]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/pktcdvd.c
Freezer: make kernel threads nonfreezable by default
[mirror_ubuntu-artful-kernel.git] / drivers / block / pktcdvd.c
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
65
66 #include <asm/uaccess.h>
67
68 #define DRIVER_NAME "pktcdvd"
69
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
75
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
81
82 #define MAX_SPEED 0xffff
83
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
85
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
93
94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */
96
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
101
102
103
104 /*
105 * create and register a pktcdvd kernel object.
106 */
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108 const char* name,
109 struct kobject* parent,
110 struct kobj_type* ktype)
111 {
112 struct pktcdvd_kobj *p;
113 p = kzalloc(sizeof(*p), GFP_KERNEL);
114 if (!p)
115 return NULL;
116 kobject_set_name(&p->kobj, "%s", name);
117 p->kobj.parent = parent;
118 p->kobj.ktype = ktype;
119 p->pd = pd;
120 if (kobject_register(&p->kobj) != 0)
121 return NULL;
122 return p;
123 }
124 /*
125 * remove a pktcdvd kernel object.
126 */
127 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
128 {
129 if (p)
130 kobject_unregister(&p->kobj);
131 }
132 /*
133 * default release function for pktcdvd kernel objects.
134 */
135 static void pkt_kobj_release(struct kobject *kobj)
136 {
137 kfree(to_pktcdvdkobj(kobj));
138 }
139
140
141 /**********************************************************
142 *
143 * sysfs interface for pktcdvd
144 * by (C) 2006 Thomas Maier <balagi@justmail.de>
145 *
146 **********************************************************/
147
148 #define DEF_ATTR(_obj,_name,_mode) \
149 static struct attribute _obj = { .name = _name, .mode = _mode }
150
151 /**********************************************************
152 /sys/class/pktcdvd/pktcdvd[0-7]/
153 stat/reset
154 stat/packets_started
155 stat/packets_finished
156 stat/kb_written
157 stat/kb_read
158 stat/kb_read_gather
159 write_queue/size
160 write_queue/congestion_off
161 write_queue/congestion_on
162 **********************************************************/
163
164 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
165 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
166 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
167 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
168 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
169 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
170
171 static struct attribute *kobj_pkt_attrs_stat[] = {
172 &kobj_pkt_attr_st1,
173 &kobj_pkt_attr_st2,
174 &kobj_pkt_attr_st3,
175 &kobj_pkt_attr_st4,
176 &kobj_pkt_attr_st5,
177 &kobj_pkt_attr_st6,
178 NULL
179 };
180
181 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
182 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
183 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
184
185 static struct attribute *kobj_pkt_attrs_wqueue[] = {
186 &kobj_pkt_attr_wq1,
187 &kobj_pkt_attr_wq2,
188 &kobj_pkt_attr_wq3,
189 NULL
190 };
191
192 static ssize_t kobj_pkt_show(struct kobject *kobj,
193 struct attribute *attr, char *data)
194 {
195 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
196 int n = 0;
197 int v;
198 if (strcmp(attr->name, "packets_started") == 0) {
199 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
200
201 } else if (strcmp(attr->name, "packets_finished") == 0) {
202 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
203
204 } else if (strcmp(attr->name, "kb_written") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
206
207 } else if (strcmp(attr->name, "kb_read") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
209
210 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
212
213 } else if (strcmp(attr->name, "size") == 0) {
214 spin_lock(&pd->lock);
215 v = pd->bio_queue_size;
216 spin_unlock(&pd->lock);
217 n = sprintf(data, "%d\n", v);
218
219 } else if (strcmp(attr->name, "congestion_off") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->write_congestion_off;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
224
225 } else if (strcmp(attr->name, "congestion_on") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_on;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
230 }
231 return n;
232 }
233
234 static void init_write_congestion_marks(int* lo, int* hi)
235 {
236 if (*hi > 0) {
237 *hi = max(*hi, 500);
238 *hi = min(*hi, 1000000);
239 if (*lo <= 0)
240 *lo = *hi - 100;
241 else {
242 *lo = min(*lo, *hi - 100);
243 *lo = max(*lo, 100);
244 }
245 } else {
246 *hi = -1;
247 *lo = -1;
248 }
249 }
250
251 static ssize_t kobj_pkt_store(struct kobject *kobj,
252 struct attribute *attr,
253 const char *data, size_t len)
254 {
255 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
256 int val;
257
258 if (strcmp(attr->name, "reset") == 0 && len > 0) {
259 pd->stats.pkt_started = 0;
260 pd->stats.pkt_ended = 0;
261 pd->stats.secs_w = 0;
262 pd->stats.secs_rg = 0;
263 pd->stats.secs_r = 0;
264
265 } else if (strcmp(attr->name, "congestion_off") == 0
266 && sscanf(data, "%d", &val) == 1) {
267 spin_lock(&pd->lock);
268 pd->write_congestion_off = val;
269 init_write_congestion_marks(&pd->write_congestion_off,
270 &pd->write_congestion_on);
271 spin_unlock(&pd->lock);
272
273 } else if (strcmp(attr->name, "congestion_on") == 0
274 && sscanf(data, "%d", &val) == 1) {
275 spin_lock(&pd->lock);
276 pd->write_congestion_on = val;
277 init_write_congestion_marks(&pd->write_congestion_off,
278 &pd->write_congestion_on);
279 spin_unlock(&pd->lock);
280 }
281 return len;
282 }
283
284 static struct sysfs_ops kobj_pkt_ops = {
285 .show = kobj_pkt_show,
286 .store = kobj_pkt_store
287 };
288 static struct kobj_type kobj_pkt_type_stat = {
289 .release = pkt_kobj_release,
290 .sysfs_ops = &kobj_pkt_ops,
291 .default_attrs = kobj_pkt_attrs_stat
292 };
293 static struct kobj_type kobj_pkt_type_wqueue = {
294 .release = pkt_kobj_release,
295 .sysfs_ops = &kobj_pkt_ops,
296 .default_attrs = kobj_pkt_attrs_wqueue
297 };
298
299 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
300 {
301 if (class_pktcdvd) {
302 pd->clsdev = class_device_create(class_pktcdvd,
303 NULL, pd->pkt_dev,
304 NULL, "%s", pd->name);
305 if (IS_ERR(pd->clsdev))
306 pd->clsdev = NULL;
307 }
308 if (pd->clsdev) {
309 pd->kobj_stat = pkt_kobj_create(pd, "stat",
310 &pd->clsdev->kobj,
311 &kobj_pkt_type_stat);
312 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
313 &pd->clsdev->kobj,
314 &kobj_pkt_type_wqueue);
315 }
316 }
317
318 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
319 {
320 pkt_kobj_remove(pd->kobj_stat);
321 pkt_kobj_remove(pd->kobj_wqueue);
322 if (class_pktcdvd)
323 class_device_destroy(class_pktcdvd, pd->pkt_dev);
324 }
325
326
327 /********************************************************************
328 /sys/class/pktcdvd/
329 add map block device
330 remove unmap packet dev
331 device_map show mappings
332 *******************************************************************/
333
334 static void class_pktcdvd_release(struct class *cls)
335 {
336 kfree(cls);
337 }
338 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
339 {
340 int n = 0;
341 int idx;
342 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
343 for (idx = 0; idx < MAX_WRITERS; idx++) {
344 struct pktcdvd_device *pd = pkt_devs[idx];
345 if (!pd)
346 continue;
347 n += sprintf(data+n, "%s %u:%u %u:%u\n",
348 pd->name,
349 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
350 MAJOR(pd->bdev->bd_dev),
351 MINOR(pd->bdev->bd_dev));
352 }
353 mutex_unlock(&ctl_mutex);
354 return n;
355 }
356
357 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
358 size_t count)
359 {
360 unsigned int major, minor;
361 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
362 pkt_setup_dev(MKDEV(major, minor), NULL);
363 return count;
364 }
365 return -EINVAL;
366 }
367
368 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
369 size_t count)
370 {
371 unsigned int major, minor;
372 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
373 pkt_remove_dev(MKDEV(major, minor));
374 return count;
375 }
376 return -EINVAL;
377 }
378
379 static struct class_attribute class_pktcdvd_attrs[] = {
380 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
381 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
382 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
383 __ATTR_NULL
384 };
385
386
387 static int pkt_sysfs_init(void)
388 {
389 int ret = 0;
390
391 /*
392 * create control files in sysfs
393 * /sys/class/pktcdvd/...
394 */
395 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
396 if (!class_pktcdvd)
397 return -ENOMEM;
398 class_pktcdvd->name = DRIVER_NAME;
399 class_pktcdvd->owner = THIS_MODULE;
400 class_pktcdvd->class_release = class_pktcdvd_release;
401 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
402 ret = class_register(class_pktcdvd);
403 if (ret) {
404 kfree(class_pktcdvd);
405 class_pktcdvd = NULL;
406 printk(DRIVER_NAME": failed to create class pktcdvd\n");
407 return ret;
408 }
409 return 0;
410 }
411
412 static void pkt_sysfs_cleanup(void)
413 {
414 if (class_pktcdvd)
415 class_destroy(class_pktcdvd);
416 class_pktcdvd = NULL;
417 }
418
419 /********************************************************************
420 entries in debugfs
421
422 /debugfs/pktcdvd[0-7]/
423 info
424
425 *******************************************************************/
426
427 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
428 {
429 return pkt_seq_show(m, p);
430 }
431
432 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
433 {
434 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
435 }
436
437 static const struct file_operations debug_fops = {
438 .open = pkt_debugfs_fops_open,
439 .read = seq_read,
440 .llseek = seq_lseek,
441 .release = single_release,
442 .owner = THIS_MODULE,
443 };
444
445 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
446 {
447 if (!pkt_debugfs_root)
448 return;
449 pd->dfs_f_info = NULL;
450 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
451 if (IS_ERR(pd->dfs_d_root)) {
452 pd->dfs_d_root = NULL;
453 return;
454 }
455 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
456 pd->dfs_d_root, pd, &debug_fops);
457 if (IS_ERR(pd->dfs_f_info)) {
458 pd->dfs_f_info = NULL;
459 return;
460 }
461 }
462
463 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
464 {
465 if (!pkt_debugfs_root)
466 return;
467 if (pd->dfs_f_info)
468 debugfs_remove(pd->dfs_f_info);
469 pd->dfs_f_info = NULL;
470 if (pd->dfs_d_root)
471 debugfs_remove(pd->dfs_d_root);
472 pd->dfs_d_root = NULL;
473 }
474
475 static void pkt_debugfs_init(void)
476 {
477 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
478 if (IS_ERR(pkt_debugfs_root)) {
479 pkt_debugfs_root = NULL;
480 return;
481 }
482 }
483
484 static void pkt_debugfs_cleanup(void)
485 {
486 if (!pkt_debugfs_root)
487 return;
488 debugfs_remove(pkt_debugfs_root);
489 pkt_debugfs_root = NULL;
490 }
491
492 /* ----------------------------------------------------------*/
493
494
495 static void pkt_bio_finished(struct pktcdvd_device *pd)
496 {
497 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
498 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
499 VPRINTK(DRIVER_NAME": queue empty\n");
500 atomic_set(&pd->iosched.attention, 1);
501 wake_up(&pd->wqueue);
502 }
503 }
504
505 static void pkt_bio_destructor(struct bio *bio)
506 {
507 kfree(bio->bi_io_vec);
508 kfree(bio);
509 }
510
511 static struct bio *pkt_bio_alloc(int nr_iovecs)
512 {
513 struct bio_vec *bvl = NULL;
514 struct bio *bio;
515
516 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
517 if (!bio)
518 goto no_bio;
519 bio_init(bio);
520
521 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
522 if (!bvl)
523 goto no_bvl;
524
525 bio->bi_max_vecs = nr_iovecs;
526 bio->bi_io_vec = bvl;
527 bio->bi_destructor = pkt_bio_destructor;
528
529 return bio;
530
531 no_bvl:
532 kfree(bio);
533 no_bio:
534 return NULL;
535 }
536
537 /*
538 * Allocate a packet_data struct
539 */
540 static struct packet_data *pkt_alloc_packet_data(int frames)
541 {
542 int i;
543 struct packet_data *pkt;
544
545 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
546 if (!pkt)
547 goto no_pkt;
548
549 pkt->frames = frames;
550 pkt->w_bio = pkt_bio_alloc(frames);
551 if (!pkt->w_bio)
552 goto no_bio;
553
554 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
555 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
556 if (!pkt->pages[i])
557 goto no_page;
558 }
559
560 spin_lock_init(&pkt->lock);
561
562 for (i = 0; i < frames; i++) {
563 struct bio *bio = pkt_bio_alloc(1);
564 if (!bio)
565 goto no_rd_bio;
566 pkt->r_bios[i] = bio;
567 }
568
569 return pkt;
570
571 no_rd_bio:
572 for (i = 0; i < frames; i++) {
573 struct bio *bio = pkt->r_bios[i];
574 if (bio)
575 bio_put(bio);
576 }
577
578 no_page:
579 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
580 if (pkt->pages[i])
581 __free_page(pkt->pages[i]);
582 bio_put(pkt->w_bio);
583 no_bio:
584 kfree(pkt);
585 no_pkt:
586 return NULL;
587 }
588
589 /*
590 * Free a packet_data struct
591 */
592 static void pkt_free_packet_data(struct packet_data *pkt)
593 {
594 int i;
595
596 for (i = 0; i < pkt->frames; i++) {
597 struct bio *bio = pkt->r_bios[i];
598 if (bio)
599 bio_put(bio);
600 }
601 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
602 __free_page(pkt->pages[i]);
603 bio_put(pkt->w_bio);
604 kfree(pkt);
605 }
606
607 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
608 {
609 struct packet_data *pkt, *next;
610
611 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
612
613 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
614 pkt_free_packet_data(pkt);
615 }
616 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
617 }
618
619 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
620 {
621 struct packet_data *pkt;
622
623 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
624
625 while (nr_packets > 0) {
626 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
627 if (!pkt) {
628 pkt_shrink_pktlist(pd);
629 return 0;
630 }
631 pkt->id = nr_packets;
632 pkt->pd = pd;
633 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
634 nr_packets--;
635 }
636 return 1;
637 }
638
639 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
640 {
641 struct rb_node *n = rb_next(&node->rb_node);
642 if (!n)
643 return NULL;
644 return rb_entry(n, struct pkt_rb_node, rb_node);
645 }
646
647 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
648 {
649 rb_erase(&node->rb_node, &pd->bio_queue);
650 mempool_free(node, pd->rb_pool);
651 pd->bio_queue_size--;
652 BUG_ON(pd->bio_queue_size < 0);
653 }
654
655 /*
656 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
657 */
658 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
659 {
660 struct rb_node *n = pd->bio_queue.rb_node;
661 struct rb_node *next;
662 struct pkt_rb_node *tmp;
663
664 if (!n) {
665 BUG_ON(pd->bio_queue_size > 0);
666 return NULL;
667 }
668
669 for (;;) {
670 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
671 if (s <= tmp->bio->bi_sector)
672 next = n->rb_left;
673 else
674 next = n->rb_right;
675 if (!next)
676 break;
677 n = next;
678 }
679
680 if (s > tmp->bio->bi_sector) {
681 tmp = pkt_rbtree_next(tmp);
682 if (!tmp)
683 return NULL;
684 }
685 BUG_ON(s > tmp->bio->bi_sector);
686 return tmp;
687 }
688
689 /*
690 * Insert a node into the pd->bio_queue rb tree.
691 */
692 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
693 {
694 struct rb_node **p = &pd->bio_queue.rb_node;
695 struct rb_node *parent = NULL;
696 sector_t s = node->bio->bi_sector;
697 struct pkt_rb_node *tmp;
698
699 while (*p) {
700 parent = *p;
701 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
702 if (s < tmp->bio->bi_sector)
703 p = &(*p)->rb_left;
704 else
705 p = &(*p)->rb_right;
706 }
707 rb_link_node(&node->rb_node, parent, p);
708 rb_insert_color(&node->rb_node, &pd->bio_queue);
709 pd->bio_queue_size++;
710 }
711
712 /*
713 * Add a bio to a single linked list defined by its head and tail pointers.
714 */
715 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
716 {
717 bio->bi_next = NULL;
718 if (*list_tail) {
719 BUG_ON((*list_head) == NULL);
720 (*list_tail)->bi_next = bio;
721 (*list_tail) = bio;
722 } else {
723 BUG_ON((*list_head) != NULL);
724 (*list_head) = bio;
725 (*list_tail) = bio;
726 }
727 }
728
729 /*
730 * Remove and return the first bio from a single linked list defined by its
731 * head and tail pointers.
732 */
733 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
734 {
735 struct bio *bio;
736
737 if (*list_head == NULL)
738 return NULL;
739
740 bio = *list_head;
741 *list_head = bio->bi_next;
742 if (*list_head == NULL)
743 *list_tail = NULL;
744
745 bio->bi_next = NULL;
746 return bio;
747 }
748
749 /*
750 * Send a packet_command to the underlying block device and
751 * wait for completion.
752 */
753 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
754 {
755 request_queue_t *q = bdev_get_queue(pd->bdev);
756 struct request *rq;
757 int ret = 0;
758
759 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
760 WRITE : READ, __GFP_WAIT);
761
762 if (cgc->buflen) {
763 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
764 goto out;
765 }
766
767 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
768 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
769 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
770 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
771
772 rq->timeout = 60*HZ;
773 rq->cmd_type = REQ_TYPE_BLOCK_PC;
774 rq->cmd_flags |= REQ_HARDBARRIER;
775 if (cgc->quiet)
776 rq->cmd_flags |= REQ_QUIET;
777
778 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
779 if (rq->errors)
780 ret = -EIO;
781 out:
782 blk_put_request(rq);
783 return ret;
784 }
785
786 /*
787 * A generic sense dump / resolve mechanism should be implemented across
788 * all ATAPI + SCSI devices.
789 */
790 static void pkt_dump_sense(struct packet_command *cgc)
791 {
792 static char *info[9] = { "No sense", "Recovered error", "Not ready",
793 "Medium error", "Hardware error", "Illegal request",
794 "Unit attention", "Data protect", "Blank check" };
795 int i;
796 struct request_sense *sense = cgc->sense;
797
798 printk(DRIVER_NAME":");
799 for (i = 0; i < CDROM_PACKET_SIZE; i++)
800 printk(" %02x", cgc->cmd[i]);
801 printk(" - ");
802
803 if (sense == NULL) {
804 printk("no sense\n");
805 return;
806 }
807
808 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
809
810 if (sense->sense_key > 8) {
811 printk(" (INVALID)\n");
812 return;
813 }
814
815 printk(" (%s)\n", info[sense->sense_key]);
816 }
817
818 /*
819 * flush the drive cache to media
820 */
821 static int pkt_flush_cache(struct pktcdvd_device *pd)
822 {
823 struct packet_command cgc;
824
825 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
826 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
827 cgc.quiet = 1;
828
829 /*
830 * the IMMED bit -- we default to not setting it, although that
831 * would allow a much faster close, this is safer
832 */
833 #if 0
834 cgc.cmd[1] = 1 << 1;
835 #endif
836 return pkt_generic_packet(pd, &cgc);
837 }
838
839 /*
840 * speed is given as the normal factor, e.g. 4 for 4x
841 */
842 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
843 {
844 struct packet_command cgc;
845 struct request_sense sense;
846 int ret;
847
848 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
849 cgc.sense = &sense;
850 cgc.cmd[0] = GPCMD_SET_SPEED;
851 cgc.cmd[2] = (read_speed >> 8) & 0xff;
852 cgc.cmd[3] = read_speed & 0xff;
853 cgc.cmd[4] = (write_speed >> 8) & 0xff;
854 cgc.cmd[5] = write_speed & 0xff;
855
856 if ((ret = pkt_generic_packet(pd, &cgc)))
857 pkt_dump_sense(&cgc);
858
859 return ret;
860 }
861
862 /*
863 * Queue a bio for processing by the low-level CD device. Must be called
864 * from process context.
865 */
866 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
867 {
868 spin_lock(&pd->iosched.lock);
869 if (bio_data_dir(bio) == READ) {
870 pkt_add_list_last(bio, &pd->iosched.read_queue,
871 &pd->iosched.read_queue_tail);
872 } else {
873 pkt_add_list_last(bio, &pd->iosched.write_queue,
874 &pd->iosched.write_queue_tail);
875 }
876 spin_unlock(&pd->iosched.lock);
877
878 atomic_set(&pd->iosched.attention, 1);
879 wake_up(&pd->wqueue);
880 }
881
882 /*
883 * Process the queued read/write requests. This function handles special
884 * requirements for CDRW drives:
885 * - A cache flush command must be inserted before a read request if the
886 * previous request was a write.
887 * - Switching between reading and writing is slow, so don't do it more often
888 * than necessary.
889 * - Optimize for throughput at the expense of latency. This means that streaming
890 * writes will never be interrupted by a read, but if the drive has to seek
891 * before the next write, switch to reading instead if there are any pending
892 * read requests.
893 * - Set the read speed according to current usage pattern. When only reading
894 * from the device, it's best to use the highest possible read speed, but
895 * when switching often between reading and writing, it's better to have the
896 * same read and write speeds.
897 */
898 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
899 {
900
901 if (atomic_read(&pd->iosched.attention) == 0)
902 return;
903 atomic_set(&pd->iosched.attention, 0);
904
905 for (;;) {
906 struct bio *bio;
907 int reads_queued, writes_queued;
908
909 spin_lock(&pd->iosched.lock);
910 reads_queued = (pd->iosched.read_queue != NULL);
911 writes_queued = (pd->iosched.write_queue != NULL);
912 spin_unlock(&pd->iosched.lock);
913
914 if (!reads_queued && !writes_queued)
915 break;
916
917 if (pd->iosched.writing) {
918 int need_write_seek = 1;
919 spin_lock(&pd->iosched.lock);
920 bio = pd->iosched.write_queue;
921 spin_unlock(&pd->iosched.lock);
922 if (bio && (bio->bi_sector == pd->iosched.last_write))
923 need_write_seek = 0;
924 if (need_write_seek && reads_queued) {
925 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
926 VPRINTK(DRIVER_NAME": write, waiting\n");
927 break;
928 }
929 pkt_flush_cache(pd);
930 pd->iosched.writing = 0;
931 }
932 } else {
933 if (!reads_queued && writes_queued) {
934 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
935 VPRINTK(DRIVER_NAME": read, waiting\n");
936 break;
937 }
938 pd->iosched.writing = 1;
939 }
940 }
941
942 spin_lock(&pd->iosched.lock);
943 if (pd->iosched.writing) {
944 bio = pkt_get_list_first(&pd->iosched.write_queue,
945 &pd->iosched.write_queue_tail);
946 } else {
947 bio = pkt_get_list_first(&pd->iosched.read_queue,
948 &pd->iosched.read_queue_tail);
949 }
950 spin_unlock(&pd->iosched.lock);
951
952 if (!bio)
953 continue;
954
955 if (bio_data_dir(bio) == READ)
956 pd->iosched.successive_reads += bio->bi_size >> 10;
957 else {
958 pd->iosched.successive_reads = 0;
959 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
960 }
961 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
962 if (pd->read_speed == pd->write_speed) {
963 pd->read_speed = MAX_SPEED;
964 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
965 }
966 } else {
967 if (pd->read_speed != pd->write_speed) {
968 pd->read_speed = pd->write_speed;
969 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
970 }
971 }
972
973 atomic_inc(&pd->cdrw.pending_bios);
974 generic_make_request(bio);
975 }
976 }
977
978 /*
979 * Special care is needed if the underlying block device has a small
980 * max_phys_segments value.
981 */
982 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
983 {
984 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
985 /*
986 * The cdrom device can handle one segment/frame
987 */
988 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
989 return 0;
990 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
991 /*
992 * We can handle this case at the expense of some extra memory
993 * copies during write operations
994 */
995 set_bit(PACKET_MERGE_SEGS, &pd->flags);
996 return 0;
997 } else {
998 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
999 return -EIO;
1000 }
1001 }
1002
1003 /*
1004 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1005 */
1006 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1007 {
1008 unsigned int copy_size = CD_FRAMESIZE;
1009
1010 while (copy_size > 0) {
1011 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1012 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1013 src_bvl->bv_offset + offs;
1014 void *vto = page_address(dst_page) + dst_offs;
1015 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1016
1017 BUG_ON(len < 0);
1018 memcpy(vto, vfrom, len);
1019 kunmap_atomic(vfrom, KM_USER0);
1020
1021 seg++;
1022 offs = 0;
1023 dst_offs += len;
1024 copy_size -= len;
1025 }
1026 }
1027
1028 /*
1029 * Copy all data for this packet to pkt->pages[], so that
1030 * a) The number of required segments for the write bio is minimized, which
1031 * is necessary for some scsi controllers.
1032 * b) The data can be used as cache to avoid read requests if we receive a
1033 * new write request for the same zone.
1034 */
1035 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1036 {
1037 int f, p, offs;
1038
1039 /* Copy all data to pkt->pages[] */
1040 p = 0;
1041 offs = 0;
1042 for (f = 0; f < pkt->frames; f++) {
1043 if (bvec[f].bv_page != pkt->pages[p]) {
1044 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1045 void *vto = page_address(pkt->pages[p]) + offs;
1046 memcpy(vto, vfrom, CD_FRAMESIZE);
1047 kunmap_atomic(vfrom, KM_USER0);
1048 bvec[f].bv_page = pkt->pages[p];
1049 bvec[f].bv_offset = offs;
1050 } else {
1051 BUG_ON(bvec[f].bv_offset != offs);
1052 }
1053 offs += CD_FRAMESIZE;
1054 if (offs >= PAGE_SIZE) {
1055 offs = 0;
1056 p++;
1057 }
1058 }
1059 }
1060
1061 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
1062 {
1063 struct packet_data *pkt = bio->bi_private;
1064 struct pktcdvd_device *pd = pkt->pd;
1065 BUG_ON(!pd);
1066
1067 if (bio->bi_size)
1068 return 1;
1069
1070 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1071 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1072
1073 if (err)
1074 atomic_inc(&pkt->io_errors);
1075 if (atomic_dec_and_test(&pkt->io_wait)) {
1076 atomic_inc(&pkt->run_sm);
1077 wake_up(&pd->wqueue);
1078 }
1079 pkt_bio_finished(pd);
1080
1081 return 0;
1082 }
1083
1084 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
1085 {
1086 struct packet_data *pkt = bio->bi_private;
1087 struct pktcdvd_device *pd = pkt->pd;
1088 BUG_ON(!pd);
1089
1090 if (bio->bi_size)
1091 return 1;
1092
1093 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1094
1095 pd->stats.pkt_ended++;
1096
1097 pkt_bio_finished(pd);
1098 atomic_dec(&pkt->io_wait);
1099 atomic_inc(&pkt->run_sm);
1100 wake_up(&pd->wqueue);
1101 return 0;
1102 }
1103
1104 /*
1105 * Schedule reads for the holes in a packet
1106 */
1107 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1108 {
1109 int frames_read = 0;
1110 struct bio *bio;
1111 int f;
1112 char written[PACKET_MAX_SIZE];
1113
1114 BUG_ON(!pkt->orig_bios);
1115
1116 atomic_set(&pkt->io_wait, 0);
1117 atomic_set(&pkt->io_errors, 0);
1118
1119 /*
1120 * Figure out which frames we need to read before we can write.
1121 */
1122 memset(written, 0, sizeof(written));
1123 spin_lock(&pkt->lock);
1124 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1125 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1126 int num_frames = bio->bi_size / CD_FRAMESIZE;
1127 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1128 BUG_ON(first_frame < 0);
1129 BUG_ON(first_frame + num_frames > pkt->frames);
1130 for (f = first_frame; f < first_frame + num_frames; f++)
1131 written[f] = 1;
1132 }
1133 spin_unlock(&pkt->lock);
1134
1135 if (pkt->cache_valid) {
1136 VPRINTK("pkt_gather_data: zone %llx cached\n",
1137 (unsigned long long)pkt->sector);
1138 goto out_account;
1139 }
1140
1141 /*
1142 * Schedule reads for missing parts of the packet.
1143 */
1144 for (f = 0; f < pkt->frames; f++) {
1145 int p, offset;
1146 if (written[f])
1147 continue;
1148 bio = pkt->r_bios[f];
1149 bio_init(bio);
1150 bio->bi_max_vecs = 1;
1151 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1152 bio->bi_bdev = pd->bdev;
1153 bio->bi_end_io = pkt_end_io_read;
1154 bio->bi_private = pkt;
1155
1156 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1157 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1158 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1159 f, pkt->pages[p], offset);
1160 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1161 BUG();
1162
1163 atomic_inc(&pkt->io_wait);
1164 bio->bi_rw = READ;
1165 pkt_queue_bio(pd, bio);
1166 frames_read++;
1167 }
1168
1169 out_account:
1170 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1171 frames_read, (unsigned long long)pkt->sector);
1172 pd->stats.pkt_started++;
1173 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1174 }
1175
1176 /*
1177 * Find a packet matching zone, or the least recently used packet if
1178 * there is no match.
1179 */
1180 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1181 {
1182 struct packet_data *pkt;
1183
1184 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1185 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1186 list_del_init(&pkt->list);
1187 if (pkt->sector != zone)
1188 pkt->cache_valid = 0;
1189 return pkt;
1190 }
1191 }
1192 BUG();
1193 return NULL;
1194 }
1195
1196 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1197 {
1198 if (pkt->cache_valid) {
1199 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1200 } else {
1201 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1202 }
1203 }
1204
1205 /*
1206 * recover a failed write, query for relocation if possible
1207 *
1208 * returns 1 if recovery is possible, or 0 if not
1209 *
1210 */
1211 static int pkt_start_recovery(struct packet_data *pkt)
1212 {
1213 /*
1214 * FIXME. We need help from the file system to implement
1215 * recovery handling.
1216 */
1217 return 0;
1218 #if 0
1219 struct request *rq = pkt->rq;
1220 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1221 struct block_device *pkt_bdev;
1222 struct super_block *sb = NULL;
1223 unsigned long old_block, new_block;
1224 sector_t new_sector;
1225
1226 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1227 if (pkt_bdev) {
1228 sb = get_super(pkt_bdev);
1229 bdput(pkt_bdev);
1230 }
1231
1232 if (!sb)
1233 return 0;
1234
1235 if (!sb->s_op || !sb->s_op->relocate_blocks)
1236 goto out;
1237
1238 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1239 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1240 goto out;
1241
1242 new_sector = new_block * (CD_FRAMESIZE >> 9);
1243 pkt->sector = new_sector;
1244
1245 pkt->bio->bi_sector = new_sector;
1246 pkt->bio->bi_next = NULL;
1247 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1248 pkt->bio->bi_idx = 0;
1249
1250 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1251 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1252 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1253 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1254 BUG_ON(pkt->bio->bi_private != pkt);
1255
1256 drop_super(sb);
1257 return 1;
1258
1259 out:
1260 drop_super(sb);
1261 return 0;
1262 #endif
1263 }
1264
1265 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1266 {
1267 #if PACKET_DEBUG > 1
1268 static const char *state_name[] = {
1269 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1270 };
1271 enum packet_data_state old_state = pkt->state;
1272 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1273 state_name[old_state], state_name[state]);
1274 #endif
1275 pkt->state = state;
1276 }
1277
1278 /*
1279 * Scan the work queue to see if we can start a new packet.
1280 * returns non-zero if any work was done.
1281 */
1282 static int pkt_handle_queue(struct pktcdvd_device *pd)
1283 {
1284 struct packet_data *pkt, *p;
1285 struct bio *bio = NULL;
1286 sector_t zone = 0; /* Suppress gcc warning */
1287 struct pkt_rb_node *node, *first_node;
1288 struct rb_node *n;
1289 int wakeup;
1290
1291 VPRINTK("handle_queue\n");
1292
1293 atomic_set(&pd->scan_queue, 0);
1294
1295 if (list_empty(&pd->cdrw.pkt_free_list)) {
1296 VPRINTK("handle_queue: no pkt\n");
1297 return 0;
1298 }
1299
1300 /*
1301 * Try to find a zone we are not already working on.
1302 */
1303 spin_lock(&pd->lock);
1304 first_node = pkt_rbtree_find(pd, pd->current_sector);
1305 if (!first_node) {
1306 n = rb_first(&pd->bio_queue);
1307 if (n)
1308 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1309 }
1310 node = first_node;
1311 while (node) {
1312 bio = node->bio;
1313 zone = ZONE(bio->bi_sector, pd);
1314 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1315 if (p->sector == zone) {
1316 bio = NULL;
1317 goto try_next_bio;
1318 }
1319 }
1320 break;
1321 try_next_bio:
1322 node = pkt_rbtree_next(node);
1323 if (!node) {
1324 n = rb_first(&pd->bio_queue);
1325 if (n)
1326 node = rb_entry(n, struct pkt_rb_node, rb_node);
1327 }
1328 if (node == first_node)
1329 node = NULL;
1330 }
1331 spin_unlock(&pd->lock);
1332 if (!bio) {
1333 VPRINTK("handle_queue: no bio\n");
1334 return 0;
1335 }
1336
1337 pkt = pkt_get_packet_data(pd, zone);
1338
1339 pd->current_sector = zone + pd->settings.size;
1340 pkt->sector = zone;
1341 BUG_ON(pkt->frames != pd->settings.size >> 2);
1342 pkt->write_size = 0;
1343
1344 /*
1345 * Scan work queue for bios in the same zone and link them
1346 * to this packet.
1347 */
1348 spin_lock(&pd->lock);
1349 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1350 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1351 bio = node->bio;
1352 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1353 (unsigned long long)ZONE(bio->bi_sector, pd));
1354 if (ZONE(bio->bi_sector, pd) != zone)
1355 break;
1356 pkt_rbtree_erase(pd, node);
1357 spin_lock(&pkt->lock);
1358 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1359 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1360 spin_unlock(&pkt->lock);
1361 }
1362 /* check write congestion marks, and if bio_queue_size is
1363 below, wake up any waiters */
1364 wakeup = (pd->write_congestion_on > 0
1365 && pd->bio_queue_size <= pd->write_congestion_off);
1366 spin_unlock(&pd->lock);
1367 if (wakeup)
1368 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1369
1370 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1371 pkt_set_state(pkt, PACKET_WAITING_STATE);
1372 atomic_set(&pkt->run_sm, 1);
1373
1374 spin_lock(&pd->cdrw.active_list_lock);
1375 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1376 spin_unlock(&pd->cdrw.active_list_lock);
1377
1378 return 1;
1379 }
1380
1381 /*
1382 * Assemble a bio to write one packet and queue the bio for processing
1383 * by the underlying block device.
1384 */
1385 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1386 {
1387 struct bio *bio;
1388 int f;
1389 int frames_write;
1390 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1391
1392 for (f = 0; f < pkt->frames; f++) {
1393 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1394 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1395 }
1396
1397 /*
1398 * Fill-in bvec with data from orig_bios.
1399 */
1400 frames_write = 0;
1401 spin_lock(&pkt->lock);
1402 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1403 int segment = bio->bi_idx;
1404 int src_offs = 0;
1405 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1406 int num_frames = bio->bi_size / CD_FRAMESIZE;
1407 BUG_ON(first_frame < 0);
1408 BUG_ON(first_frame + num_frames > pkt->frames);
1409 for (f = first_frame; f < first_frame + num_frames; f++) {
1410 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1411
1412 while (src_offs >= src_bvl->bv_len) {
1413 src_offs -= src_bvl->bv_len;
1414 segment++;
1415 BUG_ON(segment >= bio->bi_vcnt);
1416 src_bvl = bio_iovec_idx(bio, segment);
1417 }
1418
1419 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1420 bvec[f].bv_page = src_bvl->bv_page;
1421 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1422 } else {
1423 pkt_copy_bio_data(bio, segment, src_offs,
1424 bvec[f].bv_page, bvec[f].bv_offset);
1425 }
1426 src_offs += CD_FRAMESIZE;
1427 frames_write++;
1428 }
1429 }
1430 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1431 spin_unlock(&pkt->lock);
1432
1433 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1434 frames_write, (unsigned long long)pkt->sector);
1435 BUG_ON(frames_write != pkt->write_size);
1436
1437 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1438 pkt_make_local_copy(pkt, bvec);
1439 pkt->cache_valid = 1;
1440 } else {
1441 pkt->cache_valid = 0;
1442 }
1443
1444 /* Start the write request */
1445 bio_init(pkt->w_bio);
1446 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1447 pkt->w_bio->bi_sector = pkt->sector;
1448 pkt->w_bio->bi_bdev = pd->bdev;
1449 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1450 pkt->w_bio->bi_private = pkt;
1451 for (f = 0; f < pkt->frames; f++)
1452 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1453 BUG();
1454 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1455
1456 atomic_set(&pkt->io_wait, 1);
1457 pkt->w_bio->bi_rw = WRITE;
1458 pkt_queue_bio(pd, pkt->w_bio);
1459 }
1460
1461 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1462 {
1463 struct bio *bio, *next;
1464
1465 if (!uptodate)
1466 pkt->cache_valid = 0;
1467
1468 /* Finish all bios corresponding to this packet */
1469 bio = pkt->orig_bios;
1470 while (bio) {
1471 next = bio->bi_next;
1472 bio->bi_next = NULL;
1473 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1474 bio = next;
1475 }
1476 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1477 }
1478
1479 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1480 {
1481 int uptodate;
1482
1483 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1484
1485 for (;;) {
1486 switch (pkt->state) {
1487 case PACKET_WAITING_STATE:
1488 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1489 return;
1490
1491 pkt->sleep_time = 0;
1492 pkt_gather_data(pd, pkt);
1493 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1494 break;
1495
1496 case PACKET_READ_WAIT_STATE:
1497 if (atomic_read(&pkt->io_wait) > 0)
1498 return;
1499
1500 if (atomic_read(&pkt->io_errors) > 0) {
1501 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1502 } else {
1503 pkt_start_write(pd, pkt);
1504 }
1505 break;
1506
1507 case PACKET_WRITE_WAIT_STATE:
1508 if (atomic_read(&pkt->io_wait) > 0)
1509 return;
1510
1511 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1512 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1513 } else {
1514 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1515 }
1516 break;
1517
1518 case PACKET_RECOVERY_STATE:
1519 if (pkt_start_recovery(pkt)) {
1520 pkt_start_write(pd, pkt);
1521 } else {
1522 VPRINTK("No recovery possible\n");
1523 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1524 }
1525 break;
1526
1527 case PACKET_FINISHED_STATE:
1528 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1529 pkt_finish_packet(pkt, uptodate);
1530 return;
1531
1532 default:
1533 BUG();
1534 break;
1535 }
1536 }
1537 }
1538
1539 static void pkt_handle_packets(struct pktcdvd_device *pd)
1540 {
1541 struct packet_data *pkt, *next;
1542
1543 VPRINTK("pkt_handle_packets\n");
1544
1545 /*
1546 * Run state machine for active packets
1547 */
1548 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1549 if (atomic_read(&pkt->run_sm) > 0) {
1550 atomic_set(&pkt->run_sm, 0);
1551 pkt_run_state_machine(pd, pkt);
1552 }
1553 }
1554
1555 /*
1556 * Move no longer active packets to the free list
1557 */
1558 spin_lock(&pd->cdrw.active_list_lock);
1559 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1560 if (pkt->state == PACKET_FINISHED_STATE) {
1561 list_del(&pkt->list);
1562 pkt_put_packet_data(pd, pkt);
1563 pkt_set_state(pkt, PACKET_IDLE_STATE);
1564 atomic_set(&pd->scan_queue, 1);
1565 }
1566 }
1567 spin_unlock(&pd->cdrw.active_list_lock);
1568 }
1569
1570 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1571 {
1572 struct packet_data *pkt;
1573 int i;
1574
1575 for (i = 0; i < PACKET_NUM_STATES; i++)
1576 states[i] = 0;
1577
1578 spin_lock(&pd->cdrw.active_list_lock);
1579 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1580 states[pkt->state]++;
1581 }
1582 spin_unlock(&pd->cdrw.active_list_lock);
1583 }
1584
1585 /*
1586 * kcdrwd is woken up when writes have been queued for one of our
1587 * registered devices
1588 */
1589 static int kcdrwd(void *foobar)
1590 {
1591 struct pktcdvd_device *pd = foobar;
1592 struct packet_data *pkt;
1593 long min_sleep_time, residue;
1594
1595 set_user_nice(current, -20);
1596 set_freezable();
1597
1598 for (;;) {
1599 DECLARE_WAITQUEUE(wait, current);
1600
1601 /*
1602 * Wait until there is something to do
1603 */
1604 add_wait_queue(&pd->wqueue, &wait);
1605 for (;;) {
1606 set_current_state(TASK_INTERRUPTIBLE);
1607
1608 /* Check if we need to run pkt_handle_queue */
1609 if (atomic_read(&pd->scan_queue) > 0)
1610 goto work_to_do;
1611
1612 /* Check if we need to run the state machine for some packet */
1613 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1614 if (atomic_read(&pkt->run_sm) > 0)
1615 goto work_to_do;
1616 }
1617
1618 /* Check if we need to process the iosched queues */
1619 if (atomic_read(&pd->iosched.attention) != 0)
1620 goto work_to_do;
1621
1622 /* Otherwise, go to sleep */
1623 if (PACKET_DEBUG > 1) {
1624 int states[PACKET_NUM_STATES];
1625 pkt_count_states(pd, states);
1626 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1627 states[0], states[1], states[2], states[3],
1628 states[4], states[5]);
1629 }
1630
1631 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1632 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1633 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1634 min_sleep_time = pkt->sleep_time;
1635 }
1636
1637 generic_unplug_device(bdev_get_queue(pd->bdev));
1638
1639 VPRINTK("kcdrwd: sleeping\n");
1640 residue = schedule_timeout(min_sleep_time);
1641 VPRINTK("kcdrwd: wake up\n");
1642
1643 /* make swsusp happy with our thread */
1644 try_to_freeze();
1645
1646 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1647 if (!pkt->sleep_time)
1648 continue;
1649 pkt->sleep_time -= min_sleep_time - residue;
1650 if (pkt->sleep_time <= 0) {
1651 pkt->sleep_time = 0;
1652 atomic_inc(&pkt->run_sm);
1653 }
1654 }
1655
1656 if (kthread_should_stop())
1657 break;
1658 }
1659 work_to_do:
1660 set_current_state(TASK_RUNNING);
1661 remove_wait_queue(&pd->wqueue, &wait);
1662
1663 if (kthread_should_stop())
1664 break;
1665
1666 /*
1667 * if pkt_handle_queue returns true, we can queue
1668 * another request.
1669 */
1670 while (pkt_handle_queue(pd))
1671 ;
1672
1673 /*
1674 * Handle packet state machine
1675 */
1676 pkt_handle_packets(pd);
1677
1678 /*
1679 * Handle iosched queues
1680 */
1681 pkt_iosched_process_queue(pd);
1682 }
1683
1684 return 0;
1685 }
1686
1687 static void pkt_print_settings(struct pktcdvd_device *pd)
1688 {
1689 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1690 printk("%u blocks, ", pd->settings.size >> 2);
1691 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1692 }
1693
1694 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1695 {
1696 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1697
1698 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1699 cgc->cmd[2] = page_code | (page_control << 6);
1700 cgc->cmd[7] = cgc->buflen >> 8;
1701 cgc->cmd[8] = cgc->buflen & 0xff;
1702 cgc->data_direction = CGC_DATA_READ;
1703 return pkt_generic_packet(pd, cgc);
1704 }
1705
1706 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1707 {
1708 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1709 memset(cgc->buffer, 0, 2);
1710 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1711 cgc->cmd[1] = 0x10; /* PF */
1712 cgc->cmd[7] = cgc->buflen >> 8;
1713 cgc->cmd[8] = cgc->buflen & 0xff;
1714 cgc->data_direction = CGC_DATA_WRITE;
1715 return pkt_generic_packet(pd, cgc);
1716 }
1717
1718 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1719 {
1720 struct packet_command cgc;
1721 int ret;
1722
1723 /* set up command and get the disc info */
1724 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1725 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1726 cgc.cmd[8] = cgc.buflen = 2;
1727 cgc.quiet = 1;
1728
1729 if ((ret = pkt_generic_packet(pd, &cgc)))
1730 return ret;
1731
1732 /* not all drives have the same disc_info length, so requeue
1733 * packet with the length the drive tells us it can supply
1734 */
1735 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1736 sizeof(di->disc_information_length);
1737
1738 if (cgc.buflen > sizeof(disc_information))
1739 cgc.buflen = sizeof(disc_information);
1740
1741 cgc.cmd[8] = cgc.buflen;
1742 return pkt_generic_packet(pd, &cgc);
1743 }
1744
1745 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1746 {
1747 struct packet_command cgc;
1748 int ret;
1749
1750 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1751 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1752 cgc.cmd[1] = type & 3;
1753 cgc.cmd[4] = (track & 0xff00) >> 8;
1754 cgc.cmd[5] = track & 0xff;
1755 cgc.cmd[8] = 8;
1756 cgc.quiet = 1;
1757
1758 if ((ret = pkt_generic_packet(pd, &cgc)))
1759 return ret;
1760
1761 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1762 sizeof(ti->track_information_length);
1763
1764 if (cgc.buflen > sizeof(track_information))
1765 cgc.buflen = sizeof(track_information);
1766
1767 cgc.cmd[8] = cgc.buflen;
1768 return pkt_generic_packet(pd, &cgc);
1769 }
1770
1771 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1772 {
1773 disc_information di;
1774 track_information ti;
1775 __u32 last_track;
1776 int ret = -1;
1777
1778 if ((ret = pkt_get_disc_info(pd, &di)))
1779 return ret;
1780
1781 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1782 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1783 return ret;
1784
1785 /* if this track is blank, try the previous. */
1786 if (ti.blank) {
1787 last_track--;
1788 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1789 return ret;
1790 }
1791
1792 /* if last recorded field is valid, return it. */
1793 if (ti.lra_v) {
1794 *last_written = be32_to_cpu(ti.last_rec_address);
1795 } else {
1796 /* make it up instead */
1797 *last_written = be32_to_cpu(ti.track_start) +
1798 be32_to_cpu(ti.track_size);
1799 if (ti.free_blocks)
1800 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1801 }
1802 return 0;
1803 }
1804
1805 /*
1806 * write mode select package based on pd->settings
1807 */
1808 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1809 {
1810 struct packet_command cgc;
1811 struct request_sense sense;
1812 write_param_page *wp;
1813 char buffer[128];
1814 int ret, size;
1815
1816 /* doesn't apply to DVD+RW or DVD-RAM */
1817 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1818 return 0;
1819
1820 memset(buffer, 0, sizeof(buffer));
1821 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1822 cgc.sense = &sense;
1823 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1824 pkt_dump_sense(&cgc);
1825 return ret;
1826 }
1827
1828 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1829 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1830 if (size > sizeof(buffer))
1831 size = sizeof(buffer);
1832
1833 /*
1834 * now get it all
1835 */
1836 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1837 cgc.sense = &sense;
1838 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1839 pkt_dump_sense(&cgc);
1840 return ret;
1841 }
1842
1843 /*
1844 * write page is offset header + block descriptor length
1845 */
1846 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1847
1848 wp->fp = pd->settings.fp;
1849 wp->track_mode = pd->settings.track_mode;
1850 wp->write_type = pd->settings.write_type;
1851 wp->data_block_type = pd->settings.block_mode;
1852
1853 wp->multi_session = 0;
1854
1855 #ifdef PACKET_USE_LS
1856 wp->link_size = 7;
1857 wp->ls_v = 1;
1858 #endif
1859
1860 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1861 wp->session_format = 0;
1862 wp->subhdr2 = 0x20;
1863 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1864 wp->session_format = 0x20;
1865 wp->subhdr2 = 8;
1866 #if 0
1867 wp->mcn[0] = 0x80;
1868 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1869 #endif
1870 } else {
1871 /*
1872 * paranoia
1873 */
1874 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1875 return 1;
1876 }
1877 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1878
1879 cgc.buflen = cgc.cmd[8] = size;
1880 if ((ret = pkt_mode_select(pd, &cgc))) {
1881 pkt_dump_sense(&cgc);
1882 return ret;
1883 }
1884
1885 pkt_print_settings(pd);
1886 return 0;
1887 }
1888
1889 /*
1890 * 1 -- we can write to this track, 0 -- we can't
1891 */
1892 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1893 {
1894 switch (pd->mmc3_profile) {
1895 case 0x1a: /* DVD+RW */
1896 case 0x12: /* DVD-RAM */
1897 /* The track is always writable on DVD+RW/DVD-RAM */
1898 return 1;
1899 default:
1900 break;
1901 }
1902
1903 if (!ti->packet || !ti->fp)
1904 return 0;
1905
1906 /*
1907 * "good" settings as per Mt Fuji.
1908 */
1909 if (ti->rt == 0 && ti->blank == 0)
1910 return 1;
1911
1912 if (ti->rt == 0 && ti->blank == 1)
1913 return 1;
1914
1915 if (ti->rt == 1 && ti->blank == 0)
1916 return 1;
1917
1918 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1919 return 0;
1920 }
1921
1922 /*
1923 * 1 -- we can write to this disc, 0 -- we can't
1924 */
1925 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1926 {
1927 switch (pd->mmc3_profile) {
1928 case 0x0a: /* CD-RW */
1929 case 0xffff: /* MMC3 not supported */
1930 break;
1931 case 0x1a: /* DVD+RW */
1932 case 0x13: /* DVD-RW */
1933 case 0x12: /* DVD-RAM */
1934 return 1;
1935 default:
1936 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1937 return 0;
1938 }
1939
1940 /*
1941 * for disc type 0xff we should probably reserve a new track.
1942 * but i'm not sure, should we leave this to user apps? probably.
1943 */
1944 if (di->disc_type == 0xff) {
1945 printk(DRIVER_NAME": Unknown disc. No track?\n");
1946 return 0;
1947 }
1948
1949 if (di->disc_type != 0x20 && di->disc_type != 0) {
1950 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1951 return 0;
1952 }
1953
1954 if (di->erasable == 0) {
1955 printk(DRIVER_NAME": Disc not erasable\n");
1956 return 0;
1957 }
1958
1959 if (di->border_status == PACKET_SESSION_RESERVED) {
1960 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1961 return 0;
1962 }
1963
1964 return 1;
1965 }
1966
1967 static int pkt_probe_settings(struct pktcdvd_device *pd)
1968 {
1969 struct packet_command cgc;
1970 unsigned char buf[12];
1971 disc_information di;
1972 track_information ti;
1973 int ret, track;
1974
1975 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1976 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1977 cgc.cmd[8] = 8;
1978 ret = pkt_generic_packet(pd, &cgc);
1979 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1980
1981 memset(&di, 0, sizeof(disc_information));
1982 memset(&ti, 0, sizeof(track_information));
1983
1984 if ((ret = pkt_get_disc_info(pd, &di))) {
1985 printk("failed get_disc\n");
1986 return ret;
1987 }
1988
1989 if (!pkt_writable_disc(pd, &di))
1990 return -EROFS;
1991
1992 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1993
1994 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1995 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1996 printk(DRIVER_NAME": failed get_track\n");
1997 return ret;
1998 }
1999
2000 if (!pkt_writable_track(pd, &ti)) {
2001 printk(DRIVER_NAME": can't write to this track\n");
2002 return -EROFS;
2003 }
2004
2005 /*
2006 * we keep packet size in 512 byte units, makes it easier to
2007 * deal with request calculations.
2008 */
2009 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2010 if (pd->settings.size == 0) {
2011 printk(DRIVER_NAME": detected zero packet size!\n");
2012 return -ENXIO;
2013 }
2014 if (pd->settings.size > PACKET_MAX_SECTORS) {
2015 printk(DRIVER_NAME": packet size is too big\n");
2016 return -EROFS;
2017 }
2018 pd->settings.fp = ti.fp;
2019 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2020
2021 if (ti.nwa_v) {
2022 pd->nwa = be32_to_cpu(ti.next_writable);
2023 set_bit(PACKET_NWA_VALID, &pd->flags);
2024 }
2025
2026 /*
2027 * in theory we could use lra on -RW media as well and just zero
2028 * blocks that haven't been written yet, but in practice that
2029 * is just a no-go. we'll use that for -R, naturally.
2030 */
2031 if (ti.lra_v) {
2032 pd->lra = be32_to_cpu(ti.last_rec_address);
2033 set_bit(PACKET_LRA_VALID, &pd->flags);
2034 } else {
2035 pd->lra = 0xffffffff;
2036 set_bit(PACKET_LRA_VALID, &pd->flags);
2037 }
2038
2039 /*
2040 * fine for now
2041 */
2042 pd->settings.link_loss = 7;
2043 pd->settings.write_type = 0; /* packet */
2044 pd->settings.track_mode = ti.track_mode;
2045
2046 /*
2047 * mode1 or mode2 disc
2048 */
2049 switch (ti.data_mode) {
2050 case PACKET_MODE1:
2051 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2052 break;
2053 case PACKET_MODE2:
2054 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2055 break;
2056 default:
2057 printk(DRIVER_NAME": unknown data mode\n");
2058 return -EROFS;
2059 }
2060 return 0;
2061 }
2062
2063 /*
2064 * enable/disable write caching on drive
2065 */
2066 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
2067 {
2068 struct packet_command cgc;
2069 struct request_sense sense;
2070 unsigned char buf[64];
2071 int ret;
2072
2073 memset(buf, 0, sizeof(buf));
2074 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2075 cgc.sense = &sense;
2076 cgc.buflen = pd->mode_offset + 12;
2077
2078 /*
2079 * caching mode page might not be there, so quiet this command
2080 */
2081 cgc.quiet = 1;
2082
2083 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2084 return ret;
2085
2086 buf[pd->mode_offset + 10] |= (!!set << 2);
2087
2088 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2089 ret = pkt_mode_select(pd, &cgc);
2090 if (ret) {
2091 printk(DRIVER_NAME": write caching control failed\n");
2092 pkt_dump_sense(&cgc);
2093 } else if (!ret && set)
2094 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2095 return ret;
2096 }
2097
2098 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2099 {
2100 struct packet_command cgc;
2101
2102 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2103 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2104 cgc.cmd[4] = lockflag ? 1 : 0;
2105 return pkt_generic_packet(pd, &cgc);
2106 }
2107
2108 /*
2109 * Returns drive maximum write speed
2110 */
2111 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
2112 {
2113 struct packet_command cgc;
2114 struct request_sense sense;
2115 unsigned char buf[256+18];
2116 unsigned char *cap_buf;
2117 int ret, offset;
2118
2119 memset(buf, 0, sizeof(buf));
2120 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2121 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2122 cgc.sense = &sense;
2123
2124 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2125 if (ret) {
2126 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2127 sizeof(struct mode_page_header);
2128 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2129 if (ret) {
2130 pkt_dump_sense(&cgc);
2131 return ret;
2132 }
2133 }
2134
2135 offset = 20; /* Obsoleted field, used by older drives */
2136 if (cap_buf[1] >= 28)
2137 offset = 28; /* Current write speed selected */
2138 if (cap_buf[1] >= 30) {
2139 /* If the drive reports at least one "Logical Unit Write
2140 * Speed Performance Descriptor Block", use the information
2141 * in the first block. (contains the highest speed)
2142 */
2143 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2144 if (num_spdb > 0)
2145 offset = 34;
2146 }
2147
2148 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2149 return 0;
2150 }
2151
2152 /* These tables from cdrecord - I don't have orange book */
2153 /* standard speed CD-RW (1-4x) */
2154 static char clv_to_speed[16] = {
2155 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2156 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2157 };
2158 /* high speed CD-RW (-10x) */
2159 static char hs_clv_to_speed[16] = {
2160 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2161 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2162 };
2163 /* ultra high speed CD-RW */
2164 static char us_clv_to_speed[16] = {
2165 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2166 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2167 };
2168
2169 /*
2170 * reads the maximum media speed from ATIP
2171 */
2172 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
2173 {
2174 struct packet_command cgc;
2175 struct request_sense sense;
2176 unsigned char buf[64];
2177 unsigned int size, st, sp;
2178 int ret;
2179
2180 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2181 cgc.sense = &sense;
2182 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2183 cgc.cmd[1] = 2;
2184 cgc.cmd[2] = 4; /* READ ATIP */
2185 cgc.cmd[8] = 2;
2186 ret = pkt_generic_packet(pd, &cgc);
2187 if (ret) {
2188 pkt_dump_sense(&cgc);
2189 return ret;
2190 }
2191 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2192 if (size > sizeof(buf))
2193 size = sizeof(buf);
2194
2195 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2196 cgc.sense = &sense;
2197 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2198 cgc.cmd[1] = 2;
2199 cgc.cmd[2] = 4;
2200 cgc.cmd[8] = size;
2201 ret = pkt_generic_packet(pd, &cgc);
2202 if (ret) {
2203 pkt_dump_sense(&cgc);
2204 return ret;
2205 }
2206
2207 if (!buf[6] & 0x40) {
2208 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2209 return 1;
2210 }
2211 if (!buf[6] & 0x4) {
2212 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2213 return 1;
2214 }
2215
2216 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2217
2218 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2219
2220 /* Info from cdrecord */
2221 switch (st) {
2222 case 0: /* standard speed */
2223 *speed = clv_to_speed[sp];
2224 break;
2225 case 1: /* high speed */
2226 *speed = hs_clv_to_speed[sp];
2227 break;
2228 case 2: /* ultra high speed */
2229 *speed = us_clv_to_speed[sp];
2230 break;
2231 default:
2232 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2233 return 1;
2234 }
2235 if (*speed) {
2236 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2237 return 0;
2238 } else {
2239 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2240 return 1;
2241 }
2242 }
2243
2244 static int pkt_perform_opc(struct pktcdvd_device *pd)
2245 {
2246 struct packet_command cgc;
2247 struct request_sense sense;
2248 int ret;
2249
2250 VPRINTK(DRIVER_NAME": Performing OPC\n");
2251
2252 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2253 cgc.sense = &sense;
2254 cgc.timeout = 60*HZ;
2255 cgc.cmd[0] = GPCMD_SEND_OPC;
2256 cgc.cmd[1] = 1;
2257 if ((ret = pkt_generic_packet(pd, &cgc)))
2258 pkt_dump_sense(&cgc);
2259 return ret;
2260 }
2261
2262 static int pkt_open_write(struct pktcdvd_device *pd)
2263 {
2264 int ret;
2265 unsigned int write_speed, media_write_speed, read_speed;
2266
2267 if ((ret = pkt_probe_settings(pd))) {
2268 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2269 return ret;
2270 }
2271
2272 if ((ret = pkt_set_write_settings(pd))) {
2273 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2274 return -EIO;
2275 }
2276
2277 pkt_write_caching(pd, USE_WCACHING);
2278
2279 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2280 write_speed = 16 * 177;
2281 switch (pd->mmc3_profile) {
2282 case 0x13: /* DVD-RW */
2283 case 0x1a: /* DVD+RW */
2284 case 0x12: /* DVD-RAM */
2285 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2286 break;
2287 default:
2288 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2289 media_write_speed = 16;
2290 write_speed = min(write_speed, media_write_speed * 177);
2291 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2292 break;
2293 }
2294 read_speed = write_speed;
2295
2296 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2297 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2298 return -EIO;
2299 }
2300 pd->write_speed = write_speed;
2301 pd->read_speed = read_speed;
2302
2303 if ((ret = pkt_perform_opc(pd))) {
2304 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2305 }
2306
2307 return 0;
2308 }
2309
2310 /*
2311 * called at open time.
2312 */
2313 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2314 {
2315 int ret;
2316 long lba;
2317 request_queue_t *q;
2318
2319 /*
2320 * We need to re-open the cdrom device without O_NONBLOCK to be able
2321 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2322 * so bdget() can't fail.
2323 */
2324 bdget(pd->bdev->bd_dev);
2325 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2326 goto out;
2327
2328 if ((ret = bd_claim(pd->bdev, pd)))
2329 goto out_putdev;
2330
2331 if ((ret = pkt_get_last_written(pd, &lba))) {
2332 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2333 goto out_unclaim;
2334 }
2335
2336 set_capacity(pd->disk, lba << 2);
2337 set_capacity(pd->bdev->bd_disk, lba << 2);
2338 bd_set_size(pd->bdev, (loff_t)lba << 11);
2339
2340 q = bdev_get_queue(pd->bdev);
2341 if (write) {
2342 if ((ret = pkt_open_write(pd)))
2343 goto out_unclaim;
2344 /*
2345 * Some CDRW drives can not handle writes larger than one packet,
2346 * even if the size is a multiple of the packet size.
2347 */
2348 spin_lock_irq(q->queue_lock);
2349 blk_queue_max_sectors(q, pd->settings.size);
2350 spin_unlock_irq(q->queue_lock);
2351 set_bit(PACKET_WRITABLE, &pd->flags);
2352 } else {
2353 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2354 clear_bit(PACKET_WRITABLE, &pd->flags);
2355 }
2356
2357 if ((ret = pkt_set_segment_merging(pd, q)))
2358 goto out_unclaim;
2359
2360 if (write) {
2361 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2362 printk(DRIVER_NAME": not enough memory for buffers\n");
2363 ret = -ENOMEM;
2364 goto out_unclaim;
2365 }
2366 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2367 }
2368
2369 return 0;
2370
2371 out_unclaim:
2372 bd_release(pd->bdev);
2373 out_putdev:
2374 blkdev_put(pd->bdev);
2375 out:
2376 return ret;
2377 }
2378
2379 /*
2380 * called when the device is closed. makes sure that the device flushes
2381 * the internal cache before we close.
2382 */
2383 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2384 {
2385 if (flush && pkt_flush_cache(pd))
2386 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2387
2388 pkt_lock_door(pd, 0);
2389
2390 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2391 bd_release(pd->bdev);
2392 blkdev_put(pd->bdev);
2393
2394 pkt_shrink_pktlist(pd);
2395 }
2396
2397 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2398 {
2399 if (dev_minor >= MAX_WRITERS)
2400 return NULL;
2401 return pkt_devs[dev_minor];
2402 }
2403
2404 static int pkt_open(struct inode *inode, struct file *file)
2405 {
2406 struct pktcdvd_device *pd = NULL;
2407 int ret;
2408
2409 VPRINTK(DRIVER_NAME": entering open\n");
2410
2411 mutex_lock(&ctl_mutex);
2412 pd = pkt_find_dev_from_minor(iminor(inode));
2413 if (!pd) {
2414 ret = -ENODEV;
2415 goto out;
2416 }
2417 BUG_ON(pd->refcnt < 0);
2418
2419 pd->refcnt++;
2420 if (pd->refcnt > 1) {
2421 if ((file->f_mode & FMODE_WRITE) &&
2422 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2423 ret = -EBUSY;
2424 goto out_dec;
2425 }
2426 } else {
2427 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2428 if (ret)
2429 goto out_dec;
2430 /*
2431 * needed here as well, since ext2 (among others) may change
2432 * the blocksize at mount time
2433 */
2434 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2435 }
2436
2437 mutex_unlock(&ctl_mutex);
2438 return 0;
2439
2440 out_dec:
2441 pd->refcnt--;
2442 out:
2443 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2444 mutex_unlock(&ctl_mutex);
2445 return ret;
2446 }
2447
2448 static int pkt_close(struct inode *inode, struct file *file)
2449 {
2450 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2451 int ret = 0;
2452
2453 mutex_lock(&ctl_mutex);
2454 pd->refcnt--;
2455 BUG_ON(pd->refcnt < 0);
2456 if (pd->refcnt == 0) {
2457 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2458 pkt_release_dev(pd, flush);
2459 }
2460 mutex_unlock(&ctl_mutex);
2461 return ret;
2462 }
2463
2464
2465 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2466 {
2467 struct packet_stacked_data *psd = bio->bi_private;
2468 struct pktcdvd_device *pd = psd->pd;
2469
2470 if (bio->bi_size)
2471 return 1;
2472
2473 bio_put(bio);
2474 bio_endio(psd->bio, psd->bio->bi_size, err);
2475 mempool_free(psd, psd_pool);
2476 pkt_bio_finished(pd);
2477 return 0;
2478 }
2479
2480 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2481 {
2482 struct pktcdvd_device *pd;
2483 char b[BDEVNAME_SIZE];
2484 sector_t zone;
2485 struct packet_data *pkt;
2486 int was_empty, blocked_bio;
2487 struct pkt_rb_node *node;
2488
2489 pd = q->queuedata;
2490 if (!pd) {
2491 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2492 goto end_io;
2493 }
2494
2495 /*
2496 * Clone READ bios so we can have our own bi_end_io callback.
2497 */
2498 if (bio_data_dir(bio) == READ) {
2499 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2500 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2501
2502 psd->pd = pd;
2503 psd->bio = bio;
2504 cloned_bio->bi_bdev = pd->bdev;
2505 cloned_bio->bi_private = psd;
2506 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2507 pd->stats.secs_r += bio->bi_size >> 9;
2508 pkt_queue_bio(pd, cloned_bio);
2509 return 0;
2510 }
2511
2512 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2513 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2514 pd->name, (unsigned long long)bio->bi_sector);
2515 goto end_io;
2516 }
2517
2518 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2519 printk(DRIVER_NAME": wrong bio size\n");
2520 goto end_io;
2521 }
2522
2523 blk_queue_bounce(q, &bio);
2524
2525 zone = ZONE(bio->bi_sector, pd);
2526 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2527 (unsigned long long)bio->bi_sector,
2528 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2529
2530 /* Check if we have to split the bio */
2531 {
2532 struct bio_pair *bp;
2533 sector_t last_zone;
2534 int first_sectors;
2535
2536 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2537 if (last_zone != zone) {
2538 BUG_ON(last_zone != zone + pd->settings.size);
2539 first_sectors = last_zone - bio->bi_sector;
2540 bp = bio_split(bio, bio_split_pool, first_sectors);
2541 BUG_ON(!bp);
2542 pkt_make_request(q, &bp->bio1);
2543 pkt_make_request(q, &bp->bio2);
2544 bio_pair_release(bp);
2545 return 0;
2546 }
2547 }
2548
2549 /*
2550 * If we find a matching packet in state WAITING or READ_WAIT, we can
2551 * just append this bio to that packet.
2552 */
2553 spin_lock(&pd->cdrw.active_list_lock);
2554 blocked_bio = 0;
2555 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2556 if (pkt->sector == zone) {
2557 spin_lock(&pkt->lock);
2558 if ((pkt->state == PACKET_WAITING_STATE) ||
2559 (pkt->state == PACKET_READ_WAIT_STATE)) {
2560 pkt_add_list_last(bio, &pkt->orig_bios,
2561 &pkt->orig_bios_tail);
2562 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2563 if ((pkt->write_size >= pkt->frames) &&
2564 (pkt->state == PACKET_WAITING_STATE)) {
2565 atomic_inc(&pkt->run_sm);
2566 wake_up(&pd->wqueue);
2567 }
2568 spin_unlock(&pkt->lock);
2569 spin_unlock(&pd->cdrw.active_list_lock);
2570 return 0;
2571 } else {
2572 blocked_bio = 1;
2573 }
2574 spin_unlock(&pkt->lock);
2575 }
2576 }
2577 spin_unlock(&pd->cdrw.active_list_lock);
2578
2579 /*
2580 * Test if there is enough room left in the bio work queue
2581 * (queue size >= congestion on mark).
2582 * If not, wait till the work queue size is below the congestion off mark.
2583 */
2584 spin_lock(&pd->lock);
2585 if (pd->write_congestion_on > 0
2586 && pd->bio_queue_size >= pd->write_congestion_on) {
2587 set_bdi_congested(&q->backing_dev_info, WRITE);
2588 do {
2589 spin_unlock(&pd->lock);
2590 congestion_wait(WRITE, HZ);
2591 spin_lock(&pd->lock);
2592 } while(pd->bio_queue_size > pd->write_congestion_off);
2593 }
2594 spin_unlock(&pd->lock);
2595
2596 /*
2597 * No matching packet found. Store the bio in the work queue.
2598 */
2599 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2600 node->bio = bio;
2601 spin_lock(&pd->lock);
2602 BUG_ON(pd->bio_queue_size < 0);
2603 was_empty = (pd->bio_queue_size == 0);
2604 pkt_rbtree_insert(pd, node);
2605 spin_unlock(&pd->lock);
2606
2607 /*
2608 * Wake up the worker thread.
2609 */
2610 atomic_set(&pd->scan_queue, 1);
2611 if (was_empty) {
2612 /* This wake_up is required for correct operation */
2613 wake_up(&pd->wqueue);
2614 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2615 /*
2616 * This wake up is not required for correct operation,
2617 * but improves performance in some cases.
2618 */
2619 wake_up(&pd->wqueue);
2620 }
2621 return 0;
2622 end_io:
2623 bio_io_error(bio, bio->bi_size);
2624 return 0;
2625 }
2626
2627
2628
2629 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2630 {
2631 struct pktcdvd_device *pd = q->queuedata;
2632 sector_t zone = ZONE(bio->bi_sector, pd);
2633 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2634 int remaining = (pd->settings.size << 9) - used;
2635 int remaining2;
2636
2637 /*
2638 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2639 * boundary, pkt_make_request() will split the bio.
2640 */
2641 remaining2 = PAGE_SIZE - bio->bi_size;
2642 remaining = max(remaining, remaining2);
2643
2644 BUG_ON(remaining < 0);
2645 return remaining;
2646 }
2647
2648 static void pkt_init_queue(struct pktcdvd_device *pd)
2649 {
2650 request_queue_t *q = pd->disk->queue;
2651
2652 blk_queue_make_request(q, pkt_make_request);
2653 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2654 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2655 blk_queue_merge_bvec(q, pkt_merge_bvec);
2656 q->queuedata = pd;
2657 }
2658
2659 static int pkt_seq_show(struct seq_file *m, void *p)
2660 {
2661 struct pktcdvd_device *pd = m->private;
2662 char *msg;
2663 char bdev_buf[BDEVNAME_SIZE];
2664 int states[PACKET_NUM_STATES];
2665
2666 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2667 bdevname(pd->bdev, bdev_buf));
2668
2669 seq_printf(m, "\nSettings:\n");
2670 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2671
2672 if (pd->settings.write_type == 0)
2673 msg = "Packet";
2674 else
2675 msg = "Unknown";
2676 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2677
2678 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2679 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2680
2681 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2682
2683 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2684 msg = "Mode 1";
2685 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2686 msg = "Mode 2";
2687 else
2688 msg = "Unknown";
2689 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2690
2691 seq_printf(m, "\nStatistics:\n");
2692 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2693 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2694 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2695 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2696 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2697
2698 seq_printf(m, "\nMisc:\n");
2699 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2700 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2701 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2702 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2703 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2704 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2705
2706 seq_printf(m, "\nQueue state:\n");
2707 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2708 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2709 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2710
2711 pkt_count_states(pd, states);
2712 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2713 states[0], states[1], states[2], states[3], states[4], states[5]);
2714
2715 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2716 pd->write_congestion_off,
2717 pd->write_congestion_on);
2718 return 0;
2719 }
2720
2721 static int pkt_seq_open(struct inode *inode, struct file *file)
2722 {
2723 return single_open(file, pkt_seq_show, PDE(inode)->data);
2724 }
2725
2726 static const struct file_operations pkt_proc_fops = {
2727 .open = pkt_seq_open,
2728 .read = seq_read,
2729 .llseek = seq_lseek,
2730 .release = single_release
2731 };
2732
2733 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2734 {
2735 int i;
2736 int ret = 0;
2737 char b[BDEVNAME_SIZE];
2738 struct proc_dir_entry *proc;
2739 struct block_device *bdev;
2740
2741 if (pd->pkt_dev == dev) {
2742 printk(DRIVER_NAME": Recursive setup not allowed\n");
2743 return -EBUSY;
2744 }
2745 for (i = 0; i < MAX_WRITERS; i++) {
2746 struct pktcdvd_device *pd2 = pkt_devs[i];
2747 if (!pd2)
2748 continue;
2749 if (pd2->bdev->bd_dev == dev) {
2750 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2751 return -EBUSY;
2752 }
2753 if (pd2->pkt_dev == dev) {
2754 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2755 return -EBUSY;
2756 }
2757 }
2758
2759 bdev = bdget(dev);
2760 if (!bdev)
2761 return -ENOMEM;
2762 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2763 if (ret)
2764 return ret;
2765
2766 /* This is safe, since we have a reference from open(). */
2767 __module_get(THIS_MODULE);
2768
2769 pd->bdev = bdev;
2770 set_blocksize(bdev, CD_FRAMESIZE);
2771
2772 pkt_init_queue(pd);
2773
2774 atomic_set(&pd->cdrw.pending_bios, 0);
2775 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2776 if (IS_ERR(pd->cdrw.thread)) {
2777 printk(DRIVER_NAME": can't start kernel thread\n");
2778 ret = -ENOMEM;
2779 goto out_mem;
2780 }
2781
2782 proc = create_proc_entry(pd->name, 0, pkt_proc);
2783 if (proc) {
2784 proc->data = pd;
2785 proc->proc_fops = &pkt_proc_fops;
2786 }
2787 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2788 return 0;
2789
2790 out_mem:
2791 blkdev_put(bdev);
2792 /* This is safe: open() is still holding a reference. */
2793 module_put(THIS_MODULE);
2794 return ret;
2795 }
2796
2797 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2798 {
2799 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2800
2801 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2802
2803 switch (cmd) {
2804 /*
2805 * forward selected CDROM ioctls to CD-ROM, for UDF
2806 */
2807 case CDROMMULTISESSION:
2808 case CDROMREADTOCENTRY:
2809 case CDROM_LAST_WRITTEN:
2810 case CDROM_SEND_PACKET:
2811 case SCSI_IOCTL_SEND_COMMAND:
2812 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2813
2814 case CDROMEJECT:
2815 /*
2816 * The door gets locked when the device is opened, so we
2817 * have to unlock it or else the eject command fails.
2818 */
2819 if (pd->refcnt == 1)
2820 pkt_lock_door(pd, 0);
2821 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2822
2823 default:
2824 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2825 return -ENOTTY;
2826 }
2827
2828 return 0;
2829 }
2830
2831 static int pkt_media_changed(struct gendisk *disk)
2832 {
2833 struct pktcdvd_device *pd = disk->private_data;
2834 struct gendisk *attached_disk;
2835
2836 if (!pd)
2837 return 0;
2838 if (!pd->bdev)
2839 return 0;
2840 attached_disk = pd->bdev->bd_disk;
2841 if (!attached_disk)
2842 return 0;
2843 return attached_disk->fops->media_changed(attached_disk);
2844 }
2845
2846 static struct block_device_operations pktcdvd_ops = {
2847 .owner = THIS_MODULE,
2848 .open = pkt_open,
2849 .release = pkt_close,
2850 .ioctl = pkt_ioctl,
2851 .media_changed = pkt_media_changed,
2852 };
2853
2854 /*
2855 * Set up mapping from pktcdvd device to CD-ROM device.
2856 */
2857 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2858 {
2859 int idx;
2860 int ret = -ENOMEM;
2861 struct pktcdvd_device *pd;
2862 struct gendisk *disk;
2863
2864 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2865
2866 for (idx = 0; idx < MAX_WRITERS; idx++)
2867 if (!pkt_devs[idx])
2868 break;
2869 if (idx == MAX_WRITERS) {
2870 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2871 ret = -EBUSY;
2872 goto out_mutex;
2873 }
2874
2875 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2876 if (!pd)
2877 goto out_mutex;
2878
2879 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2880 sizeof(struct pkt_rb_node));
2881 if (!pd->rb_pool)
2882 goto out_mem;
2883
2884 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2885 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2886 spin_lock_init(&pd->cdrw.active_list_lock);
2887
2888 spin_lock_init(&pd->lock);
2889 spin_lock_init(&pd->iosched.lock);
2890 sprintf(pd->name, DRIVER_NAME"%d", idx);
2891 init_waitqueue_head(&pd->wqueue);
2892 pd->bio_queue = RB_ROOT;
2893
2894 pd->write_congestion_on = write_congestion_on;
2895 pd->write_congestion_off = write_congestion_off;
2896
2897 disk = alloc_disk(1);
2898 if (!disk)
2899 goto out_mem;
2900 pd->disk = disk;
2901 disk->major = pktdev_major;
2902 disk->first_minor = idx;
2903 disk->fops = &pktcdvd_ops;
2904 disk->flags = GENHD_FL_REMOVABLE;
2905 strcpy(disk->disk_name, pd->name);
2906 disk->private_data = pd;
2907 disk->queue = blk_alloc_queue(GFP_KERNEL);
2908 if (!disk->queue)
2909 goto out_mem2;
2910
2911 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2912 ret = pkt_new_dev(pd, dev);
2913 if (ret)
2914 goto out_new_dev;
2915
2916 add_disk(disk);
2917
2918 pkt_sysfs_dev_new(pd);
2919 pkt_debugfs_dev_new(pd);
2920
2921 pkt_devs[idx] = pd;
2922 if (pkt_dev)
2923 *pkt_dev = pd->pkt_dev;
2924
2925 mutex_unlock(&ctl_mutex);
2926 return 0;
2927
2928 out_new_dev:
2929 blk_cleanup_queue(disk->queue);
2930 out_mem2:
2931 put_disk(disk);
2932 out_mem:
2933 if (pd->rb_pool)
2934 mempool_destroy(pd->rb_pool);
2935 kfree(pd);
2936 out_mutex:
2937 mutex_unlock(&ctl_mutex);
2938 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2939 return ret;
2940 }
2941
2942 /*
2943 * Tear down mapping from pktcdvd device to CD-ROM device.
2944 */
2945 static int pkt_remove_dev(dev_t pkt_dev)
2946 {
2947 struct pktcdvd_device *pd;
2948 int idx;
2949 int ret = 0;
2950
2951 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2952
2953 for (idx = 0; idx < MAX_WRITERS; idx++) {
2954 pd = pkt_devs[idx];
2955 if (pd && (pd->pkt_dev == pkt_dev))
2956 break;
2957 }
2958 if (idx == MAX_WRITERS) {
2959 DPRINTK(DRIVER_NAME": dev not setup\n");
2960 ret = -ENXIO;
2961 goto out;
2962 }
2963
2964 if (pd->refcnt > 0) {
2965 ret = -EBUSY;
2966 goto out;
2967 }
2968 if (!IS_ERR(pd->cdrw.thread))
2969 kthread_stop(pd->cdrw.thread);
2970
2971 pkt_devs[idx] = NULL;
2972
2973 pkt_debugfs_dev_remove(pd);
2974 pkt_sysfs_dev_remove(pd);
2975
2976 blkdev_put(pd->bdev);
2977
2978 remove_proc_entry(pd->name, pkt_proc);
2979 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2980
2981 del_gendisk(pd->disk);
2982 blk_cleanup_queue(pd->disk->queue);
2983 put_disk(pd->disk);
2984
2985 mempool_destroy(pd->rb_pool);
2986 kfree(pd);
2987
2988 /* This is safe: open() is still holding a reference. */
2989 module_put(THIS_MODULE);
2990
2991 out:
2992 mutex_unlock(&ctl_mutex);
2993 return ret;
2994 }
2995
2996 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2997 {
2998 struct pktcdvd_device *pd;
2999
3000 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3001
3002 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3003 if (pd) {
3004 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3005 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3006 } else {
3007 ctrl_cmd->dev = 0;
3008 ctrl_cmd->pkt_dev = 0;
3009 }
3010 ctrl_cmd->num_devices = MAX_WRITERS;
3011
3012 mutex_unlock(&ctl_mutex);
3013 }
3014
3015 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3016 {
3017 void __user *argp = (void __user *)arg;
3018 struct pkt_ctrl_command ctrl_cmd;
3019 int ret = 0;
3020 dev_t pkt_dev = 0;
3021
3022 if (cmd != PACKET_CTRL_CMD)
3023 return -ENOTTY;
3024
3025 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3026 return -EFAULT;
3027
3028 switch (ctrl_cmd.command) {
3029 case PKT_CTRL_CMD_SETUP:
3030 if (!capable(CAP_SYS_ADMIN))
3031 return -EPERM;
3032 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3033 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3034 break;
3035 case PKT_CTRL_CMD_TEARDOWN:
3036 if (!capable(CAP_SYS_ADMIN))
3037 return -EPERM;
3038 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3039 break;
3040 case PKT_CTRL_CMD_STATUS:
3041 pkt_get_status(&ctrl_cmd);
3042 break;
3043 default:
3044 return -ENOTTY;
3045 }
3046
3047 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3048 return -EFAULT;
3049 return ret;
3050 }
3051
3052
3053 static const struct file_operations pkt_ctl_fops = {
3054 .ioctl = pkt_ctl_ioctl,
3055 .owner = THIS_MODULE,
3056 };
3057
3058 static struct miscdevice pkt_misc = {
3059 .minor = MISC_DYNAMIC_MINOR,
3060 .name = DRIVER_NAME,
3061 .fops = &pkt_ctl_fops
3062 };
3063
3064 static int __init pkt_init(void)
3065 {
3066 int ret;
3067
3068 mutex_init(&ctl_mutex);
3069
3070 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3071 sizeof(struct packet_stacked_data));
3072 if (!psd_pool)
3073 return -ENOMEM;
3074
3075 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3076 if (ret < 0) {
3077 printk(DRIVER_NAME": Unable to register block device\n");
3078 goto out2;
3079 }
3080 if (!pktdev_major)
3081 pktdev_major = ret;
3082
3083 ret = pkt_sysfs_init();
3084 if (ret)
3085 goto out;
3086
3087 pkt_debugfs_init();
3088
3089 ret = misc_register(&pkt_misc);
3090 if (ret) {
3091 printk(DRIVER_NAME": Unable to register misc device\n");
3092 goto out_misc;
3093 }
3094
3095 pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver);
3096
3097 return 0;
3098
3099 out_misc:
3100 pkt_debugfs_cleanup();
3101 pkt_sysfs_cleanup();
3102 out:
3103 unregister_blkdev(pktdev_major, DRIVER_NAME);
3104 out2:
3105 mempool_destroy(psd_pool);
3106 return ret;
3107 }
3108
3109 static void __exit pkt_exit(void)
3110 {
3111 remove_proc_entry(DRIVER_NAME, proc_root_driver);
3112 misc_deregister(&pkt_misc);
3113
3114 pkt_debugfs_cleanup();
3115 pkt_sysfs_cleanup();
3116
3117 unregister_blkdev(pktdev_major, DRIVER_NAME);
3118 mempool_destroy(psd_pool);
3119 }
3120
3121 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3122 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3123 MODULE_LICENSE("GPL");
3124
3125 module_init(pkt_init);
3126 module_exit(pkt_exit);