]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/nvme-core.c
NVMe: Namespace use after free on surprise removal
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_Q_DEPTH 1024
47 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
48 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
49 #define ADMIN_TIMEOUT (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60 static struct workqueue_struct *nvme_workq;
61
62 static void nvme_reset_failed_dev(struct work_struct *ws);
63
64 struct async_cmd_info {
65 struct kthread_work work;
66 struct kthread_worker *worker;
67 u32 result;
68 int status;
69 void *ctx;
70 };
71
72 /*
73 * An NVM Express queue. Each device has at least two (one for admin
74 * commands and one for I/O commands).
75 */
76 struct nvme_queue {
77 struct device *q_dmadev;
78 struct nvme_dev *dev;
79 char irqname[24]; /* nvme4294967295-65535\0 */
80 spinlock_t q_lock;
81 struct nvme_command *sq_cmds;
82 volatile struct nvme_completion *cqes;
83 dma_addr_t sq_dma_addr;
84 dma_addr_t cq_dma_addr;
85 wait_queue_head_t sq_full;
86 wait_queue_t sq_cong_wait;
87 struct bio_list sq_cong;
88 u32 __iomem *q_db;
89 u16 q_depth;
90 u16 cq_vector;
91 u16 sq_head;
92 u16 sq_tail;
93 u16 cq_head;
94 u16 qid;
95 u8 cq_phase;
96 u8 cqe_seen;
97 u8 q_suspended;
98 struct async_cmd_info cmdinfo;
99 unsigned long cmdid_data[];
100 };
101
102 /*
103 * Check we didin't inadvertently grow the command struct
104 */
105 static inline void _nvme_check_size(void)
106 {
107 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
108 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
109 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
110 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
111 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
112 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
113 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
114 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
115 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
116 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
117 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
118 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
119 }
120
121 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
122 struct nvme_completion *);
123
124 struct nvme_cmd_info {
125 nvme_completion_fn fn;
126 void *ctx;
127 unsigned long timeout;
128 int aborted;
129 };
130
131 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
132 {
133 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
134 }
135
136 static unsigned nvme_queue_extra(int depth)
137 {
138 return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
139 }
140
141 /**
142 * alloc_cmdid() - Allocate a Command ID
143 * @nvmeq: The queue that will be used for this command
144 * @ctx: A pointer that will be passed to the handler
145 * @handler: The function to call on completion
146 *
147 * Allocate a Command ID for a queue. The data passed in will
148 * be passed to the completion handler. This is implemented by using
149 * the bottom two bits of the ctx pointer to store the handler ID.
150 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
151 * We can change this if it becomes a problem.
152 *
153 * May be called with local interrupts disabled and the q_lock held,
154 * or with interrupts enabled and no locks held.
155 */
156 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
157 nvme_completion_fn handler, unsigned timeout)
158 {
159 int depth = nvmeq->q_depth - 1;
160 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161 int cmdid;
162
163 do {
164 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
165 if (cmdid >= depth)
166 return -EBUSY;
167 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
168
169 info[cmdid].fn = handler;
170 info[cmdid].ctx = ctx;
171 info[cmdid].timeout = jiffies + timeout;
172 info[cmdid].aborted = 0;
173 return cmdid;
174 }
175
176 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177 nvme_completion_fn handler, unsigned timeout)
178 {
179 int cmdid;
180 wait_event_killable(nvmeq->sq_full,
181 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182 return (cmdid < 0) ? -EINTR : cmdid;
183 }
184
185 /* Special values must be less than 0x1000 */
186 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
187 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
188 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
189 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
190 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
191 #define CMD_CTX_ABORT (0x31C + CMD_CTX_BASE)
192
193 static void special_completion(struct nvme_dev *dev, void *ctx,
194 struct nvme_completion *cqe)
195 {
196 if (ctx == CMD_CTX_CANCELLED)
197 return;
198 if (ctx == CMD_CTX_FLUSH)
199 return;
200 if (ctx == CMD_CTX_ABORT) {
201 ++dev->abort_limit;
202 return;
203 }
204 if (ctx == CMD_CTX_COMPLETED) {
205 dev_warn(&dev->pci_dev->dev,
206 "completed id %d twice on queue %d\n",
207 cqe->command_id, le16_to_cpup(&cqe->sq_id));
208 return;
209 }
210 if (ctx == CMD_CTX_INVALID) {
211 dev_warn(&dev->pci_dev->dev,
212 "invalid id %d completed on queue %d\n",
213 cqe->command_id, le16_to_cpup(&cqe->sq_id));
214 return;
215 }
216
217 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
218 }
219
220 static void async_completion(struct nvme_dev *dev, void *ctx,
221 struct nvme_completion *cqe)
222 {
223 struct async_cmd_info *cmdinfo = ctx;
224 cmdinfo->result = le32_to_cpup(&cqe->result);
225 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
226 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
227 }
228
229 /*
230 * Called with local interrupts disabled and the q_lock held. May not sleep.
231 */
232 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
233 nvme_completion_fn *fn)
234 {
235 void *ctx;
236 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
237
238 if (cmdid >= nvmeq->q_depth) {
239 *fn = special_completion;
240 return CMD_CTX_INVALID;
241 }
242 if (fn)
243 *fn = info[cmdid].fn;
244 ctx = info[cmdid].ctx;
245 info[cmdid].fn = special_completion;
246 info[cmdid].ctx = CMD_CTX_COMPLETED;
247 clear_bit(cmdid, nvmeq->cmdid_data);
248 wake_up(&nvmeq->sq_full);
249 return ctx;
250 }
251
252 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
253 nvme_completion_fn *fn)
254 {
255 void *ctx;
256 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
257 if (fn)
258 *fn = info[cmdid].fn;
259 ctx = info[cmdid].ctx;
260 info[cmdid].fn = special_completion;
261 info[cmdid].ctx = CMD_CTX_CANCELLED;
262 return ctx;
263 }
264
265 struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
266 {
267 return dev->queues[get_cpu() + 1];
268 }
269
270 void put_nvmeq(struct nvme_queue *nvmeq)
271 {
272 put_cpu();
273 }
274
275 /**
276 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
277 * @nvmeq: The queue to use
278 * @cmd: The command to send
279 *
280 * Safe to use from interrupt context
281 */
282 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
283 {
284 unsigned long flags;
285 u16 tail;
286 spin_lock_irqsave(&nvmeq->q_lock, flags);
287 tail = nvmeq->sq_tail;
288 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
289 if (++tail == nvmeq->q_depth)
290 tail = 0;
291 writel(tail, nvmeq->q_db);
292 nvmeq->sq_tail = tail;
293 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
294
295 return 0;
296 }
297
298 static __le64 **iod_list(struct nvme_iod *iod)
299 {
300 return ((void *)iod) + iod->offset;
301 }
302
303 /*
304 * Will slightly overestimate the number of pages needed. This is OK
305 * as it only leads to a small amount of wasted memory for the lifetime of
306 * the I/O.
307 */
308 static int nvme_npages(unsigned size)
309 {
310 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
311 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
312 }
313
314 static struct nvme_iod *
315 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
316 {
317 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
318 sizeof(__le64 *) * nvme_npages(nbytes) +
319 sizeof(struct scatterlist) * nseg, gfp);
320
321 if (iod) {
322 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
323 iod->npages = -1;
324 iod->length = nbytes;
325 iod->nents = 0;
326 iod->start_time = jiffies;
327 }
328
329 return iod;
330 }
331
332 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
333 {
334 const int last_prp = PAGE_SIZE / 8 - 1;
335 int i;
336 __le64 **list = iod_list(iod);
337 dma_addr_t prp_dma = iod->first_dma;
338
339 if (iod->npages == 0)
340 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
341 for (i = 0; i < iod->npages; i++) {
342 __le64 *prp_list = list[i];
343 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
344 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
345 prp_dma = next_prp_dma;
346 }
347 kfree(iod);
348 }
349
350 static void nvme_start_io_acct(struct bio *bio)
351 {
352 struct gendisk *disk = bio->bi_bdev->bd_disk;
353 const int rw = bio_data_dir(bio);
354 int cpu = part_stat_lock();
355 part_round_stats(cpu, &disk->part0);
356 part_stat_inc(cpu, &disk->part0, ios[rw]);
357 part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
358 part_inc_in_flight(&disk->part0, rw);
359 part_stat_unlock();
360 }
361
362 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
363 {
364 struct gendisk *disk = bio->bi_bdev->bd_disk;
365 const int rw = bio_data_dir(bio);
366 unsigned long duration = jiffies - start_time;
367 int cpu = part_stat_lock();
368 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
369 part_round_stats(cpu, &disk->part0);
370 part_dec_in_flight(&disk->part0, rw);
371 part_stat_unlock();
372 }
373
374 static void bio_completion(struct nvme_dev *dev, void *ctx,
375 struct nvme_completion *cqe)
376 {
377 struct nvme_iod *iod = ctx;
378 struct bio *bio = iod->private;
379 u16 status = le16_to_cpup(&cqe->status) >> 1;
380
381 if (iod->nents) {
382 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
383 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
384 nvme_end_io_acct(bio, iod->start_time);
385 }
386 nvme_free_iod(dev, iod);
387 if (status)
388 bio_endio(bio, -EIO);
389 else
390 bio_endio(bio, 0);
391 }
392
393 /* length is in bytes. gfp flags indicates whether we may sleep. */
394 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
395 struct nvme_iod *iod, int total_len, gfp_t gfp)
396 {
397 struct dma_pool *pool;
398 int length = total_len;
399 struct scatterlist *sg = iod->sg;
400 int dma_len = sg_dma_len(sg);
401 u64 dma_addr = sg_dma_address(sg);
402 int offset = offset_in_page(dma_addr);
403 __le64 *prp_list;
404 __le64 **list = iod_list(iod);
405 dma_addr_t prp_dma;
406 int nprps, i;
407
408 cmd->prp1 = cpu_to_le64(dma_addr);
409 length -= (PAGE_SIZE - offset);
410 if (length <= 0)
411 return total_len;
412
413 dma_len -= (PAGE_SIZE - offset);
414 if (dma_len) {
415 dma_addr += (PAGE_SIZE - offset);
416 } else {
417 sg = sg_next(sg);
418 dma_addr = sg_dma_address(sg);
419 dma_len = sg_dma_len(sg);
420 }
421
422 if (length <= PAGE_SIZE) {
423 cmd->prp2 = cpu_to_le64(dma_addr);
424 return total_len;
425 }
426
427 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
428 if (nprps <= (256 / 8)) {
429 pool = dev->prp_small_pool;
430 iod->npages = 0;
431 } else {
432 pool = dev->prp_page_pool;
433 iod->npages = 1;
434 }
435
436 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
437 if (!prp_list) {
438 cmd->prp2 = cpu_to_le64(dma_addr);
439 iod->npages = -1;
440 return (total_len - length) + PAGE_SIZE;
441 }
442 list[0] = prp_list;
443 iod->first_dma = prp_dma;
444 cmd->prp2 = cpu_to_le64(prp_dma);
445 i = 0;
446 for (;;) {
447 if (i == PAGE_SIZE / 8) {
448 __le64 *old_prp_list = prp_list;
449 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
450 if (!prp_list)
451 return total_len - length;
452 list[iod->npages++] = prp_list;
453 prp_list[0] = old_prp_list[i - 1];
454 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
455 i = 1;
456 }
457 prp_list[i++] = cpu_to_le64(dma_addr);
458 dma_len -= PAGE_SIZE;
459 dma_addr += PAGE_SIZE;
460 length -= PAGE_SIZE;
461 if (length <= 0)
462 break;
463 if (dma_len > 0)
464 continue;
465 BUG_ON(dma_len < 0);
466 sg = sg_next(sg);
467 dma_addr = sg_dma_address(sg);
468 dma_len = sg_dma_len(sg);
469 }
470
471 return total_len;
472 }
473
474 struct nvme_bio_pair {
475 struct bio b1, b2, *parent;
476 struct bio_vec *bv1, *bv2;
477 int err;
478 atomic_t cnt;
479 };
480
481 static void nvme_bio_pair_endio(struct bio *bio, int err)
482 {
483 struct nvme_bio_pair *bp = bio->bi_private;
484
485 if (err)
486 bp->err = err;
487
488 if (atomic_dec_and_test(&bp->cnt)) {
489 bio_endio(bp->parent, bp->err);
490 kfree(bp->bv1);
491 kfree(bp->bv2);
492 kfree(bp);
493 }
494 }
495
496 static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
497 int len, int offset)
498 {
499 struct nvme_bio_pair *bp;
500
501 BUG_ON(len > bio->bi_size);
502 BUG_ON(idx > bio->bi_vcnt);
503
504 bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
505 if (!bp)
506 return NULL;
507 bp->err = 0;
508
509 bp->b1 = *bio;
510 bp->b2 = *bio;
511
512 bp->b1.bi_size = len;
513 bp->b2.bi_size -= len;
514 bp->b1.bi_vcnt = idx;
515 bp->b2.bi_idx = idx;
516 bp->b2.bi_sector += len >> 9;
517
518 if (offset) {
519 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
520 GFP_ATOMIC);
521 if (!bp->bv1)
522 goto split_fail_1;
523
524 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
525 GFP_ATOMIC);
526 if (!bp->bv2)
527 goto split_fail_2;
528
529 memcpy(bp->bv1, bio->bi_io_vec,
530 bio->bi_max_vecs * sizeof(struct bio_vec));
531 memcpy(bp->bv2, bio->bi_io_vec,
532 bio->bi_max_vecs * sizeof(struct bio_vec));
533
534 bp->b1.bi_io_vec = bp->bv1;
535 bp->b2.bi_io_vec = bp->bv2;
536 bp->b2.bi_io_vec[idx].bv_offset += offset;
537 bp->b2.bi_io_vec[idx].bv_len -= offset;
538 bp->b1.bi_io_vec[idx].bv_len = offset;
539 bp->b1.bi_vcnt++;
540 } else
541 bp->bv1 = bp->bv2 = NULL;
542
543 bp->b1.bi_private = bp;
544 bp->b2.bi_private = bp;
545
546 bp->b1.bi_end_io = nvme_bio_pair_endio;
547 bp->b2.bi_end_io = nvme_bio_pair_endio;
548
549 bp->parent = bio;
550 atomic_set(&bp->cnt, 2);
551
552 return bp;
553
554 split_fail_2:
555 kfree(bp->bv1);
556 split_fail_1:
557 kfree(bp);
558 return NULL;
559 }
560
561 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
562 int idx, int len, int offset)
563 {
564 struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
565 if (!bp)
566 return -ENOMEM;
567
568 if (bio_list_empty(&nvmeq->sq_cong))
569 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
570 bio_list_add(&nvmeq->sq_cong, &bp->b1);
571 bio_list_add(&nvmeq->sq_cong, &bp->b2);
572
573 return 0;
574 }
575
576 /* NVMe scatterlists require no holes in the virtual address */
577 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
578 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
579
580 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
581 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
582 {
583 struct bio_vec *bvec, *bvprv = NULL;
584 struct scatterlist *sg = NULL;
585 int i, length = 0, nsegs = 0, split_len = bio->bi_size;
586
587 if (nvmeq->dev->stripe_size)
588 split_len = nvmeq->dev->stripe_size -
589 ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
590
591 sg_init_table(iod->sg, psegs);
592 bio_for_each_segment(bvec, bio, i) {
593 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
594 sg->length += bvec->bv_len;
595 } else {
596 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
597 return nvme_split_and_submit(bio, nvmeq, i,
598 length, 0);
599
600 sg = sg ? sg + 1 : iod->sg;
601 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
602 bvec->bv_offset);
603 nsegs++;
604 }
605
606 if (split_len - length < bvec->bv_len)
607 return nvme_split_and_submit(bio, nvmeq, i, split_len,
608 split_len - length);
609 length += bvec->bv_len;
610 bvprv = bvec;
611 }
612 iod->nents = nsegs;
613 sg_mark_end(sg);
614 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
615 return -ENOMEM;
616
617 BUG_ON(length != bio->bi_size);
618 return length;
619 }
620
621 /*
622 * We reuse the small pool to allocate the 16-byte range here as it is not
623 * worth having a special pool for these or additional cases to handle freeing
624 * the iod.
625 */
626 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
627 struct bio *bio, struct nvme_iod *iod, int cmdid)
628 {
629 struct nvme_dsm_range *range;
630 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
631
632 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
633 &iod->first_dma);
634 if (!range)
635 return -ENOMEM;
636
637 iod_list(iod)[0] = (__le64 *)range;
638 iod->npages = 0;
639
640 range->cattr = cpu_to_le32(0);
641 range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
642 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
643
644 memset(cmnd, 0, sizeof(*cmnd));
645 cmnd->dsm.opcode = nvme_cmd_dsm;
646 cmnd->dsm.command_id = cmdid;
647 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
648 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
649 cmnd->dsm.nr = 0;
650 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
651
652 if (++nvmeq->sq_tail == nvmeq->q_depth)
653 nvmeq->sq_tail = 0;
654 writel(nvmeq->sq_tail, nvmeq->q_db);
655
656 return 0;
657 }
658
659 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
660 int cmdid)
661 {
662 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
663
664 memset(cmnd, 0, sizeof(*cmnd));
665 cmnd->common.opcode = nvme_cmd_flush;
666 cmnd->common.command_id = cmdid;
667 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
668
669 if (++nvmeq->sq_tail == nvmeq->q_depth)
670 nvmeq->sq_tail = 0;
671 writel(nvmeq->sq_tail, nvmeq->q_db);
672
673 return 0;
674 }
675
676 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
677 {
678 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
679 special_completion, NVME_IO_TIMEOUT);
680 if (unlikely(cmdid < 0))
681 return cmdid;
682
683 return nvme_submit_flush(nvmeq, ns, cmdid);
684 }
685
686 /*
687 * Called with local interrupts disabled and the q_lock held. May not sleep.
688 */
689 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
690 struct bio *bio)
691 {
692 struct nvme_command *cmnd;
693 struct nvme_iod *iod;
694 enum dma_data_direction dma_dir;
695 int cmdid, length, result;
696 u16 control;
697 u32 dsmgmt;
698 int psegs = bio_phys_segments(ns->queue, bio);
699
700 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
701 result = nvme_submit_flush_data(nvmeq, ns);
702 if (result)
703 return result;
704 }
705
706 result = -ENOMEM;
707 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
708 if (!iod)
709 goto nomem;
710 iod->private = bio;
711
712 result = -EBUSY;
713 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
714 if (unlikely(cmdid < 0))
715 goto free_iod;
716
717 if (bio->bi_rw & REQ_DISCARD) {
718 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
719 if (result)
720 goto free_cmdid;
721 return result;
722 }
723 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
724 return nvme_submit_flush(nvmeq, ns, cmdid);
725
726 control = 0;
727 if (bio->bi_rw & REQ_FUA)
728 control |= NVME_RW_FUA;
729 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
730 control |= NVME_RW_LR;
731
732 dsmgmt = 0;
733 if (bio->bi_rw & REQ_RAHEAD)
734 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
735
736 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
737
738 memset(cmnd, 0, sizeof(*cmnd));
739 if (bio_data_dir(bio)) {
740 cmnd->rw.opcode = nvme_cmd_write;
741 dma_dir = DMA_TO_DEVICE;
742 } else {
743 cmnd->rw.opcode = nvme_cmd_read;
744 dma_dir = DMA_FROM_DEVICE;
745 }
746
747 result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
748 if (result <= 0)
749 goto free_cmdid;
750 length = result;
751
752 cmnd->rw.command_id = cmdid;
753 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
754 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
755 GFP_ATOMIC);
756 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
757 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
758 cmnd->rw.control = cpu_to_le16(control);
759 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
760
761 nvme_start_io_acct(bio);
762 if (++nvmeq->sq_tail == nvmeq->q_depth)
763 nvmeq->sq_tail = 0;
764 writel(nvmeq->sq_tail, nvmeq->q_db);
765
766 return 0;
767
768 free_cmdid:
769 free_cmdid(nvmeq, cmdid, NULL);
770 free_iod:
771 nvme_free_iod(nvmeq->dev, iod);
772 nomem:
773 return result;
774 }
775
776 static int nvme_process_cq(struct nvme_queue *nvmeq)
777 {
778 u16 head, phase;
779
780 head = nvmeq->cq_head;
781 phase = nvmeq->cq_phase;
782
783 for (;;) {
784 void *ctx;
785 nvme_completion_fn fn;
786 struct nvme_completion cqe = nvmeq->cqes[head];
787 if ((le16_to_cpu(cqe.status) & 1) != phase)
788 break;
789 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
790 if (++head == nvmeq->q_depth) {
791 head = 0;
792 phase = !phase;
793 }
794
795 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
796 fn(nvmeq->dev, ctx, &cqe);
797 }
798
799 /* If the controller ignores the cq head doorbell and continuously
800 * writes to the queue, it is theoretically possible to wrap around
801 * the queue twice and mistakenly return IRQ_NONE. Linux only
802 * requires that 0.1% of your interrupts are handled, so this isn't
803 * a big problem.
804 */
805 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
806 return 0;
807
808 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
809 nvmeq->cq_head = head;
810 nvmeq->cq_phase = phase;
811
812 nvmeq->cqe_seen = 1;
813 return 1;
814 }
815
816 static void nvme_make_request(struct request_queue *q, struct bio *bio)
817 {
818 struct nvme_ns *ns = q->queuedata;
819 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
820 int result = -EBUSY;
821
822 if (!nvmeq) {
823 put_nvmeq(NULL);
824 bio_endio(bio, -EIO);
825 return;
826 }
827
828 spin_lock_irq(&nvmeq->q_lock);
829 if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
830 result = nvme_submit_bio_queue(nvmeq, ns, bio);
831 if (unlikely(result)) {
832 if (bio_list_empty(&nvmeq->sq_cong))
833 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
834 bio_list_add(&nvmeq->sq_cong, bio);
835 }
836
837 nvme_process_cq(nvmeq);
838 spin_unlock_irq(&nvmeq->q_lock);
839 put_nvmeq(nvmeq);
840 }
841
842 static irqreturn_t nvme_irq(int irq, void *data)
843 {
844 irqreturn_t result;
845 struct nvme_queue *nvmeq = data;
846 spin_lock(&nvmeq->q_lock);
847 nvme_process_cq(nvmeq);
848 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
849 nvmeq->cqe_seen = 0;
850 spin_unlock(&nvmeq->q_lock);
851 return result;
852 }
853
854 static irqreturn_t nvme_irq_check(int irq, void *data)
855 {
856 struct nvme_queue *nvmeq = data;
857 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
858 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
859 return IRQ_NONE;
860 return IRQ_WAKE_THREAD;
861 }
862
863 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
864 {
865 spin_lock_irq(&nvmeq->q_lock);
866 cancel_cmdid(nvmeq, cmdid, NULL);
867 spin_unlock_irq(&nvmeq->q_lock);
868 }
869
870 struct sync_cmd_info {
871 struct task_struct *task;
872 u32 result;
873 int status;
874 };
875
876 static void sync_completion(struct nvme_dev *dev, void *ctx,
877 struct nvme_completion *cqe)
878 {
879 struct sync_cmd_info *cmdinfo = ctx;
880 cmdinfo->result = le32_to_cpup(&cqe->result);
881 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
882 wake_up_process(cmdinfo->task);
883 }
884
885 /*
886 * Returns 0 on success. If the result is negative, it's a Linux error code;
887 * if the result is positive, it's an NVM Express status code
888 */
889 int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
890 u32 *result, unsigned timeout)
891 {
892 int cmdid;
893 struct sync_cmd_info cmdinfo;
894
895 cmdinfo.task = current;
896 cmdinfo.status = -EINTR;
897
898 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
899 timeout);
900 if (cmdid < 0)
901 return cmdid;
902 cmd->common.command_id = cmdid;
903
904 set_current_state(TASK_KILLABLE);
905 nvme_submit_cmd(nvmeq, cmd);
906 schedule_timeout(timeout);
907
908 if (cmdinfo.status == -EINTR) {
909 nvme_abort_command(nvmeq, cmdid);
910 return -EINTR;
911 }
912
913 if (result)
914 *result = cmdinfo.result;
915
916 return cmdinfo.status;
917 }
918
919 static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
920 struct nvme_command *cmd,
921 struct async_cmd_info *cmdinfo, unsigned timeout)
922 {
923 int cmdid;
924
925 cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
926 if (cmdid < 0)
927 return cmdid;
928 cmdinfo->status = -EINTR;
929 cmd->common.command_id = cmdid;
930 nvme_submit_cmd(nvmeq, cmd);
931 return 0;
932 }
933
934 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
935 u32 *result)
936 {
937 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
938 }
939
940 static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
941 struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
942 {
943 return nvme_submit_async_cmd(dev->queues[0], cmd, cmdinfo,
944 ADMIN_TIMEOUT);
945 }
946
947 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
948 {
949 int status;
950 struct nvme_command c;
951
952 memset(&c, 0, sizeof(c));
953 c.delete_queue.opcode = opcode;
954 c.delete_queue.qid = cpu_to_le16(id);
955
956 status = nvme_submit_admin_cmd(dev, &c, NULL);
957 if (status)
958 return -EIO;
959 return 0;
960 }
961
962 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
963 struct nvme_queue *nvmeq)
964 {
965 int status;
966 struct nvme_command c;
967 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
968
969 memset(&c, 0, sizeof(c));
970 c.create_cq.opcode = nvme_admin_create_cq;
971 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
972 c.create_cq.cqid = cpu_to_le16(qid);
973 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
974 c.create_cq.cq_flags = cpu_to_le16(flags);
975 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
976
977 status = nvme_submit_admin_cmd(dev, &c, NULL);
978 if (status)
979 return -EIO;
980 return 0;
981 }
982
983 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
984 struct nvme_queue *nvmeq)
985 {
986 int status;
987 struct nvme_command c;
988 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
989
990 memset(&c, 0, sizeof(c));
991 c.create_sq.opcode = nvme_admin_create_sq;
992 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
993 c.create_sq.sqid = cpu_to_le16(qid);
994 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
995 c.create_sq.sq_flags = cpu_to_le16(flags);
996 c.create_sq.cqid = cpu_to_le16(qid);
997
998 status = nvme_submit_admin_cmd(dev, &c, NULL);
999 if (status)
1000 return -EIO;
1001 return 0;
1002 }
1003
1004 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1005 {
1006 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1007 }
1008
1009 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1010 {
1011 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1012 }
1013
1014 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1015 dma_addr_t dma_addr)
1016 {
1017 struct nvme_command c;
1018
1019 memset(&c, 0, sizeof(c));
1020 c.identify.opcode = nvme_admin_identify;
1021 c.identify.nsid = cpu_to_le32(nsid);
1022 c.identify.prp1 = cpu_to_le64(dma_addr);
1023 c.identify.cns = cpu_to_le32(cns);
1024
1025 return nvme_submit_admin_cmd(dev, &c, NULL);
1026 }
1027
1028 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1029 dma_addr_t dma_addr, u32 *result)
1030 {
1031 struct nvme_command c;
1032
1033 memset(&c, 0, sizeof(c));
1034 c.features.opcode = nvme_admin_get_features;
1035 c.features.nsid = cpu_to_le32(nsid);
1036 c.features.prp1 = cpu_to_le64(dma_addr);
1037 c.features.fid = cpu_to_le32(fid);
1038
1039 return nvme_submit_admin_cmd(dev, &c, result);
1040 }
1041
1042 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1043 dma_addr_t dma_addr, u32 *result)
1044 {
1045 struct nvme_command c;
1046
1047 memset(&c, 0, sizeof(c));
1048 c.features.opcode = nvme_admin_set_features;
1049 c.features.prp1 = cpu_to_le64(dma_addr);
1050 c.features.fid = cpu_to_le32(fid);
1051 c.features.dword11 = cpu_to_le32(dword11);
1052
1053 return nvme_submit_admin_cmd(dev, &c, result);
1054 }
1055
1056 /**
1057 * nvme_abort_cmd - Attempt aborting a command
1058 * @cmdid: Command id of a timed out IO
1059 * @queue: The queue with timed out IO
1060 *
1061 * Schedule controller reset if the command was already aborted once before and
1062 * still hasn't been returned to the driver, or if this is the admin queue.
1063 */
1064 static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1065 {
1066 int a_cmdid;
1067 struct nvme_command cmd;
1068 struct nvme_dev *dev = nvmeq->dev;
1069 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1070
1071 if (!nvmeq->qid || info[cmdid].aborted) {
1072 if (work_busy(&dev->reset_work))
1073 return;
1074 list_del_init(&dev->node);
1075 dev_warn(&dev->pci_dev->dev,
1076 "I/O %d QID %d timeout, reset controller\n", cmdid,
1077 nvmeq->qid);
1078 PREPARE_WORK(&dev->reset_work, nvme_reset_failed_dev);
1079 queue_work(nvme_workq, &dev->reset_work);
1080 return;
1081 }
1082
1083 if (!dev->abort_limit)
1084 return;
1085
1086 a_cmdid = alloc_cmdid(dev->queues[0], CMD_CTX_ABORT, special_completion,
1087 ADMIN_TIMEOUT);
1088 if (a_cmdid < 0)
1089 return;
1090
1091 memset(&cmd, 0, sizeof(cmd));
1092 cmd.abort.opcode = nvme_admin_abort_cmd;
1093 cmd.abort.cid = cmdid;
1094 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1095 cmd.abort.command_id = a_cmdid;
1096
1097 --dev->abort_limit;
1098 info[cmdid].aborted = 1;
1099 info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1100
1101 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1102 nvmeq->qid);
1103 nvme_submit_cmd(dev->queues[0], &cmd);
1104 }
1105
1106 /**
1107 * nvme_cancel_ios - Cancel outstanding I/Os
1108 * @queue: The queue to cancel I/Os on
1109 * @timeout: True to only cancel I/Os which have timed out
1110 */
1111 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1112 {
1113 int depth = nvmeq->q_depth - 1;
1114 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1115 unsigned long now = jiffies;
1116 int cmdid;
1117
1118 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1119 void *ctx;
1120 nvme_completion_fn fn;
1121 static struct nvme_completion cqe = {
1122 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1123 };
1124
1125 if (timeout && !time_after(now, info[cmdid].timeout))
1126 continue;
1127 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1128 continue;
1129 if (timeout && nvmeq->dev->initialized) {
1130 nvme_abort_cmd(cmdid, nvmeq);
1131 continue;
1132 }
1133 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1134 nvmeq->qid);
1135 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1136 fn(nvmeq->dev, ctx, &cqe);
1137 }
1138 }
1139
1140 static void nvme_free_queue(struct nvme_queue *nvmeq)
1141 {
1142 spin_lock_irq(&nvmeq->q_lock);
1143 while (bio_list_peek(&nvmeq->sq_cong)) {
1144 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1145 bio_endio(bio, -EIO);
1146 }
1147 spin_unlock_irq(&nvmeq->q_lock);
1148
1149 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1150 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1151 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1152 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1153 kfree(nvmeq);
1154 }
1155
1156 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1157 {
1158 int i;
1159
1160 for (i = dev->queue_count - 1; i >= lowest; i--) {
1161 nvme_free_queue(dev->queues[i]);
1162 dev->queue_count--;
1163 dev->queues[i] = NULL;
1164 }
1165 }
1166
1167 /**
1168 * nvme_suspend_queue - put queue into suspended state
1169 * @nvmeq - queue to suspend
1170 *
1171 * Returns 1 if already suspended, 0 otherwise.
1172 */
1173 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1174 {
1175 int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1176
1177 spin_lock_irq(&nvmeq->q_lock);
1178 if (nvmeq->q_suspended) {
1179 spin_unlock_irq(&nvmeq->q_lock);
1180 return 1;
1181 }
1182 nvmeq->q_suspended = 1;
1183 spin_unlock_irq(&nvmeq->q_lock);
1184
1185 irq_set_affinity_hint(vector, NULL);
1186 free_irq(vector, nvmeq);
1187
1188 return 0;
1189 }
1190
1191 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1192 {
1193 spin_lock_irq(&nvmeq->q_lock);
1194 nvme_process_cq(nvmeq);
1195 nvme_cancel_ios(nvmeq, false);
1196 spin_unlock_irq(&nvmeq->q_lock);
1197 }
1198
1199 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1200 {
1201 struct nvme_queue *nvmeq = dev->queues[qid];
1202
1203 if (!nvmeq)
1204 return;
1205 if (nvme_suspend_queue(nvmeq))
1206 return;
1207
1208 /* Don't tell the adapter to delete the admin queue.
1209 * Don't tell a removed adapter to delete IO queues. */
1210 if (qid && readl(&dev->bar->csts) != -1) {
1211 adapter_delete_sq(dev, qid);
1212 adapter_delete_cq(dev, qid);
1213 }
1214 nvme_clear_queue(nvmeq);
1215 }
1216
1217 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1218 int depth, int vector)
1219 {
1220 struct device *dmadev = &dev->pci_dev->dev;
1221 unsigned extra = nvme_queue_extra(depth);
1222 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1223 if (!nvmeq)
1224 return NULL;
1225
1226 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1227 &nvmeq->cq_dma_addr, GFP_KERNEL);
1228 if (!nvmeq->cqes)
1229 goto free_nvmeq;
1230 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1231
1232 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1233 &nvmeq->sq_dma_addr, GFP_KERNEL);
1234 if (!nvmeq->sq_cmds)
1235 goto free_cqdma;
1236
1237 nvmeq->q_dmadev = dmadev;
1238 nvmeq->dev = dev;
1239 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1240 dev->instance, qid);
1241 spin_lock_init(&nvmeq->q_lock);
1242 nvmeq->cq_head = 0;
1243 nvmeq->cq_phase = 1;
1244 init_waitqueue_head(&nvmeq->sq_full);
1245 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1246 bio_list_init(&nvmeq->sq_cong);
1247 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1248 nvmeq->q_depth = depth;
1249 nvmeq->cq_vector = vector;
1250 nvmeq->qid = qid;
1251 nvmeq->q_suspended = 1;
1252 dev->queue_count++;
1253
1254 return nvmeq;
1255
1256 free_cqdma:
1257 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1258 nvmeq->cq_dma_addr);
1259 free_nvmeq:
1260 kfree(nvmeq);
1261 return NULL;
1262 }
1263
1264 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1265 const char *name)
1266 {
1267 if (use_threaded_interrupts)
1268 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1269 nvme_irq_check, nvme_irq, IRQF_SHARED,
1270 name, nvmeq);
1271 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1272 IRQF_SHARED, name, nvmeq);
1273 }
1274
1275 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1276 {
1277 struct nvme_dev *dev = nvmeq->dev;
1278 unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1279
1280 nvmeq->sq_tail = 0;
1281 nvmeq->cq_head = 0;
1282 nvmeq->cq_phase = 1;
1283 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1284 memset(nvmeq->cmdid_data, 0, extra);
1285 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1286 nvme_cancel_ios(nvmeq, false);
1287 nvmeq->q_suspended = 0;
1288 }
1289
1290 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1291 {
1292 struct nvme_dev *dev = nvmeq->dev;
1293 int result;
1294
1295 result = adapter_alloc_cq(dev, qid, nvmeq);
1296 if (result < 0)
1297 return result;
1298
1299 result = adapter_alloc_sq(dev, qid, nvmeq);
1300 if (result < 0)
1301 goto release_cq;
1302
1303 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1304 if (result < 0)
1305 goto release_sq;
1306
1307 spin_lock_irq(&nvmeq->q_lock);
1308 nvme_init_queue(nvmeq, qid);
1309 spin_unlock_irq(&nvmeq->q_lock);
1310
1311 return result;
1312
1313 release_sq:
1314 adapter_delete_sq(dev, qid);
1315 release_cq:
1316 adapter_delete_cq(dev, qid);
1317 return result;
1318 }
1319
1320 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1321 {
1322 unsigned long timeout;
1323 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1324
1325 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1326
1327 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1328 msleep(100);
1329 if (fatal_signal_pending(current))
1330 return -EINTR;
1331 if (time_after(jiffies, timeout)) {
1332 dev_err(&dev->pci_dev->dev,
1333 "Device not ready; aborting initialisation\n");
1334 return -ENODEV;
1335 }
1336 }
1337
1338 return 0;
1339 }
1340
1341 /*
1342 * If the device has been passed off to us in an enabled state, just clear
1343 * the enabled bit. The spec says we should set the 'shutdown notification
1344 * bits', but doing so may cause the device to complete commands to the
1345 * admin queue ... and we don't know what memory that might be pointing at!
1346 */
1347 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1348 {
1349 u32 cc = readl(&dev->bar->cc);
1350
1351 if (cc & NVME_CC_ENABLE)
1352 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1353 return nvme_wait_ready(dev, cap, false);
1354 }
1355
1356 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1357 {
1358 return nvme_wait_ready(dev, cap, true);
1359 }
1360
1361 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1362 {
1363 unsigned long timeout;
1364 u32 cc;
1365
1366 cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1367 writel(cc, &dev->bar->cc);
1368
1369 timeout = 2 * HZ + jiffies;
1370 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1371 NVME_CSTS_SHST_CMPLT) {
1372 msleep(100);
1373 if (fatal_signal_pending(current))
1374 return -EINTR;
1375 if (time_after(jiffies, timeout)) {
1376 dev_err(&dev->pci_dev->dev,
1377 "Device shutdown incomplete; abort shutdown\n");
1378 return -ENODEV;
1379 }
1380 }
1381
1382 return 0;
1383 }
1384
1385 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1386 {
1387 int result;
1388 u32 aqa;
1389 u64 cap = readq(&dev->bar->cap);
1390 struct nvme_queue *nvmeq;
1391
1392 result = nvme_disable_ctrl(dev, cap);
1393 if (result < 0)
1394 return result;
1395
1396 nvmeq = dev->queues[0];
1397 if (!nvmeq) {
1398 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1399 if (!nvmeq)
1400 return -ENOMEM;
1401 dev->queues[0] = nvmeq;
1402 }
1403
1404 aqa = nvmeq->q_depth - 1;
1405 aqa |= aqa << 16;
1406
1407 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1408 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1409 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1410 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1411
1412 writel(aqa, &dev->bar->aqa);
1413 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1414 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1415 writel(dev->ctrl_config, &dev->bar->cc);
1416
1417 result = nvme_enable_ctrl(dev, cap);
1418 if (result)
1419 return result;
1420
1421 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1422 if (result)
1423 return result;
1424
1425 spin_lock_irq(&nvmeq->q_lock);
1426 nvme_init_queue(nvmeq, 0);
1427 spin_unlock_irq(&nvmeq->q_lock);
1428 return result;
1429 }
1430
1431 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1432 unsigned long addr, unsigned length)
1433 {
1434 int i, err, count, nents, offset;
1435 struct scatterlist *sg;
1436 struct page **pages;
1437 struct nvme_iod *iod;
1438
1439 if (addr & 3)
1440 return ERR_PTR(-EINVAL);
1441 if (!length || length > INT_MAX - PAGE_SIZE)
1442 return ERR_PTR(-EINVAL);
1443
1444 offset = offset_in_page(addr);
1445 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1446 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1447 if (!pages)
1448 return ERR_PTR(-ENOMEM);
1449
1450 err = get_user_pages_fast(addr, count, 1, pages);
1451 if (err < count) {
1452 count = err;
1453 err = -EFAULT;
1454 goto put_pages;
1455 }
1456
1457 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1458 sg = iod->sg;
1459 sg_init_table(sg, count);
1460 for (i = 0; i < count; i++) {
1461 sg_set_page(&sg[i], pages[i],
1462 min_t(unsigned, length, PAGE_SIZE - offset),
1463 offset);
1464 length -= (PAGE_SIZE - offset);
1465 offset = 0;
1466 }
1467 sg_mark_end(&sg[i - 1]);
1468 iod->nents = count;
1469
1470 err = -ENOMEM;
1471 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1472 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1473 if (!nents)
1474 goto free_iod;
1475
1476 kfree(pages);
1477 return iod;
1478
1479 free_iod:
1480 kfree(iod);
1481 put_pages:
1482 for (i = 0; i < count; i++)
1483 put_page(pages[i]);
1484 kfree(pages);
1485 return ERR_PTR(err);
1486 }
1487
1488 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1489 struct nvme_iod *iod)
1490 {
1491 int i;
1492
1493 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1494 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1495
1496 for (i = 0; i < iod->nents; i++)
1497 put_page(sg_page(&iod->sg[i]));
1498 }
1499
1500 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1501 {
1502 struct nvme_dev *dev = ns->dev;
1503 struct nvme_queue *nvmeq;
1504 struct nvme_user_io io;
1505 struct nvme_command c;
1506 unsigned length, meta_len;
1507 int status, i;
1508 struct nvme_iod *iod, *meta_iod = NULL;
1509 dma_addr_t meta_dma_addr;
1510 void *meta, *uninitialized_var(meta_mem);
1511
1512 if (copy_from_user(&io, uio, sizeof(io)))
1513 return -EFAULT;
1514 length = (io.nblocks + 1) << ns->lba_shift;
1515 meta_len = (io.nblocks + 1) * ns->ms;
1516
1517 if (meta_len && ((io.metadata & 3) || !io.metadata))
1518 return -EINVAL;
1519
1520 switch (io.opcode) {
1521 case nvme_cmd_write:
1522 case nvme_cmd_read:
1523 case nvme_cmd_compare:
1524 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1525 break;
1526 default:
1527 return -EINVAL;
1528 }
1529
1530 if (IS_ERR(iod))
1531 return PTR_ERR(iod);
1532
1533 memset(&c, 0, sizeof(c));
1534 c.rw.opcode = io.opcode;
1535 c.rw.flags = io.flags;
1536 c.rw.nsid = cpu_to_le32(ns->ns_id);
1537 c.rw.slba = cpu_to_le64(io.slba);
1538 c.rw.length = cpu_to_le16(io.nblocks);
1539 c.rw.control = cpu_to_le16(io.control);
1540 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1541 c.rw.reftag = cpu_to_le32(io.reftag);
1542 c.rw.apptag = cpu_to_le16(io.apptag);
1543 c.rw.appmask = cpu_to_le16(io.appmask);
1544
1545 if (meta_len) {
1546 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1547 meta_len);
1548 if (IS_ERR(meta_iod)) {
1549 status = PTR_ERR(meta_iod);
1550 meta_iod = NULL;
1551 goto unmap;
1552 }
1553
1554 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1555 &meta_dma_addr, GFP_KERNEL);
1556 if (!meta_mem) {
1557 status = -ENOMEM;
1558 goto unmap;
1559 }
1560
1561 if (io.opcode & 1) {
1562 int meta_offset = 0;
1563
1564 for (i = 0; i < meta_iod->nents; i++) {
1565 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1566 meta_iod->sg[i].offset;
1567 memcpy(meta_mem + meta_offset, meta,
1568 meta_iod->sg[i].length);
1569 kunmap_atomic(meta);
1570 meta_offset += meta_iod->sg[i].length;
1571 }
1572 }
1573
1574 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1575 }
1576
1577 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1578
1579 nvmeq = get_nvmeq(dev);
1580 /*
1581 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1582 * disabled. We may be preempted at any point, and be rescheduled
1583 * to a different CPU. That will cause cacheline bouncing, but no
1584 * additional races since q_lock already protects against other CPUs.
1585 */
1586 put_nvmeq(nvmeq);
1587 if (length != (io.nblocks + 1) << ns->lba_shift)
1588 status = -ENOMEM;
1589 else if (!nvmeq || nvmeq->q_suspended)
1590 status = -EBUSY;
1591 else
1592 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1593
1594 if (meta_len) {
1595 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1596 int meta_offset = 0;
1597
1598 for (i = 0; i < meta_iod->nents; i++) {
1599 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1600 meta_iod->sg[i].offset;
1601 memcpy(meta, meta_mem + meta_offset,
1602 meta_iod->sg[i].length);
1603 kunmap_atomic(meta);
1604 meta_offset += meta_iod->sg[i].length;
1605 }
1606 }
1607
1608 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1609 meta_dma_addr);
1610 }
1611
1612 unmap:
1613 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1614 nvme_free_iod(dev, iod);
1615
1616 if (meta_iod) {
1617 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1618 nvme_free_iod(dev, meta_iod);
1619 }
1620
1621 return status;
1622 }
1623
1624 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1625 struct nvme_admin_cmd __user *ucmd)
1626 {
1627 struct nvme_admin_cmd cmd;
1628 struct nvme_command c;
1629 int status, length;
1630 struct nvme_iod *uninitialized_var(iod);
1631 unsigned timeout;
1632
1633 if (!capable(CAP_SYS_ADMIN))
1634 return -EACCES;
1635 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1636 return -EFAULT;
1637
1638 memset(&c, 0, sizeof(c));
1639 c.common.opcode = cmd.opcode;
1640 c.common.flags = cmd.flags;
1641 c.common.nsid = cpu_to_le32(cmd.nsid);
1642 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1643 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1644 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1645 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1646 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1647 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1648 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1649 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1650
1651 length = cmd.data_len;
1652 if (cmd.data_len) {
1653 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1654 length);
1655 if (IS_ERR(iod))
1656 return PTR_ERR(iod);
1657 length = nvme_setup_prps(dev, &c.common, iod, length,
1658 GFP_KERNEL);
1659 }
1660
1661 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1662 ADMIN_TIMEOUT;
1663 if (length != cmd.data_len)
1664 status = -ENOMEM;
1665 else
1666 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1667 timeout);
1668
1669 if (cmd.data_len) {
1670 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1671 nvme_free_iod(dev, iod);
1672 }
1673
1674 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1675 sizeof(cmd.result)))
1676 status = -EFAULT;
1677
1678 return status;
1679 }
1680
1681 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1682 unsigned long arg)
1683 {
1684 struct nvme_ns *ns = bdev->bd_disk->private_data;
1685
1686 switch (cmd) {
1687 case NVME_IOCTL_ID:
1688 force_successful_syscall_return();
1689 return ns->ns_id;
1690 case NVME_IOCTL_ADMIN_CMD:
1691 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1692 case NVME_IOCTL_SUBMIT_IO:
1693 return nvme_submit_io(ns, (void __user *)arg);
1694 case SG_GET_VERSION_NUM:
1695 return nvme_sg_get_version_num((void __user *)arg);
1696 case SG_IO:
1697 return nvme_sg_io(ns, (void __user *)arg);
1698 default:
1699 return -ENOTTY;
1700 }
1701 }
1702
1703 #ifdef CONFIG_COMPAT
1704 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1705 unsigned int cmd, unsigned long arg)
1706 {
1707 struct nvme_ns *ns = bdev->bd_disk->private_data;
1708
1709 switch (cmd) {
1710 case SG_IO:
1711 return nvme_sg_io32(ns, arg);
1712 }
1713 return nvme_ioctl(bdev, mode, cmd, arg);
1714 }
1715 #else
1716 #define nvme_compat_ioctl NULL
1717 #endif
1718
1719 static int nvme_open(struct block_device *bdev, fmode_t mode)
1720 {
1721 struct nvme_ns *ns = bdev->bd_disk->private_data;
1722 struct nvme_dev *dev = ns->dev;
1723
1724 kref_get(&dev->kref);
1725 return 0;
1726 }
1727
1728 static void nvme_free_dev(struct kref *kref);
1729
1730 static void nvme_release(struct gendisk *disk, fmode_t mode)
1731 {
1732 struct nvme_ns *ns = disk->private_data;
1733 struct nvme_dev *dev = ns->dev;
1734
1735 kref_put(&dev->kref, nvme_free_dev);
1736 }
1737
1738 static const struct block_device_operations nvme_fops = {
1739 .owner = THIS_MODULE,
1740 .ioctl = nvme_ioctl,
1741 .compat_ioctl = nvme_compat_ioctl,
1742 .open = nvme_open,
1743 .release = nvme_release,
1744 };
1745
1746 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1747 {
1748 while (bio_list_peek(&nvmeq->sq_cong)) {
1749 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1750 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1751
1752 if (bio_list_empty(&nvmeq->sq_cong))
1753 remove_wait_queue(&nvmeq->sq_full,
1754 &nvmeq->sq_cong_wait);
1755 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1756 if (bio_list_empty(&nvmeq->sq_cong))
1757 add_wait_queue(&nvmeq->sq_full,
1758 &nvmeq->sq_cong_wait);
1759 bio_list_add_head(&nvmeq->sq_cong, bio);
1760 break;
1761 }
1762 }
1763 }
1764
1765 static int nvme_kthread(void *data)
1766 {
1767 struct nvme_dev *dev, *next;
1768
1769 while (!kthread_should_stop()) {
1770 set_current_state(TASK_INTERRUPTIBLE);
1771 spin_lock(&dev_list_lock);
1772 list_for_each_entry_safe(dev, next, &dev_list, node) {
1773 int i;
1774 if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1775 dev->initialized) {
1776 if (work_busy(&dev->reset_work))
1777 continue;
1778 list_del_init(&dev->node);
1779 dev_warn(&dev->pci_dev->dev,
1780 "Failed status, reset controller\n");
1781 PREPARE_WORK(&dev->reset_work,
1782 nvme_reset_failed_dev);
1783 queue_work(nvme_workq, &dev->reset_work);
1784 continue;
1785 }
1786 for (i = 0; i < dev->queue_count; i++) {
1787 struct nvme_queue *nvmeq = dev->queues[i];
1788 if (!nvmeq)
1789 continue;
1790 spin_lock_irq(&nvmeq->q_lock);
1791 if (nvmeq->q_suspended)
1792 goto unlock;
1793 nvme_process_cq(nvmeq);
1794 nvme_cancel_ios(nvmeq, true);
1795 nvme_resubmit_bios(nvmeq);
1796 unlock:
1797 spin_unlock_irq(&nvmeq->q_lock);
1798 }
1799 }
1800 spin_unlock(&dev_list_lock);
1801 schedule_timeout(round_jiffies_relative(HZ));
1802 }
1803 return 0;
1804 }
1805
1806 static void nvme_config_discard(struct nvme_ns *ns)
1807 {
1808 u32 logical_block_size = queue_logical_block_size(ns->queue);
1809 ns->queue->limits.discard_zeroes_data = 0;
1810 ns->queue->limits.discard_alignment = logical_block_size;
1811 ns->queue->limits.discard_granularity = logical_block_size;
1812 ns->queue->limits.max_discard_sectors = 0xffffffff;
1813 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1814 }
1815
1816 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1817 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1818 {
1819 struct nvme_ns *ns;
1820 struct gendisk *disk;
1821 int lbaf;
1822
1823 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1824 return NULL;
1825
1826 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1827 if (!ns)
1828 return NULL;
1829 ns->queue = blk_alloc_queue(GFP_KERNEL);
1830 if (!ns->queue)
1831 goto out_free_ns;
1832 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1833 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1834 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1835 blk_queue_make_request(ns->queue, nvme_make_request);
1836 ns->dev = dev;
1837 ns->queue->queuedata = ns;
1838
1839 disk = alloc_disk(0);
1840 if (!disk)
1841 goto out_free_queue;
1842 ns->ns_id = nsid;
1843 ns->disk = disk;
1844 lbaf = id->flbas & 0xf;
1845 ns->lba_shift = id->lbaf[lbaf].ds;
1846 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1847 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1848 if (dev->max_hw_sectors)
1849 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1850
1851 disk->major = nvme_major;
1852 disk->first_minor = 0;
1853 disk->fops = &nvme_fops;
1854 disk->private_data = ns;
1855 disk->queue = ns->queue;
1856 disk->driverfs_dev = &dev->pci_dev->dev;
1857 disk->flags = GENHD_FL_EXT_DEVT;
1858 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1859 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1860
1861 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1862 nvme_config_discard(ns);
1863
1864 return ns;
1865
1866 out_free_queue:
1867 blk_cleanup_queue(ns->queue);
1868 out_free_ns:
1869 kfree(ns);
1870 return NULL;
1871 }
1872
1873 static int set_queue_count(struct nvme_dev *dev, int count)
1874 {
1875 int status;
1876 u32 result;
1877 u32 q_count = (count - 1) | ((count - 1) << 16);
1878
1879 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1880 &result);
1881 if (status)
1882 return status < 0 ? -EIO : -EBUSY;
1883 return min(result & 0xffff, result >> 16) + 1;
1884 }
1885
1886 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1887 {
1888 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1889 }
1890
1891 static int nvme_setup_io_queues(struct nvme_dev *dev)
1892 {
1893 struct nvme_queue *adminq = dev->queues[0];
1894 struct pci_dev *pdev = dev->pci_dev;
1895 int result, cpu, i, vecs, nr_io_queues, size, q_depth;
1896
1897 nr_io_queues = num_online_cpus();
1898 result = set_queue_count(dev, nr_io_queues);
1899 if (result < 0)
1900 return result;
1901 if (result < nr_io_queues)
1902 nr_io_queues = result;
1903
1904 size = db_bar_size(dev, nr_io_queues);
1905 if (size > 8192) {
1906 iounmap(dev->bar);
1907 do {
1908 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1909 if (dev->bar)
1910 break;
1911 if (!--nr_io_queues)
1912 return -ENOMEM;
1913 size = db_bar_size(dev, nr_io_queues);
1914 } while (1);
1915 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1916 dev->queues[0]->q_db = dev->dbs;
1917 }
1918
1919 /* Deregister the admin queue's interrupt */
1920 free_irq(dev->entry[0].vector, adminq);
1921
1922 vecs = nr_io_queues;
1923 for (i = 0; i < vecs; i++)
1924 dev->entry[i].entry = i;
1925 for (;;) {
1926 result = pci_enable_msix(pdev, dev->entry, vecs);
1927 if (result <= 0)
1928 break;
1929 vecs = result;
1930 }
1931
1932 if (result < 0) {
1933 vecs = nr_io_queues;
1934 if (vecs > 32)
1935 vecs = 32;
1936 for (;;) {
1937 result = pci_enable_msi_block(pdev, vecs);
1938 if (result == 0) {
1939 for (i = 0; i < vecs; i++)
1940 dev->entry[i].vector = i + pdev->irq;
1941 break;
1942 } else if (result < 0) {
1943 vecs = 1;
1944 break;
1945 }
1946 vecs = result;
1947 }
1948 }
1949
1950 /*
1951 * Should investigate if there's a performance win from allocating
1952 * more queues than interrupt vectors; it might allow the submission
1953 * path to scale better, even if the receive path is limited by the
1954 * number of interrupts.
1955 */
1956 nr_io_queues = vecs;
1957
1958 result = queue_request_irq(dev, adminq, adminq->irqname);
1959 if (result) {
1960 adminq->q_suspended = 1;
1961 goto free_queues;
1962 }
1963
1964 /* Free previously allocated queues that are no longer usable */
1965 spin_lock(&dev_list_lock);
1966 for (i = dev->queue_count - 1; i > nr_io_queues; i--) {
1967 struct nvme_queue *nvmeq = dev->queues[i];
1968
1969 spin_lock_irq(&nvmeq->q_lock);
1970 nvme_cancel_ios(nvmeq, false);
1971 spin_unlock_irq(&nvmeq->q_lock);
1972
1973 nvme_free_queue(nvmeq);
1974 dev->queue_count--;
1975 dev->queues[i] = NULL;
1976 }
1977 spin_unlock(&dev_list_lock);
1978
1979 cpu = cpumask_first(cpu_online_mask);
1980 for (i = 0; i < nr_io_queues; i++) {
1981 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1982 cpu = cpumask_next(cpu, cpu_online_mask);
1983 }
1984
1985 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1986 NVME_Q_DEPTH);
1987 for (i = dev->queue_count - 1; i < nr_io_queues; i++) {
1988 dev->queues[i + 1] = nvme_alloc_queue(dev, i + 1, q_depth, i);
1989 if (!dev->queues[i + 1]) {
1990 result = -ENOMEM;
1991 goto free_queues;
1992 }
1993 }
1994
1995 for (; i < num_possible_cpus(); i++) {
1996 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1997 dev->queues[i + 1] = dev->queues[target + 1];
1998 }
1999
2000 for (i = 1; i < dev->queue_count; i++) {
2001 result = nvme_create_queue(dev->queues[i], i);
2002 if (result) {
2003 for (--i; i > 0; i--)
2004 nvme_disable_queue(dev, i);
2005 goto free_queues;
2006 }
2007 }
2008
2009 return 0;
2010
2011 free_queues:
2012 nvme_free_queues(dev, 1);
2013 return result;
2014 }
2015
2016 /*
2017 * Return: error value if an error occurred setting up the queues or calling
2018 * Identify Device. 0 if these succeeded, even if adding some of the
2019 * namespaces failed. At the moment, these failures are silent. TBD which
2020 * failures should be reported.
2021 */
2022 static int nvme_dev_add(struct nvme_dev *dev)
2023 {
2024 struct pci_dev *pdev = dev->pci_dev;
2025 int res;
2026 unsigned nn, i;
2027 struct nvme_ns *ns;
2028 struct nvme_id_ctrl *ctrl;
2029 struct nvme_id_ns *id_ns;
2030 void *mem;
2031 dma_addr_t dma_addr;
2032 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2033
2034 mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2035 if (!mem)
2036 return -ENOMEM;
2037
2038 res = nvme_identify(dev, 0, 1, dma_addr);
2039 if (res) {
2040 res = -EIO;
2041 goto out;
2042 }
2043
2044 ctrl = mem;
2045 nn = le32_to_cpup(&ctrl->nn);
2046 dev->oncs = le16_to_cpup(&ctrl->oncs);
2047 dev->abort_limit = ctrl->acl + 1;
2048 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2049 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2050 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2051 if (ctrl->mdts)
2052 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2053 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2054 (pdev->device == 0x0953) && ctrl->vs[3])
2055 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2056
2057 id_ns = mem;
2058 for (i = 1; i <= nn; i++) {
2059 res = nvme_identify(dev, i, 0, dma_addr);
2060 if (res)
2061 continue;
2062
2063 if (id_ns->ncap == 0)
2064 continue;
2065
2066 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2067 dma_addr + 4096, NULL);
2068 if (res)
2069 memset(mem + 4096, 0, 4096);
2070
2071 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2072 if (ns)
2073 list_add_tail(&ns->list, &dev->namespaces);
2074 }
2075 list_for_each_entry(ns, &dev->namespaces, list)
2076 add_disk(ns->disk);
2077 res = 0;
2078
2079 out:
2080 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2081 return res;
2082 }
2083
2084 static int nvme_dev_map(struct nvme_dev *dev)
2085 {
2086 int bars, result = -ENOMEM;
2087 struct pci_dev *pdev = dev->pci_dev;
2088
2089 if (pci_enable_device_mem(pdev))
2090 return result;
2091
2092 dev->entry[0].vector = pdev->irq;
2093 pci_set_master(pdev);
2094 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2095 if (pci_request_selected_regions(pdev, bars, "nvme"))
2096 goto disable_pci;
2097
2098 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2099 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2100 goto disable;
2101
2102 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2103 if (!dev->bar)
2104 goto disable;
2105 if (readl(&dev->bar->csts) == -1) {
2106 result = -ENODEV;
2107 goto unmap;
2108 }
2109 dev->db_stride = 1 << NVME_CAP_STRIDE(readq(&dev->bar->cap));
2110 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2111
2112 return 0;
2113
2114 unmap:
2115 iounmap(dev->bar);
2116 dev->bar = NULL;
2117 disable:
2118 pci_release_regions(pdev);
2119 disable_pci:
2120 pci_disable_device(pdev);
2121 return result;
2122 }
2123
2124 static void nvme_dev_unmap(struct nvme_dev *dev)
2125 {
2126 if (dev->pci_dev->msi_enabled)
2127 pci_disable_msi(dev->pci_dev);
2128 else if (dev->pci_dev->msix_enabled)
2129 pci_disable_msix(dev->pci_dev);
2130
2131 if (dev->bar) {
2132 iounmap(dev->bar);
2133 dev->bar = NULL;
2134 pci_release_regions(dev->pci_dev);
2135 }
2136
2137 if (pci_is_enabled(dev->pci_dev))
2138 pci_disable_device(dev->pci_dev);
2139 }
2140
2141 struct nvme_delq_ctx {
2142 struct task_struct *waiter;
2143 struct kthread_worker *worker;
2144 atomic_t refcount;
2145 };
2146
2147 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2148 {
2149 dq->waiter = current;
2150 mb();
2151
2152 for (;;) {
2153 set_current_state(TASK_KILLABLE);
2154 if (!atomic_read(&dq->refcount))
2155 break;
2156 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2157 fatal_signal_pending(current)) {
2158 set_current_state(TASK_RUNNING);
2159
2160 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2161 nvme_disable_queue(dev, 0);
2162
2163 send_sig(SIGKILL, dq->worker->task, 1);
2164 flush_kthread_worker(dq->worker);
2165 return;
2166 }
2167 }
2168 set_current_state(TASK_RUNNING);
2169 }
2170
2171 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2172 {
2173 atomic_dec(&dq->refcount);
2174 if (dq->waiter)
2175 wake_up_process(dq->waiter);
2176 }
2177
2178 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2179 {
2180 atomic_inc(&dq->refcount);
2181 return dq;
2182 }
2183
2184 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2185 {
2186 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2187
2188 nvme_clear_queue(nvmeq);
2189 nvme_put_dq(dq);
2190 }
2191
2192 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2193 kthread_work_func_t fn)
2194 {
2195 struct nvme_command c;
2196
2197 memset(&c, 0, sizeof(c));
2198 c.delete_queue.opcode = opcode;
2199 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2200
2201 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2202 return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2203 }
2204
2205 static void nvme_del_cq_work_handler(struct kthread_work *work)
2206 {
2207 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2208 cmdinfo.work);
2209 nvme_del_queue_end(nvmeq);
2210 }
2211
2212 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2213 {
2214 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2215 nvme_del_cq_work_handler);
2216 }
2217
2218 static void nvme_del_sq_work_handler(struct kthread_work *work)
2219 {
2220 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2221 cmdinfo.work);
2222 int status = nvmeq->cmdinfo.status;
2223
2224 if (!status)
2225 status = nvme_delete_cq(nvmeq);
2226 if (status)
2227 nvme_del_queue_end(nvmeq);
2228 }
2229
2230 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2231 {
2232 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2233 nvme_del_sq_work_handler);
2234 }
2235
2236 static void nvme_del_queue_start(struct kthread_work *work)
2237 {
2238 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2239 cmdinfo.work);
2240 allow_signal(SIGKILL);
2241 if (nvme_delete_sq(nvmeq))
2242 nvme_del_queue_end(nvmeq);
2243 }
2244
2245 static void nvme_disable_io_queues(struct nvme_dev *dev)
2246 {
2247 int i;
2248 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2249 struct nvme_delq_ctx dq;
2250 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2251 &worker, "nvme%d", dev->instance);
2252
2253 if (IS_ERR(kworker_task)) {
2254 dev_err(&dev->pci_dev->dev,
2255 "Failed to create queue del task\n");
2256 for (i = dev->queue_count - 1; i > 0; i--)
2257 nvme_disable_queue(dev, i);
2258 return;
2259 }
2260
2261 dq.waiter = NULL;
2262 atomic_set(&dq.refcount, 0);
2263 dq.worker = &worker;
2264 for (i = dev->queue_count - 1; i > 0; i--) {
2265 struct nvme_queue *nvmeq = dev->queues[i];
2266
2267 if (nvme_suspend_queue(nvmeq))
2268 continue;
2269 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2270 nvmeq->cmdinfo.worker = dq.worker;
2271 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2272 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2273 }
2274 nvme_wait_dq(&dq, dev);
2275 kthread_stop(kworker_task);
2276 }
2277
2278 static void nvme_dev_shutdown(struct nvme_dev *dev)
2279 {
2280 int i;
2281
2282 dev->initialized = 0;
2283
2284 spin_lock(&dev_list_lock);
2285 list_del_init(&dev->node);
2286 spin_unlock(&dev_list_lock);
2287
2288 if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2289 for (i = dev->queue_count - 1; i >= 0; i--) {
2290 struct nvme_queue *nvmeq = dev->queues[i];
2291 nvme_suspend_queue(nvmeq);
2292 nvme_clear_queue(nvmeq);
2293 }
2294 } else {
2295 nvme_disable_io_queues(dev);
2296 nvme_shutdown_ctrl(dev);
2297 nvme_disable_queue(dev, 0);
2298 }
2299 nvme_dev_unmap(dev);
2300 }
2301
2302 static void nvme_dev_remove(struct nvme_dev *dev)
2303 {
2304 struct nvme_ns *ns;
2305
2306 list_for_each_entry(ns, &dev->namespaces, list) {
2307 if (ns->disk->flags & GENHD_FL_UP)
2308 del_gendisk(ns->disk);
2309 if (!blk_queue_dying(ns->queue))
2310 blk_cleanup_queue(ns->queue);
2311 }
2312 }
2313
2314 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2315 {
2316 struct device *dmadev = &dev->pci_dev->dev;
2317 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2318 PAGE_SIZE, PAGE_SIZE, 0);
2319 if (!dev->prp_page_pool)
2320 return -ENOMEM;
2321
2322 /* Optimisation for I/Os between 4k and 128k */
2323 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2324 256, 256, 0);
2325 if (!dev->prp_small_pool) {
2326 dma_pool_destroy(dev->prp_page_pool);
2327 return -ENOMEM;
2328 }
2329 return 0;
2330 }
2331
2332 static void nvme_release_prp_pools(struct nvme_dev *dev)
2333 {
2334 dma_pool_destroy(dev->prp_page_pool);
2335 dma_pool_destroy(dev->prp_small_pool);
2336 }
2337
2338 static DEFINE_IDA(nvme_instance_ida);
2339
2340 static int nvme_set_instance(struct nvme_dev *dev)
2341 {
2342 int instance, error;
2343
2344 do {
2345 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2346 return -ENODEV;
2347
2348 spin_lock(&dev_list_lock);
2349 error = ida_get_new(&nvme_instance_ida, &instance);
2350 spin_unlock(&dev_list_lock);
2351 } while (error == -EAGAIN);
2352
2353 if (error)
2354 return -ENODEV;
2355
2356 dev->instance = instance;
2357 return 0;
2358 }
2359
2360 static void nvme_release_instance(struct nvme_dev *dev)
2361 {
2362 spin_lock(&dev_list_lock);
2363 ida_remove(&nvme_instance_ida, dev->instance);
2364 spin_unlock(&dev_list_lock);
2365 }
2366
2367 static void nvme_free_namespaces(struct nvme_dev *dev)
2368 {
2369 struct nvme_ns *ns, *next;
2370
2371 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2372 list_del(&ns->list);
2373 put_disk(ns->disk);
2374 kfree(ns);
2375 }
2376 }
2377
2378 static void nvme_free_dev(struct kref *kref)
2379 {
2380 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2381
2382 nvme_free_namespaces(dev);
2383 kfree(dev->queues);
2384 kfree(dev->entry);
2385 kfree(dev);
2386 }
2387
2388 static int nvme_dev_open(struct inode *inode, struct file *f)
2389 {
2390 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2391 miscdev);
2392 kref_get(&dev->kref);
2393 f->private_data = dev;
2394 return 0;
2395 }
2396
2397 static int nvme_dev_release(struct inode *inode, struct file *f)
2398 {
2399 struct nvme_dev *dev = f->private_data;
2400 kref_put(&dev->kref, nvme_free_dev);
2401 return 0;
2402 }
2403
2404 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2405 {
2406 struct nvme_dev *dev = f->private_data;
2407 switch (cmd) {
2408 case NVME_IOCTL_ADMIN_CMD:
2409 return nvme_user_admin_cmd(dev, (void __user *)arg);
2410 default:
2411 return -ENOTTY;
2412 }
2413 }
2414
2415 static const struct file_operations nvme_dev_fops = {
2416 .owner = THIS_MODULE,
2417 .open = nvme_dev_open,
2418 .release = nvme_dev_release,
2419 .unlocked_ioctl = nvme_dev_ioctl,
2420 .compat_ioctl = nvme_dev_ioctl,
2421 };
2422
2423 static int nvme_dev_start(struct nvme_dev *dev)
2424 {
2425 int result;
2426
2427 result = nvme_dev_map(dev);
2428 if (result)
2429 return result;
2430
2431 result = nvme_configure_admin_queue(dev);
2432 if (result)
2433 goto unmap;
2434
2435 spin_lock(&dev_list_lock);
2436 list_add(&dev->node, &dev_list);
2437 spin_unlock(&dev_list_lock);
2438
2439 result = nvme_setup_io_queues(dev);
2440 if (result && result != -EBUSY)
2441 goto disable;
2442
2443 return result;
2444
2445 disable:
2446 nvme_disable_queue(dev, 0);
2447 spin_lock(&dev_list_lock);
2448 list_del_init(&dev->node);
2449 spin_unlock(&dev_list_lock);
2450 unmap:
2451 nvme_dev_unmap(dev);
2452 return result;
2453 }
2454
2455 static int nvme_remove_dead_ctrl(void *arg)
2456 {
2457 struct nvme_dev *dev = (struct nvme_dev *)arg;
2458 struct pci_dev *pdev = dev->pci_dev;
2459
2460 if (pci_get_drvdata(pdev))
2461 pci_stop_and_remove_bus_device(pdev);
2462 kref_put(&dev->kref, nvme_free_dev);
2463 return 0;
2464 }
2465
2466 static void nvme_remove_disks(struct work_struct *ws)
2467 {
2468 int i;
2469 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2470
2471 nvme_dev_remove(dev);
2472 spin_lock(&dev_list_lock);
2473 for (i = dev->queue_count - 1; i > 0; i--) {
2474 BUG_ON(!dev->queues[i] || !dev->queues[i]->q_suspended);
2475 nvme_free_queue(dev->queues[i]);
2476 dev->queue_count--;
2477 dev->queues[i] = NULL;
2478 }
2479 spin_unlock(&dev_list_lock);
2480 }
2481
2482 static int nvme_dev_resume(struct nvme_dev *dev)
2483 {
2484 int ret;
2485
2486 ret = nvme_dev_start(dev);
2487 if (ret && ret != -EBUSY)
2488 return ret;
2489 if (ret == -EBUSY) {
2490 spin_lock(&dev_list_lock);
2491 PREPARE_WORK(&dev->reset_work, nvme_remove_disks);
2492 queue_work(nvme_workq, &dev->reset_work);
2493 spin_unlock(&dev_list_lock);
2494 }
2495 dev->initialized = 1;
2496 return 0;
2497 }
2498
2499 static void nvme_dev_reset(struct nvme_dev *dev)
2500 {
2501 nvme_dev_shutdown(dev);
2502 if (nvme_dev_resume(dev)) {
2503 dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2504 kref_get(&dev->kref);
2505 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2506 dev->instance))) {
2507 dev_err(&dev->pci_dev->dev,
2508 "Failed to start controller remove task\n");
2509 kref_put(&dev->kref, nvme_free_dev);
2510 }
2511 }
2512 }
2513
2514 static void nvme_reset_failed_dev(struct work_struct *ws)
2515 {
2516 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2517 nvme_dev_reset(dev);
2518 }
2519
2520 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2521 {
2522 int result = -ENOMEM;
2523 struct nvme_dev *dev;
2524
2525 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2526 if (!dev)
2527 return -ENOMEM;
2528 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2529 GFP_KERNEL);
2530 if (!dev->entry)
2531 goto free;
2532 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2533 GFP_KERNEL);
2534 if (!dev->queues)
2535 goto free;
2536
2537 INIT_LIST_HEAD(&dev->namespaces);
2538 INIT_WORK(&dev->reset_work, nvme_reset_failed_dev);
2539 dev->pci_dev = pdev;
2540 pci_set_drvdata(pdev, dev);
2541 result = nvme_set_instance(dev);
2542 if (result)
2543 goto free;
2544
2545 result = nvme_setup_prp_pools(dev);
2546 if (result)
2547 goto release;
2548
2549 result = nvme_dev_start(dev);
2550 if (result) {
2551 if (result == -EBUSY)
2552 goto create_cdev;
2553 goto release_pools;
2554 }
2555
2556 kref_init(&dev->kref);
2557 result = nvme_dev_add(dev);
2558 if (result)
2559 goto shutdown;
2560
2561 create_cdev:
2562 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2563 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2564 dev->miscdev.parent = &pdev->dev;
2565 dev->miscdev.name = dev->name;
2566 dev->miscdev.fops = &nvme_dev_fops;
2567 result = misc_register(&dev->miscdev);
2568 if (result)
2569 goto remove;
2570
2571 dev->initialized = 1;
2572 return 0;
2573
2574 remove:
2575 nvme_dev_remove(dev);
2576 nvme_free_namespaces(dev);
2577 shutdown:
2578 nvme_dev_shutdown(dev);
2579 release_pools:
2580 nvme_free_queues(dev, 0);
2581 nvme_release_prp_pools(dev);
2582 release:
2583 nvme_release_instance(dev);
2584 free:
2585 kfree(dev->queues);
2586 kfree(dev->entry);
2587 kfree(dev);
2588 return result;
2589 }
2590
2591 static void nvme_shutdown(struct pci_dev *pdev)
2592 {
2593 struct nvme_dev *dev = pci_get_drvdata(pdev);
2594 nvme_dev_shutdown(dev);
2595 }
2596
2597 static void nvme_remove(struct pci_dev *pdev)
2598 {
2599 struct nvme_dev *dev = pci_get_drvdata(pdev);
2600
2601 spin_lock(&dev_list_lock);
2602 list_del_init(&dev->node);
2603 spin_unlock(&dev_list_lock);
2604
2605 pci_set_drvdata(pdev, NULL);
2606 flush_work(&dev->reset_work);
2607 misc_deregister(&dev->miscdev);
2608 nvme_dev_remove(dev);
2609 nvme_dev_shutdown(dev);
2610 nvme_free_queues(dev, 0);
2611 nvme_release_instance(dev);
2612 nvme_release_prp_pools(dev);
2613 kref_put(&dev->kref, nvme_free_dev);
2614 }
2615
2616 /* These functions are yet to be implemented */
2617 #define nvme_error_detected NULL
2618 #define nvme_dump_registers NULL
2619 #define nvme_link_reset NULL
2620 #define nvme_slot_reset NULL
2621 #define nvme_error_resume NULL
2622
2623 static int nvme_suspend(struct device *dev)
2624 {
2625 struct pci_dev *pdev = to_pci_dev(dev);
2626 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2627
2628 nvme_dev_shutdown(ndev);
2629 return 0;
2630 }
2631
2632 static int nvme_resume(struct device *dev)
2633 {
2634 struct pci_dev *pdev = to_pci_dev(dev);
2635 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2636
2637 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2638 PREPARE_WORK(&ndev->reset_work, nvme_reset_failed_dev);
2639 queue_work(nvme_workq, &ndev->reset_work);
2640 }
2641 return 0;
2642 }
2643
2644 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2645
2646 static const struct pci_error_handlers nvme_err_handler = {
2647 .error_detected = nvme_error_detected,
2648 .mmio_enabled = nvme_dump_registers,
2649 .link_reset = nvme_link_reset,
2650 .slot_reset = nvme_slot_reset,
2651 .resume = nvme_error_resume,
2652 };
2653
2654 /* Move to pci_ids.h later */
2655 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2656
2657 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2658 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2659 { 0, }
2660 };
2661 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2662
2663 static struct pci_driver nvme_driver = {
2664 .name = "nvme",
2665 .id_table = nvme_id_table,
2666 .probe = nvme_probe,
2667 .remove = nvme_remove,
2668 .shutdown = nvme_shutdown,
2669 .driver = {
2670 .pm = &nvme_dev_pm_ops,
2671 },
2672 .err_handler = &nvme_err_handler,
2673 };
2674
2675 static int __init nvme_init(void)
2676 {
2677 int result;
2678
2679 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2680 if (IS_ERR(nvme_thread))
2681 return PTR_ERR(nvme_thread);
2682
2683 result = -ENOMEM;
2684 nvme_workq = create_singlethread_workqueue("nvme");
2685 if (!nvme_workq)
2686 goto kill_kthread;
2687
2688 result = register_blkdev(nvme_major, "nvme");
2689 if (result < 0)
2690 goto kill_workq;
2691 else if (result > 0)
2692 nvme_major = result;
2693
2694 result = pci_register_driver(&nvme_driver);
2695 if (result)
2696 goto unregister_blkdev;
2697 return 0;
2698
2699 unregister_blkdev:
2700 unregister_blkdev(nvme_major, "nvme");
2701 kill_workq:
2702 destroy_workqueue(nvme_workq);
2703 kill_kthread:
2704 kthread_stop(nvme_thread);
2705 return result;
2706 }
2707
2708 static void __exit nvme_exit(void)
2709 {
2710 pci_unregister_driver(&nvme_driver);
2711 unregister_blkdev(nvme_major, "nvme");
2712 destroy_workqueue(nvme_workq);
2713 kthread_stop(nvme_thread);
2714 }
2715
2716 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2717 MODULE_LICENSE("GPL");
2718 MODULE_VERSION("0.8");
2719 module_init(nvme_init);
2720 module_exit(nvme_exit);