]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/pktcdvd.c
block: Introduce new bio_split()
[mirror_ubuntu-zesty-kernel.git] / drivers / block / pktcdvd.c
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
69
70 #include <asm/uaccess.h>
71
72 #define DRIVER_NAME "pktcdvd"
73
74 #define pkt_err(pd, fmt, ...) \
75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76 #define pkt_notice(pd, fmt, ...) \
77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78 #define pkt_info(pd, fmt, ...) \
79 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
80
81 #define pkt_dbg(level, pd, fmt, ...) \
82 do { \
83 if (level == 2 && PACKET_DEBUG >= 2) \
84 pr_notice("%s: %s():" fmt, \
85 pd->name, __func__, ##__VA_ARGS__); \
86 else if (level == 1 && PACKET_DEBUG >= 1) \
87 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
88 } while (0)
89
90 #define MAX_SPEED 0xffff
91
92 static DEFINE_MUTEX(pktcdvd_mutex);
93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
94 static struct proc_dir_entry *pkt_proc;
95 static int pktdev_major;
96 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
98 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
99 static mempool_t *psd_pool;
100
101 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
102 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
103
104 /* forward declaration */
105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
106 static int pkt_remove_dev(dev_t pkt_dev);
107 static int pkt_seq_show(struct seq_file *m, void *p);
108
109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
110 {
111 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
112 }
113
114 /*
115 * create and register a pktcdvd kernel object.
116 */
117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
118 const char* name,
119 struct kobject* parent,
120 struct kobj_type* ktype)
121 {
122 struct pktcdvd_kobj *p;
123 int error;
124
125 p = kzalloc(sizeof(*p), GFP_KERNEL);
126 if (!p)
127 return NULL;
128 p->pd = pd;
129 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
130 if (error) {
131 kobject_put(&p->kobj);
132 return NULL;
133 }
134 kobject_uevent(&p->kobj, KOBJ_ADD);
135 return p;
136 }
137 /*
138 * remove a pktcdvd kernel object.
139 */
140 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
141 {
142 if (p)
143 kobject_put(&p->kobj);
144 }
145 /*
146 * default release function for pktcdvd kernel objects.
147 */
148 static void pkt_kobj_release(struct kobject *kobj)
149 {
150 kfree(to_pktcdvdkobj(kobj));
151 }
152
153
154 /**********************************************************
155 *
156 * sysfs interface for pktcdvd
157 * by (C) 2006 Thomas Maier <balagi@justmail.de>
158 *
159 **********************************************************/
160
161 #define DEF_ATTR(_obj,_name,_mode) \
162 static struct attribute _obj = { .name = _name, .mode = _mode }
163
164 /**********************************************************
165 /sys/class/pktcdvd/pktcdvd[0-7]/
166 stat/reset
167 stat/packets_started
168 stat/packets_finished
169 stat/kb_written
170 stat/kb_read
171 stat/kb_read_gather
172 write_queue/size
173 write_queue/congestion_off
174 write_queue/congestion_on
175 **********************************************************/
176
177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
183
184 static struct attribute *kobj_pkt_attrs_stat[] = {
185 &kobj_pkt_attr_st1,
186 &kobj_pkt_attr_st2,
187 &kobj_pkt_attr_st3,
188 &kobj_pkt_attr_st4,
189 &kobj_pkt_attr_st5,
190 &kobj_pkt_attr_st6,
191 NULL
192 };
193
194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
197
198 static struct attribute *kobj_pkt_attrs_wqueue[] = {
199 &kobj_pkt_attr_wq1,
200 &kobj_pkt_attr_wq2,
201 &kobj_pkt_attr_wq3,
202 NULL
203 };
204
205 static ssize_t kobj_pkt_show(struct kobject *kobj,
206 struct attribute *attr, char *data)
207 {
208 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
209 int n = 0;
210 int v;
211 if (strcmp(attr->name, "packets_started") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
213
214 } else if (strcmp(attr->name, "packets_finished") == 0) {
215 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
216
217 } else if (strcmp(attr->name, "kb_written") == 0) {
218 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
219
220 } else if (strcmp(attr->name, "kb_read") == 0) {
221 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
222
223 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
224 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
225
226 } else if (strcmp(attr->name, "size") == 0) {
227 spin_lock(&pd->lock);
228 v = pd->bio_queue_size;
229 spin_unlock(&pd->lock);
230 n = sprintf(data, "%d\n", v);
231
232 } else if (strcmp(attr->name, "congestion_off") == 0) {
233 spin_lock(&pd->lock);
234 v = pd->write_congestion_off;
235 spin_unlock(&pd->lock);
236 n = sprintf(data, "%d\n", v);
237
238 } else if (strcmp(attr->name, "congestion_on") == 0) {
239 spin_lock(&pd->lock);
240 v = pd->write_congestion_on;
241 spin_unlock(&pd->lock);
242 n = sprintf(data, "%d\n", v);
243 }
244 return n;
245 }
246
247 static void init_write_congestion_marks(int* lo, int* hi)
248 {
249 if (*hi > 0) {
250 *hi = max(*hi, 500);
251 *hi = min(*hi, 1000000);
252 if (*lo <= 0)
253 *lo = *hi - 100;
254 else {
255 *lo = min(*lo, *hi - 100);
256 *lo = max(*lo, 100);
257 }
258 } else {
259 *hi = -1;
260 *lo = -1;
261 }
262 }
263
264 static ssize_t kobj_pkt_store(struct kobject *kobj,
265 struct attribute *attr,
266 const char *data, size_t len)
267 {
268 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
269 int val;
270
271 if (strcmp(attr->name, "reset") == 0 && len > 0) {
272 pd->stats.pkt_started = 0;
273 pd->stats.pkt_ended = 0;
274 pd->stats.secs_w = 0;
275 pd->stats.secs_rg = 0;
276 pd->stats.secs_r = 0;
277
278 } else if (strcmp(attr->name, "congestion_off") == 0
279 && sscanf(data, "%d", &val) == 1) {
280 spin_lock(&pd->lock);
281 pd->write_congestion_off = val;
282 init_write_congestion_marks(&pd->write_congestion_off,
283 &pd->write_congestion_on);
284 spin_unlock(&pd->lock);
285
286 } else if (strcmp(attr->name, "congestion_on") == 0
287 && sscanf(data, "%d", &val) == 1) {
288 spin_lock(&pd->lock);
289 pd->write_congestion_on = val;
290 init_write_congestion_marks(&pd->write_congestion_off,
291 &pd->write_congestion_on);
292 spin_unlock(&pd->lock);
293 }
294 return len;
295 }
296
297 static const struct sysfs_ops kobj_pkt_ops = {
298 .show = kobj_pkt_show,
299 .store = kobj_pkt_store
300 };
301 static struct kobj_type kobj_pkt_type_stat = {
302 .release = pkt_kobj_release,
303 .sysfs_ops = &kobj_pkt_ops,
304 .default_attrs = kobj_pkt_attrs_stat
305 };
306 static struct kobj_type kobj_pkt_type_wqueue = {
307 .release = pkt_kobj_release,
308 .sysfs_ops = &kobj_pkt_ops,
309 .default_attrs = kobj_pkt_attrs_wqueue
310 };
311
312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
313 {
314 if (class_pktcdvd) {
315 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
316 "%s", pd->name);
317 if (IS_ERR(pd->dev))
318 pd->dev = NULL;
319 }
320 if (pd->dev) {
321 pd->kobj_stat = pkt_kobj_create(pd, "stat",
322 &pd->dev->kobj,
323 &kobj_pkt_type_stat);
324 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
325 &pd->dev->kobj,
326 &kobj_pkt_type_wqueue);
327 }
328 }
329
330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
331 {
332 pkt_kobj_remove(pd->kobj_stat);
333 pkt_kobj_remove(pd->kobj_wqueue);
334 if (class_pktcdvd)
335 device_unregister(pd->dev);
336 }
337
338
339 /********************************************************************
340 /sys/class/pktcdvd/
341 add map block device
342 remove unmap packet dev
343 device_map show mappings
344 *******************************************************************/
345
346 static void class_pktcdvd_release(struct class *cls)
347 {
348 kfree(cls);
349 }
350 static ssize_t class_pktcdvd_show_map(struct class *c,
351 struct class_attribute *attr,
352 char *data)
353 {
354 int n = 0;
355 int idx;
356 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
357 for (idx = 0; idx < MAX_WRITERS; idx++) {
358 struct pktcdvd_device *pd = pkt_devs[idx];
359 if (!pd)
360 continue;
361 n += sprintf(data+n, "%s %u:%u %u:%u\n",
362 pd->name,
363 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
364 MAJOR(pd->bdev->bd_dev),
365 MINOR(pd->bdev->bd_dev));
366 }
367 mutex_unlock(&ctl_mutex);
368 return n;
369 }
370
371 static ssize_t class_pktcdvd_store_add(struct class *c,
372 struct class_attribute *attr,
373 const char *buf,
374 size_t count)
375 {
376 unsigned int major, minor;
377
378 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
379 /* pkt_setup_dev() expects caller to hold reference to self */
380 if (!try_module_get(THIS_MODULE))
381 return -ENODEV;
382
383 pkt_setup_dev(MKDEV(major, minor), NULL);
384
385 module_put(THIS_MODULE);
386
387 return count;
388 }
389
390 return -EINVAL;
391 }
392
393 static ssize_t class_pktcdvd_store_remove(struct class *c,
394 struct class_attribute *attr,
395 const char *buf,
396 size_t count)
397 {
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
402 }
403 return -EINVAL;
404 }
405
406 static struct class_attribute class_pktcdvd_attrs[] = {
407 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
408 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
409 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
410 __ATTR_NULL
411 };
412
413
414 static int pkt_sysfs_init(void)
415 {
416 int ret = 0;
417
418 /*
419 * create control files in sysfs
420 * /sys/class/pktcdvd/...
421 */
422 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
423 if (!class_pktcdvd)
424 return -ENOMEM;
425 class_pktcdvd->name = DRIVER_NAME;
426 class_pktcdvd->owner = THIS_MODULE;
427 class_pktcdvd->class_release = class_pktcdvd_release;
428 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
429 ret = class_register(class_pktcdvd);
430 if (ret) {
431 kfree(class_pktcdvd);
432 class_pktcdvd = NULL;
433 pr_err("failed to create class pktcdvd\n");
434 return ret;
435 }
436 return 0;
437 }
438
439 static void pkt_sysfs_cleanup(void)
440 {
441 if (class_pktcdvd)
442 class_destroy(class_pktcdvd);
443 class_pktcdvd = NULL;
444 }
445
446 /********************************************************************
447 entries in debugfs
448
449 /sys/kernel/debug/pktcdvd[0-7]/
450 info
451
452 *******************************************************************/
453
454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
455 {
456 return pkt_seq_show(m, p);
457 }
458
459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
460 {
461 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
462 }
463
464 static const struct file_operations debug_fops = {
465 .open = pkt_debugfs_fops_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469 .owner = THIS_MODULE,
470 };
471
472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
473 {
474 if (!pkt_debugfs_root)
475 return;
476 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
477 if (!pd->dfs_d_root)
478 return;
479
480 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
481 pd->dfs_d_root, pd, &debug_fops);
482 }
483
484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485 {
486 if (!pkt_debugfs_root)
487 return;
488 debugfs_remove(pd->dfs_f_info);
489 debugfs_remove(pd->dfs_d_root);
490 pd->dfs_f_info = NULL;
491 pd->dfs_d_root = NULL;
492 }
493
494 static void pkt_debugfs_init(void)
495 {
496 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
497 }
498
499 static void pkt_debugfs_cleanup(void)
500 {
501 debugfs_remove(pkt_debugfs_root);
502 pkt_debugfs_root = NULL;
503 }
504
505 /* ----------------------------------------------------------*/
506
507
508 static void pkt_bio_finished(struct pktcdvd_device *pd)
509 {
510 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
511 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
512 pkt_dbg(2, pd, "queue empty\n");
513 atomic_set(&pd->iosched.attention, 1);
514 wake_up(&pd->wqueue);
515 }
516 }
517
518 /*
519 * Allocate a packet_data struct
520 */
521 static struct packet_data *pkt_alloc_packet_data(int frames)
522 {
523 int i;
524 struct packet_data *pkt;
525
526 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
527 if (!pkt)
528 goto no_pkt;
529
530 pkt->frames = frames;
531 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
532 if (!pkt->w_bio)
533 goto no_bio;
534
535 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
536 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
537 if (!pkt->pages[i])
538 goto no_page;
539 }
540
541 spin_lock_init(&pkt->lock);
542 bio_list_init(&pkt->orig_bios);
543
544 for (i = 0; i < frames; i++) {
545 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
546 if (!bio)
547 goto no_rd_bio;
548
549 pkt->r_bios[i] = bio;
550 }
551
552 return pkt;
553
554 no_rd_bio:
555 for (i = 0; i < frames; i++) {
556 struct bio *bio = pkt->r_bios[i];
557 if (bio)
558 bio_put(bio);
559 }
560
561 no_page:
562 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
563 if (pkt->pages[i])
564 __free_page(pkt->pages[i]);
565 bio_put(pkt->w_bio);
566 no_bio:
567 kfree(pkt);
568 no_pkt:
569 return NULL;
570 }
571
572 /*
573 * Free a packet_data struct
574 */
575 static void pkt_free_packet_data(struct packet_data *pkt)
576 {
577 int i;
578
579 for (i = 0; i < pkt->frames; i++) {
580 struct bio *bio = pkt->r_bios[i];
581 if (bio)
582 bio_put(bio);
583 }
584 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
585 __free_page(pkt->pages[i]);
586 bio_put(pkt->w_bio);
587 kfree(pkt);
588 }
589
590 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
591 {
592 struct packet_data *pkt, *next;
593
594 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
595
596 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
597 pkt_free_packet_data(pkt);
598 }
599 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
600 }
601
602 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
603 {
604 struct packet_data *pkt;
605
606 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
607
608 while (nr_packets > 0) {
609 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
610 if (!pkt) {
611 pkt_shrink_pktlist(pd);
612 return 0;
613 }
614 pkt->id = nr_packets;
615 pkt->pd = pd;
616 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
617 nr_packets--;
618 }
619 return 1;
620 }
621
622 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
623 {
624 struct rb_node *n = rb_next(&node->rb_node);
625 if (!n)
626 return NULL;
627 return rb_entry(n, struct pkt_rb_node, rb_node);
628 }
629
630 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
631 {
632 rb_erase(&node->rb_node, &pd->bio_queue);
633 mempool_free(node, pd->rb_pool);
634 pd->bio_queue_size--;
635 BUG_ON(pd->bio_queue_size < 0);
636 }
637
638 /*
639 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
640 */
641 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
642 {
643 struct rb_node *n = pd->bio_queue.rb_node;
644 struct rb_node *next;
645 struct pkt_rb_node *tmp;
646
647 if (!n) {
648 BUG_ON(pd->bio_queue_size > 0);
649 return NULL;
650 }
651
652 for (;;) {
653 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
654 if (s <= tmp->bio->bi_iter.bi_sector)
655 next = n->rb_left;
656 else
657 next = n->rb_right;
658 if (!next)
659 break;
660 n = next;
661 }
662
663 if (s > tmp->bio->bi_iter.bi_sector) {
664 tmp = pkt_rbtree_next(tmp);
665 if (!tmp)
666 return NULL;
667 }
668 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
669 return tmp;
670 }
671
672 /*
673 * Insert a node into the pd->bio_queue rb tree.
674 */
675 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
676 {
677 struct rb_node **p = &pd->bio_queue.rb_node;
678 struct rb_node *parent = NULL;
679 sector_t s = node->bio->bi_iter.bi_sector;
680 struct pkt_rb_node *tmp;
681
682 while (*p) {
683 parent = *p;
684 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
685 if (s < tmp->bio->bi_iter.bi_sector)
686 p = &(*p)->rb_left;
687 else
688 p = &(*p)->rb_right;
689 }
690 rb_link_node(&node->rb_node, parent, p);
691 rb_insert_color(&node->rb_node, &pd->bio_queue);
692 pd->bio_queue_size++;
693 }
694
695 /*
696 * Send a packet_command to the underlying block device and
697 * wait for completion.
698 */
699 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
700 {
701 struct request_queue *q = bdev_get_queue(pd->bdev);
702 struct request *rq;
703 int ret = 0;
704
705 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
706 WRITE : READ, __GFP_WAIT);
707
708 if (cgc->buflen) {
709 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
710 goto out;
711 }
712
713 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
714 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
715
716 rq->timeout = 60*HZ;
717 rq->cmd_type = REQ_TYPE_BLOCK_PC;
718 if (cgc->quiet)
719 rq->cmd_flags |= REQ_QUIET;
720
721 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
722 if (rq->errors)
723 ret = -EIO;
724 out:
725 blk_put_request(rq);
726 return ret;
727 }
728
729 static const char *sense_key_string(__u8 index)
730 {
731 static const char * const info[] = {
732 "No sense", "Recovered error", "Not ready",
733 "Medium error", "Hardware error", "Illegal request",
734 "Unit attention", "Data protect", "Blank check",
735 };
736
737 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
738 }
739
740 /*
741 * A generic sense dump / resolve mechanism should be implemented across
742 * all ATAPI + SCSI devices.
743 */
744 static void pkt_dump_sense(struct pktcdvd_device *pd,
745 struct packet_command *cgc)
746 {
747 struct request_sense *sense = cgc->sense;
748
749 if (sense)
750 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
751 CDROM_PACKET_SIZE, cgc->cmd,
752 sense->sense_key, sense->asc, sense->ascq,
753 sense_key_string(sense->sense_key));
754 else
755 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
756 }
757
758 /*
759 * flush the drive cache to media
760 */
761 static int pkt_flush_cache(struct pktcdvd_device *pd)
762 {
763 struct packet_command cgc;
764
765 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
766 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
767 cgc.quiet = 1;
768
769 /*
770 * the IMMED bit -- we default to not setting it, although that
771 * would allow a much faster close, this is safer
772 */
773 #if 0
774 cgc.cmd[1] = 1 << 1;
775 #endif
776 return pkt_generic_packet(pd, &cgc);
777 }
778
779 /*
780 * speed is given as the normal factor, e.g. 4 for 4x
781 */
782 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
783 unsigned write_speed, unsigned read_speed)
784 {
785 struct packet_command cgc;
786 struct request_sense sense;
787 int ret;
788
789 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
790 cgc.sense = &sense;
791 cgc.cmd[0] = GPCMD_SET_SPEED;
792 cgc.cmd[2] = (read_speed >> 8) & 0xff;
793 cgc.cmd[3] = read_speed & 0xff;
794 cgc.cmd[4] = (write_speed >> 8) & 0xff;
795 cgc.cmd[5] = write_speed & 0xff;
796
797 if ((ret = pkt_generic_packet(pd, &cgc)))
798 pkt_dump_sense(pd, &cgc);
799
800 return ret;
801 }
802
803 /*
804 * Queue a bio for processing by the low-level CD device. Must be called
805 * from process context.
806 */
807 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
808 {
809 spin_lock(&pd->iosched.lock);
810 if (bio_data_dir(bio) == READ)
811 bio_list_add(&pd->iosched.read_queue, bio);
812 else
813 bio_list_add(&pd->iosched.write_queue, bio);
814 spin_unlock(&pd->iosched.lock);
815
816 atomic_set(&pd->iosched.attention, 1);
817 wake_up(&pd->wqueue);
818 }
819
820 /*
821 * Process the queued read/write requests. This function handles special
822 * requirements for CDRW drives:
823 * - A cache flush command must be inserted before a read request if the
824 * previous request was a write.
825 * - Switching between reading and writing is slow, so don't do it more often
826 * than necessary.
827 * - Optimize for throughput at the expense of latency. This means that streaming
828 * writes will never be interrupted by a read, but if the drive has to seek
829 * before the next write, switch to reading instead if there are any pending
830 * read requests.
831 * - Set the read speed according to current usage pattern. When only reading
832 * from the device, it's best to use the highest possible read speed, but
833 * when switching often between reading and writing, it's better to have the
834 * same read and write speeds.
835 */
836 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
837 {
838
839 if (atomic_read(&pd->iosched.attention) == 0)
840 return;
841 atomic_set(&pd->iosched.attention, 0);
842
843 for (;;) {
844 struct bio *bio;
845 int reads_queued, writes_queued;
846
847 spin_lock(&pd->iosched.lock);
848 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
849 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
850 spin_unlock(&pd->iosched.lock);
851
852 if (!reads_queued && !writes_queued)
853 break;
854
855 if (pd->iosched.writing) {
856 int need_write_seek = 1;
857 spin_lock(&pd->iosched.lock);
858 bio = bio_list_peek(&pd->iosched.write_queue);
859 spin_unlock(&pd->iosched.lock);
860 if (bio && (bio->bi_iter.bi_sector ==
861 pd->iosched.last_write))
862 need_write_seek = 0;
863 if (need_write_seek && reads_queued) {
864 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
865 pkt_dbg(2, pd, "write, waiting\n");
866 break;
867 }
868 pkt_flush_cache(pd);
869 pd->iosched.writing = 0;
870 }
871 } else {
872 if (!reads_queued && writes_queued) {
873 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
874 pkt_dbg(2, pd, "read, waiting\n");
875 break;
876 }
877 pd->iosched.writing = 1;
878 }
879 }
880
881 spin_lock(&pd->iosched.lock);
882 if (pd->iosched.writing)
883 bio = bio_list_pop(&pd->iosched.write_queue);
884 else
885 bio = bio_list_pop(&pd->iosched.read_queue);
886 spin_unlock(&pd->iosched.lock);
887
888 if (!bio)
889 continue;
890
891 if (bio_data_dir(bio) == READ)
892 pd->iosched.successive_reads +=
893 bio->bi_iter.bi_size >> 10;
894 else {
895 pd->iosched.successive_reads = 0;
896 pd->iosched.last_write = bio_end_sector(bio);
897 }
898 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
899 if (pd->read_speed == pd->write_speed) {
900 pd->read_speed = MAX_SPEED;
901 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
902 }
903 } else {
904 if (pd->read_speed != pd->write_speed) {
905 pd->read_speed = pd->write_speed;
906 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 }
908 }
909
910 atomic_inc(&pd->cdrw.pending_bios);
911 generic_make_request(bio);
912 }
913 }
914
915 /*
916 * Special care is needed if the underlying block device has a small
917 * max_phys_segments value.
918 */
919 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
920 {
921 if ((pd->settings.size << 9) / CD_FRAMESIZE
922 <= queue_max_segments(q)) {
923 /*
924 * The cdrom device can handle one segment/frame
925 */
926 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
927 return 0;
928 } else if ((pd->settings.size << 9) / PAGE_SIZE
929 <= queue_max_segments(q)) {
930 /*
931 * We can handle this case at the expense of some extra memory
932 * copies during write operations
933 */
934 set_bit(PACKET_MERGE_SEGS, &pd->flags);
935 return 0;
936 } else {
937 pkt_err(pd, "cdrom max_phys_segments too small\n");
938 return -EIO;
939 }
940 }
941
942 /*
943 * Copy all data for this packet to pkt->pages[], so that
944 * a) The number of required segments for the write bio is minimized, which
945 * is necessary for some scsi controllers.
946 * b) The data can be used as cache to avoid read requests if we receive a
947 * new write request for the same zone.
948 */
949 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
950 {
951 int f, p, offs;
952
953 /* Copy all data to pkt->pages[] */
954 p = 0;
955 offs = 0;
956 for (f = 0; f < pkt->frames; f++) {
957 if (bvec[f].bv_page != pkt->pages[p]) {
958 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
959 void *vto = page_address(pkt->pages[p]) + offs;
960 memcpy(vto, vfrom, CD_FRAMESIZE);
961 kunmap_atomic(vfrom);
962 bvec[f].bv_page = pkt->pages[p];
963 bvec[f].bv_offset = offs;
964 } else {
965 BUG_ON(bvec[f].bv_offset != offs);
966 }
967 offs += CD_FRAMESIZE;
968 if (offs >= PAGE_SIZE) {
969 offs = 0;
970 p++;
971 }
972 }
973 }
974
975 static void pkt_end_io_read(struct bio *bio, int err)
976 {
977 struct packet_data *pkt = bio->bi_private;
978 struct pktcdvd_device *pd = pkt->pd;
979 BUG_ON(!pd);
980
981 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
982 bio, (unsigned long long)pkt->sector,
983 (unsigned long long)bio->bi_iter.bi_sector, err);
984
985 if (err)
986 atomic_inc(&pkt->io_errors);
987 if (atomic_dec_and_test(&pkt->io_wait)) {
988 atomic_inc(&pkt->run_sm);
989 wake_up(&pd->wqueue);
990 }
991 pkt_bio_finished(pd);
992 }
993
994 static void pkt_end_io_packet_write(struct bio *bio, int err)
995 {
996 struct packet_data *pkt = bio->bi_private;
997 struct pktcdvd_device *pd = pkt->pd;
998 BUG_ON(!pd);
999
1000 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
1001
1002 pd->stats.pkt_ended++;
1003
1004 pkt_bio_finished(pd);
1005 atomic_dec(&pkt->io_wait);
1006 atomic_inc(&pkt->run_sm);
1007 wake_up(&pd->wqueue);
1008 }
1009
1010 /*
1011 * Schedule reads for the holes in a packet
1012 */
1013 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1014 {
1015 int frames_read = 0;
1016 struct bio *bio;
1017 int f;
1018 char written[PACKET_MAX_SIZE];
1019
1020 BUG_ON(bio_list_empty(&pkt->orig_bios));
1021
1022 atomic_set(&pkt->io_wait, 0);
1023 atomic_set(&pkt->io_errors, 0);
1024
1025 /*
1026 * Figure out which frames we need to read before we can write.
1027 */
1028 memset(written, 0, sizeof(written));
1029 spin_lock(&pkt->lock);
1030 bio_list_for_each(bio, &pkt->orig_bios) {
1031 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1032 (CD_FRAMESIZE >> 9);
1033 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1034 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1035 BUG_ON(first_frame < 0);
1036 BUG_ON(first_frame + num_frames > pkt->frames);
1037 for (f = first_frame; f < first_frame + num_frames; f++)
1038 written[f] = 1;
1039 }
1040 spin_unlock(&pkt->lock);
1041
1042 if (pkt->cache_valid) {
1043 pkt_dbg(2, pd, "zone %llx cached\n",
1044 (unsigned long long)pkt->sector);
1045 goto out_account;
1046 }
1047
1048 /*
1049 * Schedule reads for missing parts of the packet.
1050 */
1051 for (f = 0; f < pkt->frames; f++) {
1052 int p, offset;
1053
1054 if (written[f])
1055 continue;
1056
1057 bio = pkt->r_bios[f];
1058 bio_reset(bio);
1059 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1060 bio->bi_bdev = pd->bdev;
1061 bio->bi_end_io = pkt_end_io_read;
1062 bio->bi_private = pkt;
1063
1064 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1065 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1066 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1067 f, pkt->pages[p], offset);
1068 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1069 BUG();
1070
1071 atomic_inc(&pkt->io_wait);
1072 bio->bi_rw = READ;
1073 pkt_queue_bio(pd, bio);
1074 frames_read++;
1075 }
1076
1077 out_account:
1078 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1079 frames_read, (unsigned long long)pkt->sector);
1080 pd->stats.pkt_started++;
1081 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1082 }
1083
1084 /*
1085 * Find a packet matching zone, or the least recently used packet if
1086 * there is no match.
1087 */
1088 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1089 {
1090 struct packet_data *pkt;
1091
1092 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1093 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1094 list_del_init(&pkt->list);
1095 if (pkt->sector != zone)
1096 pkt->cache_valid = 0;
1097 return pkt;
1098 }
1099 }
1100 BUG();
1101 return NULL;
1102 }
1103
1104 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1105 {
1106 if (pkt->cache_valid) {
1107 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1108 } else {
1109 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1110 }
1111 }
1112
1113 /*
1114 * recover a failed write, query for relocation if possible
1115 *
1116 * returns 1 if recovery is possible, or 0 if not
1117 *
1118 */
1119 static int pkt_start_recovery(struct packet_data *pkt)
1120 {
1121 /*
1122 * FIXME. We need help from the file system to implement
1123 * recovery handling.
1124 */
1125 return 0;
1126 #if 0
1127 struct request *rq = pkt->rq;
1128 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1129 struct block_device *pkt_bdev;
1130 struct super_block *sb = NULL;
1131 unsigned long old_block, new_block;
1132 sector_t new_sector;
1133
1134 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1135 if (pkt_bdev) {
1136 sb = get_super(pkt_bdev);
1137 bdput(pkt_bdev);
1138 }
1139
1140 if (!sb)
1141 return 0;
1142
1143 if (!sb->s_op->relocate_blocks)
1144 goto out;
1145
1146 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1147 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1148 goto out;
1149
1150 new_sector = new_block * (CD_FRAMESIZE >> 9);
1151 pkt->sector = new_sector;
1152
1153 bio_reset(pkt->bio);
1154 pkt->bio->bi_bdev = pd->bdev;
1155 pkt->bio->bi_rw = REQ_WRITE;
1156 pkt->bio->bi_iter.bi_sector = new_sector;
1157 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1158 pkt->bio->bi_vcnt = pkt->frames;
1159
1160 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1161 pkt->bio->bi_private = pkt;
1162
1163 drop_super(sb);
1164 return 1;
1165
1166 out:
1167 drop_super(sb);
1168 return 0;
1169 #endif
1170 }
1171
1172 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1173 {
1174 #if PACKET_DEBUG > 1
1175 static const char *state_name[] = {
1176 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1177 };
1178 enum packet_data_state old_state = pkt->state;
1179 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1180 pkt->id, (unsigned long long)pkt->sector,
1181 state_name[old_state], state_name[state]);
1182 #endif
1183 pkt->state = state;
1184 }
1185
1186 /*
1187 * Scan the work queue to see if we can start a new packet.
1188 * returns non-zero if any work was done.
1189 */
1190 static int pkt_handle_queue(struct pktcdvd_device *pd)
1191 {
1192 struct packet_data *pkt, *p;
1193 struct bio *bio = NULL;
1194 sector_t zone = 0; /* Suppress gcc warning */
1195 struct pkt_rb_node *node, *first_node;
1196 struct rb_node *n;
1197 int wakeup;
1198
1199 atomic_set(&pd->scan_queue, 0);
1200
1201 if (list_empty(&pd->cdrw.pkt_free_list)) {
1202 pkt_dbg(2, pd, "no pkt\n");
1203 return 0;
1204 }
1205
1206 /*
1207 * Try to find a zone we are not already working on.
1208 */
1209 spin_lock(&pd->lock);
1210 first_node = pkt_rbtree_find(pd, pd->current_sector);
1211 if (!first_node) {
1212 n = rb_first(&pd->bio_queue);
1213 if (n)
1214 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1215 }
1216 node = first_node;
1217 while (node) {
1218 bio = node->bio;
1219 zone = get_zone(bio->bi_iter.bi_sector, pd);
1220 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1221 if (p->sector == zone) {
1222 bio = NULL;
1223 goto try_next_bio;
1224 }
1225 }
1226 break;
1227 try_next_bio:
1228 node = pkt_rbtree_next(node);
1229 if (!node) {
1230 n = rb_first(&pd->bio_queue);
1231 if (n)
1232 node = rb_entry(n, struct pkt_rb_node, rb_node);
1233 }
1234 if (node == first_node)
1235 node = NULL;
1236 }
1237 spin_unlock(&pd->lock);
1238 if (!bio) {
1239 pkt_dbg(2, pd, "no bio\n");
1240 return 0;
1241 }
1242
1243 pkt = pkt_get_packet_data(pd, zone);
1244
1245 pd->current_sector = zone + pd->settings.size;
1246 pkt->sector = zone;
1247 BUG_ON(pkt->frames != pd->settings.size >> 2);
1248 pkt->write_size = 0;
1249
1250 /*
1251 * Scan work queue for bios in the same zone and link them
1252 * to this packet.
1253 */
1254 spin_lock(&pd->lock);
1255 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1256 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1257 bio = node->bio;
1258 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1259 get_zone(bio->bi_iter.bi_sector, pd));
1260 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1261 break;
1262 pkt_rbtree_erase(pd, node);
1263 spin_lock(&pkt->lock);
1264 bio_list_add(&pkt->orig_bios, bio);
1265 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1266 spin_unlock(&pkt->lock);
1267 }
1268 /* check write congestion marks, and if bio_queue_size is
1269 below, wake up any waiters */
1270 wakeup = (pd->write_congestion_on > 0
1271 && pd->bio_queue_size <= pd->write_congestion_off);
1272 spin_unlock(&pd->lock);
1273 if (wakeup) {
1274 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1275 BLK_RW_ASYNC);
1276 }
1277
1278 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1279 pkt_set_state(pkt, PACKET_WAITING_STATE);
1280 atomic_set(&pkt->run_sm, 1);
1281
1282 spin_lock(&pd->cdrw.active_list_lock);
1283 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1284 spin_unlock(&pd->cdrw.active_list_lock);
1285
1286 return 1;
1287 }
1288
1289 /*
1290 * Assemble a bio to write one packet and queue the bio for processing
1291 * by the underlying block device.
1292 */
1293 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1294 {
1295 int f;
1296 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1297
1298 bio_reset(pkt->w_bio);
1299 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1300 pkt->w_bio->bi_bdev = pd->bdev;
1301 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1302 pkt->w_bio->bi_private = pkt;
1303
1304 /* XXX: locking? */
1305 for (f = 0; f < pkt->frames; f++) {
1306 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1307 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1308 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1309 BUG();
1310 }
1311 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1312
1313 /*
1314 * Fill-in bvec with data from orig_bios.
1315 */
1316 spin_lock(&pkt->lock);
1317 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1318
1319 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1320 spin_unlock(&pkt->lock);
1321
1322 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1323 pkt->write_size, (unsigned long long)pkt->sector);
1324
1325 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1326 pkt_make_local_copy(pkt, bvec);
1327 pkt->cache_valid = 1;
1328 } else {
1329 pkt->cache_valid = 0;
1330 }
1331
1332 /* Start the write request */
1333 atomic_set(&pkt->io_wait, 1);
1334 pkt->w_bio->bi_rw = WRITE;
1335 pkt_queue_bio(pd, pkt->w_bio);
1336 }
1337
1338 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1339 {
1340 struct bio *bio;
1341
1342 if (!uptodate)
1343 pkt->cache_valid = 0;
1344
1345 /* Finish all bios corresponding to this packet */
1346 while ((bio = bio_list_pop(&pkt->orig_bios)))
1347 bio_endio(bio, uptodate ? 0 : -EIO);
1348 }
1349
1350 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1351 {
1352 int uptodate;
1353
1354 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1355
1356 for (;;) {
1357 switch (pkt->state) {
1358 case PACKET_WAITING_STATE:
1359 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1360 return;
1361
1362 pkt->sleep_time = 0;
1363 pkt_gather_data(pd, pkt);
1364 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1365 break;
1366
1367 case PACKET_READ_WAIT_STATE:
1368 if (atomic_read(&pkt->io_wait) > 0)
1369 return;
1370
1371 if (atomic_read(&pkt->io_errors) > 0) {
1372 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1373 } else {
1374 pkt_start_write(pd, pkt);
1375 }
1376 break;
1377
1378 case PACKET_WRITE_WAIT_STATE:
1379 if (atomic_read(&pkt->io_wait) > 0)
1380 return;
1381
1382 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1383 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1384 } else {
1385 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1386 }
1387 break;
1388
1389 case PACKET_RECOVERY_STATE:
1390 if (pkt_start_recovery(pkt)) {
1391 pkt_start_write(pd, pkt);
1392 } else {
1393 pkt_dbg(2, pd, "No recovery possible\n");
1394 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1395 }
1396 break;
1397
1398 case PACKET_FINISHED_STATE:
1399 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1400 pkt_finish_packet(pkt, uptodate);
1401 return;
1402
1403 default:
1404 BUG();
1405 break;
1406 }
1407 }
1408 }
1409
1410 static void pkt_handle_packets(struct pktcdvd_device *pd)
1411 {
1412 struct packet_data *pkt, *next;
1413
1414 /*
1415 * Run state machine for active packets
1416 */
1417 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1418 if (atomic_read(&pkt->run_sm) > 0) {
1419 atomic_set(&pkt->run_sm, 0);
1420 pkt_run_state_machine(pd, pkt);
1421 }
1422 }
1423
1424 /*
1425 * Move no longer active packets to the free list
1426 */
1427 spin_lock(&pd->cdrw.active_list_lock);
1428 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1429 if (pkt->state == PACKET_FINISHED_STATE) {
1430 list_del(&pkt->list);
1431 pkt_put_packet_data(pd, pkt);
1432 pkt_set_state(pkt, PACKET_IDLE_STATE);
1433 atomic_set(&pd->scan_queue, 1);
1434 }
1435 }
1436 spin_unlock(&pd->cdrw.active_list_lock);
1437 }
1438
1439 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1440 {
1441 struct packet_data *pkt;
1442 int i;
1443
1444 for (i = 0; i < PACKET_NUM_STATES; i++)
1445 states[i] = 0;
1446
1447 spin_lock(&pd->cdrw.active_list_lock);
1448 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1449 states[pkt->state]++;
1450 }
1451 spin_unlock(&pd->cdrw.active_list_lock);
1452 }
1453
1454 /*
1455 * kcdrwd is woken up when writes have been queued for one of our
1456 * registered devices
1457 */
1458 static int kcdrwd(void *foobar)
1459 {
1460 struct pktcdvd_device *pd = foobar;
1461 struct packet_data *pkt;
1462 long min_sleep_time, residue;
1463
1464 set_user_nice(current, -20);
1465 set_freezable();
1466
1467 for (;;) {
1468 DECLARE_WAITQUEUE(wait, current);
1469
1470 /*
1471 * Wait until there is something to do
1472 */
1473 add_wait_queue(&pd->wqueue, &wait);
1474 for (;;) {
1475 set_current_state(TASK_INTERRUPTIBLE);
1476
1477 /* Check if we need to run pkt_handle_queue */
1478 if (atomic_read(&pd->scan_queue) > 0)
1479 goto work_to_do;
1480
1481 /* Check if we need to run the state machine for some packet */
1482 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1483 if (atomic_read(&pkt->run_sm) > 0)
1484 goto work_to_do;
1485 }
1486
1487 /* Check if we need to process the iosched queues */
1488 if (atomic_read(&pd->iosched.attention) != 0)
1489 goto work_to_do;
1490
1491 /* Otherwise, go to sleep */
1492 if (PACKET_DEBUG > 1) {
1493 int states[PACKET_NUM_STATES];
1494 pkt_count_states(pd, states);
1495 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1496 states[0], states[1], states[2],
1497 states[3], states[4], states[5]);
1498 }
1499
1500 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1501 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1502 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1503 min_sleep_time = pkt->sleep_time;
1504 }
1505
1506 pkt_dbg(2, pd, "sleeping\n");
1507 residue = schedule_timeout(min_sleep_time);
1508 pkt_dbg(2, pd, "wake up\n");
1509
1510 /* make swsusp happy with our thread */
1511 try_to_freeze();
1512
1513 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1514 if (!pkt->sleep_time)
1515 continue;
1516 pkt->sleep_time -= min_sleep_time - residue;
1517 if (pkt->sleep_time <= 0) {
1518 pkt->sleep_time = 0;
1519 atomic_inc(&pkt->run_sm);
1520 }
1521 }
1522
1523 if (kthread_should_stop())
1524 break;
1525 }
1526 work_to_do:
1527 set_current_state(TASK_RUNNING);
1528 remove_wait_queue(&pd->wqueue, &wait);
1529
1530 if (kthread_should_stop())
1531 break;
1532
1533 /*
1534 * if pkt_handle_queue returns true, we can queue
1535 * another request.
1536 */
1537 while (pkt_handle_queue(pd))
1538 ;
1539
1540 /*
1541 * Handle packet state machine
1542 */
1543 pkt_handle_packets(pd);
1544
1545 /*
1546 * Handle iosched queues
1547 */
1548 pkt_iosched_process_queue(pd);
1549 }
1550
1551 return 0;
1552 }
1553
1554 static void pkt_print_settings(struct pktcdvd_device *pd)
1555 {
1556 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1557 pd->settings.fp ? "Fixed" : "Variable",
1558 pd->settings.size >> 2,
1559 pd->settings.block_mode == 8 ? '1' : '2');
1560 }
1561
1562 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1563 {
1564 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1565
1566 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1567 cgc->cmd[2] = page_code | (page_control << 6);
1568 cgc->cmd[7] = cgc->buflen >> 8;
1569 cgc->cmd[8] = cgc->buflen & 0xff;
1570 cgc->data_direction = CGC_DATA_READ;
1571 return pkt_generic_packet(pd, cgc);
1572 }
1573
1574 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1575 {
1576 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1577 memset(cgc->buffer, 0, 2);
1578 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1579 cgc->cmd[1] = 0x10; /* PF */
1580 cgc->cmd[7] = cgc->buflen >> 8;
1581 cgc->cmd[8] = cgc->buflen & 0xff;
1582 cgc->data_direction = CGC_DATA_WRITE;
1583 return pkt_generic_packet(pd, cgc);
1584 }
1585
1586 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1587 {
1588 struct packet_command cgc;
1589 int ret;
1590
1591 /* set up command and get the disc info */
1592 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1593 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1594 cgc.cmd[8] = cgc.buflen = 2;
1595 cgc.quiet = 1;
1596
1597 if ((ret = pkt_generic_packet(pd, &cgc)))
1598 return ret;
1599
1600 /* not all drives have the same disc_info length, so requeue
1601 * packet with the length the drive tells us it can supply
1602 */
1603 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1604 sizeof(di->disc_information_length);
1605
1606 if (cgc.buflen > sizeof(disc_information))
1607 cgc.buflen = sizeof(disc_information);
1608
1609 cgc.cmd[8] = cgc.buflen;
1610 return pkt_generic_packet(pd, &cgc);
1611 }
1612
1613 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1614 {
1615 struct packet_command cgc;
1616 int ret;
1617
1618 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1619 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1620 cgc.cmd[1] = type & 3;
1621 cgc.cmd[4] = (track & 0xff00) >> 8;
1622 cgc.cmd[5] = track & 0xff;
1623 cgc.cmd[8] = 8;
1624 cgc.quiet = 1;
1625
1626 if ((ret = pkt_generic_packet(pd, &cgc)))
1627 return ret;
1628
1629 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1630 sizeof(ti->track_information_length);
1631
1632 if (cgc.buflen > sizeof(track_information))
1633 cgc.buflen = sizeof(track_information);
1634
1635 cgc.cmd[8] = cgc.buflen;
1636 return pkt_generic_packet(pd, &cgc);
1637 }
1638
1639 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1640 long *last_written)
1641 {
1642 disc_information di;
1643 track_information ti;
1644 __u32 last_track;
1645 int ret = -1;
1646
1647 if ((ret = pkt_get_disc_info(pd, &di)))
1648 return ret;
1649
1650 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1651 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1652 return ret;
1653
1654 /* if this track is blank, try the previous. */
1655 if (ti.blank) {
1656 last_track--;
1657 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1658 return ret;
1659 }
1660
1661 /* if last recorded field is valid, return it. */
1662 if (ti.lra_v) {
1663 *last_written = be32_to_cpu(ti.last_rec_address);
1664 } else {
1665 /* make it up instead */
1666 *last_written = be32_to_cpu(ti.track_start) +
1667 be32_to_cpu(ti.track_size);
1668 if (ti.free_blocks)
1669 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1670 }
1671 return 0;
1672 }
1673
1674 /*
1675 * write mode select package based on pd->settings
1676 */
1677 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1678 {
1679 struct packet_command cgc;
1680 struct request_sense sense;
1681 write_param_page *wp;
1682 char buffer[128];
1683 int ret, size;
1684
1685 /* doesn't apply to DVD+RW or DVD-RAM */
1686 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1687 return 0;
1688
1689 memset(buffer, 0, sizeof(buffer));
1690 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1691 cgc.sense = &sense;
1692 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1693 pkt_dump_sense(pd, &cgc);
1694 return ret;
1695 }
1696
1697 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1698 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1699 if (size > sizeof(buffer))
1700 size = sizeof(buffer);
1701
1702 /*
1703 * now get it all
1704 */
1705 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1706 cgc.sense = &sense;
1707 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1708 pkt_dump_sense(pd, &cgc);
1709 return ret;
1710 }
1711
1712 /*
1713 * write page is offset header + block descriptor length
1714 */
1715 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1716
1717 wp->fp = pd->settings.fp;
1718 wp->track_mode = pd->settings.track_mode;
1719 wp->write_type = pd->settings.write_type;
1720 wp->data_block_type = pd->settings.block_mode;
1721
1722 wp->multi_session = 0;
1723
1724 #ifdef PACKET_USE_LS
1725 wp->link_size = 7;
1726 wp->ls_v = 1;
1727 #endif
1728
1729 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1730 wp->session_format = 0;
1731 wp->subhdr2 = 0x20;
1732 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1733 wp->session_format = 0x20;
1734 wp->subhdr2 = 8;
1735 #if 0
1736 wp->mcn[0] = 0x80;
1737 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1738 #endif
1739 } else {
1740 /*
1741 * paranoia
1742 */
1743 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1744 return 1;
1745 }
1746 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1747
1748 cgc.buflen = cgc.cmd[8] = size;
1749 if ((ret = pkt_mode_select(pd, &cgc))) {
1750 pkt_dump_sense(pd, &cgc);
1751 return ret;
1752 }
1753
1754 pkt_print_settings(pd);
1755 return 0;
1756 }
1757
1758 /*
1759 * 1 -- we can write to this track, 0 -- we can't
1760 */
1761 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1762 {
1763 switch (pd->mmc3_profile) {
1764 case 0x1a: /* DVD+RW */
1765 case 0x12: /* DVD-RAM */
1766 /* The track is always writable on DVD+RW/DVD-RAM */
1767 return 1;
1768 default:
1769 break;
1770 }
1771
1772 if (!ti->packet || !ti->fp)
1773 return 0;
1774
1775 /*
1776 * "good" settings as per Mt Fuji.
1777 */
1778 if (ti->rt == 0 && ti->blank == 0)
1779 return 1;
1780
1781 if (ti->rt == 0 && ti->blank == 1)
1782 return 1;
1783
1784 if (ti->rt == 1 && ti->blank == 0)
1785 return 1;
1786
1787 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1788 return 0;
1789 }
1790
1791 /*
1792 * 1 -- we can write to this disc, 0 -- we can't
1793 */
1794 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1795 {
1796 switch (pd->mmc3_profile) {
1797 case 0x0a: /* CD-RW */
1798 case 0xffff: /* MMC3 not supported */
1799 break;
1800 case 0x1a: /* DVD+RW */
1801 case 0x13: /* DVD-RW */
1802 case 0x12: /* DVD-RAM */
1803 return 1;
1804 default:
1805 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1806 pd->mmc3_profile);
1807 return 0;
1808 }
1809
1810 /*
1811 * for disc type 0xff we should probably reserve a new track.
1812 * but i'm not sure, should we leave this to user apps? probably.
1813 */
1814 if (di->disc_type == 0xff) {
1815 pkt_notice(pd, "unknown disc - no track?\n");
1816 return 0;
1817 }
1818
1819 if (di->disc_type != 0x20 && di->disc_type != 0) {
1820 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1821 return 0;
1822 }
1823
1824 if (di->erasable == 0) {
1825 pkt_notice(pd, "disc not erasable\n");
1826 return 0;
1827 }
1828
1829 if (di->border_status == PACKET_SESSION_RESERVED) {
1830 pkt_err(pd, "can't write to last track (reserved)\n");
1831 return 0;
1832 }
1833
1834 return 1;
1835 }
1836
1837 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1838 {
1839 struct packet_command cgc;
1840 unsigned char buf[12];
1841 disc_information di;
1842 track_information ti;
1843 int ret, track;
1844
1845 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1846 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1847 cgc.cmd[8] = 8;
1848 ret = pkt_generic_packet(pd, &cgc);
1849 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1850
1851 memset(&di, 0, sizeof(disc_information));
1852 memset(&ti, 0, sizeof(track_information));
1853
1854 if ((ret = pkt_get_disc_info(pd, &di))) {
1855 pkt_err(pd, "failed get_disc\n");
1856 return ret;
1857 }
1858
1859 if (!pkt_writable_disc(pd, &di))
1860 return -EROFS;
1861
1862 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1863
1864 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1865 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1866 pkt_err(pd, "failed get_track\n");
1867 return ret;
1868 }
1869
1870 if (!pkt_writable_track(pd, &ti)) {
1871 pkt_err(pd, "can't write to this track\n");
1872 return -EROFS;
1873 }
1874
1875 /*
1876 * we keep packet size in 512 byte units, makes it easier to
1877 * deal with request calculations.
1878 */
1879 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1880 if (pd->settings.size == 0) {
1881 pkt_notice(pd, "detected zero packet size!\n");
1882 return -ENXIO;
1883 }
1884 if (pd->settings.size > PACKET_MAX_SECTORS) {
1885 pkt_err(pd, "packet size is too big\n");
1886 return -EROFS;
1887 }
1888 pd->settings.fp = ti.fp;
1889 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1890
1891 if (ti.nwa_v) {
1892 pd->nwa = be32_to_cpu(ti.next_writable);
1893 set_bit(PACKET_NWA_VALID, &pd->flags);
1894 }
1895
1896 /*
1897 * in theory we could use lra on -RW media as well and just zero
1898 * blocks that haven't been written yet, but in practice that
1899 * is just a no-go. we'll use that for -R, naturally.
1900 */
1901 if (ti.lra_v) {
1902 pd->lra = be32_to_cpu(ti.last_rec_address);
1903 set_bit(PACKET_LRA_VALID, &pd->flags);
1904 } else {
1905 pd->lra = 0xffffffff;
1906 set_bit(PACKET_LRA_VALID, &pd->flags);
1907 }
1908
1909 /*
1910 * fine for now
1911 */
1912 pd->settings.link_loss = 7;
1913 pd->settings.write_type = 0; /* packet */
1914 pd->settings.track_mode = ti.track_mode;
1915
1916 /*
1917 * mode1 or mode2 disc
1918 */
1919 switch (ti.data_mode) {
1920 case PACKET_MODE1:
1921 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1922 break;
1923 case PACKET_MODE2:
1924 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1925 break;
1926 default:
1927 pkt_err(pd, "unknown data mode\n");
1928 return -EROFS;
1929 }
1930 return 0;
1931 }
1932
1933 /*
1934 * enable/disable write caching on drive
1935 */
1936 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1937 int set)
1938 {
1939 struct packet_command cgc;
1940 struct request_sense sense;
1941 unsigned char buf[64];
1942 int ret;
1943
1944 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1945 cgc.sense = &sense;
1946 cgc.buflen = pd->mode_offset + 12;
1947
1948 /*
1949 * caching mode page might not be there, so quiet this command
1950 */
1951 cgc.quiet = 1;
1952
1953 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1954 return ret;
1955
1956 buf[pd->mode_offset + 10] |= (!!set << 2);
1957
1958 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1959 ret = pkt_mode_select(pd, &cgc);
1960 if (ret) {
1961 pkt_err(pd, "write caching control failed\n");
1962 pkt_dump_sense(pd, &cgc);
1963 } else if (!ret && set)
1964 pkt_notice(pd, "enabled write caching\n");
1965 return ret;
1966 }
1967
1968 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1969 {
1970 struct packet_command cgc;
1971
1972 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1973 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1974 cgc.cmd[4] = lockflag ? 1 : 0;
1975 return pkt_generic_packet(pd, &cgc);
1976 }
1977
1978 /*
1979 * Returns drive maximum write speed
1980 */
1981 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1982 unsigned *write_speed)
1983 {
1984 struct packet_command cgc;
1985 struct request_sense sense;
1986 unsigned char buf[256+18];
1987 unsigned char *cap_buf;
1988 int ret, offset;
1989
1990 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1991 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1992 cgc.sense = &sense;
1993
1994 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1995 if (ret) {
1996 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1997 sizeof(struct mode_page_header);
1998 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1999 if (ret) {
2000 pkt_dump_sense(pd, &cgc);
2001 return ret;
2002 }
2003 }
2004
2005 offset = 20; /* Obsoleted field, used by older drives */
2006 if (cap_buf[1] >= 28)
2007 offset = 28; /* Current write speed selected */
2008 if (cap_buf[1] >= 30) {
2009 /* If the drive reports at least one "Logical Unit Write
2010 * Speed Performance Descriptor Block", use the information
2011 * in the first block. (contains the highest speed)
2012 */
2013 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2014 if (num_spdb > 0)
2015 offset = 34;
2016 }
2017
2018 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2019 return 0;
2020 }
2021
2022 /* These tables from cdrecord - I don't have orange book */
2023 /* standard speed CD-RW (1-4x) */
2024 static char clv_to_speed[16] = {
2025 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2026 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2027 };
2028 /* high speed CD-RW (-10x) */
2029 static char hs_clv_to_speed[16] = {
2030 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2031 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2032 };
2033 /* ultra high speed CD-RW */
2034 static char us_clv_to_speed[16] = {
2035 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2036 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2037 };
2038
2039 /*
2040 * reads the maximum media speed from ATIP
2041 */
2042 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2043 unsigned *speed)
2044 {
2045 struct packet_command cgc;
2046 struct request_sense sense;
2047 unsigned char buf[64];
2048 unsigned int size, st, sp;
2049 int ret;
2050
2051 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2052 cgc.sense = &sense;
2053 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2054 cgc.cmd[1] = 2;
2055 cgc.cmd[2] = 4; /* READ ATIP */
2056 cgc.cmd[8] = 2;
2057 ret = pkt_generic_packet(pd, &cgc);
2058 if (ret) {
2059 pkt_dump_sense(pd, &cgc);
2060 return ret;
2061 }
2062 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2063 if (size > sizeof(buf))
2064 size = sizeof(buf);
2065
2066 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2067 cgc.sense = &sense;
2068 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2069 cgc.cmd[1] = 2;
2070 cgc.cmd[2] = 4;
2071 cgc.cmd[8] = size;
2072 ret = pkt_generic_packet(pd, &cgc);
2073 if (ret) {
2074 pkt_dump_sense(pd, &cgc);
2075 return ret;
2076 }
2077
2078 if (!(buf[6] & 0x40)) {
2079 pkt_notice(pd, "disc type is not CD-RW\n");
2080 return 1;
2081 }
2082 if (!(buf[6] & 0x4)) {
2083 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2084 return 1;
2085 }
2086
2087 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2088
2089 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2090
2091 /* Info from cdrecord */
2092 switch (st) {
2093 case 0: /* standard speed */
2094 *speed = clv_to_speed[sp];
2095 break;
2096 case 1: /* high speed */
2097 *speed = hs_clv_to_speed[sp];
2098 break;
2099 case 2: /* ultra high speed */
2100 *speed = us_clv_to_speed[sp];
2101 break;
2102 default:
2103 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2104 return 1;
2105 }
2106 if (*speed) {
2107 pkt_info(pd, "maximum media speed: %d\n", *speed);
2108 return 0;
2109 } else {
2110 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2111 return 1;
2112 }
2113 }
2114
2115 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2116 {
2117 struct packet_command cgc;
2118 struct request_sense sense;
2119 int ret;
2120
2121 pkt_dbg(2, pd, "Performing OPC\n");
2122
2123 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2124 cgc.sense = &sense;
2125 cgc.timeout = 60*HZ;
2126 cgc.cmd[0] = GPCMD_SEND_OPC;
2127 cgc.cmd[1] = 1;
2128 if ((ret = pkt_generic_packet(pd, &cgc)))
2129 pkt_dump_sense(pd, &cgc);
2130 return ret;
2131 }
2132
2133 static int pkt_open_write(struct pktcdvd_device *pd)
2134 {
2135 int ret;
2136 unsigned int write_speed, media_write_speed, read_speed;
2137
2138 if ((ret = pkt_probe_settings(pd))) {
2139 pkt_dbg(2, pd, "failed probe\n");
2140 return ret;
2141 }
2142
2143 if ((ret = pkt_set_write_settings(pd))) {
2144 pkt_dbg(1, pd, "failed saving write settings\n");
2145 return -EIO;
2146 }
2147
2148 pkt_write_caching(pd, USE_WCACHING);
2149
2150 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2151 write_speed = 16 * 177;
2152 switch (pd->mmc3_profile) {
2153 case 0x13: /* DVD-RW */
2154 case 0x1a: /* DVD+RW */
2155 case 0x12: /* DVD-RAM */
2156 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2157 break;
2158 default:
2159 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2160 media_write_speed = 16;
2161 write_speed = min(write_speed, media_write_speed * 177);
2162 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2163 break;
2164 }
2165 read_speed = write_speed;
2166
2167 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2168 pkt_dbg(1, pd, "couldn't set write speed\n");
2169 return -EIO;
2170 }
2171 pd->write_speed = write_speed;
2172 pd->read_speed = read_speed;
2173
2174 if ((ret = pkt_perform_opc(pd))) {
2175 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2176 }
2177
2178 return 0;
2179 }
2180
2181 /*
2182 * called at open time.
2183 */
2184 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2185 {
2186 int ret;
2187 long lba;
2188 struct request_queue *q;
2189
2190 /*
2191 * We need to re-open the cdrom device without O_NONBLOCK to be able
2192 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2193 * so bdget() can't fail.
2194 */
2195 bdget(pd->bdev->bd_dev);
2196 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2197 goto out;
2198
2199 if ((ret = pkt_get_last_written(pd, &lba))) {
2200 pkt_err(pd, "pkt_get_last_written failed\n");
2201 goto out_putdev;
2202 }
2203
2204 set_capacity(pd->disk, lba << 2);
2205 set_capacity(pd->bdev->bd_disk, lba << 2);
2206 bd_set_size(pd->bdev, (loff_t)lba << 11);
2207
2208 q = bdev_get_queue(pd->bdev);
2209 if (write) {
2210 if ((ret = pkt_open_write(pd)))
2211 goto out_putdev;
2212 /*
2213 * Some CDRW drives can not handle writes larger than one packet,
2214 * even if the size is a multiple of the packet size.
2215 */
2216 spin_lock_irq(q->queue_lock);
2217 blk_queue_max_hw_sectors(q, pd->settings.size);
2218 spin_unlock_irq(q->queue_lock);
2219 set_bit(PACKET_WRITABLE, &pd->flags);
2220 } else {
2221 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2222 clear_bit(PACKET_WRITABLE, &pd->flags);
2223 }
2224
2225 if ((ret = pkt_set_segment_merging(pd, q)))
2226 goto out_putdev;
2227
2228 if (write) {
2229 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2230 pkt_err(pd, "not enough memory for buffers\n");
2231 ret = -ENOMEM;
2232 goto out_putdev;
2233 }
2234 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2235 }
2236
2237 return 0;
2238
2239 out_putdev:
2240 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2241 out:
2242 return ret;
2243 }
2244
2245 /*
2246 * called when the device is closed. makes sure that the device flushes
2247 * the internal cache before we close.
2248 */
2249 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2250 {
2251 if (flush && pkt_flush_cache(pd))
2252 pkt_dbg(1, pd, "not flushing cache\n");
2253
2254 pkt_lock_door(pd, 0);
2255
2256 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2257 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2258
2259 pkt_shrink_pktlist(pd);
2260 }
2261
2262 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2263 {
2264 if (dev_minor >= MAX_WRITERS)
2265 return NULL;
2266 return pkt_devs[dev_minor];
2267 }
2268
2269 static int pkt_open(struct block_device *bdev, fmode_t mode)
2270 {
2271 struct pktcdvd_device *pd = NULL;
2272 int ret;
2273
2274 mutex_lock(&pktcdvd_mutex);
2275 mutex_lock(&ctl_mutex);
2276 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2277 if (!pd) {
2278 ret = -ENODEV;
2279 goto out;
2280 }
2281 BUG_ON(pd->refcnt < 0);
2282
2283 pd->refcnt++;
2284 if (pd->refcnt > 1) {
2285 if ((mode & FMODE_WRITE) &&
2286 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2287 ret = -EBUSY;
2288 goto out_dec;
2289 }
2290 } else {
2291 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2292 if (ret)
2293 goto out_dec;
2294 /*
2295 * needed here as well, since ext2 (among others) may change
2296 * the blocksize at mount time
2297 */
2298 set_blocksize(bdev, CD_FRAMESIZE);
2299 }
2300
2301 mutex_unlock(&ctl_mutex);
2302 mutex_unlock(&pktcdvd_mutex);
2303 return 0;
2304
2305 out_dec:
2306 pd->refcnt--;
2307 out:
2308 mutex_unlock(&ctl_mutex);
2309 mutex_unlock(&pktcdvd_mutex);
2310 return ret;
2311 }
2312
2313 static void pkt_close(struct gendisk *disk, fmode_t mode)
2314 {
2315 struct pktcdvd_device *pd = disk->private_data;
2316
2317 mutex_lock(&pktcdvd_mutex);
2318 mutex_lock(&ctl_mutex);
2319 pd->refcnt--;
2320 BUG_ON(pd->refcnt < 0);
2321 if (pd->refcnt == 0) {
2322 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2323 pkt_release_dev(pd, flush);
2324 }
2325 mutex_unlock(&ctl_mutex);
2326 mutex_unlock(&pktcdvd_mutex);
2327 }
2328
2329
2330 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2331 {
2332 struct packet_stacked_data *psd = bio->bi_private;
2333 struct pktcdvd_device *pd = psd->pd;
2334
2335 bio_put(bio);
2336 bio_endio(psd->bio, err);
2337 mempool_free(psd, psd_pool);
2338 pkt_bio_finished(pd);
2339 }
2340
2341 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2342 {
2343 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2344 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2345
2346 psd->pd = pd;
2347 psd->bio = bio;
2348 cloned_bio->bi_bdev = pd->bdev;
2349 cloned_bio->bi_private = psd;
2350 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2351 pd->stats.secs_r += bio_sectors(bio);
2352 pkt_queue_bio(pd, cloned_bio);
2353 }
2354
2355 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2356 {
2357 struct pktcdvd_device *pd = q->queuedata;
2358 sector_t zone;
2359 struct packet_data *pkt;
2360 int was_empty, blocked_bio;
2361 struct pkt_rb_node *node;
2362
2363 zone = get_zone(bio->bi_iter.bi_sector, pd);
2364
2365 /*
2366 * If we find a matching packet in state WAITING or READ_WAIT, we can
2367 * just append this bio to that packet.
2368 */
2369 spin_lock(&pd->cdrw.active_list_lock);
2370 blocked_bio = 0;
2371 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2372 if (pkt->sector == zone) {
2373 spin_lock(&pkt->lock);
2374 if ((pkt->state == PACKET_WAITING_STATE) ||
2375 (pkt->state == PACKET_READ_WAIT_STATE)) {
2376 bio_list_add(&pkt->orig_bios, bio);
2377 pkt->write_size +=
2378 bio->bi_iter.bi_size / CD_FRAMESIZE;
2379 if ((pkt->write_size >= pkt->frames) &&
2380 (pkt->state == PACKET_WAITING_STATE)) {
2381 atomic_inc(&pkt->run_sm);
2382 wake_up(&pd->wqueue);
2383 }
2384 spin_unlock(&pkt->lock);
2385 spin_unlock(&pd->cdrw.active_list_lock);
2386 return;
2387 } else {
2388 blocked_bio = 1;
2389 }
2390 spin_unlock(&pkt->lock);
2391 }
2392 }
2393 spin_unlock(&pd->cdrw.active_list_lock);
2394
2395 /*
2396 * Test if there is enough room left in the bio work queue
2397 * (queue size >= congestion on mark).
2398 * If not, wait till the work queue size is below the congestion off mark.
2399 */
2400 spin_lock(&pd->lock);
2401 if (pd->write_congestion_on > 0
2402 && pd->bio_queue_size >= pd->write_congestion_on) {
2403 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2404 do {
2405 spin_unlock(&pd->lock);
2406 congestion_wait(BLK_RW_ASYNC, HZ);
2407 spin_lock(&pd->lock);
2408 } while(pd->bio_queue_size > pd->write_congestion_off);
2409 }
2410 spin_unlock(&pd->lock);
2411
2412 /*
2413 * No matching packet found. Store the bio in the work queue.
2414 */
2415 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2416 node->bio = bio;
2417 spin_lock(&pd->lock);
2418 BUG_ON(pd->bio_queue_size < 0);
2419 was_empty = (pd->bio_queue_size == 0);
2420 pkt_rbtree_insert(pd, node);
2421 spin_unlock(&pd->lock);
2422
2423 /*
2424 * Wake up the worker thread.
2425 */
2426 atomic_set(&pd->scan_queue, 1);
2427 if (was_empty) {
2428 /* This wake_up is required for correct operation */
2429 wake_up(&pd->wqueue);
2430 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2431 /*
2432 * This wake up is not required for correct operation,
2433 * but improves performance in some cases.
2434 */
2435 wake_up(&pd->wqueue);
2436 }
2437 }
2438
2439 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2440 {
2441 struct pktcdvd_device *pd;
2442 char b[BDEVNAME_SIZE];
2443 struct bio *split;
2444
2445 pd = q->queuedata;
2446 if (!pd) {
2447 pr_err("%s incorrect request queue\n",
2448 bdevname(bio->bi_bdev, b));
2449 goto end_io;
2450 }
2451
2452 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2453 (unsigned long long)bio->bi_iter.bi_sector,
2454 (unsigned long long)bio_end_sector(bio));
2455
2456 /*
2457 * Clone READ bios so we can have our own bi_end_io callback.
2458 */
2459 if (bio_data_dir(bio) == READ) {
2460 pkt_make_request_read(pd, bio);
2461 return;
2462 }
2463
2464 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2465 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2466 (unsigned long long)bio->bi_iter.bi_sector);
2467 goto end_io;
2468 }
2469
2470 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2471 pkt_err(pd, "wrong bio size\n");
2472 goto end_io;
2473 }
2474
2475 blk_queue_bounce(q, &bio);
2476
2477 do {
2478 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2479 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2480
2481 if (last_zone != zone) {
2482 BUG_ON(last_zone != zone + pd->settings.size);
2483
2484 split = bio_split(bio, last_zone -
2485 bio->bi_iter.bi_sector,
2486 GFP_NOIO, fs_bio_set);
2487 bio_chain(split, bio);
2488 } else {
2489 split = bio;
2490 }
2491
2492 pkt_make_request_write(q, split);
2493 } while (split != bio);
2494
2495 return;
2496 end_io:
2497 bio_io_error(bio);
2498 }
2499
2500
2501
2502 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2503 struct bio_vec *bvec)
2504 {
2505 struct pktcdvd_device *pd = q->queuedata;
2506 sector_t zone = get_zone(bmd->bi_sector, pd);
2507 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2508 int remaining = (pd->settings.size << 9) - used;
2509 int remaining2;
2510
2511 /*
2512 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2513 * boundary, pkt_make_request() will split the bio.
2514 */
2515 remaining2 = PAGE_SIZE - bmd->bi_size;
2516 remaining = max(remaining, remaining2);
2517
2518 BUG_ON(remaining < 0);
2519 return remaining;
2520 }
2521
2522 static void pkt_init_queue(struct pktcdvd_device *pd)
2523 {
2524 struct request_queue *q = pd->disk->queue;
2525
2526 blk_queue_make_request(q, pkt_make_request);
2527 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2528 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2529 blk_queue_merge_bvec(q, pkt_merge_bvec);
2530 q->queuedata = pd;
2531 }
2532
2533 static int pkt_seq_show(struct seq_file *m, void *p)
2534 {
2535 struct pktcdvd_device *pd = m->private;
2536 char *msg;
2537 char bdev_buf[BDEVNAME_SIZE];
2538 int states[PACKET_NUM_STATES];
2539
2540 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2541 bdevname(pd->bdev, bdev_buf));
2542
2543 seq_printf(m, "\nSettings:\n");
2544 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2545
2546 if (pd->settings.write_type == 0)
2547 msg = "Packet";
2548 else
2549 msg = "Unknown";
2550 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2551
2552 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2553 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2554
2555 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2556
2557 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2558 msg = "Mode 1";
2559 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2560 msg = "Mode 2";
2561 else
2562 msg = "Unknown";
2563 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2564
2565 seq_printf(m, "\nStatistics:\n");
2566 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2567 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2568 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2569 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2570 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2571
2572 seq_printf(m, "\nMisc:\n");
2573 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2574 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2575 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2576 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2577 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2578 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2579
2580 seq_printf(m, "\nQueue state:\n");
2581 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2582 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2583 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2584
2585 pkt_count_states(pd, states);
2586 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2587 states[0], states[1], states[2], states[3], states[4], states[5]);
2588
2589 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2590 pd->write_congestion_off,
2591 pd->write_congestion_on);
2592 return 0;
2593 }
2594
2595 static int pkt_seq_open(struct inode *inode, struct file *file)
2596 {
2597 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2598 }
2599
2600 static const struct file_operations pkt_proc_fops = {
2601 .open = pkt_seq_open,
2602 .read = seq_read,
2603 .llseek = seq_lseek,
2604 .release = single_release
2605 };
2606
2607 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2608 {
2609 int i;
2610 int ret = 0;
2611 char b[BDEVNAME_SIZE];
2612 struct block_device *bdev;
2613
2614 if (pd->pkt_dev == dev) {
2615 pkt_err(pd, "recursive setup not allowed\n");
2616 return -EBUSY;
2617 }
2618 for (i = 0; i < MAX_WRITERS; i++) {
2619 struct pktcdvd_device *pd2 = pkt_devs[i];
2620 if (!pd2)
2621 continue;
2622 if (pd2->bdev->bd_dev == dev) {
2623 pkt_err(pd, "%s already setup\n",
2624 bdevname(pd2->bdev, b));
2625 return -EBUSY;
2626 }
2627 if (pd2->pkt_dev == dev) {
2628 pkt_err(pd, "can't chain pktcdvd devices\n");
2629 return -EBUSY;
2630 }
2631 }
2632
2633 bdev = bdget(dev);
2634 if (!bdev)
2635 return -ENOMEM;
2636 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2637 if (ret)
2638 return ret;
2639
2640 /* This is safe, since we have a reference from open(). */
2641 __module_get(THIS_MODULE);
2642
2643 pd->bdev = bdev;
2644 set_blocksize(bdev, CD_FRAMESIZE);
2645
2646 pkt_init_queue(pd);
2647
2648 atomic_set(&pd->cdrw.pending_bios, 0);
2649 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2650 if (IS_ERR(pd->cdrw.thread)) {
2651 pkt_err(pd, "can't start kernel thread\n");
2652 ret = -ENOMEM;
2653 goto out_mem;
2654 }
2655
2656 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2657 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2658 return 0;
2659
2660 out_mem:
2661 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2662 /* This is safe: open() is still holding a reference. */
2663 module_put(THIS_MODULE);
2664 return ret;
2665 }
2666
2667 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2668 {
2669 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2670 int ret;
2671
2672 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2673 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2674
2675 mutex_lock(&pktcdvd_mutex);
2676 switch (cmd) {
2677 case CDROMEJECT:
2678 /*
2679 * The door gets locked when the device is opened, so we
2680 * have to unlock it or else the eject command fails.
2681 */
2682 if (pd->refcnt == 1)
2683 pkt_lock_door(pd, 0);
2684 /* fallthru */
2685 /*
2686 * forward selected CDROM ioctls to CD-ROM, for UDF
2687 */
2688 case CDROMMULTISESSION:
2689 case CDROMREADTOCENTRY:
2690 case CDROM_LAST_WRITTEN:
2691 case CDROM_SEND_PACKET:
2692 case SCSI_IOCTL_SEND_COMMAND:
2693 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2694 break;
2695
2696 default:
2697 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2698 ret = -ENOTTY;
2699 }
2700 mutex_unlock(&pktcdvd_mutex);
2701
2702 return ret;
2703 }
2704
2705 static unsigned int pkt_check_events(struct gendisk *disk,
2706 unsigned int clearing)
2707 {
2708 struct pktcdvd_device *pd = disk->private_data;
2709 struct gendisk *attached_disk;
2710
2711 if (!pd)
2712 return 0;
2713 if (!pd->bdev)
2714 return 0;
2715 attached_disk = pd->bdev->bd_disk;
2716 if (!attached_disk || !attached_disk->fops->check_events)
2717 return 0;
2718 return attached_disk->fops->check_events(attached_disk, clearing);
2719 }
2720
2721 static const struct block_device_operations pktcdvd_ops = {
2722 .owner = THIS_MODULE,
2723 .open = pkt_open,
2724 .release = pkt_close,
2725 .ioctl = pkt_ioctl,
2726 .check_events = pkt_check_events,
2727 };
2728
2729 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2730 {
2731 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2732 }
2733
2734 /*
2735 * Set up mapping from pktcdvd device to CD-ROM device.
2736 */
2737 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2738 {
2739 int idx;
2740 int ret = -ENOMEM;
2741 struct pktcdvd_device *pd;
2742 struct gendisk *disk;
2743
2744 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2745
2746 for (idx = 0; idx < MAX_WRITERS; idx++)
2747 if (!pkt_devs[idx])
2748 break;
2749 if (idx == MAX_WRITERS) {
2750 pr_err("max %d writers supported\n", MAX_WRITERS);
2751 ret = -EBUSY;
2752 goto out_mutex;
2753 }
2754
2755 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2756 if (!pd)
2757 goto out_mutex;
2758
2759 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2760 sizeof(struct pkt_rb_node));
2761 if (!pd->rb_pool)
2762 goto out_mem;
2763
2764 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2765 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2766 spin_lock_init(&pd->cdrw.active_list_lock);
2767
2768 spin_lock_init(&pd->lock);
2769 spin_lock_init(&pd->iosched.lock);
2770 bio_list_init(&pd->iosched.read_queue);
2771 bio_list_init(&pd->iosched.write_queue);
2772 sprintf(pd->name, DRIVER_NAME"%d", idx);
2773 init_waitqueue_head(&pd->wqueue);
2774 pd->bio_queue = RB_ROOT;
2775
2776 pd->write_congestion_on = write_congestion_on;
2777 pd->write_congestion_off = write_congestion_off;
2778
2779 disk = alloc_disk(1);
2780 if (!disk)
2781 goto out_mem;
2782 pd->disk = disk;
2783 disk->major = pktdev_major;
2784 disk->first_minor = idx;
2785 disk->fops = &pktcdvd_ops;
2786 disk->flags = GENHD_FL_REMOVABLE;
2787 strcpy(disk->disk_name, pd->name);
2788 disk->devnode = pktcdvd_devnode;
2789 disk->private_data = pd;
2790 disk->queue = blk_alloc_queue(GFP_KERNEL);
2791 if (!disk->queue)
2792 goto out_mem2;
2793
2794 pd->pkt_dev = MKDEV(pktdev_major, idx);
2795 ret = pkt_new_dev(pd, dev);
2796 if (ret)
2797 goto out_new_dev;
2798
2799 /* inherit events of the host device */
2800 disk->events = pd->bdev->bd_disk->events;
2801 disk->async_events = pd->bdev->bd_disk->async_events;
2802
2803 add_disk(disk);
2804
2805 pkt_sysfs_dev_new(pd);
2806 pkt_debugfs_dev_new(pd);
2807
2808 pkt_devs[idx] = pd;
2809 if (pkt_dev)
2810 *pkt_dev = pd->pkt_dev;
2811
2812 mutex_unlock(&ctl_mutex);
2813 return 0;
2814
2815 out_new_dev:
2816 blk_cleanup_queue(disk->queue);
2817 out_mem2:
2818 put_disk(disk);
2819 out_mem:
2820 if (pd->rb_pool)
2821 mempool_destroy(pd->rb_pool);
2822 kfree(pd);
2823 out_mutex:
2824 mutex_unlock(&ctl_mutex);
2825 pr_err("setup of pktcdvd device failed\n");
2826 return ret;
2827 }
2828
2829 /*
2830 * Tear down mapping from pktcdvd device to CD-ROM device.
2831 */
2832 static int pkt_remove_dev(dev_t pkt_dev)
2833 {
2834 struct pktcdvd_device *pd;
2835 int idx;
2836 int ret = 0;
2837
2838 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2839
2840 for (idx = 0; idx < MAX_WRITERS; idx++) {
2841 pd = pkt_devs[idx];
2842 if (pd && (pd->pkt_dev == pkt_dev))
2843 break;
2844 }
2845 if (idx == MAX_WRITERS) {
2846 pr_debug("dev not setup\n");
2847 ret = -ENXIO;
2848 goto out;
2849 }
2850
2851 if (pd->refcnt > 0) {
2852 ret = -EBUSY;
2853 goto out;
2854 }
2855 if (!IS_ERR(pd->cdrw.thread))
2856 kthread_stop(pd->cdrw.thread);
2857
2858 pkt_devs[idx] = NULL;
2859
2860 pkt_debugfs_dev_remove(pd);
2861 pkt_sysfs_dev_remove(pd);
2862
2863 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2864
2865 remove_proc_entry(pd->name, pkt_proc);
2866 pkt_dbg(1, pd, "writer unmapped\n");
2867
2868 del_gendisk(pd->disk);
2869 blk_cleanup_queue(pd->disk->queue);
2870 put_disk(pd->disk);
2871
2872 mempool_destroy(pd->rb_pool);
2873 kfree(pd);
2874
2875 /* This is safe: open() is still holding a reference. */
2876 module_put(THIS_MODULE);
2877
2878 out:
2879 mutex_unlock(&ctl_mutex);
2880 return ret;
2881 }
2882
2883 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2884 {
2885 struct pktcdvd_device *pd;
2886
2887 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2888
2889 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2890 if (pd) {
2891 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2892 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2893 } else {
2894 ctrl_cmd->dev = 0;
2895 ctrl_cmd->pkt_dev = 0;
2896 }
2897 ctrl_cmd->num_devices = MAX_WRITERS;
2898
2899 mutex_unlock(&ctl_mutex);
2900 }
2901
2902 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2903 {
2904 void __user *argp = (void __user *)arg;
2905 struct pkt_ctrl_command ctrl_cmd;
2906 int ret = 0;
2907 dev_t pkt_dev = 0;
2908
2909 if (cmd != PACKET_CTRL_CMD)
2910 return -ENOTTY;
2911
2912 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2913 return -EFAULT;
2914
2915 switch (ctrl_cmd.command) {
2916 case PKT_CTRL_CMD_SETUP:
2917 if (!capable(CAP_SYS_ADMIN))
2918 return -EPERM;
2919 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2920 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2921 break;
2922 case PKT_CTRL_CMD_TEARDOWN:
2923 if (!capable(CAP_SYS_ADMIN))
2924 return -EPERM;
2925 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2926 break;
2927 case PKT_CTRL_CMD_STATUS:
2928 pkt_get_status(&ctrl_cmd);
2929 break;
2930 default:
2931 return -ENOTTY;
2932 }
2933
2934 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2935 return -EFAULT;
2936 return ret;
2937 }
2938
2939 #ifdef CONFIG_COMPAT
2940 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2941 {
2942 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2943 }
2944 #endif
2945
2946 static const struct file_operations pkt_ctl_fops = {
2947 .open = nonseekable_open,
2948 .unlocked_ioctl = pkt_ctl_ioctl,
2949 #ifdef CONFIG_COMPAT
2950 .compat_ioctl = pkt_ctl_compat_ioctl,
2951 #endif
2952 .owner = THIS_MODULE,
2953 .llseek = no_llseek,
2954 };
2955
2956 static struct miscdevice pkt_misc = {
2957 .minor = MISC_DYNAMIC_MINOR,
2958 .name = DRIVER_NAME,
2959 .nodename = "pktcdvd/control",
2960 .fops = &pkt_ctl_fops
2961 };
2962
2963 static int __init pkt_init(void)
2964 {
2965 int ret;
2966
2967 mutex_init(&ctl_mutex);
2968
2969 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2970 sizeof(struct packet_stacked_data));
2971 if (!psd_pool)
2972 return -ENOMEM;
2973
2974 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2975 if (ret < 0) {
2976 pr_err("unable to register block device\n");
2977 goto out2;
2978 }
2979 if (!pktdev_major)
2980 pktdev_major = ret;
2981
2982 ret = pkt_sysfs_init();
2983 if (ret)
2984 goto out;
2985
2986 pkt_debugfs_init();
2987
2988 ret = misc_register(&pkt_misc);
2989 if (ret) {
2990 pr_err("unable to register misc device\n");
2991 goto out_misc;
2992 }
2993
2994 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2995
2996 return 0;
2997
2998 out_misc:
2999 pkt_debugfs_cleanup();
3000 pkt_sysfs_cleanup();
3001 out:
3002 unregister_blkdev(pktdev_major, DRIVER_NAME);
3003 out2:
3004 mempool_destroy(psd_pool);
3005 return ret;
3006 }
3007
3008 static void __exit pkt_exit(void)
3009 {
3010 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3011 misc_deregister(&pkt_misc);
3012
3013 pkt_debugfs_cleanup();
3014 pkt_sysfs_cleanup();
3015
3016 unregister_blkdev(pktdev_major, DRIVER_NAME);
3017 mempool_destroy(psd_pool);
3018 }
3019
3020 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3021 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3022 MODULE_LICENSE("GPL");
3023
3024 module_init(pkt_init);
3025 module_exit(pkt_exit);