]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/nvme.c
NVMe: Let the kthread take care of devices earlier
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/version.h>
40
41 #define NVME_Q_DEPTH 1024
42 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
43 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
44 #define NVME_MINORS 64
45 #define IO_TIMEOUT (5 * HZ)
46 #define ADMIN_TIMEOUT (60 * HZ)
47
48 static int nvme_major;
49 module_param(nvme_major, int, 0);
50
51 static int use_threaded_interrupts;
52 module_param(use_threaded_interrupts, int, 0);
53
54 static DEFINE_SPINLOCK(dev_list_lock);
55 static LIST_HEAD(dev_list);
56 static struct task_struct *nvme_thread;
57
58 /*
59 * Represents an NVM Express device. Each nvme_dev is a PCI function.
60 */
61 struct nvme_dev {
62 struct list_head node;
63 struct nvme_queue **queues;
64 u32 __iomem *dbs;
65 struct pci_dev *pci_dev;
66 struct dma_pool *prp_page_pool;
67 struct dma_pool *prp_small_pool;
68 int instance;
69 int queue_count;
70 u32 ctrl_config;
71 struct msix_entry *entry;
72 struct nvme_bar __iomem *bar;
73 struct list_head namespaces;
74 char serial[20];
75 char model[40];
76 char firmware_rev[8];
77 };
78
79 /*
80 * An NVM Express namespace is equivalent to a SCSI LUN
81 */
82 struct nvme_ns {
83 struct list_head list;
84
85 struct nvme_dev *dev;
86 struct request_queue *queue;
87 struct gendisk *disk;
88
89 int ns_id;
90 int lba_shift;
91 };
92
93 /*
94 * An NVM Express queue. Each device has at least two (one for admin
95 * commands and one for I/O commands).
96 */
97 struct nvme_queue {
98 struct device *q_dmadev;
99 struct nvme_dev *dev;
100 spinlock_t q_lock;
101 struct nvme_command *sq_cmds;
102 volatile struct nvme_completion *cqes;
103 dma_addr_t sq_dma_addr;
104 dma_addr_t cq_dma_addr;
105 wait_queue_head_t sq_full;
106 wait_queue_t sq_cong_wait;
107 struct bio_list sq_cong;
108 u32 __iomem *q_db;
109 u16 q_depth;
110 u16 cq_vector;
111 u16 sq_head;
112 u16 sq_tail;
113 u16 cq_head;
114 u16 cq_phase;
115 unsigned long cmdid_data[];
116 };
117
118 /*
119 * Check we didin't inadvertently grow the command struct
120 */
121 static inline void _nvme_check_size(void)
122 {
123 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132 }
133
134 struct nvme_cmd_info {
135 unsigned long ctx;
136 unsigned long timeout;
137 };
138
139 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140 {
141 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142 }
143
144 /**
145 * alloc_cmdid - Allocate a Command ID
146 * @param nvmeq The queue that will be used for this command
147 * @param ctx A pointer that will be passed to the handler
148 * @param handler The ID of the handler to call
149 *
150 * Allocate a Command ID for a queue. The data passed in will
151 * be passed to the completion handler. This is implemented by using
152 * the bottom two bits of the ctx pointer to store the handler ID.
153 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154 * We can change this if it becomes a problem.
155 */
156 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157 unsigned timeout)
158 {
159 int depth = nvmeq->q_depth;
160 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161 int cmdid;
162
163 BUG_ON((unsigned long)ctx & 3);
164
165 do {
166 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167 if (cmdid >= depth)
168 return -EBUSY;
169 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
171 info[cmdid].ctx = (unsigned long)ctx | handler;
172 info[cmdid].timeout = jiffies + timeout;
173 return cmdid;
174 }
175
176 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177 int handler, unsigned timeout)
178 {
179 int cmdid;
180 wait_event_killable(nvmeq->sq_full,
181 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182 return (cmdid < 0) ? -EINTR : cmdid;
183 }
184
185 /* If you need more than four handlers, you'll need to change how
186 * alloc_cmdid and nvme_process_cq work. Consider using a special
187 * CMD_CTX value instead, if that works for your situation.
188 */
189 enum {
190 sync_completion_id = 0,
191 bio_completion_id,
192 };
193
194 #define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
195 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
196 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
197 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
198
199 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
200 {
201 unsigned long data;
202 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
203
204 if (cmdid >= nvmeq->q_depth)
205 return CMD_CTX_INVALID;
206 data = info[cmdid].ctx;
207 info[cmdid].ctx = CMD_CTX_COMPLETED;
208 clear_bit(cmdid, nvmeq->cmdid_data);
209 wake_up(&nvmeq->sq_full);
210 return data;
211 }
212
213 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
214 {
215 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
216 info[cmdid].ctx = CMD_CTX_CANCELLED;
217 }
218
219 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
220 {
221 int qid, cpu = get_cpu();
222 if (cpu < ns->dev->queue_count)
223 qid = cpu + 1;
224 else
225 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
226 return ns->dev->queues[qid];
227 }
228
229 static void put_nvmeq(struct nvme_queue *nvmeq)
230 {
231 put_cpu();
232 }
233
234 /**
235 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
236 * @nvmeq: The queue to use
237 * @cmd: The command to send
238 *
239 * Safe to use from interrupt context
240 */
241 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
242 {
243 unsigned long flags;
244 u16 tail;
245 /* XXX: Need to check tail isn't going to overrun head */
246 spin_lock_irqsave(&nvmeq->q_lock, flags);
247 tail = nvmeq->sq_tail;
248 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
249 writel(tail, nvmeq->q_db);
250 if (++tail == nvmeq->q_depth)
251 tail = 0;
252 nvmeq->sq_tail = tail;
253 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
254
255 return 0;
256 }
257
258 struct nvme_prps {
259 int npages;
260 dma_addr_t first_dma;
261 __le64 *list[0];
262 };
263
264 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
265 {
266 const int last_prp = PAGE_SIZE / 8 - 1;
267 int i;
268 dma_addr_t prp_dma;
269
270 if (!prps)
271 return;
272
273 prp_dma = prps->first_dma;
274
275 if (prps->npages == 0)
276 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
277 for (i = 0; i < prps->npages; i++) {
278 __le64 *prp_list = prps->list[i];
279 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
280 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
281 prp_dma = next_prp_dma;
282 }
283 kfree(prps);
284 }
285
286 struct nvme_bio {
287 struct bio *bio;
288 int nents;
289 struct nvme_prps *prps;
290 struct scatterlist sg[0];
291 };
292
293 /* XXX: use a mempool */
294 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
295 {
296 return kzalloc(sizeof(struct nvme_bio) +
297 sizeof(struct scatterlist) * nseg, gfp);
298 }
299
300 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
301 {
302 nvme_free_prps(nvmeq->dev, nbio->prps);
303 kfree(nbio);
304 }
305
306 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
307 struct nvme_completion *cqe)
308 {
309 struct nvme_bio *nbio = ctx;
310 struct bio *bio = nbio->bio;
311 u16 status = le16_to_cpup(&cqe->status) >> 1;
312
313 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
314 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
315 free_nbio(nvmeq, nbio);
316 bio_endio(bio, status ? -EIO : 0);
317 }
318
319 /* length is in bytes */
320 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
321 struct nvme_common_command *cmd,
322 struct scatterlist *sg, int length)
323 {
324 struct dma_pool *pool;
325 int dma_len = sg_dma_len(sg);
326 u64 dma_addr = sg_dma_address(sg);
327 int offset = offset_in_page(dma_addr);
328 __le64 *prp_list;
329 dma_addr_t prp_dma;
330 int nprps, npages, i, prp_page;
331 struct nvme_prps *prps = NULL;
332
333 cmd->prp1 = cpu_to_le64(dma_addr);
334 length -= (PAGE_SIZE - offset);
335 if (length <= 0)
336 return prps;
337
338 dma_len -= (PAGE_SIZE - offset);
339 if (dma_len) {
340 dma_addr += (PAGE_SIZE - offset);
341 } else {
342 sg = sg_next(sg);
343 dma_addr = sg_dma_address(sg);
344 dma_len = sg_dma_len(sg);
345 }
346
347 if (length <= PAGE_SIZE) {
348 cmd->prp2 = cpu_to_le64(dma_addr);
349 return prps;
350 }
351
352 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
353 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
354 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
355 prp_page = 0;
356 if (nprps <= (256 / 8)) {
357 pool = dev->prp_small_pool;
358 prps->npages = 0;
359 } else {
360 pool = dev->prp_page_pool;
361 prps->npages = npages;
362 }
363
364 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
365 prps->list[prp_page++] = prp_list;
366 prps->first_dma = prp_dma;
367 cmd->prp2 = cpu_to_le64(prp_dma);
368 i = 0;
369 for (;;) {
370 if (i == PAGE_SIZE / 8 - 1) {
371 __le64 *old_prp_list = prp_list;
372 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
373 prps->list[prp_page++] = prp_list;
374 old_prp_list[i] = cpu_to_le64(prp_dma);
375 i = 0;
376 }
377 prp_list[i++] = cpu_to_le64(dma_addr);
378 dma_len -= PAGE_SIZE;
379 dma_addr += PAGE_SIZE;
380 length -= PAGE_SIZE;
381 if (length <= 0)
382 break;
383 if (dma_len > 0)
384 continue;
385 BUG_ON(dma_len < 0);
386 sg = sg_next(sg);
387 dma_addr = sg_dma_address(sg);
388 dma_len = sg_dma_len(sg);
389 }
390
391 return prps;
392 }
393
394 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
395 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
396 {
397 struct bio_vec *bvec, *bvprv = NULL;
398 struct scatterlist *sg = NULL;
399 int i, nsegs = 0;
400
401 sg_init_table(nbio->sg, psegs);
402 bio_for_each_segment(bvec, bio, i) {
403 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
404 sg->length += bvec->bv_len;
405 } else {
406 /* Check bvprv && offset == 0 */
407 sg = sg ? sg + 1 : nbio->sg;
408 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
409 bvec->bv_offset);
410 nsegs++;
411 }
412 bvprv = bvec;
413 }
414 nbio->nents = nsegs;
415 sg_mark_end(sg);
416 return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
417 }
418
419 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
420 struct bio *bio)
421 {
422 struct nvme_command *cmnd;
423 struct nvme_bio *nbio;
424 enum dma_data_direction dma_dir;
425 int cmdid, result = -ENOMEM;
426 u16 control;
427 u32 dsmgmt;
428 int psegs = bio_phys_segments(ns->queue, bio);
429
430 nbio = alloc_nbio(psegs, GFP_ATOMIC);
431 if (!nbio)
432 goto nomem;
433 nbio->bio = bio;
434
435 result = -EBUSY;
436 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
437 if (unlikely(cmdid < 0))
438 goto free_nbio;
439
440 control = 0;
441 if (bio->bi_rw & REQ_FUA)
442 control |= NVME_RW_FUA;
443 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
444 control |= NVME_RW_LR;
445
446 dsmgmt = 0;
447 if (bio->bi_rw & REQ_RAHEAD)
448 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
449
450 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
451
452 memset(cmnd, 0, sizeof(*cmnd));
453 if (bio_data_dir(bio)) {
454 cmnd->rw.opcode = nvme_cmd_write;
455 dma_dir = DMA_TO_DEVICE;
456 } else {
457 cmnd->rw.opcode = nvme_cmd_read;
458 dma_dir = DMA_FROM_DEVICE;
459 }
460
461 result = -ENOMEM;
462 if (nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs) == 0)
463 goto free_nbio;
464
465 cmnd->rw.command_id = cmdid;
466 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
467 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
468 bio->bi_size);
469 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
470 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
471 cmnd->rw.control = cpu_to_le16(control);
472 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
473
474 writel(nvmeq->sq_tail, nvmeq->q_db);
475 if (++nvmeq->sq_tail == nvmeq->q_depth)
476 nvmeq->sq_tail = 0;
477
478 return 0;
479
480 free_nbio:
481 free_nbio(nvmeq, nbio);
482 nomem:
483 return result;
484 }
485
486 /*
487 * NB: return value of non-zero would mean that we were a stacking driver.
488 * make_request must always succeed.
489 */
490 static int nvme_make_request(struct request_queue *q, struct bio *bio)
491 {
492 struct nvme_ns *ns = q->queuedata;
493 struct nvme_queue *nvmeq = get_nvmeq(ns);
494 int result = -EBUSY;
495
496 spin_lock_irq(&nvmeq->q_lock);
497 if (bio_list_empty(&nvmeq->sq_cong))
498 result = nvme_submit_bio_queue(nvmeq, ns, bio);
499 if (unlikely(result)) {
500 if (bio_list_empty(&nvmeq->sq_cong))
501 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
502 bio_list_add(&nvmeq->sq_cong, bio);
503 }
504
505 spin_unlock_irq(&nvmeq->q_lock);
506 put_nvmeq(nvmeq);
507
508 return 0;
509 }
510
511 struct sync_cmd_info {
512 struct task_struct *task;
513 u32 result;
514 int status;
515 };
516
517 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
518 struct nvme_completion *cqe)
519 {
520 struct sync_cmd_info *cmdinfo = ctx;
521 if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
522 return;
523 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
524 dev_warn(nvmeq->q_dmadev,
525 "completed id %d twice on queue %d\n",
526 cqe->command_id, le16_to_cpup(&cqe->sq_id));
527 return;
528 }
529 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
530 dev_warn(nvmeq->q_dmadev,
531 "invalid id %d completed on queue %d\n",
532 cqe->command_id, le16_to_cpup(&cqe->sq_id));
533 return;
534 }
535 cmdinfo->result = le32_to_cpup(&cqe->result);
536 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
537 wake_up_process(cmdinfo->task);
538 }
539
540 typedef void (*completion_fn)(struct nvme_queue *, void *,
541 struct nvme_completion *);
542
543 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
544 {
545 u16 head, phase;
546
547 static const completion_fn completions[4] = {
548 [sync_completion_id] = sync_completion,
549 [bio_completion_id] = bio_completion,
550 };
551
552 head = nvmeq->cq_head;
553 phase = nvmeq->cq_phase;
554
555 for (;;) {
556 unsigned long data;
557 void *ptr;
558 unsigned char handler;
559 struct nvme_completion cqe = nvmeq->cqes[head];
560 if ((le16_to_cpu(cqe.status) & 1) != phase)
561 break;
562 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
563 if (++head == nvmeq->q_depth) {
564 head = 0;
565 phase = !phase;
566 }
567
568 data = free_cmdid(nvmeq, cqe.command_id);
569 handler = data & 3;
570 ptr = (void *)(data & ~3UL);
571 completions[handler](nvmeq, ptr, &cqe);
572 }
573
574 /* If the controller ignores the cq head doorbell and continuously
575 * writes to the queue, it is theoretically possible to wrap around
576 * the queue twice and mistakenly return IRQ_NONE. Linux only
577 * requires that 0.1% of your interrupts are handled, so this isn't
578 * a big problem.
579 */
580 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
581 return IRQ_NONE;
582
583 writel(head, nvmeq->q_db + 1);
584 nvmeq->cq_head = head;
585 nvmeq->cq_phase = phase;
586
587 return IRQ_HANDLED;
588 }
589
590 static irqreturn_t nvme_irq(int irq, void *data)
591 {
592 irqreturn_t result;
593 struct nvme_queue *nvmeq = data;
594 spin_lock(&nvmeq->q_lock);
595 result = nvme_process_cq(nvmeq);
596 spin_unlock(&nvmeq->q_lock);
597 return result;
598 }
599
600 static irqreturn_t nvme_irq_check(int irq, void *data)
601 {
602 struct nvme_queue *nvmeq = data;
603 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
604 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
605 return IRQ_NONE;
606 return IRQ_WAKE_THREAD;
607 }
608
609 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
610 {
611 spin_lock_irq(&nvmeq->q_lock);
612 cancel_cmdid_data(nvmeq, cmdid);
613 spin_unlock_irq(&nvmeq->q_lock);
614 }
615
616 /*
617 * Returns 0 on success. If the result is negative, it's a Linux error code;
618 * if the result is positive, it's an NVM Express status code
619 */
620 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
621 struct nvme_command *cmd, u32 *result, unsigned timeout)
622 {
623 int cmdid;
624 struct sync_cmd_info cmdinfo;
625
626 cmdinfo.task = current;
627 cmdinfo.status = -EINTR;
628
629 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
630 timeout);
631 if (cmdid < 0)
632 return cmdid;
633 cmd->common.command_id = cmdid;
634
635 set_current_state(TASK_KILLABLE);
636 nvme_submit_cmd(nvmeq, cmd);
637 schedule();
638
639 if (cmdinfo.status == -EINTR) {
640 nvme_abort_command(nvmeq, cmdid);
641 return -EINTR;
642 }
643
644 if (result)
645 *result = cmdinfo.result;
646
647 return cmdinfo.status;
648 }
649
650 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
651 u32 *result)
652 {
653 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
654 }
655
656 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
657 {
658 int status;
659 struct nvme_command c;
660
661 memset(&c, 0, sizeof(c));
662 c.delete_queue.opcode = opcode;
663 c.delete_queue.qid = cpu_to_le16(id);
664
665 status = nvme_submit_admin_cmd(dev, &c, NULL);
666 if (status)
667 return -EIO;
668 return 0;
669 }
670
671 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
672 struct nvme_queue *nvmeq)
673 {
674 int status;
675 struct nvme_command c;
676 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
677
678 memset(&c, 0, sizeof(c));
679 c.create_cq.opcode = nvme_admin_create_cq;
680 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
681 c.create_cq.cqid = cpu_to_le16(qid);
682 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
683 c.create_cq.cq_flags = cpu_to_le16(flags);
684 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
685
686 status = nvme_submit_admin_cmd(dev, &c, NULL);
687 if (status)
688 return -EIO;
689 return 0;
690 }
691
692 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
693 struct nvme_queue *nvmeq)
694 {
695 int status;
696 struct nvme_command c;
697 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
698
699 memset(&c, 0, sizeof(c));
700 c.create_sq.opcode = nvme_admin_create_sq;
701 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
702 c.create_sq.sqid = cpu_to_le16(qid);
703 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
704 c.create_sq.sq_flags = cpu_to_le16(flags);
705 c.create_sq.cqid = cpu_to_le16(qid);
706
707 status = nvme_submit_admin_cmd(dev, &c, NULL);
708 if (status)
709 return -EIO;
710 return 0;
711 }
712
713 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
714 {
715 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
716 }
717
718 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
719 {
720 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
721 }
722
723 static void nvme_free_queue(struct nvme_dev *dev, int qid)
724 {
725 struct nvme_queue *nvmeq = dev->queues[qid];
726
727 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
728
729 /* Don't tell the adapter to delete the admin queue */
730 if (qid) {
731 adapter_delete_sq(dev, qid);
732 adapter_delete_cq(dev, qid);
733 }
734
735 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
736 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
737 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
738 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
739 kfree(nvmeq);
740 }
741
742 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
743 int depth, int vector)
744 {
745 struct device *dmadev = &dev->pci_dev->dev;
746 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
747 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
748 if (!nvmeq)
749 return NULL;
750
751 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
752 &nvmeq->cq_dma_addr, GFP_KERNEL);
753 if (!nvmeq->cqes)
754 goto free_nvmeq;
755 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
756
757 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
758 &nvmeq->sq_dma_addr, GFP_KERNEL);
759 if (!nvmeq->sq_cmds)
760 goto free_cqdma;
761
762 nvmeq->q_dmadev = dmadev;
763 nvmeq->dev = dev;
764 spin_lock_init(&nvmeq->q_lock);
765 nvmeq->cq_head = 0;
766 nvmeq->cq_phase = 1;
767 init_waitqueue_head(&nvmeq->sq_full);
768 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
769 bio_list_init(&nvmeq->sq_cong);
770 nvmeq->q_db = &dev->dbs[qid * 2];
771 nvmeq->q_depth = depth;
772 nvmeq->cq_vector = vector;
773
774 return nvmeq;
775
776 free_cqdma:
777 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
778 nvmeq->cq_dma_addr);
779 free_nvmeq:
780 kfree(nvmeq);
781 return NULL;
782 }
783
784 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
785 const char *name)
786 {
787 if (use_threaded_interrupts)
788 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
789 nvme_irq_check, nvme_irq,
790 IRQF_DISABLED | IRQF_SHARED,
791 name, nvmeq);
792 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
793 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
794 }
795
796 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
797 int qid, int cq_size, int vector)
798 {
799 int result;
800 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
801
802 if (!nvmeq)
803 return NULL;
804
805 result = adapter_alloc_cq(dev, qid, nvmeq);
806 if (result < 0)
807 goto free_nvmeq;
808
809 result = adapter_alloc_sq(dev, qid, nvmeq);
810 if (result < 0)
811 goto release_cq;
812
813 result = queue_request_irq(dev, nvmeq, "nvme");
814 if (result < 0)
815 goto release_sq;
816
817 return nvmeq;
818
819 release_sq:
820 adapter_delete_sq(dev, qid);
821 release_cq:
822 adapter_delete_cq(dev, qid);
823 free_nvmeq:
824 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
825 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
826 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
827 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
828 kfree(nvmeq);
829 return NULL;
830 }
831
832 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
833 {
834 int result;
835 u32 aqa;
836 struct nvme_queue *nvmeq;
837
838 dev->dbs = ((void __iomem *)dev->bar) + 4096;
839
840 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
841 if (!nvmeq)
842 return -ENOMEM;
843
844 aqa = nvmeq->q_depth - 1;
845 aqa |= aqa << 16;
846
847 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
848 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
849 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
850
851 writel(0, &dev->bar->cc);
852 writel(aqa, &dev->bar->aqa);
853 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
854 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
855 writel(dev->ctrl_config, &dev->bar->cc);
856
857 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
858 msleep(100);
859 if (fatal_signal_pending(current))
860 return -EINTR;
861 }
862
863 result = queue_request_irq(dev, nvmeq, "nvme admin");
864 dev->queues[0] = nvmeq;
865 return result;
866 }
867
868 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
869 unsigned long addr, unsigned length,
870 struct scatterlist **sgp)
871 {
872 int i, err, count, nents, offset;
873 struct scatterlist *sg;
874 struct page **pages;
875
876 if (addr & 3)
877 return -EINVAL;
878 if (!length)
879 return -EINVAL;
880
881 offset = offset_in_page(addr);
882 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
883 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
884
885 err = get_user_pages_fast(addr, count, 1, pages);
886 if (err < count) {
887 count = err;
888 err = -EFAULT;
889 goto put_pages;
890 }
891
892 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
893 sg_init_table(sg, count);
894 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
895 length -= (PAGE_SIZE - offset);
896 for (i = 1; i < count; i++) {
897 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
898 length -= PAGE_SIZE;
899 }
900
901 err = -ENOMEM;
902 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
903 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
904 if (!nents)
905 goto put_pages;
906
907 kfree(pages);
908 *sgp = sg;
909 return nents;
910
911 put_pages:
912 for (i = 0; i < count; i++)
913 put_page(pages[i]);
914 kfree(pages);
915 return err;
916 }
917
918 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
919 unsigned long addr, int length,
920 struct scatterlist *sg, int nents)
921 {
922 int i, count;
923
924 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
925 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
926
927 for (i = 0; i < count; i++)
928 put_page(sg_page(&sg[i]));
929 }
930
931 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
932 unsigned long addr, unsigned length,
933 struct nvme_command *cmd)
934 {
935 int err, nents;
936 struct scatterlist *sg;
937 struct nvme_prps *prps;
938
939 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
940 if (nents < 0)
941 return nents;
942 prps = nvme_setup_prps(dev, &cmd->common, sg, length);
943 err = nvme_submit_admin_cmd(dev, cmd, NULL);
944 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
945 nvme_free_prps(dev, prps);
946 return err ? -EIO : 0;
947 }
948
949 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
950 {
951 struct nvme_command c;
952
953 memset(&c, 0, sizeof(c));
954 c.identify.opcode = nvme_admin_identify;
955 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
956 c.identify.cns = cpu_to_le32(cns);
957
958 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
959 }
960
961 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
962 {
963 struct nvme_command c;
964
965 memset(&c, 0, sizeof(c));
966 c.features.opcode = nvme_admin_get_features;
967 c.features.nsid = cpu_to_le32(ns->ns_id);
968 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
969
970 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
971 }
972
973 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
974 {
975 struct nvme_dev *dev = ns->dev;
976 struct nvme_queue *nvmeq;
977 struct nvme_user_io io;
978 struct nvme_command c;
979 unsigned length;
980 u32 result;
981 int nents, status;
982 struct scatterlist *sg;
983 struct nvme_prps *prps;
984
985 if (copy_from_user(&io, uio, sizeof(io)))
986 return -EFAULT;
987 length = io.nblocks << io.block_shift;
988 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
989 if (nents < 0)
990 return nents;
991
992 memset(&c, 0, sizeof(c));
993 c.rw.opcode = io.opcode;
994 c.rw.flags = io.flags;
995 c.rw.nsid = cpu_to_le32(io.nsid);
996 c.rw.slba = cpu_to_le64(io.slba);
997 c.rw.length = cpu_to_le16(io.nblocks - 1);
998 c.rw.control = cpu_to_le16(io.control);
999 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1000 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
1001 c.rw.apptag = cpu_to_le16(io.apptag);
1002 c.rw.appmask = cpu_to_le16(io.appmask);
1003 /* XXX: metadata */
1004 prps = nvme_setup_prps(dev, &c.common, sg, length);
1005
1006 nvmeq = get_nvmeq(ns);
1007 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1008 * disabled. We may be preempted at any point, and be rescheduled
1009 * to a different CPU. That will cause cacheline bouncing, but no
1010 * additional races since q_lock already protects against other CPUs.
1011 */
1012 put_nvmeq(nvmeq);
1013 status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1014
1015 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1016 nvme_free_prps(dev, prps);
1017 put_user(result, &uio->result);
1018 return status;
1019 }
1020
1021 static int nvme_download_firmware(struct nvme_ns *ns,
1022 struct nvme_dlfw __user *udlfw)
1023 {
1024 struct nvme_dev *dev = ns->dev;
1025 struct nvme_dlfw dlfw;
1026 struct nvme_command c;
1027 int nents, status;
1028 struct scatterlist *sg;
1029 struct nvme_prps *prps;
1030
1031 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1032 return -EFAULT;
1033 if (dlfw.length >= (1 << 30))
1034 return -EINVAL;
1035
1036 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1037 if (nents < 0)
1038 return nents;
1039
1040 memset(&c, 0, sizeof(c));
1041 c.dlfw.opcode = nvme_admin_download_fw;
1042 c.dlfw.numd = cpu_to_le32(dlfw.length);
1043 c.dlfw.offset = cpu_to_le32(dlfw.offset);
1044 prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1045
1046 status = nvme_submit_admin_cmd(dev, &c, NULL);
1047 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1048 nvme_free_prps(dev, prps);
1049 return status;
1050 }
1051
1052 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1053 {
1054 struct nvme_dev *dev = ns->dev;
1055 struct nvme_command c;
1056
1057 memset(&c, 0, sizeof(c));
1058 c.common.opcode = nvme_admin_activate_fw;
1059 c.common.rsvd10[0] = cpu_to_le32(arg);
1060
1061 return nvme_submit_admin_cmd(dev, &c, NULL);
1062 }
1063
1064 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1065 unsigned long arg)
1066 {
1067 struct nvme_ns *ns = bdev->bd_disk->private_data;
1068
1069 switch (cmd) {
1070 case NVME_IOCTL_IDENTIFY_NS:
1071 return nvme_identify(ns, arg, 0);
1072 case NVME_IOCTL_IDENTIFY_CTRL:
1073 return nvme_identify(ns, arg, 1);
1074 case NVME_IOCTL_GET_RANGE_TYPE:
1075 return nvme_get_range_type(ns, arg);
1076 case NVME_IOCTL_SUBMIT_IO:
1077 return nvme_submit_io(ns, (void __user *)arg);
1078 case NVME_IOCTL_DOWNLOAD_FW:
1079 return nvme_download_firmware(ns, (void __user *)arg);
1080 case NVME_IOCTL_ACTIVATE_FW:
1081 return nvme_activate_firmware(ns, arg);
1082 default:
1083 return -ENOTTY;
1084 }
1085 }
1086
1087 static const struct block_device_operations nvme_fops = {
1088 .owner = THIS_MODULE,
1089 .ioctl = nvme_ioctl,
1090 };
1091
1092 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1093 {
1094 while (bio_list_peek(&nvmeq->sq_cong)) {
1095 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1096 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1097 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1098 bio_list_add_head(&nvmeq->sq_cong, bio);
1099 break;
1100 }
1101 }
1102 }
1103
1104 static int nvme_kthread(void *data)
1105 {
1106 struct nvme_dev *dev;
1107
1108 while (!kthread_should_stop()) {
1109 __set_current_state(TASK_RUNNING);
1110 spin_lock(&dev_list_lock);
1111 list_for_each_entry(dev, &dev_list, node) {
1112 int i;
1113 for (i = 0; i < dev->queue_count; i++) {
1114 struct nvme_queue *nvmeq = dev->queues[i];
1115 if (!nvmeq)
1116 continue;
1117 spin_lock_irq(&nvmeq->q_lock);
1118 if (nvme_process_cq(nvmeq))
1119 printk("process_cq did something\n");
1120 nvme_resubmit_bios(nvmeq);
1121 spin_unlock_irq(&nvmeq->q_lock);
1122 }
1123 }
1124 spin_unlock(&dev_list_lock);
1125 set_current_state(TASK_INTERRUPTIBLE);
1126 schedule_timeout(HZ);
1127 }
1128 return 0;
1129 }
1130
1131 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1132 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1133 {
1134 struct nvme_ns *ns;
1135 struct gendisk *disk;
1136 int lbaf;
1137
1138 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1139 return NULL;
1140
1141 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1142 if (!ns)
1143 return NULL;
1144 ns->queue = blk_alloc_queue(GFP_KERNEL);
1145 if (!ns->queue)
1146 goto out_free_ns;
1147 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1148 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1149 blk_queue_make_request(ns->queue, nvme_make_request);
1150 ns->dev = dev;
1151 ns->queue->queuedata = ns;
1152
1153 disk = alloc_disk(NVME_MINORS);
1154 if (!disk)
1155 goto out_free_queue;
1156 ns->ns_id = index;
1157 ns->disk = disk;
1158 lbaf = id->flbas & 0xf;
1159 ns->lba_shift = id->lbaf[lbaf].ds;
1160
1161 disk->major = nvme_major;
1162 disk->minors = NVME_MINORS;
1163 disk->first_minor = NVME_MINORS * index;
1164 disk->fops = &nvme_fops;
1165 disk->private_data = ns;
1166 disk->queue = ns->queue;
1167 disk->driverfs_dev = &dev->pci_dev->dev;
1168 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1169 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1170
1171 return ns;
1172
1173 out_free_queue:
1174 blk_cleanup_queue(ns->queue);
1175 out_free_ns:
1176 kfree(ns);
1177 return NULL;
1178 }
1179
1180 static void nvme_ns_free(struct nvme_ns *ns)
1181 {
1182 put_disk(ns->disk);
1183 blk_cleanup_queue(ns->queue);
1184 kfree(ns);
1185 }
1186
1187 static int set_queue_count(struct nvme_dev *dev, int count)
1188 {
1189 int status;
1190 u32 result;
1191 struct nvme_command c;
1192 u32 q_count = (count - 1) | ((count - 1) << 16);
1193
1194 memset(&c, 0, sizeof(c));
1195 c.features.opcode = nvme_admin_get_features;
1196 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1197 c.features.dword11 = cpu_to_le32(q_count);
1198
1199 status = nvme_submit_admin_cmd(dev, &c, &result);
1200 if (status)
1201 return -EIO;
1202 return min(result & 0xffff, result >> 16) + 1;
1203 }
1204
1205 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1206 {
1207 int result, cpu, i, nr_io_queues;
1208
1209 nr_io_queues = num_online_cpus();
1210 result = set_queue_count(dev, nr_io_queues);
1211 if (result < 0)
1212 return result;
1213 if (result < nr_io_queues)
1214 nr_io_queues = result;
1215
1216 /* Deregister the admin queue's interrupt */
1217 free_irq(dev->entry[0].vector, dev->queues[0]);
1218
1219 for (i = 0; i < nr_io_queues; i++)
1220 dev->entry[i].entry = i;
1221 for (;;) {
1222 result = pci_enable_msix(dev->pci_dev, dev->entry,
1223 nr_io_queues);
1224 if (result == 0) {
1225 break;
1226 } else if (result > 0) {
1227 nr_io_queues = result;
1228 continue;
1229 } else {
1230 nr_io_queues = 1;
1231 break;
1232 }
1233 }
1234
1235 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1236 /* XXX: handle failure here */
1237
1238 cpu = cpumask_first(cpu_online_mask);
1239 for (i = 0; i < nr_io_queues; i++) {
1240 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1241 cpu = cpumask_next(cpu, cpu_online_mask);
1242 }
1243
1244 for (i = 0; i < nr_io_queues; i++) {
1245 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1246 NVME_Q_DEPTH, i);
1247 if (!dev->queues[i + 1])
1248 return -ENOMEM;
1249 dev->queue_count++;
1250 }
1251
1252 return 0;
1253 }
1254
1255 static void nvme_free_queues(struct nvme_dev *dev)
1256 {
1257 int i;
1258
1259 for (i = dev->queue_count - 1; i >= 0; i--)
1260 nvme_free_queue(dev, i);
1261 }
1262
1263 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1264 {
1265 int res, nn, i;
1266 struct nvme_ns *ns, *next;
1267 struct nvme_id_ctrl *ctrl;
1268 void *id;
1269 dma_addr_t dma_addr;
1270 struct nvme_command cid, crt;
1271
1272 res = nvme_setup_io_queues(dev);
1273 if (res)
1274 return res;
1275
1276 /* XXX: Switch to a SG list once prp2 works */
1277 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1278 GFP_KERNEL);
1279
1280 memset(&cid, 0, sizeof(cid));
1281 cid.identify.opcode = nvme_admin_identify;
1282 cid.identify.nsid = 0;
1283 cid.identify.prp1 = cpu_to_le64(dma_addr);
1284 cid.identify.cns = cpu_to_le32(1);
1285
1286 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1287 if (res) {
1288 res = -EIO;
1289 goto out_free;
1290 }
1291
1292 ctrl = id;
1293 nn = le32_to_cpup(&ctrl->nn);
1294 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1295 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1296 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1297
1298 cid.identify.cns = 0;
1299 memset(&crt, 0, sizeof(crt));
1300 crt.features.opcode = nvme_admin_get_features;
1301 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1302 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1303
1304 for (i = 0; i < nn; i++) {
1305 cid.identify.nsid = cpu_to_le32(i);
1306 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1307 if (res)
1308 continue;
1309
1310 if (((struct nvme_id_ns *)id)->ncap == 0)
1311 continue;
1312
1313 crt.features.nsid = cpu_to_le32(i);
1314 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1315 if (res)
1316 continue;
1317
1318 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1319 if (ns)
1320 list_add_tail(&ns->list, &dev->namespaces);
1321 }
1322 list_for_each_entry(ns, &dev->namespaces, list)
1323 add_disk(ns->disk);
1324
1325 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1326 return 0;
1327
1328 out_free:
1329 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1330 list_del(&ns->list);
1331 nvme_ns_free(ns);
1332 }
1333
1334 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1335 return res;
1336 }
1337
1338 static int nvme_dev_remove(struct nvme_dev *dev)
1339 {
1340 struct nvme_ns *ns, *next;
1341
1342 spin_lock(&dev_list_lock);
1343 list_del(&dev->node);
1344 spin_unlock(&dev_list_lock);
1345
1346 /* TODO: wait all I/O finished or cancel them */
1347
1348 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1349 list_del(&ns->list);
1350 del_gendisk(ns->disk);
1351 nvme_ns_free(ns);
1352 }
1353
1354 nvme_free_queues(dev);
1355
1356 return 0;
1357 }
1358
1359 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1360 {
1361 struct device *dmadev = &dev->pci_dev->dev;
1362 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1363 PAGE_SIZE, PAGE_SIZE, 0);
1364 if (!dev->prp_page_pool)
1365 return -ENOMEM;
1366
1367 /* Optimisation for I/Os between 4k and 128k */
1368 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1369 256, 256, 0);
1370 if (!dev->prp_small_pool) {
1371 dma_pool_destroy(dev->prp_page_pool);
1372 return -ENOMEM;
1373 }
1374 return 0;
1375 }
1376
1377 static void nvme_release_prp_pools(struct nvme_dev *dev)
1378 {
1379 dma_pool_destroy(dev->prp_page_pool);
1380 dma_pool_destroy(dev->prp_small_pool);
1381 }
1382
1383 /* XXX: Use an ida or something to let remove / add work correctly */
1384 static void nvme_set_instance(struct nvme_dev *dev)
1385 {
1386 static int instance;
1387 dev->instance = instance++;
1388 }
1389
1390 static void nvme_release_instance(struct nvme_dev *dev)
1391 {
1392 }
1393
1394 static int __devinit nvme_probe(struct pci_dev *pdev,
1395 const struct pci_device_id *id)
1396 {
1397 int bars, result = -ENOMEM;
1398 struct nvme_dev *dev;
1399
1400 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1401 if (!dev)
1402 return -ENOMEM;
1403 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1404 GFP_KERNEL);
1405 if (!dev->entry)
1406 goto free;
1407 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1408 GFP_KERNEL);
1409 if (!dev->queues)
1410 goto free;
1411
1412 if (pci_enable_device_mem(pdev))
1413 goto free;
1414 pci_set_master(pdev);
1415 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1416 if (pci_request_selected_regions(pdev, bars, "nvme"))
1417 goto disable;
1418
1419 INIT_LIST_HEAD(&dev->namespaces);
1420 dev->pci_dev = pdev;
1421 pci_set_drvdata(pdev, dev);
1422 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1423 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1424 nvme_set_instance(dev);
1425 dev->entry[0].vector = pdev->irq;
1426
1427 result = nvme_setup_prp_pools(dev);
1428 if (result)
1429 goto disable_msix;
1430
1431 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1432 if (!dev->bar) {
1433 result = -ENOMEM;
1434 goto disable_msix;
1435 }
1436
1437 result = nvme_configure_admin_queue(dev);
1438 if (result)
1439 goto unmap;
1440 dev->queue_count++;
1441
1442 spin_lock(&dev_list_lock);
1443 list_add(&dev->node, &dev_list);
1444 spin_unlock(&dev_list_lock);
1445
1446 result = nvme_dev_add(dev);
1447 if (result)
1448 goto delete;
1449
1450 return 0;
1451
1452 delete:
1453 spin_lock(&dev_list_lock);
1454 list_del(&dev->node);
1455 spin_unlock(&dev_list_lock);
1456
1457 nvme_free_queues(dev);
1458 unmap:
1459 iounmap(dev->bar);
1460 disable_msix:
1461 pci_disable_msix(pdev);
1462 nvme_release_instance(dev);
1463 nvme_release_prp_pools(dev);
1464 disable:
1465 pci_disable_device(pdev);
1466 pci_release_regions(pdev);
1467 free:
1468 kfree(dev->queues);
1469 kfree(dev->entry);
1470 kfree(dev);
1471 return result;
1472 }
1473
1474 static void __devexit nvme_remove(struct pci_dev *pdev)
1475 {
1476 struct nvme_dev *dev = pci_get_drvdata(pdev);
1477 nvme_dev_remove(dev);
1478 pci_disable_msix(pdev);
1479 iounmap(dev->bar);
1480 nvme_release_instance(dev);
1481 nvme_release_prp_pools(dev);
1482 pci_disable_device(pdev);
1483 pci_release_regions(pdev);
1484 kfree(dev->queues);
1485 kfree(dev->entry);
1486 kfree(dev);
1487 }
1488
1489 /* These functions are yet to be implemented */
1490 #define nvme_error_detected NULL
1491 #define nvme_dump_registers NULL
1492 #define nvme_link_reset NULL
1493 #define nvme_slot_reset NULL
1494 #define nvme_error_resume NULL
1495 #define nvme_suspend NULL
1496 #define nvme_resume NULL
1497
1498 static struct pci_error_handlers nvme_err_handler = {
1499 .error_detected = nvme_error_detected,
1500 .mmio_enabled = nvme_dump_registers,
1501 .link_reset = nvme_link_reset,
1502 .slot_reset = nvme_slot_reset,
1503 .resume = nvme_error_resume,
1504 };
1505
1506 /* Move to pci_ids.h later */
1507 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1508
1509 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1510 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1511 { 0, }
1512 };
1513 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1514
1515 static struct pci_driver nvme_driver = {
1516 .name = "nvme",
1517 .id_table = nvme_id_table,
1518 .probe = nvme_probe,
1519 .remove = __devexit_p(nvme_remove),
1520 .suspend = nvme_suspend,
1521 .resume = nvme_resume,
1522 .err_handler = &nvme_err_handler,
1523 };
1524
1525 static int __init nvme_init(void)
1526 {
1527 int result = -EBUSY;
1528
1529 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1530 if (IS_ERR(nvme_thread))
1531 return PTR_ERR(nvme_thread);
1532
1533 nvme_major = register_blkdev(nvme_major, "nvme");
1534 if (nvme_major <= 0)
1535 goto kill_kthread;
1536
1537 result = pci_register_driver(&nvme_driver);
1538 if (result)
1539 goto unregister_blkdev;
1540 return 0;
1541
1542 unregister_blkdev:
1543 unregister_blkdev(nvme_major, "nvme");
1544 kill_kthread:
1545 kthread_stop(nvme_thread);
1546 return result;
1547 }
1548
1549 static void __exit nvme_exit(void)
1550 {
1551 pci_unregister_driver(&nvme_driver);
1552 unregister_blkdev(nvme_major, "nvme");
1553 kthread_stop(nvme_thread);
1554 }
1555
1556 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1557 MODULE_LICENSE("GPL");
1558 MODULE_VERSION("0.3");
1559 module_init(nvme_init);
1560 module_exit(nvme_exit);