]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/block/null_blk_main.c
treewide: Add SPDX license identifier for more missed files
[mirror_ubuntu-jammy-kernel.git] / drivers / block / null_blk_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
15 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
16 #define SECTOR_MASK (PAGE_SECTORS - 1)
17
18 #define FREE_BATCH 16
19
20 #define TICKS_PER_SEC 50ULL
21 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
22
23 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
24 static DECLARE_FAULT_ATTR(null_timeout_attr);
25 static DECLARE_FAULT_ATTR(null_requeue_attr);
26 #endif
27
28 static inline u64 mb_per_tick(int mbps)
29 {
30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32
33 /*
34 * Status flags for nullb_device.
35 *
36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
37 * UP: Device is currently on and visible in userspace.
38 * THROTTLED: Device is being throttled.
39 * CACHE: Device is using a write-back cache.
40 */
41 enum nullb_device_flags {
42 NULLB_DEV_FL_CONFIGURED = 0,
43 NULLB_DEV_FL_UP = 1,
44 NULLB_DEV_FL_THROTTLED = 2,
45 NULLB_DEV_FL_CACHE = 3,
46 };
47
48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50 * nullb_page is a page in memory for nullb devices.
51 *
52 * @page: The page holding the data.
53 * @bitmap: The bitmap represents which sector in the page has data.
54 * Each bit represents one block size. For example, sector 8
55 * will use the 7th bit
56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57 * page is being flushing to storage. FREE means the cache page is freed and
58 * should be skipped from flushing to storage. Please see
59 * null_make_cache_space
60 */
61 struct nullb_page {
62 struct page *page;
63 DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73
74 enum {
75 NULL_IRQ_NONE = 0,
76 NULL_IRQ_SOFTIRQ = 1,
77 NULL_IRQ_TIMER = 2,
78 };
79
80 enum {
81 NULL_Q_BIO = 0,
82 NULL_Q_RQ = 1,
83 NULL_Q_MQ = 2,
84 };
85
86 static int g_no_sched;
87 module_param_named(no_sched, g_no_sched, int, 0444);
88 MODULE_PARM_DESC(no_sched, "No io scheduler");
89
90 static int g_submit_queues = 1;
91 module_param_named(submit_queues, g_submit_queues, int, 0444);
92 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
93
94 static int g_home_node = NUMA_NO_NODE;
95 module_param_named(home_node, g_home_node, int, 0444);
96 MODULE_PARM_DESC(home_node, "Home node for the device");
97
98 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
99 static char g_timeout_str[80];
100 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
101
102 static char g_requeue_str[80];
103 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
104 #endif
105
106 static int g_queue_mode = NULL_Q_MQ;
107
108 static int null_param_store_val(const char *str, int *val, int min, int max)
109 {
110 int ret, new_val;
111
112 ret = kstrtoint(str, 10, &new_val);
113 if (ret)
114 return -EINVAL;
115
116 if (new_val < min || new_val > max)
117 return -EINVAL;
118
119 *val = new_val;
120 return 0;
121 }
122
123 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
124 {
125 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
126 }
127
128 static const struct kernel_param_ops null_queue_mode_param_ops = {
129 .set = null_set_queue_mode,
130 .get = param_get_int,
131 };
132
133 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
134 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
135
136 static int g_gb = 250;
137 module_param_named(gb, g_gb, int, 0444);
138 MODULE_PARM_DESC(gb, "Size in GB");
139
140 static int g_bs = 512;
141 module_param_named(bs, g_bs, int, 0444);
142 MODULE_PARM_DESC(bs, "Block size (in bytes)");
143
144 static int nr_devices = 1;
145 module_param(nr_devices, int, 0444);
146 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
147
148 static bool g_blocking;
149 module_param_named(blocking, g_blocking, bool, 0444);
150 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
151
152 static bool shared_tags;
153 module_param(shared_tags, bool, 0444);
154 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
155
156 static int g_irqmode = NULL_IRQ_SOFTIRQ;
157
158 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
159 {
160 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
161 NULL_IRQ_TIMER);
162 }
163
164 static const struct kernel_param_ops null_irqmode_param_ops = {
165 .set = null_set_irqmode,
166 .get = param_get_int,
167 };
168
169 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
170 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
171
172 static unsigned long g_completion_nsec = 10000;
173 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
174 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
175
176 static int g_hw_queue_depth = 64;
177 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
178 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
179
180 static bool g_use_per_node_hctx;
181 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
182 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
183
184 static bool g_zoned;
185 module_param_named(zoned, g_zoned, bool, S_IRUGO);
186 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
187
188 static unsigned long g_zone_size = 256;
189 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
190 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
191
192 static unsigned int g_zone_nr_conv;
193 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
194 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
195
196 static struct nullb_device *null_alloc_dev(void);
197 static void null_free_dev(struct nullb_device *dev);
198 static void null_del_dev(struct nullb *nullb);
199 static int null_add_dev(struct nullb_device *dev);
200 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
201
202 static inline struct nullb_device *to_nullb_device(struct config_item *item)
203 {
204 return item ? container_of(item, struct nullb_device, item) : NULL;
205 }
206
207 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
208 {
209 return snprintf(page, PAGE_SIZE, "%u\n", val);
210 }
211
212 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
213 char *page)
214 {
215 return snprintf(page, PAGE_SIZE, "%lu\n", val);
216 }
217
218 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
219 {
220 return snprintf(page, PAGE_SIZE, "%u\n", val);
221 }
222
223 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
224 const char *page, size_t count)
225 {
226 unsigned int tmp;
227 int result;
228
229 result = kstrtouint(page, 0, &tmp);
230 if (result)
231 return result;
232
233 *val = tmp;
234 return count;
235 }
236
237 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
238 const char *page, size_t count)
239 {
240 int result;
241 unsigned long tmp;
242
243 result = kstrtoul(page, 0, &tmp);
244 if (result)
245 return result;
246
247 *val = tmp;
248 return count;
249 }
250
251 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
252 size_t count)
253 {
254 bool tmp;
255 int result;
256
257 result = kstrtobool(page, &tmp);
258 if (result)
259 return result;
260
261 *val = tmp;
262 return count;
263 }
264
265 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
266 #define NULLB_DEVICE_ATTR(NAME, TYPE) \
267 static ssize_t \
268 nullb_device_##NAME##_show(struct config_item *item, char *page) \
269 { \
270 return nullb_device_##TYPE##_attr_show( \
271 to_nullb_device(item)->NAME, page); \
272 } \
273 static ssize_t \
274 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
275 size_t count) \
276 { \
277 if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags)) \
278 return -EBUSY; \
279 return nullb_device_##TYPE##_attr_store( \
280 &to_nullb_device(item)->NAME, page, count); \
281 } \
282 CONFIGFS_ATTR(nullb_device_, NAME);
283
284 NULLB_DEVICE_ATTR(size, ulong);
285 NULLB_DEVICE_ATTR(completion_nsec, ulong);
286 NULLB_DEVICE_ATTR(submit_queues, uint);
287 NULLB_DEVICE_ATTR(home_node, uint);
288 NULLB_DEVICE_ATTR(queue_mode, uint);
289 NULLB_DEVICE_ATTR(blocksize, uint);
290 NULLB_DEVICE_ATTR(irqmode, uint);
291 NULLB_DEVICE_ATTR(hw_queue_depth, uint);
292 NULLB_DEVICE_ATTR(index, uint);
293 NULLB_DEVICE_ATTR(blocking, bool);
294 NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
295 NULLB_DEVICE_ATTR(memory_backed, bool);
296 NULLB_DEVICE_ATTR(discard, bool);
297 NULLB_DEVICE_ATTR(mbps, uint);
298 NULLB_DEVICE_ATTR(cache_size, ulong);
299 NULLB_DEVICE_ATTR(zoned, bool);
300 NULLB_DEVICE_ATTR(zone_size, ulong);
301 NULLB_DEVICE_ATTR(zone_nr_conv, uint);
302
303 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
304 {
305 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
306 }
307
308 static ssize_t nullb_device_power_store(struct config_item *item,
309 const char *page, size_t count)
310 {
311 struct nullb_device *dev = to_nullb_device(item);
312 bool newp = false;
313 ssize_t ret;
314
315 ret = nullb_device_bool_attr_store(&newp, page, count);
316 if (ret < 0)
317 return ret;
318
319 if (!dev->power && newp) {
320 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
321 return count;
322 if (null_add_dev(dev)) {
323 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
324 return -ENOMEM;
325 }
326
327 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
328 dev->power = newp;
329 } else if (dev->power && !newp) {
330 mutex_lock(&lock);
331 dev->power = newp;
332 null_del_dev(dev->nullb);
333 mutex_unlock(&lock);
334 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
335 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
336 }
337
338 return count;
339 }
340
341 CONFIGFS_ATTR(nullb_device_, power);
342
343 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
344 {
345 struct nullb_device *t_dev = to_nullb_device(item);
346
347 return badblocks_show(&t_dev->badblocks, page, 0);
348 }
349
350 static ssize_t nullb_device_badblocks_store(struct config_item *item,
351 const char *page, size_t count)
352 {
353 struct nullb_device *t_dev = to_nullb_device(item);
354 char *orig, *buf, *tmp;
355 u64 start, end;
356 int ret;
357
358 orig = kstrndup(page, count, GFP_KERNEL);
359 if (!orig)
360 return -ENOMEM;
361
362 buf = strstrip(orig);
363
364 ret = -EINVAL;
365 if (buf[0] != '+' && buf[0] != '-')
366 goto out;
367 tmp = strchr(&buf[1], '-');
368 if (!tmp)
369 goto out;
370 *tmp = '\0';
371 ret = kstrtoull(buf + 1, 0, &start);
372 if (ret)
373 goto out;
374 ret = kstrtoull(tmp + 1, 0, &end);
375 if (ret)
376 goto out;
377 ret = -EINVAL;
378 if (start > end)
379 goto out;
380 /* enable badblocks */
381 cmpxchg(&t_dev->badblocks.shift, -1, 0);
382 if (buf[0] == '+')
383 ret = badblocks_set(&t_dev->badblocks, start,
384 end - start + 1, 1);
385 else
386 ret = badblocks_clear(&t_dev->badblocks, start,
387 end - start + 1);
388 if (ret == 0)
389 ret = count;
390 out:
391 kfree(orig);
392 return ret;
393 }
394 CONFIGFS_ATTR(nullb_device_, badblocks);
395
396 static struct configfs_attribute *nullb_device_attrs[] = {
397 &nullb_device_attr_size,
398 &nullb_device_attr_completion_nsec,
399 &nullb_device_attr_submit_queues,
400 &nullb_device_attr_home_node,
401 &nullb_device_attr_queue_mode,
402 &nullb_device_attr_blocksize,
403 &nullb_device_attr_irqmode,
404 &nullb_device_attr_hw_queue_depth,
405 &nullb_device_attr_index,
406 &nullb_device_attr_blocking,
407 &nullb_device_attr_use_per_node_hctx,
408 &nullb_device_attr_power,
409 &nullb_device_attr_memory_backed,
410 &nullb_device_attr_discard,
411 &nullb_device_attr_mbps,
412 &nullb_device_attr_cache_size,
413 &nullb_device_attr_badblocks,
414 &nullb_device_attr_zoned,
415 &nullb_device_attr_zone_size,
416 &nullb_device_attr_zone_nr_conv,
417 NULL,
418 };
419
420 static void nullb_device_release(struct config_item *item)
421 {
422 struct nullb_device *dev = to_nullb_device(item);
423
424 null_free_device_storage(dev, false);
425 null_free_dev(dev);
426 }
427
428 static struct configfs_item_operations nullb_device_ops = {
429 .release = nullb_device_release,
430 };
431
432 static const struct config_item_type nullb_device_type = {
433 .ct_item_ops = &nullb_device_ops,
434 .ct_attrs = nullb_device_attrs,
435 .ct_owner = THIS_MODULE,
436 };
437
438 static struct
439 config_item *nullb_group_make_item(struct config_group *group, const char *name)
440 {
441 struct nullb_device *dev;
442
443 dev = null_alloc_dev();
444 if (!dev)
445 return ERR_PTR(-ENOMEM);
446
447 config_item_init_type_name(&dev->item, name, &nullb_device_type);
448
449 return &dev->item;
450 }
451
452 static void
453 nullb_group_drop_item(struct config_group *group, struct config_item *item)
454 {
455 struct nullb_device *dev = to_nullb_device(item);
456
457 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
458 mutex_lock(&lock);
459 dev->power = false;
460 null_del_dev(dev->nullb);
461 mutex_unlock(&lock);
462 }
463
464 config_item_put(item);
465 }
466
467 static ssize_t memb_group_features_show(struct config_item *item, char *page)
468 {
469 return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
470 }
471
472 CONFIGFS_ATTR_RO(memb_group_, features);
473
474 static struct configfs_attribute *nullb_group_attrs[] = {
475 &memb_group_attr_features,
476 NULL,
477 };
478
479 static struct configfs_group_operations nullb_group_ops = {
480 .make_item = nullb_group_make_item,
481 .drop_item = nullb_group_drop_item,
482 };
483
484 static const struct config_item_type nullb_group_type = {
485 .ct_group_ops = &nullb_group_ops,
486 .ct_attrs = nullb_group_attrs,
487 .ct_owner = THIS_MODULE,
488 };
489
490 static struct configfs_subsystem nullb_subsys = {
491 .su_group = {
492 .cg_item = {
493 .ci_namebuf = "nullb",
494 .ci_type = &nullb_group_type,
495 },
496 },
497 };
498
499 static inline int null_cache_active(struct nullb *nullb)
500 {
501 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
502 }
503
504 static struct nullb_device *null_alloc_dev(void)
505 {
506 struct nullb_device *dev;
507
508 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
509 if (!dev)
510 return NULL;
511 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
512 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
513 if (badblocks_init(&dev->badblocks, 0)) {
514 kfree(dev);
515 return NULL;
516 }
517
518 dev->size = g_gb * 1024;
519 dev->completion_nsec = g_completion_nsec;
520 dev->submit_queues = g_submit_queues;
521 dev->home_node = g_home_node;
522 dev->queue_mode = g_queue_mode;
523 dev->blocksize = g_bs;
524 dev->irqmode = g_irqmode;
525 dev->hw_queue_depth = g_hw_queue_depth;
526 dev->blocking = g_blocking;
527 dev->use_per_node_hctx = g_use_per_node_hctx;
528 dev->zoned = g_zoned;
529 dev->zone_size = g_zone_size;
530 dev->zone_nr_conv = g_zone_nr_conv;
531 return dev;
532 }
533
534 static void null_free_dev(struct nullb_device *dev)
535 {
536 if (!dev)
537 return;
538
539 null_zone_exit(dev);
540 badblocks_exit(&dev->badblocks);
541 kfree(dev);
542 }
543
544 static void put_tag(struct nullb_queue *nq, unsigned int tag)
545 {
546 clear_bit_unlock(tag, nq->tag_map);
547
548 if (waitqueue_active(&nq->wait))
549 wake_up(&nq->wait);
550 }
551
552 static unsigned int get_tag(struct nullb_queue *nq)
553 {
554 unsigned int tag;
555
556 do {
557 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
558 if (tag >= nq->queue_depth)
559 return -1U;
560 } while (test_and_set_bit_lock(tag, nq->tag_map));
561
562 return tag;
563 }
564
565 static void free_cmd(struct nullb_cmd *cmd)
566 {
567 put_tag(cmd->nq, cmd->tag);
568 }
569
570 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
571
572 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
573 {
574 struct nullb_cmd *cmd;
575 unsigned int tag;
576
577 tag = get_tag(nq);
578 if (tag != -1U) {
579 cmd = &nq->cmds[tag];
580 cmd->tag = tag;
581 cmd->nq = nq;
582 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
583 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
584 HRTIMER_MODE_REL);
585 cmd->timer.function = null_cmd_timer_expired;
586 }
587 return cmd;
588 }
589
590 return NULL;
591 }
592
593 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
594 {
595 struct nullb_cmd *cmd;
596 DEFINE_WAIT(wait);
597
598 cmd = __alloc_cmd(nq);
599 if (cmd || !can_wait)
600 return cmd;
601
602 do {
603 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
604 cmd = __alloc_cmd(nq);
605 if (cmd)
606 break;
607
608 io_schedule();
609 } while (1);
610
611 finish_wait(&nq->wait, &wait);
612 return cmd;
613 }
614
615 static void end_cmd(struct nullb_cmd *cmd)
616 {
617 int queue_mode = cmd->nq->dev->queue_mode;
618
619 switch (queue_mode) {
620 case NULL_Q_MQ:
621 blk_mq_end_request(cmd->rq, cmd->error);
622 return;
623 case NULL_Q_BIO:
624 cmd->bio->bi_status = cmd->error;
625 bio_endio(cmd->bio);
626 break;
627 }
628
629 free_cmd(cmd);
630 }
631
632 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
633 {
634 end_cmd(container_of(timer, struct nullb_cmd, timer));
635
636 return HRTIMER_NORESTART;
637 }
638
639 static void null_cmd_end_timer(struct nullb_cmd *cmd)
640 {
641 ktime_t kt = cmd->nq->dev->completion_nsec;
642
643 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
644 }
645
646 static void null_complete_rq(struct request *rq)
647 {
648 end_cmd(blk_mq_rq_to_pdu(rq));
649 }
650
651 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
652 {
653 struct nullb_page *t_page;
654
655 t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
656 if (!t_page)
657 goto out;
658
659 t_page->page = alloc_pages(gfp_flags, 0);
660 if (!t_page->page)
661 goto out_freepage;
662
663 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
664 return t_page;
665 out_freepage:
666 kfree(t_page);
667 out:
668 return NULL;
669 }
670
671 static void null_free_page(struct nullb_page *t_page)
672 {
673 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
674 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
675 return;
676 __free_page(t_page->page);
677 kfree(t_page);
678 }
679
680 static bool null_page_empty(struct nullb_page *page)
681 {
682 int size = MAP_SZ - 2;
683
684 return find_first_bit(page->bitmap, size) == size;
685 }
686
687 static void null_free_sector(struct nullb *nullb, sector_t sector,
688 bool is_cache)
689 {
690 unsigned int sector_bit;
691 u64 idx;
692 struct nullb_page *t_page, *ret;
693 struct radix_tree_root *root;
694
695 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
696 idx = sector >> PAGE_SECTORS_SHIFT;
697 sector_bit = (sector & SECTOR_MASK);
698
699 t_page = radix_tree_lookup(root, idx);
700 if (t_page) {
701 __clear_bit(sector_bit, t_page->bitmap);
702
703 if (null_page_empty(t_page)) {
704 ret = radix_tree_delete_item(root, idx, t_page);
705 WARN_ON(ret != t_page);
706 null_free_page(ret);
707 if (is_cache)
708 nullb->dev->curr_cache -= PAGE_SIZE;
709 }
710 }
711 }
712
713 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
714 struct nullb_page *t_page, bool is_cache)
715 {
716 struct radix_tree_root *root;
717
718 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
719
720 if (radix_tree_insert(root, idx, t_page)) {
721 null_free_page(t_page);
722 t_page = radix_tree_lookup(root, idx);
723 WARN_ON(!t_page || t_page->page->index != idx);
724 } else if (is_cache)
725 nullb->dev->curr_cache += PAGE_SIZE;
726
727 return t_page;
728 }
729
730 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
731 {
732 unsigned long pos = 0;
733 int nr_pages;
734 struct nullb_page *ret, *t_pages[FREE_BATCH];
735 struct radix_tree_root *root;
736
737 root = is_cache ? &dev->cache : &dev->data;
738
739 do {
740 int i;
741
742 nr_pages = radix_tree_gang_lookup(root,
743 (void **)t_pages, pos, FREE_BATCH);
744
745 for (i = 0; i < nr_pages; i++) {
746 pos = t_pages[i]->page->index;
747 ret = radix_tree_delete_item(root, pos, t_pages[i]);
748 WARN_ON(ret != t_pages[i]);
749 null_free_page(ret);
750 }
751
752 pos++;
753 } while (nr_pages == FREE_BATCH);
754
755 if (is_cache)
756 dev->curr_cache = 0;
757 }
758
759 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
760 sector_t sector, bool for_write, bool is_cache)
761 {
762 unsigned int sector_bit;
763 u64 idx;
764 struct nullb_page *t_page;
765 struct radix_tree_root *root;
766
767 idx = sector >> PAGE_SECTORS_SHIFT;
768 sector_bit = (sector & SECTOR_MASK);
769
770 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
771 t_page = radix_tree_lookup(root, idx);
772 WARN_ON(t_page && t_page->page->index != idx);
773
774 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
775 return t_page;
776
777 return NULL;
778 }
779
780 static struct nullb_page *null_lookup_page(struct nullb *nullb,
781 sector_t sector, bool for_write, bool ignore_cache)
782 {
783 struct nullb_page *page = NULL;
784
785 if (!ignore_cache)
786 page = __null_lookup_page(nullb, sector, for_write, true);
787 if (page)
788 return page;
789 return __null_lookup_page(nullb, sector, for_write, false);
790 }
791
792 static struct nullb_page *null_insert_page(struct nullb *nullb,
793 sector_t sector, bool ignore_cache)
794 __releases(&nullb->lock)
795 __acquires(&nullb->lock)
796 {
797 u64 idx;
798 struct nullb_page *t_page;
799
800 t_page = null_lookup_page(nullb, sector, true, ignore_cache);
801 if (t_page)
802 return t_page;
803
804 spin_unlock_irq(&nullb->lock);
805
806 t_page = null_alloc_page(GFP_NOIO);
807 if (!t_page)
808 goto out_lock;
809
810 if (radix_tree_preload(GFP_NOIO))
811 goto out_freepage;
812
813 spin_lock_irq(&nullb->lock);
814 idx = sector >> PAGE_SECTORS_SHIFT;
815 t_page->page->index = idx;
816 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
817 radix_tree_preload_end();
818
819 return t_page;
820 out_freepage:
821 null_free_page(t_page);
822 out_lock:
823 spin_lock_irq(&nullb->lock);
824 return null_lookup_page(nullb, sector, true, ignore_cache);
825 }
826
827 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
828 {
829 int i;
830 unsigned int offset;
831 u64 idx;
832 struct nullb_page *t_page, *ret;
833 void *dst, *src;
834
835 idx = c_page->page->index;
836
837 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
838
839 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
840 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
841 null_free_page(c_page);
842 if (t_page && null_page_empty(t_page)) {
843 ret = radix_tree_delete_item(&nullb->dev->data,
844 idx, t_page);
845 null_free_page(t_page);
846 }
847 return 0;
848 }
849
850 if (!t_page)
851 return -ENOMEM;
852
853 src = kmap_atomic(c_page->page);
854 dst = kmap_atomic(t_page->page);
855
856 for (i = 0; i < PAGE_SECTORS;
857 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
858 if (test_bit(i, c_page->bitmap)) {
859 offset = (i << SECTOR_SHIFT);
860 memcpy(dst + offset, src + offset,
861 nullb->dev->blocksize);
862 __set_bit(i, t_page->bitmap);
863 }
864 }
865
866 kunmap_atomic(dst);
867 kunmap_atomic(src);
868
869 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
870 null_free_page(ret);
871 nullb->dev->curr_cache -= PAGE_SIZE;
872
873 return 0;
874 }
875
876 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
877 {
878 int i, err, nr_pages;
879 struct nullb_page *c_pages[FREE_BATCH];
880 unsigned long flushed = 0, one_round;
881
882 again:
883 if ((nullb->dev->cache_size * 1024 * 1024) >
884 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
885 return 0;
886
887 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
888 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
889 /*
890 * nullb_flush_cache_page could unlock before using the c_pages. To
891 * avoid race, we don't allow page free
892 */
893 for (i = 0; i < nr_pages; i++) {
894 nullb->cache_flush_pos = c_pages[i]->page->index;
895 /*
896 * We found the page which is being flushed to disk by other
897 * threads
898 */
899 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
900 c_pages[i] = NULL;
901 else
902 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
903 }
904
905 one_round = 0;
906 for (i = 0; i < nr_pages; i++) {
907 if (c_pages[i] == NULL)
908 continue;
909 err = null_flush_cache_page(nullb, c_pages[i]);
910 if (err)
911 return err;
912 one_round++;
913 }
914 flushed += one_round << PAGE_SHIFT;
915
916 if (n > flushed) {
917 if (nr_pages == 0)
918 nullb->cache_flush_pos = 0;
919 if (one_round == 0) {
920 /* give other threads a chance */
921 spin_unlock_irq(&nullb->lock);
922 spin_lock_irq(&nullb->lock);
923 }
924 goto again;
925 }
926 return 0;
927 }
928
929 static int copy_to_nullb(struct nullb *nullb, struct page *source,
930 unsigned int off, sector_t sector, size_t n, bool is_fua)
931 {
932 size_t temp, count = 0;
933 unsigned int offset;
934 struct nullb_page *t_page;
935 void *dst, *src;
936
937 while (count < n) {
938 temp = min_t(size_t, nullb->dev->blocksize, n - count);
939
940 if (null_cache_active(nullb) && !is_fua)
941 null_make_cache_space(nullb, PAGE_SIZE);
942
943 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
944 t_page = null_insert_page(nullb, sector,
945 !null_cache_active(nullb) || is_fua);
946 if (!t_page)
947 return -ENOSPC;
948
949 src = kmap_atomic(source);
950 dst = kmap_atomic(t_page->page);
951 memcpy(dst + offset, src + off + count, temp);
952 kunmap_atomic(dst);
953 kunmap_atomic(src);
954
955 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
956
957 if (is_fua)
958 null_free_sector(nullb, sector, true);
959
960 count += temp;
961 sector += temp >> SECTOR_SHIFT;
962 }
963 return 0;
964 }
965
966 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
967 unsigned int off, sector_t sector, size_t n)
968 {
969 size_t temp, count = 0;
970 unsigned int offset;
971 struct nullb_page *t_page;
972 void *dst, *src;
973
974 while (count < n) {
975 temp = min_t(size_t, nullb->dev->blocksize, n - count);
976
977 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
978 t_page = null_lookup_page(nullb, sector, false,
979 !null_cache_active(nullb));
980
981 dst = kmap_atomic(dest);
982 if (!t_page) {
983 memset(dst + off + count, 0, temp);
984 goto next;
985 }
986 src = kmap_atomic(t_page->page);
987 memcpy(dst + off + count, src + offset, temp);
988 kunmap_atomic(src);
989 next:
990 kunmap_atomic(dst);
991
992 count += temp;
993 sector += temp >> SECTOR_SHIFT;
994 }
995 return 0;
996 }
997
998 static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
999 {
1000 size_t temp;
1001
1002 spin_lock_irq(&nullb->lock);
1003 while (n > 0) {
1004 temp = min_t(size_t, n, nullb->dev->blocksize);
1005 null_free_sector(nullb, sector, false);
1006 if (null_cache_active(nullb))
1007 null_free_sector(nullb, sector, true);
1008 sector += temp >> SECTOR_SHIFT;
1009 n -= temp;
1010 }
1011 spin_unlock_irq(&nullb->lock);
1012 }
1013
1014 static int null_handle_flush(struct nullb *nullb)
1015 {
1016 int err;
1017
1018 if (!null_cache_active(nullb))
1019 return 0;
1020
1021 spin_lock_irq(&nullb->lock);
1022 while (true) {
1023 err = null_make_cache_space(nullb,
1024 nullb->dev->cache_size * 1024 * 1024);
1025 if (err || nullb->dev->curr_cache == 0)
1026 break;
1027 }
1028
1029 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1030 spin_unlock_irq(&nullb->lock);
1031 return err;
1032 }
1033
1034 static int null_transfer(struct nullb *nullb, struct page *page,
1035 unsigned int len, unsigned int off, bool is_write, sector_t sector,
1036 bool is_fua)
1037 {
1038 int err = 0;
1039
1040 if (!is_write) {
1041 err = copy_from_nullb(nullb, page, off, sector, len);
1042 flush_dcache_page(page);
1043 } else {
1044 flush_dcache_page(page);
1045 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1046 }
1047
1048 return err;
1049 }
1050
1051 static int null_handle_rq(struct nullb_cmd *cmd)
1052 {
1053 struct request *rq = cmd->rq;
1054 struct nullb *nullb = cmd->nq->dev->nullb;
1055 int err;
1056 unsigned int len;
1057 sector_t sector;
1058 struct req_iterator iter;
1059 struct bio_vec bvec;
1060
1061 sector = blk_rq_pos(rq);
1062
1063 if (req_op(rq) == REQ_OP_DISCARD) {
1064 null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1065 return 0;
1066 }
1067
1068 spin_lock_irq(&nullb->lock);
1069 rq_for_each_segment(bvec, rq, iter) {
1070 len = bvec.bv_len;
1071 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1072 op_is_write(req_op(rq)), sector,
1073 req_op(rq) & REQ_FUA);
1074 if (err) {
1075 spin_unlock_irq(&nullb->lock);
1076 return err;
1077 }
1078 sector += len >> SECTOR_SHIFT;
1079 }
1080 spin_unlock_irq(&nullb->lock);
1081
1082 return 0;
1083 }
1084
1085 static int null_handle_bio(struct nullb_cmd *cmd)
1086 {
1087 struct bio *bio = cmd->bio;
1088 struct nullb *nullb = cmd->nq->dev->nullb;
1089 int err;
1090 unsigned int len;
1091 sector_t sector;
1092 struct bio_vec bvec;
1093 struct bvec_iter iter;
1094
1095 sector = bio->bi_iter.bi_sector;
1096
1097 if (bio_op(bio) == REQ_OP_DISCARD) {
1098 null_handle_discard(nullb, sector,
1099 bio_sectors(bio) << SECTOR_SHIFT);
1100 return 0;
1101 }
1102
1103 spin_lock_irq(&nullb->lock);
1104 bio_for_each_segment(bvec, bio, iter) {
1105 len = bvec.bv_len;
1106 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1107 op_is_write(bio_op(bio)), sector,
1108 bio->bi_opf & REQ_FUA);
1109 if (err) {
1110 spin_unlock_irq(&nullb->lock);
1111 return err;
1112 }
1113 sector += len >> SECTOR_SHIFT;
1114 }
1115 spin_unlock_irq(&nullb->lock);
1116 return 0;
1117 }
1118
1119 static void null_stop_queue(struct nullb *nullb)
1120 {
1121 struct request_queue *q = nullb->q;
1122
1123 if (nullb->dev->queue_mode == NULL_Q_MQ)
1124 blk_mq_stop_hw_queues(q);
1125 }
1126
1127 static void null_restart_queue_async(struct nullb *nullb)
1128 {
1129 struct request_queue *q = nullb->q;
1130
1131 if (nullb->dev->queue_mode == NULL_Q_MQ)
1132 blk_mq_start_stopped_hw_queues(q, true);
1133 }
1134
1135 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd)
1136 {
1137 struct nullb_device *dev = cmd->nq->dev;
1138 struct nullb *nullb = dev->nullb;
1139 int err = 0;
1140
1141 if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1142 struct request *rq = cmd->rq;
1143
1144 if (!hrtimer_active(&nullb->bw_timer))
1145 hrtimer_restart(&nullb->bw_timer);
1146
1147 if (atomic_long_sub_return(blk_rq_bytes(rq),
1148 &nullb->cur_bytes) < 0) {
1149 null_stop_queue(nullb);
1150 /* race with timer */
1151 if (atomic_long_read(&nullb->cur_bytes) > 0)
1152 null_restart_queue_async(nullb);
1153 /* requeue request */
1154 return BLK_STS_DEV_RESOURCE;
1155 }
1156 }
1157
1158 if (nullb->dev->badblocks.shift != -1) {
1159 int bad_sectors;
1160 sector_t sector, size, first_bad;
1161 bool is_flush = true;
1162
1163 if (dev->queue_mode == NULL_Q_BIO &&
1164 bio_op(cmd->bio) != REQ_OP_FLUSH) {
1165 is_flush = false;
1166 sector = cmd->bio->bi_iter.bi_sector;
1167 size = bio_sectors(cmd->bio);
1168 }
1169 if (dev->queue_mode != NULL_Q_BIO &&
1170 req_op(cmd->rq) != REQ_OP_FLUSH) {
1171 is_flush = false;
1172 sector = blk_rq_pos(cmd->rq);
1173 size = blk_rq_sectors(cmd->rq);
1174 }
1175 if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector,
1176 size, &first_bad, &bad_sectors)) {
1177 cmd->error = BLK_STS_IOERR;
1178 goto out;
1179 }
1180 }
1181
1182 if (dev->memory_backed) {
1183 if (dev->queue_mode == NULL_Q_BIO) {
1184 if (bio_op(cmd->bio) == REQ_OP_FLUSH)
1185 err = null_handle_flush(nullb);
1186 else
1187 err = null_handle_bio(cmd);
1188 } else {
1189 if (req_op(cmd->rq) == REQ_OP_FLUSH)
1190 err = null_handle_flush(nullb);
1191 else
1192 err = null_handle_rq(cmd);
1193 }
1194 }
1195 cmd->error = errno_to_blk_status(err);
1196
1197 if (!cmd->error && dev->zoned) {
1198 sector_t sector;
1199 unsigned int nr_sectors;
1200 int op;
1201
1202 if (dev->queue_mode == NULL_Q_BIO) {
1203 op = bio_op(cmd->bio);
1204 sector = cmd->bio->bi_iter.bi_sector;
1205 nr_sectors = cmd->bio->bi_iter.bi_size >> 9;
1206 } else {
1207 op = req_op(cmd->rq);
1208 sector = blk_rq_pos(cmd->rq);
1209 nr_sectors = blk_rq_sectors(cmd->rq);
1210 }
1211
1212 if (op == REQ_OP_WRITE)
1213 null_zone_write(cmd, sector, nr_sectors);
1214 else if (op == REQ_OP_ZONE_RESET)
1215 null_zone_reset(cmd, sector);
1216 }
1217 out:
1218 /* Complete IO by inline, softirq or timer */
1219 switch (dev->irqmode) {
1220 case NULL_IRQ_SOFTIRQ:
1221 switch (dev->queue_mode) {
1222 case NULL_Q_MQ:
1223 blk_mq_complete_request(cmd->rq);
1224 break;
1225 case NULL_Q_BIO:
1226 /*
1227 * XXX: no proper submitting cpu information available.
1228 */
1229 end_cmd(cmd);
1230 break;
1231 }
1232 break;
1233 case NULL_IRQ_NONE:
1234 end_cmd(cmd);
1235 break;
1236 case NULL_IRQ_TIMER:
1237 null_cmd_end_timer(cmd);
1238 break;
1239 }
1240 return BLK_STS_OK;
1241 }
1242
1243 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1244 {
1245 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1246 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1247 unsigned int mbps = nullb->dev->mbps;
1248
1249 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1250 return HRTIMER_NORESTART;
1251
1252 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1253 null_restart_queue_async(nullb);
1254
1255 hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1256
1257 return HRTIMER_RESTART;
1258 }
1259
1260 static void nullb_setup_bwtimer(struct nullb *nullb)
1261 {
1262 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1263
1264 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1265 nullb->bw_timer.function = nullb_bwtimer_fn;
1266 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1267 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1268 }
1269
1270 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1271 {
1272 int index = 0;
1273
1274 if (nullb->nr_queues != 1)
1275 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1276
1277 return &nullb->queues[index];
1278 }
1279
1280 static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
1281 {
1282 struct nullb *nullb = q->queuedata;
1283 struct nullb_queue *nq = nullb_to_queue(nullb);
1284 struct nullb_cmd *cmd;
1285
1286 cmd = alloc_cmd(nq, 1);
1287 cmd->bio = bio;
1288
1289 null_handle_cmd(cmd);
1290 return BLK_QC_T_NONE;
1291 }
1292
1293 static bool should_timeout_request(struct request *rq)
1294 {
1295 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1296 if (g_timeout_str[0])
1297 return should_fail(&null_timeout_attr, 1);
1298 #endif
1299 return false;
1300 }
1301
1302 static bool should_requeue_request(struct request *rq)
1303 {
1304 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1305 if (g_requeue_str[0])
1306 return should_fail(&null_requeue_attr, 1);
1307 #endif
1308 return false;
1309 }
1310
1311 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1312 {
1313 pr_info("null: rq %p timed out\n", rq);
1314 blk_mq_complete_request(rq);
1315 return BLK_EH_DONE;
1316 }
1317
1318 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1319 const struct blk_mq_queue_data *bd)
1320 {
1321 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1322 struct nullb_queue *nq = hctx->driver_data;
1323
1324 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1325
1326 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1327 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1328 cmd->timer.function = null_cmd_timer_expired;
1329 }
1330 cmd->rq = bd->rq;
1331 cmd->nq = nq;
1332
1333 blk_mq_start_request(bd->rq);
1334
1335 if (should_requeue_request(bd->rq)) {
1336 /*
1337 * Alternate between hitting the core BUSY path, and the
1338 * driver driven requeue path
1339 */
1340 nq->requeue_selection++;
1341 if (nq->requeue_selection & 1)
1342 return BLK_STS_RESOURCE;
1343 else {
1344 blk_mq_requeue_request(bd->rq, true);
1345 return BLK_STS_OK;
1346 }
1347 }
1348 if (should_timeout_request(bd->rq))
1349 return BLK_STS_OK;
1350
1351 return null_handle_cmd(cmd);
1352 }
1353
1354 static const struct blk_mq_ops null_mq_ops = {
1355 .queue_rq = null_queue_rq,
1356 .complete = null_complete_rq,
1357 .timeout = null_timeout_rq,
1358 };
1359
1360 static void cleanup_queue(struct nullb_queue *nq)
1361 {
1362 kfree(nq->tag_map);
1363 kfree(nq->cmds);
1364 }
1365
1366 static void cleanup_queues(struct nullb *nullb)
1367 {
1368 int i;
1369
1370 for (i = 0; i < nullb->nr_queues; i++)
1371 cleanup_queue(&nullb->queues[i]);
1372
1373 kfree(nullb->queues);
1374 }
1375
1376 static void null_del_dev(struct nullb *nullb)
1377 {
1378 struct nullb_device *dev = nullb->dev;
1379
1380 ida_simple_remove(&nullb_indexes, nullb->index);
1381
1382 list_del_init(&nullb->list);
1383
1384 del_gendisk(nullb->disk);
1385
1386 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1387 hrtimer_cancel(&nullb->bw_timer);
1388 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1389 null_restart_queue_async(nullb);
1390 }
1391
1392 blk_cleanup_queue(nullb->q);
1393 if (dev->queue_mode == NULL_Q_MQ &&
1394 nullb->tag_set == &nullb->__tag_set)
1395 blk_mq_free_tag_set(nullb->tag_set);
1396 put_disk(nullb->disk);
1397 cleanup_queues(nullb);
1398 if (null_cache_active(nullb))
1399 null_free_device_storage(nullb->dev, true);
1400 kfree(nullb);
1401 dev->nullb = NULL;
1402 }
1403
1404 static void null_config_discard(struct nullb *nullb)
1405 {
1406 if (nullb->dev->discard == false)
1407 return;
1408 nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1409 nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1410 blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1411 blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1412 }
1413
1414 static int null_open(struct block_device *bdev, fmode_t mode)
1415 {
1416 return 0;
1417 }
1418
1419 static void null_release(struct gendisk *disk, fmode_t mode)
1420 {
1421 }
1422
1423 static const struct block_device_operations null_fops = {
1424 .owner = THIS_MODULE,
1425 .open = null_open,
1426 .release = null_release,
1427 .report_zones = null_zone_report,
1428 };
1429
1430 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1431 {
1432 BUG_ON(!nullb);
1433 BUG_ON(!nq);
1434
1435 init_waitqueue_head(&nq->wait);
1436 nq->queue_depth = nullb->queue_depth;
1437 nq->dev = nullb->dev;
1438 }
1439
1440 static void null_init_queues(struct nullb *nullb)
1441 {
1442 struct request_queue *q = nullb->q;
1443 struct blk_mq_hw_ctx *hctx;
1444 struct nullb_queue *nq;
1445 int i;
1446
1447 queue_for_each_hw_ctx(q, hctx, i) {
1448 if (!hctx->nr_ctx || !hctx->tags)
1449 continue;
1450 nq = &nullb->queues[i];
1451 hctx->driver_data = nq;
1452 null_init_queue(nullb, nq);
1453 nullb->nr_queues++;
1454 }
1455 }
1456
1457 static int setup_commands(struct nullb_queue *nq)
1458 {
1459 struct nullb_cmd *cmd;
1460 int i, tag_size;
1461
1462 nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1463 if (!nq->cmds)
1464 return -ENOMEM;
1465
1466 tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1467 nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1468 if (!nq->tag_map) {
1469 kfree(nq->cmds);
1470 return -ENOMEM;
1471 }
1472
1473 for (i = 0; i < nq->queue_depth; i++) {
1474 cmd = &nq->cmds[i];
1475 INIT_LIST_HEAD(&cmd->list);
1476 cmd->ll_list.next = NULL;
1477 cmd->tag = -1U;
1478 }
1479
1480 return 0;
1481 }
1482
1483 static int setup_queues(struct nullb *nullb)
1484 {
1485 nullb->queues = kcalloc(nullb->dev->submit_queues,
1486 sizeof(struct nullb_queue),
1487 GFP_KERNEL);
1488 if (!nullb->queues)
1489 return -ENOMEM;
1490
1491 nullb->nr_queues = 0;
1492 nullb->queue_depth = nullb->dev->hw_queue_depth;
1493
1494 return 0;
1495 }
1496
1497 static int init_driver_queues(struct nullb *nullb)
1498 {
1499 struct nullb_queue *nq;
1500 int i, ret = 0;
1501
1502 for (i = 0; i < nullb->dev->submit_queues; i++) {
1503 nq = &nullb->queues[i];
1504
1505 null_init_queue(nullb, nq);
1506
1507 ret = setup_commands(nq);
1508 if (ret)
1509 return ret;
1510 nullb->nr_queues++;
1511 }
1512 return 0;
1513 }
1514
1515 static int null_gendisk_register(struct nullb *nullb)
1516 {
1517 struct gendisk *disk;
1518 sector_t size;
1519
1520 disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1521 if (!disk)
1522 return -ENOMEM;
1523 size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
1524 set_capacity(disk, size >> 9);
1525
1526 disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1527 disk->major = null_major;
1528 disk->first_minor = nullb->index;
1529 disk->fops = &null_fops;
1530 disk->private_data = nullb;
1531 disk->queue = nullb->q;
1532 strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1533
1534 if (nullb->dev->zoned) {
1535 int ret = blk_revalidate_disk_zones(disk);
1536
1537 if (ret != 0)
1538 return ret;
1539 }
1540
1541 add_disk(disk);
1542 return 0;
1543 }
1544
1545 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1546 {
1547 set->ops = &null_mq_ops;
1548 set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1549 g_submit_queues;
1550 set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1551 g_hw_queue_depth;
1552 set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1553 set->cmd_size = sizeof(struct nullb_cmd);
1554 set->flags = BLK_MQ_F_SHOULD_MERGE;
1555 if (g_no_sched)
1556 set->flags |= BLK_MQ_F_NO_SCHED;
1557 set->driver_data = NULL;
1558
1559 if ((nullb && nullb->dev->blocking) || g_blocking)
1560 set->flags |= BLK_MQ_F_BLOCKING;
1561
1562 return blk_mq_alloc_tag_set(set);
1563 }
1564
1565 static void null_validate_conf(struct nullb_device *dev)
1566 {
1567 dev->blocksize = round_down(dev->blocksize, 512);
1568 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1569
1570 if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1571 if (dev->submit_queues != nr_online_nodes)
1572 dev->submit_queues = nr_online_nodes;
1573 } else if (dev->submit_queues > nr_cpu_ids)
1574 dev->submit_queues = nr_cpu_ids;
1575 else if (dev->submit_queues == 0)
1576 dev->submit_queues = 1;
1577
1578 dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1579 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1580
1581 /* Do memory allocation, so set blocking */
1582 if (dev->memory_backed)
1583 dev->blocking = true;
1584 else /* cache is meaningless */
1585 dev->cache_size = 0;
1586 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1587 dev->cache_size);
1588 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1589 /* can not stop a queue */
1590 if (dev->queue_mode == NULL_Q_BIO)
1591 dev->mbps = 0;
1592 }
1593
1594 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1595 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1596 {
1597 if (!str[0])
1598 return true;
1599
1600 if (!setup_fault_attr(attr, str))
1601 return false;
1602
1603 attr->verbose = 0;
1604 return true;
1605 }
1606 #endif
1607
1608 static bool null_setup_fault(void)
1609 {
1610 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1611 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1612 return false;
1613 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1614 return false;
1615 #endif
1616 return true;
1617 }
1618
1619 static int null_add_dev(struct nullb_device *dev)
1620 {
1621 struct nullb *nullb;
1622 int rv;
1623
1624 null_validate_conf(dev);
1625
1626 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1627 if (!nullb) {
1628 rv = -ENOMEM;
1629 goto out;
1630 }
1631 nullb->dev = dev;
1632 dev->nullb = nullb;
1633
1634 spin_lock_init(&nullb->lock);
1635
1636 rv = setup_queues(nullb);
1637 if (rv)
1638 goto out_free_nullb;
1639
1640 if (dev->queue_mode == NULL_Q_MQ) {
1641 if (shared_tags) {
1642 nullb->tag_set = &tag_set;
1643 rv = 0;
1644 } else {
1645 nullb->tag_set = &nullb->__tag_set;
1646 rv = null_init_tag_set(nullb, nullb->tag_set);
1647 }
1648
1649 if (rv)
1650 goto out_cleanup_queues;
1651
1652 if (!null_setup_fault())
1653 goto out_cleanup_queues;
1654
1655 nullb->tag_set->timeout = 5 * HZ;
1656 nullb->q = blk_mq_init_queue(nullb->tag_set);
1657 if (IS_ERR(nullb->q)) {
1658 rv = -ENOMEM;
1659 goto out_cleanup_tags;
1660 }
1661 null_init_queues(nullb);
1662 } else if (dev->queue_mode == NULL_Q_BIO) {
1663 nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node);
1664 if (!nullb->q) {
1665 rv = -ENOMEM;
1666 goto out_cleanup_queues;
1667 }
1668 blk_queue_make_request(nullb->q, null_queue_bio);
1669 rv = init_driver_queues(nullb);
1670 if (rv)
1671 goto out_cleanup_blk_queue;
1672 }
1673
1674 if (dev->mbps) {
1675 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1676 nullb_setup_bwtimer(nullb);
1677 }
1678
1679 if (dev->cache_size > 0) {
1680 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1681 blk_queue_write_cache(nullb->q, true, true);
1682 }
1683
1684 if (dev->zoned) {
1685 rv = null_zone_init(dev);
1686 if (rv)
1687 goto out_cleanup_blk_queue;
1688
1689 blk_queue_chunk_sectors(nullb->q, dev->zone_size_sects);
1690 nullb->q->limits.zoned = BLK_ZONED_HM;
1691 }
1692
1693 nullb->q->queuedata = nullb;
1694 blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1695 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1696
1697 mutex_lock(&lock);
1698 nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1699 dev->index = nullb->index;
1700 mutex_unlock(&lock);
1701
1702 blk_queue_logical_block_size(nullb->q, dev->blocksize);
1703 blk_queue_physical_block_size(nullb->q, dev->blocksize);
1704
1705 null_config_discard(nullb);
1706
1707 sprintf(nullb->disk_name, "nullb%d", nullb->index);
1708
1709 rv = null_gendisk_register(nullb);
1710 if (rv)
1711 goto out_cleanup_zone;
1712
1713 mutex_lock(&lock);
1714 list_add_tail(&nullb->list, &nullb_list);
1715 mutex_unlock(&lock);
1716
1717 return 0;
1718 out_cleanup_zone:
1719 if (dev->zoned)
1720 null_zone_exit(dev);
1721 out_cleanup_blk_queue:
1722 blk_cleanup_queue(nullb->q);
1723 out_cleanup_tags:
1724 if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1725 blk_mq_free_tag_set(nullb->tag_set);
1726 out_cleanup_queues:
1727 cleanup_queues(nullb);
1728 out_free_nullb:
1729 kfree(nullb);
1730 out:
1731 return rv;
1732 }
1733
1734 static int __init null_init(void)
1735 {
1736 int ret = 0;
1737 unsigned int i;
1738 struct nullb *nullb;
1739 struct nullb_device *dev;
1740
1741 if (g_bs > PAGE_SIZE) {
1742 pr_warn("null_blk: invalid block size\n");
1743 pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
1744 g_bs = PAGE_SIZE;
1745 }
1746
1747 if (!is_power_of_2(g_zone_size)) {
1748 pr_err("null_blk: zone_size must be power-of-two\n");
1749 return -EINVAL;
1750 }
1751
1752 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1753 pr_err("null_blk: invalid home_node value\n");
1754 g_home_node = NUMA_NO_NODE;
1755 }
1756
1757 if (g_queue_mode == NULL_Q_RQ) {
1758 pr_err("null_blk: legacy IO path no longer available\n");
1759 return -EINVAL;
1760 }
1761 if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1762 if (g_submit_queues != nr_online_nodes) {
1763 pr_warn("null_blk: submit_queues param is set to %u.\n",
1764 nr_online_nodes);
1765 g_submit_queues = nr_online_nodes;
1766 }
1767 } else if (g_submit_queues > nr_cpu_ids)
1768 g_submit_queues = nr_cpu_ids;
1769 else if (g_submit_queues <= 0)
1770 g_submit_queues = 1;
1771
1772 if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1773 ret = null_init_tag_set(NULL, &tag_set);
1774 if (ret)
1775 return ret;
1776 }
1777
1778 config_group_init(&nullb_subsys.su_group);
1779 mutex_init(&nullb_subsys.su_mutex);
1780
1781 ret = configfs_register_subsystem(&nullb_subsys);
1782 if (ret)
1783 goto err_tagset;
1784
1785 mutex_init(&lock);
1786
1787 null_major = register_blkdev(0, "nullb");
1788 if (null_major < 0) {
1789 ret = null_major;
1790 goto err_conf;
1791 }
1792
1793 for (i = 0; i < nr_devices; i++) {
1794 dev = null_alloc_dev();
1795 if (!dev) {
1796 ret = -ENOMEM;
1797 goto err_dev;
1798 }
1799 ret = null_add_dev(dev);
1800 if (ret) {
1801 null_free_dev(dev);
1802 goto err_dev;
1803 }
1804 }
1805
1806 pr_info("null: module loaded\n");
1807 return 0;
1808
1809 err_dev:
1810 while (!list_empty(&nullb_list)) {
1811 nullb = list_entry(nullb_list.next, struct nullb, list);
1812 dev = nullb->dev;
1813 null_del_dev(nullb);
1814 null_free_dev(dev);
1815 }
1816 unregister_blkdev(null_major, "nullb");
1817 err_conf:
1818 configfs_unregister_subsystem(&nullb_subsys);
1819 err_tagset:
1820 if (g_queue_mode == NULL_Q_MQ && shared_tags)
1821 blk_mq_free_tag_set(&tag_set);
1822 return ret;
1823 }
1824
1825 static void __exit null_exit(void)
1826 {
1827 struct nullb *nullb;
1828
1829 configfs_unregister_subsystem(&nullb_subsys);
1830
1831 unregister_blkdev(null_major, "nullb");
1832
1833 mutex_lock(&lock);
1834 while (!list_empty(&nullb_list)) {
1835 struct nullb_device *dev;
1836
1837 nullb = list_entry(nullb_list.next, struct nullb, list);
1838 dev = nullb->dev;
1839 null_del_dev(nullb);
1840 null_free_dev(dev);
1841 }
1842 mutex_unlock(&lock);
1843
1844 if (g_queue_mode == NULL_Q_MQ && shared_tags)
1845 blk_mq_free_tag_set(&tag_set);
1846 }
1847
1848 module_init(null_init);
1849 module_exit(null_exit);
1850
1851 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
1852 MODULE_LICENSE("GPL");