]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/block/loop.c
treewide: kmalloc() -> kmalloc_array()
[mirror_ubuntu-jammy-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80
81 #include "loop.h"
82
83 #include <linux/uaccess.h>
84
85 static DEFINE_IDR(loop_index_idr);
86 static DEFINE_MUTEX(loop_index_mutex);
87
88 static int max_part;
89 static int part_shift;
90
91 static int transfer_xor(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
95 {
96 char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 char *in, *out, *key;
99 int i, keysize;
100
101 if (cmd == READ) {
102 in = raw_buf;
103 out = loop_buf;
104 } else {
105 in = loop_buf;
106 out = raw_buf;
107 }
108
109 key = lo->lo_encrypt_key;
110 keysize = lo->lo_encrypt_key_size;
111 for (i = 0; i < size; i++)
112 *out++ = *in++ ^ key[(i & 511) % keysize];
113
114 kunmap_atomic(loop_buf);
115 kunmap_atomic(raw_buf);
116 cond_resched();
117 return 0;
118 }
119
120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
121 {
122 if (unlikely(info->lo_encrypt_key_size <= 0))
123 return -EINVAL;
124 return 0;
125 }
126
127 static struct loop_func_table none_funcs = {
128 .number = LO_CRYPT_NONE,
129 };
130
131 static struct loop_func_table xor_funcs = {
132 .number = LO_CRYPT_XOR,
133 .transfer = transfer_xor,
134 .init = xor_init
135 };
136
137 /* xfer_funcs[0] is special - its release function is never called */
138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
139 &none_funcs,
140 &xor_funcs
141 };
142
143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
144 {
145 loff_t loopsize;
146
147 /* Compute loopsize in bytes */
148 loopsize = i_size_read(file->f_mapping->host);
149 if (offset > 0)
150 loopsize -= offset;
151 /* offset is beyond i_size, weird but possible */
152 if (loopsize < 0)
153 return 0;
154
155 if (sizelimit > 0 && sizelimit < loopsize)
156 loopsize = sizelimit;
157 /*
158 * Unfortunately, if we want to do I/O on the device,
159 * the number of 512-byte sectors has to fit into a sector_t.
160 */
161 return loopsize >> 9;
162 }
163
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165 {
166 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 }
168
169 static void __loop_update_dio(struct loop_device *lo, bool dio)
170 {
171 struct file *file = lo->lo_backing_file;
172 struct address_space *mapping = file->f_mapping;
173 struct inode *inode = mapping->host;
174 unsigned short sb_bsize = 0;
175 unsigned dio_align = 0;
176 bool use_dio;
177
178 if (inode->i_sb->s_bdev) {
179 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
180 dio_align = sb_bsize - 1;
181 }
182
183 /*
184 * We support direct I/O only if lo_offset is aligned with the
185 * logical I/O size of backing device, and the logical block
186 * size of loop is bigger than the backing device's and the loop
187 * needn't transform transfer.
188 *
189 * TODO: the above condition may be loosed in the future, and
190 * direct I/O may be switched runtime at that time because most
191 * of requests in sane applications should be PAGE_SIZE aligned
192 */
193 if (dio) {
194 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
195 !(lo->lo_offset & dio_align) &&
196 mapping->a_ops->direct_IO &&
197 !lo->transfer)
198 use_dio = true;
199 else
200 use_dio = false;
201 } else {
202 use_dio = false;
203 }
204
205 if (lo->use_dio == use_dio)
206 return;
207
208 /* flush dirty pages before changing direct IO */
209 vfs_fsync(file, 0);
210
211 /*
212 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
213 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
214 * will get updated by ioctl(LOOP_GET_STATUS)
215 */
216 blk_mq_freeze_queue(lo->lo_queue);
217 lo->use_dio = use_dio;
218 if (use_dio) {
219 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
220 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
221 } else {
222 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
223 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
224 }
225 blk_mq_unfreeze_queue(lo->lo_queue);
226 }
227
228 static int
229 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
230 {
231 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
232 sector_t x = (sector_t)size;
233 struct block_device *bdev = lo->lo_device;
234
235 if (unlikely((loff_t)x != size))
236 return -EFBIG;
237 if (lo->lo_offset != offset)
238 lo->lo_offset = offset;
239 if (lo->lo_sizelimit != sizelimit)
240 lo->lo_sizelimit = sizelimit;
241 set_capacity(lo->lo_disk, x);
242 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
243 /* let user-space know about the new size */
244 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
245 return 0;
246 }
247
248 static inline int
249 lo_do_transfer(struct loop_device *lo, int cmd,
250 struct page *rpage, unsigned roffs,
251 struct page *lpage, unsigned loffs,
252 int size, sector_t rblock)
253 {
254 int ret;
255
256 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
257 if (likely(!ret))
258 return 0;
259
260 printk_ratelimited(KERN_ERR
261 "loop: Transfer error at byte offset %llu, length %i.\n",
262 (unsigned long long)rblock << 9, size);
263 return ret;
264 }
265
266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
267 {
268 struct iov_iter i;
269 ssize_t bw;
270
271 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
272
273 file_start_write(file);
274 bw = vfs_iter_write(file, &i, ppos, 0);
275 file_end_write(file);
276
277 if (likely(bw == bvec->bv_len))
278 return 0;
279
280 printk_ratelimited(KERN_ERR
281 "loop: Write error at byte offset %llu, length %i.\n",
282 (unsigned long long)*ppos, bvec->bv_len);
283 if (bw >= 0)
284 bw = -EIO;
285 return bw;
286 }
287
288 static int lo_write_simple(struct loop_device *lo, struct request *rq,
289 loff_t pos)
290 {
291 struct bio_vec bvec;
292 struct req_iterator iter;
293 int ret = 0;
294
295 rq_for_each_segment(bvec, rq, iter) {
296 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
297 if (ret < 0)
298 break;
299 cond_resched();
300 }
301
302 return ret;
303 }
304
305 /*
306 * This is the slow, transforming version that needs to double buffer the
307 * data as it cannot do the transformations in place without having direct
308 * access to the destination pages of the backing file.
309 */
310 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
311 loff_t pos)
312 {
313 struct bio_vec bvec, b;
314 struct req_iterator iter;
315 struct page *page;
316 int ret = 0;
317
318 page = alloc_page(GFP_NOIO);
319 if (unlikely(!page))
320 return -ENOMEM;
321
322 rq_for_each_segment(bvec, rq, iter) {
323 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
324 bvec.bv_offset, bvec.bv_len, pos >> 9);
325 if (unlikely(ret))
326 break;
327
328 b.bv_page = page;
329 b.bv_offset = 0;
330 b.bv_len = bvec.bv_len;
331 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
332 if (ret < 0)
333 break;
334 }
335
336 __free_page(page);
337 return ret;
338 }
339
340 static int lo_read_simple(struct loop_device *lo, struct request *rq,
341 loff_t pos)
342 {
343 struct bio_vec bvec;
344 struct req_iterator iter;
345 struct iov_iter i;
346 ssize_t len;
347
348 rq_for_each_segment(bvec, rq, iter) {
349 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
350 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
351 if (len < 0)
352 return len;
353
354 flush_dcache_page(bvec.bv_page);
355
356 if (len != bvec.bv_len) {
357 struct bio *bio;
358
359 __rq_for_each_bio(bio, rq)
360 zero_fill_bio(bio);
361 break;
362 }
363 cond_resched();
364 }
365
366 return 0;
367 }
368
369 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
370 loff_t pos)
371 {
372 struct bio_vec bvec, b;
373 struct req_iterator iter;
374 struct iov_iter i;
375 struct page *page;
376 ssize_t len;
377 int ret = 0;
378
379 page = alloc_page(GFP_NOIO);
380 if (unlikely(!page))
381 return -ENOMEM;
382
383 rq_for_each_segment(bvec, rq, iter) {
384 loff_t offset = pos;
385
386 b.bv_page = page;
387 b.bv_offset = 0;
388 b.bv_len = bvec.bv_len;
389
390 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
391 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
392 if (len < 0) {
393 ret = len;
394 goto out_free_page;
395 }
396
397 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
398 bvec.bv_offset, len, offset >> 9);
399 if (ret)
400 goto out_free_page;
401
402 flush_dcache_page(bvec.bv_page);
403
404 if (len != bvec.bv_len) {
405 struct bio *bio;
406
407 __rq_for_each_bio(bio, rq)
408 zero_fill_bio(bio);
409 break;
410 }
411 }
412
413 ret = 0;
414 out_free_page:
415 __free_page(page);
416 return ret;
417 }
418
419 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
420 {
421 /*
422 * We use punch hole to reclaim the free space used by the
423 * image a.k.a. discard. However we do not support discard if
424 * encryption is enabled, because it may give an attacker
425 * useful information.
426 */
427 struct file *file = lo->lo_backing_file;
428 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
429 int ret;
430
431 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
432 ret = -EOPNOTSUPP;
433 goto out;
434 }
435
436 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
437 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
438 ret = -EIO;
439 out:
440 return ret;
441 }
442
443 static int lo_req_flush(struct loop_device *lo, struct request *rq)
444 {
445 struct file *file = lo->lo_backing_file;
446 int ret = vfs_fsync(file, 0);
447 if (unlikely(ret && ret != -EINVAL))
448 ret = -EIO;
449
450 return ret;
451 }
452
453 static void lo_complete_rq(struct request *rq)
454 {
455 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
456 blk_status_t ret = BLK_STS_OK;
457
458 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
459 req_op(rq) != REQ_OP_READ) {
460 if (cmd->ret < 0)
461 ret = BLK_STS_IOERR;
462 goto end_io;
463 }
464
465 /*
466 * Short READ - if we got some data, advance our request and
467 * retry it. If we got no data, end the rest with EIO.
468 */
469 if (cmd->ret) {
470 blk_update_request(rq, BLK_STS_OK, cmd->ret);
471 cmd->ret = 0;
472 blk_mq_requeue_request(rq, true);
473 } else {
474 if (cmd->use_aio) {
475 struct bio *bio = rq->bio;
476
477 while (bio) {
478 zero_fill_bio(bio);
479 bio = bio->bi_next;
480 }
481 }
482 ret = BLK_STS_IOERR;
483 end_io:
484 blk_mq_end_request(rq, ret);
485 }
486 }
487
488 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
489 {
490 struct request *rq = blk_mq_rq_from_pdu(cmd);
491
492 if (!atomic_dec_and_test(&cmd->ref))
493 return;
494 kfree(cmd->bvec);
495 cmd->bvec = NULL;
496 blk_mq_complete_request(rq);
497 }
498
499 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
500 {
501 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
502
503 if (cmd->css)
504 css_put(cmd->css);
505 cmd->ret = ret;
506 lo_rw_aio_do_completion(cmd);
507 }
508
509 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
510 loff_t pos, bool rw)
511 {
512 struct iov_iter iter;
513 struct bio_vec *bvec;
514 struct request *rq = blk_mq_rq_from_pdu(cmd);
515 struct bio *bio = rq->bio;
516 struct file *file = lo->lo_backing_file;
517 unsigned int offset;
518 int segments = 0;
519 int ret;
520
521 if (rq->bio != rq->biotail) {
522 struct req_iterator iter;
523 struct bio_vec tmp;
524
525 __rq_for_each_bio(bio, rq)
526 segments += bio_segments(bio);
527 bvec = kmalloc_array(segments, sizeof(struct bio_vec),
528 GFP_NOIO);
529 if (!bvec)
530 return -EIO;
531 cmd->bvec = bvec;
532
533 /*
534 * The bios of the request may be started from the middle of
535 * the 'bvec' because of bio splitting, so we can't directly
536 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
537 * API will take care of all details for us.
538 */
539 rq_for_each_segment(tmp, rq, iter) {
540 *bvec = tmp;
541 bvec++;
542 }
543 bvec = cmd->bvec;
544 offset = 0;
545 } else {
546 /*
547 * Same here, this bio may be started from the middle of the
548 * 'bvec' because of bio splitting, so offset from the bvec
549 * must be passed to iov iterator
550 */
551 offset = bio->bi_iter.bi_bvec_done;
552 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
553 segments = bio_segments(bio);
554 }
555 atomic_set(&cmd->ref, 2);
556
557 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
558 segments, blk_rq_bytes(rq));
559 iter.iov_offset = offset;
560
561 cmd->iocb.ki_pos = pos;
562 cmd->iocb.ki_filp = file;
563 cmd->iocb.ki_complete = lo_rw_aio_complete;
564 cmd->iocb.ki_flags = IOCB_DIRECT;
565 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
566 if (cmd->css)
567 kthread_associate_blkcg(cmd->css);
568
569 if (rw == WRITE)
570 ret = call_write_iter(file, &cmd->iocb, &iter);
571 else
572 ret = call_read_iter(file, &cmd->iocb, &iter);
573
574 lo_rw_aio_do_completion(cmd);
575 kthread_associate_blkcg(NULL);
576
577 if (ret != -EIOCBQUEUED)
578 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
579 return 0;
580 }
581
582 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
583 {
584 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
585 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
586
587 /*
588 * lo_write_simple and lo_read_simple should have been covered
589 * by io submit style function like lo_rw_aio(), one blocker
590 * is that lo_read_simple() need to call flush_dcache_page after
591 * the page is written from kernel, and it isn't easy to handle
592 * this in io submit style function which submits all segments
593 * of the req at one time. And direct read IO doesn't need to
594 * run flush_dcache_page().
595 */
596 switch (req_op(rq)) {
597 case REQ_OP_FLUSH:
598 return lo_req_flush(lo, rq);
599 case REQ_OP_DISCARD:
600 case REQ_OP_WRITE_ZEROES:
601 return lo_discard(lo, rq, pos);
602 case REQ_OP_WRITE:
603 if (lo->transfer)
604 return lo_write_transfer(lo, rq, pos);
605 else if (cmd->use_aio)
606 return lo_rw_aio(lo, cmd, pos, WRITE);
607 else
608 return lo_write_simple(lo, rq, pos);
609 case REQ_OP_READ:
610 if (lo->transfer)
611 return lo_read_transfer(lo, rq, pos);
612 else if (cmd->use_aio)
613 return lo_rw_aio(lo, cmd, pos, READ);
614 else
615 return lo_read_simple(lo, rq, pos);
616 default:
617 WARN_ON_ONCE(1);
618 return -EIO;
619 break;
620 }
621 }
622
623 static inline void loop_update_dio(struct loop_device *lo)
624 {
625 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
626 lo->use_dio);
627 }
628
629 static void loop_reread_partitions(struct loop_device *lo,
630 struct block_device *bdev)
631 {
632 int rc;
633
634 /*
635 * bd_mutex has been held already in release path, so don't
636 * acquire it if this function is called in such case.
637 *
638 * If the reread partition isn't from release path, lo_refcnt
639 * must be at least one and it can only become zero when the
640 * current holder is released.
641 */
642 if (!atomic_read(&lo->lo_refcnt))
643 rc = __blkdev_reread_part(bdev);
644 else
645 rc = blkdev_reread_part(bdev);
646 if (rc)
647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 __func__, lo->lo_number, lo->lo_file_name, rc);
649 }
650
651 static inline int is_loop_device(struct file *file)
652 {
653 struct inode *i = file->f_mapping->host;
654
655 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
656 }
657
658 static int loop_validate_file(struct file *file, struct block_device *bdev)
659 {
660 struct inode *inode = file->f_mapping->host;
661 struct file *f = file;
662
663 /* Avoid recursion */
664 while (is_loop_device(f)) {
665 struct loop_device *l;
666
667 if (f->f_mapping->host->i_bdev == bdev)
668 return -EBADF;
669
670 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
671 if (l->lo_state == Lo_unbound) {
672 return -EINVAL;
673 }
674 f = l->lo_backing_file;
675 }
676 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
677 return -EINVAL;
678 return 0;
679 }
680
681 /*
682 * loop_change_fd switched the backing store of a loopback device to
683 * a new file. This is useful for operating system installers to free up
684 * the original file and in High Availability environments to switch to
685 * an alternative location for the content in case of server meltdown.
686 * This can only work if the loop device is used read-only, and if the
687 * new backing store is the same size and type as the old backing store.
688 */
689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
690 unsigned int arg)
691 {
692 struct file *file, *old_file;
693 struct inode *inode;
694 int error;
695
696 error = -ENXIO;
697 if (lo->lo_state != Lo_bound)
698 goto out;
699
700 /* the loop device has to be read-only */
701 error = -EINVAL;
702 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
703 goto out;
704
705 error = -EBADF;
706 file = fget(arg);
707 if (!file)
708 goto out;
709
710 error = loop_validate_file(file, bdev);
711 if (error)
712 goto out_putf;
713
714 inode = file->f_mapping->host;
715 old_file = lo->lo_backing_file;
716
717 error = -EINVAL;
718
719 /* size of the new backing store needs to be the same */
720 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
721 goto out_putf;
722
723 /* and ... switch */
724 blk_mq_freeze_queue(lo->lo_queue);
725 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
726 lo->lo_backing_file = file;
727 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
728 mapping_set_gfp_mask(file->f_mapping,
729 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
730 loop_update_dio(lo);
731 blk_mq_unfreeze_queue(lo->lo_queue);
732
733 fput(old_file);
734 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
735 loop_reread_partitions(lo, bdev);
736 return 0;
737
738 out_putf:
739 fput(file);
740 out:
741 return error;
742 }
743
744 /* loop sysfs attributes */
745
746 static ssize_t loop_attr_show(struct device *dev, char *page,
747 ssize_t (*callback)(struct loop_device *, char *))
748 {
749 struct gendisk *disk = dev_to_disk(dev);
750 struct loop_device *lo = disk->private_data;
751
752 return callback(lo, page);
753 }
754
755 #define LOOP_ATTR_RO(_name) \
756 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
757 static ssize_t loop_attr_do_show_##_name(struct device *d, \
758 struct device_attribute *attr, char *b) \
759 { \
760 return loop_attr_show(d, b, loop_attr_##_name##_show); \
761 } \
762 static struct device_attribute loop_attr_##_name = \
763 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
764
765 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
766 {
767 ssize_t ret;
768 char *p = NULL;
769
770 spin_lock_irq(&lo->lo_lock);
771 if (lo->lo_backing_file)
772 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
773 spin_unlock_irq(&lo->lo_lock);
774
775 if (IS_ERR_OR_NULL(p))
776 ret = PTR_ERR(p);
777 else {
778 ret = strlen(p);
779 memmove(buf, p, ret);
780 buf[ret++] = '\n';
781 buf[ret] = 0;
782 }
783
784 return ret;
785 }
786
787 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
788 {
789 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
790 }
791
792 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
793 {
794 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
795 }
796
797 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
798 {
799 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
800
801 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
802 }
803
804 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
805 {
806 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
807
808 return sprintf(buf, "%s\n", partscan ? "1" : "0");
809 }
810
811 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
812 {
813 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
814
815 return sprintf(buf, "%s\n", dio ? "1" : "0");
816 }
817
818 LOOP_ATTR_RO(backing_file);
819 LOOP_ATTR_RO(offset);
820 LOOP_ATTR_RO(sizelimit);
821 LOOP_ATTR_RO(autoclear);
822 LOOP_ATTR_RO(partscan);
823 LOOP_ATTR_RO(dio);
824
825 static struct attribute *loop_attrs[] = {
826 &loop_attr_backing_file.attr,
827 &loop_attr_offset.attr,
828 &loop_attr_sizelimit.attr,
829 &loop_attr_autoclear.attr,
830 &loop_attr_partscan.attr,
831 &loop_attr_dio.attr,
832 NULL,
833 };
834
835 static struct attribute_group loop_attribute_group = {
836 .name = "loop",
837 .attrs= loop_attrs,
838 };
839
840 static void loop_sysfs_init(struct loop_device *lo)
841 {
842 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
843 &loop_attribute_group);
844 }
845
846 static void loop_sysfs_exit(struct loop_device *lo)
847 {
848 if (lo->sysfs_inited)
849 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
850 &loop_attribute_group);
851 }
852
853 static void loop_config_discard(struct loop_device *lo)
854 {
855 struct file *file = lo->lo_backing_file;
856 struct inode *inode = file->f_mapping->host;
857 struct request_queue *q = lo->lo_queue;
858
859 /*
860 * We use punch hole to reclaim the free space used by the
861 * image a.k.a. discard. However we do not support discard if
862 * encryption is enabled, because it may give an attacker
863 * useful information.
864 */
865 if ((!file->f_op->fallocate) ||
866 lo->lo_encrypt_key_size) {
867 q->limits.discard_granularity = 0;
868 q->limits.discard_alignment = 0;
869 blk_queue_max_discard_sectors(q, 0);
870 blk_queue_max_write_zeroes_sectors(q, 0);
871 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
872 return;
873 }
874
875 q->limits.discard_granularity = inode->i_sb->s_blocksize;
876 q->limits.discard_alignment = 0;
877
878 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
879 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
880 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
881 }
882
883 static void loop_unprepare_queue(struct loop_device *lo)
884 {
885 kthread_flush_worker(&lo->worker);
886 kthread_stop(lo->worker_task);
887 }
888
889 static int loop_kthread_worker_fn(void *worker_ptr)
890 {
891 current->flags |= PF_LESS_THROTTLE;
892 return kthread_worker_fn(worker_ptr);
893 }
894
895 static int loop_prepare_queue(struct loop_device *lo)
896 {
897 kthread_init_worker(&lo->worker);
898 lo->worker_task = kthread_run(loop_kthread_worker_fn,
899 &lo->worker, "loop%d", lo->lo_number);
900 if (IS_ERR(lo->worker_task))
901 return -ENOMEM;
902 set_user_nice(lo->worker_task, MIN_NICE);
903 return 0;
904 }
905
906 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
907 struct block_device *bdev, unsigned int arg)
908 {
909 struct file *file;
910 struct inode *inode;
911 struct address_space *mapping;
912 int lo_flags = 0;
913 int error;
914 loff_t size;
915
916 /* This is safe, since we have a reference from open(). */
917 __module_get(THIS_MODULE);
918
919 error = -EBADF;
920 file = fget(arg);
921 if (!file)
922 goto out;
923
924 error = -EBUSY;
925 if (lo->lo_state != Lo_unbound)
926 goto out_putf;
927
928 error = loop_validate_file(file, bdev);
929 if (error)
930 goto out_putf;
931
932 mapping = file->f_mapping;
933 inode = mapping->host;
934
935 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
936 !file->f_op->write_iter)
937 lo_flags |= LO_FLAGS_READ_ONLY;
938
939 error = -EFBIG;
940 size = get_loop_size(lo, file);
941 if ((loff_t)(sector_t)size != size)
942 goto out_putf;
943 error = loop_prepare_queue(lo);
944 if (error)
945 goto out_putf;
946
947 error = 0;
948
949 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
950
951 lo->use_dio = false;
952 lo->lo_device = bdev;
953 lo->lo_flags = lo_flags;
954 lo->lo_backing_file = file;
955 lo->transfer = NULL;
956 lo->ioctl = NULL;
957 lo->lo_sizelimit = 0;
958 lo->old_gfp_mask = mapping_gfp_mask(mapping);
959 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
960
961 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
962 blk_queue_write_cache(lo->lo_queue, true, false);
963
964 loop_update_dio(lo);
965 set_capacity(lo->lo_disk, size);
966 bd_set_size(bdev, size << 9);
967 loop_sysfs_init(lo);
968 /* let user-space know about the new size */
969 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
970
971 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
972 block_size(inode->i_bdev) : PAGE_SIZE);
973
974 lo->lo_state = Lo_bound;
975 if (part_shift)
976 lo->lo_flags |= LO_FLAGS_PARTSCAN;
977 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
978 loop_reread_partitions(lo, bdev);
979
980 /* Grab the block_device to prevent its destruction after we
981 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
982 */
983 bdgrab(bdev);
984 return 0;
985
986 out_putf:
987 fput(file);
988 out:
989 /* This is safe: open() is still holding a reference. */
990 module_put(THIS_MODULE);
991 return error;
992 }
993
994 static int
995 loop_release_xfer(struct loop_device *lo)
996 {
997 int err = 0;
998 struct loop_func_table *xfer = lo->lo_encryption;
999
1000 if (xfer) {
1001 if (xfer->release)
1002 err = xfer->release(lo);
1003 lo->transfer = NULL;
1004 lo->lo_encryption = NULL;
1005 module_put(xfer->owner);
1006 }
1007 return err;
1008 }
1009
1010 static int
1011 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1012 const struct loop_info64 *i)
1013 {
1014 int err = 0;
1015
1016 if (xfer) {
1017 struct module *owner = xfer->owner;
1018
1019 if (!try_module_get(owner))
1020 return -EINVAL;
1021 if (xfer->init)
1022 err = xfer->init(lo, i);
1023 if (err)
1024 module_put(owner);
1025 else
1026 lo->lo_encryption = xfer;
1027 }
1028 return err;
1029 }
1030
1031 static int loop_clr_fd(struct loop_device *lo)
1032 {
1033 struct file *filp = lo->lo_backing_file;
1034 gfp_t gfp = lo->old_gfp_mask;
1035 struct block_device *bdev = lo->lo_device;
1036
1037 if (lo->lo_state != Lo_bound)
1038 return -ENXIO;
1039
1040 /*
1041 * If we've explicitly asked to tear down the loop device,
1042 * and it has an elevated reference count, set it for auto-teardown when
1043 * the last reference goes away. This stops $!~#$@ udev from
1044 * preventing teardown because it decided that it needs to run blkid on
1045 * the loopback device whenever they appear. xfstests is notorious for
1046 * failing tests because blkid via udev races with a losetup
1047 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1048 * command to fail with EBUSY.
1049 */
1050 if (atomic_read(&lo->lo_refcnt) > 1) {
1051 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1052 mutex_unlock(&lo->lo_ctl_mutex);
1053 return 0;
1054 }
1055
1056 if (filp == NULL)
1057 return -EINVAL;
1058
1059 /* freeze request queue during the transition */
1060 blk_mq_freeze_queue(lo->lo_queue);
1061
1062 spin_lock_irq(&lo->lo_lock);
1063 lo->lo_state = Lo_rundown;
1064 lo->lo_backing_file = NULL;
1065 spin_unlock_irq(&lo->lo_lock);
1066
1067 loop_release_xfer(lo);
1068 lo->transfer = NULL;
1069 lo->ioctl = NULL;
1070 lo->lo_device = NULL;
1071 lo->lo_encryption = NULL;
1072 lo->lo_offset = 0;
1073 lo->lo_sizelimit = 0;
1074 lo->lo_encrypt_key_size = 0;
1075 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1076 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1077 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1078 blk_queue_logical_block_size(lo->lo_queue, 512);
1079 blk_queue_physical_block_size(lo->lo_queue, 512);
1080 blk_queue_io_min(lo->lo_queue, 512);
1081 if (bdev) {
1082 bdput(bdev);
1083 invalidate_bdev(bdev);
1084 bdev->bd_inode->i_mapping->wb_err = 0;
1085 }
1086 set_capacity(lo->lo_disk, 0);
1087 loop_sysfs_exit(lo);
1088 if (bdev) {
1089 bd_set_size(bdev, 0);
1090 /* let user-space know about this change */
1091 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1092 }
1093 mapping_set_gfp_mask(filp->f_mapping, gfp);
1094 lo->lo_state = Lo_unbound;
1095 /* This is safe: open() is still holding a reference. */
1096 module_put(THIS_MODULE);
1097 blk_mq_unfreeze_queue(lo->lo_queue);
1098
1099 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1100 loop_reread_partitions(lo, bdev);
1101 lo->lo_flags = 0;
1102 if (!part_shift)
1103 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1104 loop_unprepare_queue(lo);
1105 mutex_unlock(&lo->lo_ctl_mutex);
1106 /*
1107 * Need not hold lo_ctl_mutex to fput backing file.
1108 * Calling fput holding lo_ctl_mutex triggers a circular
1109 * lock dependency possibility warning as fput can take
1110 * bd_mutex which is usually taken before lo_ctl_mutex.
1111 */
1112 fput(filp);
1113 return 0;
1114 }
1115
1116 static int
1117 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1118 {
1119 int err;
1120 struct loop_func_table *xfer;
1121 kuid_t uid = current_uid();
1122
1123 if (lo->lo_encrypt_key_size &&
1124 !uid_eq(lo->lo_key_owner, uid) &&
1125 !capable(CAP_SYS_ADMIN))
1126 return -EPERM;
1127 if (lo->lo_state != Lo_bound)
1128 return -ENXIO;
1129 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1130 return -EINVAL;
1131
1132 /* I/O need to be drained during transfer transition */
1133 blk_mq_freeze_queue(lo->lo_queue);
1134
1135 err = loop_release_xfer(lo);
1136 if (err)
1137 goto exit;
1138
1139 if (info->lo_encrypt_type) {
1140 unsigned int type = info->lo_encrypt_type;
1141
1142 if (type >= MAX_LO_CRYPT) {
1143 err = -EINVAL;
1144 goto exit;
1145 }
1146 xfer = xfer_funcs[type];
1147 if (xfer == NULL) {
1148 err = -EINVAL;
1149 goto exit;
1150 }
1151 } else
1152 xfer = NULL;
1153
1154 err = loop_init_xfer(lo, xfer, info);
1155 if (err)
1156 goto exit;
1157
1158 if (lo->lo_offset != info->lo_offset ||
1159 lo->lo_sizelimit != info->lo_sizelimit) {
1160 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1161 err = -EFBIG;
1162 goto exit;
1163 }
1164 }
1165
1166 loop_config_discard(lo);
1167
1168 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1169 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1170 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1171 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1172
1173 if (!xfer)
1174 xfer = &none_funcs;
1175 lo->transfer = xfer->transfer;
1176 lo->ioctl = xfer->ioctl;
1177
1178 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1179 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1180 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1181
1182 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1183 lo->lo_init[0] = info->lo_init[0];
1184 lo->lo_init[1] = info->lo_init[1];
1185 if (info->lo_encrypt_key_size) {
1186 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1187 info->lo_encrypt_key_size);
1188 lo->lo_key_owner = uid;
1189 }
1190
1191 /* update dio if lo_offset or transfer is changed */
1192 __loop_update_dio(lo, lo->use_dio);
1193
1194 exit:
1195 blk_mq_unfreeze_queue(lo->lo_queue);
1196
1197 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1198 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1199 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1200 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1201 loop_reread_partitions(lo, lo->lo_device);
1202 }
1203
1204 return err;
1205 }
1206
1207 static int
1208 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1209 {
1210 struct file *file;
1211 struct kstat stat;
1212 int ret;
1213
1214 if (lo->lo_state != Lo_bound) {
1215 mutex_unlock(&lo->lo_ctl_mutex);
1216 return -ENXIO;
1217 }
1218
1219 memset(info, 0, sizeof(*info));
1220 info->lo_number = lo->lo_number;
1221 info->lo_offset = lo->lo_offset;
1222 info->lo_sizelimit = lo->lo_sizelimit;
1223 info->lo_flags = lo->lo_flags;
1224 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1225 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1226 info->lo_encrypt_type =
1227 lo->lo_encryption ? lo->lo_encryption->number : 0;
1228 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1229 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1230 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1231 lo->lo_encrypt_key_size);
1232 }
1233
1234 /* Drop lo_ctl_mutex while we call into the filesystem. */
1235 file = get_file(lo->lo_backing_file);
1236 mutex_unlock(&lo->lo_ctl_mutex);
1237 ret = vfs_getattr(&file->f_path, &stat, STATX_INO,
1238 AT_STATX_SYNC_AS_STAT);
1239 if (!ret) {
1240 info->lo_device = huge_encode_dev(stat.dev);
1241 info->lo_inode = stat.ino;
1242 info->lo_rdevice = huge_encode_dev(stat.rdev);
1243 }
1244 fput(file);
1245 return ret;
1246 }
1247
1248 static void
1249 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1250 {
1251 memset(info64, 0, sizeof(*info64));
1252 info64->lo_number = info->lo_number;
1253 info64->lo_device = info->lo_device;
1254 info64->lo_inode = info->lo_inode;
1255 info64->lo_rdevice = info->lo_rdevice;
1256 info64->lo_offset = info->lo_offset;
1257 info64->lo_sizelimit = 0;
1258 info64->lo_encrypt_type = info->lo_encrypt_type;
1259 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1260 info64->lo_flags = info->lo_flags;
1261 info64->lo_init[0] = info->lo_init[0];
1262 info64->lo_init[1] = info->lo_init[1];
1263 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1264 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1265 else
1266 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1267 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1268 }
1269
1270 static int
1271 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1272 {
1273 memset(info, 0, sizeof(*info));
1274 info->lo_number = info64->lo_number;
1275 info->lo_device = info64->lo_device;
1276 info->lo_inode = info64->lo_inode;
1277 info->lo_rdevice = info64->lo_rdevice;
1278 info->lo_offset = info64->lo_offset;
1279 info->lo_encrypt_type = info64->lo_encrypt_type;
1280 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1281 info->lo_flags = info64->lo_flags;
1282 info->lo_init[0] = info64->lo_init[0];
1283 info->lo_init[1] = info64->lo_init[1];
1284 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1285 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1286 else
1287 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1288 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1289
1290 /* error in case values were truncated */
1291 if (info->lo_device != info64->lo_device ||
1292 info->lo_rdevice != info64->lo_rdevice ||
1293 info->lo_inode != info64->lo_inode ||
1294 info->lo_offset != info64->lo_offset)
1295 return -EOVERFLOW;
1296
1297 return 0;
1298 }
1299
1300 static int
1301 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1302 {
1303 struct loop_info info;
1304 struct loop_info64 info64;
1305
1306 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1307 return -EFAULT;
1308 loop_info64_from_old(&info, &info64);
1309 return loop_set_status(lo, &info64);
1310 }
1311
1312 static int
1313 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1314 {
1315 struct loop_info64 info64;
1316
1317 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1318 return -EFAULT;
1319 return loop_set_status(lo, &info64);
1320 }
1321
1322 static int
1323 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1324 struct loop_info info;
1325 struct loop_info64 info64;
1326 int err;
1327
1328 if (!arg) {
1329 mutex_unlock(&lo->lo_ctl_mutex);
1330 return -EINVAL;
1331 }
1332 err = loop_get_status(lo, &info64);
1333 if (!err)
1334 err = loop_info64_to_old(&info64, &info);
1335 if (!err && copy_to_user(arg, &info, sizeof(info)))
1336 err = -EFAULT;
1337
1338 return err;
1339 }
1340
1341 static int
1342 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1343 struct loop_info64 info64;
1344 int err;
1345
1346 if (!arg) {
1347 mutex_unlock(&lo->lo_ctl_mutex);
1348 return -EINVAL;
1349 }
1350 err = loop_get_status(lo, &info64);
1351 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1352 err = -EFAULT;
1353
1354 return err;
1355 }
1356
1357 static int loop_set_capacity(struct loop_device *lo)
1358 {
1359 if (unlikely(lo->lo_state != Lo_bound))
1360 return -ENXIO;
1361
1362 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1363 }
1364
1365 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1366 {
1367 int error = -ENXIO;
1368 if (lo->lo_state != Lo_bound)
1369 goto out;
1370
1371 __loop_update_dio(lo, !!arg);
1372 if (lo->use_dio == !!arg)
1373 return 0;
1374 error = -EINVAL;
1375 out:
1376 return error;
1377 }
1378
1379 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1380 {
1381 if (lo->lo_state != Lo_bound)
1382 return -ENXIO;
1383
1384 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1385 return -EINVAL;
1386
1387 blk_mq_freeze_queue(lo->lo_queue);
1388
1389 blk_queue_logical_block_size(lo->lo_queue, arg);
1390 blk_queue_physical_block_size(lo->lo_queue, arg);
1391 blk_queue_io_min(lo->lo_queue, arg);
1392 loop_update_dio(lo);
1393
1394 blk_mq_unfreeze_queue(lo->lo_queue);
1395
1396 return 0;
1397 }
1398
1399 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1400 unsigned int cmd, unsigned long arg)
1401 {
1402 struct loop_device *lo = bdev->bd_disk->private_data;
1403 int err;
1404
1405 err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1);
1406 if (err)
1407 goto out_unlocked;
1408
1409 switch (cmd) {
1410 case LOOP_SET_FD:
1411 err = loop_set_fd(lo, mode, bdev, arg);
1412 break;
1413 case LOOP_CHANGE_FD:
1414 err = loop_change_fd(lo, bdev, arg);
1415 break;
1416 case LOOP_CLR_FD:
1417 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1418 err = loop_clr_fd(lo);
1419 if (!err)
1420 goto out_unlocked;
1421 break;
1422 case LOOP_SET_STATUS:
1423 err = -EPERM;
1424 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1425 err = loop_set_status_old(lo,
1426 (struct loop_info __user *)arg);
1427 break;
1428 case LOOP_GET_STATUS:
1429 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1430 /* loop_get_status() unlocks lo_ctl_mutex */
1431 goto out_unlocked;
1432 case LOOP_SET_STATUS64:
1433 err = -EPERM;
1434 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1435 err = loop_set_status64(lo,
1436 (struct loop_info64 __user *) arg);
1437 break;
1438 case LOOP_GET_STATUS64:
1439 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1440 /* loop_get_status() unlocks lo_ctl_mutex */
1441 goto out_unlocked;
1442 case LOOP_SET_CAPACITY:
1443 err = -EPERM;
1444 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1445 err = loop_set_capacity(lo);
1446 break;
1447 case LOOP_SET_DIRECT_IO:
1448 err = -EPERM;
1449 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1450 err = loop_set_dio(lo, arg);
1451 break;
1452 case LOOP_SET_BLOCK_SIZE:
1453 err = -EPERM;
1454 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1455 err = loop_set_block_size(lo, arg);
1456 break;
1457 default:
1458 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1459 }
1460 mutex_unlock(&lo->lo_ctl_mutex);
1461
1462 out_unlocked:
1463 return err;
1464 }
1465
1466 #ifdef CONFIG_COMPAT
1467 struct compat_loop_info {
1468 compat_int_t lo_number; /* ioctl r/o */
1469 compat_dev_t lo_device; /* ioctl r/o */
1470 compat_ulong_t lo_inode; /* ioctl r/o */
1471 compat_dev_t lo_rdevice; /* ioctl r/o */
1472 compat_int_t lo_offset;
1473 compat_int_t lo_encrypt_type;
1474 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1475 compat_int_t lo_flags; /* ioctl r/o */
1476 char lo_name[LO_NAME_SIZE];
1477 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1478 compat_ulong_t lo_init[2];
1479 char reserved[4];
1480 };
1481
1482 /*
1483 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1484 * - noinlined to reduce stack space usage in main part of driver
1485 */
1486 static noinline int
1487 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1488 struct loop_info64 *info64)
1489 {
1490 struct compat_loop_info info;
1491
1492 if (copy_from_user(&info, arg, sizeof(info)))
1493 return -EFAULT;
1494
1495 memset(info64, 0, sizeof(*info64));
1496 info64->lo_number = info.lo_number;
1497 info64->lo_device = info.lo_device;
1498 info64->lo_inode = info.lo_inode;
1499 info64->lo_rdevice = info.lo_rdevice;
1500 info64->lo_offset = info.lo_offset;
1501 info64->lo_sizelimit = 0;
1502 info64->lo_encrypt_type = info.lo_encrypt_type;
1503 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1504 info64->lo_flags = info.lo_flags;
1505 info64->lo_init[0] = info.lo_init[0];
1506 info64->lo_init[1] = info.lo_init[1];
1507 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1508 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1509 else
1510 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1511 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1512 return 0;
1513 }
1514
1515 /*
1516 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1517 * - noinlined to reduce stack space usage in main part of driver
1518 */
1519 static noinline int
1520 loop_info64_to_compat(const struct loop_info64 *info64,
1521 struct compat_loop_info __user *arg)
1522 {
1523 struct compat_loop_info info;
1524
1525 memset(&info, 0, sizeof(info));
1526 info.lo_number = info64->lo_number;
1527 info.lo_device = info64->lo_device;
1528 info.lo_inode = info64->lo_inode;
1529 info.lo_rdevice = info64->lo_rdevice;
1530 info.lo_offset = info64->lo_offset;
1531 info.lo_encrypt_type = info64->lo_encrypt_type;
1532 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1533 info.lo_flags = info64->lo_flags;
1534 info.lo_init[0] = info64->lo_init[0];
1535 info.lo_init[1] = info64->lo_init[1];
1536 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1537 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1538 else
1539 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1540 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1541
1542 /* error in case values were truncated */
1543 if (info.lo_device != info64->lo_device ||
1544 info.lo_rdevice != info64->lo_rdevice ||
1545 info.lo_inode != info64->lo_inode ||
1546 info.lo_offset != info64->lo_offset ||
1547 info.lo_init[0] != info64->lo_init[0] ||
1548 info.lo_init[1] != info64->lo_init[1])
1549 return -EOVERFLOW;
1550
1551 if (copy_to_user(arg, &info, sizeof(info)))
1552 return -EFAULT;
1553 return 0;
1554 }
1555
1556 static int
1557 loop_set_status_compat(struct loop_device *lo,
1558 const struct compat_loop_info __user *arg)
1559 {
1560 struct loop_info64 info64;
1561 int ret;
1562
1563 ret = loop_info64_from_compat(arg, &info64);
1564 if (ret < 0)
1565 return ret;
1566 return loop_set_status(lo, &info64);
1567 }
1568
1569 static int
1570 loop_get_status_compat(struct loop_device *lo,
1571 struct compat_loop_info __user *arg)
1572 {
1573 struct loop_info64 info64;
1574 int err;
1575
1576 if (!arg) {
1577 mutex_unlock(&lo->lo_ctl_mutex);
1578 return -EINVAL;
1579 }
1580 err = loop_get_status(lo, &info64);
1581 if (!err)
1582 err = loop_info64_to_compat(&info64, arg);
1583 return err;
1584 }
1585
1586 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1587 unsigned int cmd, unsigned long arg)
1588 {
1589 struct loop_device *lo = bdev->bd_disk->private_data;
1590 int err;
1591
1592 switch(cmd) {
1593 case LOOP_SET_STATUS:
1594 err = mutex_lock_killable(&lo->lo_ctl_mutex);
1595 if (!err) {
1596 err = loop_set_status_compat(lo,
1597 (const struct compat_loop_info __user *)arg);
1598 mutex_unlock(&lo->lo_ctl_mutex);
1599 }
1600 break;
1601 case LOOP_GET_STATUS:
1602 err = mutex_lock_killable(&lo->lo_ctl_mutex);
1603 if (!err) {
1604 err = loop_get_status_compat(lo,
1605 (struct compat_loop_info __user *)arg);
1606 /* loop_get_status() unlocks lo_ctl_mutex */
1607 }
1608 break;
1609 case LOOP_SET_CAPACITY:
1610 case LOOP_CLR_FD:
1611 case LOOP_GET_STATUS64:
1612 case LOOP_SET_STATUS64:
1613 arg = (unsigned long) compat_ptr(arg);
1614 case LOOP_SET_FD:
1615 case LOOP_CHANGE_FD:
1616 err = lo_ioctl(bdev, mode, cmd, arg);
1617 break;
1618 default:
1619 err = -ENOIOCTLCMD;
1620 break;
1621 }
1622 return err;
1623 }
1624 #endif
1625
1626 static int lo_open(struct block_device *bdev, fmode_t mode)
1627 {
1628 struct loop_device *lo;
1629 int err = 0;
1630
1631 mutex_lock(&loop_index_mutex);
1632 lo = bdev->bd_disk->private_data;
1633 if (!lo) {
1634 err = -ENXIO;
1635 goto out;
1636 }
1637
1638 atomic_inc(&lo->lo_refcnt);
1639 out:
1640 mutex_unlock(&loop_index_mutex);
1641 return err;
1642 }
1643
1644 static void __lo_release(struct loop_device *lo)
1645 {
1646 int err;
1647
1648 if (atomic_dec_return(&lo->lo_refcnt))
1649 return;
1650
1651 mutex_lock(&lo->lo_ctl_mutex);
1652 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1653 /*
1654 * In autoclear mode, stop the loop thread
1655 * and remove configuration after last close.
1656 */
1657 err = loop_clr_fd(lo);
1658 if (!err)
1659 return;
1660 } else if (lo->lo_state == Lo_bound) {
1661 /*
1662 * Otherwise keep thread (if running) and config,
1663 * but flush possible ongoing bios in thread.
1664 */
1665 blk_mq_freeze_queue(lo->lo_queue);
1666 blk_mq_unfreeze_queue(lo->lo_queue);
1667 }
1668
1669 mutex_unlock(&lo->lo_ctl_mutex);
1670 }
1671
1672 static void lo_release(struct gendisk *disk, fmode_t mode)
1673 {
1674 mutex_lock(&loop_index_mutex);
1675 __lo_release(disk->private_data);
1676 mutex_unlock(&loop_index_mutex);
1677 }
1678
1679 static const struct block_device_operations lo_fops = {
1680 .owner = THIS_MODULE,
1681 .open = lo_open,
1682 .release = lo_release,
1683 .ioctl = lo_ioctl,
1684 #ifdef CONFIG_COMPAT
1685 .compat_ioctl = lo_compat_ioctl,
1686 #endif
1687 };
1688
1689 /*
1690 * And now the modules code and kernel interface.
1691 */
1692 static int max_loop;
1693 module_param(max_loop, int, 0444);
1694 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1695 module_param(max_part, int, 0444);
1696 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1697 MODULE_LICENSE("GPL");
1698 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1699
1700 int loop_register_transfer(struct loop_func_table *funcs)
1701 {
1702 unsigned int n = funcs->number;
1703
1704 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1705 return -EINVAL;
1706 xfer_funcs[n] = funcs;
1707 return 0;
1708 }
1709
1710 static int unregister_transfer_cb(int id, void *ptr, void *data)
1711 {
1712 struct loop_device *lo = ptr;
1713 struct loop_func_table *xfer = data;
1714
1715 mutex_lock(&lo->lo_ctl_mutex);
1716 if (lo->lo_encryption == xfer)
1717 loop_release_xfer(lo);
1718 mutex_unlock(&lo->lo_ctl_mutex);
1719 return 0;
1720 }
1721
1722 int loop_unregister_transfer(int number)
1723 {
1724 unsigned int n = number;
1725 struct loop_func_table *xfer;
1726
1727 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1728 return -EINVAL;
1729
1730 xfer_funcs[n] = NULL;
1731 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1732 return 0;
1733 }
1734
1735 EXPORT_SYMBOL(loop_register_transfer);
1736 EXPORT_SYMBOL(loop_unregister_transfer);
1737
1738 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1739 const struct blk_mq_queue_data *bd)
1740 {
1741 struct request *rq = bd->rq;
1742 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1743 struct loop_device *lo = rq->q->queuedata;
1744
1745 blk_mq_start_request(rq);
1746
1747 if (lo->lo_state != Lo_bound)
1748 return BLK_STS_IOERR;
1749
1750 switch (req_op(rq)) {
1751 case REQ_OP_FLUSH:
1752 case REQ_OP_DISCARD:
1753 case REQ_OP_WRITE_ZEROES:
1754 cmd->use_aio = false;
1755 break;
1756 default:
1757 cmd->use_aio = lo->use_dio;
1758 break;
1759 }
1760
1761 /* always use the first bio's css */
1762 #ifdef CONFIG_BLK_CGROUP
1763 if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1764 cmd->css = rq->bio->bi_css;
1765 css_get(cmd->css);
1766 } else
1767 #endif
1768 cmd->css = NULL;
1769 kthread_queue_work(&lo->worker, &cmd->work);
1770
1771 return BLK_STS_OK;
1772 }
1773
1774 static void loop_handle_cmd(struct loop_cmd *cmd)
1775 {
1776 struct request *rq = blk_mq_rq_from_pdu(cmd);
1777 const bool write = op_is_write(req_op(rq));
1778 struct loop_device *lo = rq->q->queuedata;
1779 int ret = 0;
1780
1781 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1782 ret = -EIO;
1783 goto failed;
1784 }
1785
1786 ret = do_req_filebacked(lo, rq);
1787 failed:
1788 /* complete non-aio request */
1789 if (!cmd->use_aio || ret) {
1790 cmd->ret = ret ? -EIO : 0;
1791 blk_mq_complete_request(rq);
1792 }
1793 }
1794
1795 static void loop_queue_work(struct kthread_work *work)
1796 {
1797 struct loop_cmd *cmd =
1798 container_of(work, struct loop_cmd, work);
1799
1800 loop_handle_cmd(cmd);
1801 }
1802
1803 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1804 unsigned int hctx_idx, unsigned int numa_node)
1805 {
1806 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1807
1808 kthread_init_work(&cmd->work, loop_queue_work);
1809 return 0;
1810 }
1811
1812 static const struct blk_mq_ops loop_mq_ops = {
1813 .queue_rq = loop_queue_rq,
1814 .init_request = loop_init_request,
1815 .complete = lo_complete_rq,
1816 };
1817
1818 static int loop_add(struct loop_device **l, int i)
1819 {
1820 struct loop_device *lo;
1821 struct gendisk *disk;
1822 int err;
1823
1824 err = -ENOMEM;
1825 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1826 if (!lo)
1827 goto out;
1828
1829 lo->lo_state = Lo_unbound;
1830
1831 /* allocate id, if @id >= 0, we're requesting that specific id */
1832 if (i >= 0) {
1833 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1834 if (err == -ENOSPC)
1835 err = -EEXIST;
1836 } else {
1837 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1838 }
1839 if (err < 0)
1840 goto out_free_dev;
1841 i = err;
1842
1843 err = -ENOMEM;
1844 lo->tag_set.ops = &loop_mq_ops;
1845 lo->tag_set.nr_hw_queues = 1;
1846 lo->tag_set.queue_depth = 128;
1847 lo->tag_set.numa_node = NUMA_NO_NODE;
1848 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1849 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1850 lo->tag_set.driver_data = lo;
1851
1852 err = blk_mq_alloc_tag_set(&lo->tag_set);
1853 if (err)
1854 goto out_free_idr;
1855
1856 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1857 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1858 err = PTR_ERR(lo->lo_queue);
1859 goto out_cleanup_tags;
1860 }
1861 lo->lo_queue->queuedata = lo;
1862
1863 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1864
1865 /*
1866 * By default, we do buffer IO, so it doesn't make sense to enable
1867 * merge because the I/O submitted to backing file is handled page by
1868 * page. For directio mode, merge does help to dispatch bigger request
1869 * to underlayer disk. We will enable merge once directio is enabled.
1870 */
1871 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1872
1873 err = -ENOMEM;
1874 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1875 if (!disk)
1876 goto out_free_queue;
1877
1878 /*
1879 * Disable partition scanning by default. The in-kernel partition
1880 * scanning can be requested individually per-device during its
1881 * setup. Userspace can always add and remove partitions from all
1882 * devices. The needed partition minors are allocated from the
1883 * extended minor space, the main loop device numbers will continue
1884 * to match the loop minors, regardless of the number of partitions
1885 * used.
1886 *
1887 * If max_part is given, partition scanning is globally enabled for
1888 * all loop devices. The minors for the main loop devices will be
1889 * multiples of max_part.
1890 *
1891 * Note: Global-for-all-devices, set-only-at-init, read-only module
1892 * parameteters like 'max_loop' and 'max_part' make things needlessly
1893 * complicated, are too static, inflexible and may surprise
1894 * userspace tools. Parameters like this in general should be avoided.
1895 */
1896 if (!part_shift)
1897 disk->flags |= GENHD_FL_NO_PART_SCAN;
1898 disk->flags |= GENHD_FL_EXT_DEVT;
1899 mutex_init(&lo->lo_ctl_mutex);
1900 atomic_set(&lo->lo_refcnt, 0);
1901 lo->lo_number = i;
1902 spin_lock_init(&lo->lo_lock);
1903 disk->major = LOOP_MAJOR;
1904 disk->first_minor = i << part_shift;
1905 disk->fops = &lo_fops;
1906 disk->private_data = lo;
1907 disk->queue = lo->lo_queue;
1908 sprintf(disk->disk_name, "loop%d", i);
1909 add_disk(disk);
1910 *l = lo;
1911 return lo->lo_number;
1912
1913 out_free_queue:
1914 blk_cleanup_queue(lo->lo_queue);
1915 out_cleanup_tags:
1916 blk_mq_free_tag_set(&lo->tag_set);
1917 out_free_idr:
1918 idr_remove(&loop_index_idr, i);
1919 out_free_dev:
1920 kfree(lo);
1921 out:
1922 return err;
1923 }
1924
1925 static void loop_remove(struct loop_device *lo)
1926 {
1927 del_gendisk(lo->lo_disk);
1928 blk_cleanup_queue(lo->lo_queue);
1929 blk_mq_free_tag_set(&lo->tag_set);
1930 put_disk(lo->lo_disk);
1931 kfree(lo);
1932 }
1933
1934 static int find_free_cb(int id, void *ptr, void *data)
1935 {
1936 struct loop_device *lo = ptr;
1937 struct loop_device **l = data;
1938
1939 if (lo->lo_state == Lo_unbound) {
1940 *l = lo;
1941 return 1;
1942 }
1943 return 0;
1944 }
1945
1946 static int loop_lookup(struct loop_device **l, int i)
1947 {
1948 struct loop_device *lo;
1949 int ret = -ENODEV;
1950
1951 if (i < 0) {
1952 int err;
1953
1954 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1955 if (err == 1) {
1956 *l = lo;
1957 ret = lo->lo_number;
1958 }
1959 goto out;
1960 }
1961
1962 /* lookup and return a specific i */
1963 lo = idr_find(&loop_index_idr, i);
1964 if (lo) {
1965 *l = lo;
1966 ret = lo->lo_number;
1967 }
1968 out:
1969 return ret;
1970 }
1971
1972 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1973 {
1974 struct loop_device *lo;
1975 struct kobject *kobj;
1976 int err;
1977
1978 mutex_lock(&loop_index_mutex);
1979 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1980 if (err < 0)
1981 err = loop_add(&lo, MINOR(dev) >> part_shift);
1982 if (err < 0)
1983 kobj = NULL;
1984 else
1985 kobj = get_disk_and_module(lo->lo_disk);
1986 mutex_unlock(&loop_index_mutex);
1987
1988 *part = 0;
1989 return kobj;
1990 }
1991
1992 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1993 unsigned long parm)
1994 {
1995 struct loop_device *lo;
1996 int ret = -ENOSYS;
1997
1998 mutex_lock(&loop_index_mutex);
1999 switch (cmd) {
2000 case LOOP_CTL_ADD:
2001 ret = loop_lookup(&lo, parm);
2002 if (ret >= 0) {
2003 ret = -EEXIST;
2004 break;
2005 }
2006 ret = loop_add(&lo, parm);
2007 break;
2008 case LOOP_CTL_REMOVE:
2009 ret = loop_lookup(&lo, parm);
2010 if (ret < 0)
2011 break;
2012 ret = mutex_lock_killable(&lo->lo_ctl_mutex);
2013 if (ret)
2014 break;
2015 if (lo->lo_state != Lo_unbound) {
2016 ret = -EBUSY;
2017 mutex_unlock(&lo->lo_ctl_mutex);
2018 break;
2019 }
2020 if (atomic_read(&lo->lo_refcnt) > 0) {
2021 ret = -EBUSY;
2022 mutex_unlock(&lo->lo_ctl_mutex);
2023 break;
2024 }
2025 lo->lo_disk->private_data = NULL;
2026 mutex_unlock(&lo->lo_ctl_mutex);
2027 idr_remove(&loop_index_idr, lo->lo_number);
2028 loop_remove(lo);
2029 break;
2030 case LOOP_CTL_GET_FREE:
2031 ret = loop_lookup(&lo, -1);
2032 if (ret >= 0)
2033 break;
2034 ret = loop_add(&lo, -1);
2035 }
2036 mutex_unlock(&loop_index_mutex);
2037
2038 return ret;
2039 }
2040
2041 static const struct file_operations loop_ctl_fops = {
2042 .open = nonseekable_open,
2043 .unlocked_ioctl = loop_control_ioctl,
2044 .compat_ioctl = loop_control_ioctl,
2045 .owner = THIS_MODULE,
2046 .llseek = noop_llseek,
2047 };
2048
2049 static struct miscdevice loop_misc = {
2050 .minor = LOOP_CTRL_MINOR,
2051 .name = "loop-control",
2052 .fops = &loop_ctl_fops,
2053 };
2054
2055 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2056 MODULE_ALIAS("devname:loop-control");
2057
2058 static int __init loop_init(void)
2059 {
2060 int i, nr;
2061 unsigned long range;
2062 struct loop_device *lo;
2063 int err;
2064
2065 part_shift = 0;
2066 if (max_part > 0) {
2067 part_shift = fls(max_part);
2068
2069 /*
2070 * Adjust max_part according to part_shift as it is exported
2071 * to user space so that user can decide correct minor number
2072 * if [s]he want to create more devices.
2073 *
2074 * Note that -1 is required because partition 0 is reserved
2075 * for the whole disk.
2076 */
2077 max_part = (1UL << part_shift) - 1;
2078 }
2079
2080 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2081 err = -EINVAL;
2082 goto err_out;
2083 }
2084
2085 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2086 err = -EINVAL;
2087 goto err_out;
2088 }
2089
2090 /*
2091 * If max_loop is specified, create that many devices upfront.
2092 * This also becomes a hard limit. If max_loop is not specified,
2093 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2094 * init time. Loop devices can be requested on-demand with the
2095 * /dev/loop-control interface, or be instantiated by accessing
2096 * a 'dead' device node.
2097 */
2098 if (max_loop) {
2099 nr = max_loop;
2100 range = max_loop << part_shift;
2101 } else {
2102 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2103 range = 1UL << MINORBITS;
2104 }
2105
2106 err = misc_register(&loop_misc);
2107 if (err < 0)
2108 goto err_out;
2109
2110
2111 if (register_blkdev(LOOP_MAJOR, "loop")) {
2112 err = -EIO;
2113 goto misc_out;
2114 }
2115
2116 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2117 THIS_MODULE, loop_probe, NULL, NULL);
2118
2119 /* pre-create number of devices given by config or max_loop */
2120 mutex_lock(&loop_index_mutex);
2121 for (i = 0; i < nr; i++)
2122 loop_add(&lo, i);
2123 mutex_unlock(&loop_index_mutex);
2124
2125 printk(KERN_INFO "loop: module loaded\n");
2126 return 0;
2127
2128 misc_out:
2129 misc_deregister(&loop_misc);
2130 err_out:
2131 return err;
2132 }
2133
2134 static int loop_exit_cb(int id, void *ptr, void *data)
2135 {
2136 struct loop_device *lo = ptr;
2137
2138 loop_remove(lo);
2139 return 0;
2140 }
2141
2142 static void __exit loop_exit(void)
2143 {
2144 unsigned long range;
2145
2146 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2147
2148 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2149 idr_destroy(&loop_index_idr);
2150
2151 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2152 unregister_blkdev(LOOP_MAJOR, "loop");
2153
2154 misc_deregister(&loop_misc);
2155 }
2156
2157 module_init(loop_init);
2158 module_exit(loop_exit);
2159
2160 #ifndef MODULE
2161 static int __init max_loop_setup(char *str)
2162 {
2163 max_loop = simple_strtol(str, NULL, 0);
2164 return 1;
2165 }
2166
2167 __setup("max_loop=", max_loop_setup);
2168 #endif