]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/loop.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80
81 #include <linux/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
93 {
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
98
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
105 }
106
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
111
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
116 }
117
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
123 }
124
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
127 };
128
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
133 };
134
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
139 };
140
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 loff_t loopsize;
144
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
152
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
155 /*
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
158 */
159 return loopsize >> 9;
160 }
161
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
175
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
179 }
180
181 /*
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
186 *
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane applications should be PAGE_SIZE aligned
190 */
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
201 }
202
203 if (lo->use_dio == use_dio)
204 return;
205
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
208
209 /*
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
213 */
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio)
217 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 else
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit,
225 loff_t logical_blocksize)
226 {
227 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
228 sector_t x = (sector_t)size;
229 struct block_device *bdev = lo->lo_device;
230
231 if (unlikely((loff_t)x != size))
232 return -EFBIG;
233 if (lo->lo_offset != offset)
234 lo->lo_offset = offset;
235 if (lo->lo_sizelimit != sizelimit)
236 lo->lo_sizelimit = sizelimit;
237 if (lo->lo_flags & LO_FLAGS_BLOCKSIZE) {
238 lo->lo_logical_blocksize = logical_blocksize;
239 blk_queue_physical_block_size(lo->lo_queue, lo->lo_blocksize);
240 blk_queue_logical_block_size(lo->lo_queue,
241 lo->lo_logical_blocksize);
242 }
243 set_capacity(lo->lo_disk, x);
244 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
245 /* let user-space know about the new size */
246 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
247 return 0;
248 }
249
250 static inline int
251 lo_do_transfer(struct loop_device *lo, int cmd,
252 struct page *rpage, unsigned roffs,
253 struct page *lpage, unsigned loffs,
254 int size, sector_t rblock)
255 {
256 int ret;
257
258 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
259 if (likely(!ret))
260 return 0;
261
262 printk_ratelimited(KERN_ERR
263 "loop: Transfer error at byte offset %llu, length %i.\n",
264 (unsigned long long)rblock << 9, size);
265 return ret;
266 }
267
268 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
269 {
270 struct iov_iter i;
271 ssize_t bw;
272
273 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
274
275 file_start_write(file);
276 bw = vfs_iter_write(file, &i, ppos, 0);
277 file_end_write(file);
278
279 if (likely(bw == bvec->bv_len))
280 return 0;
281
282 printk_ratelimited(KERN_ERR
283 "loop: Write error at byte offset %llu, length %i.\n",
284 (unsigned long long)*ppos, bvec->bv_len);
285 if (bw >= 0)
286 bw = -EIO;
287 return bw;
288 }
289
290 static int lo_write_simple(struct loop_device *lo, struct request *rq,
291 loff_t pos)
292 {
293 struct bio_vec bvec;
294 struct req_iterator iter;
295 int ret = 0;
296
297 rq_for_each_segment(bvec, rq, iter) {
298 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
299 if (ret < 0)
300 break;
301 cond_resched();
302 }
303
304 return ret;
305 }
306
307 /*
308 * This is the slow, transforming version that needs to double buffer the
309 * data as it cannot do the transformations in place without having direct
310 * access to the destination pages of the backing file.
311 */
312 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
313 loff_t pos)
314 {
315 struct bio_vec bvec, b;
316 struct req_iterator iter;
317 struct page *page;
318 int ret = 0;
319
320 page = alloc_page(GFP_NOIO);
321 if (unlikely(!page))
322 return -ENOMEM;
323
324 rq_for_each_segment(bvec, rq, iter) {
325 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
326 bvec.bv_offset, bvec.bv_len, pos >> 9);
327 if (unlikely(ret))
328 break;
329
330 b.bv_page = page;
331 b.bv_offset = 0;
332 b.bv_len = bvec.bv_len;
333 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
334 if (ret < 0)
335 break;
336 }
337
338 __free_page(page);
339 return ret;
340 }
341
342 static int lo_read_simple(struct loop_device *lo, struct request *rq,
343 loff_t pos)
344 {
345 struct bio_vec bvec;
346 struct req_iterator iter;
347 struct iov_iter i;
348 ssize_t len;
349
350 rq_for_each_segment(bvec, rq, iter) {
351 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
352 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
353 if (len < 0)
354 return len;
355
356 flush_dcache_page(bvec.bv_page);
357
358 if (len != bvec.bv_len) {
359 struct bio *bio;
360
361 __rq_for_each_bio(bio, rq)
362 zero_fill_bio(bio);
363 break;
364 }
365 cond_resched();
366 }
367
368 return 0;
369 }
370
371 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
372 loff_t pos)
373 {
374 struct bio_vec bvec, b;
375 struct req_iterator iter;
376 struct iov_iter i;
377 struct page *page;
378 ssize_t len;
379 int ret = 0;
380
381 page = alloc_page(GFP_NOIO);
382 if (unlikely(!page))
383 return -ENOMEM;
384
385 rq_for_each_segment(bvec, rq, iter) {
386 loff_t offset = pos;
387
388 b.bv_page = page;
389 b.bv_offset = 0;
390 b.bv_len = bvec.bv_len;
391
392 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
393 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
394 if (len < 0) {
395 ret = len;
396 goto out_free_page;
397 }
398
399 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
400 bvec.bv_offset, len, offset >> 9);
401 if (ret)
402 goto out_free_page;
403
404 flush_dcache_page(bvec.bv_page);
405
406 if (len != bvec.bv_len) {
407 struct bio *bio;
408
409 __rq_for_each_bio(bio, rq)
410 zero_fill_bio(bio);
411 break;
412 }
413 }
414
415 ret = 0;
416 out_free_page:
417 __free_page(page);
418 return ret;
419 }
420
421 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
422 {
423 /*
424 * We use punch hole to reclaim the free space used by the
425 * image a.k.a. discard. However we do not support discard if
426 * encryption is enabled, because it may give an attacker
427 * useful information.
428 */
429 struct file *file = lo->lo_backing_file;
430 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
431 int ret;
432
433 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
434 ret = -EOPNOTSUPP;
435 goto out;
436 }
437
438 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
439 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
440 ret = -EIO;
441 out:
442 return ret;
443 }
444
445 static int lo_req_flush(struct loop_device *lo, struct request *rq)
446 {
447 struct file *file = lo->lo_backing_file;
448 int ret = vfs_fsync(file, 0);
449 if (unlikely(ret && ret != -EINVAL))
450 ret = -EIO;
451
452 return ret;
453 }
454
455 static void lo_complete_rq(struct request *rq)
456 {
457 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
458
459 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
460 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
461 struct bio *bio = cmd->rq->bio;
462
463 bio_advance(bio, cmd->ret);
464 zero_fill_bio(bio);
465 }
466
467 blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
468 }
469
470 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
471 {
472 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
473
474 cmd->ret = ret;
475 blk_mq_complete_request(cmd->rq);
476 }
477
478 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
479 loff_t pos, bool rw)
480 {
481 struct iov_iter iter;
482 struct bio_vec *bvec;
483 struct bio *bio = cmd->rq->bio;
484 struct file *file = lo->lo_backing_file;
485 int ret;
486
487 /* nomerge for loop request queue */
488 WARN_ON(cmd->rq->bio != cmd->rq->biotail);
489
490 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
491 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
492 bio_segments(bio), blk_rq_bytes(cmd->rq));
493 /*
494 * This bio may be started from the middle of the 'bvec'
495 * because of bio splitting, so offset from the bvec must
496 * be passed to iov iterator
497 */
498 iter.iov_offset = bio->bi_iter.bi_bvec_done;
499
500 cmd->iocb.ki_pos = pos;
501 cmd->iocb.ki_filp = file;
502 cmd->iocb.ki_complete = lo_rw_aio_complete;
503 cmd->iocb.ki_flags = IOCB_DIRECT;
504
505 if (rw == WRITE)
506 ret = call_write_iter(file, &cmd->iocb, &iter);
507 else
508 ret = call_read_iter(file, &cmd->iocb, &iter);
509
510 if (ret != -EIOCBQUEUED)
511 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
512 return 0;
513 }
514
515 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
516 {
517 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
518 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
519
520 /*
521 * lo_write_simple and lo_read_simple should have been covered
522 * by io submit style function like lo_rw_aio(), one blocker
523 * is that lo_read_simple() need to call flush_dcache_page after
524 * the page is written from kernel, and it isn't easy to handle
525 * this in io submit style function which submits all segments
526 * of the req at one time. And direct read IO doesn't need to
527 * run flush_dcache_page().
528 */
529 switch (req_op(rq)) {
530 case REQ_OP_FLUSH:
531 return lo_req_flush(lo, rq);
532 case REQ_OP_DISCARD:
533 case REQ_OP_WRITE_ZEROES:
534 return lo_discard(lo, rq, pos);
535 case REQ_OP_WRITE:
536 if (lo->transfer)
537 return lo_write_transfer(lo, rq, pos);
538 else if (cmd->use_aio)
539 return lo_rw_aio(lo, cmd, pos, WRITE);
540 else
541 return lo_write_simple(lo, rq, pos);
542 case REQ_OP_READ:
543 if (lo->transfer)
544 return lo_read_transfer(lo, rq, pos);
545 else if (cmd->use_aio)
546 return lo_rw_aio(lo, cmd, pos, READ);
547 else
548 return lo_read_simple(lo, rq, pos);
549 default:
550 WARN_ON_ONCE(1);
551 return -EIO;
552 break;
553 }
554 }
555
556 struct switch_request {
557 struct file *file;
558 struct completion wait;
559 };
560
561 static inline void loop_update_dio(struct loop_device *lo)
562 {
563 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
564 lo->use_dio);
565 }
566
567 /*
568 * Do the actual switch; called from the BIO completion routine
569 */
570 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
571 {
572 struct file *file = p->file;
573 struct file *old_file = lo->lo_backing_file;
574 struct address_space *mapping;
575
576 /* if no new file, only flush of queued bios requested */
577 if (!file)
578 return;
579
580 mapping = file->f_mapping;
581 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
582 lo->lo_backing_file = file;
583 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
584 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
585 lo->old_gfp_mask = mapping_gfp_mask(mapping);
586 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
587 loop_update_dio(lo);
588 }
589
590 /*
591 * loop_switch performs the hard work of switching a backing store.
592 * First it needs to flush existing IO, it does this by sending a magic
593 * BIO down the pipe. The completion of this BIO does the actual switch.
594 */
595 static int loop_switch(struct loop_device *lo, struct file *file)
596 {
597 struct switch_request w;
598
599 w.file = file;
600
601 /* freeze queue and wait for completion of scheduled requests */
602 blk_mq_freeze_queue(lo->lo_queue);
603
604 /* do the switch action */
605 do_loop_switch(lo, &w);
606
607 /* unfreeze */
608 blk_mq_unfreeze_queue(lo->lo_queue);
609
610 return 0;
611 }
612
613 /*
614 * Helper to flush the IOs in loop, but keeping loop thread running
615 */
616 static int loop_flush(struct loop_device *lo)
617 {
618 /* loop not yet configured, no running thread, nothing to flush */
619 if (lo->lo_state != Lo_bound)
620 return 0;
621 return loop_switch(lo, NULL);
622 }
623
624 static void loop_reread_partitions(struct loop_device *lo,
625 struct block_device *bdev)
626 {
627 int rc;
628
629 /*
630 * bd_mutex has been held already in release path, so don't
631 * acquire it if this function is called in such case.
632 *
633 * If the reread partition isn't from release path, lo_refcnt
634 * must be at least one and it can only become zero when the
635 * current holder is released.
636 */
637 if (!atomic_read(&lo->lo_refcnt))
638 rc = __blkdev_reread_part(bdev);
639 else
640 rc = blkdev_reread_part(bdev);
641 if (rc)
642 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
643 __func__, lo->lo_number, lo->lo_file_name, rc);
644 }
645
646 /*
647 * loop_change_fd switched the backing store of a loopback device to
648 * a new file. This is useful for operating system installers to free up
649 * the original file and in High Availability environments to switch to
650 * an alternative location for the content in case of server meltdown.
651 * This can only work if the loop device is used read-only, and if the
652 * new backing store is the same size and type as the old backing store.
653 */
654 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
655 unsigned int arg)
656 {
657 struct file *file, *old_file;
658 struct inode *inode;
659 int error;
660
661 error = -ENXIO;
662 if (lo->lo_state != Lo_bound)
663 goto out;
664
665 /* the loop device has to be read-only */
666 error = -EINVAL;
667 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
668 goto out;
669
670 error = -EBADF;
671 file = fget(arg);
672 if (!file)
673 goto out;
674
675 inode = file->f_mapping->host;
676 old_file = lo->lo_backing_file;
677
678 error = -EINVAL;
679
680 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
681 goto out_putf;
682
683 /* size of the new backing store needs to be the same */
684 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
685 goto out_putf;
686
687 /* and ... switch */
688 error = loop_switch(lo, file);
689 if (error)
690 goto out_putf;
691
692 fput(old_file);
693 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
694 loop_reread_partitions(lo, bdev);
695 return 0;
696
697 out_putf:
698 fput(file);
699 out:
700 return error;
701 }
702
703 static inline int is_loop_device(struct file *file)
704 {
705 struct inode *i = file->f_mapping->host;
706
707 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
708 }
709
710 /* loop sysfs attributes */
711
712 static ssize_t loop_attr_show(struct device *dev, char *page,
713 ssize_t (*callback)(struct loop_device *, char *))
714 {
715 struct gendisk *disk = dev_to_disk(dev);
716 struct loop_device *lo = disk->private_data;
717
718 return callback(lo, page);
719 }
720
721 #define LOOP_ATTR_RO(_name) \
722 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
723 static ssize_t loop_attr_do_show_##_name(struct device *d, \
724 struct device_attribute *attr, char *b) \
725 { \
726 return loop_attr_show(d, b, loop_attr_##_name##_show); \
727 } \
728 static struct device_attribute loop_attr_##_name = \
729 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
730
731 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
732 {
733 ssize_t ret;
734 char *p = NULL;
735
736 spin_lock_irq(&lo->lo_lock);
737 if (lo->lo_backing_file)
738 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
739 spin_unlock_irq(&lo->lo_lock);
740
741 if (IS_ERR_OR_NULL(p))
742 ret = PTR_ERR(p);
743 else {
744 ret = strlen(p);
745 memmove(buf, p, ret);
746 buf[ret++] = '\n';
747 buf[ret] = 0;
748 }
749
750 return ret;
751 }
752
753 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
754 {
755 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
756 }
757
758 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
759 {
760 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
761 }
762
763 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
764 {
765 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
766
767 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
768 }
769
770 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
771 {
772 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
773
774 return sprintf(buf, "%s\n", partscan ? "1" : "0");
775 }
776
777 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
778 {
779 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
780
781 return sprintf(buf, "%s\n", dio ? "1" : "0");
782 }
783
784 LOOP_ATTR_RO(backing_file);
785 LOOP_ATTR_RO(offset);
786 LOOP_ATTR_RO(sizelimit);
787 LOOP_ATTR_RO(autoclear);
788 LOOP_ATTR_RO(partscan);
789 LOOP_ATTR_RO(dio);
790
791 static struct attribute *loop_attrs[] = {
792 &loop_attr_backing_file.attr,
793 &loop_attr_offset.attr,
794 &loop_attr_sizelimit.attr,
795 &loop_attr_autoclear.attr,
796 &loop_attr_partscan.attr,
797 &loop_attr_dio.attr,
798 NULL,
799 };
800
801 static struct attribute_group loop_attribute_group = {
802 .name = "loop",
803 .attrs= loop_attrs,
804 };
805
806 static int loop_sysfs_init(struct loop_device *lo)
807 {
808 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
809 &loop_attribute_group);
810 }
811
812 static void loop_sysfs_exit(struct loop_device *lo)
813 {
814 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
815 &loop_attribute_group);
816 }
817
818 static void loop_config_discard(struct loop_device *lo)
819 {
820 struct file *file = lo->lo_backing_file;
821 struct inode *inode = file->f_mapping->host;
822 struct request_queue *q = lo->lo_queue;
823 int lo_bits = 9;
824
825 /*
826 * We use punch hole to reclaim the free space used by the
827 * image a.k.a. discard. However we do not support discard if
828 * encryption is enabled, because it may give an attacker
829 * useful information.
830 */
831 if ((!file->f_op->fallocate) ||
832 lo->lo_encrypt_key_size) {
833 q->limits.discard_granularity = 0;
834 q->limits.discard_alignment = 0;
835 blk_queue_max_discard_sectors(q, 0);
836 blk_queue_max_write_zeroes_sectors(q, 0);
837 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
838 return;
839 }
840
841 q->limits.discard_granularity = inode->i_sb->s_blocksize;
842 q->limits.discard_alignment = 0;
843 if (lo->lo_flags & LO_FLAGS_BLOCKSIZE)
844 lo_bits = blksize_bits(lo->lo_logical_blocksize);
845
846 blk_queue_max_discard_sectors(q, UINT_MAX >> lo_bits);
847 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> lo_bits);
848 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
849 }
850
851 static void loop_unprepare_queue(struct loop_device *lo)
852 {
853 kthread_flush_worker(&lo->worker);
854 kthread_stop(lo->worker_task);
855 }
856
857 static int loop_kthread_worker_fn(void *worker_ptr)
858 {
859 current->flags |= PF_LESS_THROTTLE;
860 return kthread_worker_fn(worker_ptr);
861 }
862
863 static int loop_prepare_queue(struct loop_device *lo)
864 {
865 kthread_init_worker(&lo->worker);
866 lo->worker_task = kthread_run(loop_kthread_worker_fn,
867 &lo->worker, "loop%d", lo->lo_number);
868 if (IS_ERR(lo->worker_task))
869 return -ENOMEM;
870 set_user_nice(lo->worker_task, MIN_NICE);
871 return 0;
872 }
873
874 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
875 struct block_device *bdev, unsigned int arg)
876 {
877 struct file *file, *f;
878 struct inode *inode;
879 struct address_space *mapping;
880 unsigned lo_blocksize;
881 int lo_flags = 0;
882 int error;
883 loff_t size;
884
885 /* This is safe, since we have a reference from open(). */
886 __module_get(THIS_MODULE);
887
888 error = -EBADF;
889 file = fget(arg);
890 if (!file)
891 goto out;
892
893 error = -EBUSY;
894 if (lo->lo_state != Lo_unbound)
895 goto out_putf;
896
897 /* Avoid recursion */
898 f = file;
899 while (is_loop_device(f)) {
900 struct loop_device *l;
901
902 if (f->f_mapping->host->i_bdev == bdev)
903 goto out_putf;
904
905 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
906 if (l->lo_state == Lo_unbound) {
907 error = -EINVAL;
908 goto out_putf;
909 }
910 f = l->lo_backing_file;
911 }
912
913 mapping = file->f_mapping;
914 inode = mapping->host;
915
916 error = -EINVAL;
917 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
918 goto out_putf;
919
920 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
921 !file->f_op->write_iter)
922 lo_flags |= LO_FLAGS_READ_ONLY;
923
924 lo_blocksize = S_ISBLK(inode->i_mode) ?
925 inode->i_bdev->bd_block_size : PAGE_SIZE;
926
927 error = -EFBIG;
928 size = get_loop_size(lo, file);
929 if ((loff_t)(sector_t)size != size)
930 goto out_putf;
931 error = loop_prepare_queue(lo);
932 if (error)
933 goto out_putf;
934
935 error = 0;
936
937 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
938
939 lo->use_dio = false;
940 lo->lo_blocksize = lo_blocksize;
941 lo->lo_logical_blocksize = 512;
942 lo->lo_device = bdev;
943 lo->lo_flags = lo_flags;
944 lo->lo_backing_file = file;
945 lo->transfer = NULL;
946 lo->ioctl = NULL;
947 lo->lo_sizelimit = 0;
948 lo->old_gfp_mask = mapping_gfp_mask(mapping);
949 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
950
951 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
952 blk_queue_write_cache(lo->lo_queue, true, false);
953
954 loop_update_dio(lo);
955 set_capacity(lo->lo_disk, size);
956 bd_set_size(bdev, size << 9);
957 loop_sysfs_init(lo);
958 /* let user-space know about the new size */
959 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
960
961 set_blocksize(bdev, lo_blocksize);
962
963 lo->lo_state = Lo_bound;
964 if (part_shift)
965 lo->lo_flags |= LO_FLAGS_PARTSCAN;
966 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
967 loop_reread_partitions(lo, bdev);
968
969 /* Grab the block_device to prevent its destruction after we
970 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
971 */
972 bdgrab(bdev);
973 return 0;
974
975 out_putf:
976 fput(file);
977 out:
978 /* This is safe: open() is still holding a reference. */
979 module_put(THIS_MODULE);
980 return error;
981 }
982
983 static int
984 loop_release_xfer(struct loop_device *lo)
985 {
986 int err = 0;
987 struct loop_func_table *xfer = lo->lo_encryption;
988
989 if (xfer) {
990 if (xfer->release)
991 err = xfer->release(lo);
992 lo->transfer = NULL;
993 lo->lo_encryption = NULL;
994 module_put(xfer->owner);
995 }
996 return err;
997 }
998
999 static int
1000 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1001 const struct loop_info64 *i)
1002 {
1003 int err = 0;
1004
1005 if (xfer) {
1006 struct module *owner = xfer->owner;
1007
1008 if (!try_module_get(owner))
1009 return -EINVAL;
1010 if (xfer->init)
1011 err = xfer->init(lo, i);
1012 if (err)
1013 module_put(owner);
1014 else
1015 lo->lo_encryption = xfer;
1016 }
1017 return err;
1018 }
1019
1020 static int loop_clr_fd(struct loop_device *lo)
1021 {
1022 struct file *filp = lo->lo_backing_file;
1023 gfp_t gfp = lo->old_gfp_mask;
1024 struct block_device *bdev = lo->lo_device;
1025
1026 if (lo->lo_state != Lo_bound)
1027 return -ENXIO;
1028
1029 /*
1030 * If we've explicitly asked to tear down the loop device,
1031 * and it has an elevated reference count, set it for auto-teardown when
1032 * the last reference goes away. This stops $!~#$@ udev from
1033 * preventing teardown because it decided that it needs to run blkid on
1034 * the loopback device whenever they appear. xfstests is notorious for
1035 * failing tests because blkid via udev races with a losetup
1036 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1037 * command to fail with EBUSY.
1038 */
1039 if (atomic_read(&lo->lo_refcnt) > 1) {
1040 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1041 mutex_unlock(&lo->lo_ctl_mutex);
1042 return 0;
1043 }
1044
1045 if (filp == NULL)
1046 return -EINVAL;
1047
1048 /* freeze request queue during the transition */
1049 blk_mq_freeze_queue(lo->lo_queue);
1050
1051 spin_lock_irq(&lo->lo_lock);
1052 lo->lo_state = Lo_rundown;
1053 lo->lo_backing_file = NULL;
1054 spin_unlock_irq(&lo->lo_lock);
1055
1056 loop_release_xfer(lo);
1057 lo->transfer = NULL;
1058 lo->ioctl = NULL;
1059 lo->lo_device = NULL;
1060 lo->lo_encryption = NULL;
1061 lo->lo_offset = 0;
1062 lo->lo_sizelimit = 0;
1063 lo->lo_encrypt_key_size = 0;
1064 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1065 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1066 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1067 if (bdev) {
1068 bdput(bdev);
1069 invalidate_bdev(bdev);
1070 }
1071 set_capacity(lo->lo_disk, 0);
1072 loop_sysfs_exit(lo);
1073 if (bdev) {
1074 bd_set_size(bdev, 0);
1075 /* let user-space know about this change */
1076 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1077 }
1078 mapping_set_gfp_mask(filp->f_mapping, gfp);
1079 lo->lo_state = Lo_unbound;
1080 /* This is safe: open() is still holding a reference. */
1081 module_put(THIS_MODULE);
1082 blk_mq_unfreeze_queue(lo->lo_queue);
1083
1084 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1085 loop_reread_partitions(lo, bdev);
1086 lo->lo_flags = 0;
1087 if (!part_shift)
1088 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1089 loop_unprepare_queue(lo);
1090 mutex_unlock(&lo->lo_ctl_mutex);
1091 /*
1092 * Need not hold lo_ctl_mutex to fput backing file.
1093 * Calling fput holding lo_ctl_mutex triggers a circular
1094 * lock dependency possibility warning as fput can take
1095 * bd_mutex which is usually taken before lo_ctl_mutex.
1096 */
1097 fput(filp);
1098 return 0;
1099 }
1100
1101 static int
1102 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1103 {
1104 int err;
1105 struct loop_func_table *xfer;
1106 kuid_t uid = current_uid();
1107 int lo_flags = lo->lo_flags;
1108
1109 if (lo->lo_encrypt_key_size &&
1110 !uid_eq(lo->lo_key_owner, uid) &&
1111 !capable(CAP_SYS_ADMIN))
1112 return -EPERM;
1113 if (lo->lo_state != Lo_bound)
1114 return -ENXIO;
1115 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1116 return -EINVAL;
1117
1118 /* I/O need to be drained during transfer transition */
1119 blk_mq_freeze_queue(lo->lo_queue);
1120
1121 err = loop_release_xfer(lo);
1122 if (err)
1123 goto exit;
1124
1125 if (info->lo_encrypt_type) {
1126 unsigned int type = info->lo_encrypt_type;
1127
1128 if (type >= MAX_LO_CRYPT)
1129 return -EINVAL;
1130 xfer = xfer_funcs[type];
1131 if (xfer == NULL)
1132 return -EINVAL;
1133 } else
1134 xfer = NULL;
1135
1136 err = loop_init_xfer(lo, xfer, info);
1137 if (err)
1138 goto exit;
1139
1140 if (info->lo_flags & LO_FLAGS_BLOCKSIZE) {
1141 if (!(lo->lo_flags & LO_FLAGS_BLOCKSIZE))
1142 lo->lo_logical_blocksize = 512;
1143 lo->lo_flags |= LO_FLAGS_BLOCKSIZE;
1144 if (LO_INFO_BLOCKSIZE(info) != 512 &&
1145 LO_INFO_BLOCKSIZE(info) != 1024 &&
1146 LO_INFO_BLOCKSIZE(info) != 2048 &&
1147 LO_INFO_BLOCKSIZE(info) != 4096)
1148 return -EINVAL;
1149 if (LO_INFO_BLOCKSIZE(info) > lo->lo_blocksize)
1150 return -EINVAL;
1151 }
1152
1153 if (lo->lo_offset != info->lo_offset ||
1154 lo->lo_sizelimit != info->lo_sizelimit ||
1155 lo->lo_flags != lo_flags ||
1156 ((lo->lo_flags & LO_FLAGS_BLOCKSIZE) &&
1157 lo->lo_logical_blocksize != LO_INFO_BLOCKSIZE(info))) {
1158 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit,
1159 LO_INFO_BLOCKSIZE(info))) {
1160 err = -EFBIG;
1161 goto exit;
1162 }
1163 }
1164
1165 loop_config_discard(lo);
1166
1167 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1168 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1169 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1170 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1171
1172 if (!xfer)
1173 xfer = &none_funcs;
1174 lo->transfer = xfer->transfer;
1175 lo->ioctl = xfer->ioctl;
1176
1177 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1178 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1179 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1180
1181 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1182 lo->lo_init[0] = info->lo_init[0];
1183 lo->lo_init[1] = info->lo_init[1];
1184 if (info->lo_encrypt_key_size) {
1185 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1186 info->lo_encrypt_key_size);
1187 lo->lo_key_owner = uid;
1188 }
1189
1190 /* update dio if lo_offset or transfer is changed */
1191 __loop_update_dio(lo, lo->use_dio);
1192
1193 exit:
1194 blk_mq_unfreeze_queue(lo->lo_queue);
1195
1196 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1197 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1198 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1199 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1200 loop_reread_partitions(lo, lo->lo_device);
1201 }
1202
1203 return err;
1204 }
1205
1206 static int
1207 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1208 {
1209 struct file *file = lo->lo_backing_file;
1210 struct kstat stat;
1211 int error;
1212
1213 if (lo->lo_state != Lo_bound)
1214 return -ENXIO;
1215 error = vfs_getattr(&file->f_path, &stat,
1216 STATX_INO, AT_STATX_SYNC_AS_STAT);
1217 if (error)
1218 return error;
1219 memset(info, 0, sizeof(*info));
1220 info->lo_number = lo->lo_number;
1221 info->lo_device = huge_encode_dev(stat.dev);
1222 info->lo_inode = stat.ino;
1223 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1224 info->lo_offset = lo->lo_offset;
1225 info->lo_sizelimit = lo->lo_sizelimit;
1226 info->lo_flags = lo->lo_flags;
1227 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1228 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1229 info->lo_encrypt_type =
1230 lo->lo_encryption ? lo->lo_encryption->number : 0;
1231 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1232 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1233 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1234 lo->lo_encrypt_key_size);
1235 }
1236 return 0;
1237 }
1238
1239 static void
1240 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1241 {
1242 memset(info64, 0, sizeof(*info64));
1243 info64->lo_number = info->lo_number;
1244 info64->lo_device = info->lo_device;
1245 info64->lo_inode = info->lo_inode;
1246 info64->lo_rdevice = info->lo_rdevice;
1247 info64->lo_offset = info->lo_offset;
1248 info64->lo_sizelimit = 0;
1249 info64->lo_encrypt_type = info->lo_encrypt_type;
1250 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1251 info64->lo_flags = info->lo_flags;
1252 info64->lo_init[0] = info->lo_init[0];
1253 info64->lo_init[1] = info->lo_init[1];
1254 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1255 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1256 else
1257 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1258 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1259 }
1260
1261 static int
1262 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1263 {
1264 memset(info, 0, sizeof(*info));
1265 info->lo_number = info64->lo_number;
1266 info->lo_device = info64->lo_device;
1267 info->lo_inode = info64->lo_inode;
1268 info->lo_rdevice = info64->lo_rdevice;
1269 info->lo_offset = info64->lo_offset;
1270 info->lo_encrypt_type = info64->lo_encrypt_type;
1271 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1272 info->lo_flags = info64->lo_flags;
1273 info->lo_init[0] = info64->lo_init[0];
1274 info->lo_init[1] = info64->lo_init[1];
1275 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1276 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1277 else
1278 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1279 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1280
1281 /* error in case values were truncated */
1282 if (info->lo_device != info64->lo_device ||
1283 info->lo_rdevice != info64->lo_rdevice ||
1284 info->lo_inode != info64->lo_inode ||
1285 info->lo_offset != info64->lo_offset)
1286 return -EOVERFLOW;
1287
1288 return 0;
1289 }
1290
1291 static int
1292 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1293 {
1294 struct loop_info info;
1295 struct loop_info64 info64;
1296
1297 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1298 return -EFAULT;
1299 loop_info64_from_old(&info, &info64);
1300 return loop_set_status(lo, &info64);
1301 }
1302
1303 static int
1304 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1305 {
1306 struct loop_info64 info64;
1307
1308 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1309 return -EFAULT;
1310 return loop_set_status(lo, &info64);
1311 }
1312
1313 static int
1314 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1315 struct loop_info info;
1316 struct loop_info64 info64;
1317 int err = 0;
1318
1319 if (!arg)
1320 err = -EINVAL;
1321 if (!err)
1322 err = loop_get_status(lo, &info64);
1323 if (!err)
1324 err = loop_info64_to_old(&info64, &info);
1325 if (!err && copy_to_user(arg, &info, sizeof(info)))
1326 err = -EFAULT;
1327
1328 return err;
1329 }
1330
1331 static int
1332 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1333 struct loop_info64 info64;
1334 int err = 0;
1335
1336 if (!arg)
1337 err = -EINVAL;
1338 if (!err)
1339 err = loop_get_status(lo, &info64);
1340 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1341 err = -EFAULT;
1342
1343 return err;
1344 }
1345
1346 static int loop_set_capacity(struct loop_device *lo)
1347 {
1348 if (unlikely(lo->lo_state != Lo_bound))
1349 return -ENXIO;
1350
1351 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit,
1352 lo->lo_logical_blocksize);
1353 }
1354
1355 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1356 {
1357 int error = -ENXIO;
1358 if (lo->lo_state != Lo_bound)
1359 goto out;
1360
1361 __loop_update_dio(lo, !!arg);
1362 if (lo->use_dio == !!arg)
1363 return 0;
1364 error = -EINVAL;
1365 out:
1366 return error;
1367 }
1368
1369 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1370 unsigned int cmd, unsigned long arg)
1371 {
1372 struct loop_device *lo = bdev->bd_disk->private_data;
1373 int err;
1374
1375 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1376 switch (cmd) {
1377 case LOOP_SET_FD:
1378 err = loop_set_fd(lo, mode, bdev, arg);
1379 break;
1380 case LOOP_CHANGE_FD:
1381 err = loop_change_fd(lo, bdev, arg);
1382 break;
1383 case LOOP_CLR_FD:
1384 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1385 err = loop_clr_fd(lo);
1386 if (!err)
1387 goto out_unlocked;
1388 break;
1389 case LOOP_SET_STATUS:
1390 err = -EPERM;
1391 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1392 err = loop_set_status_old(lo,
1393 (struct loop_info __user *)arg);
1394 break;
1395 case LOOP_GET_STATUS:
1396 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1397 break;
1398 case LOOP_SET_STATUS64:
1399 err = -EPERM;
1400 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1401 err = loop_set_status64(lo,
1402 (struct loop_info64 __user *) arg);
1403 break;
1404 case LOOP_GET_STATUS64:
1405 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1406 break;
1407 case LOOP_SET_CAPACITY:
1408 err = -EPERM;
1409 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1410 err = loop_set_capacity(lo);
1411 break;
1412 case LOOP_SET_DIRECT_IO:
1413 err = -EPERM;
1414 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1415 err = loop_set_dio(lo, arg);
1416 break;
1417 default:
1418 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1419 }
1420 mutex_unlock(&lo->lo_ctl_mutex);
1421
1422 out_unlocked:
1423 return err;
1424 }
1425
1426 #ifdef CONFIG_COMPAT
1427 struct compat_loop_info {
1428 compat_int_t lo_number; /* ioctl r/o */
1429 compat_dev_t lo_device; /* ioctl r/o */
1430 compat_ulong_t lo_inode; /* ioctl r/o */
1431 compat_dev_t lo_rdevice; /* ioctl r/o */
1432 compat_int_t lo_offset;
1433 compat_int_t lo_encrypt_type;
1434 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1435 compat_int_t lo_flags; /* ioctl r/o */
1436 char lo_name[LO_NAME_SIZE];
1437 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1438 compat_ulong_t lo_init[2];
1439 char reserved[4];
1440 };
1441
1442 /*
1443 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1444 * - noinlined to reduce stack space usage in main part of driver
1445 */
1446 static noinline int
1447 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1448 struct loop_info64 *info64)
1449 {
1450 struct compat_loop_info info;
1451
1452 if (copy_from_user(&info, arg, sizeof(info)))
1453 return -EFAULT;
1454
1455 memset(info64, 0, sizeof(*info64));
1456 info64->lo_number = info.lo_number;
1457 info64->lo_device = info.lo_device;
1458 info64->lo_inode = info.lo_inode;
1459 info64->lo_rdevice = info.lo_rdevice;
1460 info64->lo_offset = info.lo_offset;
1461 info64->lo_sizelimit = 0;
1462 info64->lo_encrypt_type = info.lo_encrypt_type;
1463 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1464 info64->lo_flags = info.lo_flags;
1465 info64->lo_init[0] = info.lo_init[0];
1466 info64->lo_init[1] = info.lo_init[1];
1467 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1468 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1469 else
1470 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1471 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1472 return 0;
1473 }
1474
1475 /*
1476 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1477 * - noinlined to reduce stack space usage in main part of driver
1478 */
1479 static noinline int
1480 loop_info64_to_compat(const struct loop_info64 *info64,
1481 struct compat_loop_info __user *arg)
1482 {
1483 struct compat_loop_info info;
1484
1485 memset(&info, 0, sizeof(info));
1486 info.lo_number = info64->lo_number;
1487 info.lo_device = info64->lo_device;
1488 info.lo_inode = info64->lo_inode;
1489 info.lo_rdevice = info64->lo_rdevice;
1490 info.lo_offset = info64->lo_offset;
1491 info.lo_encrypt_type = info64->lo_encrypt_type;
1492 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1493 info.lo_flags = info64->lo_flags;
1494 info.lo_init[0] = info64->lo_init[0];
1495 info.lo_init[1] = info64->lo_init[1];
1496 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1497 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1498 else
1499 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1500 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1501
1502 /* error in case values were truncated */
1503 if (info.lo_device != info64->lo_device ||
1504 info.lo_rdevice != info64->lo_rdevice ||
1505 info.lo_inode != info64->lo_inode ||
1506 info.lo_offset != info64->lo_offset ||
1507 info.lo_init[0] != info64->lo_init[0] ||
1508 info.lo_init[1] != info64->lo_init[1])
1509 return -EOVERFLOW;
1510
1511 if (copy_to_user(arg, &info, sizeof(info)))
1512 return -EFAULT;
1513 return 0;
1514 }
1515
1516 static int
1517 loop_set_status_compat(struct loop_device *lo,
1518 const struct compat_loop_info __user *arg)
1519 {
1520 struct loop_info64 info64;
1521 int ret;
1522
1523 ret = loop_info64_from_compat(arg, &info64);
1524 if (ret < 0)
1525 return ret;
1526 return loop_set_status(lo, &info64);
1527 }
1528
1529 static int
1530 loop_get_status_compat(struct loop_device *lo,
1531 struct compat_loop_info __user *arg)
1532 {
1533 struct loop_info64 info64;
1534 int err = 0;
1535
1536 if (!arg)
1537 err = -EINVAL;
1538 if (!err)
1539 err = loop_get_status(lo, &info64);
1540 if (!err)
1541 err = loop_info64_to_compat(&info64, arg);
1542 return err;
1543 }
1544
1545 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1546 unsigned int cmd, unsigned long arg)
1547 {
1548 struct loop_device *lo = bdev->bd_disk->private_data;
1549 int err;
1550
1551 switch(cmd) {
1552 case LOOP_SET_STATUS:
1553 mutex_lock(&lo->lo_ctl_mutex);
1554 err = loop_set_status_compat(
1555 lo, (const struct compat_loop_info __user *) arg);
1556 mutex_unlock(&lo->lo_ctl_mutex);
1557 break;
1558 case LOOP_GET_STATUS:
1559 mutex_lock(&lo->lo_ctl_mutex);
1560 err = loop_get_status_compat(
1561 lo, (struct compat_loop_info __user *) arg);
1562 mutex_unlock(&lo->lo_ctl_mutex);
1563 break;
1564 case LOOP_SET_CAPACITY:
1565 case LOOP_CLR_FD:
1566 case LOOP_GET_STATUS64:
1567 case LOOP_SET_STATUS64:
1568 arg = (unsigned long) compat_ptr(arg);
1569 case LOOP_SET_FD:
1570 case LOOP_CHANGE_FD:
1571 err = lo_ioctl(bdev, mode, cmd, arg);
1572 break;
1573 default:
1574 err = -ENOIOCTLCMD;
1575 break;
1576 }
1577 return err;
1578 }
1579 #endif
1580
1581 static int lo_open(struct block_device *bdev, fmode_t mode)
1582 {
1583 struct loop_device *lo;
1584 int err = 0;
1585
1586 mutex_lock(&loop_index_mutex);
1587 lo = bdev->bd_disk->private_data;
1588 if (!lo) {
1589 err = -ENXIO;
1590 goto out;
1591 }
1592
1593 atomic_inc(&lo->lo_refcnt);
1594 out:
1595 mutex_unlock(&loop_index_mutex);
1596 return err;
1597 }
1598
1599 static void lo_release(struct gendisk *disk, fmode_t mode)
1600 {
1601 struct loop_device *lo = disk->private_data;
1602 int err;
1603
1604 if (atomic_dec_return(&lo->lo_refcnt))
1605 return;
1606
1607 mutex_lock(&lo->lo_ctl_mutex);
1608 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1609 /*
1610 * In autoclear mode, stop the loop thread
1611 * and remove configuration after last close.
1612 */
1613 err = loop_clr_fd(lo);
1614 if (!err)
1615 return;
1616 } else {
1617 /*
1618 * Otherwise keep thread (if running) and config,
1619 * but flush possible ongoing bios in thread.
1620 */
1621 loop_flush(lo);
1622 }
1623
1624 mutex_unlock(&lo->lo_ctl_mutex);
1625 }
1626
1627 static const struct block_device_operations lo_fops = {
1628 .owner = THIS_MODULE,
1629 .open = lo_open,
1630 .release = lo_release,
1631 .ioctl = lo_ioctl,
1632 #ifdef CONFIG_COMPAT
1633 .compat_ioctl = lo_compat_ioctl,
1634 #endif
1635 };
1636
1637 /*
1638 * And now the modules code and kernel interface.
1639 */
1640 static int max_loop;
1641 module_param(max_loop, int, S_IRUGO);
1642 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1643 module_param(max_part, int, S_IRUGO);
1644 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1645 MODULE_LICENSE("GPL");
1646 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1647
1648 int loop_register_transfer(struct loop_func_table *funcs)
1649 {
1650 unsigned int n = funcs->number;
1651
1652 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1653 return -EINVAL;
1654 xfer_funcs[n] = funcs;
1655 return 0;
1656 }
1657
1658 static int unregister_transfer_cb(int id, void *ptr, void *data)
1659 {
1660 struct loop_device *lo = ptr;
1661 struct loop_func_table *xfer = data;
1662
1663 mutex_lock(&lo->lo_ctl_mutex);
1664 if (lo->lo_encryption == xfer)
1665 loop_release_xfer(lo);
1666 mutex_unlock(&lo->lo_ctl_mutex);
1667 return 0;
1668 }
1669
1670 int loop_unregister_transfer(int number)
1671 {
1672 unsigned int n = number;
1673 struct loop_func_table *xfer;
1674
1675 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1676 return -EINVAL;
1677
1678 xfer_funcs[n] = NULL;
1679 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1680 return 0;
1681 }
1682
1683 EXPORT_SYMBOL(loop_register_transfer);
1684 EXPORT_SYMBOL(loop_unregister_transfer);
1685
1686 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1687 const struct blk_mq_queue_data *bd)
1688 {
1689 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1690 struct loop_device *lo = cmd->rq->q->queuedata;
1691
1692 blk_mq_start_request(bd->rq);
1693
1694 if (lo->lo_state != Lo_bound)
1695 return BLK_STS_IOERR;
1696
1697 switch (req_op(cmd->rq)) {
1698 case REQ_OP_FLUSH:
1699 case REQ_OP_DISCARD:
1700 case REQ_OP_WRITE_ZEROES:
1701 cmd->use_aio = false;
1702 break;
1703 default:
1704 cmd->use_aio = lo->use_dio;
1705 break;
1706 }
1707
1708 kthread_queue_work(&lo->worker, &cmd->work);
1709
1710 return BLK_STS_OK;
1711 }
1712
1713 static void loop_handle_cmd(struct loop_cmd *cmd)
1714 {
1715 const bool write = op_is_write(req_op(cmd->rq));
1716 struct loop_device *lo = cmd->rq->q->queuedata;
1717 int ret = 0;
1718
1719 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1720 ret = -EIO;
1721 goto failed;
1722 }
1723
1724 ret = do_req_filebacked(lo, cmd->rq);
1725 failed:
1726 /* complete non-aio request */
1727 if (!cmd->use_aio || ret) {
1728 cmd->ret = ret ? -EIO : 0;
1729 blk_mq_complete_request(cmd->rq);
1730 }
1731 }
1732
1733 static void loop_queue_work(struct kthread_work *work)
1734 {
1735 struct loop_cmd *cmd =
1736 container_of(work, struct loop_cmd, work);
1737
1738 loop_handle_cmd(cmd);
1739 }
1740
1741 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1742 unsigned int hctx_idx, unsigned int numa_node)
1743 {
1744 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1745
1746 cmd->rq = rq;
1747 kthread_init_work(&cmd->work, loop_queue_work);
1748
1749 return 0;
1750 }
1751
1752 static const struct blk_mq_ops loop_mq_ops = {
1753 .queue_rq = loop_queue_rq,
1754 .init_request = loop_init_request,
1755 .complete = lo_complete_rq,
1756 };
1757
1758 static int loop_add(struct loop_device **l, int i)
1759 {
1760 struct loop_device *lo;
1761 struct gendisk *disk;
1762 int err;
1763
1764 err = -ENOMEM;
1765 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1766 if (!lo)
1767 goto out;
1768
1769 lo->lo_state = Lo_unbound;
1770
1771 /* allocate id, if @id >= 0, we're requesting that specific id */
1772 if (i >= 0) {
1773 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1774 if (err == -ENOSPC)
1775 err = -EEXIST;
1776 } else {
1777 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1778 }
1779 if (err < 0)
1780 goto out_free_dev;
1781 i = err;
1782
1783 err = -ENOMEM;
1784 lo->tag_set.ops = &loop_mq_ops;
1785 lo->tag_set.nr_hw_queues = 1;
1786 lo->tag_set.queue_depth = 128;
1787 lo->tag_set.numa_node = NUMA_NO_NODE;
1788 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1789 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1790 lo->tag_set.driver_data = lo;
1791
1792 err = blk_mq_alloc_tag_set(&lo->tag_set);
1793 if (err)
1794 goto out_free_idr;
1795
1796 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1797 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1798 err = PTR_ERR(lo->lo_queue);
1799 goto out_cleanup_tags;
1800 }
1801 lo->lo_queue->queuedata = lo;
1802
1803 /*
1804 * It doesn't make sense to enable merge because the I/O
1805 * submitted to backing file is handled page by page.
1806 */
1807 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1808
1809 err = -ENOMEM;
1810 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1811 if (!disk)
1812 goto out_free_queue;
1813
1814 /*
1815 * Disable partition scanning by default. The in-kernel partition
1816 * scanning can be requested individually per-device during its
1817 * setup. Userspace can always add and remove partitions from all
1818 * devices. The needed partition minors are allocated from the
1819 * extended minor space, the main loop device numbers will continue
1820 * to match the loop minors, regardless of the number of partitions
1821 * used.
1822 *
1823 * If max_part is given, partition scanning is globally enabled for
1824 * all loop devices. The minors for the main loop devices will be
1825 * multiples of max_part.
1826 *
1827 * Note: Global-for-all-devices, set-only-at-init, read-only module
1828 * parameteters like 'max_loop' and 'max_part' make things needlessly
1829 * complicated, are too static, inflexible and may surprise
1830 * userspace tools. Parameters like this in general should be avoided.
1831 */
1832 if (!part_shift)
1833 disk->flags |= GENHD_FL_NO_PART_SCAN;
1834 disk->flags |= GENHD_FL_EXT_DEVT;
1835 mutex_init(&lo->lo_ctl_mutex);
1836 atomic_set(&lo->lo_refcnt, 0);
1837 lo->lo_number = i;
1838 spin_lock_init(&lo->lo_lock);
1839 disk->major = LOOP_MAJOR;
1840 disk->first_minor = i << part_shift;
1841 disk->fops = &lo_fops;
1842 disk->private_data = lo;
1843 disk->queue = lo->lo_queue;
1844 sprintf(disk->disk_name, "loop%d", i);
1845 add_disk(disk);
1846 *l = lo;
1847 return lo->lo_number;
1848
1849 out_free_queue:
1850 blk_cleanup_queue(lo->lo_queue);
1851 out_cleanup_tags:
1852 blk_mq_free_tag_set(&lo->tag_set);
1853 out_free_idr:
1854 idr_remove(&loop_index_idr, i);
1855 out_free_dev:
1856 kfree(lo);
1857 out:
1858 return err;
1859 }
1860
1861 static void loop_remove(struct loop_device *lo)
1862 {
1863 blk_cleanup_queue(lo->lo_queue);
1864 del_gendisk(lo->lo_disk);
1865 blk_mq_free_tag_set(&lo->tag_set);
1866 put_disk(lo->lo_disk);
1867 kfree(lo);
1868 }
1869
1870 static int find_free_cb(int id, void *ptr, void *data)
1871 {
1872 struct loop_device *lo = ptr;
1873 struct loop_device **l = data;
1874
1875 if (lo->lo_state == Lo_unbound) {
1876 *l = lo;
1877 return 1;
1878 }
1879 return 0;
1880 }
1881
1882 static int loop_lookup(struct loop_device **l, int i)
1883 {
1884 struct loop_device *lo;
1885 int ret = -ENODEV;
1886
1887 if (i < 0) {
1888 int err;
1889
1890 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1891 if (err == 1) {
1892 *l = lo;
1893 ret = lo->lo_number;
1894 }
1895 goto out;
1896 }
1897
1898 /* lookup and return a specific i */
1899 lo = idr_find(&loop_index_idr, i);
1900 if (lo) {
1901 *l = lo;
1902 ret = lo->lo_number;
1903 }
1904 out:
1905 return ret;
1906 }
1907
1908 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1909 {
1910 struct loop_device *lo;
1911 struct kobject *kobj;
1912 int err;
1913
1914 mutex_lock(&loop_index_mutex);
1915 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1916 if (err < 0)
1917 err = loop_add(&lo, MINOR(dev) >> part_shift);
1918 if (err < 0)
1919 kobj = NULL;
1920 else
1921 kobj = get_disk(lo->lo_disk);
1922 mutex_unlock(&loop_index_mutex);
1923
1924 *part = 0;
1925 return kobj;
1926 }
1927
1928 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1929 unsigned long parm)
1930 {
1931 struct loop_device *lo;
1932 int ret = -ENOSYS;
1933
1934 mutex_lock(&loop_index_mutex);
1935 switch (cmd) {
1936 case LOOP_CTL_ADD:
1937 ret = loop_lookup(&lo, parm);
1938 if (ret >= 0) {
1939 ret = -EEXIST;
1940 break;
1941 }
1942 ret = loop_add(&lo, parm);
1943 break;
1944 case LOOP_CTL_REMOVE:
1945 ret = loop_lookup(&lo, parm);
1946 if (ret < 0)
1947 break;
1948 mutex_lock(&lo->lo_ctl_mutex);
1949 if (lo->lo_state != Lo_unbound) {
1950 ret = -EBUSY;
1951 mutex_unlock(&lo->lo_ctl_mutex);
1952 break;
1953 }
1954 if (atomic_read(&lo->lo_refcnt) > 0) {
1955 ret = -EBUSY;
1956 mutex_unlock(&lo->lo_ctl_mutex);
1957 break;
1958 }
1959 lo->lo_disk->private_data = NULL;
1960 mutex_unlock(&lo->lo_ctl_mutex);
1961 idr_remove(&loop_index_idr, lo->lo_number);
1962 loop_remove(lo);
1963 break;
1964 case LOOP_CTL_GET_FREE:
1965 ret = loop_lookup(&lo, -1);
1966 if (ret >= 0)
1967 break;
1968 ret = loop_add(&lo, -1);
1969 }
1970 mutex_unlock(&loop_index_mutex);
1971
1972 return ret;
1973 }
1974
1975 static const struct file_operations loop_ctl_fops = {
1976 .open = nonseekable_open,
1977 .unlocked_ioctl = loop_control_ioctl,
1978 .compat_ioctl = loop_control_ioctl,
1979 .owner = THIS_MODULE,
1980 .llseek = noop_llseek,
1981 };
1982
1983 static struct miscdevice loop_misc = {
1984 .minor = LOOP_CTRL_MINOR,
1985 .name = "loop-control",
1986 .fops = &loop_ctl_fops,
1987 };
1988
1989 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1990 MODULE_ALIAS("devname:loop-control");
1991
1992 static int __init loop_init(void)
1993 {
1994 int i, nr;
1995 unsigned long range;
1996 struct loop_device *lo;
1997 int err;
1998
1999 err = misc_register(&loop_misc);
2000 if (err < 0)
2001 return err;
2002
2003 part_shift = 0;
2004 if (max_part > 0) {
2005 part_shift = fls(max_part);
2006
2007 /*
2008 * Adjust max_part according to part_shift as it is exported
2009 * to user space so that user can decide correct minor number
2010 * if [s]he want to create more devices.
2011 *
2012 * Note that -1 is required because partition 0 is reserved
2013 * for the whole disk.
2014 */
2015 max_part = (1UL << part_shift) - 1;
2016 }
2017
2018 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2019 err = -EINVAL;
2020 goto misc_out;
2021 }
2022
2023 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2024 err = -EINVAL;
2025 goto misc_out;
2026 }
2027
2028 /*
2029 * If max_loop is specified, create that many devices upfront.
2030 * This also becomes a hard limit. If max_loop is not specified,
2031 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2032 * init time. Loop devices can be requested on-demand with the
2033 * /dev/loop-control interface, or be instantiated by accessing
2034 * a 'dead' device node.
2035 */
2036 if (max_loop) {
2037 nr = max_loop;
2038 range = max_loop << part_shift;
2039 } else {
2040 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2041 range = 1UL << MINORBITS;
2042 }
2043
2044 if (register_blkdev(LOOP_MAJOR, "loop")) {
2045 err = -EIO;
2046 goto misc_out;
2047 }
2048
2049 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2050 THIS_MODULE, loop_probe, NULL, NULL);
2051
2052 /* pre-create number of devices given by config or max_loop */
2053 mutex_lock(&loop_index_mutex);
2054 for (i = 0; i < nr; i++)
2055 loop_add(&lo, i);
2056 mutex_unlock(&loop_index_mutex);
2057
2058 printk(KERN_INFO "loop: module loaded\n");
2059 return 0;
2060
2061 misc_out:
2062 misc_deregister(&loop_misc);
2063 return err;
2064 }
2065
2066 static int loop_exit_cb(int id, void *ptr, void *data)
2067 {
2068 struct loop_device *lo = ptr;
2069
2070 loop_remove(lo);
2071 return 0;
2072 }
2073
2074 static void __exit loop_exit(void)
2075 {
2076 unsigned long range;
2077
2078 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2079
2080 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2081 idr_destroy(&loop_index_idr);
2082
2083 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2084 unregister_blkdev(LOOP_MAJOR, "loop");
2085
2086 misc_deregister(&loop_misc);
2087 }
2088
2089 module_init(loop_init);
2090 module_exit(loop_exit);
2091
2092 #ifndef MODULE
2093 static int __init max_loop_setup(char *str)
2094 {
2095 max_loop = simple_strtol(str, NULL, 0);
2096 return 1;
2097 }
2098
2099 __setup("max_loop=", max_loop_setup);
2100 #endif