]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/nvme-core.c
NVMe: Freeze admin queue on device failure
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_MINORS (1U << MINORBITS)
46 #define NVME_Q_DEPTH 1024
47 #define NVME_AQ_DEPTH 64
48 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int nvme_char_major;
69 module_param(nvme_char_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79
80 static struct class *nvme_class;
81
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84
85 struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
88 struct request *req;
89 u32 result;
90 int status;
91 void *ctx;
92 };
93
94 /*
95 * An NVM Express queue. Each device has at least two (one for admin
96 * commands and one for I/O commands).
97 */
98 struct nvme_queue {
99 struct device *q_dmadev;
100 struct nvme_dev *dev;
101 char irqname[24]; /* nvme4294967295-65535\0 */
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
107 u32 __iomem *q_db;
108 u16 q_depth;
109 s16 cq_vector;
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
113 u16 qid;
114 u8 cq_phase;
115 u8 cqe_seen;
116 struct async_cmd_info cmdinfo;
117 struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121 * Check we didin't inadvertently grow the command struct
122 */
123 static inline void _nvme_check_size(void)
124 {
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
144 void *ctx;
145 int aborted;
146 struct nvme_queue *nvmeq;
147 struct nvme_iod iod[0];
148 };
149
150 /*
151 * Max size of iod being embedded in the request payload
152 */
153 #define NVME_INT_PAGES 2
154 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
155
156 /*
157 * Will slightly overestimate the number of pages needed. This is OK
158 * as it only leads to a small amount of wasted memory for the lifetime of
159 * the I/O.
160 */
161 static int nvme_npages(unsigned size, struct nvme_dev *dev)
162 {
163 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
164 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
165 }
166
167 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
168 {
169 unsigned int ret = sizeof(struct nvme_cmd_info);
170
171 ret += sizeof(struct nvme_iod);
172 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
173 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
174
175 return ret;
176 }
177
178 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
179 unsigned int hctx_idx)
180 {
181 struct nvme_dev *dev = data;
182 struct nvme_queue *nvmeq = dev->queues[0];
183
184 WARN_ON(nvmeq->hctx);
185 nvmeq->hctx = hctx;
186 hctx->driver_data = nvmeq;
187 return 0;
188 }
189
190 static int nvme_admin_init_request(void *data, struct request *req,
191 unsigned int hctx_idx, unsigned int rq_idx,
192 unsigned int numa_node)
193 {
194 struct nvme_dev *dev = data;
195 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
196 struct nvme_queue *nvmeq = dev->queues[0];
197
198 BUG_ON(!nvmeq);
199 cmd->nvmeq = nvmeq;
200 return 0;
201 }
202
203 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
204 {
205 struct nvme_queue *nvmeq = hctx->driver_data;
206
207 nvmeq->hctx = NULL;
208 }
209
210 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211 unsigned int hctx_idx)
212 {
213 struct nvme_dev *dev = data;
214 struct nvme_queue *nvmeq = dev->queues[
215 (hctx_idx % dev->queue_count) + 1];
216
217 if (!nvmeq->hctx)
218 nvmeq->hctx = hctx;
219
220 /* nvmeq queues are shared between namespaces. We assume here that
221 * blk-mq map the tags so they match up with the nvme queue tags. */
222 WARN_ON(nvmeq->hctx->tags != hctx->tags);
223
224 hctx->driver_data = nvmeq;
225 return 0;
226 }
227
228 static int nvme_init_request(void *data, struct request *req,
229 unsigned int hctx_idx, unsigned int rq_idx,
230 unsigned int numa_node)
231 {
232 struct nvme_dev *dev = data;
233 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
234 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
235
236 BUG_ON(!nvmeq);
237 cmd->nvmeq = nvmeq;
238 return 0;
239 }
240
241 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
242 nvme_completion_fn handler)
243 {
244 cmd->fn = handler;
245 cmd->ctx = ctx;
246 cmd->aborted = 0;
247 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
248 }
249
250 static void *iod_get_private(struct nvme_iod *iod)
251 {
252 return (void *) (iod->private & ~0x1UL);
253 }
254
255 /*
256 * If bit 0 is set, the iod is embedded in the request payload.
257 */
258 static bool iod_should_kfree(struct nvme_iod *iod)
259 {
260 return (iod->private & 0x01) == 0;
261 }
262
263 /* Special values must be less than 0x1000 */
264 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
265 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
266 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
267 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
268
269 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
270 struct nvme_completion *cqe)
271 {
272 if (ctx == CMD_CTX_CANCELLED)
273 return;
274 if (ctx == CMD_CTX_COMPLETED) {
275 dev_warn(nvmeq->q_dmadev,
276 "completed id %d twice on queue %d\n",
277 cqe->command_id, le16_to_cpup(&cqe->sq_id));
278 return;
279 }
280 if (ctx == CMD_CTX_INVALID) {
281 dev_warn(nvmeq->q_dmadev,
282 "invalid id %d completed on queue %d\n",
283 cqe->command_id, le16_to_cpup(&cqe->sq_id));
284 return;
285 }
286 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
287 }
288
289 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
290 {
291 void *ctx;
292
293 if (fn)
294 *fn = cmd->fn;
295 ctx = cmd->ctx;
296 cmd->fn = special_completion;
297 cmd->ctx = CMD_CTX_CANCELLED;
298 return ctx;
299 }
300
301 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
302 struct nvme_completion *cqe)
303 {
304 struct request *req = ctx;
305
306 u32 result = le32_to_cpup(&cqe->result);
307 u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310 ++nvmeq->dev->event_limit;
311 if (status == NVME_SC_SUCCESS)
312 dev_warn(nvmeq->q_dmadev,
313 "async event result %08x\n", result);
314
315 blk_mq_free_hctx_request(nvmeq->hctx, req);
316 }
317
318 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
319 struct nvme_completion *cqe)
320 {
321 struct request *req = ctx;
322
323 u16 status = le16_to_cpup(&cqe->status) >> 1;
324 u32 result = le32_to_cpup(&cqe->result);
325
326 blk_mq_free_hctx_request(nvmeq->hctx, req);
327
328 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
329 ++nvmeq->dev->abort_limit;
330 }
331
332 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
333 struct nvme_completion *cqe)
334 {
335 struct async_cmd_info *cmdinfo = ctx;
336 cmdinfo->result = le32_to_cpup(&cqe->result);
337 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
338 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
339 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
340 }
341
342 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
343 unsigned int tag)
344 {
345 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
346 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
347
348 return blk_mq_rq_to_pdu(req);
349 }
350
351 /*
352 * Called with local interrupts disabled and the q_lock held. May not sleep.
353 */
354 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
355 nvme_completion_fn *fn)
356 {
357 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
358 void *ctx;
359 if (tag >= nvmeq->q_depth) {
360 *fn = special_completion;
361 return CMD_CTX_INVALID;
362 }
363 if (fn)
364 *fn = cmd->fn;
365 ctx = cmd->ctx;
366 cmd->fn = special_completion;
367 cmd->ctx = CMD_CTX_COMPLETED;
368 return ctx;
369 }
370
371 /**
372 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
373 * @nvmeq: The queue to use
374 * @cmd: The command to send
375 *
376 * Safe to use from interrupt context
377 */
378 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
379 {
380 u16 tail = nvmeq->sq_tail;
381
382 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
383 if (++tail == nvmeq->q_depth)
384 tail = 0;
385 writel(tail, nvmeq->q_db);
386 nvmeq->sq_tail = tail;
387
388 return 0;
389 }
390
391 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
392 {
393 unsigned long flags;
394 int ret;
395 spin_lock_irqsave(&nvmeq->q_lock, flags);
396 ret = __nvme_submit_cmd(nvmeq, cmd);
397 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
398 return ret;
399 }
400
401 static __le64 **iod_list(struct nvme_iod *iod)
402 {
403 return ((void *)iod) + iod->offset;
404 }
405
406 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
407 unsigned nseg, unsigned long private)
408 {
409 iod->private = private;
410 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
411 iod->npages = -1;
412 iod->length = nbytes;
413 iod->nents = 0;
414 }
415
416 static struct nvme_iod *
417 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
418 unsigned long priv, gfp_t gfp)
419 {
420 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
421 sizeof(__le64 *) * nvme_npages(bytes, dev) +
422 sizeof(struct scatterlist) * nseg, gfp);
423
424 if (iod)
425 iod_init(iod, bytes, nseg, priv);
426
427 return iod;
428 }
429
430 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
431 gfp_t gfp)
432 {
433 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
434 sizeof(struct nvme_dsm_range);
435 unsigned long mask = 0;
436 struct nvme_iod *iod;
437
438 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
439 size <= NVME_INT_BYTES(dev)) {
440 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
441
442 iod = cmd->iod;
443 mask = 0x01;
444 iod_init(iod, size, rq->nr_phys_segments,
445 (unsigned long) rq | 0x01);
446 return iod;
447 }
448
449 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
450 (unsigned long) rq, gfp);
451 }
452
453 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
454 {
455 const int last_prp = dev->page_size / 8 - 1;
456 int i;
457 __le64 **list = iod_list(iod);
458 dma_addr_t prp_dma = iod->first_dma;
459
460 if (iod->npages == 0)
461 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
462 for (i = 0; i < iod->npages; i++) {
463 __le64 *prp_list = list[i];
464 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
465 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
466 prp_dma = next_prp_dma;
467 }
468
469 if (iod_should_kfree(iod))
470 kfree(iod);
471 }
472
473 static int nvme_error_status(u16 status)
474 {
475 switch (status & 0x7ff) {
476 case NVME_SC_SUCCESS:
477 return 0;
478 case NVME_SC_CAP_EXCEEDED:
479 return -ENOSPC;
480 default:
481 return -EIO;
482 }
483 }
484
485 #ifdef CONFIG_BLK_DEV_INTEGRITY
486 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
487 {
488 if (be32_to_cpu(pi->ref_tag) == v)
489 pi->ref_tag = cpu_to_be32(p);
490 }
491
492 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
493 {
494 if (be32_to_cpu(pi->ref_tag) == p)
495 pi->ref_tag = cpu_to_be32(v);
496 }
497
498 /**
499 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
500 *
501 * The virtual start sector is the one that was originally submitted by the
502 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
503 * start sector may be different. Remap protection information to match the
504 * physical LBA on writes, and back to the original seed on reads.
505 *
506 * Type 0 and 3 do not have a ref tag, so no remapping required.
507 */
508 static void nvme_dif_remap(struct request *req,
509 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
510 {
511 struct nvme_ns *ns = req->rq_disk->private_data;
512 struct bio_integrity_payload *bip;
513 struct t10_pi_tuple *pi;
514 void *p, *pmap;
515 u32 i, nlb, ts, phys, virt;
516
517 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
518 return;
519
520 bip = bio_integrity(req->bio);
521 if (!bip)
522 return;
523
524 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
525 if (!pmap)
526 return;
527
528 p = pmap;
529 virt = bip_get_seed(bip);
530 phys = nvme_block_nr(ns, blk_rq_pos(req));
531 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
532 ts = ns->disk->integrity->tuple_size;
533
534 for (i = 0; i < nlb; i++, virt++, phys++) {
535 pi = (struct t10_pi_tuple *)p;
536 dif_swap(phys, virt, pi);
537 p += ts;
538 }
539 kunmap_atomic(pmap);
540 }
541
542 static int nvme_noop_verify(struct blk_integrity_iter *iter)
543 {
544 return 0;
545 }
546
547 static int nvme_noop_generate(struct blk_integrity_iter *iter)
548 {
549 return 0;
550 }
551
552 struct blk_integrity nvme_meta_noop = {
553 .name = "NVME_META_NOOP",
554 .generate_fn = nvme_noop_generate,
555 .verify_fn = nvme_noop_verify,
556 };
557
558 static void nvme_init_integrity(struct nvme_ns *ns)
559 {
560 struct blk_integrity integrity;
561
562 switch (ns->pi_type) {
563 case NVME_NS_DPS_PI_TYPE3:
564 integrity = t10_pi_type3_crc;
565 break;
566 case NVME_NS_DPS_PI_TYPE1:
567 case NVME_NS_DPS_PI_TYPE2:
568 integrity = t10_pi_type1_crc;
569 break;
570 default:
571 integrity = nvme_meta_noop;
572 break;
573 }
574 integrity.tuple_size = ns->ms;
575 blk_integrity_register(ns->disk, &integrity);
576 blk_queue_max_integrity_segments(ns->queue, 1);
577 }
578 #else /* CONFIG_BLK_DEV_INTEGRITY */
579 static void nvme_dif_remap(struct request *req,
580 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
581 {
582 }
583 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
584 {
585 }
586 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
587 {
588 }
589 static void nvme_init_integrity(struct nvme_ns *ns)
590 {
591 }
592 #endif
593
594 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
595 struct nvme_completion *cqe)
596 {
597 struct nvme_iod *iod = ctx;
598 struct request *req = iod_get_private(iod);
599 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
600
601 u16 status = le16_to_cpup(&cqe->status) >> 1;
602
603 if (unlikely(status)) {
604 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
605 && (jiffies - req->start_time) < req->timeout) {
606 unsigned long flags;
607
608 blk_mq_requeue_request(req);
609 spin_lock_irqsave(req->q->queue_lock, flags);
610 if (!blk_queue_stopped(req->q))
611 blk_mq_kick_requeue_list(req->q);
612 spin_unlock_irqrestore(req->q->queue_lock, flags);
613 return;
614 }
615 req->errors = nvme_error_status(status);
616 } else
617 req->errors = 0;
618
619 if (cmd_rq->aborted)
620 dev_warn(&nvmeq->dev->pci_dev->dev,
621 "completing aborted command with status:%04x\n",
622 status);
623
624 if (iod->nents) {
625 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
626 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
627 if (blk_integrity_rq(req)) {
628 if (!rq_data_dir(req))
629 nvme_dif_remap(req, nvme_dif_complete);
630 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
631 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
632 }
633 }
634 nvme_free_iod(nvmeq->dev, iod);
635
636 blk_mq_complete_request(req);
637 }
638
639 /* length is in bytes. gfp flags indicates whether we may sleep. */
640 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
641 gfp_t gfp)
642 {
643 struct dma_pool *pool;
644 int length = total_len;
645 struct scatterlist *sg = iod->sg;
646 int dma_len = sg_dma_len(sg);
647 u64 dma_addr = sg_dma_address(sg);
648 int offset = offset_in_page(dma_addr);
649 __le64 *prp_list;
650 __le64 **list = iod_list(iod);
651 dma_addr_t prp_dma;
652 int nprps, i;
653 u32 page_size = dev->page_size;
654
655 length -= (page_size - offset);
656 if (length <= 0)
657 return total_len;
658
659 dma_len -= (page_size - offset);
660 if (dma_len) {
661 dma_addr += (page_size - offset);
662 } else {
663 sg = sg_next(sg);
664 dma_addr = sg_dma_address(sg);
665 dma_len = sg_dma_len(sg);
666 }
667
668 if (length <= page_size) {
669 iod->first_dma = dma_addr;
670 return total_len;
671 }
672
673 nprps = DIV_ROUND_UP(length, page_size);
674 if (nprps <= (256 / 8)) {
675 pool = dev->prp_small_pool;
676 iod->npages = 0;
677 } else {
678 pool = dev->prp_page_pool;
679 iod->npages = 1;
680 }
681
682 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
683 if (!prp_list) {
684 iod->first_dma = dma_addr;
685 iod->npages = -1;
686 return (total_len - length) + page_size;
687 }
688 list[0] = prp_list;
689 iod->first_dma = prp_dma;
690 i = 0;
691 for (;;) {
692 if (i == page_size >> 3) {
693 __le64 *old_prp_list = prp_list;
694 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
695 if (!prp_list)
696 return total_len - length;
697 list[iod->npages++] = prp_list;
698 prp_list[0] = old_prp_list[i - 1];
699 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
700 i = 1;
701 }
702 prp_list[i++] = cpu_to_le64(dma_addr);
703 dma_len -= page_size;
704 dma_addr += page_size;
705 length -= page_size;
706 if (length <= 0)
707 break;
708 if (dma_len > 0)
709 continue;
710 BUG_ON(dma_len < 0);
711 sg = sg_next(sg);
712 dma_addr = sg_dma_address(sg);
713 dma_len = sg_dma_len(sg);
714 }
715
716 return total_len;
717 }
718
719 /*
720 * We reuse the small pool to allocate the 16-byte range here as it is not
721 * worth having a special pool for these or additional cases to handle freeing
722 * the iod.
723 */
724 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
725 struct request *req, struct nvme_iod *iod)
726 {
727 struct nvme_dsm_range *range =
728 (struct nvme_dsm_range *)iod_list(iod)[0];
729 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
730
731 range->cattr = cpu_to_le32(0);
732 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
733 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
734
735 memset(cmnd, 0, sizeof(*cmnd));
736 cmnd->dsm.opcode = nvme_cmd_dsm;
737 cmnd->dsm.command_id = req->tag;
738 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
739 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
740 cmnd->dsm.nr = 0;
741 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
742
743 if (++nvmeq->sq_tail == nvmeq->q_depth)
744 nvmeq->sq_tail = 0;
745 writel(nvmeq->sq_tail, nvmeq->q_db);
746 }
747
748 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
749 int cmdid)
750 {
751 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
752
753 memset(cmnd, 0, sizeof(*cmnd));
754 cmnd->common.opcode = nvme_cmd_flush;
755 cmnd->common.command_id = cmdid;
756 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
757
758 if (++nvmeq->sq_tail == nvmeq->q_depth)
759 nvmeq->sq_tail = 0;
760 writel(nvmeq->sq_tail, nvmeq->q_db);
761 }
762
763 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
764 struct nvme_ns *ns)
765 {
766 struct request *req = iod_get_private(iod);
767 struct nvme_command *cmnd;
768 u16 control = 0;
769 u32 dsmgmt = 0;
770
771 if (req->cmd_flags & REQ_FUA)
772 control |= NVME_RW_FUA;
773 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
774 control |= NVME_RW_LR;
775
776 if (req->cmd_flags & REQ_RAHEAD)
777 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
778
779 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
780 memset(cmnd, 0, sizeof(*cmnd));
781
782 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
783 cmnd->rw.command_id = req->tag;
784 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
785 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
786 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
787 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
788 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
789
790 if (blk_integrity_rq(req)) {
791 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
792 switch (ns->pi_type) {
793 case NVME_NS_DPS_PI_TYPE3:
794 control |= NVME_RW_PRINFO_PRCHK_GUARD;
795 break;
796 case NVME_NS_DPS_PI_TYPE1:
797 case NVME_NS_DPS_PI_TYPE2:
798 control |= NVME_RW_PRINFO_PRCHK_GUARD |
799 NVME_RW_PRINFO_PRCHK_REF;
800 cmnd->rw.reftag = cpu_to_le32(
801 nvme_block_nr(ns, blk_rq_pos(req)));
802 break;
803 }
804 } else if (ns->ms)
805 control |= NVME_RW_PRINFO_PRACT;
806
807 cmnd->rw.control = cpu_to_le16(control);
808 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
809
810 if (++nvmeq->sq_tail == nvmeq->q_depth)
811 nvmeq->sq_tail = 0;
812 writel(nvmeq->sq_tail, nvmeq->q_db);
813
814 return 0;
815 }
816
817 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
818 const struct blk_mq_queue_data *bd)
819 {
820 struct nvme_ns *ns = hctx->queue->queuedata;
821 struct nvme_queue *nvmeq = hctx->driver_data;
822 struct request *req = bd->rq;
823 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
824 struct nvme_iod *iod;
825 enum dma_data_direction dma_dir;
826
827 /*
828 * If formated with metadata, require the block layer provide a buffer
829 * unless this namespace is formated such that the metadata can be
830 * stripped/generated by the controller with PRACT=1.
831 */
832 if (ns->ms && !blk_integrity_rq(req)) {
833 if (!(ns->pi_type && ns->ms == 8)) {
834 req->errors = -EFAULT;
835 blk_mq_complete_request(req);
836 return BLK_MQ_RQ_QUEUE_OK;
837 }
838 }
839
840 iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
841 if (!iod)
842 return BLK_MQ_RQ_QUEUE_BUSY;
843
844 if (req->cmd_flags & REQ_DISCARD) {
845 void *range;
846 /*
847 * We reuse the small pool to allocate the 16-byte range here
848 * as it is not worth having a special pool for these or
849 * additional cases to handle freeing the iod.
850 */
851 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
852 GFP_ATOMIC,
853 &iod->first_dma);
854 if (!range)
855 goto retry_cmd;
856 iod_list(iod)[0] = (__le64 *)range;
857 iod->npages = 0;
858 } else if (req->nr_phys_segments) {
859 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
860
861 sg_init_table(iod->sg, req->nr_phys_segments);
862 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
863 if (!iod->nents)
864 goto error_cmd;
865
866 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
867 goto retry_cmd;
868
869 if (blk_rq_bytes(req) !=
870 nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
871 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
872 iod->nents, dma_dir);
873 goto retry_cmd;
874 }
875 if (blk_integrity_rq(req)) {
876 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
877 goto error_cmd;
878
879 sg_init_table(iod->meta_sg, 1);
880 if (blk_rq_map_integrity_sg(
881 req->q, req->bio, iod->meta_sg) != 1)
882 goto error_cmd;
883
884 if (rq_data_dir(req))
885 nvme_dif_remap(req, nvme_dif_prep);
886
887 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
888 goto error_cmd;
889 }
890 }
891
892 nvme_set_info(cmd, iod, req_completion);
893 spin_lock_irq(&nvmeq->q_lock);
894 if (req->cmd_flags & REQ_DISCARD)
895 nvme_submit_discard(nvmeq, ns, req, iod);
896 else if (req->cmd_flags & REQ_FLUSH)
897 nvme_submit_flush(nvmeq, ns, req->tag);
898 else
899 nvme_submit_iod(nvmeq, iod, ns);
900
901 nvme_process_cq(nvmeq);
902 spin_unlock_irq(&nvmeq->q_lock);
903 return BLK_MQ_RQ_QUEUE_OK;
904
905 error_cmd:
906 nvme_free_iod(nvmeq->dev, iod);
907 return BLK_MQ_RQ_QUEUE_ERROR;
908 retry_cmd:
909 nvme_free_iod(nvmeq->dev, iod);
910 return BLK_MQ_RQ_QUEUE_BUSY;
911 }
912
913 static int nvme_process_cq(struct nvme_queue *nvmeq)
914 {
915 u16 head, phase;
916
917 head = nvmeq->cq_head;
918 phase = nvmeq->cq_phase;
919
920 for (;;) {
921 void *ctx;
922 nvme_completion_fn fn;
923 struct nvme_completion cqe = nvmeq->cqes[head];
924 if ((le16_to_cpu(cqe.status) & 1) != phase)
925 break;
926 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
927 if (++head == nvmeq->q_depth) {
928 head = 0;
929 phase = !phase;
930 }
931 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
932 fn(nvmeq, ctx, &cqe);
933 }
934
935 /* If the controller ignores the cq head doorbell and continuously
936 * writes to the queue, it is theoretically possible to wrap around
937 * the queue twice and mistakenly return IRQ_NONE. Linux only
938 * requires that 0.1% of your interrupts are handled, so this isn't
939 * a big problem.
940 */
941 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
942 return 0;
943
944 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
945 nvmeq->cq_head = head;
946 nvmeq->cq_phase = phase;
947
948 nvmeq->cqe_seen = 1;
949 return 1;
950 }
951
952 /* Admin queue isn't initialized as a request queue. If at some point this
953 * happens anyway, make sure to notify the user */
954 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
955 const struct blk_mq_queue_data *bd)
956 {
957 WARN_ON_ONCE(1);
958 return BLK_MQ_RQ_QUEUE_ERROR;
959 }
960
961 static irqreturn_t nvme_irq(int irq, void *data)
962 {
963 irqreturn_t result;
964 struct nvme_queue *nvmeq = data;
965 spin_lock(&nvmeq->q_lock);
966 nvme_process_cq(nvmeq);
967 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
968 nvmeq->cqe_seen = 0;
969 spin_unlock(&nvmeq->q_lock);
970 return result;
971 }
972
973 static irqreturn_t nvme_irq_check(int irq, void *data)
974 {
975 struct nvme_queue *nvmeq = data;
976 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
977 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
978 return IRQ_NONE;
979 return IRQ_WAKE_THREAD;
980 }
981
982 struct sync_cmd_info {
983 struct task_struct *task;
984 u32 result;
985 int status;
986 };
987
988 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
989 struct nvme_completion *cqe)
990 {
991 struct sync_cmd_info *cmdinfo = ctx;
992 cmdinfo->result = le32_to_cpup(&cqe->result);
993 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
994 wake_up_process(cmdinfo->task);
995 }
996
997 /*
998 * Returns 0 on success. If the result is negative, it's a Linux error code;
999 * if the result is positive, it's an NVM Express status code
1000 */
1001 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
1002 u32 *result, unsigned timeout)
1003 {
1004 struct sync_cmd_info cmdinfo;
1005 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1006 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1007
1008 cmdinfo.task = current;
1009 cmdinfo.status = -EINTR;
1010
1011 cmd->common.command_id = req->tag;
1012
1013 nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
1014
1015 set_current_state(TASK_UNINTERRUPTIBLE);
1016 nvme_submit_cmd(nvmeq, cmd);
1017 schedule();
1018
1019 if (result)
1020 *result = cmdinfo.result;
1021 return cmdinfo.status;
1022 }
1023
1024 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1025 {
1026 struct nvme_queue *nvmeq = dev->queues[0];
1027 struct nvme_command c;
1028 struct nvme_cmd_info *cmd_info;
1029 struct request *req;
1030
1031 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
1032 if (IS_ERR(req))
1033 return PTR_ERR(req);
1034
1035 req->cmd_flags |= REQ_NO_TIMEOUT;
1036 cmd_info = blk_mq_rq_to_pdu(req);
1037 nvme_set_info(cmd_info, req, async_req_completion);
1038
1039 memset(&c, 0, sizeof(c));
1040 c.common.opcode = nvme_admin_async_event;
1041 c.common.command_id = req->tag;
1042
1043 return __nvme_submit_cmd(nvmeq, &c);
1044 }
1045
1046 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1047 struct nvme_command *cmd,
1048 struct async_cmd_info *cmdinfo, unsigned timeout)
1049 {
1050 struct nvme_queue *nvmeq = dev->queues[0];
1051 struct request *req;
1052 struct nvme_cmd_info *cmd_rq;
1053
1054 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1055 if (IS_ERR(req))
1056 return PTR_ERR(req);
1057
1058 req->timeout = timeout;
1059 cmd_rq = blk_mq_rq_to_pdu(req);
1060 cmdinfo->req = req;
1061 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1062 cmdinfo->status = -EINTR;
1063
1064 cmd->common.command_id = req->tag;
1065
1066 return nvme_submit_cmd(nvmeq, cmd);
1067 }
1068
1069 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1070 u32 *result, unsigned timeout)
1071 {
1072 int res;
1073 struct request *req;
1074
1075 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1076 if (IS_ERR(req))
1077 return PTR_ERR(req);
1078 res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1079 blk_mq_free_request(req);
1080 return res;
1081 }
1082
1083 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1084 u32 *result)
1085 {
1086 return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1087 }
1088
1089 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1090 struct nvme_command *cmd, u32 *result)
1091 {
1092 int res;
1093 struct request *req;
1094
1095 req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1096 false);
1097 if (IS_ERR(req))
1098 return PTR_ERR(req);
1099 res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1100 blk_mq_free_request(req);
1101 return res;
1102 }
1103
1104 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1105 {
1106 struct nvme_command c;
1107
1108 memset(&c, 0, sizeof(c));
1109 c.delete_queue.opcode = opcode;
1110 c.delete_queue.qid = cpu_to_le16(id);
1111
1112 return nvme_submit_admin_cmd(dev, &c, NULL);
1113 }
1114
1115 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1116 struct nvme_queue *nvmeq)
1117 {
1118 struct nvme_command c;
1119 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1120
1121 memset(&c, 0, sizeof(c));
1122 c.create_cq.opcode = nvme_admin_create_cq;
1123 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1124 c.create_cq.cqid = cpu_to_le16(qid);
1125 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1126 c.create_cq.cq_flags = cpu_to_le16(flags);
1127 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1128
1129 return nvme_submit_admin_cmd(dev, &c, NULL);
1130 }
1131
1132 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1133 struct nvme_queue *nvmeq)
1134 {
1135 struct nvme_command c;
1136 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1137
1138 memset(&c, 0, sizeof(c));
1139 c.create_sq.opcode = nvme_admin_create_sq;
1140 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1141 c.create_sq.sqid = cpu_to_le16(qid);
1142 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1143 c.create_sq.sq_flags = cpu_to_le16(flags);
1144 c.create_sq.cqid = cpu_to_le16(qid);
1145
1146 return nvme_submit_admin_cmd(dev, &c, NULL);
1147 }
1148
1149 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1150 {
1151 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1152 }
1153
1154 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1155 {
1156 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1157 }
1158
1159 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1160 dma_addr_t dma_addr)
1161 {
1162 struct nvme_command c;
1163
1164 memset(&c, 0, sizeof(c));
1165 c.identify.opcode = nvme_admin_identify;
1166 c.identify.nsid = cpu_to_le32(nsid);
1167 c.identify.prp1 = cpu_to_le64(dma_addr);
1168 c.identify.cns = cpu_to_le32(cns);
1169
1170 return nvme_submit_admin_cmd(dev, &c, NULL);
1171 }
1172
1173 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1174 dma_addr_t dma_addr, u32 *result)
1175 {
1176 struct nvme_command c;
1177
1178 memset(&c, 0, sizeof(c));
1179 c.features.opcode = nvme_admin_get_features;
1180 c.features.nsid = cpu_to_le32(nsid);
1181 c.features.prp1 = cpu_to_le64(dma_addr);
1182 c.features.fid = cpu_to_le32(fid);
1183
1184 return nvme_submit_admin_cmd(dev, &c, result);
1185 }
1186
1187 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1188 dma_addr_t dma_addr, u32 *result)
1189 {
1190 struct nvme_command c;
1191
1192 memset(&c, 0, sizeof(c));
1193 c.features.opcode = nvme_admin_set_features;
1194 c.features.prp1 = cpu_to_le64(dma_addr);
1195 c.features.fid = cpu_to_le32(fid);
1196 c.features.dword11 = cpu_to_le32(dword11);
1197
1198 return nvme_submit_admin_cmd(dev, &c, result);
1199 }
1200
1201 /**
1202 * nvme_abort_req - Attempt aborting a request
1203 *
1204 * Schedule controller reset if the command was already aborted once before and
1205 * still hasn't been returned to the driver, or if this is the admin queue.
1206 */
1207 static void nvme_abort_req(struct request *req)
1208 {
1209 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1210 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1211 struct nvme_dev *dev = nvmeq->dev;
1212 struct request *abort_req;
1213 struct nvme_cmd_info *abort_cmd;
1214 struct nvme_command cmd;
1215
1216 if (!nvmeq->qid || cmd_rq->aborted) {
1217 unsigned long flags;
1218
1219 spin_lock_irqsave(&dev_list_lock, flags);
1220 if (work_busy(&dev->reset_work))
1221 goto out;
1222 list_del_init(&dev->node);
1223 dev_warn(&dev->pci_dev->dev,
1224 "I/O %d QID %d timeout, reset controller\n",
1225 req->tag, nvmeq->qid);
1226 dev->reset_workfn = nvme_reset_failed_dev;
1227 queue_work(nvme_workq, &dev->reset_work);
1228 out:
1229 spin_unlock_irqrestore(&dev_list_lock, flags);
1230 return;
1231 }
1232
1233 if (!dev->abort_limit)
1234 return;
1235
1236 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1237 false);
1238 if (IS_ERR(abort_req))
1239 return;
1240
1241 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1242 nvme_set_info(abort_cmd, abort_req, abort_completion);
1243
1244 memset(&cmd, 0, sizeof(cmd));
1245 cmd.abort.opcode = nvme_admin_abort_cmd;
1246 cmd.abort.cid = req->tag;
1247 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1248 cmd.abort.command_id = abort_req->tag;
1249
1250 --dev->abort_limit;
1251 cmd_rq->aborted = 1;
1252
1253 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1254 nvmeq->qid);
1255 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1256 dev_warn(nvmeq->q_dmadev,
1257 "Could not abort I/O %d QID %d",
1258 req->tag, nvmeq->qid);
1259 blk_mq_free_request(abort_req);
1260 }
1261 }
1262
1263 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1264 struct request *req, void *data, bool reserved)
1265 {
1266 struct nvme_queue *nvmeq = data;
1267 void *ctx;
1268 nvme_completion_fn fn;
1269 struct nvme_cmd_info *cmd;
1270 struct nvme_completion cqe;
1271
1272 if (!blk_mq_request_started(req))
1273 return;
1274
1275 cmd = blk_mq_rq_to_pdu(req);
1276
1277 if (cmd->ctx == CMD_CTX_CANCELLED)
1278 return;
1279
1280 if (blk_queue_dying(req->q))
1281 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1282 else
1283 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1284
1285
1286 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1287 req->tag, nvmeq->qid);
1288 ctx = cancel_cmd_info(cmd, &fn);
1289 fn(nvmeq, ctx, &cqe);
1290 }
1291
1292 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1293 {
1294 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1295 struct nvme_queue *nvmeq = cmd->nvmeq;
1296
1297 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1298 nvmeq->qid);
1299 spin_lock_irq(&nvmeq->q_lock);
1300 nvme_abort_req(req);
1301 spin_unlock_irq(&nvmeq->q_lock);
1302
1303 /*
1304 * The aborted req will be completed on receiving the abort req.
1305 * We enable the timer again. If hit twice, it'll cause a device reset,
1306 * as the device then is in a faulty state.
1307 */
1308 return BLK_EH_RESET_TIMER;
1309 }
1310
1311 static void nvme_free_queue(struct nvme_queue *nvmeq)
1312 {
1313 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1314 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1315 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1316 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1317 kfree(nvmeq);
1318 }
1319
1320 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1321 {
1322 int i;
1323
1324 for (i = dev->queue_count - 1; i >= lowest; i--) {
1325 struct nvme_queue *nvmeq = dev->queues[i];
1326 dev->queue_count--;
1327 dev->queues[i] = NULL;
1328 nvme_free_queue(nvmeq);
1329 }
1330 }
1331
1332 /**
1333 * nvme_suspend_queue - put queue into suspended state
1334 * @nvmeq - queue to suspend
1335 */
1336 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1337 {
1338 int vector;
1339
1340 spin_lock_irq(&nvmeq->q_lock);
1341 if (nvmeq->cq_vector == -1) {
1342 spin_unlock_irq(&nvmeq->q_lock);
1343 return 1;
1344 }
1345 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1346 nvmeq->dev->online_queues--;
1347 nvmeq->cq_vector = -1;
1348 spin_unlock_irq(&nvmeq->q_lock);
1349
1350 if (!nvmeq->qid && nvmeq->dev->admin_q)
1351 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1352
1353 irq_set_affinity_hint(vector, NULL);
1354 free_irq(vector, nvmeq);
1355
1356 return 0;
1357 }
1358
1359 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1360 {
1361 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1362
1363 spin_lock_irq(&nvmeq->q_lock);
1364 if (hctx && hctx->tags)
1365 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1366 spin_unlock_irq(&nvmeq->q_lock);
1367 }
1368
1369 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1370 {
1371 struct nvme_queue *nvmeq = dev->queues[qid];
1372
1373 if (!nvmeq)
1374 return;
1375 if (nvme_suspend_queue(nvmeq))
1376 return;
1377
1378 /* Don't tell the adapter to delete the admin queue.
1379 * Don't tell a removed adapter to delete IO queues. */
1380 if (qid && readl(&dev->bar->csts) != -1) {
1381 adapter_delete_sq(dev, qid);
1382 adapter_delete_cq(dev, qid);
1383 }
1384
1385 spin_lock_irq(&nvmeq->q_lock);
1386 nvme_process_cq(nvmeq);
1387 spin_unlock_irq(&nvmeq->q_lock);
1388 }
1389
1390 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1391 int depth)
1392 {
1393 struct device *dmadev = &dev->pci_dev->dev;
1394 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1395 if (!nvmeq)
1396 return NULL;
1397
1398 nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1399 &nvmeq->cq_dma_addr, GFP_KERNEL);
1400 if (!nvmeq->cqes)
1401 goto free_nvmeq;
1402
1403 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1404 &nvmeq->sq_dma_addr, GFP_KERNEL);
1405 if (!nvmeq->sq_cmds)
1406 goto free_cqdma;
1407
1408 nvmeq->q_dmadev = dmadev;
1409 nvmeq->dev = dev;
1410 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1411 dev->instance, qid);
1412 spin_lock_init(&nvmeq->q_lock);
1413 nvmeq->cq_head = 0;
1414 nvmeq->cq_phase = 1;
1415 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1416 nvmeq->q_depth = depth;
1417 nvmeq->qid = qid;
1418 dev->queue_count++;
1419 dev->queues[qid] = nvmeq;
1420
1421 return nvmeq;
1422
1423 free_cqdma:
1424 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1425 nvmeq->cq_dma_addr);
1426 free_nvmeq:
1427 kfree(nvmeq);
1428 return NULL;
1429 }
1430
1431 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1432 const char *name)
1433 {
1434 if (use_threaded_interrupts)
1435 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1436 nvme_irq_check, nvme_irq, IRQF_SHARED,
1437 name, nvmeq);
1438 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1439 IRQF_SHARED, name, nvmeq);
1440 }
1441
1442 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1443 {
1444 struct nvme_dev *dev = nvmeq->dev;
1445
1446 spin_lock_irq(&nvmeq->q_lock);
1447 nvmeq->sq_tail = 0;
1448 nvmeq->cq_head = 0;
1449 nvmeq->cq_phase = 1;
1450 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1451 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1452 dev->online_queues++;
1453 spin_unlock_irq(&nvmeq->q_lock);
1454 }
1455
1456 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1457 {
1458 struct nvme_dev *dev = nvmeq->dev;
1459 int result;
1460
1461 nvmeq->cq_vector = qid - 1;
1462 result = adapter_alloc_cq(dev, qid, nvmeq);
1463 if (result < 0)
1464 return result;
1465
1466 result = adapter_alloc_sq(dev, qid, nvmeq);
1467 if (result < 0)
1468 goto release_cq;
1469
1470 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1471 if (result < 0)
1472 goto release_sq;
1473
1474 nvme_init_queue(nvmeq, qid);
1475 return result;
1476
1477 release_sq:
1478 adapter_delete_sq(dev, qid);
1479 release_cq:
1480 adapter_delete_cq(dev, qid);
1481 return result;
1482 }
1483
1484 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1485 {
1486 unsigned long timeout;
1487 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1488
1489 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1490
1491 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1492 msleep(100);
1493 if (fatal_signal_pending(current))
1494 return -EINTR;
1495 if (time_after(jiffies, timeout)) {
1496 dev_err(&dev->pci_dev->dev,
1497 "Device not ready; aborting %s\n", enabled ?
1498 "initialisation" : "reset");
1499 return -ENODEV;
1500 }
1501 }
1502
1503 return 0;
1504 }
1505
1506 /*
1507 * If the device has been passed off to us in an enabled state, just clear
1508 * the enabled bit. The spec says we should set the 'shutdown notification
1509 * bits', but doing so may cause the device to complete commands to the
1510 * admin queue ... and we don't know what memory that might be pointing at!
1511 */
1512 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1513 {
1514 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1515 dev->ctrl_config &= ~NVME_CC_ENABLE;
1516 writel(dev->ctrl_config, &dev->bar->cc);
1517
1518 return nvme_wait_ready(dev, cap, false);
1519 }
1520
1521 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1522 {
1523 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1524 dev->ctrl_config |= NVME_CC_ENABLE;
1525 writel(dev->ctrl_config, &dev->bar->cc);
1526
1527 return nvme_wait_ready(dev, cap, true);
1528 }
1529
1530 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1531 {
1532 unsigned long timeout;
1533
1534 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1535 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1536
1537 writel(dev->ctrl_config, &dev->bar->cc);
1538
1539 timeout = SHUTDOWN_TIMEOUT + jiffies;
1540 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1541 NVME_CSTS_SHST_CMPLT) {
1542 msleep(100);
1543 if (fatal_signal_pending(current))
1544 return -EINTR;
1545 if (time_after(jiffies, timeout)) {
1546 dev_err(&dev->pci_dev->dev,
1547 "Device shutdown incomplete; abort shutdown\n");
1548 return -ENODEV;
1549 }
1550 }
1551
1552 return 0;
1553 }
1554
1555 static struct blk_mq_ops nvme_mq_admin_ops = {
1556 .queue_rq = nvme_admin_queue_rq,
1557 .map_queue = blk_mq_map_queue,
1558 .init_hctx = nvme_admin_init_hctx,
1559 .exit_hctx = nvme_exit_hctx,
1560 .init_request = nvme_admin_init_request,
1561 .timeout = nvme_timeout,
1562 };
1563
1564 static struct blk_mq_ops nvme_mq_ops = {
1565 .queue_rq = nvme_queue_rq,
1566 .map_queue = blk_mq_map_queue,
1567 .init_hctx = nvme_init_hctx,
1568 .exit_hctx = nvme_exit_hctx,
1569 .init_request = nvme_init_request,
1570 .timeout = nvme_timeout,
1571 };
1572
1573 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1574 {
1575 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1576 blk_cleanup_queue(dev->admin_q);
1577 blk_mq_free_tag_set(&dev->admin_tagset);
1578 }
1579 }
1580
1581 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1582 {
1583 if (!dev->admin_q) {
1584 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1585 dev->admin_tagset.nr_hw_queues = 1;
1586 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1587 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1588 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1589 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1590 dev->admin_tagset.driver_data = dev;
1591
1592 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1593 return -ENOMEM;
1594
1595 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1596 if (IS_ERR(dev->admin_q)) {
1597 blk_mq_free_tag_set(&dev->admin_tagset);
1598 return -ENOMEM;
1599 }
1600 if (!blk_get_queue(dev->admin_q)) {
1601 nvme_dev_remove_admin(dev);
1602 return -ENODEV;
1603 }
1604 } else
1605 blk_mq_unfreeze_queue(dev->admin_q);
1606
1607 return 0;
1608 }
1609
1610 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1611 {
1612 int result;
1613 u32 aqa;
1614 u64 cap = readq(&dev->bar->cap);
1615 struct nvme_queue *nvmeq;
1616 unsigned page_shift = PAGE_SHIFT;
1617 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1618 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1619
1620 if (page_shift < dev_page_min) {
1621 dev_err(&dev->pci_dev->dev,
1622 "Minimum device page size (%u) too large for "
1623 "host (%u)\n", 1 << dev_page_min,
1624 1 << page_shift);
1625 return -ENODEV;
1626 }
1627 if (page_shift > dev_page_max) {
1628 dev_info(&dev->pci_dev->dev,
1629 "Device maximum page size (%u) smaller than "
1630 "host (%u); enabling work-around\n",
1631 1 << dev_page_max, 1 << page_shift);
1632 page_shift = dev_page_max;
1633 }
1634
1635 result = nvme_disable_ctrl(dev, cap);
1636 if (result < 0)
1637 return result;
1638
1639 nvmeq = dev->queues[0];
1640 if (!nvmeq) {
1641 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1642 if (!nvmeq)
1643 return -ENOMEM;
1644 }
1645
1646 aqa = nvmeq->q_depth - 1;
1647 aqa |= aqa << 16;
1648
1649 dev->page_size = 1 << page_shift;
1650
1651 dev->ctrl_config = NVME_CC_CSS_NVM;
1652 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1653 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1654 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1655
1656 writel(aqa, &dev->bar->aqa);
1657 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1658 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1659
1660 result = nvme_enable_ctrl(dev, cap);
1661 if (result)
1662 goto free_nvmeq;
1663
1664 nvmeq->cq_vector = 0;
1665 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1666 if (result)
1667 goto free_nvmeq;
1668
1669 return result;
1670
1671 free_nvmeq:
1672 nvme_free_queues(dev, 0);
1673 return result;
1674 }
1675
1676 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1677 unsigned long addr, unsigned length)
1678 {
1679 int i, err, count, nents, offset;
1680 struct scatterlist *sg;
1681 struct page **pages;
1682 struct nvme_iod *iod;
1683
1684 if (addr & 3)
1685 return ERR_PTR(-EINVAL);
1686 if (!length || length > INT_MAX - PAGE_SIZE)
1687 return ERR_PTR(-EINVAL);
1688
1689 offset = offset_in_page(addr);
1690 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1691 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1692 if (!pages)
1693 return ERR_PTR(-ENOMEM);
1694
1695 err = get_user_pages_fast(addr, count, 1, pages);
1696 if (err < count) {
1697 count = err;
1698 err = -EFAULT;
1699 goto put_pages;
1700 }
1701
1702 err = -ENOMEM;
1703 iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1704 if (!iod)
1705 goto put_pages;
1706
1707 sg = iod->sg;
1708 sg_init_table(sg, count);
1709 for (i = 0; i < count; i++) {
1710 sg_set_page(&sg[i], pages[i],
1711 min_t(unsigned, length, PAGE_SIZE - offset),
1712 offset);
1713 length -= (PAGE_SIZE - offset);
1714 offset = 0;
1715 }
1716 sg_mark_end(&sg[i - 1]);
1717 iod->nents = count;
1718
1719 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1720 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1721 if (!nents)
1722 goto free_iod;
1723
1724 kfree(pages);
1725 return iod;
1726
1727 free_iod:
1728 kfree(iod);
1729 put_pages:
1730 for (i = 0; i < count; i++)
1731 put_page(pages[i]);
1732 kfree(pages);
1733 return ERR_PTR(err);
1734 }
1735
1736 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1737 struct nvme_iod *iod)
1738 {
1739 int i;
1740
1741 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1742 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1743
1744 for (i = 0; i < iod->nents; i++)
1745 put_page(sg_page(&iod->sg[i]));
1746 }
1747
1748 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1749 {
1750 struct nvme_dev *dev = ns->dev;
1751 struct nvme_user_io io;
1752 struct nvme_command c;
1753 unsigned length, meta_len;
1754 int status, i;
1755 struct nvme_iod *iod, *meta_iod = NULL;
1756 dma_addr_t meta_dma_addr;
1757 void *meta, *uninitialized_var(meta_mem);
1758
1759 if (copy_from_user(&io, uio, sizeof(io)))
1760 return -EFAULT;
1761 length = (io.nblocks + 1) << ns->lba_shift;
1762 meta_len = (io.nblocks + 1) * ns->ms;
1763
1764 if (meta_len && ((io.metadata & 3) || !io.metadata))
1765 return -EINVAL;
1766
1767 switch (io.opcode) {
1768 case nvme_cmd_write:
1769 case nvme_cmd_read:
1770 case nvme_cmd_compare:
1771 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1772 break;
1773 default:
1774 return -EINVAL;
1775 }
1776
1777 if (IS_ERR(iod))
1778 return PTR_ERR(iod);
1779
1780 memset(&c, 0, sizeof(c));
1781 c.rw.opcode = io.opcode;
1782 c.rw.flags = io.flags;
1783 c.rw.nsid = cpu_to_le32(ns->ns_id);
1784 c.rw.slba = cpu_to_le64(io.slba);
1785 c.rw.length = cpu_to_le16(io.nblocks);
1786 c.rw.control = cpu_to_le16(io.control);
1787 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1788 c.rw.reftag = cpu_to_le32(io.reftag);
1789 c.rw.apptag = cpu_to_le16(io.apptag);
1790 c.rw.appmask = cpu_to_le16(io.appmask);
1791
1792 if (meta_len) {
1793 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1794 meta_len);
1795 if (IS_ERR(meta_iod)) {
1796 status = PTR_ERR(meta_iod);
1797 meta_iod = NULL;
1798 goto unmap;
1799 }
1800
1801 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1802 &meta_dma_addr, GFP_KERNEL);
1803 if (!meta_mem) {
1804 status = -ENOMEM;
1805 goto unmap;
1806 }
1807
1808 if (io.opcode & 1) {
1809 int meta_offset = 0;
1810
1811 for (i = 0; i < meta_iod->nents; i++) {
1812 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1813 meta_iod->sg[i].offset;
1814 memcpy(meta_mem + meta_offset, meta,
1815 meta_iod->sg[i].length);
1816 kunmap_atomic(meta);
1817 meta_offset += meta_iod->sg[i].length;
1818 }
1819 }
1820
1821 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1822 }
1823
1824 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1825 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1826 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1827
1828 if (length != (io.nblocks + 1) << ns->lba_shift)
1829 status = -ENOMEM;
1830 else
1831 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1832
1833 if (meta_len) {
1834 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1835 int meta_offset = 0;
1836
1837 for (i = 0; i < meta_iod->nents; i++) {
1838 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1839 meta_iod->sg[i].offset;
1840 memcpy(meta, meta_mem + meta_offset,
1841 meta_iod->sg[i].length);
1842 kunmap_atomic(meta);
1843 meta_offset += meta_iod->sg[i].length;
1844 }
1845 }
1846
1847 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1848 meta_dma_addr);
1849 }
1850
1851 unmap:
1852 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1853 nvme_free_iod(dev, iod);
1854
1855 if (meta_iod) {
1856 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1857 nvme_free_iod(dev, meta_iod);
1858 }
1859
1860 return status;
1861 }
1862
1863 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1864 struct nvme_passthru_cmd __user *ucmd)
1865 {
1866 struct nvme_passthru_cmd cmd;
1867 struct nvme_command c;
1868 int status, length;
1869 struct nvme_iod *uninitialized_var(iod);
1870 unsigned timeout;
1871
1872 if (!capable(CAP_SYS_ADMIN))
1873 return -EACCES;
1874 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1875 return -EFAULT;
1876
1877 memset(&c, 0, sizeof(c));
1878 c.common.opcode = cmd.opcode;
1879 c.common.flags = cmd.flags;
1880 c.common.nsid = cpu_to_le32(cmd.nsid);
1881 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1882 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1883 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1884 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1885 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1886 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1887 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1888 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1889
1890 length = cmd.data_len;
1891 if (cmd.data_len) {
1892 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1893 length);
1894 if (IS_ERR(iod))
1895 return PTR_ERR(iod);
1896 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1897 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1898 c.common.prp2 = cpu_to_le64(iod->first_dma);
1899 }
1900
1901 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1902 ADMIN_TIMEOUT;
1903
1904 if (length != cmd.data_len)
1905 status = -ENOMEM;
1906 else if (ns) {
1907 struct request *req;
1908
1909 req = blk_mq_alloc_request(ns->queue, WRITE,
1910 (GFP_KERNEL|__GFP_WAIT), false);
1911 if (IS_ERR(req))
1912 status = PTR_ERR(req);
1913 else {
1914 status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1915 timeout);
1916 blk_mq_free_request(req);
1917 }
1918 } else
1919 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1920
1921 if (cmd.data_len) {
1922 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1923 nvme_free_iod(dev, iod);
1924 }
1925
1926 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1927 sizeof(cmd.result)))
1928 status = -EFAULT;
1929
1930 return status;
1931 }
1932
1933 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1934 unsigned long arg)
1935 {
1936 struct nvme_ns *ns = bdev->bd_disk->private_data;
1937
1938 switch (cmd) {
1939 case NVME_IOCTL_ID:
1940 force_successful_syscall_return();
1941 return ns->ns_id;
1942 case NVME_IOCTL_ADMIN_CMD:
1943 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1944 case NVME_IOCTL_IO_CMD:
1945 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1946 case NVME_IOCTL_SUBMIT_IO:
1947 return nvme_submit_io(ns, (void __user *)arg);
1948 case SG_GET_VERSION_NUM:
1949 return nvme_sg_get_version_num((void __user *)arg);
1950 case SG_IO:
1951 return nvme_sg_io(ns, (void __user *)arg);
1952 default:
1953 return -ENOTTY;
1954 }
1955 }
1956
1957 #ifdef CONFIG_COMPAT
1958 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1959 unsigned int cmd, unsigned long arg)
1960 {
1961 switch (cmd) {
1962 case SG_IO:
1963 return -ENOIOCTLCMD;
1964 }
1965 return nvme_ioctl(bdev, mode, cmd, arg);
1966 }
1967 #else
1968 #define nvme_compat_ioctl NULL
1969 #endif
1970
1971 static int nvme_open(struct block_device *bdev, fmode_t mode)
1972 {
1973 int ret = 0;
1974 struct nvme_ns *ns;
1975
1976 spin_lock(&dev_list_lock);
1977 ns = bdev->bd_disk->private_data;
1978 if (!ns)
1979 ret = -ENXIO;
1980 else if (!kref_get_unless_zero(&ns->dev->kref))
1981 ret = -ENXIO;
1982 spin_unlock(&dev_list_lock);
1983
1984 return ret;
1985 }
1986
1987 static void nvme_free_dev(struct kref *kref);
1988
1989 static void nvme_release(struct gendisk *disk, fmode_t mode)
1990 {
1991 struct nvme_ns *ns = disk->private_data;
1992 struct nvme_dev *dev = ns->dev;
1993
1994 kref_put(&dev->kref, nvme_free_dev);
1995 }
1996
1997 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1998 {
1999 /* some standard values */
2000 geo->heads = 1 << 6;
2001 geo->sectors = 1 << 5;
2002 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
2003 return 0;
2004 }
2005
2006 static void nvme_config_discard(struct nvme_ns *ns)
2007 {
2008 u32 logical_block_size = queue_logical_block_size(ns->queue);
2009 ns->queue->limits.discard_zeroes_data = 0;
2010 ns->queue->limits.discard_alignment = logical_block_size;
2011 ns->queue->limits.discard_granularity = logical_block_size;
2012 ns->queue->limits.max_discard_sectors = 0xffffffff;
2013 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2014 }
2015
2016 static int nvme_revalidate_disk(struct gendisk *disk)
2017 {
2018 struct nvme_ns *ns = disk->private_data;
2019 struct nvme_dev *dev = ns->dev;
2020 struct nvme_id_ns *id;
2021 dma_addr_t dma_addr;
2022 int lbaf, pi_type, old_ms;
2023 unsigned short bs;
2024
2025 id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2026 GFP_KERNEL);
2027 if (!id) {
2028 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2029 __func__);
2030 return 0;
2031 }
2032 if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2033 dev_warn(&dev->pci_dev->dev,
2034 "identify failed ns:%d, setting capacity to 0\n",
2035 ns->ns_id);
2036 memset(id, 0, sizeof(*id));
2037 }
2038
2039 old_ms = ns->ms;
2040 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2041 ns->lba_shift = id->lbaf[lbaf].ds;
2042 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2043
2044 /*
2045 * If identify namespace failed, use default 512 byte block size so
2046 * block layer can use before failing read/write for 0 capacity.
2047 */
2048 if (ns->lba_shift == 0)
2049 ns->lba_shift = 9;
2050 bs = 1 << ns->lba_shift;
2051
2052 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2053 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2054 id->dps & NVME_NS_DPS_PI_MASK : 0;
2055
2056 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2057 ns->ms != old_ms ||
2058 bs != queue_logical_block_size(disk->queue) ||
2059 (ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
2060 blk_integrity_unregister(disk);
2061
2062 ns->pi_type = pi_type;
2063 blk_queue_logical_block_size(ns->queue, bs);
2064
2065 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2066 !(id->flbas & NVME_NS_FLBAS_META_EXT))
2067 nvme_init_integrity(ns);
2068
2069 if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
2070 set_capacity(disk, 0);
2071 else
2072 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2073
2074 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2075 nvme_config_discard(ns);
2076
2077 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2078 return 0;
2079 }
2080
2081 static const struct block_device_operations nvme_fops = {
2082 .owner = THIS_MODULE,
2083 .ioctl = nvme_ioctl,
2084 .compat_ioctl = nvme_compat_ioctl,
2085 .open = nvme_open,
2086 .release = nvme_release,
2087 .getgeo = nvme_getgeo,
2088 .revalidate_disk= nvme_revalidate_disk,
2089 };
2090
2091 static int nvme_kthread(void *data)
2092 {
2093 struct nvme_dev *dev, *next;
2094
2095 while (!kthread_should_stop()) {
2096 set_current_state(TASK_INTERRUPTIBLE);
2097 spin_lock(&dev_list_lock);
2098 list_for_each_entry_safe(dev, next, &dev_list, node) {
2099 int i;
2100 if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2101 if (work_busy(&dev->reset_work))
2102 continue;
2103 list_del_init(&dev->node);
2104 dev_warn(&dev->pci_dev->dev,
2105 "Failed status: %x, reset controller\n",
2106 readl(&dev->bar->csts));
2107 dev->reset_workfn = nvme_reset_failed_dev;
2108 queue_work(nvme_workq, &dev->reset_work);
2109 continue;
2110 }
2111 for (i = 0; i < dev->queue_count; i++) {
2112 struct nvme_queue *nvmeq = dev->queues[i];
2113 if (!nvmeq)
2114 continue;
2115 spin_lock_irq(&nvmeq->q_lock);
2116 nvme_process_cq(nvmeq);
2117
2118 while ((i == 0) && (dev->event_limit > 0)) {
2119 if (nvme_submit_async_admin_req(dev))
2120 break;
2121 dev->event_limit--;
2122 }
2123 spin_unlock_irq(&nvmeq->q_lock);
2124 }
2125 }
2126 spin_unlock(&dev_list_lock);
2127 schedule_timeout(round_jiffies_relative(HZ));
2128 }
2129 return 0;
2130 }
2131
2132 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2133 {
2134 struct nvme_ns *ns;
2135 struct gendisk *disk;
2136 int node = dev_to_node(&dev->pci_dev->dev);
2137
2138 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2139 if (!ns)
2140 return;
2141
2142 ns->queue = blk_mq_init_queue(&dev->tagset);
2143 if (IS_ERR(ns->queue))
2144 goto out_free_ns;
2145 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2146 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2147 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2148 ns->dev = dev;
2149 ns->queue->queuedata = ns;
2150
2151 disk = alloc_disk_node(0, node);
2152 if (!disk)
2153 goto out_free_queue;
2154
2155 ns->ns_id = nsid;
2156 ns->disk = disk;
2157 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2158 list_add_tail(&ns->list, &dev->namespaces);
2159
2160 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2161 if (dev->max_hw_sectors)
2162 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2163 if (dev->stripe_size)
2164 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2165 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2166 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2167
2168 disk->major = nvme_major;
2169 disk->first_minor = 0;
2170 disk->fops = &nvme_fops;
2171 disk->private_data = ns;
2172 disk->queue = ns->queue;
2173 disk->driverfs_dev = dev->device;
2174 disk->flags = GENHD_FL_EXT_DEVT;
2175 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2176
2177 /*
2178 * Initialize capacity to 0 until we establish the namespace format and
2179 * setup integrity extentions if necessary. The revalidate_disk after
2180 * add_disk allows the driver to register with integrity if the format
2181 * requires it.
2182 */
2183 set_capacity(disk, 0);
2184 nvme_revalidate_disk(ns->disk);
2185 add_disk(ns->disk);
2186 if (ns->ms)
2187 revalidate_disk(ns->disk);
2188 return;
2189 out_free_queue:
2190 blk_cleanup_queue(ns->queue);
2191 out_free_ns:
2192 kfree(ns);
2193 }
2194
2195 static void nvme_create_io_queues(struct nvme_dev *dev)
2196 {
2197 unsigned i;
2198
2199 for (i = dev->queue_count; i <= dev->max_qid; i++)
2200 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2201 break;
2202
2203 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2204 if (nvme_create_queue(dev->queues[i], i))
2205 break;
2206 }
2207
2208 static int set_queue_count(struct nvme_dev *dev, int count)
2209 {
2210 int status;
2211 u32 result;
2212 u32 q_count = (count - 1) | ((count - 1) << 16);
2213
2214 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2215 &result);
2216 if (status < 0)
2217 return status;
2218 if (status > 0) {
2219 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2220 status);
2221 return 0;
2222 }
2223 return min(result & 0xffff, result >> 16) + 1;
2224 }
2225
2226 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2227 {
2228 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2229 }
2230
2231 static int nvme_setup_io_queues(struct nvme_dev *dev)
2232 {
2233 struct nvme_queue *adminq = dev->queues[0];
2234 struct pci_dev *pdev = dev->pci_dev;
2235 int result, i, vecs, nr_io_queues, size;
2236
2237 nr_io_queues = num_possible_cpus();
2238 result = set_queue_count(dev, nr_io_queues);
2239 if (result <= 0)
2240 return result;
2241 if (result < nr_io_queues)
2242 nr_io_queues = result;
2243
2244 size = db_bar_size(dev, nr_io_queues);
2245 if (size > 8192) {
2246 iounmap(dev->bar);
2247 do {
2248 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2249 if (dev->bar)
2250 break;
2251 if (!--nr_io_queues)
2252 return -ENOMEM;
2253 size = db_bar_size(dev, nr_io_queues);
2254 } while (1);
2255 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2256 adminq->q_db = dev->dbs;
2257 }
2258
2259 /* Deregister the admin queue's interrupt */
2260 free_irq(dev->entry[0].vector, adminq);
2261
2262 /*
2263 * If we enable msix early due to not intx, disable it again before
2264 * setting up the full range we need.
2265 */
2266 if (!pdev->irq)
2267 pci_disable_msix(pdev);
2268
2269 for (i = 0; i < nr_io_queues; i++)
2270 dev->entry[i].entry = i;
2271 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2272 if (vecs < 0) {
2273 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2274 if (vecs < 0) {
2275 vecs = 1;
2276 } else {
2277 for (i = 0; i < vecs; i++)
2278 dev->entry[i].vector = i + pdev->irq;
2279 }
2280 }
2281
2282 /*
2283 * Should investigate if there's a performance win from allocating
2284 * more queues than interrupt vectors; it might allow the submission
2285 * path to scale better, even if the receive path is limited by the
2286 * number of interrupts.
2287 */
2288 nr_io_queues = vecs;
2289 dev->max_qid = nr_io_queues;
2290
2291 result = queue_request_irq(dev, adminq, adminq->irqname);
2292 if (result)
2293 goto free_queues;
2294
2295 /* Free previously allocated queues that are no longer usable */
2296 nvme_free_queues(dev, nr_io_queues + 1);
2297 nvme_create_io_queues(dev);
2298
2299 return 0;
2300
2301 free_queues:
2302 nvme_free_queues(dev, 1);
2303 return result;
2304 }
2305
2306 /*
2307 * Return: error value if an error occurred setting up the queues or calling
2308 * Identify Device. 0 if these succeeded, even if adding some of the
2309 * namespaces failed. At the moment, these failures are silent. TBD which
2310 * failures should be reported.
2311 */
2312 static int nvme_dev_add(struct nvme_dev *dev)
2313 {
2314 struct pci_dev *pdev = dev->pci_dev;
2315 int res;
2316 unsigned nn, i;
2317 struct nvme_id_ctrl *ctrl;
2318 void *mem;
2319 dma_addr_t dma_addr;
2320 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2321
2322 mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2323 if (!mem)
2324 return -ENOMEM;
2325
2326 res = nvme_identify(dev, 0, 1, dma_addr);
2327 if (res) {
2328 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2329 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2330 return -EIO;
2331 }
2332
2333 ctrl = mem;
2334 nn = le32_to_cpup(&ctrl->nn);
2335 dev->oncs = le16_to_cpup(&ctrl->oncs);
2336 dev->abort_limit = ctrl->acl + 1;
2337 dev->vwc = ctrl->vwc;
2338 dev->event_limit = min(ctrl->aerl + 1, 8);
2339 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2340 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2341 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2342 if (ctrl->mdts)
2343 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2344 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2345 (pdev->device == 0x0953) && ctrl->vs[3]) {
2346 unsigned int max_hw_sectors;
2347
2348 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2349 max_hw_sectors = dev->stripe_size >> (shift - 9);
2350 if (dev->max_hw_sectors) {
2351 dev->max_hw_sectors = min(max_hw_sectors,
2352 dev->max_hw_sectors);
2353 } else
2354 dev->max_hw_sectors = max_hw_sectors;
2355 }
2356 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2357
2358 dev->tagset.ops = &nvme_mq_ops;
2359 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2360 dev->tagset.timeout = NVME_IO_TIMEOUT;
2361 dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2362 dev->tagset.queue_depth =
2363 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2364 dev->tagset.cmd_size = nvme_cmd_size(dev);
2365 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2366 dev->tagset.driver_data = dev;
2367
2368 if (blk_mq_alloc_tag_set(&dev->tagset))
2369 return 0;
2370
2371 for (i = 1; i <= nn; i++)
2372 nvme_alloc_ns(dev, i);
2373
2374 return 0;
2375 }
2376
2377 static int nvme_dev_map(struct nvme_dev *dev)
2378 {
2379 u64 cap;
2380 int bars, result = -ENOMEM;
2381 struct pci_dev *pdev = dev->pci_dev;
2382
2383 if (pci_enable_device_mem(pdev))
2384 return result;
2385
2386 dev->entry[0].vector = pdev->irq;
2387 pci_set_master(pdev);
2388 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2389 if (!bars)
2390 goto disable_pci;
2391
2392 if (pci_request_selected_regions(pdev, bars, "nvme"))
2393 goto disable_pci;
2394
2395 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2396 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2397 goto disable;
2398
2399 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2400 if (!dev->bar)
2401 goto disable;
2402
2403 if (readl(&dev->bar->csts) == -1) {
2404 result = -ENODEV;
2405 goto unmap;
2406 }
2407
2408 /*
2409 * Some devices don't advertse INTx interrupts, pre-enable a single
2410 * MSIX vec for setup. We'll adjust this later.
2411 */
2412 if (!pdev->irq) {
2413 result = pci_enable_msix(pdev, dev->entry, 1);
2414 if (result < 0)
2415 goto unmap;
2416 }
2417
2418 cap = readq(&dev->bar->cap);
2419 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2420 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2421 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2422
2423 return 0;
2424
2425 unmap:
2426 iounmap(dev->bar);
2427 dev->bar = NULL;
2428 disable:
2429 pci_release_regions(pdev);
2430 disable_pci:
2431 pci_disable_device(pdev);
2432 return result;
2433 }
2434
2435 static void nvme_dev_unmap(struct nvme_dev *dev)
2436 {
2437 if (dev->pci_dev->msi_enabled)
2438 pci_disable_msi(dev->pci_dev);
2439 else if (dev->pci_dev->msix_enabled)
2440 pci_disable_msix(dev->pci_dev);
2441
2442 if (dev->bar) {
2443 iounmap(dev->bar);
2444 dev->bar = NULL;
2445 pci_release_regions(dev->pci_dev);
2446 }
2447
2448 if (pci_is_enabled(dev->pci_dev))
2449 pci_disable_device(dev->pci_dev);
2450 }
2451
2452 struct nvme_delq_ctx {
2453 struct task_struct *waiter;
2454 struct kthread_worker *worker;
2455 atomic_t refcount;
2456 };
2457
2458 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2459 {
2460 dq->waiter = current;
2461 mb();
2462
2463 for (;;) {
2464 set_current_state(TASK_KILLABLE);
2465 if (!atomic_read(&dq->refcount))
2466 break;
2467 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2468 fatal_signal_pending(current)) {
2469 /*
2470 * Disable the controller first since we can't trust it
2471 * at this point, but leave the admin queue enabled
2472 * until all queue deletion requests are flushed.
2473 * FIXME: This may take a while if there are more h/w
2474 * queues than admin tags.
2475 */
2476 set_current_state(TASK_RUNNING);
2477 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2478 nvme_clear_queue(dev->queues[0]);
2479 flush_kthread_worker(dq->worker);
2480 nvme_disable_queue(dev, 0);
2481 return;
2482 }
2483 }
2484 set_current_state(TASK_RUNNING);
2485 }
2486
2487 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2488 {
2489 atomic_dec(&dq->refcount);
2490 if (dq->waiter)
2491 wake_up_process(dq->waiter);
2492 }
2493
2494 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2495 {
2496 atomic_inc(&dq->refcount);
2497 return dq;
2498 }
2499
2500 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2501 {
2502 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2503 nvme_put_dq(dq);
2504 }
2505
2506 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2507 kthread_work_func_t fn)
2508 {
2509 struct nvme_command c;
2510
2511 memset(&c, 0, sizeof(c));
2512 c.delete_queue.opcode = opcode;
2513 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2514
2515 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2516 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2517 ADMIN_TIMEOUT);
2518 }
2519
2520 static void nvme_del_cq_work_handler(struct kthread_work *work)
2521 {
2522 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2523 cmdinfo.work);
2524 nvme_del_queue_end(nvmeq);
2525 }
2526
2527 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2528 {
2529 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2530 nvme_del_cq_work_handler);
2531 }
2532
2533 static void nvme_del_sq_work_handler(struct kthread_work *work)
2534 {
2535 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2536 cmdinfo.work);
2537 int status = nvmeq->cmdinfo.status;
2538
2539 if (!status)
2540 status = nvme_delete_cq(nvmeq);
2541 if (status)
2542 nvme_del_queue_end(nvmeq);
2543 }
2544
2545 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2546 {
2547 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2548 nvme_del_sq_work_handler);
2549 }
2550
2551 static void nvme_del_queue_start(struct kthread_work *work)
2552 {
2553 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2554 cmdinfo.work);
2555 if (nvme_delete_sq(nvmeq))
2556 nvme_del_queue_end(nvmeq);
2557 }
2558
2559 static void nvme_disable_io_queues(struct nvme_dev *dev)
2560 {
2561 int i;
2562 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2563 struct nvme_delq_ctx dq;
2564 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2565 &worker, "nvme%d", dev->instance);
2566
2567 if (IS_ERR(kworker_task)) {
2568 dev_err(&dev->pci_dev->dev,
2569 "Failed to create queue del task\n");
2570 for (i = dev->queue_count - 1; i > 0; i--)
2571 nvme_disable_queue(dev, i);
2572 return;
2573 }
2574
2575 dq.waiter = NULL;
2576 atomic_set(&dq.refcount, 0);
2577 dq.worker = &worker;
2578 for (i = dev->queue_count - 1; i > 0; i--) {
2579 struct nvme_queue *nvmeq = dev->queues[i];
2580
2581 if (nvme_suspend_queue(nvmeq))
2582 continue;
2583 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2584 nvmeq->cmdinfo.worker = dq.worker;
2585 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2586 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2587 }
2588 nvme_wait_dq(&dq, dev);
2589 kthread_stop(kworker_task);
2590 }
2591
2592 /*
2593 * Remove the node from the device list and check
2594 * for whether or not we need to stop the nvme_thread.
2595 */
2596 static void nvme_dev_list_remove(struct nvme_dev *dev)
2597 {
2598 struct task_struct *tmp = NULL;
2599
2600 spin_lock(&dev_list_lock);
2601 list_del_init(&dev->node);
2602 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2603 tmp = nvme_thread;
2604 nvme_thread = NULL;
2605 }
2606 spin_unlock(&dev_list_lock);
2607
2608 if (tmp)
2609 kthread_stop(tmp);
2610 }
2611
2612 static void nvme_freeze_queues(struct nvme_dev *dev)
2613 {
2614 struct nvme_ns *ns;
2615
2616 list_for_each_entry(ns, &dev->namespaces, list) {
2617 blk_mq_freeze_queue_start(ns->queue);
2618
2619 spin_lock(ns->queue->queue_lock);
2620 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2621 spin_unlock(ns->queue->queue_lock);
2622
2623 blk_mq_cancel_requeue_work(ns->queue);
2624 blk_mq_stop_hw_queues(ns->queue);
2625 }
2626 }
2627
2628 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2629 {
2630 struct nvme_ns *ns;
2631
2632 list_for_each_entry(ns, &dev->namespaces, list) {
2633 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2634 blk_mq_unfreeze_queue(ns->queue);
2635 blk_mq_start_stopped_hw_queues(ns->queue, true);
2636 blk_mq_kick_requeue_list(ns->queue);
2637 }
2638 }
2639
2640 static void nvme_dev_shutdown(struct nvme_dev *dev)
2641 {
2642 int i;
2643 u32 csts = -1;
2644
2645 nvme_dev_list_remove(dev);
2646
2647 if (dev->bar) {
2648 nvme_freeze_queues(dev);
2649 csts = readl(&dev->bar->csts);
2650 }
2651 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2652 for (i = dev->queue_count - 1; i >= 0; i--) {
2653 struct nvme_queue *nvmeq = dev->queues[i];
2654 nvme_suspend_queue(nvmeq);
2655 }
2656 } else {
2657 nvme_disable_io_queues(dev);
2658 nvme_shutdown_ctrl(dev);
2659 nvme_disable_queue(dev, 0);
2660 }
2661 nvme_dev_unmap(dev);
2662
2663 for (i = dev->queue_count - 1; i >= 0; i--)
2664 nvme_clear_queue(dev->queues[i]);
2665 }
2666
2667 static void nvme_dev_remove(struct nvme_dev *dev)
2668 {
2669 struct nvme_ns *ns;
2670
2671 list_for_each_entry(ns, &dev->namespaces, list) {
2672 if (ns->disk->flags & GENHD_FL_UP) {
2673 if (blk_get_integrity(ns->disk))
2674 blk_integrity_unregister(ns->disk);
2675 del_gendisk(ns->disk);
2676 }
2677 if (!blk_queue_dying(ns->queue)) {
2678 blk_mq_abort_requeue_list(ns->queue);
2679 blk_cleanup_queue(ns->queue);
2680 }
2681 }
2682 }
2683
2684 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2685 {
2686 struct device *dmadev = &dev->pci_dev->dev;
2687 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2688 PAGE_SIZE, PAGE_SIZE, 0);
2689 if (!dev->prp_page_pool)
2690 return -ENOMEM;
2691
2692 /* Optimisation for I/Os between 4k and 128k */
2693 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2694 256, 256, 0);
2695 if (!dev->prp_small_pool) {
2696 dma_pool_destroy(dev->prp_page_pool);
2697 return -ENOMEM;
2698 }
2699 return 0;
2700 }
2701
2702 static void nvme_release_prp_pools(struct nvme_dev *dev)
2703 {
2704 dma_pool_destroy(dev->prp_page_pool);
2705 dma_pool_destroy(dev->prp_small_pool);
2706 }
2707
2708 static DEFINE_IDA(nvme_instance_ida);
2709
2710 static int nvme_set_instance(struct nvme_dev *dev)
2711 {
2712 int instance, error;
2713
2714 do {
2715 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2716 return -ENODEV;
2717
2718 spin_lock(&dev_list_lock);
2719 error = ida_get_new(&nvme_instance_ida, &instance);
2720 spin_unlock(&dev_list_lock);
2721 } while (error == -EAGAIN);
2722
2723 if (error)
2724 return -ENODEV;
2725
2726 dev->instance = instance;
2727 return 0;
2728 }
2729
2730 static void nvme_release_instance(struct nvme_dev *dev)
2731 {
2732 spin_lock(&dev_list_lock);
2733 ida_remove(&nvme_instance_ida, dev->instance);
2734 spin_unlock(&dev_list_lock);
2735 }
2736
2737 static void nvme_free_namespaces(struct nvme_dev *dev)
2738 {
2739 struct nvme_ns *ns, *next;
2740
2741 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2742 list_del(&ns->list);
2743
2744 spin_lock(&dev_list_lock);
2745 ns->disk->private_data = NULL;
2746 spin_unlock(&dev_list_lock);
2747
2748 put_disk(ns->disk);
2749 kfree(ns);
2750 }
2751 }
2752
2753 static void nvme_free_dev(struct kref *kref)
2754 {
2755 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2756
2757 pci_dev_put(dev->pci_dev);
2758 put_device(dev->device);
2759 nvme_free_namespaces(dev);
2760 nvme_release_instance(dev);
2761 blk_mq_free_tag_set(&dev->tagset);
2762 blk_put_queue(dev->admin_q);
2763 kfree(dev->queues);
2764 kfree(dev->entry);
2765 kfree(dev);
2766 }
2767
2768 static int nvme_dev_open(struct inode *inode, struct file *f)
2769 {
2770 struct nvme_dev *dev;
2771 int instance = iminor(inode);
2772 int ret = -ENODEV;
2773
2774 spin_lock(&dev_list_lock);
2775 list_for_each_entry(dev, &dev_list, node) {
2776 if (dev->instance == instance) {
2777 if (!dev->admin_q) {
2778 ret = -EWOULDBLOCK;
2779 break;
2780 }
2781 if (!kref_get_unless_zero(&dev->kref))
2782 break;
2783 f->private_data = dev;
2784 ret = 0;
2785 break;
2786 }
2787 }
2788 spin_unlock(&dev_list_lock);
2789
2790 return ret;
2791 }
2792
2793 static int nvme_dev_release(struct inode *inode, struct file *f)
2794 {
2795 struct nvme_dev *dev = f->private_data;
2796 kref_put(&dev->kref, nvme_free_dev);
2797 return 0;
2798 }
2799
2800 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2801 {
2802 struct nvme_dev *dev = f->private_data;
2803 struct nvme_ns *ns;
2804
2805 switch (cmd) {
2806 case NVME_IOCTL_ADMIN_CMD:
2807 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2808 case NVME_IOCTL_IO_CMD:
2809 if (list_empty(&dev->namespaces))
2810 return -ENOTTY;
2811 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2812 return nvme_user_cmd(dev, ns, (void __user *)arg);
2813 default:
2814 return -ENOTTY;
2815 }
2816 }
2817
2818 static const struct file_operations nvme_dev_fops = {
2819 .owner = THIS_MODULE,
2820 .open = nvme_dev_open,
2821 .release = nvme_dev_release,
2822 .unlocked_ioctl = nvme_dev_ioctl,
2823 .compat_ioctl = nvme_dev_ioctl,
2824 };
2825
2826 static void nvme_set_irq_hints(struct nvme_dev *dev)
2827 {
2828 struct nvme_queue *nvmeq;
2829 int i;
2830
2831 for (i = 0; i < dev->online_queues; i++) {
2832 nvmeq = dev->queues[i];
2833
2834 if (!nvmeq->hctx)
2835 continue;
2836
2837 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2838 nvmeq->hctx->cpumask);
2839 }
2840 }
2841
2842 static int nvme_dev_start(struct nvme_dev *dev)
2843 {
2844 int result;
2845 bool start_thread = false;
2846
2847 result = nvme_dev_map(dev);
2848 if (result)
2849 return result;
2850
2851 result = nvme_configure_admin_queue(dev);
2852 if (result)
2853 goto unmap;
2854
2855 spin_lock(&dev_list_lock);
2856 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2857 start_thread = true;
2858 nvme_thread = NULL;
2859 }
2860 list_add(&dev->node, &dev_list);
2861 spin_unlock(&dev_list_lock);
2862
2863 if (start_thread) {
2864 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2865 wake_up_all(&nvme_kthread_wait);
2866 } else
2867 wait_event_killable(nvme_kthread_wait, nvme_thread);
2868
2869 if (IS_ERR_OR_NULL(nvme_thread)) {
2870 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2871 goto disable;
2872 }
2873
2874 nvme_init_queue(dev->queues[0], 0);
2875 result = nvme_alloc_admin_tags(dev);
2876 if (result)
2877 goto disable;
2878
2879 result = nvme_setup_io_queues(dev);
2880 if (result)
2881 goto free_tags;
2882
2883 nvme_set_irq_hints(dev);
2884
2885 return result;
2886
2887 free_tags:
2888 nvme_dev_remove_admin(dev);
2889 disable:
2890 nvme_disable_queue(dev, 0);
2891 nvme_dev_list_remove(dev);
2892 unmap:
2893 nvme_dev_unmap(dev);
2894 return result;
2895 }
2896
2897 static int nvme_remove_dead_ctrl(void *arg)
2898 {
2899 struct nvme_dev *dev = (struct nvme_dev *)arg;
2900 struct pci_dev *pdev = dev->pci_dev;
2901
2902 if (pci_get_drvdata(pdev))
2903 pci_stop_and_remove_bus_device_locked(pdev);
2904 kref_put(&dev->kref, nvme_free_dev);
2905 return 0;
2906 }
2907
2908 static void nvme_remove_disks(struct work_struct *ws)
2909 {
2910 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2911
2912 nvme_free_queues(dev, 1);
2913 nvme_dev_remove(dev);
2914 }
2915
2916 static int nvme_dev_resume(struct nvme_dev *dev)
2917 {
2918 int ret;
2919
2920 ret = nvme_dev_start(dev);
2921 if (ret)
2922 return ret;
2923 if (dev->online_queues < 2) {
2924 spin_lock(&dev_list_lock);
2925 dev->reset_workfn = nvme_remove_disks;
2926 queue_work(nvme_workq, &dev->reset_work);
2927 spin_unlock(&dev_list_lock);
2928 } else {
2929 nvme_unfreeze_queues(dev);
2930 nvme_set_irq_hints(dev);
2931 }
2932 return 0;
2933 }
2934
2935 static void nvme_dev_reset(struct nvme_dev *dev)
2936 {
2937 nvme_dev_shutdown(dev);
2938 if (nvme_dev_resume(dev)) {
2939 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2940 kref_get(&dev->kref);
2941 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2942 dev->instance))) {
2943 dev_err(&dev->pci_dev->dev,
2944 "Failed to start controller remove task\n");
2945 kref_put(&dev->kref, nvme_free_dev);
2946 }
2947 }
2948 }
2949
2950 static void nvme_reset_failed_dev(struct work_struct *ws)
2951 {
2952 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2953 nvme_dev_reset(dev);
2954 }
2955
2956 static void nvme_reset_workfn(struct work_struct *work)
2957 {
2958 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2959 dev->reset_workfn(work);
2960 }
2961
2962 static void nvme_async_probe(struct work_struct *work);
2963 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2964 {
2965 int node, result = -ENOMEM;
2966 struct nvme_dev *dev;
2967
2968 node = dev_to_node(&pdev->dev);
2969 if (node == NUMA_NO_NODE)
2970 set_dev_node(&pdev->dev, 0);
2971
2972 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2973 if (!dev)
2974 return -ENOMEM;
2975 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2976 GFP_KERNEL, node);
2977 if (!dev->entry)
2978 goto free;
2979 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2980 GFP_KERNEL, node);
2981 if (!dev->queues)
2982 goto free;
2983
2984 INIT_LIST_HEAD(&dev->namespaces);
2985 dev->reset_workfn = nvme_reset_failed_dev;
2986 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2987 dev->pci_dev = pci_dev_get(pdev);
2988 pci_set_drvdata(pdev, dev);
2989 result = nvme_set_instance(dev);
2990 if (result)
2991 goto put_pci;
2992
2993 result = nvme_setup_prp_pools(dev);
2994 if (result)
2995 goto release;
2996
2997 kref_init(&dev->kref);
2998 dev->device = device_create(nvme_class, &pdev->dev,
2999 MKDEV(nvme_char_major, dev->instance),
3000 dev, "nvme%d", dev->instance);
3001 if (IS_ERR(dev->device)) {
3002 result = PTR_ERR(dev->device);
3003 goto release_pools;
3004 }
3005 get_device(dev->device);
3006
3007 INIT_WORK(&dev->probe_work, nvme_async_probe);
3008 schedule_work(&dev->probe_work);
3009 return 0;
3010
3011 release_pools:
3012 nvme_release_prp_pools(dev);
3013 release:
3014 nvme_release_instance(dev);
3015 put_pci:
3016 pci_dev_put(dev->pci_dev);
3017 free:
3018 kfree(dev->queues);
3019 kfree(dev->entry);
3020 kfree(dev);
3021 return result;
3022 }
3023
3024 static void nvme_async_probe(struct work_struct *work)
3025 {
3026 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3027 int result;
3028
3029 result = nvme_dev_start(dev);
3030 if (result)
3031 goto reset;
3032
3033 if (dev->online_queues > 1)
3034 result = nvme_dev_add(dev);
3035 if (result)
3036 goto reset;
3037
3038 nvme_set_irq_hints(dev);
3039 return;
3040 reset:
3041 if (!work_busy(&dev->reset_work)) {
3042 dev->reset_workfn = nvme_reset_failed_dev;
3043 queue_work(nvme_workq, &dev->reset_work);
3044 }
3045 }
3046
3047 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3048 {
3049 struct nvme_dev *dev = pci_get_drvdata(pdev);
3050
3051 if (prepare)
3052 nvme_dev_shutdown(dev);
3053 else
3054 nvme_dev_resume(dev);
3055 }
3056
3057 static void nvme_shutdown(struct pci_dev *pdev)
3058 {
3059 struct nvme_dev *dev = pci_get_drvdata(pdev);
3060 nvme_dev_shutdown(dev);
3061 }
3062
3063 static void nvme_remove(struct pci_dev *pdev)
3064 {
3065 struct nvme_dev *dev = pci_get_drvdata(pdev);
3066
3067 spin_lock(&dev_list_lock);
3068 list_del_init(&dev->node);
3069 spin_unlock(&dev_list_lock);
3070
3071 pci_set_drvdata(pdev, NULL);
3072 flush_work(&dev->probe_work);
3073 flush_work(&dev->reset_work);
3074 nvme_dev_shutdown(dev);
3075 nvme_dev_remove(dev);
3076 nvme_dev_remove_admin(dev);
3077 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3078 nvme_free_queues(dev, 0);
3079 nvme_release_prp_pools(dev);
3080 kref_put(&dev->kref, nvme_free_dev);
3081 }
3082
3083 /* These functions are yet to be implemented */
3084 #define nvme_error_detected NULL
3085 #define nvme_dump_registers NULL
3086 #define nvme_link_reset NULL
3087 #define nvme_slot_reset NULL
3088 #define nvme_error_resume NULL
3089
3090 #ifdef CONFIG_PM_SLEEP
3091 static int nvme_suspend(struct device *dev)
3092 {
3093 struct pci_dev *pdev = to_pci_dev(dev);
3094 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3095
3096 nvme_dev_shutdown(ndev);
3097 return 0;
3098 }
3099
3100 static int nvme_resume(struct device *dev)
3101 {
3102 struct pci_dev *pdev = to_pci_dev(dev);
3103 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3104
3105 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3106 ndev->reset_workfn = nvme_reset_failed_dev;
3107 queue_work(nvme_workq, &ndev->reset_work);
3108 }
3109 return 0;
3110 }
3111 #endif
3112
3113 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3114
3115 static const struct pci_error_handlers nvme_err_handler = {
3116 .error_detected = nvme_error_detected,
3117 .mmio_enabled = nvme_dump_registers,
3118 .link_reset = nvme_link_reset,
3119 .slot_reset = nvme_slot_reset,
3120 .resume = nvme_error_resume,
3121 .reset_notify = nvme_reset_notify,
3122 };
3123
3124 /* Move to pci_ids.h later */
3125 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
3126
3127 static const struct pci_device_id nvme_id_table[] = {
3128 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3129 { 0, }
3130 };
3131 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3132
3133 static struct pci_driver nvme_driver = {
3134 .name = "nvme",
3135 .id_table = nvme_id_table,
3136 .probe = nvme_probe,
3137 .remove = nvme_remove,
3138 .shutdown = nvme_shutdown,
3139 .driver = {
3140 .pm = &nvme_dev_pm_ops,
3141 },
3142 .err_handler = &nvme_err_handler,
3143 };
3144
3145 static int __init nvme_init(void)
3146 {
3147 int result;
3148
3149 init_waitqueue_head(&nvme_kthread_wait);
3150
3151 nvme_workq = create_singlethread_workqueue("nvme");
3152 if (!nvme_workq)
3153 return -ENOMEM;
3154
3155 result = register_blkdev(nvme_major, "nvme");
3156 if (result < 0)
3157 goto kill_workq;
3158 else if (result > 0)
3159 nvme_major = result;
3160
3161 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3162 &nvme_dev_fops);
3163 if (result < 0)
3164 goto unregister_blkdev;
3165 else if (result > 0)
3166 nvme_char_major = result;
3167
3168 nvme_class = class_create(THIS_MODULE, "nvme");
3169 if (!nvme_class)
3170 goto unregister_chrdev;
3171
3172 result = pci_register_driver(&nvme_driver);
3173 if (result)
3174 goto destroy_class;
3175 return 0;
3176
3177 destroy_class:
3178 class_destroy(nvme_class);
3179 unregister_chrdev:
3180 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3181 unregister_blkdev:
3182 unregister_blkdev(nvme_major, "nvme");
3183 kill_workq:
3184 destroy_workqueue(nvme_workq);
3185 return result;
3186 }
3187
3188 static void __exit nvme_exit(void)
3189 {
3190 pci_unregister_driver(&nvme_driver);
3191 unregister_blkdev(nvme_major, "nvme");
3192 destroy_workqueue(nvme_workq);
3193 class_destroy(nvme_class);
3194 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3195 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3196 _nvme_check_size();
3197 }
3198
3199 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3200 MODULE_LICENSE("GPL");
3201 MODULE_VERSION("1.0");
3202 module_init(nvme_init);
3203 module_exit(nvme_exit);