - 1;
2047 }
2048
2049 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2050 err = -EINVAL;
2051 goto misc_out;
2052 }
2053
2054 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2055 err = -EINVAL;
2056 goto misc_out;
2057 }
2058
2059 /*
2060 * If max_loop is specified, create that many devices upfront.
2061 * This also becomes a hard limit. If max_loop is not specified,
2062 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2063 * init time. Loop devices can be requested on-demand with the
2064 * /dev/loop-control interface, or be instantiated by accessing
2065 * a 'dead' device node.
2066 */
2067 if (max_loop) {
2068 nr = max_loop;
2069 range = max_loop << part_shift;
2070 } else {
2071 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2072 range = 1UL << MINORBITS;
2073 }
2074
2075 if (register_blkdev(LOOP_MAJOR, "loop")) {
2076 err = -EIO;
2077 goto misc_out;
2078 }
2079
2080 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2081 THIS_MODULE, loop_probe, NULL, NULL);
2082
2083 /* pre-create number of devices given by config or max_loop */
2084 mutex_lock(&loop_index_mutex);
2085 for (i = 0; i < nr; i++)
2086 loop_add(&lo, i);
2087 mutex_unlock(&loop_index_mutex);
2088
2089 printk(KERN_INFO "loop: module loaded\n");
2090 return 0;
2091
2092 misc_out:
2093 misc_deregister(&loop_misc);
2094 return err;
2095 }
2096
2097 static int loop_exit_cb(int id, void *ptr, void *data)
2098 {
2099 struct loop_device *lo = ptr;
2100
2101 loop_remove(lo);
2102 return 0;
2103 }
2104
2105 static void __exit loop_exit(void)
2106 {
2107 unsigned long range;
2108
2109 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2110
2111 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2112 idr_destroy(&loop_index_idr);
2113
2114 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2115 unregister_blkdev(LOOP_MAJOR, "loop");
2116
2117 misc_deregister(&loop_misc);
2118 }
2119
2120 module_init(loop_init);
2121 module_exit(loop_exit);
2122
2123 #ifndef MODULE
2124 static int __init max_loop_setup(char *str)
2125 {
2126 max_loop = simple_strtol(str, NULL, 0);
2127 return 1;
2128 }
2129
2130 __setup("max_loop=", max_loop_setup);
2131 #endif