]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/loop.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80
81 #include <linux/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
93 {
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
98
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
105 }
106
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
111
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
116 }
117
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
123 }
124
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
127 };
128
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
133 };
134
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
139 };
140
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 loff_t loopsize;
144
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
152
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
155 /*
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
158 */
159 return loopsize >> 9;
160 }
161
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
175
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
179 }
180
181 /*
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
186 *
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane applications should be PAGE_SIZE aligned
190 */
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
201 }
202
203 if (lo->use_dio == use_dio)
204 return;
205
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
208
209 /*
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
213 */
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio)
217 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 else
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 sector_t x = (sector_t)size;
228 struct block_device *bdev = lo->lo_device;
229
230 if (unlikely((loff_t)x != size))
231 return -EFBIG;
232 if (lo->lo_offset != offset)
233 lo->lo_offset = offset;
234 if (lo->lo_sizelimit != sizelimit)
235 lo->lo_sizelimit = sizelimit;
236 set_capacity(lo->lo_disk, x);
237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 /* let user-space know about the new size */
239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 return 0;
241 }
242
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 struct page *rpage, unsigned roffs,
246 struct page *lpage, unsigned loffs,
247 int size, sector_t rblock)
248 {
249 int ret;
250
251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 if (likely(!ret))
253 return 0;
254
255 printk_ratelimited(KERN_ERR
256 "loop: Transfer error at byte offset %llu, length %i.\n",
257 (unsigned long long)rblock << 9, size);
258 return ret;
259 }
260
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 struct iov_iter i;
264 ssize_t bw;
265
266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267
268 file_start_write(file);
269 bw = vfs_iter_write(file, &i, ppos);
270 file_end_write(file);
271
272 if (likely(bw == bvec->bv_len))
273 return 0;
274
275 printk_ratelimited(KERN_ERR
276 "loop: Write error at byte offset %llu, length %i.\n",
277 (unsigned long long)*ppos, bvec->bv_len);
278 if (bw >= 0)
279 bw = -EIO;
280 return bw;
281 }
282
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 loff_t pos)
285 {
286 struct bio_vec bvec;
287 struct req_iterator iter;
288 int ret = 0;
289
290 rq_for_each_segment(bvec, rq, iter) {
291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 if (ret < 0)
293 break;
294 cond_resched();
295 }
296
297 return ret;
298 }
299
300 /*
301 * This is the slow, transforming version that needs to double buffer the
302 * data as it cannot do the transformations in place without having direct
303 * access to the destination pages of the backing file.
304 */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 loff_t pos)
307 {
308 struct bio_vec bvec, b;
309 struct req_iterator iter;
310 struct page *page;
311 int ret = 0;
312
313 page = alloc_page(GFP_NOIO);
314 if (unlikely(!page))
315 return -ENOMEM;
316
317 rq_for_each_segment(bvec, rq, iter) {
318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 bvec.bv_offset, bvec.bv_len, pos >> 9);
320 if (unlikely(ret))
321 break;
322
323 b.bv_page = page;
324 b.bv_offset = 0;
325 b.bv_len = bvec.bv_len;
326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 if (ret < 0)
328 break;
329 }
330
331 __free_page(page);
332 return ret;
333 }
334
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 loff_t pos)
337 {
338 struct bio_vec bvec;
339 struct req_iterator iter;
340 struct iov_iter i;
341 ssize_t len;
342
343 rq_for_each_segment(bvec, rq, iter) {
344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 if (len < 0)
347 return len;
348
349 flush_dcache_page(bvec.bv_page);
350
351 if (len != bvec.bv_len) {
352 struct bio *bio;
353
354 __rq_for_each_bio(bio, rq)
355 zero_fill_bio(bio);
356 break;
357 }
358 cond_resched();
359 }
360
361 return 0;
362 }
363
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 loff_t pos)
366 {
367 struct bio_vec bvec, b;
368 struct req_iterator iter;
369 struct iov_iter i;
370 struct page *page;
371 ssize_t len;
372 int ret = 0;
373
374 page = alloc_page(GFP_NOIO);
375 if (unlikely(!page))
376 return -ENOMEM;
377
378 rq_for_each_segment(bvec, rq, iter) {
379 loff_t offset = pos;
380
381 b.bv_page = page;
382 b.bv_offset = 0;
383 b.bv_len = bvec.bv_len;
384
385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 if (len < 0) {
388 ret = len;
389 goto out_free_page;
390 }
391
392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 bvec.bv_offset, len, offset >> 9);
394 if (ret)
395 goto out_free_page;
396
397 flush_dcache_page(bvec.bv_page);
398
399 if (len != bvec.bv_len) {
400 struct bio *bio;
401
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
405 }
406 }
407
408 ret = 0;
409 out_free_page:
410 __free_page(page);
411 return ret;
412 }
413
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 /*
417 * We use punch hole to reclaim the free space used by the
418 * image a.k.a. discard. However we do not support discard if
419 * encryption is enabled, because it may give an attacker
420 * useful information.
421 */
422 struct file *file = lo->lo_backing_file;
423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 int ret;
425
426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 ret = -EOPNOTSUPP;
428 goto out;
429 }
430
431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 ret = -EIO;
434 out:
435 return ret;
436 }
437
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 struct file *file = lo->lo_backing_file;
441 int ret = vfs_fsync(file, 0);
442 if (unlikely(ret && ret != -EINVAL))
443 ret = -EIO;
444
445 return ret;
446 }
447
448 static void lo_complete_rq(struct request *rq)
449 {
450 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
451
452 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
453 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
454 struct bio *bio = cmd->rq->bio;
455
456 bio_advance(bio, cmd->ret);
457 zero_fill_bio(bio);
458 }
459
460 blk_mq_end_request(rq, cmd->ret < 0 ? -EIO : 0);
461 }
462
463 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
464 {
465 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
466
467 cmd->ret = ret;
468 blk_mq_complete_request(cmd->rq);
469 }
470
471 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
472 loff_t pos, bool rw)
473 {
474 struct iov_iter iter;
475 struct bio_vec *bvec;
476 struct bio *bio = cmd->rq->bio;
477 struct file *file = lo->lo_backing_file;
478 int ret;
479
480 /* nomerge for loop request queue */
481 WARN_ON(cmd->rq->bio != cmd->rq->biotail);
482
483 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
484 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
485 bio_segments(bio), blk_rq_bytes(cmd->rq));
486 /*
487 * This bio may be started from the middle of the 'bvec'
488 * because of bio splitting, so offset from the bvec must
489 * be passed to iov iterator
490 */
491 iter.iov_offset = bio->bi_iter.bi_bvec_done;
492
493 cmd->iocb.ki_pos = pos;
494 cmd->iocb.ki_filp = file;
495 cmd->iocb.ki_complete = lo_rw_aio_complete;
496 cmd->iocb.ki_flags = IOCB_DIRECT;
497
498 if (rw == WRITE)
499 ret = call_write_iter(file, &cmd->iocb, &iter);
500 else
501 ret = call_read_iter(file, &cmd->iocb, &iter);
502
503 if (ret != -EIOCBQUEUED)
504 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
505 return 0;
506 }
507
508 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
509 {
510 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
511 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
512
513 /*
514 * lo_write_simple and lo_read_simple should have been covered
515 * by io submit style function like lo_rw_aio(), one blocker
516 * is that lo_read_simple() need to call flush_dcache_page after
517 * the page is written from kernel, and it isn't easy to handle
518 * this in io submit style function which submits all segments
519 * of the req at one time. And direct read IO doesn't need to
520 * run flush_dcache_page().
521 */
522 switch (req_op(rq)) {
523 case REQ_OP_FLUSH:
524 return lo_req_flush(lo, rq);
525 case REQ_OP_DISCARD:
526 case REQ_OP_WRITE_ZEROES:
527 return lo_discard(lo, rq, pos);
528 case REQ_OP_WRITE:
529 if (lo->transfer)
530 return lo_write_transfer(lo, rq, pos);
531 else if (cmd->use_aio)
532 return lo_rw_aio(lo, cmd, pos, WRITE);
533 else
534 return lo_write_simple(lo, rq, pos);
535 case REQ_OP_READ:
536 if (lo->transfer)
537 return lo_read_transfer(lo, rq, pos);
538 else if (cmd->use_aio)
539 return lo_rw_aio(lo, cmd, pos, READ);
540 else
541 return lo_read_simple(lo, rq, pos);
542 default:
543 WARN_ON_ONCE(1);
544 return -EIO;
545 break;
546 }
547 }
548
549 struct switch_request {
550 struct file *file;
551 struct completion wait;
552 };
553
554 static inline void loop_update_dio(struct loop_device *lo)
555 {
556 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
557 lo->use_dio);
558 }
559
560 /*
561 * Do the actual switch; called from the BIO completion routine
562 */
563 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
564 {
565 struct file *file = p->file;
566 struct file *old_file = lo->lo_backing_file;
567 struct address_space *mapping;
568
569 /* if no new file, only flush of queued bios requested */
570 if (!file)
571 return;
572
573 mapping = file->f_mapping;
574 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
575 lo->lo_backing_file = file;
576 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
577 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
578 lo->old_gfp_mask = mapping_gfp_mask(mapping);
579 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
580 loop_update_dio(lo);
581 }
582
583 /*
584 * loop_switch performs the hard work of switching a backing store.
585 * First it needs to flush existing IO, it does this by sending a magic
586 * BIO down the pipe. The completion of this BIO does the actual switch.
587 */
588 static int loop_switch(struct loop_device *lo, struct file *file)
589 {
590 struct switch_request w;
591
592 w.file = file;
593
594 /* freeze queue and wait for completion of scheduled requests */
595 blk_mq_freeze_queue(lo->lo_queue);
596
597 /* do the switch action */
598 do_loop_switch(lo, &w);
599
600 /* unfreeze */
601 blk_mq_unfreeze_queue(lo->lo_queue);
602
603 return 0;
604 }
605
606 /*
607 * Helper to flush the IOs in loop, but keeping loop thread running
608 */
609 static int loop_flush(struct loop_device *lo)
610 {
611 /* loop not yet configured, no running thread, nothing to flush */
612 if (lo->lo_state != Lo_bound)
613 return 0;
614 return loop_switch(lo, NULL);
615 }
616
617 static void loop_reread_partitions(struct loop_device *lo,
618 struct block_device *bdev)
619 {
620 int rc;
621
622 /*
623 * bd_mutex has been held already in release path, so don't
624 * acquire it if this function is called in such case.
625 *
626 * If the reread partition isn't from release path, lo_refcnt
627 * must be at least one and it can only become zero when the
628 * current holder is released.
629 */
630 if (!atomic_read(&lo->lo_refcnt))
631 rc = __blkdev_reread_part(bdev);
632 else
633 rc = blkdev_reread_part(bdev);
634 if (rc)
635 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
636 __func__, lo->lo_number, lo->lo_file_name, rc);
637 }
638
639 /*
640 * loop_change_fd switched the backing store of a loopback device to
641 * a new file. This is useful for operating system installers to free up
642 * the original file and in High Availability environments to switch to
643 * an alternative location for the content in case of server meltdown.
644 * This can only work if the loop device is used read-only, and if the
645 * new backing store is the same size and type as the old backing store.
646 */
647 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
648 unsigned int arg)
649 {
650 struct file *file, *old_file;
651 struct inode *inode;
652 int error;
653
654 error = -ENXIO;
655 if (lo->lo_state != Lo_bound)
656 goto out;
657
658 /* the loop device has to be read-only */
659 error = -EINVAL;
660 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
661 goto out;
662
663 error = -EBADF;
664 file = fget(arg);
665 if (!file)
666 goto out;
667
668 inode = file->f_mapping->host;
669 old_file = lo->lo_backing_file;
670
671 error = -EINVAL;
672
673 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
674 goto out_putf;
675
676 /* size of the new backing store needs to be the same */
677 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
678 goto out_putf;
679
680 /* and ... switch */
681 error = loop_switch(lo, file);
682 if (error)
683 goto out_putf;
684
685 fput(old_file);
686 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
687 loop_reread_partitions(lo, bdev);
688 return 0;
689
690 out_putf:
691 fput(file);
692 out:
693 return error;
694 }
695
696 static inline int is_loop_device(struct file *file)
697 {
698 struct inode *i = file->f_mapping->host;
699
700 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
701 }
702
703 /* loop sysfs attributes */
704
705 static ssize_t loop_attr_show(struct device *dev, char *page,
706 ssize_t (*callback)(struct loop_device *, char *))
707 {
708 struct gendisk *disk = dev_to_disk(dev);
709 struct loop_device *lo = disk->private_data;
710
711 return callback(lo, page);
712 }
713
714 #define LOOP_ATTR_RO(_name) \
715 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
716 static ssize_t loop_attr_do_show_##_name(struct device *d, \
717 struct device_attribute *attr, char *b) \
718 { \
719 return loop_attr_show(d, b, loop_attr_##_name##_show); \
720 } \
721 static struct device_attribute loop_attr_##_name = \
722 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
723
724 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
725 {
726 ssize_t ret;
727 char *p = NULL;
728
729 spin_lock_irq(&lo->lo_lock);
730 if (lo->lo_backing_file)
731 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
732 spin_unlock_irq(&lo->lo_lock);
733
734 if (IS_ERR_OR_NULL(p))
735 ret = PTR_ERR(p);
736 else {
737 ret = strlen(p);
738 memmove(buf, p, ret);
739 buf[ret++] = '\n';
740 buf[ret] = 0;
741 }
742
743 return ret;
744 }
745
746 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
747 {
748 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
749 }
750
751 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
752 {
753 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
754 }
755
756 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
757 {
758 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
759
760 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
761 }
762
763 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
764 {
765 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
766
767 return sprintf(buf, "%s\n", partscan ? "1" : "0");
768 }
769
770 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
771 {
772 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
773
774 return sprintf(buf, "%s\n", dio ? "1" : "0");
775 }
776
777 LOOP_ATTR_RO(backing_file);
778 LOOP_ATTR_RO(offset);
779 LOOP_ATTR_RO(sizelimit);
780 LOOP_ATTR_RO(autoclear);
781 LOOP_ATTR_RO(partscan);
782 LOOP_ATTR_RO(dio);
783
784 static struct attribute *loop_attrs[] = {
785 &loop_attr_backing_file.attr,
786 &loop_attr_offset.attr,
787 &loop_attr_sizelimit.attr,
788 &loop_attr_autoclear.attr,
789 &loop_attr_partscan.attr,
790 &loop_attr_dio.attr,
791 NULL,
792 };
793
794 static struct attribute_group loop_attribute_group = {
795 .name = "loop",
796 .attrs= loop_attrs,
797 };
798
799 static int loop_sysfs_init(struct loop_device *lo)
800 {
801 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
802 &loop_attribute_group);
803 }
804
805 static void loop_sysfs_exit(struct loop_device *lo)
806 {
807 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
808 &loop_attribute_group);
809 }
810
811 static void loop_config_discard(struct loop_device *lo)
812 {
813 struct file *file = lo->lo_backing_file;
814 struct inode *inode = file->f_mapping->host;
815 struct request_queue *q = lo->lo_queue;
816
817 /*
818 * We use punch hole to reclaim the free space used by the
819 * image a.k.a. discard. However we do not support discard if
820 * encryption is enabled, because it may give an attacker
821 * useful information.
822 */
823 if ((!file->f_op->fallocate) ||
824 lo->lo_encrypt_key_size) {
825 q->limits.discard_granularity = 0;
826 q->limits.discard_alignment = 0;
827 blk_queue_max_discard_sectors(q, 0);
828 blk_queue_max_write_zeroes_sectors(q, 0);
829 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
830 return;
831 }
832
833 q->limits.discard_granularity = inode->i_sb->s_blocksize;
834 q->limits.discard_alignment = 0;
835 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
836 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
837 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
838 }
839
840 static void loop_unprepare_queue(struct loop_device *lo)
841 {
842 kthread_flush_worker(&lo->worker);
843 kthread_stop(lo->worker_task);
844 }
845
846 static int loop_prepare_queue(struct loop_device *lo)
847 {
848 kthread_init_worker(&lo->worker);
849 lo->worker_task = kthread_run(kthread_worker_fn,
850 &lo->worker, "loop%d", lo->lo_number);
851 if (IS_ERR(lo->worker_task))
852 return -ENOMEM;
853 set_user_nice(lo->worker_task, MIN_NICE);
854 return 0;
855 }
856
857 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
858 struct block_device *bdev, unsigned int arg)
859 {
860 struct file *file, *f;
861 struct inode *inode;
862 struct address_space *mapping;
863 unsigned lo_blocksize;
864 int lo_flags = 0;
865 int error;
866 loff_t size;
867
868 /* This is safe, since we have a reference from open(). */
869 __module_get(THIS_MODULE);
870
871 error = -EBADF;
872 file = fget(arg);
873 if (!file)
874 goto out;
875
876 error = -EBUSY;
877 if (lo->lo_state != Lo_unbound)
878 goto out_putf;
879
880 /* Avoid recursion */
881 f = file;
882 while (is_loop_device(f)) {
883 struct loop_device *l;
884
885 if (f->f_mapping->host->i_bdev == bdev)
886 goto out_putf;
887
888 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
889 if (l->lo_state == Lo_unbound) {
890 error = -EINVAL;
891 goto out_putf;
892 }
893 f = l->lo_backing_file;
894 }
895
896 mapping = file->f_mapping;
897 inode = mapping->host;
898
899 error = -EINVAL;
900 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
901 goto out_putf;
902
903 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
904 !file->f_op->write_iter)
905 lo_flags |= LO_FLAGS_READ_ONLY;
906
907 lo_blocksize = S_ISBLK(inode->i_mode) ?
908 inode->i_bdev->bd_block_size : PAGE_SIZE;
909
910 error = -EFBIG;
911 size = get_loop_size(lo, file);
912 if ((loff_t)(sector_t)size != size)
913 goto out_putf;
914 error = loop_prepare_queue(lo);
915 if (error)
916 goto out_putf;
917
918 error = 0;
919
920 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
921
922 lo->use_dio = false;
923 lo->lo_blocksize = lo_blocksize;
924 lo->lo_device = bdev;
925 lo->lo_flags = lo_flags;
926 lo->lo_backing_file = file;
927 lo->transfer = NULL;
928 lo->ioctl = NULL;
929 lo->lo_sizelimit = 0;
930 lo->old_gfp_mask = mapping_gfp_mask(mapping);
931 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
932
933 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
934 blk_queue_write_cache(lo->lo_queue, true, false);
935
936 loop_update_dio(lo);
937 set_capacity(lo->lo_disk, size);
938 bd_set_size(bdev, size << 9);
939 loop_sysfs_init(lo);
940 /* let user-space know about the new size */
941 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
942
943 set_blocksize(bdev, lo_blocksize);
944
945 lo->lo_state = Lo_bound;
946 if (part_shift)
947 lo->lo_flags |= LO_FLAGS_PARTSCAN;
948 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
949 loop_reread_partitions(lo, bdev);
950
951 /* Grab the block_device to prevent its destruction after we
952 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
953 */
954 bdgrab(bdev);
955 return 0;
956
957 out_putf:
958 fput(file);
959 out:
960 /* This is safe: open() is still holding a reference. */
961 module_put(THIS_MODULE);
962 return error;
963 }
964
965 static int
966 loop_release_xfer(struct loop_device *lo)
967 {
968 int err = 0;
969 struct loop_func_table *xfer = lo->lo_encryption;
970
971 if (xfer) {
972 if (xfer->release)
973 err = xfer->release(lo);
974 lo->transfer = NULL;
975 lo->lo_encryption = NULL;
976 module_put(xfer->owner);
977 }
978 return err;
979 }
980
981 static int
982 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
983 const struct loop_info64 *i)
984 {
985 int err = 0;
986
987 if (xfer) {
988 struct module *owner = xfer->owner;
989
990 if (!try_module_get(owner))
991 return -EINVAL;
992 if (xfer->init)
993 err = xfer->init(lo, i);
994 if (err)
995 module_put(owner);
996 else
997 lo->lo_encryption = xfer;
998 }
999 return err;
1000 }
1001
1002 static int loop_clr_fd(struct loop_device *lo)
1003 {
1004 struct file *filp = lo->lo_backing_file;
1005 gfp_t gfp = lo->old_gfp_mask;
1006 struct block_device *bdev = lo->lo_device;
1007
1008 if (lo->lo_state != Lo_bound)
1009 return -ENXIO;
1010
1011 /*
1012 * If we've explicitly asked to tear down the loop device,
1013 * and it has an elevated reference count, set it for auto-teardown when
1014 * the last reference goes away. This stops $!~#$@ udev from
1015 * preventing teardown because it decided that it needs to run blkid on
1016 * the loopback device whenever they appear. xfstests is notorious for
1017 * failing tests because blkid via udev races with a losetup
1018 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1019 * command to fail with EBUSY.
1020 */
1021 if (atomic_read(&lo->lo_refcnt) > 1) {
1022 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1023 mutex_unlock(&lo->lo_ctl_mutex);
1024 return 0;
1025 }
1026
1027 if (filp == NULL)
1028 return -EINVAL;
1029
1030 /* freeze request queue during the transition */
1031 blk_mq_freeze_queue(lo->lo_queue);
1032
1033 spin_lock_irq(&lo->lo_lock);
1034 lo->lo_state = Lo_rundown;
1035 lo->lo_backing_file = NULL;
1036 spin_unlock_irq(&lo->lo_lock);
1037
1038 loop_release_xfer(lo);
1039 lo->transfer = NULL;
1040 lo->ioctl = NULL;
1041 lo->lo_device = NULL;
1042 lo->lo_encryption = NULL;
1043 lo->lo_offset = 0;
1044 lo->lo_sizelimit = 0;
1045 lo->lo_encrypt_key_size = 0;
1046 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1047 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1048 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1049 if (bdev) {
1050 bdput(bdev);
1051 invalidate_bdev(bdev);
1052 }
1053 set_capacity(lo->lo_disk, 0);
1054 loop_sysfs_exit(lo);
1055 if (bdev) {
1056 bd_set_size(bdev, 0);
1057 /* let user-space know about this change */
1058 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1059 }
1060 mapping_set_gfp_mask(filp->f_mapping, gfp);
1061 lo->lo_state = Lo_unbound;
1062 /* This is safe: open() is still holding a reference. */
1063 module_put(THIS_MODULE);
1064 blk_mq_unfreeze_queue(lo->lo_queue);
1065
1066 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1067 loop_reread_partitions(lo, bdev);
1068 lo->lo_flags = 0;
1069 if (!part_shift)
1070 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1071 loop_unprepare_queue(lo);
1072 mutex_unlock(&lo->lo_ctl_mutex);
1073 /*
1074 * Need not hold lo_ctl_mutex to fput backing file.
1075 * Calling fput holding lo_ctl_mutex triggers a circular
1076 * lock dependency possibility warning as fput can take
1077 * bd_mutex which is usually taken before lo_ctl_mutex.
1078 */
1079 fput(filp);
1080 return 0;
1081 }
1082
1083 static int
1084 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1085 {
1086 int err;
1087 struct loop_func_table *xfer;
1088 kuid_t uid = current_uid();
1089
1090 if (lo->lo_encrypt_key_size &&
1091 !uid_eq(lo->lo_key_owner, uid) &&
1092 !capable(CAP_SYS_ADMIN))
1093 return -EPERM;
1094 if (lo->lo_state != Lo_bound)
1095 return -ENXIO;
1096 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1097 return -EINVAL;
1098
1099 /* I/O need to be drained during transfer transition */
1100 blk_mq_freeze_queue(lo->lo_queue);
1101
1102 err = loop_release_xfer(lo);
1103 if (err)
1104 goto exit;
1105
1106 if (info->lo_encrypt_type) {
1107 unsigned int type = info->lo_encrypt_type;
1108
1109 if (type >= MAX_LO_CRYPT)
1110 return -EINVAL;
1111 xfer = xfer_funcs[type];
1112 if (xfer == NULL)
1113 return -EINVAL;
1114 } else
1115 xfer = NULL;
1116
1117 err = loop_init_xfer(lo, xfer, info);
1118 if (err)
1119 goto exit;
1120
1121 if (lo->lo_offset != info->lo_offset ||
1122 lo->lo_sizelimit != info->lo_sizelimit)
1123 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1124 err = -EFBIG;
1125 goto exit;
1126 }
1127
1128 loop_config_discard(lo);
1129
1130 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1131 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1132 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1133 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1134
1135 if (!xfer)
1136 xfer = &none_funcs;
1137 lo->transfer = xfer->transfer;
1138 lo->ioctl = xfer->ioctl;
1139
1140 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1141 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1142 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1143
1144 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1145 lo->lo_init[0] = info->lo_init[0];
1146 lo->lo_init[1] = info->lo_init[1];
1147 if (info->lo_encrypt_key_size) {
1148 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1149 info->lo_encrypt_key_size);
1150 lo->lo_key_owner = uid;
1151 }
1152
1153 /* update dio if lo_offset or transfer is changed */
1154 __loop_update_dio(lo, lo->use_dio);
1155
1156 exit:
1157 blk_mq_unfreeze_queue(lo->lo_queue);
1158
1159 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1160 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1161 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1162 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1163 loop_reread_partitions(lo, lo->lo_device);
1164 }
1165
1166 return err;
1167 }
1168
1169 static int
1170 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1171 {
1172 struct file *file = lo->lo_backing_file;
1173 struct kstat stat;
1174 int error;
1175
1176 if (lo->lo_state != Lo_bound)
1177 return -ENXIO;
1178 error = vfs_getattr(&file->f_path, &stat,
1179 STATX_INO, AT_STATX_SYNC_AS_STAT);
1180 if (error)
1181 return error;
1182 memset(info, 0, sizeof(*info));
1183 info->lo_number = lo->lo_number;
1184 info->lo_device = huge_encode_dev(stat.dev);
1185 info->lo_inode = stat.ino;
1186 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1187 info->lo_offset = lo->lo_offset;
1188 info->lo_sizelimit = lo->lo_sizelimit;
1189 info->lo_flags = lo->lo_flags;
1190 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1191 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1192 info->lo_encrypt_type =
1193 lo->lo_encryption ? lo->lo_encryption->number : 0;
1194 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1195 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1196 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1197 lo->lo_encrypt_key_size);
1198 }
1199 return 0;
1200 }
1201
1202 static void
1203 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1204 {
1205 memset(info64, 0, sizeof(*info64));
1206 info64->lo_number = info->lo_number;
1207 info64->lo_device = info->lo_device;
1208 info64->lo_inode = info->lo_inode;
1209 info64->lo_rdevice = info->lo_rdevice;
1210 info64->lo_offset = info->lo_offset;
1211 info64->lo_sizelimit = 0;
1212 info64->lo_encrypt_type = info->lo_encrypt_type;
1213 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1214 info64->lo_flags = info->lo_flags;
1215 info64->lo_init[0] = info->lo_init[0];
1216 info64->lo_init[1] = info->lo_init[1];
1217 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1218 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1219 else
1220 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1221 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1222 }
1223
1224 static int
1225 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1226 {
1227 memset(info, 0, sizeof(*info));
1228 info->lo_number = info64->lo_number;
1229 info->lo_device = info64->lo_device;
1230 info->lo_inode = info64->lo_inode;
1231 info->lo_rdevice = info64->lo_rdevice;
1232 info->lo_offset = info64->lo_offset;
1233 info->lo_encrypt_type = info64->lo_encrypt_type;
1234 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1235 info->lo_flags = info64->lo_flags;
1236 info->lo_init[0] = info64->lo_init[0];
1237 info->lo_init[1] = info64->lo_init[1];
1238 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1239 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1240 else
1241 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1242 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1243
1244 /* error in case values were truncated */
1245 if (info->lo_device != info64->lo_device ||
1246 info->lo_rdevice != info64->lo_rdevice ||
1247 info->lo_inode != info64->lo_inode ||
1248 info->lo_offset != info64->lo_offset)
1249 return -EOVERFLOW;
1250
1251 return 0;
1252 }
1253
1254 static int
1255 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1256 {
1257 struct loop_info info;
1258 struct loop_info64 info64;
1259
1260 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1261 return -EFAULT;
1262 loop_info64_from_old(&info, &info64);
1263 return loop_set_status(lo, &info64);
1264 }
1265
1266 static int
1267 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1268 {
1269 struct loop_info64 info64;
1270
1271 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1272 return -EFAULT;
1273 return loop_set_status(lo, &info64);
1274 }
1275
1276 static int
1277 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1278 struct loop_info info;
1279 struct loop_info64 info64;
1280 int err = 0;
1281
1282 if (!arg)
1283 err = -EINVAL;
1284 if (!err)
1285 err = loop_get_status(lo, &info64);
1286 if (!err)
1287 err = loop_info64_to_old(&info64, &info);
1288 if (!err && copy_to_user(arg, &info, sizeof(info)))
1289 err = -EFAULT;
1290
1291 return err;
1292 }
1293
1294 static int
1295 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1296 struct loop_info64 info64;
1297 int err = 0;
1298
1299 if (!arg)
1300 err = -EINVAL;
1301 if (!err)
1302 err = loop_get_status(lo, &info64);
1303 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1304 err = -EFAULT;
1305
1306 return err;
1307 }
1308
1309 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1310 {
1311 if (unlikely(lo->lo_state != Lo_bound))
1312 return -ENXIO;
1313
1314 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1315 }
1316
1317 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1318 {
1319 int error = -ENXIO;
1320 if (lo->lo_state != Lo_bound)
1321 goto out;
1322
1323 __loop_update_dio(lo, !!arg);
1324 if (lo->use_dio == !!arg)
1325 return 0;
1326 error = -EINVAL;
1327 out:
1328 return error;
1329 }
1330
1331 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1332 unsigned int cmd, unsigned long arg)
1333 {
1334 struct loop_device *lo = bdev->bd_disk->private_data;
1335 int err;
1336
1337 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1338 switch (cmd) {
1339 case LOOP_SET_FD:
1340 err = loop_set_fd(lo, mode, bdev, arg);
1341 break;
1342 case LOOP_CHANGE_FD:
1343 err = loop_change_fd(lo, bdev, arg);
1344 break;
1345 case LOOP_CLR_FD:
1346 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1347 err = loop_clr_fd(lo);
1348 if (!err)
1349 goto out_unlocked;
1350 break;
1351 case LOOP_SET_STATUS:
1352 err = -EPERM;
1353 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1354 err = loop_set_status_old(lo,
1355 (struct loop_info __user *)arg);
1356 break;
1357 case LOOP_GET_STATUS:
1358 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1359 break;
1360 case LOOP_SET_STATUS64:
1361 err = -EPERM;
1362 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1363 err = loop_set_status64(lo,
1364 (struct loop_info64 __user *) arg);
1365 break;
1366 case LOOP_GET_STATUS64:
1367 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1368 break;
1369 case LOOP_SET_CAPACITY:
1370 err = -EPERM;
1371 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1372 err = loop_set_capacity(lo, bdev);
1373 break;
1374 case LOOP_SET_DIRECT_IO:
1375 err = -EPERM;
1376 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1377 err = loop_set_dio(lo, arg);
1378 break;
1379 default:
1380 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1381 }
1382 mutex_unlock(&lo->lo_ctl_mutex);
1383
1384 out_unlocked:
1385 return err;
1386 }
1387
1388 #ifdef CONFIG_COMPAT
1389 struct compat_loop_info {
1390 compat_int_t lo_number; /* ioctl r/o */
1391 compat_dev_t lo_device; /* ioctl r/o */
1392 compat_ulong_t lo_inode; /* ioctl r/o */
1393 compat_dev_t lo_rdevice; /* ioctl r/o */
1394 compat_int_t lo_offset;
1395 compat_int_t lo_encrypt_type;
1396 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1397 compat_int_t lo_flags; /* ioctl r/o */
1398 char lo_name[LO_NAME_SIZE];
1399 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1400 compat_ulong_t lo_init[2];
1401 char reserved[4];
1402 };
1403
1404 /*
1405 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1406 * - noinlined to reduce stack space usage in main part of driver
1407 */
1408 static noinline int
1409 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1410 struct loop_info64 *info64)
1411 {
1412 struct compat_loop_info info;
1413
1414 if (copy_from_user(&info, arg, sizeof(info)))
1415 return -EFAULT;
1416
1417 memset(info64, 0, sizeof(*info64));
1418 info64->lo_number = info.lo_number;
1419 info64->lo_device = info.lo_device;
1420 info64->lo_inode = info.lo_inode;
1421 info64->lo_rdevice = info.lo_rdevice;
1422 info64->lo_offset = info.lo_offset;
1423 info64->lo_sizelimit = 0;
1424 info64->lo_encrypt_type = info.lo_encrypt_type;
1425 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1426 info64->lo_flags = info.lo_flags;
1427 info64->lo_init[0] = info.lo_init[0];
1428 info64->lo_init[1] = info.lo_init[1];
1429 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1430 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1431 else
1432 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1433 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1434 return 0;
1435 }
1436
1437 /*
1438 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1439 * - noinlined to reduce stack space usage in main part of driver
1440 */
1441 static noinline int
1442 loop_info64_to_compat(const struct loop_info64 *info64,
1443 struct compat_loop_info __user *arg)
1444 {
1445 struct compat_loop_info info;
1446
1447 memset(&info, 0, sizeof(info));
1448 info.lo_number = info64->lo_number;
1449 info.lo_device = info64->lo_device;
1450 info.lo_inode = info64->lo_inode;
1451 info.lo_rdevice = info64->lo_rdevice;
1452 info.lo_offset = info64->lo_offset;
1453 info.lo_encrypt_type = info64->lo_encrypt_type;
1454 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1455 info.lo_flags = info64->lo_flags;
1456 info.lo_init[0] = info64->lo_init[0];
1457 info.lo_init[1] = info64->lo_init[1];
1458 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1459 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1460 else
1461 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1462 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1463
1464 /* error in case values were truncated */
1465 if (info.lo_device != info64->lo_device ||
1466 info.lo_rdevice != info64->lo_rdevice ||
1467 info.lo_inode != info64->lo_inode ||
1468 info.lo_offset != info64->lo_offset ||
1469 info.lo_init[0] != info64->lo_init[0] ||
1470 info.lo_init[1] != info64->lo_init[1])
1471 return -EOVERFLOW;
1472
1473 if (copy_to_user(arg, &info, sizeof(info)))
1474 return -EFAULT;
1475 return 0;
1476 }
1477
1478 static int
1479 loop_set_status_compat(struct loop_device *lo,
1480 const struct compat_loop_info __user *arg)
1481 {
1482 struct loop_info64 info64;
1483 int ret;
1484
1485 ret = loop_info64_from_compat(arg, &info64);
1486 if (ret < 0)
1487 return ret;
1488 return loop_set_status(lo, &info64);
1489 }
1490
1491 static int
1492 loop_get_status_compat(struct loop_device *lo,
1493 struct compat_loop_info __user *arg)
1494 {
1495 struct loop_info64 info64;
1496 int err = 0;
1497
1498 if (!arg)
1499 err = -EINVAL;
1500 if (!err)
1501 err = loop_get_status(lo, &info64);
1502 if (!err)
1503 err = loop_info64_to_compat(&info64, arg);
1504 return err;
1505 }
1506
1507 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1508 unsigned int cmd, unsigned long arg)
1509 {
1510 struct loop_device *lo = bdev->bd_disk->private_data;
1511 int err;
1512
1513 switch(cmd) {
1514 case LOOP_SET_STATUS:
1515 mutex_lock(&lo->lo_ctl_mutex);
1516 err = loop_set_status_compat(
1517 lo, (const struct compat_loop_info __user *) arg);
1518 mutex_unlock(&lo->lo_ctl_mutex);
1519 break;
1520 case LOOP_GET_STATUS:
1521 mutex_lock(&lo->lo_ctl_mutex);
1522 err = loop_get_status_compat(
1523 lo, (struct compat_loop_info __user *) arg);
1524 mutex_unlock(&lo->lo_ctl_mutex);
1525 break;
1526 case LOOP_SET_CAPACITY:
1527 case LOOP_CLR_FD:
1528 case LOOP_GET_STATUS64:
1529 case LOOP_SET_STATUS64:
1530 arg = (unsigned long) compat_ptr(arg);
1531 case LOOP_SET_FD:
1532 case LOOP_CHANGE_FD:
1533 err = lo_ioctl(bdev, mode, cmd, arg);
1534 break;
1535 default:
1536 err = -ENOIOCTLCMD;
1537 break;
1538 }
1539 return err;
1540 }
1541 #endif
1542
1543 static int lo_open(struct block_device *bdev, fmode_t mode)
1544 {
1545 struct loop_device *lo;
1546 int err = 0;
1547
1548 mutex_lock(&loop_index_mutex);
1549 lo = bdev->bd_disk->private_data;
1550 if (!lo) {
1551 err = -ENXIO;
1552 goto out;
1553 }
1554
1555 atomic_inc(&lo->lo_refcnt);
1556 out:
1557 mutex_unlock(&loop_index_mutex);
1558 return err;
1559 }
1560
1561 static void lo_release(struct gendisk *disk, fmode_t mode)
1562 {
1563 struct loop_device *lo = disk->private_data;
1564 int err;
1565
1566 if (atomic_dec_return(&lo->lo_refcnt))
1567 return;
1568
1569 mutex_lock(&lo->lo_ctl_mutex);
1570 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1571 /*
1572 * In autoclear mode, stop the loop thread
1573 * and remove configuration after last close.
1574 */
1575 err = loop_clr_fd(lo);
1576 if (!err)
1577 return;
1578 } else {
1579 /*
1580 * Otherwise keep thread (if running) and config,
1581 * but flush possible ongoing bios in thread.
1582 */
1583 loop_flush(lo);
1584 }
1585
1586 mutex_unlock(&lo->lo_ctl_mutex);
1587 }
1588
1589 static const struct block_device_operations lo_fops = {
1590 .owner = THIS_MODULE,
1591 .open = lo_open,
1592 .release = lo_release,
1593 .ioctl = lo_ioctl,
1594 #ifdef CONFIG_COMPAT
1595 .compat_ioctl = lo_compat_ioctl,
1596 #endif
1597 };
1598
1599 /*
1600 * And now the modules code and kernel interface.
1601 */
1602 static int max_loop;
1603 module_param(max_loop, int, S_IRUGO);
1604 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1605 module_param(max_part, int, S_IRUGO);
1606 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1607 MODULE_LICENSE("GPL");
1608 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1609
1610 int loop_register_transfer(struct loop_func_table *funcs)
1611 {
1612 unsigned int n = funcs->number;
1613
1614 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1615 return -EINVAL;
1616 xfer_funcs[n] = funcs;
1617 return 0;
1618 }
1619
1620 static int unregister_transfer_cb(int id, void *ptr, void *data)
1621 {
1622 struct loop_device *lo = ptr;
1623 struct loop_func_table *xfer = data;
1624
1625 mutex_lock(&lo->lo_ctl_mutex);
1626 if (lo->lo_encryption == xfer)
1627 loop_release_xfer(lo);
1628 mutex_unlock(&lo->lo_ctl_mutex);
1629 return 0;
1630 }
1631
1632 int loop_unregister_transfer(int number)
1633 {
1634 unsigned int n = number;
1635 struct loop_func_table *xfer;
1636
1637 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1638 return -EINVAL;
1639
1640 xfer_funcs[n] = NULL;
1641 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1642 return 0;
1643 }
1644
1645 EXPORT_SYMBOL(loop_register_transfer);
1646 EXPORT_SYMBOL(loop_unregister_transfer);
1647
1648 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1649 const struct blk_mq_queue_data *bd)
1650 {
1651 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1652 struct loop_device *lo = cmd->rq->q->queuedata;
1653
1654 blk_mq_start_request(bd->rq);
1655
1656 if (lo->lo_state != Lo_bound)
1657 return BLK_MQ_RQ_QUEUE_ERROR;
1658
1659 switch (req_op(cmd->rq)) {
1660 case REQ_OP_FLUSH:
1661 case REQ_OP_DISCARD:
1662 case REQ_OP_WRITE_ZEROES:
1663 cmd->use_aio = false;
1664 break;
1665 default:
1666 cmd->use_aio = lo->use_dio;
1667 break;
1668 }
1669
1670 kthread_queue_work(&lo->worker, &cmd->work);
1671
1672 return BLK_MQ_RQ_QUEUE_OK;
1673 }
1674
1675 static void loop_handle_cmd(struct loop_cmd *cmd)
1676 {
1677 const bool write = op_is_write(req_op(cmd->rq));
1678 struct loop_device *lo = cmd->rq->q->queuedata;
1679 int ret = 0;
1680
1681 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1682 ret = -EIO;
1683 goto failed;
1684 }
1685
1686 ret = do_req_filebacked(lo, cmd->rq);
1687 failed:
1688 /* complete non-aio request */
1689 if (!cmd->use_aio || ret) {
1690 cmd->ret = ret ? -EIO : 0;
1691 blk_mq_complete_request(cmd->rq);
1692 }
1693 }
1694
1695 static void loop_queue_work(struct kthread_work *work)
1696 {
1697 struct loop_cmd *cmd =
1698 container_of(work, struct loop_cmd, work);
1699
1700 loop_handle_cmd(cmd);
1701 }
1702
1703 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1704 unsigned int hctx_idx, unsigned int numa_node)
1705 {
1706 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1707
1708 cmd->rq = rq;
1709 kthread_init_work(&cmd->work, loop_queue_work);
1710
1711 return 0;
1712 }
1713
1714 static const struct blk_mq_ops loop_mq_ops = {
1715 .queue_rq = loop_queue_rq,
1716 .init_request = loop_init_request,
1717 .complete = lo_complete_rq,
1718 };
1719
1720 static int loop_add(struct loop_device **l, int i)
1721 {
1722 struct loop_device *lo;
1723 struct gendisk *disk;
1724 int err;
1725
1726 err = -ENOMEM;
1727 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1728 if (!lo)
1729 goto out;
1730
1731 lo->lo_state = Lo_unbound;
1732
1733 /* allocate id, if @id >= 0, we're requesting that specific id */
1734 if (i >= 0) {
1735 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1736 if (err == -ENOSPC)
1737 err = -EEXIST;
1738 } else {
1739 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1740 }
1741 if (err < 0)
1742 goto out_free_dev;
1743 i = err;
1744
1745 err = -ENOMEM;
1746 lo->tag_set.ops = &loop_mq_ops;
1747 lo->tag_set.nr_hw_queues = 1;
1748 lo->tag_set.queue_depth = 128;
1749 lo->tag_set.numa_node = NUMA_NO_NODE;
1750 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1751 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1752 lo->tag_set.driver_data = lo;
1753
1754 err = blk_mq_alloc_tag_set(&lo->tag_set);
1755 if (err)
1756 goto out_free_idr;
1757
1758 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1759 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1760 err = PTR_ERR(lo->lo_queue);
1761 goto out_cleanup_tags;
1762 }
1763 lo->lo_queue->queuedata = lo;
1764
1765 /*
1766 * It doesn't make sense to enable merge because the I/O
1767 * submitted to backing file is handled page by page.
1768 */
1769 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1770
1771 err = -ENOMEM;
1772 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1773 if (!disk)
1774 goto out_free_queue;
1775
1776 /*
1777 * Disable partition scanning by default. The in-kernel partition
1778 * scanning can be requested individually per-device during its
1779 * setup. Userspace can always add and remove partitions from all
1780 * devices. The needed partition minors are allocated from the
1781 * extended minor space, the main loop device numbers will continue
1782 * to match the loop minors, regardless of the number of partitions
1783 * used.
1784 *
1785 * If max_part is given, partition scanning is globally enabled for
1786 * all loop devices. The minors for the main loop devices will be
1787 * multiples of max_part.
1788 *
1789 * Note: Global-for-all-devices, set-only-at-init, read-only module
1790 * parameteters like 'max_loop' and 'max_part' make things needlessly
1791 * complicated, are too static, inflexible and may surprise
1792 * userspace tools. Parameters like this in general should be avoided.
1793 */
1794 if (!part_shift)
1795 disk->flags |= GENHD_FL_NO_PART_SCAN;
1796 disk->flags |= GENHD_FL_EXT_DEVT;
1797 mutex_init(&lo->lo_ctl_mutex);
1798 atomic_set(&lo->lo_refcnt, 0);
1799 lo->lo_number = i;
1800 spin_lock_init(&lo->lo_lock);
1801 disk->major = LOOP_MAJOR;
1802 disk->first_minor = i << part_shift;
1803 disk->fops = &lo_fops;
1804 disk->private_data = lo;
1805 disk->queue = lo->lo_queue;
1806 sprintf(disk->disk_name, "loop%d", i);
1807 add_disk(disk);
1808 *l = lo;
1809 return lo->lo_number;
1810
1811 out_free_queue:
1812 blk_cleanup_queue(lo->lo_queue);
1813 out_cleanup_tags:
1814 blk_mq_free_tag_set(&lo->tag_set);
1815 out_free_idr:
1816 idr_remove(&loop_index_idr, i);
1817 out_free_dev:
1818 kfree(lo);
1819 out:
1820 return err;
1821 }
1822
1823 static void loop_remove(struct loop_device *lo)
1824 {
1825 blk_cleanup_queue(lo->lo_queue);
1826 del_gendisk(lo->lo_disk);
1827 blk_mq_free_tag_set(&lo->tag_set);
1828 put_disk(lo->lo_disk);
1829 kfree(lo);
1830 }
1831
1832 static int find_free_cb(int id, void *ptr, void *data)
1833 {
1834 struct loop_device *lo = ptr;
1835 struct loop_device **l = data;
1836
1837 if (lo->lo_state == Lo_unbound) {
1838 *l = lo;
1839 return 1;
1840 }
1841 return 0;
1842 }
1843
1844 static int loop_lookup(struct loop_device **l, int i)
1845 {
1846 struct loop_device *lo;
1847 int ret = -ENODEV;
1848
1849 if (i < 0) {
1850 int err;
1851
1852 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1853 if (err == 1) {
1854 *l = lo;
1855 ret = lo->lo_number;
1856 }
1857 goto out;
1858 }
1859
1860 /* lookup and return a specific i */
1861 lo = idr_find(&loop_index_idr, i);
1862 if (lo) {
1863 *l = lo;
1864 ret = lo->lo_number;
1865 }
1866 out:
1867 return ret;
1868 }
1869
1870 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1871 {
1872 struct loop_device *lo;
1873 struct kobject *kobj;
1874 int err;
1875
1876 mutex_lock(&loop_index_mutex);
1877 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1878 if (err < 0)
1879 err = loop_add(&lo, MINOR(dev) >> part_shift);
1880 if (err < 0)
1881 kobj = NULL;
1882 else
1883 kobj = get_disk(lo->lo_disk);
1884 mutex_unlock(&loop_index_mutex);
1885
1886 *part = 0;
1887 return kobj;
1888 }
1889
1890 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1891 unsigned long parm)
1892 {
1893 struct loop_device *lo;
1894 int ret = -ENOSYS;
1895
1896 mutex_lock(&loop_index_mutex);
1897 switch (cmd) {
1898 case LOOP_CTL_ADD:
1899 ret = loop_lookup(&lo, parm);
1900 if (ret >= 0) {
1901 ret = -EEXIST;
1902 break;
1903 }
1904 ret = loop_add(&lo, parm);
1905 break;
1906 case LOOP_CTL_REMOVE:
1907 ret = loop_lookup(&lo, parm);
1908 if (ret < 0)
1909 break;
1910 mutex_lock(&lo->lo_ctl_mutex);
1911 if (lo->lo_state != Lo_unbound) {
1912 ret = -EBUSY;
1913 mutex_unlock(&lo->lo_ctl_mutex);
1914 break;
1915 }
1916 if (atomic_read(&lo->lo_refcnt) > 0) {
1917 ret = -EBUSY;
1918 mutex_unlock(&lo->lo_ctl_mutex);
1919 break;
1920 }
1921 lo->lo_disk->private_data = NULL;
1922 mutex_unlock(&lo->lo_ctl_mutex);
1923 idr_remove(&loop_index_idr, lo->lo_number);
1924 loop_remove(lo);
1925 break;
1926 case LOOP_CTL_GET_FREE:
1927 ret = loop_lookup(&lo, -1);
1928 if (ret >= 0)
1929 break;
1930 ret = loop_add(&lo, -1);
1931 }
1932 mutex_unlock(&loop_index_mutex);
1933
1934 return ret;
1935 }
1936
1937 static const struct file_operations loop_ctl_fops = {
1938 .open = nonseekable_open,
1939 .unlocked_ioctl = loop_control_ioctl,
1940 .compat_ioctl = loop_control_ioctl,
1941 .owner = THIS_MODULE,
1942 .llseek = noop_llseek,
1943 };
1944
1945 static struct miscdevice loop_misc = {
1946 .minor = LOOP_CTRL_MINOR,
1947 .name = "loop-control",
1948 .fops = &loop_ctl_fops,
1949 };
1950
1951 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1952 MODULE_ALIAS("devname:loop-control");
1953
1954 static int __init loop_init(void)
1955 {
1956 int i, nr;
1957 unsigned long range;
1958 struct loop_device *lo;
1959 int err;
1960
1961 err = misc_register(&loop_misc);
1962 if (err < 0)
1963 return err;
1964
1965 part_shift = 0;
1966 if (max_part > 0) {
1967 part_shift = fls(max_part);
1968
1969 /*
1970 * Adjust max_part according to part_shift as it is exported
1971 * to user space so that user can decide correct minor number
1972 * if [s]he want to create more devices.
1973 *
1974 * Note that -1 is required because partition 0 is reserved
1975 * for the whole disk.
1976 */
1977 max_part = (1UL << part_shift) - 1;
1978 }
1979
1980 if ((1UL << part_shift) > DISK_MAX_PARTS) {
1981 err = -EINVAL;
1982 goto misc_out;
1983 }
1984
1985 if (max_loop > 1UL << (MINORBITS - part_shift)) {
1986 err = -EINVAL;
1987 goto misc_out;
1988 }
1989
1990 /*
1991 * If max_loop is specified, create that many devices upfront.
1992 * This also becomes a hard limit. If max_loop is not specified,
1993 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1994 * init time. Loop devices can be requested on-demand with the
1995 * /dev/loop-control interface, or be instantiated by accessing
1996 * a 'dead' device node.
1997 */
1998 if (max_loop) {
1999 nr = max_loop;
2000 range = max_loop << part_shift;
2001 } else {
2002 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2003 range = 1UL << MINORBITS;
2004 }
2005
2006 if (register_blkdev(LOOP_MAJOR, "loop")) {
2007 err = -EIO;
2008 goto misc_out;
2009 }
2010
2011 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2012 THIS_MODULE, loop_probe, NULL, NULL);
2013
2014 /* pre-create number of devices given by config or max_loop */
2015 mutex_lock(&loop_index_mutex);
2016 for (i = 0; i < nr; i++)
2017 loop_add(&lo, i);
2018 mutex_unlock(&loop_index_mutex);
2019
2020 printk(KERN_INFO "loop: module loaded\n");
2021 return 0;
2022
2023 misc_out:
2024 misc_deregister(&loop_misc);
2025 return err;
2026 }
2027
2028 static int loop_exit_cb(int id, void *ptr, void *data)
2029 {
2030 struct loop_device *lo = ptr;
2031
2032 loop_remove(lo);
2033 return 0;
2034 }
2035
2036 static void __exit loop_exit(void)
2037 {
2038 unsigned long range;
2039
2040 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2041
2042 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2043 idr_destroy(&loop_index_idr);
2044
2045 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2046 unregister_blkdev(LOOP_MAJOR, "loop");
2047
2048 misc_deregister(&loop_misc);
2049 }
2050
2051 module_init(loop_init);
2052 module_exit(loop_exit);
2053
2054 #ifndef MODULE
2055 static int __init max_loop_setup(char *str)
2056 {
2057 max_loop = simple_strtol(str, NULL, 0);
2058 return 1;
2059 }
2060
2061 __setup("max_loop=", max_loop_setup);
2062 #endif