2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
84 #include <linux/uaccess.h>
86 static DEFINE_IDR(loop_index_idr
);
87 static DEFINE_MUTEX(loop_ctl_mutex
);
90 static int part_shift
;
92 static int transfer_xor(struct loop_device
*lo
, int cmd
,
93 struct page
*raw_page
, unsigned raw_off
,
94 struct page
*loop_page
, unsigned loop_off
,
95 int size
, sector_t real_block
)
97 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
98 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
110 key
= lo
->lo_encrypt_key
;
111 keysize
= lo
->lo_encrypt_key_size
;
112 for (i
= 0; i
< size
; i
++)
113 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
115 kunmap_atomic(loop_buf
);
116 kunmap_atomic(raw_buf
);
121 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
123 if (unlikely(info
->lo_encrypt_key_size
<= 0))
128 static struct loop_func_table none_funcs
= {
129 .number
= LO_CRYPT_NONE
,
132 static struct loop_func_table xor_funcs
= {
133 .number
= LO_CRYPT_XOR
,
134 .transfer
= transfer_xor
,
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
144 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
148 /* Compute loopsize in bytes */
149 loopsize
= i_size_read(file
->f_mapping
->host
);
152 /* offset is beyond i_size, weird but possible */
156 if (sizelimit
> 0 && sizelimit
< loopsize
)
157 loopsize
= sizelimit
;
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
162 return loopsize
>> 9;
165 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
167 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
170 static void __loop_update_dio(struct loop_device
*lo
, bool dio
)
172 struct file
*file
= lo
->lo_backing_file
;
173 struct address_space
*mapping
= file
->f_mapping
;
174 struct inode
*inode
= mapping
->host
;
175 unsigned short sb_bsize
= 0;
176 unsigned dio_align
= 0;
179 if (inode
->i_sb
->s_bdev
) {
180 sb_bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
181 dio_align
= sb_bsize
- 1;
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
195 if (queue_logical_block_size(lo
->lo_queue
) >= sb_bsize
&&
196 !(lo
->lo_offset
& dio_align
) &&
197 mapping
->a_ops
->direct_IO
&&
206 if (lo
->use_dio
== use_dio
)
209 /* flush dirty pages before changing direct IO */
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
217 if (lo
->lo_state
== Lo_bound
)
218 blk_mq_freeze_queue(lo
->lo_queue
);
219 lo
->use_dio
= use_dio
;
221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
222 lo
->lo_flags
|= LO_FLAGS_DIRECT_IO
;
224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
225 lo
->lo_flags
&= ~LO_FLAGS_DIRECT_IO
;
227 if (lo
->lo_state
== Lo_bound
)
228 blk_mq_unfreeze_queue(lo
->lo_queue
);
232 * loop_validate_block_size() - validates the passed in block size
233 * @bsize: size to validate
236 loop_validate_block_size(unsigned short bsize
)
238 if (bsize
< 512 || bsize
> PAGE_SIZE
|| !is_power_of_2(bsize
))
245 * loop_set_size() - sets device size and notifies userspace
246 * @lo: struct loop_device to set the size for
247 * @size: new size of the loop device
249 * Callers must validate that the size passed into this function fits into
250 * a sector_t, eg using loop_validate_size()
252 static void loop_set_size(struct loop_device
*lo
, loff_t size
)
254 struct block_device
*bdev
= lo
->lo_device
;
256 bd_set_nr_sectors(bdev
, size
);
258 set_capacity_revalidate_and_notify(lo
->lo_disk
, size
, false);
262 lo_do_transfer(struct loop_device
*lo
, int cmd
,
263 struct page
*rpage
, unsigned roffs
,
264 struct page
*lpage
, unsigned loffs
,
265 int size
, sector_t rblock
)
269 ret
= lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
273 printk_ratelimited(KERN_ERR
274 "loop: Transfer error at byte offset %llu, length %i.\n",
275 (unsigned long long)rblock
<< 9, size
);
279 static int lo_write_bvec(struct file
*file
, struct bio_vec
*bvec
, loff_t
*ppos
)
284 iov_iter_bvec(&i
, WRITE
, bvec
, 1, bvec
->bv_len
);
286 file_start_write(file
);
287 bw
= vfs_iter_write(file
, &i
, ppos
, 0);
288 file_end_write(file
);
290 if (likely(bw
== bvec
->bv_len
))
293 printk_ratelimited(KERN_ERR
294 "loop: Write error at byte offset %llu, length %i.\n",
295 (unsigned long long)*ppos
, bvec
->bv_len
);
301 static int lo_write_simple(struct loop_device
*lo
, struct request
*rq
,
305 struct req_iterator iter
;
308 rq_for_each_segment(bvec
, rq
, iter
) {
309 ret
= lo_write_bvec(lo
->lo_backing_file
, &bvec
, &pos
);
319 * This is the slow, transforming version that needs to double buffer the
320 * data as it cannot do the transformations in place without having direct
321 * access to the destination pages of the backing file.
323 static int lo_write_transfer(struct loop_device
*lo
, struct request
*rq
,
326 struct bio_vec bvec
, b
;
327 struct req_iterator iter
;
331 page
= alloc_page(GFP_NOIO
);
335 rq_for_each_segment(bvec
, rq
, iter
) {
336 ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
.bv_page
,
337 bvec
.bv_offset
, bvec
.bv_len
, pos
>> 9);
343 b
.bv_len
= bvec
.bv_len
;
344 ret
= lo_write_bvec(lo
->lo_backing_file
, &b
, &pos
);
353 static int lo_read_simple(struct loop_device
*lo
, struct request
*rq
,
357 struct req_iterator iter
;
361 rq_for_each_segment(bvec
, rq
, iter
) {
362 iov_iter_bvec(&i
, READ
, &bvec
, 1, bvec
.bv_len
);
363 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
367 flush_dcache_page(bvec
.bv_page
);
369 if (len
!= bvec
.bv_len
) {
372 __rq_for_each_bio(bio
, rq
)
382 static int lo_read_transfer(struct loop_device
*lo
, struct request
*rq
,
385 struct bio_vec bvec
, b
;
386 struct req_iterator iter
;
392 page
= alloc_page(GFP_NOIO
);
396 rq_for_each_segment(bvec
, rq
, iter
) {
401 b
.bv_len
= bvec
.bv_len
;
403 iov_iter_bvec(&i
, READ
, &b
, 1, b
.bv_len
);
404 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
410 ret
= lo_do_transfer(lo
, READ
, page
, 0, bvec
.bv_page
,
411 bvec
.bv_offset
, len
, offset
>> 9);
415 flush_dcache_page(bvec
.bv_page
);
417 if (len
!= bvec
.bv_len
) {
420 __rq_for_each_bio(bio
, rq
)
432 static int lo_fallocate(struct loop_device
*lo
, struct request
*rq
, loff_t pos
,
436 * We use fallocate to manipulate the space mappings used by the image
437 * a.k.a. discard/zerorange. However we do not support this if
438 * encryption is enabled, because it may give an attacker useful
441 struct file
*file
= lo
->lo_backing_file
;
442 struct request_queue
*q
= lo
->lo_queue
;
445 mode
|= FALLOC_FL_KEEP_SIZE
;
447 if (!blk_queue_discard(q
)) {
452 ret
= file
->f_op
->fallocate(file
, mode
, pos
, blk_rq_bytes(rq
));
453 if (unlikely(ret
&& ret
!= -EINVAL
&& ret
!= -EOPNOTSUPP
))
459 static int lo_req_flush(struct loop_device
*lo
, struct request
*rq
)
461 struct file
*file
= lo
->lo_backing_file
;
462 int ret
= vfs_fsync(file
, 0);
463 if (unlikely(ret
&& ret
!= -EINVAL
))
469 static void lo_complete_rq(struct request
*rq
)
471 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
472 blk_status_t ret
= BLK_STS_OK
;
474 if (!cmd
->use_aio
|| cmd
->ret
< 0 || cmd
->ret
== blk_rq_bytes(rq
) ||
475 req_op(rq
) != REQ_OP_READ
) {
477 ret
= errno_to_blk_status(cmd
->ret
);
482 * Short READ - if we got some data, advance our request and
483 * retry it. If we got no data, end the rest with EIO.
486 blk_update_request(rq
, BLK_STS_OK
, cmd
->ret
);
488 blk_mq_requeue_request(rq
, true);
491 struct bio
*bio
= rq
->bio
;
500 blk_mq_end_request(rq
, ret
);
504 static void lo_rw_aio_do_completion(struct loop_cmd
*cmd
)
506 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
508 if (!atomic_dec_and_test(&cmd
->ref
))
512 if (likely(!blk_should_fake_timeout(rq
->q
)))
513 blk_mq_complete_request(rq
);
516 static void lo_rw_aio_complete(struct kiocb
*iocb
, long ret
, long ret2
)
518 struct loop_cmd
*cmd
= container_of(iocb
, struct loop_cmd
, iocb
);
523 lo_rw_aio_do_completion(cmd
);
526 static int lo_rw_aio(struct loop_device
*lo
, struct loop_cmd
*cmd
,
529 struct iov_iter iter
;
530 struct req_iterator rq_iter
;
531 struct bio_vec
*bvec
;
532 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
533 struct bio
*bio
= rq
->bio
;
534 struct file
*file
= lo
->lo_backing_file
;
540 rq_for_each_bvec(tmp
, rq
, rq_iter
)
543 if (rq
->bio
!= rq
->biotail
) {
545 bvec
= kmalloc_array(nr_bvec
, sizeof(struct bio_vec
),
552 * The bios of the request may be started from the middle of
553 * the 'bvec' because of bio splitting, so we can't directly
554 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
555 * API will take care of all details for us.
557 rq_for_each_bvec(tmp
, rq
, rq_iter
) {
565 * Same here, this bio may be started from the middle of the
566 * 'bvec' because of bio splitting, so offset from the bvec
567 * must be passed to iov iterator
569 offset
= bio
->bi_iter
.bi_bvec_done
;
570 bvec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
572 atomic_set(&cmd
->ref
, 2);
574 iov_iter_bvec(&iter
, rw
, bvec
, nr_bvec
, blk_rq_bytes(rq
));
575 iter
.iov_offset
= offset
;
577 cmd
->iocb
.ki_pos
= pos
;
578 cmd
->iocb
.ki_filp
= file
;
579 cmd
->iocb
.ki_complete
= lo_rw_aio_complete
;
580 cmd
->iocb
.ki_flags
= IOCB_DIRECT
;
581 cmd
->iocb
.ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
583 kthread_associate_blkcg(cmd
->css
);
586 ret
= call_write_iter(file
, &cmd
->iocb
, &iter
);
588 ret
= call_read_iter(file
, &cmd
->iocb
, &iter
);
590 lo_rw_aio_do_completion(cmd
);
591 kthread_associate_blkcg(NULL
);
593 if (ret
!= -EIOCBQUEUED
)
594 cmd
->iocb
.ki_complete(&cmd
->iocb
, ret
, 0);
598 static int do_req_filebacked(struct loop_device
*lo
, struct request
*rq
)
600 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
601 loff_t pos
= ((loff_t
) blk_rq_pos(rq
) << 9) + lo
->lo_offset
;
604 * lo_write_simple and lo_read_simple should have been covered
605 * by io submit style function like lo_rw_aio(), one blocker
606 * is that lo_read_simple() need to call flush_dcache_page after
607 * the page is written from kernel, and it isn't easy to handle
608 * this in io submit style function which submits all segments
609 * of the req at one time. And direct read IO doesn't need to
610 * run flush_dcache_page().
612 switch (req_op(rq
)) {
614 return lo_req_flush(lo
, rq
);
615 case REQ_OP_WRITE_ZEROES
:
617 * If the caller doesn't want deallocation, call zeroout to
618 * write zeroes the range. Otherwise, punch them out.
620 return lo_fallocate(lo
, rq
, pos
,
621 (rq
->cmd_flags
& REQ_NOUNMAP
) ?
622 FALLOC_FL_ZERO_RANGE
:
623 FALLOC_FL_PUNCH_HOLE
);
625 return lo_fallocate(lo
, rq
, pos
, FALLOC_FL_PUNCH_HOLE
);
628 return lo_write_transfer(lo
, rq
, pos
);
629 else if (cmd
->use_aio
)
630 return lo_rw_aio(lo
, cmd
, pos
, WRITE
);
632 return lo_write_simple(lo
, rq
, pos
);
635 return lo_read_transfer(lo
, rq
, pos
);
636 else if (cmd
->use_aio
)
637 return lo_rw_aio(lo
, cmd
, pos
, READ
);
639 return lo_read_simple(lo
, rq
, pos
);
646 static inline void loop_update_dio(struct loop_device
*lo
)
648 __loop_update_dio(lo
, (lo
->lo_backing_file
->f_flags
& O_DIRECT
) |
652 static void loop_reread_partitions(struct loop_device
*lo
,
653 struct block_device
*bdev
)
657 mutex_lock(&bdev
->bd_mutex
);
658 rc
= bdev_disk_changed(bdev
, false);
659 mutex_unlock(&bdev
->bd_mutex
);
661 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
662 __func__
, lo
->lo_number
, lo
->lo_file_name
, rc
);
665 static inline int is_loop_device(struct file
*file
)
667 struct inode
*i
= file
->f_mapping
->host
;
669 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
672 static int loop_validate_file(struct file
*file
, struct block_device
*bdev
)
674 struct inode
*inode
= file
->f_mapping
->host
;
675 struct file
*f
= file
;
677 /* Avoid recursion */
678 while (is_loop_device(f
)) {
679 struct loop_device
*l
;
681 if (f
->f_mapping
->host
->i_bdev
== bdev
)
684 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
685 if (l
->lo_state
!= Lo_bound
) {
688 f
= l
->lo_backing_file
;
690 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
696 * loop_change_fd switched the backing store of a loopback device to
697 * a new file. This is useful for operating system installers to free up
698 * the original file and in High Availability environments to switch to
699 * an alternative location for the content in case of server meltdown.
700 * This can only work if the loop device is used read-only, and if the
701 * new backing store is the same size and type as the old backing store.
703 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
706 struct file
*file
= NULL
, *old_file
;
710 error
= mutex_lock_killable(&loop_ctl_mutex
);
714 if (lo
->lo_state
!= Lo_bound
)
717 /* the loop device has to be read-only */
719 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
727 error
= loop_validate_file(file
, bdev
);
731 old_file
= lo
->lo_backing_file
;
735 /* size of the new backing store needs to be the same */
736 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
740 blk_mq_freeze_queue(lo
->lo_queue
);
741 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
742 lo
->lo_backing_file
= file
;
743 lo
->old_gfp_mask
= mapping_gfp_mask(file
->f_mapping
);
744 mapping_set_gfp_mask(file
->f_mapping
,
745 lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
747 blk_mq_unfreeze_queue(lo
->lo_queue
);
748 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
749 mutex_unlock(&loop_ctl_mutex
);
751 * We must drop file reference outside of loop_ctl_mutex as dropping
752 * the file ref can take bd_mutex which creates circular locking
757 loop_reread_partitions(lo
, bdev
);
761 mutex_unlock(&loop_ctl_mutex
);
767 /* loop sysfs attributes */
769 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
770 ssize_t (*callback
)(struct loop_device
*, char *))
772 struct gendisk
*disk
= dev_to_disk(dev
);
773 struct loop_device
*lo
= disk
->private_data
;
775 return callback(lo
, page
);
778 #define LOOP_ATTR_RO(_name) \
779 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
780 static ssize_t loop_attr_do_show_##_name(struct device *d, \
781 struct device_attribute *attr, char *b) \
783 return loop_attr_show(d, b, loop_attr_##_name##_show); \
785 static struct device_attribute loop_attr_##_name = \
786 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
788 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
793 spin_lock_irq(&lo
->lo_lock
);
794 if (lo
->lo_backing_file
)
795 p
= file_path(lo
->lo_backing_file
, buf
, PAGE_SIZE
- 1);
796 spin_unlock_irq(&lo
->lo_lock
);
798 if (IS_ERR_OR_NULL(p
))
802 memmove(buf
, p
, ret
);
810 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
812 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
815 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
817 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
820 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
822 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
824 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
827 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
829 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
831 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
834 static ssize_t
loop_attr_dio_show(struct loop_device
*lo
, char *buf
)
836 int dio
= (lo
->lo_flags
& LO_FLAGS_DIRECT_IO
);
838 return sprintf(buf
, "%s\n", dio
? "1" : "0");
841 LOOP_ATTR_RO(backing_file
);
842 LOOP_ATTR_RO(offset
);
843 LOOP_ATTR_RO(sizelimit
);
844 LOOP_ATTR_RO(autoclear
);
845 LOOP_ATTR_RO(partscan
);
848 static struct attribute
*loop_attrs
[] = {
849 &loop_attr_backing_file
.attr
,
850 &loop_attr_offset
.attr
,
851 &loop_attr_sizelimit
.attr
,
852 &loop_attr_autoclear
.attr
,
853 &loop_attr_partscan
.attr
,
858 static struct attribute_group loop_attribute_group
= {
863 static void loop_sysfs_init(struct loop_device
*lo
)
865 lo
->sysfs_inited
= !sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
866 &loop_attribute_group
);
869 static void loop_sysfs_exit(struct loop_device
*lo
)
871 if (lo
->sysfs_inited
)
872 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
873 &loop_attribute_group
);
876 static void loop_config_discard(struct loop_device
*lo
)
878 struct file
*file
= lo
->lo_backing_file
;
879 struct inode
*inode
= file
->f_mapping
->host
;
880 struct request_queue
*q
= lo
->lo_queue
;
881 u32 granularity
, max_discard_sectors
;
884 * If the backing device is a block device, mirror its zeroing
885 * capability. Set the discard sectors to the block device's zeroing
886 * capabilities because loop discards result in blkdev_issue_zeroout(),
887 * not blkdev_issue_discard(). This maintains consistent behavior with
888 * file-backed loop devices: discarded regions read back as zero.
890 if (S_ISBLK(inode
->i_mode
) && !lo
->lo_encrypt_key_size
) {
891 struct request_queue
*backingq
;
893 backingq
= bdev_get_queue(inode
->i_bdev
);
895 max_discard_sectors
= backingq
->limits
.max_write_zeroes_sectors
;
896 granularity
= backingq
->limits
.discard_granularity
?:
897 queue_physical_block_size(backingq
);
900 * We use punch hole to reclaim the free space used by the
901 * image a.k.a. discard. However we do not support discard if
902 * encryption is enabled, because it may give an attacker
903 * useful information.
905 } else if (!file
->f_op
->fallocate
|| lo
->lo_encrypt_key_size
) {
906 max_discard_sectors
= 0;
910 max_discard_sectors
= UINT_MAX
>> 9;
911 granularity
= inode
->i_sb
->s_blocksize
;
914 if (max_discard_sectors
) {
915 q
->limits
.discard_granularity
= granularity
;
916 blk_queue_max_discard_sectors(q
, max_discard_sectors
);
917 blk_queue_max_write_zeroes_sectors(q
, max_discard_sectors
);
918 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, q
);
920 q
->limits
.discard_granularity
= 0;
921 blk_queue_max_discard_sectors(q
, 0);
922 blk_queue_max_write_zeroes_sectors(q
, 0);
923 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, q
);
925 q
->limits
.discard_alignment
= 0;
928 static void loop_unprepare_queue(struct loop_device
*lo
)
930 kthread_flush_worker(&lo
->worker
);
931 kthread_stop(lo
->worker_task
);
934 static int loop_kthread_worker_fn(void *worker_ptr
)
936 current
->flags
|= PF_LOCAL_THROTTLE
| PF_MEMALLOC_NOIO
;
937 return kthread_worker_fn(worker_ptr
);
940 static int loop_prepare_queue(struct loop_device
*lo
)
942 kthread_init_worker(&lo
->worker
);
943 lo
->worker_task
= kthread_run(loop_kthread_worker_fn
,
944 &lo
->worker
, "loop%d", lo
->lo_number
);
945 if (IS_ERR(lo
->worker_task
))
947 set_user_nice(lo
->worker_task
, MIN_NICE
);
951 static void loop_update_rotational(struct loop_device
*lo
)
953 struct file
*file
= lo
->lo_backing_file
;
954 struct inode
*file_inode
= file
->f_mapping
->host
;
955 struct block_device
*file_bdev
= file_inode
->i_sb
->s_bdev
;
956 struct request_queue
*q
= lo
->lo_queue
;
959 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
961 nonrot
= blk_queue_nonrot(bdev_get_queue(file_bdev
));
964 blk_queue_flag_set(QUEUE_FLAG_NONROT
, q
);
966 blk_queue_flag_clear(QUEUE_FLAG_NONROT
, q
);
970 loop_release_xfer(struct loop_device
*lo
)
973 struct loop_func_table
*xfer
= lo
->lo_encryption
;
977 err
= xfer
->release(lo
);
979 lo
->lo_encryption
= NULL
;
980 module_put(xfer
->owner
);
986 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
987 const struct loop_info64
*i
)
992 struct module
*owner
= xfer
->owner
;
994 if (!try_module_get(owner
))
997 err
= xfer
->init(lo
, i
);
1001 lo
->lo_encryption
= xfer
;
1007 * loop_set_status_from_info - configure device from loop_info
1008 * @lo: struct loop_device to configure
1009 * @info: struct loop_info64 to configure the device with
1011 * Configures the loop device parameters according to the passed
1012 * in loop_info64 configuration.
1015 loop_set_status_from_info(struct loop_device
*lo
,
1016 const struct loop_info64
*info
)
1019 struct loop_func_table
*xfer
;
1020 kuid_t uid
= current_uid();
1022 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1025 err
= loop_release_xfer(lo
);
1029 if (info
->lo_encrypt_type
) {
1030 unsigned int type
= info
->lo_encrypt_type
;
1032 if (type
>= MAX_LO_CRYPT
)
1034 xfer
= xfer_funcs
[type
];
1040 err
= loop_init_xfer(lo
, xfer
, info
);
1044 lo
->lo_offset
= info
->lo_offset
;
1045 lo
->lo_sizelimit
= info
->lo_sizelimit
;
1046 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1047 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1048 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1049 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1053 lo
->transfer
= xfer
->transfer
;
1054 lo
->ioctl
= xfer
->ioctl
;
1056 lo
->lo_flags
= info
->lo_flags
;
1058 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1059 lo
->lo_init
[0] = info
->lo_init
[0];
1060 lo
->lo_init
[1] = info
->lo_init
[1];
1061 if (info
->lo_encrypt_key_size
) {
1062 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1063 info
->lo_encrypt_key_size
);
1064 lo
->lo_key_owner
= uid
;
1070 static int loop_configure(struct loop_device
*lo
, fmode_t mode
,
1071 struct block_device
*bdev
,
1072 const struct loop_config
*config
)
1075 struct inode
*inode
;
1076 struct address_space
*mapping
;
1077 struct block_device
*claimed_bdev
= NULL
;
1081 unsigned short bsize
;
1083 /* This is safe, since we have a reference from open(). */
1084 __module_get(THIS_MODULE
);
1087 file
= fget(config
->fd
);
1092 * If we don't hold exclusive handle for the device, upgrade to it
1093 * here to avoid changing device under exclusive owner.
1095 if (!(mode
& FMODE_EXCL
)) {
1096 claimed_bdev
= bdev
->bd_contains
;
1097 error
= bd_prepare_to_claim(bdev
, claimed_bdev
, loop_configure
);
1102 error
= mutex_lock_killable(&loop_ctl_mutex
);
1107 if (lo
->lo_state
!= Lo_unbound
)
1110 error
= loop_validate_file(file
, bdev
);
1114 mapping
= file
->f_mapping
;
1115 inode
= mapping
->host
;
1117 if ((config
->info
.lo_flags
& ~LOOP_CONFIGURE_SETTABLE_FLAGS
) != 0) {
1122 if (config
->block_size
) {
1123 error
= loop_validate_block_size(config
->block_size
);
1128 error
= loop_set_status_from_info(lo
, &config
->info
);
1132 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
1133 !file
->f_op
->write_iter
)
1134 lo
->lo_flags
|= LO_FLAGS_READ_ONLY
;
1136 error
= loop_prepare_queue(lo
);
1140 set_device_ro(bdev
, (lo
->lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
1142 lo
->use_dio
= lo
->lo_flags
& LO_FLAGS_DIRECT_IO
;
1143 lo
->lo_device
= bdev
;
1144 lo
->lo_backing_file
= file
;
1145 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
1146 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
1148 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
1149 blk_queue_write_cache(lo
->lo_queue
, true, false);
1151 if (config
->block_size
)
1152 bsize
= config
->block_size
;
1153 else if ((lo
->lo_backing_file
->f_flags
& O_DIRECT
) && inode
->i_sb
->s_bdev
)
1154 /* In case of direct I/O, match underlying block size */
1155 bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
1159 blk_queue_logical_block_size(lo
->lo_queue
, bsize
);
1160 blk_queue_physical_block_size(lo
->lo_queue
, bsize
);
1161 blk_queue_io_min(lo
->lo_queue
, bsize
);
1163 loop_update_rotational(lo
);
1164 loop_update_dio(lo
);
1165 loop_sysfs_init(lo
);
1167 size
= get_loop_size(lo
, file
);
1168 loop_set_size(lo
, size
);
1170 set_blocksize(bdev
, S_ISBLK(inode
->i_mode
) ?
1171 block_size(inode
->i_bdev
) : PAGE_SIZE
);
1173 lo
->lo_state
= Lo_bound
;
1175 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1176 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
1178 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1180 /* Grab the block_device to prevent its destruction after we
1181 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1184 mutex_unlock(&loop_ctl_mutex
);
1186 loop_reread_partitions(lo
, bdev
);
1188 bd_abort_claiming(bdev
, claimed_bdev
, loop_configure
);
1192 mutex_unlock(&loop_ctl_mutex
);
1195 bd_abort_claiming(bdev
, claimed_bdev
, loop_configure
);
1199 /* This is safe: open() is still holding a reference. */
1200 module_put(THIS_MODULE
);
1204 static int __loop_clr_fd(struct loop_device
*lo
, bool release
)
1206 struct file
*filp
= NULL
;
1207 gfp_t gfp
= lo
->old_gfp_mask
;
1208 struct block_device
*bdev
= lo
->lo_device
;
1210 bool partscan
= false;
1213 mutex_lock(&loop_ctl_mutex
);
1214 if (WARN_ON_ONCE(lo
->lo_state
!= Lo_rundown
)) {
1219 filp
= lo
->lo_backing_file
;
1225 /* freeze request queue during the transition */
1226 blk_mq_freeze_queue(lo
->lo_queue
);
1228 spin_lock_irq(&lo
->lo_lock
);
1229 lo
->lo_backing_file
= NULL
;
1230 spin_unlock_irq(&lo
->lo_lock
);
1232 loop_release_xfer(lo
);
1233 lo
->transfer
= NULL
;
1235 lo
->lo_device
= NULL
;
1236 lo
->lo_encryption
= NULL
;
1238 lo
->lo_sizelimit
= 0;
1239 lo
->lo_encrypt_key_size
= 0;
1240 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1241 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1242 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1243 blk_queue_logical_block_size(lo
->lo_queue
, 512);
1244 blk_queue_physical_block_size(lo
->lo_queue
, 512);
1245 blk_queue_io_min(lo
->lo_queue
, 512);
1248 invalidate_bdev(bdev
);
1249 bdev
->bd_inode
->i_mapping
->wb_err
= 0;
1251 set_capacity(lo
->lo_disk
, 0);
1252 loop_sysfs_exit(lo
);
1254 bd_set_nr_sectors(bdev
, 0);
1255 /* let user-space know about this change */
1256 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1258 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1259 /* This is safe: open() is still holding a reference. */
1260 module_put(THIS_MODULE
);
1261 blk_mq_unfreeze_queue(lo
->lo_queue
);
1263 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
;
1264 lo_number
= lo
->lo_number
;
1265 loop_unprepare_queue(lo
);
1267 mutex_unlock(&loop_ctl_mutex
);
1270 * bd_mutex has been held already in release path, so don't
1271 * acquire it if this function is called in such case.
1273 * If the reread partition isn't from release path, lo_refcnt
1274 * must be at least one and it can only become zero when the
1275 * current holder is released.
1278 mutex_lock(&bdev
->bd_mutex
);
1279 err
= bdev_disk_changed(bdev
, false);
1281 mutex_unlock(&bdev
->bd_mutex
);
1283 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1284 __func__
, lo_number
, err
);
1285 /* Device is gone, no point in returning error */
1290 * lo->lo_state is set to Lo_unbound here after above partscan has
1293 * There cannot be anybody else entering __loop_clr_fd() as
1294 * lo->lo_backing_file is already cleared and Lo_rundown state
1295 * protects us from all the other places trying to change the 'lo'
1298 mutex_lock(&loop_ctl_mutex
);
1301 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1302 lo
->lo_state
= Lo_unbound
;
1303 mutex_unlock(&loop_ctl_mutex
);
1306 * Need not hold loop_ctl_mutex to fput backing file.
1307 * Calling fput holding loop_ctl_mutex triggers a circular
1308 * lock dependency possibility warning as fput can take
1309 * bd_mutex which is usually taken before loop_ctl_mutex.
1316 static int loop_clr_fd(struct loop_device
*lo
)
1320 err
= mutex_lock_killable(&loop_ctl_mutex
);
1323 if (lo
->lo_state
!= Lo_bound
) {
1324 mutex_unlock(&loop_ctl_mutex
);
1328 * If we've explicitly asked to tear down the loop device,
1329 * and it has an elevated reference count, set it for auto-teardown when
1330 * the last reference goes away. This stops $!~#$@ udev from
1331 * preventing teardown because it decided that it needs to run blkid on
1332 * the loopback device whenever they appear. xfstests is notorious for
1333 * failing tests because blkid via udev races with a losetup
1334 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1335 * command to fail with EBUSY.
1337 if (atomic_read(&lo
->lo_refcnt
) > 1) {
1338 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1339 mutex_unlock(&loop_ctl_mutex
);
1342 lo
->lo_state
= Lo_rundown
;
1343 mutex_unlock(&loop_ctl_mutex
);
1345 return __loop_clr_fd(lo
, false);
1349 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1352 struct block_device
*bdev
;
1353 kuid_t uid
= current_uid();
1355 bool partscan
= false;
1356 bool size_changed
= false;
1358 err
= mutex_lock_killable(&loop_ctl_mutex
);
1361 if (lo
->lo_encrypt_key_size
&&
1362 !uid_eq(lo
->lo_key_owner
, uid
) &&
1363 !capable(CAP_SYS_ADMIN
)) {
1367 if (lo
->lo_state
!= Lo_bound
) {
1372 if (lo
->lo_offset
!= info
->lo_offset
||
1373 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1374 size_changed
= true;
1375 sync_blockdev(lo
->lo_device
);
1376 invalidate_bdev(lo
->lo_device
);
1379 /* I/O need to be drained during transfer transition */
1380 blk_mq_freeze_queue(lo
->lo_queue
);
1382 if (size_changed
&& lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1383 /* If any pages were dirtied after invalidate_bdev(), try again */
1385 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1386 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1387 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1391 prev_lo_flags
= lo
->lo_flags
;
1393 err
= loop_set_status_from_info(lo
, info
);
1397 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1398 lo
->lo_flags
&= LOOP_SET_STATUS_SETTABLE_FLAGS
;
1399 /* For those flags, use the previous values instead */
1400 lo
->lo_flags
|= prev_lo_flags
& ~LOOP_SET_STATUS_SETTABLE_FLAGS
;
1401 /* For flags that can't be cleared, use previous values too */
1402 lo
->lo_flags
|= prev_lo_flags
& ~LOOP_SET_STATUS_CLEARABLE_FLAGS
;
1405 loff_t new_size
= get_size(lo
->lo_offset
, lo
->lo_sizelimit
,
1406 lo
->lo_backing_file
);
1407 loop_set_size(lo
, new_size
);
1410 loop_config_discard(lo
);
1412 /* update dio if lo_offset or transfer is changed */
1413 __loop_update_dio(lo
, lo
->use_dio
);
1416 blk_mq_unfreeze_queue(lo
->lo_queue
);
1418 if (!err
&& (lo
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1419 !(prev_lo_flags
& LO_FLAGS_PARTSCAN
)) {
1420 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1421 bdev
= lo
->lo_device
;
1425 mutex_unlock(&loop_ctl_mutex
);
1427 loop_reread_partitions(lo
, bdev
);
1433 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1439 ret
= mutex_lock_killable(&loop_ctl_mutex
);
1442 if (lo
->lo_state
!= Lo_bound
) {
1443 mutex_unlock(&loop_ctl_mutex
);
1447 memset(info
, 0, sizeof(*info
));
1448 info
->lo_number
= lo
->lo_number
;
1449 info
->lo_offset
= lo
->lo_offset
;
1450 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1451 info
->lo_flags
= lo
->lo_flags
;
1452 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1453 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1454 info
->lo_encrypt_type
=
1455 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1456 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1457 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1458 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1459 lo
->lo_encrypt_key_size
);
1462 /* Drop loop_ctl_mutex while we call into the filesystem. */
1463 path
= lo
->lo_backing_file
->f_path
;
1465 mutex_unlock(&loop_ctl_mutex
);
1466 ret
= vfs_getattr(&path
, &stat
, STATX_INO
, AT_STATX_SYNC_AS_STAT
);
1468 info
->lo_device
= huge_encode_dev(stat
.dev
);
1469 info
->lo_inode
= stat
.ino
;
1470 info
->lo_rdevice
= huge_encode_dev(stat
.rdev
);
1477 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1479 memset(info64
, 0, sizeof(*info64
));
1480 info64
->lo_number
= info
->lo_number
;
1481 info64
->lo_device
= info
->lo_device
;
1482 info64
->lo_inode
= info
->lo_inode
;
1483 info64
->lo_rdevice
= info
->lo_rdevice
;
1484 info64
->lo_offset
= info
->lo_offset
;
1485 info64
->lo_sizelimit
= 0;
1486 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1487 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1488 info64
->lo_flags
= info
->lo_flags
;
1489 info64
->lo_init
[0] = info
->lo_init
[0];
1490 info64
->lo_init
[1] = info
->lo_init
[1];
1491 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1492 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1494 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1495 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1499 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1501 memset(info
, 0, sizeof(*info
));
1502 info
->lo_number
= info64
->lo_number
;
1503 info
->lo_device
= info64
->lo_device
;
1504 info
->lo_inode
= info64
->lo_inode
;
1505 info
->lo_rdevice
= info64
->lo_rdevice
;
1506 info
->lo_offset
= info64
->lo_offset
;
1507 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1508 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1509 info
->lo_flags
= info64
->lo_flags
;
1510 info
->lo_init
[0] = info64
->lo_init
[0];
1511 info
->lo_init
[1] = info64
->lo_init
[1];
1512 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1513 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1515 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1516 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1518 /* error in case values were truncated */
1519 if (info
->lo_device
!= info64
->lo_device
||
1520 info
->lo_rdevice
!= info64
->lo_rdevice
||
1521 info
->lo_inode
!= info64
->lo_inode
||
1522 info
->lo_offset
!= info64
->lo_offset
)
1529 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1531 struct loop_info info
;
1532 struct loop_info64 info64
;
1534 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1536 loop_info64_from_old(&info
, &info64
);
1537 return loop_set_status(lo
, &info64
);
1541 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1543 struct loop_info64 info64
;
1545 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1547 return loop_set_status(lo
, &info64
);
1551 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1552 struct loop_info info
;
1553 struct loop_info64 info64
;
1558 err
= loop_get_status(lo
, &info64
);
1560 err
= loop_info64_to_old(&info64
, &info
);
1561 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1568 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1569 struct loop_info64 info64
;
1574 err
= loop_get_status(lo
, &info64
);
1575 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1581 static int loop_set_capacity(struct loop_device
*lo
)
1585 if (unlikely(lo
->lo_state
!= Lo_bound
))
1588 size
= get_loop_size(lo
, lo
->lo_backing_file
);
1589 loop_set_size(lo
, size
);
1594 static int loop_set_dio(struct loop_device
*lo
, unsigned long arg
)
1597 if (lo
->lo_state
!= Lo_bound
)
1600 __loop_update_dio(lo
, !!arg
);
1601 if (lo
->use_dio
== !!arg
)
1608 static int loop_set_block_size(struct loop_device
*lo
, unsigned long arg
)
1612 if (lo
->lo_state
!= Lo_bound
)
1615 err
= loop_validate_block_size(arg
);
1619 if (lo
->lo_queue
->limits
.logical_block_size
== arg
)
1622 sync_blockdev(lo
->lo_device
);
1623 invalidate_bdev(lo
->lo_device
);
1625 blk_mq_freeze_queue(lo
->lo_queue
);
1627 /* invalidate_bdev should have truncated all the pages */
1628 if (lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1630 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1631 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1632 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1636 blk_queue_logical_block_size(lo
->lo_queue
, arg
);
1637 blk_queue_physical_block_size(lo
->lo_queue
, arg
);
1638 blk_queue_io_min(lo
->lo_queue
, arg
);
1639 loop_update_dio(lo
);
1641 blk_mq_unfreeze_queue(lo
->lo_queue
);
1646 static int lo_simple_ioctl(struct loop_device
*lo
, unsigned int cmd
,
1651 err
= mutex_lock_killable(&loop_ctl_mutex
);
1655 case LOOP_SET_CAPACITY
:
1656 err
= loop_set_capacity(lo
);
1658 case LOOP_SET_DIRECT_IO
:
1659 err
= loop_set_dio(lo
, arg
);
1661 case LOOP_SET_BLOCK_SIZE
:
1662 err
= loop_set_block_size(lo
, arg
);
1665 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1667 mutex_unlock(&loop_ctl_mutex
);
1671 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1672 unsigned int cmd
, unsigned long arg
)
1674 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1675 void __user
*argp
= (void __user
*) arg
;
1681 * Legacy case - pass in a zeroed out struct loop_config with
1682 * only the file descriptor set , which corresponds with the
1683 * default parameters we'd have used otherwise.
1685 struct loop_config config
;
1687 memset(&config
, 0, sizeof(config
));
1690 return loop_configure(lo
, mode
, bdev
, &config
);
1692 case LOOP_CONFIGURE
: {
1693 struct loop_config config
;
1695 if (copy_from_user(&config
, argp
, sizeof(config
)))
1698 return loop_configure(lo
, mode
, bdev
, &config
);
1700 case LOOP_CHANGE_FD
:
1701 return loop_change_fd(lo
, bdev
, arg
);
1703 return loop_clr_fd(lo
);
1704 case LOOP_SET_STATUS
:
1706 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1707 err
= loop_set_status_old(lo
, argp
);
1710 case LOOP_GET_STATUS
:
1711 return loop_get_status_old(lo
, argp
);
1712 case LOOP_SET_STATUS64
:
1714 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1715 err
= loop_set_status64(lo
, argp
);
1718 case LOOP_GET_STATUS64
:
1719 return loop_get_status64(lo
, argp
);
1720 case LOOP_SET_CAPACITY
:
1721 case LOOP_SET_DIRECT_IO
:
1722 case LOOP_SET_BLOCK_SIZE
:
1723 if (!(mode
& FMODE_WRITE
) && !capable(CAP_SYS_ADMIN
))
1727 err
= lo_simple_ioctl(lo
, cmd
, arg
);
1734 #ifdef CONFIG_COMPAT
1735 struct compat_loop_info
{
1736 compat_int_t lo_number
; /* ioctl r/o */
1737 compat_dev_t lo_device
; /* ioctl r/o */
1738 compat_ulong_t lo_inode
; /* ioctl r/o */
1739 compat_dev_t lo_rdevice
; /* ioctl r/o */
1740 compat_int_t lo_offset
;
1741 compat_int_t lo_encrypt_type
;
1742 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1743 compat_int_t lo_flags
; /* ioctl r/o */
1744 char lo_name
[LO_NAME_SIZE
];
1745 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1746 compat_ulong_t lo_init
[2];
1751 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1752 * - noinlined to reduce stack space usage in main part of driver
1755 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1756 struct loop_info64
*info64
)
1758 struct compat_loop_info info
;
1760 if (copy_from_user(&info
, arg
, sizeof(info
)))
1763 memset(info64
, 0, sizeof(*info64
));
1764 info64
->lo_number
= info
.lo_number
;
1765 info64
->lo_device
= info
.lo_device
;
1766 info64
->lo_inode
= info
.lo_inode
;
1767 info64
->lo_rdevice
= info
.lo_rdevice
;
1768 info64
->lo_offset
= info
.lo_offset
;
1769 info64
->lo_sizelimit
= 0;
1770 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1771 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1772 info64
->lo_flags
= info
.lo_flags
;
1773 info64
->lo_init
[0] = info
.lo_init
[0];
1774 info64
->lo_init
[1] = info
.lo_init
[1];
1775 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1776 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1778 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1779 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1784 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1785 * - noinlined to reduce stack space usage in main part of driver
1788 loop_info64_to_compat(const struct loop_info64
*info64
,
1789 struct compat_loop_info __user
*arg
)
1791 struct compat_loop_info info
;
1793 memset(&info
, 0, sizeof(info
));
1794 info
.lo_number
= info64
->lo_number
;
1795 info
.lo_device
= info64
->lo_device
;
1796 info
.lo_inode
= info64
->lo_inode
;
1797 info
.lo_rdevice
= info64
->lo_rdevice
;
1798 info
.lo_offset
= info64
->lo_offset
;
1799 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1800 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1801 info
.lo_flags
= info64
->lo_flags
;
1802 info
.lo_init
[0] = info64
->lo_init
[0];
1803 info
.lo_init
[1] = info64
->lo_init
[1];
1804 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1805 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1807 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1808 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1810 /* error in case values were truncated */
1811 if (info
.lo_device
!= info64
->lo_device
||
1812 info
.lo_rdevice
!= info64
->lo_rdevice
||
1813 info
.lo_inode
!= info64
->lo_inode
||
1814 info
.lo_offset
!= info64
->lo_offset
||
1815 info
.lo_init
[0] != info64
->lo_init
[0] ||
1816 info
.lo_init
[1] != info64
->lo_init
[1])
1819 if (copy_to_user(arg
, &info
, sizeof(info
)))
1825 loop_set_status_compat(struct loop_device
*lo
,
1826 const struct compat_loop_info __user
*arg
)
1828 struct loop_info64 info64
;
1831 ret
= loop_info64_from_compat(arg
, &info64
);
1834 return loop_set_status(lo
, &info64
);
1838 loop_get_status_compat(struct loop_device
*lo
,
1839 struct compat_loop_info __user
*arg
)
1841 struct loop_info64 info64
;
1846 err
= loop_get_status(lo
, &info64
);
1848 err
= loop_info64_to_compat(&info64
, arg
);
1852 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1853 unsigned int cmd
, unsigned long arg
)
1855 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1859 case LOOP_SET_STATUS
:
1860 err
= loop_set_status_compat(lo
,
1861 (const struct compat_loop_info __user
*)arg
);
1863 case LOOP_GET_STATUS
:
1864 err
= loop_get_status_compat(lo
,
1865 (struct compat_loop_info __user
*)arg
);
1867 case LOOP_SET_CAPACITY
:
1869 case LOOP_GET_STATUS64
:
1870 case LOOP_SET_STATUS64
:
1871 case LOOP_CONFIGURE
:
1872 arg
= (unsigned long) compat_ptr(arg
);
1875 case LOOP_CHANGE_FD
:
1876 case LOOP_SET_BLOCK_SIZE
:
1877 case LOOP_SET_DIRECT_IO
:
1878 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1888 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1890 struct loop_device
*lo
;
1893 err
= mutex_lock_killable(&loop_ctl_mutex
);
1896 lo
= bdev
->bd_disk
->private_data
;
1902 atomic_inc(&lo
->lo_refcnt
);
1904 mutex_unlock(&loop_ctl_mutex
);
1908 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1910 struct loop_device
*lo
;
1912 mutex_lock(&loop_ctl_mutex
);
1913 lo
= disk
->private_data
;
1914 if (atomic_dec_return(&lo
->lo_refcnt
))
1917 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1918 if (lo
->lo_state
!= Lo_bound
)
1920 lo
->lo_state
= Lo_rundown
;
1921 mutex_unlock(&loop_ctl_mutex
);
1923 * In autoclear mode, stop the loop thread
1924 * and remove configuration after last close.
1926 __loop_clr_fd(lo
, true);
1928 } else if (lo
->lo_state
== Lo_bound
) {
1930 * Otherwise keep thread (if running) and config,
1931 * but flush possible ongoing bios in thread.
1933 blk_mq_freeze_queue(lo
->lo_queue
);
1934 blk_mq_unfreeze_queue(lo
->lo_queue
);
1938 mutex_unlock(&loop_ctl_mutex
);
1941 static const struct block_device_operations lo_fops
= {
1942 .owner
= THIS_MODULE
,
1944 .release
= lo_release
,
1946 #ifdef CONFIG_COMPAT
1947 .compat_ioctl
= lo_compat_ioctl
,
1952 * And now the modules code and kernel interface.
1954 static int max_loop
;
1955 module_param(max_loop
, int, 0444);
1956 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1957 module_param(max_part
, int, 0444);
1958 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1959 MODULE_LICENSE("GPL");
1960 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1962 int loop_register_transfer(struct loop_func_table
*funcs
)
1964 unsigned int n
= funcs
->number
;
1966 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1968 xfer_funcs
[n
] = funcs
;
1972 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1974 struct loop_device
*lo
= ptr
;
1975 struct loop_func_table
*xfer
= data
;
1977 mutex_lock(&loop_ctl_mutex
);
1978 if (lo
->lo_encryption
== xfer
)
1979 loop_release_xfer(lo
);
1980 mutex_unlock(&loop_ctl_mutex
);
1984 int loop_unregister_transfer(int number
)
1986 unsigned int n
= number
;
1987 struct loop_func_table
*xfer
;
1989 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1992 xfer_funcs
[n
] = NULL
;
1993 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1997 EXPORT_SYMBOL(loop_register_transfer
);
1998 EXPORT_SYMBOL(loop_unregister_transfer
);
2000 static blk_status_t
loop_queue_rq(struct blk_mq_hw_ctx
*hctx
,
2001 const struct blk_mq_queue_data
*bd
)
2003 struct request
*rq
= bd
->rq
;
2004 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
2005 struct loop_device
*lo
= rq
->q
->queuedata
;
2007 blk_mq_start_request(rq
);
2009 if (lo
->lo_state
!= Lo_bound
)
2010 return BLK_STS_IOERR
;
2012 switch (req_op(rq
)) {
2014 case REQ_OP_DISCARD
:
2015 case REQ_OP_WRITE_ZEROES
:
2016 cmd
->use_aio
= false;
2019 cmd
->use_aio
= lo
->use_dio
;
2023 /* always use the first bio's css */
2024 #ifdef CONFIG_BLK_CGROUP
2025 if (cmd
->use_aio
&& rq
->bio
&& rq
->bio
->bi_blkg
) {
2026 cmd
->css
= &bio_blkcg(rq
->bio
)->css
;
2031 kthread_queue_work(&lo
->worker
, &cmd
->work
);
2036 static void loop_handle_cmd(struct loop_cmd
*cmd
)
2038 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
2039 const bool write
= op_is_write(req_op(rq
));
2040 struct loop_device
*lo
= rq
->q
->queuedata
;
2043 if (write
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)) {
2048 ret
= do_req_filebacked(lo
, rq
);
2050 /* complete non-aio request */
2051 if (!cmd
->use_aio
|| ret
) {
2052 if (ret
== -EOPNOTSUPP
)
2055 cmd
->ret
= ret
? -EIO
: 0;
2056 if (likely(!blk_should_fake_timeout(rq
->q
)))
2057 blk_mq_complete_request(rq
);
2061 static void loop_queue_work(struct kthread_work
*work
)
2063 struct loop_cmd
*cmd
=
2064 container_of(work
, struct loop_cmd
, work
);
2066 loop_handle_cmd(cmd
);
2069 static int loop_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2070 unsigned int hctx_idx
, unsigned int numa_node
)
2072 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
2074 kthread_init_work(&cmd
->work
, loop_queue_work
);
2078 static const struct blk_mq_ops loop_mq_ops
= {
2079 .queue_rq
= loop_queue_rq
,
2080 .init_request
= loop_init_request
,
2081 .complete
= lo_complete_rq
,
2084 static int loop_add(struct loop_device
**l
, int i
)
2086 struct loop_device
*lo
;
2087 struct gendisk
*disk
;
2091 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
2095 lo
->lo_state
= Lo_unbound
;
2097 /* allocate id, if @id >= 0, we're requesting that specific id */
2099 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
2103 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
2110 lo
->tag_set
.ops
= &loop_mq_ops
;
2111 lo
->tag_set
.nr_hw_queues
= 1;
2112 lo
->tag_set
.queue_depth
= 128;
2113 lo
->tag_set
.numa_node
= NUMA_NO_NODE
;
2114 lo
->tag_set
.cmd_size
= sizeof(struct loop_cmd
);
2115 lo
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_STACKING
;
2116 lo
->tag_set
.driver_data
= lo
;
2118 err
= blk_mq_alloc_tag_set(&lo
->tag_set
);
2122 lo
->lo_queue
= blk_mq_init_queue(&lo
->tag_set
);
2123 if (IS_ERR(lo
->lo_queue
)) {
2124 err
= PTR_ERR(lo
->lo_queue
);
2125 goto out_cleanup_tags
;
2127 lo
->lo_queue
->queuedata
= lo
;
2129 blk_queue_max_hw_sectors(lo
->lo_queue
, BLK_DEF_MAX_SECTORS
);
2132 * By default, we do buffer IO, so it doesn't make sense to enable
2133 * merge because the I/O submitted to backing file is handled page by
2134 * page. For directio mode, merge does help to dispatch bigger request
2135 * to underlayer disk. We will enable merge once directio is enabled.
2137 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
2140 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
2142 goto out_free_queue
;
2145 * Disable partition scanning by default. The in-kernel partition
2146 * scanning can be requested individually per-device during its
2147 * setup. Userspace can always add and remove partitions from all
2148 * devices. The needed partition minors are allocated from the
2149 * extended minor space, the main loop device numbers will continue
2150 * to match the loop minors, regardless of the number of partitions
2153 * If max_part is given, partition scanning is globally enabled for
2154 * all loop devices. The minors for the main loop devices will be
2155 * multiples of max_part.
2157 * Note: Global-for-all-devices, set-only-at-init, read-only module
2158 * parameteters like 'max_loop' and 'max_part' make things needlessly
2159 * complicated, are too static, inflexible and may surprise
2160 * userspace tools. Parameters like this in general should be avoided.
2163 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
2164 disk
->flags
|= GENHD_FL_EXT_DEVT
;
2165 atomic_set(&lo
->lo_refcnt
, 0);
2167 spin_lock_init(&lo
->lo_lock
);
2168 disk
->major
= LOOP_MAJOR
;
2169 disk
->first_minor
= i
<< part_shift
;
2170 disk
->fops
= &lo_fops
;
2171 disk
->private_data
= lo
;
2172 disk
->queue
= lo
->lo_queue
;
2173 sprintf(disk
->disk_name
, "loop%d", i
);
2176 return lo
->lo_number
;
2179 blk_cleanup_queue(lo
->lo_queue
);
2181 blk_mq_free_tag_set(&lo
->tag_set
);
2183 idr_remove(&loop_index_idr
, i
);
2190 static void loop_remove(struct loop_device
*lo
)
2192 del_gendisk(lo
->lo_disk
);
2193 blk_cleanup_queue(lo
->lo_queue
);
2194 blk_mq_free_tag_set(&lo
->tag_set
);
2195 put_disk(lo
->lo_disk
);
2199 static int find_free_cb(int id
, void *ptr
, void *data
)
2201 struct loop_device
*lo
= ptr
;
2202 struct loop_device
**l
= data
;
2204 if (lo
->lo_state
== Lo_unbound
) {
2211 static int loop_lookup(struct loop_device
**l
, int i
)
2213 struct loop_device
*lo
;
2219 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
2222 ret
= lo
->lo_number
;
2227 /* lookup and return a specific i */
2228 lo
= idr_find(&loop_index_idr
, i
);
2231 ret
= lo
->lo_number
;
2237 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
2239 struct loop_device
*lo
;
2240 struct kobject
*kobj
;
2243 mutex_lock(&loop_ctl_mutex
);
2244 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
2246 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
2250 kobj
= get_disk_and_module(lo
->lo_disk
);
2251 mutex_unlock(&loop_ctl_mutex
);
2257 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
2260 struct loop_device
*lo
;
2263 ret
= mutex_lock_killable(&loop_ctl_mutex
);
2270 ret
= loop_lookup(&lo
, parm
);
2275 ret
= loop_add(&lo
, parm
);
2277 case LOOP_CTL_REMOVE
:
2278 ret
= loop_lookup(&lo
, parm
);
2281 if (lo
->lo_state
!= Lo_unbound
) {
2285 if (atomic_read(&lo
->lo_refcnt
) > 0) {
2289 lo
->lo_disk
->private_data
= NULL
;
2290 idr_remove(&loop_index_idr
, lo
->lo_number
);
2293 case LOOP_CTL_GET_FREE
:
2294 ret
= loop_lookup(&lo
, -1);
2297 ret
= loop_add(&lo
, -1);
2299 mutex_unlock(&loop_ctl_mutex
);
2304 static const struct file_operations loop_ctl_fops
= {
2305 .open
= nonseekable_open
,
2306 .unlocked_ioctl
= loop_control_ioctl
,
2307 .compat_ioctl
= loop_control_ioctl
,
2308 .owner
= THIS_MODULE
,
2309 .llseek
= noop_llseek
,
2312 static struct miscdevice loop_misc
= {
2313 .minor
= LOOP_CTRL_MINOR
,
2314 .name
= "loop-control",
2315 .fops
= &loop_ctl_fops
,
2318 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
2319 MODULE_ALIAS("devname:loop-control");
2321 static int __init
loop_init(void)
2324 unsigned long range
;
2325 struct loop_device
*lo
;
2330 part_shift
= fls(max_part
);
2333 * Adjust max_part according to part_shift as it is exported
2334 * to user space so that user can decide correct minor number
2335 * if [s]he want to create more devices.
2337 * Note that -1 is required because partition 0 is reserved
2338 * for the whole disk.
2340 max_part
= (1UL << part_shift
) - 1;
2343 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
2348 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
2354 * If max_loop is specified, create that many devices upfront.
2355 * This also becomes a hard limit. If max_loop is not specified,
2356 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2357 * init time. Loop devices can be requested on-demand with the
2358 * /dev/loop-control interface, or be instantiated by accessing
2359 * a 'dead' device node.
2363 range
= max_loop
<< part_shift
;
2365 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
2366 range
= 1UL << MINORBITS
;
2369 err
= misc_register(&loop_misc
);
2374 if (register_blkdev(LOOP_MAJOR
, "loop")) {
2379 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
2380 THIS_MODULE
, loop_probe
, NULL
, NULL
);
2382 /* pre-create number of devices given by config or max_loop */
2383 mutex_lock(&loop_ctl_mutex
);
2384 for (i
= 0; i
< nr
; i
++)
2386 mutex_unlock(&loop_ctl_mutex
);
2388 printk(KERN_INFO
"loop: module loaded\n");
2392 misc_deregister(&loop_misc
);
2397 static int loop_exit_cb(int id
, void *ptr
, void *data
)
2399 struct loop_device
*lo
= ptr
;
2405 static void __exit
loop_exit(void)
2407 unsigned long range
;
2409 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
2411 mutex_lock(&loop_ctl_mutex
);
2413 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
2414 idr_destroy(&loop_index_idr
);
2416 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
2417 unregister_blkdev(LOOP_MAJOR
, "loop");
2419 misc_deregister(&loop_misc
);
2421 mutex_unlock(&loop_ctl_mutex
);
2424 module_init(loop_init
);
2425 module_exit(loop_exit
);
2428 static int __init
max_loop_setup(char *str
)
2430 max_loop
= simple_strtol(str
, NULL
, 0);
2434 __setup("max_loop=", max_loop_setup
);