]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/block/loop.c
skd_main: remove unused including <linux/version.h>
[mirror_ubuntu-jammy-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81
82 #include "loop.h"
83
84 #include <linux/uaccess.h>
85
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88
89 static int max_part;
90 static int part_shift;
91
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
96 {
97 char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 char *in, *out, *key;
100 int i, keysize;
101
102 if (cmd == READ) {
103 in = raw_buf;
104 out = loop_buf;
105 } else {
106 in = loop_buf;
107 out = raw_buf;
108 }
109
110 key = lo->lo_encrypt_key;
111 keysize = lo->lo_encrypt_key_size;
112 for (i = 0; i < size; i++)
113 *out++ = *in++ ^ key[(i & 511) % keysize];
114
115 kunmap_atomic(loop_buf);
116 kunmap_atomic(raw_buf);
117 cond_resched();
118 return 0;
119 }
120
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 if (unlikely(info->lo_encrypt_key_size <= 0))
124 return -EINVAL;
125 return 0;
126 }
127
128 static struct loop_func_table none_funcs = {
129 .number = LO_CRYPT_NONE,
130 };
131
132 static struct loop_func_table xor_funcs = {
133 .number = LO_CRYPT_XOR,
134 .transfer = transfer_xor,
135 .init = xor_init
136 };
137
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 &none_funcs,
141 &xor_funcs
142 };
143
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 loff_t loopsize;
147
148 /* Compute loopsize in bytes */
149 loopsize = i_size_read(file->f_mapping->host);
150 if (offset > 0)
151 loopsize -= offset;
152 /* offset is beyond i_size, weird but possible */
153 if (loopsize < 0)
154 return 0;
155
156 if (sizelimit > 0 && sizelimit < loopsize)
157 loopsize = sizelimit;
158 /*
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
161 */
162 return loopsize >> 9;
163 }
164
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 struct file *file = lo->lo_backing_file;
173 struct address_space *mapping = file->f_mapping;
174 struct inode *inode = mapping->host;
175 unsigned short sb_bsize = 0;
176 unsigned dio_align = 0;
177 bool use_dio;
178
179 if (inode->i_sb->s_bdev) {
180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 dio_align = sb_bsize - 1;
182 }
183
184 /*
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
189 *
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
193 */
194 if (dio) {
195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 !(lo->lo_offset & dio_align) &&
197 mapping->a_ops->direct_IO &&
198 !lo->transfer)
199 use_dio = true;
200 else
201 use_dio = false;
202 } else {
203 use_dio = false;
204 }
205
206 if (lo->use_dio == use_dio)
207 return;
208
209 /* flush dirty pages before changing direct IO */
210 vfs_fsync(file, 0);
211
212 /*
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
216 */
217 if (lo->lo_state == Lo_bound)
218 blk_mq_freeze_queue(lo->lo_queue);
219 lo->use_dio = use_dio;
220 if (use_dio) {
221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 } else {
224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 }
227 if (lo->lo_state == Lo_bound)
228 blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230
231 /**
232 * loop_validate_block_size() - validates the passed in block size
233 * @bsize: size to validate
234 */
235 static int
236 loop_validate_block_size(unsigned short bsize)
237 {
238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
239 return -EINVAL;
240
241 return 0;
242 }
243
244 /**
245 * loop_set_size() - sets device size and notifies userspace
246 * @lo: struct loop_device to set the size for
247 * @size: new size of the loop device
248 *
249 * Callers must validate that the size passed into this function fits into
250 * a sector_t, eg using loop_validate_size()
251 */
252 static void loop_set_size(struct loop_device *lo, loff_t size)
253 {
254 struct block_device *bdev = lo->lo_device;
255
256 bd_set_nr_sectors(bdev, size);
257
258 set_capacity_revalidate_and_notify(lo->lo_disk, size, false);
259 }
260
261 static inline int
262 lo_do_transfer(struct loop_device *lo, int cmd,
263 struct page *rpage, unsigned roffs,
264 struct page *lpage, unsigned loffs,
265 int size, sector_t rblock)
266 {
267 int ret;
268
269 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
270 if (likely(!ret))
271 return 0;
272
273 printk_ratelimited(KERN_ERR
274 "loop: Transfer error at byte offset %llu, length %i.\n",
275 (unsigned long long)rblock << 9, size);
276 return ret;
277 }
278
279 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
280 {
281 struct iov_iter i;
282 ssize_t bw;
283
284 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
285
286 file_start_write(file);
287 bw = vfs_iter_write(file, &i, ppos, 0);
288 file_end_write(file);
289
290 if (likely(bw == bvec->bv_len))
291 return 0;
292
293 printk_ratelimited(KERN_ERR
294 "loop: Write error at byte offset %llu, length %i.\n",
295 (unsigned long long)*ppos, bvec->bv_len);
296 if (bw >= 0)
297 bw = -EIO;
298 return bw;
299 }
300
301 static int lo_write_simple(struct loop_device *lo, struct request *rq,
302 loff_t pos)
303 {
304 struct bio_vec bvec;
305 struct req_iterator iter;
306 int ret = 0;
307
308 rq_for_each_segment(bvec, rq, iter) {
309 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
310 if (ret < 0)
311 break;
312 cond_resched();
313 }
314
315 return ret;
316 }
317
318 /*
319 * This is the slow, transforming version that needs to double buffer the
320 * data as it cannot do the transformations in place without having direct
321 * access to the destination pages of the backing file.
322 */
323 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
324 loff_t pos)
325 {
326 struct bio_vec bvec, b;
327 struct req_iterator iter;
328 struct page *page;
329 int ret = 0;
330
331 page = alloc_page(GFP_NOIO);
332 if (unlikely(!page))
333 return -ENOMEM;
334
335 rq_for_each_segment(bvec, rq, iter) {
336 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
337 bvec.bv_offset, bvec.bv_len, pos >> 9);
338 if (unlikely(ret))
339 break;
340
341 b.bv_page = page;
342 b.bv_offset = 0;
343 b.bv_len = bvec.bv_len;
344 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
345 if (ret < 0)
346 break;
347 }
348
349 __free_page(page);
350 return ret;
351 }
352
353 static int lo_read_simple(struct loop_device *lo, struct request *rq,
354 loff_t pos)
355 {
356 struct bio_vec bvec;
357 struct req_iterator iter;
358 struct iov_iter i;
359 ssize_t len;
360
361 rq_for_each_segment(bvec, rq, iter) {
362 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
363 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
364 if (len < 0)
365 return len;
366
367 flush_dcache_page(bvec.bv_page);
368
369 if (len != bvec.bv_len) {
370 struct bio *bio;
371
372 __rq_for_each_bio(bio, rq)
373 zero_fill_bio(bio);
374 break;
375 }
376 cond_resched();
377 }
378
379 return 0;
380 }
381
382 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
383 loff_t pos)
384 {
385 struct bio_vec bvec, b;
386 struct req_iterator iter;
387 struct iov_iter i;
388 struct page *page;
389 ssize_t len;
390 int ret = 0;
391
392 page = alloc_page(GFP_NOIO);
393 if (unlikely(!page))
394 return -ENOMEM;
395
396 rq_for_each_segment(bvec, rq, iter) {
397 loff_t offset = pos;
398
399 b.bv_page = page;
400 b.bv_offset = 0;
401 b.bv_len = bvec.bv_len;
402
403 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
404 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
405 if (len < 0) {
406 ret = len;
407 goto out_free_page;
408 }
409
410 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
411 bvec.bv_offset, len, offset >> 9);
412 if (ret)
413 goto out_free_page;
414
415 flush_dcache_page(bvec.bv_page);
416
417 if (len != bvec.bv_len) {
418 struct bio *bio;
419
420 __rq_for_each_bio(bio, rq)
421 zero_fill_bio(bio);
422 break;
423 }
424 }
425
426 ret = 0;
427 out_free_page:
428 __free_page(page);
429 return ret;
430 }
431
432 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
433 int mode)
434 {
435 /*
436 * We use fallocate to manipulate the space mappings used by the image
437 * a.k.a. discard/zerorange. However we do not support this if
438 * encryption is enabled, because it may give an attacker useful
439 * information.
440 */
441 struct file *file = lo->lo_backing_file;
442 struct request_queue *q = lo->lo_queue;
443 int ret;
444
445 mode |= FALLOC_FL_KEEP_SIZE;
446
447 if (!blk_queue_discard(q)) {
448 ret = -EOPNOTSUPP;
449 goto out;
450 }
451
452 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
453 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
454 ret = -EIO;
455 out:
456 return ret;
457 }
458
459 static int lo_req_flush(struct loop_device *lo, struct request *rq)
460 {
461 struct file *file = lo->lo_backing_file;
462 int ret = vfs_fsync(file, 0);
463 if (unlikely(ret && ret != -EINVAL))
464 ret = -EIO;
465
466 return ret;
467 }
468
469 static void lo_complete_rq(struct request *rq)
470 {
471 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
472 blk_status_t ret = BLK_STS_OK;
473
474 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
475 req_op(rq) != REQ_OP_READ) {
476 if (cmd->ret < 0)
477 ret = errno_to_blk_status(cmd->ret);
478 goto end_io;
479 }
480
481 /*
482 * Short READ - if we got some data, advance our request and
483 * retry it. If we got no data, end the rest with EIO.
484 */
485 if (cmd->ret) {
486 blk_update_request(rq, BLK_STS_OK, cmd->ret);
487 cmd->ret = 0;
488 blk_mq_requeue_request(rq, true);
489 } else {
490 if (cmd->use_aio) {
491 struct bio *bio = rq->bio;
492
493 while (bio) {
494 zero_fill_bio(bio);
495 bio = bio->bi_next;
496 }
497 }
498 ret = BLK_STS_IOERR;
499 end_io:
500 blk_mq_end_request(rq, ret);
501 }
502 }
503
504 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
505 {
506 struct request *rq = blk_mq_rq_from_pdu(cmd);
507
508 if (!atomic_dec_and_test(&cmd->ref))
509 return;
510 kfree(cmd->bvec);
511 cmd->bvec = NULL;
512 if (likely(!blk_should_fake_timeout(rq->q)))
513 blk_mq_complete_request(rq);
514 }
515
516 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
517 {
518 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
519
520 if (cmd->css)
521 css_put(cmd->css);
522 cmd->ret = ret;
523 lo_rw_aio_do_completion(cmd);
524 }
525
526 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
527 loff_t pos, bool rw)
528 {
529 struct iov_iter iter;
530 struct req_iterator rq_iter;
531 struct bio_vec *bvec;
532 struct request *rq = blk_mq_rq_from_pdu(cmd);
533 struct bio *bio = rq->bio;
534 struct file *file = lo->lo_backing_file;
535 struct bio_vec tmp;
536 unsigned int offset;
537 int nr_bvec = 0;
538 int ret;
539
540 rq_for_each_bvec(tmp, rq, rq_iter)
541 nr_bvec++;
542
543 if (rq->bio != rq->biotail) {
544
545 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
546 GFP_NOIO);
547 if (!bvec)
548 return -EIO;
549 cmd->bvec = bvec;
550
551 /*
552 * The bios of the request may be started from the middle of
553 * the 'bvec' because of bio splitting, so we can't directly
554 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
555 * API will take care of all details for us.
556 */
557 rq_for_each_bvec(tmp, rq, rq_iter) {
558 *bvec = tmp;
559 bvec++;
560 }
561 bvec = cmd->bvec;
562 offset = 0;
563 } else {
564 /*
565 * Same here, this bio may be started from the middle of the
566 * 'bvec' because of bio splitting, so offset from the bvec
567 * must be passed to iov iterator
568 */
569 offset = bio->bi_iter.bi_bvec_done;
570 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
571 }
572 atomic_set(&cmd->ref, 2);
573
574 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
575 iter.iov_offset = offset;
576
577 cmd->iocb.ki_pos = pos;
578 cmd->iocb.ki_filp = file;
579 cmd->iocb.ki_complete = lo_rw_aio_complete;
580 cmd->iocb.ki_flags = IOCB_DIRECT;
581 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
582 if (cmd->css)
583 kthread_associate_blkcg(cmd->css);
584
585 if (rw == WRITE)
586 ret = call_write_iter(file, &cmd->iocb, &iter);
587 else
588 ret = call_read_iter(file, &cmd->iocb, &iter);
589
590 lo_rw_aio_do_completion(cmd);
591 kthread_associate_blkcg(NULL);
592
593 if (ret != -EIOCBQUEUED)
594 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
595 return 0;
596 }
597
598 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
599 {
600 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
601 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
602
603 /*
604 * lo_write_simple and lo_read_simple should have been covered
605 * by io submit style function like lo_rw_aio(), one blocker
606 * is that lo_read_simple() need to call flush_dcache_page after
607 * the page is written from kernel, and it isn't easy to handle
608 * this in io submit style function which submits all segments
609 * of the req at one time. And direct read IO doesn't need to
610 * run flush_dcache_page().
611 */
612 switch (req_op(rq)) {
613 case REQ_OP_FLUSH:
614 return lo_req_flush(lo, rq);
615 case REQ_OP_WRITE_ZEROES:
616 /*
617 * If the caller doesn't want deallocation, call zeroout to
618 * write zeroes the range. Otherwise, punch them out.
619 */
620 return lo_fallocate(lo, rq, pos,
621 (rq->cmd_flags & REQ_NOUNMAP) ?
622 FALLOC_FL_ZERO_RANGE :
623 FALLOC_FL_PUNCH_HOLE);
624 case REQ_OP_DISCARD:
625 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
626 case REQ_OP_WRITE:
627 if (lo->transfer)
628 return lo_write_transfer(lo, rq, pos);
629 else if (cmd->use_aio)
630 return lo_rw_aio(lo, cmd, pos, WRITE);
631 else
632 return lo_write_simple(lo, rq, pos);
633 case REQ_OP_READ:
634 if (lo->transfer)
635 return lo_read_transfer(lo, rq, pos);
636 else if (cmd->use_aio)
637 return lo_rw_aio(lo, cmd, pos, READ);
638 else
639 return lo_read_simple(lo, rq, pos);
640 default:
641 WARN_ON_ONCE(1);
642 return -EIO;
643 }
644 }
645
646 static inline void loop_update_dio(struct loop_device *lo)
647 {
648 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
649 lo->use_dio);
650 }
651
652 static void loop_reread_partitions(struct loop_device *lo,
653 struct block_device *bdev)
654 {
655 int rc;
656
657 mutex_lock(&bdev->bd_mutex);
658 rc = bdev_disk_changed(bdev, false);
659 mutex_unlock(&bdev->bd_mutex);
660 if (rc)
661 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
662 __func__, lo->lo_number, lo->lo_file_name, rc);
663 }
664
665 static inline int is_loop_device(struct file *file)
666 {
667 struct inode *i = file->f_mapping->host;
668
669 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
670 }
671
672 static int loop_validate_file(struct file *file, struct block_device *bdev)
673 {
674 struct inode *inode = file->f_mapping->host;
675 struct file *f = file;
676
677 /* Avoid recursion */
678 while (is_loop_device(f)) {
679 struct loop_device *l;
680
681 if (f->f_mapping->host->i_bdev == bdev)
682 return -EBADF;
683
684 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
685 if (l->lo_state != Lo_bound) {
686 return -EINVAL;
687 }
688 f = l->lo_backing_file;
689 }
690 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
691 return -EINVAL;
692 return 0;
693 }
694
695 /*
696 * loop_change_fd switched the backing store of a loopback device to
697 * a new file. This is useful for operating system installers to free up
698 * the original file and in High Availability environments to switch to
699 * an alternative location for the content in case of server meltdown.
700 * This can only work if the loop device is used read-only, and if the
701 * new backing store is the same size and type as the old backing store.
702 */
703 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
704 unsigned int arg)
705 {
706 struct file *file = NULL, *old_file;
707 int error;
708 bool partscan;
709
710 error = mutex_lock_killable(&loop_ctl_mutex);
711 if (error)
712 return error;
713 error = -ENXIO;
714 if (lo->lo_state != Lo_bound)
715 goto out_err;
716
717 /* the loop device has to be read-only */
718 error = -EINVAL;
719 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
720 goto out_err;
721
722 error = -EBADF;
723 file = fget(arg);
724 if (!file)
725 goto out_err;
726
727 error = loop_validate_file(file, bdev);
728 if (error)
729 goto out_err;
730
731 old_file = lo->lo_backing_file;
732
733 error = -EINVAL;
734
735 /* size of the new backing store needs to be the same */
736 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
737 goto out_err;
738
739 /* and ... switch */
740 blk_mq_freeze_queue(lo->lo_queue);
741 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
742 lo->lo_backing_file = file;
743 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
744 mapping_set_gfp_mask(file->f_mapping,
745 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
746 loop_update_dio(lo);
747 blk_mq_unfreeze_queue(lo->lo_queue);
748 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
749 mutex_unlock(&loop_ctl_mutex);
750 /*
751 * We must drop file reference outside of loop_ctl_mutex as dropping
752 * the file ref can take bd_mutex which creates circular locking
753 * dependency.
754 */
755 fput(old_file);
756 if (partscan)
757 loop_reread_partitions(lo, bdev);
758 return 0;
759
760 out_err:
761 mutex_unlock(&loop_ctl_mutex);
762 if (file)
763 fput(file);
764 return error;
765 }
766
767 /* loop sysfs attributes */
768
769 static ssize_t loop_attr_show(struct device *dev, char *page,
770 ssize_t (*callback)(struct loop_device *, char *))
771 {
772 struct gendisk *disk = dev_to_disk(dev);
773 struct loop_device *lo = disk->private_data;
774
775 return callback(lo, page);
776 }
777
778 #define LOOP_ATTR_RO(_name) \
779 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
780 static ssize_t loop_attr_do_show_##_name(struct device *d, \
781 struct device_attribute *attr, char *b) \
782 { \
783 return loop_attr_show(d, b, loop_attr_##_name##_show); \
784 } \
785 static struct device_attribute loop_attr_##_name = \
786 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
787
788 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
789 {
790 ssize_t ret;
791 char *p = NULL;
792
793 spin_lock_irq(&lo->lo_lock);
794 if (lo->lo_backing_file)
795 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
796 spin_unlock_irq(&lo->lo_lock);
797
798 if (IS_ERR_OR_NULL(p))
799 ret = PTR_ERR(p);
800 else {
801 ret = strlen(p);
802 memmove(buf, p, ret);
803 buf[ret++] = '\n';
804 buf[ret] = 0;
805 }
806
807 return ret;
808 }
809
810 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
811 {
812 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
813 }
814
815 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
816 {
817 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
818 }
819
820 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
821 {
822 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
823
824 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
825 }
826
827 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
828 {
829 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
830
831 return sprintf(buf, "%s\n", partscan ? "1" : "0");
832 }
833
834 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
835 {
836 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
837
838 return sprintf(buf, "%s\n", dio ? "1" : "0");
839 }
840
841 LOOP_ATTR_RO(backing_file);
842 LOOP_ATTR_RO(offset);
843 LOOP_ATTR_RO(sizelimit);
844 LOOP_ATTR_RO(autoclear);
845 LOOP_ATTR_RO(partscan);
846 LOOP_ATTR_RO(dio);
847
848 static struct attribute *loop_attrs[] = {
849 &loop_attr_backing_file.attr,
850 &loop_attr_offset.attr,
851 &loop_attr_sizelimit.attr,
852 &loop_attr_autoclear.attr,
853 &loop_attr_partscan.attr,
854 &loop_attr_dio.attr,
855 NULL,
856 };
857
858 static struct attribute_group loop_attribute_group = {
859 .name = "loop",
860 .attrs= loop_attrs,
861 };
862
863 static void loop_sysfs_init(struct loop_device *lo)
864 {
865 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
866 &loop_attribute_group);
867 }
868
869 static void loop_sysfs_exit(struct loop_device *lo)
870 {
871 if (lo->sysfs_inited)
872 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
873 &loop_attribute_group);
874 }
875
876 static void loop_config_discard(struct loop_device *lo)
877 {
878 struct file *file = lo->lo_backing_file;
879 struct inode *inode = file->f_mapping->host;
880 struct request_queue *q = lo->lo_queue;
881 u32 granularity, max_discard_sectors;
882
883 /*
884 * If the backing device is a block device, mirror its zeroing
885 * capability. Set the discard sectors to the block device's zeroing
886 * capabilities because loop discards result in blkdev_issue_zeroout(),
887 * not blkdev_issue_discard(). This maintains consistent behavior with
888 * file-backed loop devices: discarded regions read back as zero.
889 */
890 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
891 struct request_queue *backingq;
892
893 backingq = bdev_get_queue(inode->i_bdev);
894
895 max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
896 granularity = backingq->limits.discard_granularity ?:
897 queue_physical_block_size(backingq);
898
899 /*
900 * We use punch hole to reclaim the free space used by the
901 * image a.k.a. discard. However we do not support discard if
902 * encryption is enabled, because it may give an attacker
903 * useful information.
904 */
905 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
906 max_discard_sectors = 0;
907 granularity = 0;
908
909 } else {
910 max_discard_sectors = UINT_MAX >> 9;
911 granularity = inode->i_sb->s_blocksize;
912 }
913
914 if (max_discard_sectors) {
915 q->limits.discard_granularity = granularity;
916 blk_queue_max_discard_sectors(q, max_discard_sectors);
917 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
918 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
919 } else {
920 q->limits.discard_granularity = 0;
921 blk_queue_max_discard_sectors(q, 0);
922 blk_queue_max_write_zeroes_sectors(q, 0);
923 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
924 }
925 q->limits.discard_alignment = 0;
926 }
927
928 static void loop_unprepare_queue(struct loop_device *lo)
929 {
930 kthread_flush_worker(&lo->worker);
931 kthread_stop(lo->worker_task);
932 }
933
934 static int loop_kthread_worker_fn(void *worker_ptr)
935 {
936 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
937 return kthread_worker_fn(worker_ptr);
938 }
939
940 static int loop_prepare_queue(struct loop_device *lo)
941 {
942 kthread_init_worker(&lo->worker);
943 lo->worker_task = kthread_run(loop_kthread_worker_fn,
944 &lo->worker, "loop%d", lo->lo_number);
945 if (IS_ERR(lo->worker_task))
946 return -ENOMEM;
947 set_user_nice(lo->worker_task, MIN_NICE);
948 return 0;
949 }
950
951 static void loop_update_rotational(struct loop_device *lo)
952 {
953 struct file *file = lo->lo_backing_file;
954 struct inode *file_inode = file->f_mapping->host;
955 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
956 struct request_queue *q = lo->lo_queue;
957 bool nonrot = true;
958
959 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
960 if (file_bdev)
961 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
962
963 if (nonrot)
964 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
965 else
966 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
967 }
968
969 static int
970 loop_release_xfer(struct loop_device *lo)
971 {
972 int err = 0;
973 struct loop_func_table *xfer = lo->lo_encryption;
974
975 if (xfer) {
976 if (xfer->release)
977 err = xfer->release(lo);
978 lo->transfer = NULL;
979 lo->lo_encryption = NULL;
980 module_put(xfer->owner);
981 }
982 return err;
983 }
984
985 static int
986 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
987 const struct loop_info64 *i)
988 {
989 int err = 0;
990
991 if (xfer) {
992 struct module *owner = xfer->owner;
993
994 if (!try_module_get(owner))
995 return -EINVAL;
996 if (xfer->init)
997 err = xfer->init(lo, i);
998 if (err)
999 module_put(owner);
1000 else
1001 lo->lo_encryption = xfer;
1002 }
1003 return err;
1004 }
1005
1006 /**
1007 * loop_set_status_from_info - configure device from loop_info
1008 * @lo: struct loop_device to configure
1009 * @info: struct loop_info64 to configure the device with
1010 *
1011 * Configures the loop device parameters according to the passed
1012 * in loop_info64 configuration.
1013 */
1014 static int
1015 loop_set_status_from_info(struct loop_device *lo,
1016 const struct loop_info64 *info)
1017 {
1018 int err;
1019 struct loop_func_table *xfer;
1020 kuid_t uid = current_uid();
1021
1022 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1023 return -EINVAL;
1024
1025 err = loop_release_xfer(lo);
1026 if (err)
1027 return err;
1028
1029 if (info->lo_encrypt_type) {
1030 unsigned int type = info->lo_encrypt_type;
1031
1032 if (type >= MAX_LO_CRYPT)
1033 return -EINVAL;
1034 xfer = xfer_funcs[type];
1035 if (xfer == NULL)
1036 return -EINVAL;
1037 } else
1038 xfer = NULL;
1039
1040 err = loop_init_xfer(lo, xfer, info);
1041 if (err)
1042 return err;
1043
1044 lo->lo_offset = info->lo_offset;
1045 lo->lo_sizelimit = info->lo_sizelimit;
1046 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1047 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1048 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1049 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1050
1051 if (!xfer)
1052 xfer = &none_funcs;
1053 lo->transfer = xfer->transfer;
1054 lo->ioctl = xfer->ioctl;
1055
1056 lo->lo_flags = info->lo_flags;
1057
1058 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1059 lo->lo_init[0] = info->lo_init[0];
1060 lo->lo_init[1] = info->lo_init[1];
1061 if (info->lo_encrypt_key_size) {
1062 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1063 info->lo_encrypt_key_size);
1064 lo->lo_key_owner = uid;
1065 }
1066
1067 return 0;
1068 }
1069
1070 static int loop_configure(struct loop_device *lo, fmode_t mode,
1071 struct block_device *bdev,
1072 const struct loop_config *config)
1073 {
1074 struct file *file;
1075 struct inode *inode;
1076 struct address_space *mapping;
1077 struct block_device *claimed_bdev = NULL;
1078 int error;
1079 loff_t size;
1080 bool partscan;
1081 unsigned short bsize;
1082
1083 /* This is safe, since we have a reference from open(). */
1084 __module_get(THIS_MODULE);
1085
1086 error = -EBADF;
1087 file = fget(config->fd);
1088 if (!file)
1089 goto out;
1090
1091 /*
1092 * If we don't hold exclusive handle for the device, upgrade to it
1093 * here to avoid changing device under exclusive owner.
1094 */
1095 if (!(mode & FMODE_EXCL)) {
1096 claimed_bdev = bdev->bd_contains;
1097 error = bd_prepare_to_claim(bdev, claimed_bdev, loop_configure);
1098 if (error)
1099 goto out_putf;
1100 }
1101
1102 error = mutex_lock_killable(&loop_ctl_mutex);
1103 if (error)
1104 goto out_bdev;
1105
1106 error = -EBUSY;
1107 if (lo->lo_state != Lo_unbound)
1108 goto out_unlock;
1109
1110 error = loop_validate_file(file, bdev);
1111 if (error)
1112 goto out_unlock;
1113
1114 mapping = file->f_mapping;
1115 inode = mapping->host;
1116
1117 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1118 error = -EINVAL;
1119 goto out_unlock;
1120 }
1121
1122 if (config->block_size) {
1123 error = loop_validate_block_size(config->block_size);
1124 if (error)
1125 goto out_unlock;
1126 }
1127
1128 error = loop_set_status_from_info(lo, &config->info);
1129 if (error)
1130 goto out_unlock;
1131
1132 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1133 !file->f_op->write_iter)
1134 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1135
1136 error = loop_prepare_queue(lo);
1137 if (error)
1138 goto out_unlock;
1139
1140 set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1141
1142 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1143 lo->lo_device = bdev;
1144 lo->lo_backing_file = file;
1145 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1146 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1147
1148 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1149 blk_queue_write_cache(lo->lo_queue, true, false);
1150
1151 if (config->block_size)
1152 bsize = config->block_size;
1153 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1154 /* In case of direct I/O, match underlying block size */
1155 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1156 else
1157 bsize = 512;
1158
1159 blk_queue_logical_block_size(lo->lo_queue, bsize);
1160 blk_queue_physical_block_size(lo->lo_queue, bsize);
1161 blk_queue_io_min(lo->lo_queue, bsize);
1162
1163 loop_update_rotational(lo);
1164 loop_update_dio(lo);
1165 loop_sysfs_init(lo);
1166
1167 size = get_loop_size(lo, file);
1168 loop_set_size(lo, size);
1169
1170 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1171 block_size(inode->i_bdev) : PAGE_SIZE);
1172
1173 lo->lo_state = Lo_bound;
1174 if (part_shift)
1175 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1176 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1177 if (partscan)
1178 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1179
1180 /* Grab the block_device to prevent its destruction after we
1181 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1182 */
1183 bdgrab(bdev);
1184 mutex_unlock(&loop_ctl_mutex);
1185 if (partscan)
1186 loop_reread_partitions(lo, bdev);
1187 if (claimed_bdev)
1188 bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1189 return 0;
1190
1191 out_unlock:
1192 mutex_unlock(&loop_ctl_mutex);
1193 out_bdev:
1194 if (claimed_bdev)
1195 bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1196 out_putf:
1197 fput(file);
1198 out:
1199 /* This is safe: open() is still holding a reference. */
1200 module_put(THIS_MODULE);
1201 return error;
1202 }
1203
1204 static int __loop_clr_fd(struct loop_device *lo, bool release)
1205 {
1206 struct file *filp = NULL;
1207 gfp_t gfp = lo->old_gfp_mask;
1208 struct block_device *bdev = lo->lo_device;
1209 int err = 0;
1210 bool partscan = false;
1211 int lo_number;
1212
1213 mutex_lock(&loop_ctl_mutex);
1214 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1215 err = -ENXIO;
1216 goto out_unlock;
1217 }
1218
1219 filp = lo->lo_backing_file;
1220 if (filp == NULL) {
1221 err = -EINVAL;
1222 goto out_unlock;
1223 }
1224
1225 /* freeze request queue during the transition */
1226 blk_mq_freeze_queue(lo->lo_queue);
1227
1228 spin_lock_irq(&lo->lo_lock);
1229 lo->lo_backing_file = NULL;
1230 spin_unlock_irq(&lo->lo_lock);
1231
1232 loop_release_xfer(lo);
1233 lo->transfer = NULL;
1234 lo->ioctl = NULL;
1235 lo->lo_device = NULL;
1236 lo->lo_encryption = NULL;
1237 lo->lo_offset = 0;
1238 lo->lo_sizelimit = 0;
1239 lo->lo_encrypt_key_size = 0;
1240 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1241 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1242 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1243 blk_queue_logical_block_size(lo->lo_queue, 512);
1244 blk_queue_physical_block_size(lo->lo_queue, 512);
1245 blk_queue_io_min(lo->lo_queue, 512);
1246 if (bdev) {
1247 bdput(bdev);
1248 invalidate_bdev(bdev);
1249 bdev->bd_inode->i_mapping->wb_err = 0;
1250 }
1251 set_capacity(lo->lo_disk, 0);
1252 loop_sysfs_exit(lo);
1253 if (bdev) {
1254 bd_set_nr_sectors(bdev, 0);
1255 /* let user-space know about this change */
1256 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1257 }
1258 mapping_set_gfp_mask(filp->f_mapping, gfp);
1259 /* This is safe: open() is still holding a reference. */
1260 module_put(THIS_MODULE);
1261 blk_mq_unfreeze_queue(lo->lo_queue);
1262
1263 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1264 lo_number = lo->lo_number;
1265 loop_unprepare_queue(lo);
1266 out_unlock:
1267 mutex_unlock(&loop_ctl_mutex);
1268 if (partscan) {
1269 /*
1270 * bd_mutex has been held already in release path, so don't
1271 * acquire it if this function is called in such case.
1272 *
1273 * If the reread partition isn't from release path, lo_refcnt
1274 * must be at least one and it can only become zero when the
1275 * current holder is released.
1276 */
1277 if (!release)
1278 mutex_lock(&bdev->bd_mutex);
1279 err = bdev_disk_changed(bdev, false);
1280 if (!release)
1281 mutex_unlock(&bdev->bd_mutex);
1282 if (err)
1283 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1284 __func__, lo_number, err);
1285 /* Device is gone, no point in returning error */
1286 err = 0;
1287 }
1288
1289 /*
1290 * lo->lo_state is set to Lo_unbound here after above partscan has
1291 * finished.
1292 *
1293 * There cannot be anybody else entering __loop_clr_fd() as
1294 * lo->lo_backing_file is already cleared and Lo_rundown state
1295 * protects us from all the other places trying to change the 'lo'
1296 * device.
1297 */
1298 mutex_lock(&loop_ctl_mutex);
1299 lo->lo_flags = 0;
1300 if (!part_shift)
1301 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1302 lo->lo_state = Lo_unbound;
1303 mutex_unlock(&loop_ctl_mutex);
1304
1305 /*
1306 * Need not hold loop_ctl_mutex to fput backing file.
1307 * Calling fput holding loop_ctl_mutex triggers a circular
1308 * lock dependency possibility warning as fput can take
1309 * bd_mutex which is usually taken before loop_ctl_mutex.
1310 */
1311 if (filp)
1312 fput(filp);
1313 return err;
1314 }
1315
1316 static int loop_clr_fd(struct loop_device *lo)
1317 {
1318 int err;
1319
1320 err = mutex_lock_killable(&loop_ctl_mutex);
1321 if (err)
1322 return err;
1323 if (lo->lo_state != Lo_bound) {
1324 mutex_unlock(&loop_ctl_mutex);
1325 return -ENXIO;
1326 }
1327 /*
1328 * If we've explicitly asked to tear down the loop device,
1329 * and it has an elevated reference count, set it for auto-teardown when
1330 * the last reference goes away. This stops $!~#$@ udev from
1331 * preventing teardown because it decided that it needs to run blkid on
1332 * the loopback device whenever they appear. xfstests is notorious for
1333 * failing tests because blkid via udev races with a losetup
1334 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1335 * command to fail with EBUSY.
1336 */
1337 if (atomic_read(&lo->lo_refcnt) > 1) {
1338 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1339 mutex_unlock(&loop_ctl_mutex);
1340 return 0;
1341 }
1342 lo->lo_state = Lo_rundown;
1343 mutex_unlock(&loop_ctl_mutex);
1344
1345 return __loop_clr_fd(lo, false);
1346 }
1347
1348 static int
1349 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1350 {
1351 int err;
1352 struct block_device *bdev;
1353 kuid_t uid = current_uid();
1354 int prev_lo_flags;
1355 bool partscan = false;
1356 bool size_changed = false;
1357
1358 err = mutex_lock_killable(&loop_ctl_mutex);
1359 if (err)
1360 return err;
1361 if (lo->lo_encrypt_key_size &&
1362 !uid_eq(lo->lo_key_owner, uid) &&
1363 !capable(CAP_SYS_ADMIN)) {
1364 err = -EPERM;
1365 goto out_unlock;
1366 }
1367 if (lo->lo_state != Lo_bound) {
1368 err = -ENXIO;
1369 goto out_unlock;
1370 }
1371
1372 if (lo->lo_offset != info->lo_offset ||
1373 lo->lo_sizelimit != info->lo_sizelimit) {
1374 size_changed = true;
1375 sync_blockdev(lo->lo_device);
1376 invalidate_bdev(lo->lo_device);
1377 }
1378
1379 /* I/O need to be drained during transfer transition */
1380 blk_mq_freeze_queue(lo->lo_queue);
1381
1382 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1383 /* If any pages were dirtied after invalidate_bdev(), try again */
1384 err = -EAGAIN;
1385 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1386 __func__, lo->lo_number, lo->lo_file_name,
1387 lo->lo_device->bd_inode->i_mapping->nrpages);
1388 goto out_unfreeze;
1389 }
1390
1391 prev_lo_flags = lo->lo_flags;
1392
1393 err = loop_set_status_from_info(lo, info);
1394 if (err)
1395 goto out_unfreeze;
1396
1397 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1398 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1399 /* For those flags, use the previous values instead */
1400 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1401 /* For flags that can't be cleared, use previous values too */
1402 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1403
1404 if (size_changed) {
1405 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1406 lo->lo_backing_file);
1407 loop_set_size(lo, new_size);
1408 }
1409
1410 loop_config_discard(lo);
1411
1412 /* update dio if lo_offset or transfer is changed */
1413 __loop_update_dio(lo, lo->use_dio);
1414
1415 out_unfreeze:
1416 blk_mq_unfreeze_queue(lo->lo_queue);
1417
1418 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1419 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1420 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1421 bdev = lo->lo_device;
1422 partscan = true;
1423 }
1424 out_unlock:
1425 mutex_unlock(&loop_ctl_mutex);
1426 if (partscan)
1427 loop_reread_partitions(lo, bdev);
1428
1429 return err;
1430 }
1431
1432 static int
1433 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1434 {
1435 struct path path;
1436 struct kstat stat;
1437 int ret;
1438
1439 ret = mutex_lock_killable(&loop_ctl_mutex);
1440 if (ret)
1441 return ret;
1442 if (lo->lo_state != Lo_bound) {
1443 mutex_unlock(&loop_ctl_mutex);
1444 return -ENXIO;
1445 }
1446
1447 memset(info, 0, sizeof(*info));
1448 info->lo_number = lo->lo_number;
1449 info->lo_offset = lo->lo_offset;
1450 info->lo_sizelimit = lo->lo_sizelimit;
1451 info->lo_flags = lo->lo_flags;
1452 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1453 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1454 info->lo_encrypt_type =
1455 lo->lo_encryption ? lo->lo_encryption->number : 0;
1456 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1457 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1458 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1459 lo->lo_encrypt_key_size);
1460 }
1461
1462 /* Drop loop_ctl_mutex while we call into the filesystem. */
1463 path = lo->lo_backing_file->f_path;
1464 path_get(&path);
1465 mutex_unlock(&loop_ctl_mutex);
1466 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1467 if (!ret) {
1468 info->lo_device = huge_encode_dev(stat.dev);
1469 info->lo_inode = stat.ino;
1470 info->lo_rdevice = huge_encode_dev(stat.rdev);
1471 }
1472 path_put(&path);
1473 return ret;
1474 }
1475
1476 static void
1477 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1478 {
1479 memset(info64, 0, sizeof(*info64));
1480 info64->lo_number = info->lo_number;
1481 info64->lo_device = info->lo_device;
1482 info64->lo_inode = info->lo_inode;
1483 info64->lo_rdevice = info->lo_rdevice;
1484 info64->lo_offset = info->lo_offset;
1485 info64->lo_sizelimit = 0;
1486 info64->lo_encrypt_type = info->lo_encrypt_type;
1487 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1488 info64->lo_flags = info->lo_flags;
1489 info64->lo_init[0] = info->lo_init[0];
1490 info64->lo_init[1] = info->lo_init[1];
1491 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1492 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1493 else
1494 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1495 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1496 }
1497
1498 static int
1499 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1500 {
1501 memset(info, 0, sizeof(*info));
1502 info->lo_number = info64->lo_number;
1503 info->lo_device = info64->lo_device;
1504 info->lo_inode = info64->lo_inode;
1505 info->lo_rdevice = info64->lo_rdevice;
1506 info->lo_offset = info64->lo_offset;
1507 info->lo_encrypt_type = info64->lo_encrypt_type;
1508 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1509 info->lo_flags = info64->lo_flags;
1510 info->lo_init[0] = info64->lo_init[0];
1511 info->lo_init[1] = info64->lo_init[1];
1512 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1513 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1514 else
1515 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1516 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1517
1518 /* error in case values were truncated */
1519 if (info->lo_device != info64->lo_device ||
1520 info->lo_rdevice != info64->lo_rdevice ||
1521 info->lo_inode != info64->lo_inode ||
1522 info->lo_offset != info64->lo_offset)
1523 return -EOVERFLOW;
1524
1525 return 0;
1526 }
1527
1528 static int
1529 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1530 {
1531 struct loop_info info;
1532 struct loop_info64 info64;
1533
1534 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1535 return -EFAULT;
1536 loop_info64_from_old(&info, &info64);
1537 return loop_set_status(lo, &info64);
1538 }
1539
1540 static int
1541 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1542 {
1543 struct loop_info64 info64;
1544
1545 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1546 return -EFAULT;
1547 return loop_set_status(lo, &info64);
1548 }
1549
1550 static int
1551 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1552 struct loop_info info;
1553 struct loop_info64 info64;
1554 int err;
1555
1556 if (!arg)
1557 return -EINVAL;
1558 err = loop_get_status(lo, &info64);
1559 if (!err)
1560 err = loop_info64_to_old(&info64, &info);
1561 if (!err && copy_to_user(arg, &info, sizeof(info)))
1562 err = -EFAULT;
1563
1564 return err;
1565 }
1566
1567 static int
1568 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1569 struct loop_info64 info64;
1570 int err;
1571
1572 if (!arg)
1573 return -EINVAL;
1574 err = loop_get_status(lo, &info64);
1575 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1576 err = -EFAULT;
1577
1578 return err;
1579 }
1580
1581 static int loop_set_capacity(struct loop_device *lo)
1582 {
1583 loff_t size;
1584
1585 if (unlikely(lo->lo_state != Lo_bound))
1586 return -ENXIO;
1587
1588 size = get_loop_size(lo, lo->lo_backing_file);
1589 loop_set_size(lo, size);
1590
1591 return 0;
1592 }
1593
1594 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1595 {
1596 int error = -ENXIO;
1597 if (lo->lo_state != Lo_bound)
1598 goto out;
1599
1600 __loop_update_dio(lo, !!arg);
1601 if (lo->use_dio == !!arg)
1602 return 0;
1603 error = -EINVAL;
1604 out:
1605 return error;
1606 }
1607
1608 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1609 {
1610 int err = 0;
1611
1612 if (lo->lo_state != Lo_bound)
1613 return -ENXIO;
1614
1615 err = loop_validate_block_size(arg);
1616 if (err)
1617 return err;
1618
1619 if (lo->lo_queue->limits.logical_block_size == arg)
1620 return 0;
1621
1622 sync_blockdev(lo->lo_device);
1623 invalidate_bdev(lo->lo_device);
1624
1625 blk_mq_freeze_queue(lo->lo_queue);
1626
1627 /* invalidate_bdev should have truncated all the pages */
1628 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1629 err = -EAGAIN;
1630 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1631 __func__, lo->lo_number, lo->lo_file_name,
1632 lo->lo_device->bd_inode->i_mapping->nrpages);
1633 goto out_unfreeze;
1634 }
1635
1636 blk_queue_logical_block_size(lo->lo_queue, arg);
1637 blk_queue_physical_block_size(lo->lo_queue, arg);
1638 blk_queue_io_min(lo->lo_queue, arg);
1639 loop_update_dio(lo);
1640 out_unfreeze:
1641 blk_mq_unfreeze_queue(lo->lo_queue);
1642
1643 return err;
1644 }
1645
1646 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1647 unsigned long arg)
1648 {
1649 int err;
1650
1651 err = mutex_lock_killable(&loop_ctl_mutex);
1652 if (err)
1653 return err;
1654 switch (cmd) {
1655 case LOOP_SET_CAPACITY:
1656 err = loop_set_capacity(lo);
1657 break;
1658 case LOOP_SET_DIRECT_IO:
1659 err = loop_set_dio(lo, arg);
1660 break;
1661 case LOOP_SET_BLOCK_SIZE:
1662 err = loop_set_block_size(lo, arg);
1663 break;
1664 default:
1665 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1666 }
1667 mutex_unlock(&loop_ctl_mutex);
1668 return err;
1669 }
1670
1671 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1672 unsigned int cmd, unsigned long arg)
1673 {
1674 struct loop_device *lo = bdev->bd_disk->private_data;
1675 void __user *argp = (void __user *) arg;
1676 int err;
1677
1678 switch (cmd) {
1679 case LOOP_SET_FD: {
1680 /*
1681 * Legacy case - pass in a zeroed out struct loop_config with
1682 * only the file descriptor set , which corresponds with the
1683 * default parameters we'd have used otherwise.
1684 */
1685 struct loop_config config;
1686
1687 memset(&config, 0, sizeof(config));
1688 config.fd = arg;
1689
1690 return loop_configure(lo, mode, bdev, &config);
1691 }
1692 case LOOP_CONFIGURE: {
1693 struct loop_config config;
1694
1695 if (copy_from_user(&config, argp, sizeof(config)))
1696 return -EFAULT;
1697
1698 return loop_configure(lo, mode, bdev, &config);
1699 }
1700 case LOOP_CHANGE_FD:
1701 return loop_change_fd(lo, bdev, arg);
1702 case LOOP_CLR_FD:
1703 return loop_clr_fd(lo);
1704 case LOOP_SET_STATUS:
1705 err = -EPERM;
1706 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1707 err = loop_set_status_old(lo, argp);
1708 }
1709 break;
1710 case LOOP_GET_STATUS:
1711 return loop_get_status_old(lo, argp);
1712 case LOOP_SET_STATUS64:
1713 err = -EPERM;
1714 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1715 err = loop_set_status64(lo, argp);
1716 }
1717 break;
1718 case LOOP_GET_STATUS64:
1719 return loop_get_status64(lo, argp);
1720 case LOOP_SET_CAPACITY:
1721 case LOOP_SET_DIRECT_IO:
1722 case LOOP_SET_BLOCK_SIZE:
1723 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1724 return -EPERM;
1725 fallthrough;
1726 default:
1727 err = lo_simple_ioctl(lo, cmd, arg);
1728 break;
1729 }
1730
1731 return err;
1732 }
1733
1734 #ifdef CONFIG_COMPAT
1735 struct compat_loop_info {
1736 compat_int_t lo_number; /* ioctl r/o */
1737 compat_dev_t lo_device; /* ioctl r/o */
1738 compat_ulong_t lo_inode; /* ioctl r/o */
1739 compat_dev_t lo_rdevice; /* ioctl r/o */
1740 compat_int_t lo_offset;
1741 compat_int_t lo_encrypt_type;
1742 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1743 compat_int_t lo_flags; /* ioctl r/o */
1744 char lo_name[LO_NAME_SIZE];
1745 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1746 compat_ulong_t lo_init[2];
1747 char reserved[4];
1748 };
1749
1750 /*
1751 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1752 * - noinlined to reduce stack space usage in main part of driver
1753 */
1754 static noinline int
1755 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1756 struct loop_info64 *info64)
1757 {
1758 struct compat_loop_info info;
1759
1760 if (copy_from_user(&info, arg, sizeof(info)))
1761 return -EFAULT;
1762
1763 memset(info64, 0, sizeof(*info64));
1764 info64->lo_number = info.lo_number;
1765 info64->lo_device = info.lo_device;
1766 info64->lo_inode = info.lo_inode;
1767 info64->lo_rdevice = info.lo_rdevice;
1768 info64->lo_offset = info.lo_offset;
1769 info64->lo_sizelimit = 0;
1770 info64->lo_encrypt_type = info.lo_encrypt_type;
1771 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1772 info64->lo_flags = info.lo_flags;
1773 info64->lo_init[0] = info.lo_init[0];
1774 info64->lo_init[1] = info.lo_init[1];
1775 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1776 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1777 else
1778 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1779 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1780 return 0;
1781 }
1782
1783 /*
1784 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1785 * - noinlined to reduce stack space usage in main part of driver
1786 */
1787 static noinline int
1788 loop_info64_to_compat(const struct loop_info64 *info64,
1789 struct compat_loop_info __user *arg)
1790 {
1791 struct compat_loop_info info;
1792
1793 memset(&info, 0, sizeof(info));
1794 info.lo_number = info64->lo_number;
1795 info.lo_device = info64->lo_device;
1796 info.lo_inode = info64->lo_inode;
1797 info.lo_rdevice = info64->lo_rdevice;
1798 info.lo_offset = info64->lo_offset;
1799 info.lo_encrypt_type = info64->lo_encrypt_type;
1800 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1801 info.lo_flags = info64->lo_flags;
1802 info.lo_init[0] = info64->lo_init[0];
1803 info.lo_init[1] = info64->lo_init[1];
1804 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1805 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1806 else
1807 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1808 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1809
1810 /* error in case values were truncated */
1811 if (info.lo_device != info64->lo_device ||
1812 info.lo_rdevice != info64->lo_rdevice ||
1813 info.lo_inode != info64->lo_inode ||
1814 info.lo_offset != info64->lo_offset ||
1815 info.lo_init[0] != info64->lo_init[0] ||
1816 info.lo_init[1] != info64->lo_init[1])
1817 return -EOVERFLOW;
1818
1819 if (copy_to_user(arg, &info, sizeof(info)))
1820 return -EFAULT;
1821 return 0;
1822 }
1823
1824 static int
1825 loop_set_status_compat(struct loop_device *lo,
1826 const struct compat_loop_info __user *arg)
1827 {
1828 struct loop_info64 info64;
1829 int ret;
1830
1831 ret = loop_info64_from_compat(arg, &info64);
1832 if (ret < 0)
1833 return ret;
1834 return loop_set_status(lo, &info64);
1835 }
1836
1837 static int
1838 loop_get_status_compat(struct loop_device *lo,
1839 struct compat_loop_info __user *arg)
1840 {
1841 struct loop_info64 info64;
1842 int err;
1843
1844 if (!arg)
1845 return -EINVAL;
1846 err = loop_get_status(lo, &info64);
1847 if (!err)
1848 err = loop_info64_to_compat(&info64, arg);
1849 return err;
1850 }
1851
1852 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1853 unsigned int cmd, unsigned long arg)
1854 {
1855 struct loop_device *lo = bdev->bd_disk->private_data;
1856 int err;
1857
1858 switch(cmd) {
1859 case LOOP_SET_STATUS:
1860 err = loop_set_status_compat(lo,
1861 (const struct compat_loop_info __user *)arg);
1862 break;
1863 case LOOP_GET_STATUS:
1864 err = loop_get_status_compat(lo,
1865 (struct compat_loop_info __user *)arg);
1866 break;
1867 case LOOP_SET_CAPACITY:
1868 case LOOP_CLR_FD:
1869 case LOOP_GET_STATUS64:
1870 case LOOP_SET_STATUS64:
1871 case LOOP_CONFIGURE:
1872 arg = (unsigned long) compat_ptr(arg);
1873 fallthrough;
1874 case LOOP_SET_FD:
1875 case LOOP_CHANGE_FD:
1876 case LOOP_SET_BLOCK_SIZE:
1877 case LOOP_SET_DIRECT_IO:
1878 err = lo_ioctl(bdev, mode, cmd, arg);
1879 break;
1880 default:
1881 err = -ENOIOCTLCMD;
1882 break;
1883 }
1884 return err;
1885 }
1886 #endif
1887
1888 static int lo_open(struct block_device *bdev, fmode_t mode)
1889 {
1890 struct loop_device *lo;
1891 int err;
1892
1893 err = mutex_lock_killable(&loop_ctl_mutex);
1894 if (err)
1895 return err;
1896 lo = bdev->bd_disk->private_data;
1897 if (!lo) {
1898 err = -ENXIO;
1899 goto out;
1900 }
1901
1902 atomic_inc(&lo->lo_refcnt);
1903 out:
1904 mutex_unlock(&loop_ctl_mutex);
1905 return err;
1906 }
1907
1908 static void lo_release(struct gendisk *disk, fmode_t mode)
1909 {
1910 struct loop_device *lo;
1911
1912 mutex_lock(&loop_ctl_mutex);
1913 lo = disk->private_data;
1914 if (atomic_dec_return(&lo->lo_refcnt))
1915 goto out_unlock;
1916
1917 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1918 if (lo->lo_state != Lo_bound)
1919 goto out_unlock;
1920 lo->lo_state = Lo_rundown;
1921 mutex_unlock(&loop_ctl_mutex);
1922 /*
1923 * In autoclear mode, stop the loop thread
1924 * and remove configuration after last close.
1925 */
1926 __loop_clr_fd(lo, true);
1927 return;
1928 } else if (lo->lo_state == Lo_bound) {
1929 /*
1930 * Otherwise keep thread (if running) and config,
1931 * but flush possible ongoing bios in thread.
1932 */
1933 blk_mq_freeze_queue(lo->lo_queue);
1934 blk_mq_unfreeze_queue(lo->lo_queue);
1935 }
1936
1937 out_unlock:
1938 mutex_unlock(&loop_ctl_mutex);
1939 }
1940
1941 static const struct block_device_operations lo_fops = {
1942 .owner = THIS_MODULE,
1943 .open = lo_open,
1944 .release = lo_release,
1945 .ioctl = lo_ioctl,
1946 #ifdef CONFIG_COMPAT
1947 .compat_ioctl = lo_compat_ioctl,
1948 #endif
1949 };
1950
1951 /*
1952 * And now the modules code and kernel interface.
1953 */
1954 static int max_loop;
1955 module_param(max_loop, int, 0444);
1956 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1957 module_param(max_part, int, 0444);
1958 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1959 MODULE_LICENSE("GPL");
1960 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1961
1962 int loop_register_transfer(struct loop_func_table *funcs)
1963 {
1964 unsigned int n = funcs->number;
1965
1966 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1967 return -EINVAL;
1968 xfer_funcs[n] = funcs;
1969 return 0;
1970 }
1971
1972 static int unregister_transfer_cb(int id, void *ptr, void *data)
1973 {
1974 struct loop_device *lo = ptr;
1975 struct loop_func_table *xfer = data;
1976
1977 mutex_lock(&loop_ctl_mutex);
1978 if (lo->lo_encryption == xfer)
1979 loop_release_xfer(lo);
1980 mutex_unlock(&loop_ctl_mutex);
1981 return 0;
1982 }
1983
1984 int loop_unregister_transfer(int number)
1985 {
1986 unsigned int n = number;
1987 struct loop_func_table *xfer;
1988
1989 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1990 return -EINVAL;
1991
1992 xfer_funcs[n] = NULL;
1993 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1994 return 0;
1995 }
1996
1997 EXPORT_SYMBOL(loop_register_transfer);
1998 EXPORT_SYMBOL(loop_unregister_transfer);
1999
2000 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
2001 const struct blk_mq_queue_data *bd)
2002 {
2003 struct request *rq = bd->rq;
2004 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2005 struct loop_device *lo = rq->q->queuedata;
2006
2007 blk_mq_start_request(rq);
2008
2009 if (lo->lo_state != Lo_bound)
2010 return BLK_STS_IOERR;
2011
2012 switch (req_op(rq)) {
2013 case REQ_OP_FLUSH:
2014 case REQ_OP_DISCARD:
2015 case REQ_OP_WRITE_ZEROES:
2016 cmd->use_aio = false;
2017 break;
2018 default:
2019 cmd->use_aio = lo->use_dio;
2020 break;
2021 }
2022
2023 /* always use the first bio's css */
2024 #ifdef CONFIG_BLK_CGROUP
2025 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2026 cmd->css = &bio_blkcg(rq->bio)->css;
2027 css_get(cmd->css);
2028 } else
2029 #endif
2030 cmd->css = NULL;
2031 kthread_queue_work(&lo->worker, &cmd->work);
2032
2033 return BLK_STS_OK;
2034 }
2035
2036 static void loop_handle_cmd(struct loop_cmd *cmd)
2037 {
2038 struct request *rq = blk_mq_rq_from_pdu(cmd);
2039 const bool write = op_is_write(req_op(rq));
2040 struct loop_device *lo = rq->q->queuedata;
2041 int ret = 0;
2042
2043 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2044 ret = -EIO;
2045 goto failed;
2046 }
2047
2048 ret = do_req_filebacked(lo, rq);
2049 failed:
2050 /* complete non-aio request */
2051 if (!cmd->use_aio || ret) {
2052 if (ret == -EOPNOTSUPP)
2053 cmd->ret = ret;
2054 else
2055 cmd->ret = ret ? -EIO : 0;
2056 if (likely(!blk_should_fake_timeout(rq->q)))
2057 blk_mq_complete_request(rq);
2058 }
2059 }
2060
2061 static void loop_queue_work(struct kthread_work *work)
2062 {
2063 struct loop_cmd *cmd =
2064 container_of(work, struct loop_cmd, work);
2065
2066 loop_handle_cmd(cmd);
2067 }
2068
2069 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2070 unsigned int hctx_idx, unsigned int numa_node)
2071 {
2072 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2073
2074 kthread_init_work(&cmd->work, loop_queue_work);
2075 return 0;
2076 }
2077
2078 static const struct blk_mq_ops loop_mq_ops = {
2079 .queue_rq = loop_queue_rq,
2080 .init_request = loop_init_request,
2081 .complete = lo_complete_rq,
2082 };
2083
2084 static int loop_add(struct loop_device **l, int i)
2085 {
2086 struct loop_device *lo;
2087 struct gendisk *disk;
2088 int err;
2089
2090 err = -ENOMEM;
2091 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2092 if (!lo)
2093 goto out;
2094
2095 lo->lo_state = Lo_unbound;
2096
2097 /* allocate id, if @id >= 0, we're requesting that specific id */
2098 if (i >= 0) {
2099 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2100 if (err == -ENOSPC)
2101 err = -EEXIST;
2102 } else {
2103 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2104 }
2105 if (err < 0)
2106 goto out_free_dev;
2107 i = err;
2108
2109 err = -ENOMEM;
2110 lo->tag_set.ops = &loop_mq_ops;
2111 lo->tag_set.nr_hw_queues = 1;
2112 lo->tag_set.queue_depth = 128;
2113 lo->tag_set.numa_node = NUMA_NO_NODE;
2114 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2115 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2116 lo->tag_set.driver_data = lo;
2117
2118 err = blk_mq_alloc_tag_set(&lo->tag_set);
2119 if (err)
2120 goto out_free_idr;
2121
2122 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2123 if (IS_ERR(lo->lo_queue)) {
2124 err = PTR_ERR(lo->lo_queue);
2125 goto out_cleanup_tags;
2126 }
2127 lo->lo_queue->queuedata = lo;
2128
2129 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2130
2131 /*
2132 * By default, we do buffer IO, so it doesn't make sense to enable
2133 * merge because the I/O submitted to backing file is handled page by
2134 * page. For directio mode, merge does help to dispatch bigger request
2135 * to underlayer disk. We will enable merge once directio is enabled.
2136 */
2137 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2138
2139 err = -ENOMEM;
2140 disk = lo->lo_disk = alloc_disk(1 << part_shift);
2141 if (!disk)
2142 goto out_free_queue;
2143
2144 /*
2145 * Disable partition scanning by default. The in-kernel partition
2146 * scanning can be requested individually per-device during its
2147 * setup. Userspace can always add and remove partitions from all
2148 * devices. The needed partition minors are allocated from the
2149 * extended minor space, the main loop device numbers will continue
2150 * to match the loop minors, regardless of the number of partitions
2151 * used.
2152 *
2153 * If max_part is given, partition scanning is globally enabled for
2154 * all loop devices. The minors for the main loop devices will be
2155 * multiples of max_part.
2156 *
2157 * Note: Global-for-all-devices, set-only-at-init, read-only module
2158 * parameteters like 'max_loop' and 'max_part' make things needlessly
2159 * complicated, are too static, inflexible and may surprise
2160 * userspace tools. Parameters like this in general should be avoided.
2161 */
2162 if (!part_shift)
2163 disk->flags |= GENHD_FL_NO_PART_SCAN;
2164 disk->flags |= GENHD_FL_EXT_DEVT;
2165 atomic_set(&lo->lo_refcnt, 0);
2166 lo->lo_number = i;
2167 spin_lock_init(&lo->lo_lock);
2168 disk->major = LOOP_MAJOR;
2169 disk->first_minor = i << part_shift;
2170 disk->fops = &lo_fops;
2171 disk->private_data = lo;
2172 disk->queue = lo->lo_queue;
2173 sprintf(disk->disk_name, "loop%d", i);
2174 add_disk(disk);
2175 *l = lo;
2176 return lo->lo_number;
2177
2178 out_free_queue:
2179 blk_cleanup_queue(lo->lo_queue);
2180 out_cleanup_tags:
2181 blk_mq_free_tag_set(&lo->tag_set);
2182 out_free_idr:
2183 idr_remove(&loop_index_idr, i);
2184 out_free_dev:
2185 kfree(lo);
2186 out:
2187 return err;
2188 }
2189
2190 static void loop_remove(struct loop_device *lo)
2191 {
2192 del_gendisk(lo->lo_disk);
2193 blk_cleanup_queue(lo->lo_queue);
2194 blk_mq_free_tag_set(&lo->tag_set);
2195 put_disk(lo->lo_disk);
2196 kfree(lo);
2197 }
2198
2199 static int find_free_cb(int id, void *ptr, void *data)
2200 {
2201 struct loop_device *lo = ptr;
2202 struct loop_device **l = data;
2203
2204 if (lo->lo_state == Lo_unbound) {
2205 *l = lo;
2206 return 1;
2207 }
2208 return 0;
2209 }
2210
2211 static int loop_lookup(struct loop_device **l, int i)
2212 {
2213 struct loop_device *lo;
2214 int ret = -ENODEV;
2215
2216 if (i < 0) {
2217 int err;
2218
2219 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2220 if (err == 1) {
2221 *l = lo;
2222 ret = lo->lo_number;
2223 }
2224 goto out;
2225 }
2226
2227 /* lookup and return a specific i */
2228 lo = idr_find(&loop_index_idr, i);
2229 if (lo) {
2230 *l = lo;
2231 ret = lo->lo_number;
2232 }
2233 out:
2234 return ret;
2235 }
2236
2237 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2238 {
2239 struct loop_device *lo;
2240 struct kobject *kobj;
2241 int err;
2242
2243 mutex_lock(&loop_ctl_mutex);
2244 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2245 if (err < 0)
2246 err = loop_add(&lo, MINOR(dev) >> part_shift);
2247 if (err < 0)
2248 kobj = NULL;
2249 else
2250 kobj = get_disk_and_module(lo->lo_disk);
2251 mutex_unlock(&loop_ctl_mutex);
2252
2253 *part = 0;
2254 return kobj;
2255 }
2256
2257 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2258 unsigned long parm)
2259 {
2260 struct loop_device *lo;
2261 int ret;
2262
2263 ret = mutex_lock_killable(&loop_ctl_mutex);
2264 if (ret)
2265 return ret;
2266
2267 ret = -ENOSYS;
2268 switch (cmd) {
2269 case LOOP_CTL_ADD:
2270 ret = loop_lookup(&lo, parm);
2271 if (ret >= 0) {
2272 ret = -EEXIST;
2273 break;
2274 }
2275 ret = loop_add(&lo, parm);
2276 break;
2277 case LOOP_CTL_REMOVE:
2278 ret = loop_lookup(&lo, parm);
2279 if (ret < 0)
2280 break;
2281 if (lo->lo_state != Lo_unbound) {
2282 ret = -EBUSY;
2283 break;
2284 }
2285 if (atomic_read(&lo->lo_refcnt) > 0) {
2286 ret = -EBUSY;
2287 break;
2288 }
2289 lo->lo_disk->private_data = NULL;
2290 idr_remove(&loop_index_idr, lo->lo_number);
2291 loop_remove(lo);
2292 break;
2293 case LOOP_CTL_GET_FREE:
2294 ret = loop_lookup(&lo, -1);
2295 if (ret >= 0)
2296 break;
2297 ret = loop_add(&lo, -1);
2298 }
2299 mutex_unlock(&loop_ctl_mutex);
2300
2301 return ret;
2302 }
2303
2304 static const struct file_operations loop_ctl_fops = {
2305 .open = nonseekable_open,
2306 .unlocked_ioctl = loop_control_ioctl,
2307 .compat_ioctl = loop_control_ioctl,
2308 .owner = THIS_MODULE,
2309 .llseek = noop_llseek,
2310 };
2311
2312 static struct miscdevice loop_misc = {
2313 .minor = LOOP_CTRL_MINOR,
2314 .name = "loop-control",
2315 .fops = &loop_ctl_fops,
2316 };
2317
2318 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2319 MODULE_ALIAS("devname:loop-control");
2320
2321 static int __init loop_init(void)
2322 {
2323 int i, nr;
2324 unsigned long range;
2325 struct loop_device *lo;
2326 int err;
2327
2328 part_shift = 0;
2329 if (max_part > 0) {
2330 part_shift = fls(max_part);
2331
2332 /*
2333 * Adjust max_part according to part_shift as it is exported
2334 * to user space so that user can decide correct minor number
2335 * if [s]he want to create more devices.
2336 *
2337 * Note that -1 is required because partition 0 is reserved
2338 * for the whole disk.
2339 */
2340 max_part = (1UL << part_shift) - 1;
2341 }
2342
2343 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2344 err = -EINVAL;
2345 goto err_out;
2346 }
2347
2348 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2349 err = -EINVAL;
2350 goto err_out;
2351 }
2352
2353 /*
2354 * If max_loop is specified, create that many devices upfront.
2355 * This also becomes a hard limit. If max_loop is not specified,
2356 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2357 * init time. Loop devices can be requested on-demand with the
2358 * /dev/loop-control interface, or be instantiated by accessing
2359 * a 'dead' device node.
2360 */
2361 if (max_loop) {
2362 nr = max_loop;
2363 range = max_loop << part_shift;
2364 } else {
2365 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2366 range = 1UL << MINORBITS;
2367 }
2368
2369 err = misc_register(&loop_misc);
2370 if (err < 0)
2371 goto err_out;
2372
2373
2374 if (register_blkdev(LOOP_MAJOR, "loop")) {
2375 err = -EIO;
2376 goto misc_out;
2377 }
2378
2379 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2380 THIS_MODULE, loop_probe, NULL, NULL);
2381
2382 /* pre-create number of devices given by config or max_loop */
2383 mutex_lock(&loop_ctl_mutex);
2384 for (i = 0; i < nr; i++)
2385 loop_add(&lo, i);
2386 mutex_unlock(&loop_ctl_mutex);
2387
2388 printk(KERN_INFO "loop: module loaded\n");
2389 return 0;
2390
2391 misc_out:
2392 misc_deregister(&loop_misc);
2393 err_out:
2394 return err;
2395 }
2396
2397 static int loop_exit_cb(int id, void *ptr, void *data)
2398 {
2399 struct loop_device *lo = ptr;
2400
2401 loop_remove(lo);
2402 return 0;
2403 }
2404
2405 static void __exit loop_exit(void)
2406 {
2407 unsigned long range;
2408
2409 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2410
2411 mutex_lock(&loop_ctl_mutex);
2412
2413 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2414 idr_destroy(&loop_index_idr);
2415
2416 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2417 unregister_blkdev(LOOP_MAJOR, "loop");
2418
2419 misc_deregister(&loop_misc);
2420
2421 mutex_unlock(&loop_ctl_mutex);
2422 }
2423
2424 module_init(loop_init);
2425 module_exit(loop_exit);
2426
2427 #ifndef MODULE
2428 static int __init max_loop_setup(char *str)
2429 {
2430 max_loop = simple_strtol(str, NULL, 0);
2431 return 1;
2432 }
2433
2434 __setup("max_loop=", max_loop_setup);
2435 #endif