]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/rbd.c
block: Convert bio_for_each_segment() to bvec_iter
[mirror_ubuntu-zesty-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
401 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
402
403 static struct attribute *rbd_bus_attrs[] = {
404 &bus_attr_add.attr,
405 &bus_attr_remove.attr,
406 NULL,
407 };
408 ATTRIBUTE_GROUPS(rbd_bus);
409
410 static struct bus_type rbd_bus_type = {
411 .name = "rbd",
412 .bus_groups = rbd_bus_groups,
413 };
414
415 static void rbd_root_dev_release(struct device *dev)
416 {
417 }
418
419 static struct device rbd_root_dev = {
420 .init_name = "rbd",
421 .release = rbd_root_dev_release,
422 };
423
424 static __printf(2, 3)
425 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
426 {
427 struct va_format vaf;
428 va_list args;
429
430 va_start(args, fmt);
431 vaf.fmt = fmt;
432 vaf.va = &args;
433
434 if (!rbd_dev)
435 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
436 else if (rbd_dev->disk)
437 printk(KERN_WARNING "%s: %s: %pV\n",
438 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
439 else if (rbd_dev->spec && rbd_dev->spec->image_name)
440 printk(KERN_WARNING "%s: image %s: %pV\n",
441 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
442 else if (rbd_dev->spec && rbd_dev->spec->image_id)
443 printk(KERN_WARNING "%s: id %s: %pV\n",
444 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
445 else /* punt */
446 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
447 RBD_DRV_NAME, rbd_dev, &vaf);
448 va_end(args);
449 }
450
451 #ifdef RBD_DEBUG
452 #define rbd_assert(expr) \
453 if (unlikely(!(expr))) { \
454 printk(KERN_ERR "\nAssertion failure in %s() " \
455 "at line %d:\n\n" \
456 "\trbd_assert(%s);\n\n", \
457 __func__, __LINE__, #expr); \
458 BUG(); \
459 }
460 #else /* !RBD_DEBUG */
461 # define rbd_assert(expr) ((void) 0)
462 #endif /* !RBD_DEBUG */
463
464 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
465 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
466 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
467
468 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
470 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
471 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
472 u64 snap_id);
473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
474 u8 *order, u64 *snap_size);
475 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
476 u64 *snap_features);
477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
478
479 static int rbd_open(struct block_device *bdev, fmode_t mode)
480 {
481 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
482 bool removing = false;
483
484 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
485 return -EROFS;
486
487 spin_lock_irq(&rbd_dev->lock);
488 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
489 removing = true;
490 else
491 rbd_dev->open_count++;
492 spin_unlock_irq(&rbd_dev->lock);
493 if (removing)
494 return -ENOENT;
495
496 (void) get_device(&rbd_dev->dev);
497 set_device_ro(bdev, rbd_dev->mapping.read_only);
498
499 return 0;
500 }
501
502 static void rbd_release(struct gendisk *disk, fmode_t mode)
503 {
504 struct rbd_device *rbd_dev = disk->private_data;
505 unsigned long open_count_before;
506
507 spin_lock_irq(&rbd_dev->lock);
508 open_count_before = rbd_dev->open_count--;
509 spin_unlock_irq(&rbd_dev->lock);
510 rbd_assert(open_count_before > 0);
511
512 put_device(&rbd_dev->dev);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
517 .open = rbd_open,
518 .release = rbd_release,
519 };
520
521 /*
522 * Initialize an rbd client instance. Success or not, this function
523 * consumes ceph_opts. Caller holds client_mutex.
524 */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 struct rbd_client *rbdc;
528 int ret = -ENOMEM;
529
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 if (!rbdc)
533 goto out_opt;
534
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
537
538 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
539 if (IS_ERR(rbdc->client))
540 goto out_rbdc;
541 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
542
543 ret = ceph_open_session(rbdc->client);
544 if (ret < 0)
545 goto out_client;
546
547 spin_lock(&rbd_client_list_lock);
548 list_add_tail(&rbdc->node, &rbd_client_list);
549 spin_unlock(&rbd_client_list_lock);
550
551 dout("%s: rbdc %p\n", __func__, rbdc);
552
553 return rbdc;
554 out_client:
555 ceph_destroy_client(rbdc->client);
556 out_rbdc:
557 kfree(rbdc);
558 out_opt:
559 if (ceph_opts)
560 ceph_destroy_options(ceph_opts);
561 dout("%s: error %d\n", __func__, ret);
562
563 return ERR_PTR(ret);
564 }
565
566 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
567 {
568 kref_get(&rbdc->kref);
569
570 return rbdc;
571 }
572
573 /*
574 * Find a ceph client with specific addr and configuration. If
575 * found, bump its reference count.
576 */
577 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
578 {
579 struct rbd_client *client_node;
580 bool found = false;
581
582 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
583 return NULL;
584
585 spin_lock(&rbd_client_list_lock);
586 list_for_each_entry(client_node, &rbd_client_list, node) {
587 if (!ceph_compare_options(ceph_opts, client_node->client)) {
588 __rbd_get_client(client_node);
589
590 found = true;
591 break;
592 }
593 }
594 spin_unlock(&rbd_client_list_lock);
595
596 return found ? client_node : NULL;
597 }
598
599 /*
600 * mount options
601 */
602 enum {
603 Opt_last_int,
604 /* int args above */
605 Opt_last_string,
606 /* string args above */
607 Opt_read_only,
608 Opt_read_write,
609 /* Boolean args above */
610 Opt_last_bool,
611 };
612
613 static match_table_t rbd_opts_tokens = {
614 /* int args above */
615 /* string args above */
616 {Opt_read_only, "read_only"},
617 {Opt_read_only, "ro"}, /* Alternate spelling */
618 {Opt_read_write, "read_write"},
619 {Opt_read_write, "rw"}, /* Alternate spelling */
620 /* Boolean args above */
621 {-1, NULL}
622 };
623
624 struct rbd_options {
625 bool read_only;
626 };
627
628 #define RBD_READ_ONLY_DEFAULT false
629
630 static int parse_rbd_opts_token(char *c, void *private)
631 {
632 struct rbd_options *rbd_opts = private;
633 substring_t argstr[MAX_OPT_ARGS];
634 int token, intval, ret;
635
636 token = match_token(c, rbd_opts_tokens, argstr);
637 if (token < 0)
638 return -EINVAL;
639
640 if (token < Opt_last_int) {
641 ret = match_int(&argstr[0], &intval);
642 if (ret < 0) {
643 pr_err("bad mount option arg (not int) "
644 "at '%s'\n", c);
645 return ret;
646 }
647 dout("got int token %d val %d\n", token, intval);
648 } else if (token > Opt_last_int && token < Opt_last_string) {
649 dout("got string token %d val %s\n", token,
650 argstr[0].from);
651 } else if (token > Opt_last_string && token < Opt_last_bool) {
652 dout("got Boolean token %d\n", token);
653 } else {
654 dout("got token %d\n", token);
655 }
656
657 switch (token) {
658 case Opt_read_only:
659 rbd_opts->read_only = true;
660 break;
661 case Opt_read_write:
662 rbd_opts->read_only = false;
663 break;
664 default:
665 rbd_assert(false);
666 break;
667 }
668 return 0;
669 }
670
671 /*
672 * Get a ceph client with specific addr and configuration, if one does
673 * not exist create it. Either way, ceph_opts is consumed by this
674 * function.
675 */
676 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
677 {
678 struct rbd_client *rbdc;
679
680 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
681 rbdc = rbd_client_find(ceph_opts);
682 if (rbdc) /* using an existing client */
683 ceph_destroy_options(ceph_opts);
684 else
685 rbdc = rbd_client_create(ceph_opts);
686 mutex_unlock(&client_mutex);
687
688 return rbdc;
689 }
690
691 /*
692 * Destroy ceph client
693 *
694 * Caller must hold rbd_client_list_lock.
695 */
696 static void rbd_client_release(struct kref *kref)
697 {
698 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
699
700 dout("%s: rbdc %p\n", __func__, rbdc);
701 spin_lock(&rbd_client_list_lock);
702 list_del(&rbdc->node);
703 spin_unlock(&rbd_client_list_lock);
704
705 ceph_destroy_client(rbdc->client);
706 kfree(rbdc);
707 }
708
709 /*
710 * Drop reference to ceph client node. If it's not referenced anymore, release
711 * it.
712 */
713 static void rbd_put_client(struct rbd_client *rbdc)
714 {
715 if (rbdc)
716 kref_put(&rbdc->kref, rbd_client_release);
717 }
718
719 static bool rbd_image_format_valid(u32 image_format)
720 {
721 return image_format == 1 || image_format == 2;
722 }
723
724 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
725 {
726 size_t size;
727 u32 snap_count;
728
729 /* The header has to start with the magic rbd header text */
730 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
731 return false;
732
733 /* The bio layer requires at least sector-sized I/O */
734
735 if (ondisk->options.order < SECTOR_SHIFT)
736 return false;
737
738 /* If we use u64 in a few spots we may be able to loosen this */
739
740 if (ondisk->options.order > 8 * sizeof (int) - 1)
741 return false;
742
743 /*
744 * The size of a snapshot header has to fit in a size_t, and
745 * that limits the number of snapshots.
746 */
747 snap_count = le32_to_cpu(ondisk->snap_count);
748 size = SIZE_MAX - sizeof (struct ceph_snap_context);
749 if (snap_count > size / sizeof (__le64))
750 return false;
751
752 /*
753 * Not only that, but the size of the entire the snapshot
754 * header must also be representable in a size_t.
755 */
756 size -= snap_count * sizeof (__le64);
757 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
758 return false;
759
760 return true;
761 }
762
763 /*
764 * Fill an rbd image header with information from the given format 1
765 * on-disk header.
766 */
767 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
768 struct rbd_image_header_ondisk *ondisk)
769 {
770 struct rbd_image_header *header = &rbd_dev->header;
771 bool first_time = header->object_prefix == NULL;
772 struct ceph_snap_context *snapc;
773 char *object_prefix = NULL;
774 char *snap_names = NULL;
775 u64 *snap_sizes = NULL;
776 u32 snap_count;
777 size_t size;
778 int ret = -ENOMEM;
779 u32 i;
780
781 /* Allocate this now to avoid having to handle failure below */
782
783 if (first_time) {
784 size_t len;
785
786 len = strnlen(ondisk->object_prefix,
787 sizeof (ondisk->object_prefix));
788 object_prefix = kmalloc(len + 1, GFP_KERNEL);
789 if (!object_prefix)
790 return -ENOMEM;
791 memcpy(object_prefix, ondisk->object_prefix, len);
792 object_prefix[len] = '\0';
793 }
794
795 /* Allocate the snapshot context and fill it in */
796
797 snap_count = le32_to_cpu(ondisk->snap_count);
798 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
799 if (!snapc)
800 goto out_err;
801 snapc->seq = le64_to_cpu(ondisk->snap_seq);
802 if (snap_count) {
803 struct rbd_image_snap_ondisk *snaps;
804 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
805
806 /* We'll keep a copy of the snapshot names... */
807
808 if (snap_names_len > (u64)SIZE_MAX)
809 goto out_2big;
810 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
811 if (!snap_names)
812 goto out_err;
813
814 /* ...as well as the array of their sizes. */
815
816 size = snap_count * sizeof (*header->snap_sizes);
817 snap_sizes = kmalloc(size, GFP_KERNEL);
818 if (!snap_sizes)
819 goto out_err;
820
821 /*
822 * Copy the names, and fill in each snapshot's id
823 * and size.
824 *
825 * Note that rbd_dev_v1_header_info() guarantees the
826 * ondisk buffer we're working with has
827 * snap_names_len bytes beyond the end of the
828 * snapshot id array, this memcpy() is safe.
829 */
830 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
831 snaps = ondisk->snaps;
832 for (i = 0; i < snap_count; i++) {
833 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
834 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
835 }
836 }
837
838 /* We won't fail any more, fill in the header */
839
840 if (first_time) {
841 header->object_prefix = object_prefix;
842 header->obj_order = ondisk->options.order;
843 header->crypt_type = ondisk->options.crypt_type;
844 header->comp_type = ondisk->options.comp_type;
845 /* The rest aren't used for format 1 images */
846 header->stripe_unit = 0;
847 header->stripe_count = 0;
848 header->features = 0;
849 } else {
850 ceph_put_snap_context(header->snapc);
851 kfree(header->snap_names);
852 kfree(header->snap_sizes);
853 }
854
855 /* The remaining fields always get updated (when we refresh) */
856
857 header->image_size = le64_to_cpu(ondisk->image_size);
858 header->snapc = snapc;
859 header->snap_names = snap_names;
860 header->snap_sizes = snap_sizes;
861
862 /* Make sure mapping size is consistent with header info */
863
864 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
865 if (rbd_dev->mapping.size != header->image_size)
866 rbd_dev->mapping.size = header->image_size;
867
868 return 0;
869 out_2big:
870 ret = -EIO;
871 out_err:
872 kfree(snap_sizes);
873 kfree(snap_names);
874 ceph_put_snap_context(snapc);
875 kfree(object_prefix);
876
877 return ret;
878 }
879
880 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
881 {
882 const char *snap_name;
883
884 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
885
886 /* Skip over names until we find the one we are looking for */
887
888 snap_name = rbd_dev->header.snap_names;
889 while (which--)
890 snap_name += strlen(snap_name) + 1;
891
892 return kstrdup(snap_name, GFP_KERNEL);
893 }
894
895 /*
896 * Snapshot id comparison function for use with qsort()/bsearch().
897 * Note that result is for snapshots in *descending* order.
898 */
899 static int snapid_compare_reverse(const void *s1, const void *s2)
900 {
901 u64 snap_id1 = *(u64 *)s1;
902 u64 snap_id2 = *(u64 *)s2;
903
904 if (snap_id1 < snap_id2)
905 return 1;
906 return snap_id1 == snap_id2 ? 0 : -1;
907 }
908
909 /*
910 * Search a snapshot context to see if the given snapshot id is
911 * present.
912 *
913 * Returns the position of the snapshot id in the array if it's found,
914 * or BAD_SNAP_INDEX otherwise.
915 *
916 * Note: The snapshot array is in kept sorted (by the osd) in
917 * reverse order, highest snapshot id first.
918 */
919 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
920 {
921 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
922 u64 *found;
923
924 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
925 sizeof (snap_id), snapid_compare_reverse);
926
927 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
928 }
929
930 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
931 u64 snap_id)
932 {
933 u32 which;
934 const char *snap_name;
935
936 which = rbd_dev_snap_index(rbd_dev, snap_id);
937 if (which == BAD_SNAP_INDEX)
938 return ERR_PTR(-ENOENT);
939
940 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
941 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
942 }
943
944 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
945 {
946 if (snap_id == CEPH_NOSNAP)
947 return RBD_SNAP_HEAD_NAME;
948
949 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
950 if (rbd_dev->image_format == 1)
951 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
952
953 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
954 }
955
956 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
957 u64 *snap_size)
958 {
959 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
960 if (snap_id == CEPH_NOSNAP) {
961 *snap_size = rbd_dev->header.image_size;
962 } else if (rbd_dev->image_format == 1) {
963 u32 which;
964
965 which = rbd_dev_snap_index(rbd_dev, snap_id);
966 if (which == BAD_SNAP_INDEX)
967 return -ENOENT;
968
969 *snap_size = rbd_dev->header.snap_sizes[which];
970 } else {
971 u64 size = 0;
972 int ret;
973
974 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
975 if (ret)
976 return ret;
977
978 *snap_size = size;
979 }
980 return 0;
981 }
982
983 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
984 u64 *snap_features)
985 {
986 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
987 if (snap_id == CEPH_NOSNAP) {
988 *snap_features = rbd_dev->header.features;
989 } else if (rbd_dev->image_format == 1) {
990 *snap_features = 0; /* No features for format 1 */
991 } else {
992 u64 features = 0;
993 int ret;
994
995 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
996 if (ret)
997 return ret;
998
999 *snap_features = features;
1000 }
1001 return 0;
1002 }
1003
1004 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1005 {
1006 u64 snap_id = rbd_dev->spec->snap_id;
1007 u64 size = 0;
1008 u64 features = 0;
1009 int ret;
1010
1011 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1012 if (ret)
1013 return ret;
1014 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1015 if (ret)
1016 return ret;
1017
1018 rbd_dev->mapping.size = size;
1019 rbd_dev->mapping.features = features;
1020
1021 return 0;
1022 }
1023
1024 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1025 {
1026 rbd_dev->mapping.size = 0;
1027 rbd_dev->mapping.features = 0;
1028 }
1029
1030 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1031 {
1032 char *name;
1033 u64 segment;
1034 int ret;
1035 char *name_format;
1036
1037 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1038 if (!name)
1039 return NULL;
1040 segment = offset >> rbd_dev->header.obj_order;
1041 name_format = "%s.%012llx";
1042 if (rbd_dev->image_format == 2)
1043 name_format = "%s.%016llx";
1044 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1045 rbd_dev->header.object_prefix, segment);
1046 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1047 pr_err("error formatting segment name for #%llu (%d)\n",
1048 segment, ret);
1049 kfree(name);
1050 name = NULL;
1051 }
1052
1053 return name;
1054 }
1055
1056 static void rbd_segment_name_free(const char *name)
1057 {
1058 /* The explicit cast here is needed to drop the const qualifier */
1059
1060 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1061 }
1062
1063 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1064 {
1065 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1066
1067 return offset & (segment_size - 1);
1068 }
1069
1070 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1071 u64 offset, u64 length)
1072 {
1073 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1074
1075 offset &= segment_size - 1;
1076
1077 rbd_assert(length <= U64_MAX - offset);
1078 if (offset + length > segment_size)
1079 length = segment_size - offset;
1080
1081 return length;
1082 }
1083
1084 /*
1085 * returns the size of an object in the image
1086 */
1087 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1088 {
1089 return 1 << header->obj_order;
1090 }
1091
1092 /*
1093 * bio helpers
1094 */
1095
1096 static void bio_chain_put(struct bio *chain)
1097 {
1098 struct bio *tmp;
1099
1100 while (chain) {
1101 tmp = chain;
1102 chain = chain->bi_next;
1103 bio_put(tmp);
1104 }
1105 }
1106
1107 /*
1108 * zeros a bio chain, starting at specific offset
1109 */
1110 static void zero_bio_chain(struct bio *chain, int start_ofs)
1111 {
1112 struct bio_vec bv;
1113 struct bvec_iter iter;
1114 unsigned long flags;
1115 void *buf;
1116 int pos = 0;
1117
1118 while (chain) {
1119 bio_for_each_segment(bv, chain, iter) {
1120 if (pos + bv.bv_len > start_ofs) {
1121 int remainder = max(start_ofs - pos, 0);
1122 buf = bvec_kmap_irq(&bv, &flags);
1123 memset(buf + remainder, 0,
1124 bv.bv_len - remainder);
1125 flush_dcache_page(bv.bv_page);
1126 bvec_kunmap_irq(buf, &flags);
1127 }
1128 pos += bv.bv_len;
1129 }
1130
1131 chain = chain->bi_next;
1132 }
1133 }
1134
1135 /*
1136 * similar to zero_bio_chain(), zeros data defined by a page array,
1137 * starting at the given byte offset from the start of the array and
1138 * continuing up to the given end offset. The pages array is
1139 * assumed to be big enough to hold all bytes up to the end.
1140 */
1141 static void zero_pages(struct page **pages, u64 offset, u64 end)
1142 {
1143 struct page **page = &pages[offset >> PAGE_SHIFT];
1144
1145 rbd_assert(end > offset);
1146 rbd_assert(end - offset <= (u64)SIZE_MAX);
1147 while (offset < end) {
1148 size_t page_offset;
1149 size_t length;
1150 unsigned long flags;
1151 void *kaddr;
1152
1153 page_offset = offset & ~PAGE_MASK;
1154 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1155 local_irq_save(flags);
1156 kaddr = kmap_atomic(*page);
1157 memset(kaddr + page_offset, 0, length);
1158 flush_dcache_page(*page);
1159 kunmap_atomic(kaddr);
1160 local_irq_restore(flags);
1161
1162 offset += length;
1163 page++;
1164 }
1165 }
1166
1167 /*
1168 * Clone a portion of a bio, starting at the given byte offset
1169 * and continuing for the number of bytes indicated.
1170 */
1171 static struct bio *bio_clone_range(struct bio *bio_src,
1172 unsigned int offset,
1173 unsigned int len,
1174 gfp_t gfpmask)
1175 {
1176 struct bio_vec bv;
1177 struct bvec_iter iter;
1178 struct bvec_iter end_iter;
1179 unsigned int resid;
1180 unsigned int voff;
1181 unsigned short vcnt;
1182 struct bio *bio;
1183
1184 /* Handle the easy case for the caller */
1185
1186 if (!offset && len == bio_src->bi_iter.bi_size)
1187 return bio_clone(bio_src, gfpmask);
1188
1189 if (WARN_ON_ONCE(!len))
1190 return NULL;
1191 if (WARN_ON_ONCE(len > bio_src->bi_iter.bi_size))
1192 return NULL;
1193 if (WARN_ON_ONCE(offset > bio_src->bi_iter.bi_size - len))
1194 return NULL;
1195
1196 /* Find first affected segment... */
1197
1198 resid = offset;
1199 bio_for_each_segment(bv, bio_src, iter) {
1200 if (resid < bv.bv_len)
1201 break;
1202 resid -= bv.bv_len;
1203 }
1204 voff = resid;
1205
1206 /* ...and the last affected segment */
1207
1208 resid += len;
1209 __bio_for_each_segment(bv, bio_src, end_iter, iter) {
1210 if (resid <= bv.bv_len)
1211 break;
1212 resid -= bv.bv_len;
1213 }
1214 vcnt = end_iter.bi_idx = iter.bi_idx + 1;
1215
1216 /* Build the clone */
1217
1218 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1219 if (!bio)
1220 return NULL; /* ENOMEM */
1221
1222 bio->bi_bdev = bio_src->bi_bdev;
1223 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector +
1224 (offset >> SECTOR_SHIFT);
1225 bio->bi_rw = bio_src->bi_rw;
1226 bio->bi_flags |= 1 << BIO_CLONED;
1227
1228 /*
1229 * Copy over our part of the bio_vec, then update the first
1230 * and last (or only) entries.
1231 */
1232 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[iter.bi_idx],
1233 vcnt * sizeof (struct bio_vec));
1234 bio->bi_io_vec[0].bv_offset += voff;
1235 if (vcnt > 1) {
1236 bio->bi_io_vec[0].bv_len -= voff;
1237 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1238 } else {
1239 bio->bi_io_vec[0].bv_len = len;
1240 }
1241
1242 bio->bi_vcnt = vcnt;
1243 bio->bi_iter.bi_size = len;
1244
1245 return bio;
1246 }
1247
1248 /*
1249 * Clone a portion of a bio chain, starting at the given byte offset
1250 * into the first bio in the source chain and continuing for the
1251 * number of bytes indicated. The result is another bio chain of
1252 * exactly the given length, or a null pointer on error.
1253 *
1254 * The bio_src and offset parameters are both in-out. On entry they
1255 * refer to the first source bio and the offset into that bio where
1256 * the start of data to be cloned is located.
1257 *
1258 * On return, bio_src is updated to refer to the bio in the source
1259 * chain that contains first un-cloned byte, and *offset will
1260 * contain the offset of that byte within that bio.
1261 */
1262 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1263 unsigned int *offset,
1264 unsigned int len,
1265 gfp_t gfpmask)
1266 {
1267 struct bio *bi = *bio_src;
1268 unsigned int off = *offset;
1269 struct bio *chain = NULL;
1270 struct bio **end;
1271
1272 /* Build up a chain of clone bios up to the limit */
1273
1274 if (!bi || off >= bi->bi_iter.bi_size || !len)
1275 return NULL; /* Nothing to clone */
1276
1277 end = &chain;
1278 while (len) {
1279 unsigned int bi_size;
1280 struct bio *bio;
1281
1282 if (!bi) {
1283 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1284 goto out_err; /* EINVAL; ran out of bio's */
1285 }
1286 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1287 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1288 if (!bio)
1289 goto out_err; /* ENOMEM */
1290
1291 *end = bio;
1292 end = &bio->bi_next;
1293
1294 off += bi_size;
1295 if (off == bi->bi_iter.bi_size) {
1296 bi = bi->bi_next;
1297 off = 0;
1298 }
1299 len -= bi_size;
1300 }
1301 *bio_src = bi;
1302 *offset = off;
1303
1304 return chain;
1305 out_err:
1306 bio_chain_put(chain);
1307
1308 return NULL;
1309 }
1310
1311 /*
1312 * The default/initial value for all object request flags is 0. For
1313 * each flag, once its value is set to 1 it is never reset to 0
1314 * again.
1315 */
1316 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1317 {
1318 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1319 struct rbd_device *rbd_dev;
1320
1321 rbd_dev = obj_request->img_request->rbd_dev;
1322 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1323 obj_request);
1324 }
1325 }
1326
1327 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1328 {
1329 smp_mb();
1330 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1331 }
1332
1333 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1334 {
1335 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1336 struct rbd_device *rbd_dev = NULL;
1337
1338 if (obj_request_img_data_test(obj_request))
1339 rbd_dev = obj_request->img_request->rbd_dev;
1340 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1341 obj_request);
1342 }
1343 }
1344
1345 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1346 {
1347 smp_mb();
1348 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1349 }
1350
1351 /*
1352 * This sets the KNOWN flag after (possibly) setting the EXISTS
1353 * flag. The latter is set based on the "exists" value provided.
1354 *
1355 * Note that for our purposes once an object exists it never goes
1356 * away again. It's possible that the response from two existence
1357 * checks are separated by the creation of the target object, and
1358 * the first ("doesn't exist") response arrives *after* the second
1359 * ("does exist"). In that case we ignore the second one.
1360 */
1361 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1362 bool exists)
1363 {
1364 if (exists)
1365 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1366 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1367 smp_mb();
1368 }
1369
1370 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1371 {
1372 smp_mb();
1373 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1374 }
1375
1376 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1377 {
1378 smp_mb();
1379 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1380 }
1381
1382 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1383 {
1384 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1385 atomic_read(&obj_request->kref.refcount));
1386 kref_get(&obj_request->kref);
1387 }
1388
1389 static void rbd_obj_request_destroy(struct kref *kref);
1390 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1391 {
1392 rbd_assert(obj_request != NULL);
1393 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1394 atomic_read(&obj_request->kref.refcount));
1395 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1396 }
1397
1398 static bool img_request_child_test(struct rbd_img_request *img_request);
1399 static void rbd_parent_request_destroy(struct kref *kref);
1400 static void rbd_img_request_destroy(struct kref *kref);
1401 static void rbd_img_request_put(struct rbd_img_request *img_request)
1402 {
1403 rbd_assert(img_request != NULL);
1404 dout("%s: img %p (was %d)\n", __func__, img_request,
1405 atomic_read(&img_request->kref.refcount));
1406 if (img_request_child_test(img_request))
1407 kref_put(&img_request->kref, rbd_parent_request_destroy);
1408 else
1409 kref_put(&img_request->kref, rbd_img_request_destroy);
1410 }
1411
1412 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1413 struct rbd_obj_request *obj_request)
1414 {
1415 rbd_assert(obj_request->img_request == NULL);
1416
1417 /* Image request now owns object's original reference */
1418 obj_request->img_request = img_request;
1419 obj_request->which = img_request->obj_request_count;
1420 rbd_assert(!obj_request_img_data_test(obj_request));
1421 obj_request_img_data_set(obj_request);
1422 rbd_assert(obj_request->which != BAD_WHICH);
1423 img_request->obj_request_count++;
1424 list_add_tail(&obj_request->links, &img_request->obj_requests);
1425 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1426 obj_request->which);
1427 }
1428
1429 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1430 struct rbd_obj_request *obj_request)
1431 {
1432 rbd_assert(obj_request->which != BAD_WHICH);
1433
1434 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1435 obj_request->which);
1436 list_del(&obj_request->links);
1437 rbd_assert(img_request->obj_request_count > 0);
1438 img_request->obj_request_count--;
1439 rbd_assert(obj_request->which == img_request->obj_request_count);
1440 obj_request->which = BAD_WHICH;
1441 rbd_assert(obj_request_img_data_test(obj_request));
1442 rbd_assert(obj_request->img_request == img_request);
1443 obj_request->img_request = NULL;
1444 obj_request->callback = NULL;
1445 rbd_obj_request_put(obj_request);
1446 }
1447
1448 static bool obj_request_type_valid(enum obj_request_type type)
1449 {
1450 switch (type) {
1451 case OBJ_REQUEST_NODATA:
1452 case OBJ_REQUEST_BIO:
1453 case OBJ_REQUEST_PAGES:
1454 return true;
1455 default:
1456 return false;
1457 }
1458 }
1459
1460 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1461 struct rbd_obj_request *obj_request)
1462 {
1463 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1464
1465 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1466 }
1467
1468 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1469 {
1470
1471 dout("%s: img %p\n", __func__, img_request);
1472
1473 /*
1474 * If no error occurred, compute the aggregate transfer
1475 * count for the image request. We could instead use
1476 * atomic64_cmpxchg() to update it as each object request
1477 * completes; not clear which way is better off hand.
1478 */
1479 if (!img_request->result) {
1480 struct rbd_obj_request *obj_request;
1481 u64 xferred = 0;
1482
1483 for_each_obj_request(img_request, obj_request)
1484 xferred += obj_request->xferred;
1485 img_request->xferred = xferred;
1486 }
1487
1488 if (img_request->callback)
1489 img_request->callback(img_request);
1490 else
1491 rbd_img_request_put(img_request);
1492 }
1493
1494 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1495
1496 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1497 {
1498 dout("%s: obj %p\n", __func__, obj_request);
1499
1500 return wait_for_completion_interruptible(&obj_request->completion);
1501 }
1502
1503 /*
1504 * The default/initial value for all image request flags is 0. Each
1505 * is conditionally set to 1 at image request initialization time
1506 * and currently never change thereafter.
1507 */
1508 static void img_request_write_set(struct rbd_img_request *img_request)
1509 {
1510 set_bit(IMG_REQ_WRITE, &img_request->flags);
1511 smp_mb();
1512 }
1513
1514 static bool img_request_write_test(struct rbd_img_request *img_request)
1515 {
1516 smp_mb();
1517 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1518 }
1519
1520 static void img_request_child_set(struct rbd_img_request *img_request)
1521 {
1522 set_bit(IMG_REQ_CHILD, &img_request->flags);
1523 smp_mb();
1524 }
1525
1526 static void img_request_child_clear(struct rbd_img_request *img_request)
1527 {
1528 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1529 smp_mb();
1530 }
1531
1532 static bool img_request_child_test(struct rbd_img_request *img_request)
1533 {
1534 smp_mb();
1535 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1536 }
1537
1538 static void img_request_layered_set(struct rbd_img_request *img_request)
1539 {
1540 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1541 smp_mb();
1542 }
1543
1544 static void img_request_layered_clear(struct rbd_img_request *img_request)
1545 {
1546 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1547 smp_mb();
1548 }
1549
1550 static bool img_request_layered_test(struct rbd_img_request *img_request)
1551 {
1552 smp_mb();
1553 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1554 }
1555
1556 static void
1557 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1558 {
1559 u64 xferred = obj_request->xferred;
1560 u64 length = obj_request->length;
1561
1562 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1563 obj_request, obj_request->img_request, obj_request->result,
1564 xferred, length);
1565 /*
1566 * ENOENT means a hole in the image. We zero-fill the entire
1567 * length of the request. A short read also implies zero-fill
1568 * to the end of the request. An error requires the whole
1569 * length of the request to be reported finished with an error
1570 * to the block layer. In each case we update the xferred
1571 * count to indicate the whole request was satisfied.
1572 */
1573 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1574 if (obj_request->result == -ENOENT) {
1575 if (obj_request->type == OBJ_REQUEST_BIO)
1576 zero_bio_chain(obj_request->bio_list, 0);
1577 else
1578 zero_pages(obj_request->pages, 0, length);
1579 obj_request->result = 0;
1580 } else if (xferred < length && !obj_request->result) {
1581 if (obj_request->type == OBJ_REQUEST_BIO)
1582 zero_bio_chain(obj_request->bio_list, xferred);
1583 else
1584 zero_pages(obj_request->pages, xferred, length);
1585 }
1586 obj_request->xferred = length;
1587 obj_request_done_set(obj_request);
1588 }
1589
1590 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1591 {
1592 dout("%s: obj %p cb %p\n", __func__, obj_request,
1593 obj_request->callback);
1594 if (obj_request->callback)
1595 obj_request->callback(obj_request);
1596 else
1597 complete_all(&obj_request->completion);
1598 }
1599
1600 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1601 {
1602 dout("%s: obj %p\n", __func__, obj_request);
1603 obj_request_done_set(obj_request);
1604 }
1605
1606 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1607 {
1608 struct rbd_img_request *img_request = NULL;
1609 struct rbd_device *rbd_dev = NULL;
1610 bool layered = false;
1611
1612 if (obj_request_img_data_test(obj_request)) {
1613 img_request = obj_request->img_request;
1614 layered = img_request && img_request_layered_test(img_request);
1615 rbd_dev = img_request->rbd_dev;
1616 }
1617
1618 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1619 obj_request, img_request, obj_request->result,
1620 obj_request->xferred, obj_request->length);
1621 if (layered && obj_request->result == -ENOENT &&
1622 obj_request->img_offset < rbd_dev->parent_overlap)
1623 rbd_img_parent_read(obj_request);
1624 else if (img_request)
1625 rbd_img_obj_request_read_callback(obj_request);
1626 else
1627 obj_request_done_set(obj_request);
1628 }
1629
1630 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1631 {
1632 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1633 obj_request->result, obj_request->length);
1634 /*
1635 * There is no such thing as a successful short write. Set
1636 * it to our originally-requested length.
1637 */
1638 obj_request->xferred = obj_request->length;
1639 obj_request_done_set(obj_request);
1640 }
1641
1642 /*
1643 * For a simple stat call there's nothing to do. We'll do more if
1644 * this is part of a write sequence for a layered image.
1645 */
1646 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1647 {
1648 dout("%s: obj %p\n", __func__, obj_request);
1649 obj_request_done_set(obj_request);
1650 }
1651
1652 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1653 struct ceph_msg *msg)
1654 {
1655 struct rbd_obj_request *obj_request = osd_req->r_priv;
1656 u16 opcode;
1657
1658 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1659 rbd_assert(osd_req == obj_request->osd_req);
1660 if (obj_request_img_data_test(obj_request)) {
1661 rbd_assert(obj_request->img_request);
1662 rbd_assert(obj_request->which != BAD_WHICH);
1663 } else {
1664 rbd_assert(obj_request->which == BAD_WHICH);
1665 }
1666
1667 if (osd_req->r_result < 0)
1668 obj_request->result = osd_req->r_result;
1669
1670 BUG_ON(osd_req->r_num_ops > 2);
1671
1672 /*
1673 * We support a 64-bit length, but ultimately it has to be
1674 * passed to blk_end_request(), which takes an unsigned int.
1675 */
1676 obj_request->xferred = osd_req->r_reply_op_len[0];
1677 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1678 opcode = osd_req->r_ops[0].op;
1679 switch (opcode) {
1680 case CEPH_OSD_OP_READ:
1681 rbd_osd_read_callback(obj_request);
1682 break;
1683 case CEPH_OSD_OP_WRITE:
1684 rbd_osd_write_callback(obj_request);
1685 break;
1686 case CEPH_OSD_OP_STAT:
1687 rbd_osd_stat_callback(obj_request);
1688 break;
1689 case CEPH_OSD_OP_CALL:
1690 case CEPH_OSD_OP_NOTIFY_ACK:
1691 case CEPH_OSD_OP_WATCH:
1692 rbd_osd_trivial_callback(obj_request);
1693 break;
1694 default:
1695 rbd_warn(NULL, "%s: unsupported op %hu\n",
1696 obj_request->object_name, (unsigned short) opcode);
1697 break;
1698 }
1699
1700 if (obj_request_done_test(obj_request))
1701 rbd_obj_request_complete(obj_request);
1702 }
1703
1704 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1705 {
1706 struct rbd_img_request *img_request = obj_request->img_request;
1707 struct ceph_osd_request *osd_req = obj_request->osd_req;
1708 u64 snap_id;
1709
1710 rbd_assert(osd_req != NULL);
1711
1712 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1713 ceph_osdc_build_request(osd_req, obj_request->offset,
1714 NULL, snap_id, NULL);
1715 }
1716
1717 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1718 {
1719 struct rbd_img_request *img_request = obj_request->img_request;
1720 struct ceph_osd_request *osd_req = obj_request->osd_req;
1721 struct ceph_snap_context *snapc;
1722 struct timespec mtime = CURRENT_TIME;
1723
1724 rbd_assert(osd_req != NULL);
1725
1726 snapc = img_request ? img_request->snapc : NULL;
1727 ceph_osdc_build_request(osd_req, obj_request->offset,
1728 snapc, CEPH_NOSNAP, &mtime);
1729 }
1730
1731 static struct ceph_osd_request *rbd_osd_req_create(
1732 struct rbd_device *rbd_dev,
1733 bool write_request,
1734 struct rbd_obj_request *obj_request)
1735 {
1736 struct ceph_snap_context *snapc = NULL;
1737 struct ceph_osd_client *osdc;
1738 struct ceph_osd_request *osd_req;
1739
1740 if (obj_request_img_data_test(obj_request)) {
1741 struct rbd_img_request *img_request = obj_request->img_request;
1742
1743 rbd_assert(write_request ==
1744 img_request_write_test(img_request));
1745 if (write_request)
1746 snapc = img_request->snapc;
1747 }
1748
1749 /* Allocate and initialize the request, for the single op */
1750
1751 osdc = &rbd_dev->rbd_client->client->osdc;
1752 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1753 if (!osd_req)
1754 return NULL; /* ENOMEM */
1755
1756 if (write_request)
1757 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1758 else
1759 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1760
1761 osd_req->r_callback = rbd_osd_req_callback;
1762 osd_req->r_priv = obj_request;
1763
1764 osd_req->r_oid_len = strlen(obj_request->object_name);
1765 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1766 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1767
1768 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1769
1770 return osd_req;
1771 }
1772
1773 /*
1774 * Create a copyup osd request based on the information in the
1775 * object request supplied. A copyup request has two osd ops,
1776 * a copyup method call, and a "normal" write request.
1777 */
1778 static struct ceph_osd_request *
1779 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1780 {
1781 struct rbd_img_request *img_request;
1782 struct ceph_snap_context *snapc;
1783 struct rbd_device *rbd_dev;
1784 struct ceph_osd_client *osdc;
1785 struct ceph_osd_request *osd_req;
1786
1787 rbd_assert(obj_request_img_data_test(obj_request));
1788 img_request = obj_request->img_request;
1789 rbd_assert(img_request);
1790 rbd_assert(img_request_write_test(img_request));
1791
1792 /* Allocate and initialize the request, for the two ops */
1793
1794 snapc = img_request->snapc;
1795 rbd_dev = img_request->rbd_dev;
1796 osdc = &rbd_dev->rbd_client->client->osdc;
1797 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1798 if (!osd_req)
1799 return NULL; /* ENOMEM */
1800
1801 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1802 osd_req->r_callback = rbd_osd_req_callback;
1803 osd_req->r_priv = obj_request;
1804
1805 osd_req->r_oid_len = strlen(obj_request->object_name);
1806 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1807 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1808
1809 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1810
1811 return osd_req;
1812 }
1813
1814
1815 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1816 {
1817 ceph_osdc_put_request(osd_req);
1818 }
1819
1820 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1821
1822 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1823 u64 offset, u64 length,
1824 enum obj_request_type type)
1825 {
1826 struct rbd_obj_request *obj_request;
1827 size_t size;
1828 char *name;
1829
1830 rbd_assert(obj_request_type_valid(type));
1831
1832 size = strlen(object_name) + 1;
1833 name = kmalloc(size, GFP_KERNEL);
1834 if (!name)
1835 return NULL;
1836
1837 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1838 if (!obj_request) {
1839 kfree(name);
1840 return NULL;
1841 }
1842
1843 obj_request->object_name = memcpy(name, object_name, size);
1844 obj_request->offset = offset;
1845 obj_request->length = length;
1846 obj_request->flags = 0;
1847 obj_request->which = BAD_WHICH;
1848 obj_request->type = type;
1849 INIT_LIST_HEAD(&obj_request->links);
1850 init_completion(&obj_request->completion);
1851 kref_init(&obj_request->kref);
1852
1853 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1854 offset, length, (int)type, obj_request);
1855
1856 return obj_request;
1857 }
1858
1859 static void rbd_obj_request_destroy(struct kref *kref)
1860 {
1861 struct rbd_obj_request *obj_request;
1862
1863 obj_request = container_of(kref, struct rbd_obj_request, kref);
1864
1865 dout("%s: obj %p\n", __func__, obj_request);
1866
1867 rbd_assert(obj_request->img_request == NULL);
1868 rbd_assert(obj_request->which == BAD_WHICH);
1869
1870 if (obj_request->osd_req)
1871 rbd_osd_req_destroy(obj_request->osd_req);
1872
1873 rbd_assert(obj_request_type_valid(obj_request->type));
1874 switch (obj_request->type) {
1875 case OBJ_REQUEST_NODATA:
1876 break; /* Nothing to do */
1877 case OBJ_REQUEST_BIO:
1878 if (obj_request->bio_list)
1879 bio_chain_put(obj_request->bio_list);
1880 break;
1881 case OBJ_REQUEST_PAGES:
1882 if (obj_request->pages)
1883 ceph_release_page_vector(obj_request->pages,
1884 obj_request->page_count);
1885 break;
1886 }
1887
1888 kfree(obj_request->object_name);
1889 obj_request->object_name = NULL;
1890 kmem_cache_free(rbd_obj_request_cache, obj_request);
1891 }
1892
1893 /* It's OK to call this for a device with no parent */
1894
1895 static void rbd_spec_put(struct rbd_spec *spec);
1896 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1897 {
1898 rbd_dev_remove_parent(rbd_dev);
1899 rbd_spec_put(rbd_dev->parent_spec);
1900 rbd_dev->parent_spec = NULL;
1901 rbd_dev->parent_overlap = 0;
1902 }
1903
1904 /*
1905 * Parent image reference counting is used to determine when an
1906 * image's parent fields can be safely torn down--after there are no
1907 * more in-flight requests to the parent image. When the last
1908 * reference is dropped, cleaning them up is safe.
1909 */
1910 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1911 {
1912 int counter;
1913
1914 if (!rbd_dev->parent_spec)
1915 return;
1916
1917 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1918 if (counter > 0)
1919 return;
1920
1921 /* Last reference; clean up parent data structures */
1922
1923 if (!counter)
1924 rbd_dev_unparent(rbd_dev);
1925 else
1926 rbd_warn(rbd_dev, "parent reference underflow\n");
1927 }
1928
1929 /*
1930 * If an image has a non-zero parent overlap, get a reference to its
1931 * parent.
1932 *
1933 * We must get the reference before checking for the overlap to
1934 * coordinate properly with zeroing the parent overlap in
1935 * rbd_dev_v2_parent_info() when an image gets flattened. We
1936 * drop it again if there is no overlap.
1937 *
1938 * Returns true if the rbd device has a parent with a non-zero
1939 * overlap and a reference for it was successfully taken, or
1940 * false otherwise.
1941 */
1942 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1943 {
1944 int counter;
1945
1946 if (!rbd_dev->parent_spec)
1947 return false;
1948
1949 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1950 if (counter > 0 && rbd_dev->parent_overlap)
1951 return true;
1952
1953 /* Image was flattened, but parent is not yet torn down */
1954
1955 if (counter < 0)
1956 rbd_warn(rbd_dev, "parent reference overflow\n");
1957
1958 return false;
1959 }
1960
1961 /*
1962 * Caller is responsible for filling in the list of object requests
1963 * that comprises the image request, and the Linux request pointer
1964 * (if there is one).
1965 */
1966 static struct rbd_img_request *rbd_img_request_create(
1967 struct rbd_device *rbd_dev,
1968 u64 offset, u64 length,
1969 bool write_request)
1970 {
1971 struct rbd_img_request *img_request;
1972
1973 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1974 if (!img_request)
1975 return NULL;
1976
1977 if (write_request) {
1978 down_read(&rbd_dev->header_rwsem);
1979 ceph_get_snap_context(rbd_dev->header.snapc);
1980 up_read(&rbd_dev->header_rwsem);
1981 }
1982
1983 img_request->rq = NULL;
1984 img_request->rbd_dev = rbd_dev;
1985 img_request->offset = offset;
1986 img_request->length = length;
1987 img_request->flags = 0;
1988 if (write_request) {
1989 img_request_write_set(img_request);
1990 img_request->snapc = rbd_dev->header.snapc;
1991 } else {
1992 img_request->snap_id = rbd_dev->spec->snap_id;
1993 }
1994 if (rbd_dev_parent_get(rbd_dev))
1995 img_request_layered_set(img_request);
1996 spin_lock_init(&img_request->completion_lock);
1997 img_request->next_completion = 0;
1998 img_request->callback = NULL;
1999 img_request->result = 0;
2000 img_request->obj_request_count = 0;
2001 INIT_LIST_HEAD(&img_request->obj_requests);
2002 kref_init(&img_request->kref);
2003
2004 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2005 write_request ? "write" : "read", offset, length,
2006 img_request);
2007
2008 return img_request;
2009 }
2010
2011 static void rbd_img_request_destroy(struct kref *kref)
2012 {
2013 struct rbd_img_request *img_request;
2014 struct rbd_obj_request *obj_request;
2015 struct rbd_obj_request *next_obj_request;
2016
2017 img_request = container_of(kref, struct rbd_img_request, kref);
2018
2019 dout("%s: img %p\n", __func__, img_request);
2020
2021 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2022 rbd_img_obj_request_del(img_request, obj_request);
2023 rbd_assert(img_request->obj_request_count == 0);
2024
2025 if (img_request_layered_test(img_request)) {
2026 img_request_layered_clear(img_request);
2027 rbd_dev_parent_put(img_request->rbd_dev);
2028 }
2029
2030 if (img_request_write_test(img_request))
2031 ceph_put_snap_context(img_request->snapc);
2032
2033 kmem_cache_free(rbd_img_request_cache, img_request);
2034 }
2035
2036 static struct rbd_img_request *rbd_parent_request_create(
2037 struct rbd_obj_request *obj_request,
2038 u64 img_offset, u64 length)
2039 {
2040 struct rbd_img_request *parent_request;
2041 struct rbd_device *rbd_dev;
2042
2043 rbd_assert(obj_request->img_request);
2044 rbd_dev = obj_request->img_request->rbd_dev;
2045
2046 parent_request = rbd_img_request_create(rbd_dev->parent,
2047 img_offset, length, false);
2048 if (!parent_request)
2049 return NULL;
2050
2051 img_request_child_set(parent_request);
2052 rbd_obj_request_get(obj_request);
2053 parent_request->obj_request = obj_request;
2054
2055 return parent_request;
2056 }
2057
2058 static void rbd_parent_request_destroy(struct kref *kref)
2059 {
2060 struct rbd_img_request *parent_request;
2061 struct rbd_obj_request *orig_request;
2062
2063 parent_request = container_of(kref, struct rbd_img_request, kref);
2064 orig_request = parent_request->obj_request;
2065
2066 parent_request->obj_request = NULL;
2067 rbd_obj_request_put(orig_request);
2068 img_request_child_clear(parent_request);
2069
2070 rbd_img_request_destroy(kref);
2071 }
2072
2073 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2074 {
2075 struct rbd_img_request *img_request;
2076 unsigned int xferred;
2077 int result;
2078 bool more;
2079
2080 rbd_assert(obj_request_img_data_test(obj_request));
2081 img_request = obj_request->img_request;
2082
2083 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2084 xferred = (unsigned int)obj_request->xferred;
2085 result = obj_request->result;
2086 if (result) {
2087 struct rbd_device *rbd_dev = img_request->rbd_dev;
2088
2089 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2090 img_request_write_test(img_request) ? "write" : "read",
2091 obj_request->length, obj_request->img_offset,
2092 obj_request->offset);
2093 rbd_warn(rbd_dev, " result %d xferred %x\n",
2094 result, xferred);
2095 if (!img_request->result)
2096 img_request->result = result;
2097 }
2098
2099 /* Image object requests don't own their page array */
2100
2101 if (obj_request->type == OBJ_REQUEST_PAGES) {
2102 obj_request->pages = NULL;
2103 obj_request->page_count = 0;
2104 }
2105
2106 if (img_request_child_test(img_request)) {
2107 rbd_assert(img_request->obj_request != NULL);
2108 more = obj_request->which < img_request->obj_request_count - 1;
2109 } else {
2110 rbd_assert(img_request->rq != NULL);
2111 more = blk_end_request(img_request->rq, result, xferred);
2112 }
2113
2114 return more;
2115 }
2116
2117 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2118 {
2119 struct rbd_img_request *img_request;
2120 u32 which = obj_request->which;
2121 bool more = true;
2122
2123 rbd_assert(obj_request_img_data_test(obj_request));
2124 img_request = obj_request->img_request;
2125
2126 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2127 rbd_assert(img_request != NULL);
2128 rbd_assert(img_request->obj_request_count > 0);
2129 rbd_assert(which != BAD_WHICH);
2130 rbd_assert(which < img_request->obj_request_count);
2131 rbd_assert(which >= img_request->next_completion);
2132
2133 spin_lock_irq(&img_request->completion_lock);
2134 if (which != img_request->next_completion)
2135 goto out;
2136
2137 for_each_obj_request_from(img_request, obj_request) {
2138 rbd_assert(more);
2139 rbd_assert(which < img_request->obj_request_count);
2140
2141 if (!obj_request_done_test(obj_request))
2142 break;
2143 more = rbd_img_obj_end_request(obj_request);
2144 which++;
2145 }
2146
2147 rbd_assert(more ^ (which == img_request->obj_request_count));
2148 img_request->next_completion = which;
2149 out:
2150 spin_unlock_irq(&img_request->completion_lock);
2151
2152 if (!more)
2153 rbd_img_request_complete(img_request);
2154 }
2155
2156 /*
2157 * Split up an image request into one or more object requests, each
2158 * to a different object. The "type" parameter indicates whether
2159 * "data_desc" is the pointer to the head of a list of bio
2160 * structures, or the base of a page array. In either case this
2161 * function assumes data_desc describes memory sufficient to hold
2162 * all data described by the image request.
2163 */
2164 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2165 enum obj_request_type type,
2166 void *data_desc)
2167 {
2168 struct rbd_device *rbd_dev = img_request->rbd_dev;
2169 struct rbd_obj_request *obj_request = NULL;
2170 struct rbd_obj_request *next_obj_request;
2171 bool write_request = img_request_write_test(img_request);
2172 struct bio *bio_list = NULL;
2173 unsigned int bio_offset = 0;
2174 struct page **pages = NULL;
2175 u64 img_offset;
2176 u64 resid;
2177 u16 opcode;
2178
2179 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2180 (int)type, data_desc);
2181
2182 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2183 img_offset = img_request->offset;
2184 resid = img_request->length;
2185 rbd_assert(resid > 0);
2186
2187 if (type == OBJ_REQUEST_BIO) {
2188 bio_list = data_desc;
2189 rbd_assert(img_offset ==
2190 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2191 } else {
2192 rbd_assert(type == OBJ_REQUEST_PAGES);
2193 pages = data_desc;
2194 }
2195
2196 while (resid) {
2197 struct ceph_osd_request *osd_req;
2198 const char *object_name;
2199 u64 offset;
2200 u64 length;
2201
2202 object_name = rbd_segment_name(rbd_dev, img_offset);
2203 if (!object_name)
2204 goto out_unwind;
2205 offset = rbd_segment_offset(rbd_dev, img_offset);
2206 length = rbd_segment_length(rbd_dev, img_offset, resid);
2207 obj_request = rbd_obj_request_create(object_name,
2208 offset, length, type);
2209 /* object request has its own copy of the object name */
2210 rbd_segment_name_free(object_name);
2211 if (!obj_request)
2212 goto out_unwind;
2213 /*
2214 * set obj_request->img_request before creating the
2215 * osd_request so that it gets the right snapc
2216 */
2217 rbd_img_obj_request_add(img_request, obj_request);
2218
2219 if (type == OBJ_REQUEST_BIO) {
2220 unsigned int clone_size;
2221
2222 rbd_assert(length <= (u64)UINT_MAX);
2223 clone_size = (unsigned int)length;
2224 obj_request->bio_list =
2225 bio_chain_clone_range(&bio_list,
2226 &bio_offset,
2227 clone_size,
2228 GFP_ATOMIC);
2229 if (!obj_request->bio_list)
2230 goto out_partial;
2231 } else {
2232 unsigned int page_count;
2233
2234 obj_request->pages = pages;
2235 page_count = (u32)calc_pages_for(offset, length);
2236 obj_request->page_count = page_count;
2237 if ((offset + length) & ~PAGE_MASK)
2238 page_count--; /* more on last page */
2239 pages += page_count;
2240 }
2241
2242 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2243 obj_request);
2244 if (!osd_req)
2245 goto out_partial;
2246 obj_request->osd_req = osd_req;
2247 obj_request->callback = rbd_img_obj_callback;
2248
2249 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2250 0, 0);
2251 if (type == OBJ_REQUEST_BIO)
2252 osd_req_op_extent_osd_data_bio(osd_req, 0,
2253 obj_request->bio_list, length);
2254 else
2255 osd_req_op_extent_osd_data_pages(osd_req, 0,
2256 obj_request->pages, length,
2257 offset & ~PAGE_MASK, false, false);
2258
2259 if (write_request)
2260 rbd_osd_req_format_write(obj_request);
2261 else
2262 rbd_osd_req_format_read(obj_request);
2263
2264 obj_request->img_offset = img_offset;
2265
2266 img_offset += length;
2267 resid -= length;
2268 }
2269
2270 return 0;
2271
2272 out_partial:
2273 rbd_obj_request_put(obj_request);
2274 out_unwind:
2275 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2276 rbd_obj_request_put(obj_request);
2277
2278 return -ENOMEM;
2279 }
2280
2281 static void
2282 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2283 {
2284 struct rbd_img_request *img_request;
2285 struct rbd_device *rbd_dev;
2286 struct page **pages;
2287 u32 page_count;
2288
2289 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2290 rbd_assert(obj_request_img_data_test(obj_request));
2291 img_request = obj_request->img_request;
2292 rbd_assert(img_request);
2293
2294 rbd_dev = img_request->rbd_dev;
2295 rbd_assert(rbd_dev);
2296
2297 pages = obj_request->copyup_pages;
2298 rbd_assert(pages != NULL);
2299 obj_request->copyup_pages = NULL;
2300 page_count = obj_request->copyup_page_count;
2301 rbd_assert(page_count);
2302 obj_request->copyup_page_count = 0;
2303 ceph_release_page_vector(pages, page_count);
2304
2305 /*
2306 * We want the transfer count to reflect the size of the
2307 * original write request. There is no such thing as a
2308 * successful short write, so if the request was successful
2309 * we can just set it to the originally-requested length.
2310 */
2311 if (!obj_request->result)
2312 obj_request->xferred = obj_request->length;
2313
2314 /* Finish up with the normal image object callback */
2315
2316 rbd_img_obj_callback(obj_request);
2317 }
2318
2319 static void
2320 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2321 {
2322 struct rbd_obj_request *orig_request;
2323 struct ceph_osd_request *osd_req;
2324 struct ceph_osd_client *osdc;
2325 struct rbd_device *rbd_dev;
2326 struct page **pages;
2327 u32 page_count;
2328 int img_result;
2329 u64 parent_length;
2330 u64 offset;
2331 u64 length;
2332
2333 rbd_assert(img_request_child_test(img_request));
2334
2335 /* First get what we need from the image request */
2336
2337 pages = img_request->copyup_pages;
2338 rbd_assert(pages != NULL);
2339 img_request->copyup_pages = NULL;
2340 page_count = img_request->copyup_page_count;
2341 rbd_assert(page_count);
2342 img_request->copyup_page_count = 0;
2343
2344 orig_request = img_request->obj_request;
2345 rbd_assert(orig_request != NULL);
2346 rbd_assert(obj_request_type_valid(orig_request->type));
2347 img_result = img_request->result;
2348 parent_length = img_request->length;
2349 rbd_assert(parent_length == img_request->xferred);
2350 rbd_img_request_put(img_request);
2351
2352 rbd_assert(orig_request->img_request);
2353 rbd_dev = orig_request->img_request->rbd_dev;
2354 rbd_assert(rbd_dev);
2355
2356 /*
2357 * If the overlap has become 0 (most likely because the
2358 * image has been flattened) we need to free the pages
2359 * and re-submit the original write request.
2360 */
2361 if (!rbd_dev->parent_overlap) {
2362 struct ceph_osd_client *osdc;
2363
2364 ceph_release_page_vector(pages, page_count);
2365 osdc = &rbd_dev->rbd_client->client->osdc;
2366 img_result = rbd_obj_request_submit(osdc, orig_request);
2367 if (!img_result)
2368 return;
2369 }
2370
2371 if (img_result)
2372 goto out_err;
2373
2374 /*
2375 * The original osd request is of no use to use any more.
2376 * We need a new one that can hold the two ops in a copyup
2377 * request. Allocate the new copyup osd request for the
2378 * original request, and release the old one.
2379 */
2380 img_result = -ENOMEM;
2381 osd_req = rbd_osd_req_create_copyup(orig_request);
2382 if (!osd_req)
2383 goto out_err;
2384 rbd_osd_req_destroy(orig_request->osd_req);
2385 orig_request->osd_req = osd_req;
2386 orig_request->copyup_pages = pages;
2387 orig_request->copyup_page_count = page_count;
2388
2389 /* Initialize the copyup op */
2390
2391 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2392 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2393 false, false);
2394
2395 /* Then the original write request op */
2396
2397 offset = orig_request->offset;
2398 length = orig_request->length;
2399 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2400 offset, length, 0, 0);
2401 if (orig_request->type == OBJ_REQUEST_BIO)
2402 osd_req_op_extent_osd_data_bio(osd_req, 1,
2403 orig_request->bio_list, length);
2404 else
2405 osd_req_op_extent_osd_data_pages(osd_req, 1,
2406 orig_request->pages, length,
2407 offset & ~PAGE_MASK, false, false);
2408
2409 rbd_osd_req_format_write(orig_request);
2410
2411 /* All set, send it off. */
2412
2413 orig_request->callback = rbd_img_obj_copyup_callback;
2414 osdc = &rbd_dev->rbd_client->client->osdc;
2415 img_result = rbd_obj_request_submit(osdc, orig_request);
2416 if (!img_result)
2417 return;
2418 out_err:
2419 /* Record the error code and complete the request */
2420
2421 orig_request->result = img_result;
2422 orig_request->xferred = 0;
2423 obj_request_done_set(orig_request);
2424 rbd_obj_request_complete(orig_request);
2425 }
2426
2427 /*
2428 * Read from the parent image the range of data that covers the
2429 * entire target of the given object request. This is used for
2430 * satisfying a layered image write request when the target of an
2431 * object request from the image request does not exist.
2432 *
2433 * A page array big enough to hold the returned data is allocated
2434 * and supplied to rbd_img_request_fill() as the "data descriptor."
2435 * When the read completes, this page array will be transferred to
2436 * the original object request for the copyup operation.
2437 *
2438 * If an error occurs, record it as the result of the original
2439 * object request and mark it done so it gets completed.
2440 */
2441 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2442 {
2443 struct rbd_img_request *img_request = NULL;
2444 struct rbd_img_request *parent_request = NULL;
2445 struct rbd_device *rbd_dev;
2446 u64 img_offset;
2447 u64 length;
2448 struct page **pages = NULL;
2449 u32 page_count;
2450 int result;
2451
2452 rbd_assert(obj_request_img_data_test(obj_request));
2453 rbd_assert(obj_request_type_valid(obj_request->type));
2454
2455 img_request = obj_request->img_request;
2456 rbd_assert(img_request != NULL);
2457 rbd_dev = img_request->rbd_dev;
2458 rbd_assert(rbd_dev->parent != NULL);
2459
2460 /*
2461 * Determine the byte range covered by the object in the
2462 * child image to which the original request was to be sent.
2463 */
2464 img_offset = obj_request->img_offset - obj_request->offset;
2465 length = (u64)1 << rbd_dev->header.obj_order;
2466
2467 /*
2468 * There is no defined parent data beyond the parent
2469 * overlap, so limit what we read at that boundary if
2470 * necessary.
2471 */
2472 if (img_offset + length > rbd_dev->parent_overlap) {
2473 rbd_assert(img_offset < rbd_dev->parent_overlap);
2474 length = rbd_dev->parent_overlap - img_offset;
2475 }
2476
2477 /*
2478 * Allocate a page array big enough to receive the data read
2479 * from the parent.
2480 */
2481 page_count = (u32)calc_pages_for(0, length);
2482 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2483 if (IS_ERR(pages)) {
2484 result = PTR_ERR(pages);
2485 pages = NULL;
2486 goto out_err;
2487 }
2488
2489 result = -ENOMEM;
2490 parent_request = rbd_parent_request_create(obj_request,
2491 img_offset, length);
2492 if (!parent_request)
2493 goto out_err;
2494
2495 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2496 if (result)
2497 goto out_err;
2498 parent_request->copyup_pages = pages;
2499 parent_request->copyup_page_count = page_count;
2500
2501 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2502 result = rbd_img_request_submit(parent_request);
2503 if (!result)
2504 return 0;
2505
2506 parent_request->copyup_pages = NULL;
2507 parent_request->copyup_page_count = 0;
2508 parent_request->obj_request = NULL;
2509 rbd_obj_request_put(obj_request);
2510 out_err:
2511 if (pages)
2512 ceph_release_page_vector(pages, page_count);
2513 if (parent_request)
2514 rbd_img_request_put(parent_request);
2515 obj_request->result = result;
2516 obj_request->xferred = 0;
2517 obj_request_done_set(obj_request);
2518
2519 return result;
2520 }
2521
2522 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2523 {
2524 struct rbd_obj_request *orig_request;
2525 struct rbd_device *rbd_dev;
2526 int result;
2527
2528 rbd_assert(!obj_request_img_data_test(obj_request));
2529
2530 /*
2531 * All we need from the object request is the original
2532 * request and the result of the STAT op. Grab those, then
2533 * we're done with the request.
2534 */
2535 orig_request = obj_request->obj_request;
2536 obj_request->obj_request = NULL;
2537 rbd_obj_request_put(orig_request);
2538 rbd_assert(orig_request);
2539 rbd_assert(orig_request->img_request);
2540
2541 result = obj_request->result;
2542 obj_request->result = 0;
2543
2544 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2545 obj_request, orig_request, result,
2546 obj_request->xferred, obj_request->length);
2547 rbd_obj_request_put(obj_request);
2548
2549 /*
2550 * If the overlap has become 0 (most likely because the
2551 * image has been flattened) we need to free the pages
2552 * and re-submit the original write request.
2553 */
2554 rbd_dev = orig_request->img_request->rbd_dev;
2555 if (!rbd_dev->parent_overlap) {
2556 struct ceph_osd_client *osdc;
2557
2558 osdc = &rbd_dev->rbd_client->client->osdc;
2559 result = rbd_obj_request_submit(osdc, orig_request);
2560 if (!result)
2561 return;
2562 }
2563
2564 /*
2565 * Our only purpose here is to determine whether the object
2566 * exists, and we don't want to treat the non-existence as
2567 * an error. If something else comes back, transfer the
2568 * error to the original request and complete it now.
2569 */
2570 if (!result) {
2571 obj_request_existence_set(orig_request, true);
2572 } else if (result == -ENOENT) {
2573 obj_request_existence_set(orig_request, false);
2574 } else if (result) {
2575 orig_request->result = result;
2576 goto out;
2577 }
2578
2579 /*
2580 * Resubmit the original request now that we have recorded
2581 * whether the target object exists.
2582 */
2583 orig_request->result = rbd_img_obj_request_submit(orig_request);
2584 out:
2585 if (orig_request->result)
2586 rbd_obj_request_complete(orig_request);
2587 }
2588
2589 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2590 {
2591 struct rbd_obj_request *stat_request;
2592 struct rbd_device *rbd_dev;
2593 struct ceph_osd_client *osdc;
2594 struct page **pages = NULL;
2595 u32 page_count;
2596 size_t size;
2597 int ret;
2598
2599 /*
2600 * The response data for a STAT call consists of:
2601 * le64 length;
2602 * struct {
2603 * le32 tv_sec;
2604 * le32 tv_nsec;
2605 * } mtime;
2606 */
2607 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2608 page_count = (u32)calc_pages_for(0, size);
2609 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2610 if (IS_ERR(pages))
2611 return PTR_ERR(pages);
2612
2613 ret = -ENOMEM;
2614 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2615 OBJ_REQUEST_PAGES);
2616 if (!stat_request)
2617 goto out;
2618
2619 rbd_obj_request_get(obj_request);
2620 stat_request->obj_request = obj_request;
2621 stat_request->pages = pages;
2622 stat_request->page_count = page_count;
2623
2624 rbd_assert(obj_request->img_request);
2625 rbd_dev = obj_request->img_request->rbd_dev;
2626 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2627 stat_request);
2628 if (!stat_request->osd_req)
2629 goto out;
2630 stat_request->callback = rbd_img_obj_exists_callback;
2631
2632 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2633 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2634 false, false);
2635 rbd_osd_req_format_read(stat_request);
2636
2637 osdc = &rbd_dev->rbd_client->client->osdc;
2638 ret = rbd_obj_request_submit(osdc, stat_request);
2639 out:
2640 if (ret)
2641 rbd_obj_request_put(obj_request);
2642
2643 return ret;
2644 }
2645
2646 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2647 {
2648 struct rbd_img_request *img_request;
2649 struct rbd_device *rbd_dev;
2650 bool known;
2651
2652 rbd_assert(obj_request_img_data_test(obj_request));
2653
2654 img_request = obj_request->img_request;
2655 rbd_assert(img_request);
2656 rbd_dev = img_request->rbd_dev;
2657
2658 /*
2659 * Only writes to layered images need special handling.
2660 * Reads and non-layered writes are simple object requests.
2661 * Layered writes that start beyond the end of the overlap
2662 * with the parent have no parent data, so they too are
2663 * simple object requests. Finally, if the target object is
2664 * known to already exist, its parent data has already been
2665 * copied, so a write to the object can also be handled as a
2666 * simple object request.
2667 */
2668 if (!img_request_write_test(img_request) ||
2669 !img_request_layered_test(img_request) ||
2670 rbd_dev->parent_overlap <= obj_request->img_offset ||
2671 ((known = obj_request_known_test(obj_request)) &&
2672 obj_request_exists_test(obj_request))) {
2673
2674 struct rbd_device *rbd_dev;
2675 struct ceph_osd_client *osdc;
2676
2677 rbd_dev = obj_request->img_request->rbd_dev;
2678 osdc = &rbd_dev->rbd_client->client->osdc;
2679
2680 return rbd_obj_request_submit(osdc, obj_request);
2681 }
2682
2683 /*
2684 * It's a layered write. The target object might exist but
2685 * we may not know that yet. If we know it doesn't exist,
2686 * start by reading the data for the full target object from
2687 * the parent so we can use it for a copyup to the target.
2688 */
2689 if (known)
2690 return rbd_img_obj_parent_read_full(obj_request);
2691
2692 /* We don't know whether the target exists. Go find out. */
2693
2694 return rbd_img_obj_exists_submit(obj_request);
2695 }
2696
2697 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2698 {
2699 struct rbd_obj_request *obj_request;
2700 struct rbd_obj_request *next_obj_request;
2701
2702 dout("%s: img %p\n", __func__, img_request);
2703 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2704 int ret;
2705
2706 ret = rbd_img_obj_request_submit(obj_request);
2707 if (ret)
2708 return ret;
2709 }
2710
2711 return 0;
2712 }
2713
2714 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2715 {
2716 struct rbd_obj_request *obj_request;
2717 struct rbd_device *rbd_dev;
2718 u64 obj_end;
2719 u64 img_xferred;
2720 int img_result;
2721
2722 rbd_assert(img_request_child_test(img_request));
2723
2724 /* First get what we need from the image request and release it */
2725
2726 obj_request = img_request->obj_request;
2727 img_xferred = img_request->xferred;
2728 img_result = img_request->result;
2729 rbd_img_request_put(img_request);
2730
2731 /*
2732 * If the overlap has become 0 (most likely because the
2733 * image has been flattened) we need to re-submit the
2734 * original request.
2735 */
2736 rbd_assert(obj_request);
2737 rbd_assert(obj_request->img_request);
2738 rbd_dev = obj_request->img_request->rbd_dev;
2739 if (!rbd_dev->parent_overlap) {
2740 struct ceph_osd_client *osdc;
2741
2742 osdc = &rbd_dev->rbd_client->client->osdc;
2743 img_result = rbd_obj_request_submit(osdc, obj_request);
2744 if (!img_result)
2745 return;
2746 }
2747
2748 obj_request->result = img_result;
2749 if (obj_request->result)
2750 goto out;
2751
2752 /*
2753 * We need to zero anything beyond the parent overlap
2754 * boundary. Since rbd_img_obj_request_read_callback()
2755 * will zero anything beyond the end of a short read, an
2756 * easy way to do this is to pretend the data from the
2757 * parent came up short--ending at the overlap boundary.
2758 */
2759 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2760 obj_end = obj_request->img_offset + obj_request->length;
2761 if (obj_end > rbd_dev->parent_overlap) {
2762 u64 xferred = 0;
2763
2764 if (obj_request->img_offset < rbd_dev->parent_overlap)
2765 xferred = rbd_dev->parent_overlap -
2766 obj_request->img_offset;
2767
2768 obj_request->xferred = min(img_xferred, xferred);
2769 } else {
2770 obj_request->xferred = img_xferred;
2771 }
2772 out:
2773 rbd_img_obj_request_read_callback(obj_request);
2774 rbd_obj_request_complete(obj_request);
2775 }
2776
2777 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2778 {
2779 struct rbd_img_request *img_request;
2780 int result;
2781
2782 rbd_assert(obj_request_img_data_test(obj_request));
2783 rbd_assert(obj_request->img_request != NULL);
2784 rbd_assert(obj_request->result == (s32) -ENOENT);
2785 rbd_assert(obj_request_type_valid(obj_request->type));
2786
2787 /* rbd_read_finish(obj_request, obj_request->length); */
2788 img_request = rbd_parent_request_create(obj_request,
2789 obj_request->img_offset,
2790 obj_request->length);
2791 result = -ENOMEM;
2792 if (!img_request)
2793 goto out_err;
2794
2795 if (obj_request->type == OBJ_REQUEST_BIO)
2796 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2797 obj_request->bio_list);
2798 else
2799 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2800 obj_request->pages);
2801 if (result)
2802 goto out_err;
2803
2804 img_request->callback = rbd_img_parent_read_callback;
2805 result = rbd_img_request_submit(img_request);
2806 if (result)
2807 goto out_err;
2808
2809 return;
2810 out_err:
2811 if (img_request)
2812 rbd_img_request_put(img_request);
2813 obj_request->result = result;
2814 obj_request->xferred = 0;
2815 obj_request_done_set(obj_request);
2816 }
2817
2818 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2819 {
2820 struct rbd_obj_request *obj_request;
2821 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2822 int ret;
2823
2824 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2825 OBJ_REQUEST_NODATA);
2826 if (!obj_request)
2827 return -ENOMEM;
2828
2829 ret = -ENOMEM;
2830 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2831 if (!obj_request->osd_req)
2832 goto out;
2833
2834 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2835 notify_id, 0, 0);
2836 rbd_osd_req_format_read(obj_request);
2837
2838 ret = rbd_obj_request_submit(osdc, obj_request);
2839 if (ret)
2840 goto out;
2841 ret = rbd_obj_request_wait(obj_request);
2842 out:
2843 rbd_obj_request_put(obj_request);
2844
2845 return ret;
2846 }
2847
2848 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2849 {
2850 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2851 int ret;
2852
2853 if (!rbd_dev)
2854 return;
2855
2856 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2857 rbd_dev->header_name, (unsigned long long)notify_id,
2858 (unsigned int)opcode);
2859 ret = rbd_dev_refresh(rbd_dev);
2860 if (ret)
2861 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2862
2863 rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2864 }
2865
2866 /*
2867 * Request sync osd watch/unwatch. The value of "start" determines
2868 * whether a watch request is being initiated or torn down.
2869 */
2870 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2871 {
2872 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2873 struct rbd_obj_request *obj_request;
2874 int ret;
2875
2876 rbd_assert(start ^ !!rbd_dev->watch_event);
2877 rbd_assert(start ^ !!rbd_dev->watch_request);
2878
2879 if (start) {
2880 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2881 &rbd_dev->watch_event);
2882 if (ret < 0)
2883 return ret;
2884 rbd_assert(rbd_dev->watch_event != NULL);
2885 }
2886
2887 ret = -ENOMEM;
2888 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2889 OBJ_REQUEST_NODATA);
2890 if (!obj_request)
2891 goto out_cancel;
2892
2893 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2894 if (!obj_request->osd_req)
2895 goto out_cancel;
2896
2897 if (start)
2898 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2899 else
2900 ceph_osdc_unregister_linger_request(osdc,
2901 rbd_dev->watch_request->osd_req);
2902
2903 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2904 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2905 rbd_osd_req_format_write(obj_request);
2906
2907 ret = rbd_obj_request_submit(osdc, obj_request);
2908 if (ret)
2909 goto out_cancel;
2910 ret = rbd_obj_request_wait(obj_request);
2911 if (ret)
2912 goto out_cancel;
2913 ret = obj_request->result;
2914 if (ret)
2915 goto out_cancel;
2916
2917 /*
2918 * A watch request is set to linger, so the underlying osd
2919 * request won't go away until we unregister it. We retain
2920 * a pointer to the object request during that time (in
2921 * rbd_dev->watch_request), so we'll keep a reference to
2922 * it. We'll drop that reference (below) after we've
2923 * unregistered it.
2924 */
2925 if (start) {
2926 rbd_dev->watch_request = obj_request;
2927
2928 return 0;
2929 }
2930
2931 /* We have successfully torn down the watch request */
2932
2933 rbd_obj_request_put(rbd_dev->watch_request);
2934 rbd_dev->watch_request = NULL;
2935 out_cancel:
2936 /* Cancel the event if we're tearing down, or on error */
2937 ceph_osdc_cancel_event(rbd_dev->watch_event);
2938 rbd_dev->watch_event = NULL;
2939 if (obj_request)
2940 rbd_obj_request_put(obj_request);
2941
2942 return ret;
2943 }
2944
2945 /*
2946 * Synchronous osd object method call. Returns the number of bytes
2947 * returned in the outbound buffer, or a negative error code.
2948 */
2949 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2950 const char *object_name,
2951 const char *class_name,
2952 const char *method_name,
2953 const void *outbound,
2954 size_t outbound_size,
2955 void *inbound,
2956 size_t inbound_size)
2957 {
2958 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2959 struct rbd_obj_request *obj_request;
2960 struct page **pages;
2961 u32 page_count;
2962 int ret;
2963
2964 /*
2965 * Method calls are ultimately read operations. The result
2966 * should placed into the inbound buffer provided. They
2967 * also supply outbound data--parameters for the object
2968 * method. Currently if this is present it will be a
2969 * snapshot id.
2970 */
2971 page_count = (u32)calc_pages_for(0, inbound_size);
2972 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2973 if (IS_ERR(pages))
2974 return PTR_ERR(pages);
2975
2976 ret = -ENOMEM;
2977 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2978 OBJ_REQUEST_PAGES);
2979 if (!obj_request)
2980 goto out;
2981
2982 obj_request->pages = pages;
2983 obj_request->page_count = page_count;
2984
2985 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2986 if (!obj_request->osd_req)
2987 goto out;
2988
2989 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2990 class_name, method_name);
2991 if (outbound_size) {
2992 struct ceph_pagelist *pagelist;
2993
2994 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2995 if (!pagelist)
2996 goto out;
2997
2998 ceph_pagelist_init(pagelist);
2999 ceph_pagelist_append(pagelist, outbound, outbound_size);
3000 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3001 pagelist);
3002 }
3003 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3004 obj_request->pages, inbound_size,
3005 0, false, false);
3006 rbd_osd_req_format_read(obj_request);
3007
3008 ret = rbd_obj_request_submit(osdc, obj_request);
3009 if (ret)
3010 goto out;
3011 ret = rbd_obj_request_wait(obj_request);
3012 if (ret)
3013 goto out;
3014
3015 ret = obj_request->result;
3016 if (ret < 0)
3017 goto out;
3018
3019 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3020 ret = (int)obj_request->xferred;
3021 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3022 out:
3023 if (obj_request)
3024 rbd_obj_request_put(obj_request);
3025 else
3026 ceph_release_page_vector(pages, page_count);
3027
3028 return ret;
3029 }
3030
3031 static void rbd_request_fn(struct request_queue *q)
3032 __releases(q->queue_lock) __acquires(q->queue_lock)
3033 {
3034 struct rbd_device *rbd_dev = q->queuedata;
3035 bool read_only = rbd_dev->mapping.read_only;
3036 struct request *rq;
3037 int result;
3038
3039 while ((rq = blk_fetch_request(q))) {
3040 bool write_request = rq_data_dir(rq) == WRITE;
3041 struct rbd_img_request *img_request;
3042 u64 offset;
3043 u64 length;
3044
3045 /* Ignore any non-FS requests that filter through. */
3046
3047 if (rq->cmd_type != REQ_TYPE_FS) {
3048 dout("%s: non-fs request type %d\n", __func__,
3049 (int) rq->cmd_type);
3050 __blk_end_request_all(rq, 0);
3051 continue;
3052 }
3053
3054 /* Ignore/skip any zero-length requests */
3055
3056 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3057 length = (u64) blk_rq_bytes(rq);
3058
3059 if (!length) {
3060 dout("%s: zero-length request\n", __func__);
3061 __blk_end_request_all(rq, 0);
3062 continue;
3063 }
3064
3065 spin_unlock_irq(q->queue_lock);
3066
3067 /* Disallow writes to a read-only device */
3068
3069 if (write_request) {
3070 result = -EROFS;
3071 if (read_only)
3072 goto end_request;
3073 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3074 }
3075
3076 /*
3077 * Quit early if the mapped snapshot no longer
3078 * exists. It's still possible the snapshot will
3079 * have disappeared by the time our request arrives
3080 * at the osd, but there's no sense in sending it if
3081 * we already know.
3082 */
3083 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3084 dout("request for non-existent snapshot");
3085 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3086 result = -ENXIO;
3087 goto end_request;
3088 }
3089
3090 result = -EINVAL;
3091 if (offset && length > U64_MAX - offset + 1) {
3092 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3093 offset, length);
3094 goto end_request; /* Shouldn't happen */
3095 }
3096
3097 result = -EIO;
3098 if (offset + length > rbd_dev->mapping.size) {
3099 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3100 offset, length, rbd_dev->mapping.size);
3101 goto end_request;
3102 }
3103
3104 result = -ENOMEM;
3105 img_request = rbd_img_request_create(rbd_dev, offset, length,
3106 write_request);
3107 if (!img_request)
3108 goto end_request;
3109
3110 img_request->rq = rq;
3111
3112 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3113 rq->bio);
3114 if (!result)
3115 result = rbd_img_request_submit(img_request);
3116 if (result)
3117 rbd_img_request_put(img_request);
3118 end_request:
3119 spin_lock_irq(q->queue_lock);
3120 if (result < 0) {
3121 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3122 write_request ? "write" : "read",
3123 length, offset, result);
3124
3125 __blk_end_request_all(rq, result);
3126 }
3127 }
3128 }
3129
3130 /*
3131 * a queue callback. Makes sure that we don't create a bio that spans across
3132 * multiple osd objects. One exception would be with a single page bios,
3133 * which we handle later at bio_chain_clone_range()
3134 */
3135 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3136 struct bio_vec *bvec)
3137 {
3138 struct rbd_device *rbd_dev = q->queuedata;
3139 sector_t sector_offset;
3140 sector_t sectors_per_obj;
3141 sector_t obj_sector_offset;
3142 int ret;
3143
3144 /*
3145 * Find how far into its rbd object the partition-relative
3146 * bio start sector is to offset relative to the enclosing
3147 * device.
3148 */
3149 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3150 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3151 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3152
3153 /*
3154 * Compute the number of bytes from that offset to the end
3155 * of the object. Account for what's already used by the bio.
3156 */
3157 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3158 if (ret > bmd->bi_size)
3159 ret -= bmd->bi_size;
3160 else
3161 ret = 0;
3162
3163 /*
3164 * Don't send back more than was asked for. And if the bio
3165 * was empty, let the whole thing through because: "Note
3166 * that a block device *must* allow a single page to be
3167 * added to an empty bio."
3168 */
3169 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3170 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3171 ret = (int) bvec->bv_len;
3172
3173 return ret;
3174 }
3175
3176 static void rbd_free_disk(struct rbd_device *rbd_dev)
3177 {
3178 struct gendisk *disk = rbd_dev->disk;
3179
3180 if (!disk)
3181 return;
3182
3183 rbd_dev->disk = NULL;
3184 if (disk->flags & GENHD_FL_UP) {
3185 del_gendisk(disk);
3186 if (disk->queue)
3187 blk_cleanup_queue(disk->queue);
3188 }
3189 put_disk(disk);
3190 }
3191
3192 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3193 const char *object_name,
3194 u64 offset, u64 length, void *buf)
3195
3196 {
3197 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3198 struct rbd_obj_request *obj_request;
3199 struct page **pages = NULL;
3200 u32 page_count;
3201 size_t size;
3202 int ret;
3203
3204 page_count = (u32) calc_pages_for(offset, length);
3205 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3206 if (IS_ERR(pages))
3207 ret = PTR_ERR(pages);
3208
3209 ret = -ENOMEM;
3210 obj_request = rbd_obj_request_create(object_name, offset, length,
3211 OBJ_REQUEST_PAGES);
3212 if (!obj_request)
3213 goto out;
3214
3215 obj_request->pages = pages;
3216 obj_request->page_count = page_count;
3217
3218 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3219 if (!obj_request->osd_req)
3220 goto out;
3221
3222 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3223 offset, length, 0, 0);
3224 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3225 obj_request->pages,
3226 obj_request->length,
3227 obj_request->offset & ~PAGE_MASK,
3228 false, false);
3229 rbd_osd_req_format_read(obj_request);
3230
3231 ret = rbd_obj_request_submit(osdc, obj_request);
3232 if (ret)
3233 goto out;
3234 ret = rbd_obj_request_wait(obj_request);
3235 if (ret)
3236 goto out;
3237
3238 ret = obj_request->result;
3239 if (ret < 0)
3240 goto out;
3241
3242 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3243 size = (size_t) obj_request->xferred;
3244 ceph_copy_from_page_vector(pages, buf, 0, size);
3245 rbd_assert(size <= (size_t)INT_MAX);
3246 ret = (int)size;
3247 out:
3248 if (obj_request)
3249 rbd_obj_request_put(obj_request);
3250 else
3251 ceph_release_page_vector(pages, page_count);
3252
3253 return ret;
3254 }
3255
3256 /*
3257 * Read the complete header for the given rbd device. On successful
3258 * return, the rbd_dev->header field will contain up-to-date
3259 * information about the image.
3260 */
3261 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3262 {
3263 struct rbd_image_header_ondisk *ondisk = NULL;
3264 u32 snap_count = 0;
3265 u64 names_size = 0;
3266 u32 want_count;
3267 int ret;
3268
3269 /*
3270 * The complete header will include an array of its 64-bit
3271 * snapshot ids, followed by the names of those snapshots as
3272 * a contiguous block of NUL-terminated strings. Note that
3273 * the number of snapshots could change by the time we read
3274 * it in, in which case we re-read it.
3275 */
3276 do {
3277 size_t size;
3278
3279 kfree(ondisk);
3280
3281 size = sizeof (*ondisk);
3282 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3283 size += names_size;
3284 ondisk = kmalloc(size, GFP_KERNEL);
3285 if (!ondisk)
3286 return -ENOMEM;
3287
3288 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3289 0, size, ondisk);
3290 if (ret < 0)
3291 goto out;
3292 if ((size_t)ret < size) {
3293 ret = -ENXIO;
3294 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3295 size, ret);
3296 goto out;
3297 }
3298 if (!rbd_dev_ondisk_valid(ondisk)) {
3299 ret = -ENXIO;
3300 rbd_warn(rbd_dev, "invalid header");
3301 goto out;
3302 }
3303
3304 names_size = le64_to_cpu(ondisk->snap_names_len);
3305 want_count = snap_count;
3306 snap_count = le32_to_cpu(ondisk->snap_count);
3307 } while (snap_count != want_count);
3308
3309 ret = rbd_header_from_disk(rbd_dev, ondisk);
3310 out:
3311 kfree(ondisk);
3312
3313 return ret;
3314 }
3315
3316 /*
3317 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3318 * has disappeared from the (just updated) snapshot context.
3319 */
3320 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3321 {
3322 u64 snap_id;
3323
3324 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3325 return;
3326
3327 snap_id = rbd_dev->spec->snap_id;
3328 if (snap_id == CEPH_NOSNAP)
3329 return;
3330
3331 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3332 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3333 }
3334
3335 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3336 {
3337 sector_t size;
3338 bool removing;
3339
3340 /*
3341 * Don't hold the lock while doing disk operations,
3342 * or lock ordering will conflict with the bdev mutex via:
3343 * rbd_add() -> blkdev_get() -> rbd_open()
3344 */
3345 spin_lock_irq(&rbd_dev->lock);
3346 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3347 spin_unlock_irq(&rbd_dev->lock);
3348 /*
3349 * If the device is being removed, rbd_dev->disk has
3350 * been destroyed, so don't try to update its size
3351 */
3352 if (!removing) {
3353 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3354 dout("setting size to %llu sectors", (unsigned long long)size);
3355 set_capacity(rbd_dev->disk, size);
3356 revalidate_disk(rbd_dev->disk);
3357 }
3358 }
3359
3360 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3361 {
3362 u64 mapping_size;
3363 int ret;
3364
3365 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3366 down_write(&rbd_dev->header_rwsem);
3367 mapping_size = rbd_dev->mapping.size;
3368 if (rbd_dev->image_format == 1)
3369 ret = rbd_dev_v1_header_info(rbd_dev);
3370 else
3371 ret = rbd_dev_v2_header_info(rbd_dev);
3372
3373 /* If it's a mapped snapshot, validate its EXISTS flag */
3374
3375 rbd_exists_validate(rbd_dev);
3376 up_write(&rbd_dev->header_rwsem);
3377
3378 if (mapping_size != rbd_dev->mapping.size) {
3379 rbd_dev_update_size(rbd_dev);
3380 }
3381
3382 return ret;
3383 }
3384
3385 static int rbd_init_disk(struct rbd_device *rbd_dev)
3386 {
3387 struct gendisk *disk;
3388 struct request_queue *q;
3389 u64 segment_size;
3390
3391 /* create gendisk info */
3392 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3393 if (!disk)
3394 return -ENOMEM;
3395
3396 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3397 rbd_dev->dev_id);
3398 disk->major = rbd_dev->major;
3399 disk->first_minor = 0;
3400 disk->fops = &rbd_bd_ops;
3401 disk->private_data = rbd_dev;
3402
3403 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3404 if (!q)
3405 goto out_disk;
3406
3407 /* We use the default size, but let's be explicit about it. */
3408 blk_queue_physical_block_size(q, SECTOR_SIZE);
3409
3410 /* set io sizes to object size */
3411 segment_size = rbd_obj_bytes(&rbd_dev->header);
3412 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3413 blk_queue_max_segment_size(q, segment_size);
3414 blk_queue_io_min(q, segment_size);
3415 blk_queue_io_opt(q, segment_size);
3416
3417 blk_queue_merge_bvec(q, rbd_merge_bvec);
3418 disk->queue = q;
3419
3420 q->queuedata = rbd_dev;
3421
3422 rbd_dev->disk = disk;
3423
3424 return 0;
3425 out_disk:
3426 put_disk(disk);
3427
3428 return -ENOMEM;
3429 }
3430
3431 /*
3432 sysfs
3433 */
3434
3435 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3436 {
3437 return container_of(dev, struct rbd_device, dev);
3438 }
3439
3440 static ssize_t rbd_size_show(struct device *dev,
3441 struct device_attribute *attr, char *buf)
3442 {
3443 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3444
3445 return sprintf(buf, "%llu\n",
3446 (unsigned long long)rbd_dev->mapping.size);
3447 }
3448
3449 /*
3450 * Note this shows the features for whatever's mapped, which is not
3451 * necessarily the base image.
3452 */
3453 static ssize_t rbd_features_show(struct device *dev,
3454 struct device_attribute *attr, char *buf)
3455 {
3456 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3457
3458 return sprintf(buf, "0x%016llx\n",
3459 (unsigned long long)rbd_dev->mapping.features);
3460 }
3461
3462 static ssize_t rbd_major_show(struct device *dev,
3463 struct device_attribute *attr, char *buf)
3464 {
3465 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3466
3467 if (rbd_dev->major)
3468 return sprintf(buf, "%d\n", rbd_dev->major);
3469
3470 return sprintf(buf, "(none)\n");
3471
3472 }
3473
3474 static ssize_t rbd_client_id_show(struct device *dev,
3475 struct device_attribute *attr, char *buf)
3476 {
3477 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3478
3479 return sprintf(buf, "client%lld\n",
3480 ceph_client_id(rbd_dev->rbd_client->client));
3481 }
3482
3483 static ssize_t rbd_pool_show(struct device *dev,
3484 struct device_attribute *attr, char *buf)
3485 {
3486 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3487
3488 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3489 }
3490
3491 static ssize_t rbd_pool_id_show(struct device *dev,
3492 struct device_attribute *attr, char *buf)
3493 {
3494 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3495
3496 return sprintf(buf, "%llu\n",
3497 (unsigned long long) rbd_dev->spec->pool_id);
3498 }
3499
3500 static ssize_t rbd_name_show(struct device *dev,
3501 struct device_attribute *attr, char *buf)
3502 {
3503 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3504
3505 if (rbd_dev->spec->image_name)
3506 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3507
3508 return sprintf(buf, "(unknown)\n");
3509 }
3510
3511 static ssize_t rbd_image_id_show(struct device *dev,
3512 struct device_attribute *attr, char *buf)
3513 {
3514 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3515
3516 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3517 }
3518
3519 /*
3520 * Shows the name of the currently-mapped snapshot (or
3521 * RBD_SNAP_HEAD_NAME for the base image).
3522 */
3523 static ssize_t rbd_snap_show(struct device *dev,
3524 struct device_attribute *attr,
3525 char *buf)
3526 {
3527 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3528
3529 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3530 }
3531
3532 /*
3533 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3534 * for the parent image. If there is no parent, simply shows
3535 * "(no parent image)".
3536 */
3537 static ssize_t rbd_parent_show(struct device *dev,
3538 struct device_attribute *attr,
3539 char *buf)
3540 {
3541 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3542 struct rbd_spec *spec = rbd_dev->parent_spec;
3543 int count;
3544 char *bufp = buf;
3545
3546 if (!spec)
3547 return sprintf(buf, "(no parent image)\n");
3548
3549 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3550 (unsigned long long) spec->pool_id, spec->pool_name);
3551 if (count < 0)
3552 return count;
3553 bufp += count;
3554
3555 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3556 spec->image_name ? spec->image_name : "(unknown)");
3557 if (count < 0)
3558 return count;
3559 bufp += count;
3560
3561 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3562 (unsigned long long) spec->snap_id, spec->snap_name);
3563 if (count < 0)
3564 return count;
3565 bufp += count;
3566
3567 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3568 if (count < 0)
3569 return count;
3570 bufp += count;
3571
3572 return (ssize_t) (bufp - buf);
3573 }
3574
3575 static ssize_t rbd_image_refresh(struct device *dev,
3576 struct device_attribute *attr,
3577 const char *buf,
3578 size_t size)
3579 {
3580 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3581 int ret;
3582
3583 ret = rbd_dev_refresh(rbd_dev);
3584 if (ret)
3585 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3586
3587 return ret < 0 ? ret : size;
3588 }
3589
3590 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3591 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3592 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3593 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3594 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3595 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3596 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3597 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3598 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3599 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3600 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3601
3602 static struct attribute *rbd_attrs[] = {
3603 &dev_attr_size.attr,
3604 &dev_attr_features.attr,
3605 &dev_attr_major.attr,
3606 &dev_attr_client_id.attr,
3607 &dev_attr_pool.attr,
3608 &dev_attr_pool_id.attr,
3609 &dev_attr_name.attr,
3610 &dev_attr_image_id.attr,
3611 &dev_attr_current_snap.attr,
3612 &dev_attr_parent.attr,
3613 &dev_attr_refresh.attr,
3614 NULL
3615 };
3616
3617 static struct attribute_group rbd_attr_group = {
3618 .attrs = rbd_attrs,
3619 };
3620
3621 static const struct attribute_group *rbd_attr_groups[] = {
3622 &rbd_attr_group,
3623 NULL
3624 };
3625
3626 static void rbd_sysfs_dev_release(struct device *dev)
3627 {
3628 }
3629
3630 static struct device_type rbd_device_type = {
3631 .name = "rbd",
3632 .groups = rbd_attr_groups,
3633 .release = rbd_sysfs_dev_release,
3634 };
3635
3636 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3637 {
3638 kref_get(&spec->kref);
3639
3640 return spec;
3641 }
3642
3643 static void rbd_spec_free(struct kref *kref);
3644 static void rbd_spec_put(struct rbd_spec *spec)
3645 {
3646 if (spec)
3647 kref_put(&spec->kref, rbd_spec_free);
3648 }
3649
3650 static struct rbd_spec *rbd_spec_alloc(void)
3651 {
3652 struct rbd_spec *spec;
3653
3654 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3655 if (!spec)
3656 return NULL;
3657 kref_init(&spec->kref);
3658
3659 return spec;
3660 }
3661
3662 static void rbd_spec_free(struct kref *kref)
3663 {
3664 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3665
3666 kfree(spec->pool_name);
3667 kfree(spec->image_id);
3668 kfree(spec->image_name);
3669 kfree(spec->snap_name);
3670 kfree(spec);
3671 }
3672
3673 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3674 struct rbd_spec *spec)
3675 {
3676 struct rbd_device *rbd_dev;
3677
3678 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3679 if (!rbd_dev)
3680 return NULL;
3681
3682 spin_lock_init(&rbd_dev->lock);
3683 rbd_dev->flags = 0;
3684 atomic_set(&rbd_dev->parent_ref, 0);
3685 INIT_LIST_HEAD(&rbd_dev->node);
3686 init_rwsem(&rbd_dev->header_rwsem);
3687
3688 rbd_dev->spec = spec;
3689 rbd_dev->rbd_client = rbdc;
3690
3691 /* Initialize the layout used for all rbd requests */
3692
3693 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3694 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3695 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3696 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3697
3698 return rbd_dev;
3699 }
3700
3701 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3702 {
3703 rbd_put_client(rbd_dev->rbd_client);
3704 rbd_spec_put(rbd_dev->spec);
3705 kfree(rbd_dev);
3706 }
3707
3708 /*
3709 * Get the size and object order for an image snapshot, or if
3710 * snap_id is CEPH_NOSNAP, gets this information for the base
3711 * image.
3712 */
3713 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3714 u8 *order, u64 *snap_size)
3715 {
3716 __le64 snapid = cpu_to_le64(snap_id);
3717 int ret;
3718 struct {
3719 u8 order;
3720 __le64 size;
3721 } __attribute__ ((packed)) size_buf = { 0 };
3722
3723 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3724 "rbd", "get_size",
3725 &snapid, sizeof (snapid),
3726 &size_buf, sizeof (size_buf));
3727 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3728 if (ret < 0)
3729 return ret;
3730 if (ret < sizeof (size_buf))
3731 return -ERANGE;
3732
3733 if (order) {
3734 *order = size_buf.order;
3735 dout(" order %u", (unsigned int)*order);
3736 }
3737 *snap_size = le64_to_cpu(size_buf.size);
3738
3739 dout(" snap_id 0x%016llx snap_size = %llu\n",
3740 (unsigned long long)snap_id,
3741 (unsigned long long)*snap_size);
3742
3743 return 0;
3744 }
3745
3746 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3747 {
3748 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3749 &rbd_dev->header.obj_order,
3750 &rbd_dev->header.image_size);
3751 }
3752
3753 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3754 {
3755 void *reply_buf;
3756 int ret;
3757 void *p;
3758
3759 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3760 if (!reply_buf)
3761 return -ENOMEM;
3762
3763 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3764 "rbd", "get_object_prefix", NULL, 0,
3765 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3766 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3767 if (ret < 0)
3768 goto out;
3769
3770 p = reply_buf;
3771 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3772 p + ret, NULL, GFP_NOIO);
3773 ret = 0;
3774
3775 if (IS_ERR(rbd_dev->header.object_prefix)) {
3776 ret = PTR_ERR(rbd_dev->header.object_prefix);
3777 rbd_dev->header.object_prefix = NULL;
3778 } else {
3779 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3780 }
3781 out:
3782 kfree(reply_buf);
3783
3784 return ret;
3785 }
3786
3787 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3788 u64 *snap_features)
3789 {
3790 __le64 snapid = cpu_to_le64(snap_id);
3791 struct {
3792 __le64 features;
3793 __le64 incompat;
3794 } __attribute__ ((packed)) features_buf = { 0 };
3795 u64 incompat;
3796 int ret;
3797
3798 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3799 "rbd", "get_features",
3800 &snapid, sizeof (snapid),
3801 &features_buf, sizeof (features_buf));
3802 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3803 if (ret < 0)
3804 return ret;
3805 if (ret < sizeof (features_buf))
3806 return -ERANGE;
3807
3808 incompat = le64_to_cpu(features_buf.incompat);
3809 if (incompat & ~RBD_FEATURES_SUPPORTED)
3810 return -ENXIO;
3811
3812 *snap_features = le64_to_cpu(features_buf.features);
3813
3814 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3815 (unsigned long long)snap_id,
3816 (unsigned long long)*snap_features,
3817 (unsigned long long)le64_to_cpu(features_buf.incompat));
3818
3819 return 0;
3820 }
3821
3822 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3823 {
3824 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3825 &rbd_dev->header.features);
3826 }
3827
3828 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3829 {
3830 struct rbd_spec *parent_spec;
3831 size_t size;
3832 void *reply_buf = NULL;
3833 __le64 snapid;
3834 void *p;
3835 void *end;
3836 u64 pool_id;
3837 char *image_id;
3838 u64 snap_id;
3839 u64 overlap;
3840 int ret;
3841
3842 parent_spec = rbd_spec_alloc();
3843 if (!parent_spec)
3844 return -ENOMEM;
3845
3846 size = sizeof (__le64) + /* pool_id */
3847 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3848 sizeof (__le64) + /* snap_id */
3849 sizeof (__le64); /* overlap */
3850 reply_buf = kmalloc(size, GFP_KERNEL);
3851 if (!reply_buf) {
3852 ret = -ENOMEM;
3853 goto out_err;
3854 }
3855
3856 snapid = cpu_to_le64(CEPH_NOSNAP);
3857 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3858 "rbd", "get_parent",
3859 &snapid, sizeof (snapid),
3860 reply_buf, size);
3861 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3862 if (ret < 0)
3863 goto out_err;
3864
3865 p = reply_buf;
3866 end = reply_buf + ret;
3867 ret = -ERANGE;
3868 ceph_decode_64_safe(&p, end, pool_id, out_err);
3869 if (pool_id == CEPH_NOPOOL) {
3870 /*
3871 * Either the parent never existed, or we have
3872 * record of it but the image got flattened so it no
3873 * longer has a parent. When the parent of a
3874 * layered image disappears we immediately set the
3875 * overlap to 0. The effect of this is that all new
3876 * requests will be treated as if the image had no
3877 * parent.
3878 */
3879 if (rbd_dev->parent_overlap) {
3880 rbd_dev->parent_overlap = 0;
3881 smp_mb();
3882 rbd_dev_parent_put(rbd_dev);
3883 pr_info("%s: clone image has been flattened\n",
3884 rbd_dev->disk->disk_name);
3885 }
3886
3887 goto out; /* No parent? No problem. */
3888 }
3889
3890 /* The ceph file layout needs to fit pool id in 32 bits */
3891
3892 ret = -EIO;
3893 if (pool_id > (u64)U32_MAX) {
3894 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3895 (unsigned long long)pool_id, U32_MAX);
3896 goto out_err;
3897 }
3898
3899 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3900 if (IS_ERR(image_id)) {
3901 ret = PTR_ERR(image_id);
3902 goto out_err;
3903 }
3904 ceph_decode_64_safe(&p, end, snap_id, out_err);
3905 ceph_decode_64_safe(&p, end, overlap, out_err);
3906
3907 /*
3908 * The parent won't change (except when the clone is
3909 * flattened, already handled that). So we only need to
3910 * record the parent spec we have not already done so.
3911 */
3912 if (!rbd_dev->parent_spec) {
3913 parent_spec->pool_id = pool_id;
3914 parent_spec->image_id = image_id;
3915 parent_spec->snap_id = snap_id;
3916 rbd_dev->parent_spec = parent_spec;
3917 parent_spec = NULL; /* rbd_dev now owns this */
3918 }
3919
3920 /*
3921 * We always update the parent overlap. If it's zero we
3922 * treat it specially.
3923 */
3924 rbd_dev->parent_overlap = overlap;
3925 smp_mb();
3926 if (!overlap) {
3927
3928 /* A null parent_spec indicates it's the initial probe */
3929
3930 if (parent_spec) {
3931 /*
3932 * The overlap has become zero, so the clone
3933 * must have been resized down to 0 at some
3934 * point. Treat this the same as a flatten.
3935 */
3936 rbd_dev_parent_put(rbd_dev);
3937 pr_info("%s: clone image now standalone\n",
3938 rbd_dev->disk->disk_name);
3939 } else {
3940 /*
3941 * For the initial probe, if we find the
3942 * overlap is zero we just pretend there was
3943 * no parent image.
3944 */
3945 rbd_warn(rbd_dev, "ignoring parent of "
3946 "clone with overlap 0\n");
3947 }
3948 }
3949 out:
3950 ret = 0;
3951 out_err:
3952 kfree(reply_buf);
3953 rbd_spec_put(parent_spec);
3954
3955 return ret;
3956 }
3957
3958 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3959 {
3960 struct {
3961 __le64 stripe_unit;
3962 __le64 stripe_count;
3963 } __attribute__ ((packed)) striping_info_buf = { 0 };
3964 size_t size = sizeof (striping_info_buf);
3965 void *p;
3966 u64 obj_size;
3967 u64 stripe_unit;
3968 u64 stripe_count;
3969 int ret;
3970
3971 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3972 "rbd", "get_stripe_unit_count", NULL, 0,
3973 (char *)&striping_info_buf, size);
3974 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3975 if (ret < 0)
3976 return ret;
3977 if (ret < size)
3978 return -ERANGE;
3979
3980 /*
3981 * We don't actually support the "fancy striping" feature
3982 * (STRIPINGV2) yet, but if the striping sizes are the
3983 * defaults the behavior is the same as before. So find
3984 * out, and only fail if the image has non-default values.
3985 */
3986 ret = -EINVAL;
3987 obj_size = (u64)1 << rbd_dev->header.obj_order;
3988 p = &striping_info_buf;
3989 stripe_unit = ceph_decode_64(&p);
3990 if (stripe_unit != obj_size) {
3991 rbd_warn(rbd_dev, "unsupported stripe unit "
3992 "(got %llu want %llu)",
3993 stripe_unit, obj_size);
3994 return -EINVAL;
3995 }
3996 stripe_count = ceph_decode_64(&p);
3997 if (stripe_count != 1) {
3998 rbd_warn(rbd_dev, "unsupported stripe count "
3999 "(got %llu want 1)", stripe_count);
4000 return -EINVAL;
4001 }
4002 rbd_dev->header.stripe_unit = stripe_unit;
4003 rbd_dev->header.stripe_count = stripe_count;
4004
4005 return 0;
4006 }
4007
4008 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4009 {
4010 size_t image_id_size;
4011 char *image_id;
4012 void *p;
4013 void *end;
4014 size_t size;
4015 void *reply_buf = NULL;
4016 size_t len = 0;
4017 char *image_name = NULL;
4018 int ret;
4019
4020 rbd_assert(!rbd_dev->spec->image_name);
4021
4022 len = strlen(rbd_dev->spec->image_id);
4023 image_id_size = sizeof (__le32) + len;
4024 image_id = kmalloc(image_id_size, GFP_KERNEL);
4025 if (!image_id)
4026 return NULL;
4027
4028 p = image_id;
4029 end = image_id + image_id_size;
4030 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4031
4032 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4033 reply_buf = kmalloc(size, GFP_KERNEL);
4034 if (!reply_buf)
4035 goto out;
4036
4037 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4038 "rbd", "dir_get_name",
4039 image_id, image_id_size,
4040 reply_buf, size);
4041 if (ret < 0)
4042 goto out;
4043 p = reply_buf;
4044 end = reply_buf + ret;
4045
4046 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4047 if (IS_ERR(image_name))
4048 image_name = NULL;
4049 else
4050 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4051 out:
4052 kfree(reply_buf);
4053 kfree(image_id);
4054
4055 return image_name;
4056 }
4057
4058 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4059 {
4060 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4061 const char *snap_name;
4062 u32 which = 0;
4063
4064 /* Skip over names until we find the one we are looking for */
4065
4066 snap_name = rbd_dev->header.snap_names;
4067 while (which < snapc->num_snaps) {
4068 if (!strcmp(name, snap_name))
4069 return snapc->snaps[which];
4070 snap_name += strlen(snap_name) + 1;
4071 which++;
4072 }
4073 return CEPH_NOSNAP;
4074 }
4075
4076 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4077 {
4078 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4079 u32 which;
4080 bool found = false;
4081 u64 snap_id;
4082
4083 for (which = 0; !found && which < snapc->num_snaps; which++) {
4084 const char *snap_name;
4085
4086 snap_id = snapc->snaps[which];
4087 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4088 if (IS_ERR(snap_name)) {
4089 /* ignore no-longer existing snapshots */
4090 if (PTR_ERR(snap_name) == -ENOENT)
4091 continue;
4092 else
4093 break;
4094 }
4095 found = !strcmp(name, snap_name);
4096 kfree(snap_name);
4097 }
4098 return found ? snap_id : CEPH_NOSNAP;
4099 }
4100
4101 /*
4102 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4103 * no snapshot by that name is found, or if an error occurs.
4104 */
4105 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4106 {
4107 if (rbd_dev->image_format == 1)
4108 return rbd_v1_snap_id_by_name(rbd_dev, name);
4109
4110 return rbd_v2_snap_id_by_name(rbd_dev, name);
4111 }
4112
4113 /*
4114 * When an rbd image has a parent image, it is identified by the
4115 * pool, image, and snapshot ids (not names). This function fills
4116 * in the names for those ids. (It's OK if we can't figure out the
4117 * name for an image id, but the pool and snapshot ids should always
4118 * exist and have names.) All names in an rbd spec are dynamically
4119 * allocated.
4120 *
4121 * When an image being mapped (not a parent) is probed, we have the
4122 * pool name and pool id, image name and image id, and the snapshot
4123 * name. The only thing we're missing is the snapshot id.
4124 */
4125 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4126 {
4127 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4128 struct rbd_spec *spec = rbd_dev->spec;
4129 const char *pool_name;
4130 const char *image_name;
4131 const char *snap_name;
4132 int ret;
4133
4134 /*
4135 * An image being mapped will have the pool name (etc.), but
4136 * we need to look up the snapshot id.
4137 */
4138 if (spec->pool_name) {
4139 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4140 u64 snap_id;
4141
4142 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4143 if (snap_id == CEPH_NOSNAP)
4144 return -ENOENT;
4145 spec->snap_id = snap_id;
4146 } else {
4147 spec->snap_id = CEPH_NOSNAP;
4148 }
4149
4150 return 0;
4151 }
4152
4153 /* Get the pool name; we have to make our own copy of this */
4154
4155 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4156 if (!pool_name) {
4157 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4158 return -EIO;
4159 }
4160 pool_name = kstrdup(pool_name, GFP_KERNEL);
4161 if (!pool_name)
4162 return -ENOMEM;
4163
4164 /* Fetch the image name; tolerate failure here */
4165
4166 image_name = rbd_dev_image_name(rbd_dev);
4167 if (!image_name)
4168 rbd_warn(rbd_dev, "unable to get image name");
4169
4170 /* Look up the snapshot name, and make a copy */
4171
4172 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4173 if (IS_ERR(snap_name)) {
4174 ret = PTR_ERR(snap_name);
4175 goto out_err;
4176 }
4177
4178 spec->pool_name = pool_name;
4179 spec->image_name = image_name;
4180 spec->snap_name = snap_name;
4181
4182 return 0;
4183 out_err:
4184 kfree(image_name);
4185 kfree(pool_name);
4186
4187 return ret;
4188 }
4189
4190 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4191 {
4192 size_t size;
4193 int ret;
4194 void *reply_buf;
4195 void *p;
4196 void *end;
4197 u64 seq;
4198 u32 snap_count;
4199 struct ceph_snap_context *snapc;
4200 u32 i;
4201
4202 /*
4203 * We'll need room for the seq value (maximum snapshot id),
4204 * snapshot count, and array of that many snapshot ids.
4205 * For now we have a fixed upper limit on the number we're
4206 * prepared to receive.
4207 */
4208 size = sizeof (__le64) + sizeof (__le32) +
4209 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4210 reply_buf = kzalloc(size, GFP_KERNEL);
4211 if (!reply_buf)
4212 return -ENOMEM;
4213
4214 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4215 "rbd", "get_snapcontext", NULL, 0,
4216 reply_buf, size);
4217 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4218 if (ret < 0)
4219 goto out;
4220
4221 p = reply_buf;
4222 end = reply_buf + ret;
4223 ret = -ERANGE;
4224 ceph_decode_64_safe(&p, end, seq, out);
4225 ceph_decode_32_safe(&p, end, snap_count, out);
4226
4227 /*
4228 * Make sure the reported number of snapshot ids wouldn't go
4229 * beyond the end of our buffer. But before checking that,
4230 * make sure the computed size of the snapshot context we
4231 * allocate is representable in a size_t.
4232 */
4233 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4234 / sizeof (u64)) {
4235 ret = -EINVAL;
4236 goto out;
4237 }
4238 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4239 goto out;
4240 ret = 0;
4241
4242 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4243 if (!snapc) {
4244 ret = -ENOMEM;
4245 goto out;
4246 }
4247 snapc->seq = seq;
4248 for (i = 0; i < snap_count; i++)
4249 snapc->snaps[i] = ceph_decode_64(&p);
4250
4251 ceph_put_snap_context(rbd_dev->header.snapc);
4252 rbd_dev->header.snapc = snapc;
4253
4254 dout(" snap context seq = %llu, snap_count = %u\n",
4255 (unsigned long long)seq, (unsigned int)snap_count);
4256 out:
4257 kfree(reply_buf);
4258
4259 return ret;
4260 }
4261
4262 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4263 u64 snap_id)
4264 {
4265 size_t size;
4266 void *reply_buf;
4267 __le64 snapid;
4268 int ret;
4269 void *p;
4270 void *end;
4271 char *snap_name;
4272
4273 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4274 reply_buf = kmalloc(size, GFP_KERNEL);
4275 if (!reply_buf)
4276 return ERR_PTR(-ENOMEM);
4277
4278 snapid = cpu_to_le64(snap_id);
4279 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4280 "rbd", "get_snapshot_name",
4281 &snapid, sizeof (snapid),
4282 reply_buf, size);
4283 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4284 if (ret < 0) {
4285 snap_name = ERR_PTR(ret);
4286 goto out;
4287 }
4288
4289 p = reply_buf;
4290 end = reply_buf + ret;
4291 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4292 if (IS_ERR(snap_name))
4293 goto out;
4294
4295 dout(" snap_id 0x%016llx snap_name = %s\n",
4296 (unsigned long long)snap_id, snap_name);
4297 out:
4298 kfree(reply_buf);
4299
4300 return snap_name;
4301 }
4302
4303 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4304 {
4305 bool first_time = rbd_dev->header.object_prefix == NULL;
4306 int ret;
4307
4308 ret = rbd_dev_v2_image_size(rbd_dev);
4309 if (ret)
4310 return ret;
4311
4312 if (first_time) {
4313 ret = rbd_dev_v2_header_onetime(rbd_dev);
4314 if (ret)
4315 return ret;
4316 }
4317
4318 /*
4319 * If the image supports layering, get the parent info. We
4320 * need to probe the first time regardless. Thereafter we
4321 * only need to if there's a parent, to see if it has
4322 * disappeared due to the mapped image getting flattened.
4323 */
4324 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4325 (first_time || rbd_dev->parent_spec)) {
4326 bool warn;
4327
4328 ret = rbd_dev_v2_parent_info(rbd_dev);
4329 if (ret)
4330 return ret;
4331
4332 /*
4333 * Print a warning if this is the initial probe and
4334 * the image has a parent. Don't print it if the
4335 * image now being probed is itself a parent. We
4336 * can tell at this point because we won't know its
4337 * pool name yet (just its pool id).
4338 */
4339 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4340 if (first_time && warn)
4341 rbd_warn(rbd_dev, "WARNING: kernel layering "
4342 "is EXPERIMENTAL!");
4343 }
4344
4345 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4346 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4347 rbd_dev->mapping.size = rbd_dev->header.image_size;
4348
4349 ret = rbd_dev_v2_snap_context(rbd_dev);
4350 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4351
4352 return ret;
4353 }
4354
4355 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4356 {
4357 struct device *dev;
4358 int ret;
4359
4360 dev = &rbd_dev->dev;
4361 dev->bus = &rbd_bus_type;
4362 dev->type = &rbd_device_type;
4363 dev->parent = &rbd_root_dev;
4364 dev->release = rbd_dev_device_release;
4365 dev_set_name(dev, "%d", rbd_dev->dev_id);
4366 ret = device_register(dev);
4367
4368 return ret;
4369 }
4370
4371 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4372 {
4373 device_unregister(&rbd_dev->dev);
4374 }
4375
4376 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4377
4378 /*
4379 * Get a unique rbd identifier for the given new rbd_dev, and add
4380 * the rbd_dev to the global list. The minimum rbd id is 1.
4381 */
4382 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4383 {
4384 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4385
4386 spin_lock(&rbd_dev_list_lock);
4387 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4388 spin_unlock(&rbd_dev_list_lock);
4389 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4390 (unsigned long long) rbd_dev->dev_id);
4391 }
4392
4393 /*
4394 * Remove an rbd_dev from the global list, and record that its
4395 * identifier is no longer in use.
4396 */
4397 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4398 {
4399 struct list_head *tmp;
4400 int rbd_id = rbd_dev->dev_id;
4401 int max_id;
4402
4403 rbd_assert(rbd_id > 0);
4404
4405 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4406 (unsigned long long) rbd_dev->dev_id);
4407 spin_lock(&rbd_dev_list_lock);
4408 list_del_init(&rbd_dev->node);
4409
4410 /*
4411 * If the id being "put" is not the current maximum, there
4412 * is nothing special we need to do.
4413 */
4414 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4415 spin_unlock(&rbd_dev_list_lock);
4416 return;
4417 }
4418
4419 /*
4420 * We need to update the current maximum id. Search the
4421 * list to find out what it is. We're more likely to find
4422 * the maximum at the end, so search the list backward.
4423 */
4424 max_id = 0;
4425 list_for_each_prev(tmp, &rbd_dev_list) {
4426 struct rbd_device *rbd_dev;
4427
4428 rbd_dev = list_entry(tmp, struct rbd_device, node);
4429 if (rbd_dev->dev_id > max_id)
4430 max_id = rbd_dev->dev_id;
4431 }
4432 spin_unlock(&rbd_dev_list_lock);
4433
4434 /*
4435 * The max id could have been updated by rbd_dev_id_get(), in
4436 * which case it now accurately reflects the new maximum.
4437 * Be careful not to overwrite the maximum value in that
4438 * case.
4439 */
4440 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4441 dout(" max dev id has been reset\n");
4442 }
4443
4444 /*
4445 * Skips over white space at *buf, and updates *buf to point to the
4446 * first found non-space character (if any). Returns the length of
4447 * the token (string of non-white space characters) found. Note
4448 * that *buf must be terminated with '\0'.
4449 */
4450 static inline size_t next_token(const char **buf)
4451 {
4452 /*
4453 * These are the characters that produce nonzero for
4454 * isspace() in the "C" and "POSIX" locales.
4455 */
4456 const char *spaces = " \f\n\r\t\v";
4457
4458 *buf += strspn(*buf, spaces); /* Find start of token */
4459
4460 return strcspn(*buf, spaces); /* Return token length */
4461 }
4462
4463 /*
4464 * Finds the next token in *buf, and if the provided token buffer is
4465 * big enough, copies the found token into it. The result, if
4466 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4467 * must be terminated with '\0' on entry.
4468 *
4469 * Returns the length of the token found (not including the '\0').
4470 * Return value will be 0 if no token is found, and it will be >=
4471 * token_size if the token would not fit.
4472 *
4473 * The *buf pointer will be updated to point beyond the end of the
4474 * found token. Note that this occurs even if the token buffer is
4475 * too small to hold it.
4476 */
4477 static inline size_t copy_token(const char **buf,
4478 char *token,
4479 size_t token_size)
4480 {
4481 size_t len;
4482
4483 len = next_token(buf);
4484 if (len < token_size) {
4485 memcpy(token, *buf, len);
4486 *(token + len) = '\0';
4487 }
4488 *buf += len;
4489
4490 return len;
4491 }
4492
4493 /*
4494 * Finds the next token in *buf, dynamically allocates a buffer big
4495 * enough to hold a copy of it, and copies the token into the new
4496 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4497 * that a duplicate buffer is created even for a zero-length token.
4498 *
4499 * Returns a pointer to the newly-allocated duplicate, or a null
4500 * pointer if memory for the duplicate was not available. If
4501 * the lenp argument is a non-null pointer, the length of the token
4502 * (not including the '\0') is returned in *lenp.
4503 *
4504 * If successful, the *buf pointer will be updated to point beyond
4505 * the end of the found token.
4506 *
4507 * Note: uses GFP_KERNEL for allocation.
4508 */
4509 static inline char *dup_token(const char **buf, size_t *lenp)
4510 {
4511 char *dup;
4512 size_t len;
4513
4514 len = next_token(buf);
4515 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4516 if (!dup)
4517 return NULL;
4518 *(dup + len) = '\0';
4519 *buf += len;
4520
4521 if (lenp)
4522 *lenp = len;
4523
4524 return dup;
4525 }
4526
4527 /*
4528 * Parse the options provided for an "rbd add" (i.e., rbd image
4529 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4530 * and the data written is passed here via a NUL-terminated buffer.
4531 * Returns 0 if successful or an error code otherwise.
4532 *
4533 * The information extracted from these options is recorded in
4534 * the other parameters which return dynamically-allocated
4535 * structures:
4536 * ceph_opts
4537 * The address of a pointer that will refer to a ceph options
4538 * structure. Caller must release the returned pointer using
4539 * ceph_destroy_options() when it is no longer needed.
4540 * rbd_opts
4541 * Address of an rbd options pointer. Fully initialized by
4542 * this function; caller must release with kfree().
4543 * spec
4544 * Address of an rbd image specification pointer. Fully
4545 * initialized by this function based on parsed options.
4546 * Caller must release with rbd_spec_put().
4547 *
4548 * The options passed take this form:
4549 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4550 * where:
4551 * <mon_addrs>
4552 * A comma-separated list of one or more monitor addresses.
4553 * A monitor address is an ip address, optionally followed
4554 * by a port number (separated by a colon).
4555 * I.e.: ip1[:port1][,ip2[:port2]...]
4556 * <options>
4557 * A comma-separated list of ceph and/or rbd options.
4558 * <pool_name>
4559 * The name of the rados pool containing the rbd image.
4560 * <image_name>
4561 * The name of the image in that pool to map.
4562 * <snap_id>
4563 * An optional snapshot id. If provided, the mapping will
4564 * present data from the image at the time that snapshot was
4565 * created. The image head is used if no snapshot id is
4566 * provided. Snapshot mappings are always read-only.
4567 */
4568 static int rbd_add_parse_args(const char *buf,
4569 struct ceph_options **ceph_opts,
4570 struct rbd_options **opts,
4571 struct rbd_spec **rbd_spec)
4572 {
4573 size_t len;
4574 char *options;
4575 const char *mon_addrs;
4576 char *snap_name;
4577 size_t mon_addrs_size;
4578 struct rbd_spec *spec = NULL;
4579 struct rbd_options *rbd_opts = NULL;
4580 struct ceph_options *copts;
4581 int ret;
4582
4583 /* The first four tokens are required */
4584
4585 len = next_token(&buf);
4586 if (!len) {
4587 rbd_warn(NULL, "no monitor address(es) provided");
4588 return -EINVAL;
4589 }
4590 mon_addrs = buf;
4591 mon_addrs_size = len + 1;
4592 buf += len;
4593
4594 ret = -EINVAL;
4595 options = dup_token(&buf, NULL);
4596 if (!options)
4597 return -ENOMEM;
4598 if (!*options) {
4599 rbd_warn(NULL, "no options provided");
4600 goto out_err;
4601 }
4602
4603 spec = rbd_spec_alloc();
4604 if (!spec)
4605 goto out_mem;
4606
4607 spec->pool_name = dup_token(&buf, NULL);
4608 if (!spec->pool_name)
4609 goto out_mem;
4610 if (!*spec->pool_name) {
4611 rbd_warn(NULL, "no pool name provided");
4612 goto out_err;
4613 }
4614
4615 spec->image_name = dup_token(&buf, NULL);
4616 if (!spec->image_name)
4617 goto out_mem;
4618 if (!*spec->image_name) {
4619 rbd_warn(NULL, "no image name provided");
4620 goto out_err;
4621 }
4622
4623 /*
4624 * Snapshot name is optional; default is to use "-"
4625 * (indicating the head/no snapshot).
4626 */
4627 len = next_token(&buf);
4628 if (!len) {
4629 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4630 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4631 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4632 ret = -ENAMETOOLONG;
4633 goto out_err;
4634 }
4635 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4636 if (!snap_name)
4637 goto out_mem;
4638 *(snap_name + len) = '\0';
4639 spec->snap_name = snap_name;
4640
4641 /* Initialize all rbd options to the defaults */
4642
4643 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4644 if (!rbd_opts)
4645 goto out_mem;
4646
4647 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4648
4649 copts = ceph_parse_options(options, mon_addrs,
4650 mon_addrs + mon_addrs_size - 1,
4651 parse_rbd_opts_token, rbd_opts);
4652 if (IS_ERR(copts)) {
4653 ret = PTR_ERR(copts);
4654 goto out_err;
4655 }
4656 kfree(options);
4657
4658 *ceph_opts = copts;
4659 *opts = rbd_opts;
4660 *rbd_spec = spec;
4661
4662 return 0;
4663 out_mem:
4664 ret = -ENOMEM;
4665 out_err:
4666 kfree(rbd_opts);
4667 rbd_spec_put(spec);
4668 kfree(options);
4669
4670 return ret;
4671 }
4672
4673 /*
4674 * An rbd format 2 image has a unique identifier, distinct from the
4675 * name given to it by the user. Internally, that identifier is
4676 * what's used to specify the names of objects related to the image.
4677 *
4678 * A special "rbd id" object is used to map an rbd image name to its
4679 * id. If that object doesn't exist, then there is no v2 rbd image
4680 * with the supplied name.
4681 *
4682 * This function will record the given rbd_dev's image_id field if
4683 * it can be determined, and in that case will return 0. If any
4684 * errors occur a negative errno will be returned and the rbd_dev's
4685 * image_id field will be unchanged (and should be NULL).
4686 */
4687 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4688 {
4689 int ret;
4690 size_t size;
4691 char *object_name;
4692 void *response;
4693 char *image_id;
4694
4695 /*
4696 * When probing a parent image, the image id is already
4697 * known (and the image name likely is not). There's no
4698 * need to fetch the image id again in this case. We
4699 * do still need to set the image format though.
4700 */
4701 if (rbd_dev->spec->image_id) {
4702 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4703
4704 return 0;
4705 }
4706
4707 /*
4708 * First, see if the format 2 image id file exists, and if
4709 * so, get the image's persistent id from it.
4710 */
4711 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4712 object_name = kmalloc(size, GFP_NOIO);
4713 if (!object_name)
4714 return -ENOMEM;
4715 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4716 dout("rbd id object name is %s\n", object_name);
4717
4718 /* Response will be an encoded string, which includes a length */
4719
4720 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4721 response = kzalloc(size, GFP_NOIO);
4722 if (!response) {
4723 ret = -ENOMEM;
4724 goto out;
4725 }
4726
4727 /* If it doesn't exist we'll assume it's a format 1 image */
4728
4729 ret = rbd_obj_method_sync(rbd_dev, object_name,
4730 "rbd", "get_id", NULL, 0,
4731 response, RBD_IMAGE_ID_LEN_MAX);
4732 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4733 if (ret == -ENOENT) {
4734 image_id = kstrdup("", GFP_KERNEL);
4735 ret = image_id ? 0 : -ENOMEM;
4736 if (!ret)
4737 rbd_dev->image_format = 1;
4738 } else if (ret > sizeof (__le32)) {
4739 void *p = response;
4740
4741 image_id = ceph_extract_encoded_string(&p, p + ret,
4742 NULL, GFP_NOIO);
4743 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4744 if (!ret)
4745 rbd_dev->image_format = 2;
4746 } else {
4747 ret = -EINVAL;
4748 }
4749
4750 if (!ret) {
4751 rbd_dev->spec->image_id = image_id;
4752 dout("image_id is %s\n", image_id);
4753 }
4754 out:
4755 kfree(response);
4756 kfree(object_name);
4757
4758 return ret;
4759 }
4760
4761 /*
4762 * Undo whatever state changes are made by v1 or v2 header info
4763 * call.
4764 */
4765 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4766 {
4767 struct rbd_image_header *header;
4768
4769 /* Drop parent reference unless it's already been done (or none) */
4770
4771 if (rbd_dev->parent_overlap)
4772 rbd_dev_parent_put(rbd_dev);
4773
4774 /* Free dynamic fields from the header, then zero it out */
4775
4776 header = &rbd_dev->header;
4777 ceph_put_snap_context(header->snapc);
4778 kfree(header->snap_sizes);
4779 kfree(header->snap_names);
4780 kfree(header->object_prefix);
4781 memset(header, 0, sizeof (*header));
4782 }
4783
4784 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4785 {
4786 int ret;
4787
4788 ret = rbd_dev_v2_object_prefix(rbd_dev);
4789 if (ret)
4790 goto out_err;
4791
4792 /*
4793 * Get the and check features for the image. Currently the
4794 * features are assumed to never change.
4795 */
4796 ret = rbd_dev_v2_features(rbd_dev);
4797 if (ret)
4798 goto out_err;
4799
4800 /* If the image supports fancy striping, get its parameters */
4801
4802 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4803 ret = rbd_dev_v2_striping_info(rbd_dev);
4804 if (ret < 0)
4805 goto out_err;
4806 }
4807 /* No support for crypto and compression type format 2 images */
4808
4809 return 0;
4810 out_err:
4811 rbd_dev->header.features = 0;
4812 kfree(rbd_dev->header.object_prefix);
4813 rbd_dev->header.object_prefix = NULL;
4814
4815 return ret;
4816 }
4817
4818 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4819 {
4820 struct rbd_device *parent = NULL;
4821 struct rbd_spec *parent_spec;
4822 struct rbd_client *rbdc;
4823 int ret;
4824
4825 if (!rbd_dev->parent_spec)
4826 return 0;
4827 /*
4828 * We need to pass a reference to the client and the parent
4829 * spec when creating the parent rbd_dev. Images related by
4830 * parent/child relationships always share both.
4831 */
4832 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4833 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4834
4835 ret = -ENOMEM;
4836 parent = rbd_dev_create(rbdc, parent_spec);
4837 if (!parent)
4838 goto out_err;
4839
4840 ret = rbd_dev_image_probe(parent, false);
4841 if (ret < 0)
4842 goto out_err;
4843 rbd_dev->parent = parent;
4844 atomic_set(&rbd_dev->parent_ref, 1);
4845
4846 return 0;
4847 out_err:
4848 if (parent) {
4849 rbd_dev_unparent(rbd_dev);
4850 kfree(rbd_dev->header_name);
4851 rbd_dev_destroy(parent);
4852 } else {
4853 rbd_put_client(rbdc);
4854 rbd_spec_put(parent_spec);
4855 }
4856
4857 return ret;
4858 }
4859
4860 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4861 {
4862 int ret;
4863
4864 /* generate unique id: find highest unique id, add one */
4865 rbd_dev_id_get(rbd_dev);
4866
4867 /* Fill in the device name, now that we have its id. */
4868 BUILD_BUG_ON(DEV_NAME_LEN
4869 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4870 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4871
4872 /* Get our block major device number. */
4873
4874 ret = register_blkdev(0, rbd_dev->name);
4875 if (ret < 0)
4876 goto err_out_id;
4877 rbd_dev->major = ret;
4878
4879 /* Set up the blkdev mapping. */
4880
4881 ret = rbd_init_disk(rbd_dev);
4882 if (ret)
4883 goto err_out_blkdev;
4884
4885 ret = rbd_dev_mapping_set(rbd_dev);
4886 if (ret)
4887 goto err_out_disk;
4888 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4889
4890 ret = rbd_bus_add_dev(rbd_dev);
4891 if (ret)
4892 goto err_out_mapping;
4893
4894 /* Everything's ready. Announce the disk to the world. */
4895
4896 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4897 add_disk(rbd_dev->disk);
4898
4899 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4900 (unsigned long long) rbd_dev->mapping.size);
4901
4902 return ret;
4903
4904 err_out_mapping:
4905 rbd_dev_mapping_clear(rbd_dev);
4906 err_out_disk:
4907 rbd_free_disk(rbd_dev);
4908 err_out_blkdev:
4909 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4910 err_out_id:
4911 rbd_dev_id_put(rbd_dev);
4912 rbd_dev_mapping_clear(rbd_dev);
4913
4914 return ret;
4915 }
4916
4917 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4918 {
4919 struct rbd_spec *spec = rbd_dev->spec;
4920 size_t size;
4921
4922 /* Record the header object name for this rbd image. */
4923
4924 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4925
4926 if (rbd_dev->image_format == 1)
4927 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4928 else
4929 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4930
4931 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4932 if (!rbd_dev->header_name)
4933 return -ENOMEM;
4934
4935 if (rbd_dev->image_format == 1)
4936 sprintf(rbd_dev->header_name, "%s%s",
4937 spec->image_name, RBD_SUFFIX);
4938 else
4939 sprintf(rbd_dev->header_name, "%s%s",
4940 RBD_HEADER_PREFIX, spec->image_id);
4941 return 0;
4942 }
4943
4944 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4945 {
4946 rbd_dev_unprobe(rbd_dev);
4947 kfree(rbd_dev->header_name);
4948 rbd_dev->header_name = NULL;
4949 rbd_dev->image_format = 0;
4950 kfree(rbd_dev->spec->image_id);
4951 rbd_dev->spec->image_id = NULL;
4952
4953 rbd_dev_destroy(rbd_dev);
4954 }
4955
4956 /*
4957 * Probe for the existence of the header object for the given rbd
4958 * device. If this image is the one being mapped (i.e., not a
4959 * parent), initiate a watch on its header object before using that
4960 * object to get detailed information about the rbd image.
4961 */
4962 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4963 {
4964 int ret;
4965 int tmp;
4966
4967 /*
4968 * Get the id from the image id object. Unless there's an
4969 * error, rbd_dev->spec->image_id will be filled in with
4970 * a dynamically-allocated string, and rbd_dev->image_format
4971 * will be set to either 1 or 2.
4972 */
4973 ret = rbd_dev_image_id(rbd_dev);
4974 if (ret)
4975 return ret;
4976 rbd_assert(rbd_dev->spec->image_id);
4977 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4978
4979 ret = rbd_dev_header_name(rbd_dev);
4980 if (ret)
4981 goto err_out_format;
4982
4983 if (mapping) {
4984 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4985 if (ret)
4986 goto out_header_name;
4987 }
4988
4989 if (rbd_dev->image_format == 1)
4990 ret = rbd_dev_v1_header_info(rbd_dev);
4991 else
4992 ret = rbd_dev_v2_header_info(rbd_dev);
4993 if (ret)
4994 goto err_out_watch;
4995
4996 ret = rbd_dev_spec_update(rbd_dev);
4997 if (ret)
4998 goto err_out_probe;
4999
5000 ret = rbd_dev_probe_parent(rbd_dev);
5001 if (ret)
5002 goto err_out_probe;
5003
5004 dout("discovered format %u image, header name is %s\n",
5005 rbd_dev->image_format, rbd_dev->header_name);
5006
5007 return 0;
5008 err_out_probe:
5009 rbd_dev_unprobe(rbd_dev);
5010 err_out_watch:
5011 if (mapping) {
5012 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5013 if (tmp)
5014 rbd_warn(rbd_dev, "unable to tear down "
5015 "watch request (%d)\n", tmp);
5016 }
5017 out_header_name:
5018 kfree(rbd_dev->header_name);
5019 rbd_dev->header_name = NULL;
5020 err_out_format:
5021 rbd_dev->image_format = 0;
5022 kfree(rbd_dev->spec->image_id);
5023 rbd_dev->spec->image_id = NULL;
5024
5025 dout("probe failed, returning %d\n", ret);
5026
5027 return ret;
5028 }
5029
5030 static ssize_t rbd_add(struct bus_type *bus,
5031 const char *buf,
5032 size_t count)
5033 {
5034 struct rbd_device *rbd_dev = NULL;
5035 struct ceph_options *ceph_opts = NULL;
5036 struct rbd_options *rbd_opts = NULL;
5037 struct rbd_spec *spec = NULL;
5038 struct rbd_client *rbdc;
5039 struct ceph_osd_client *osdc;
5040 bool read_only;
5041 int rc = -ENOMEM;
5042
5043 if (!try_module_get(THIS_MODULE))
5044 return -ENODEV;
5045
5046 /* parse add command */
5047 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5048 if (rc < 0)
5049 goto err_out_module;
5050 read_only = rbd_opts->read_only;
5051 kfree(rbd_opts);
5052 rbd_opts = NULL; /* done with this */
5053
5054 rbdc = rbd_get_client(ceph_opts);
5055 if (IS_ERR(rbdc)) {
5056 rc = PTR_ERR(rbdc);
5057 goto err_out_args;
5058 }
5059
5060 /* pick the pool */
5061 osdc = &rbdc->client->osdc;
5062 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5063 if (rc < 0)
5064 goto err_out_client;
5065 spec->pool_id = (u64)rc;
5066
5067 /* The ceph file layout needs to fit pool id in 32 bits */
5068
5069 if (spec->pool_id > (u64)U32_MAX) {
5070 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5071 (unsigned long long)spec->pool_id, U32_MAX);
5072 rc = -EIO;
5073 goto err_out_client;
5074 }
5075
5076 rbd_dev = rbd_dev_create(rbdc, spec);
5077 if (!rbd_dev)
5078 goto err_out_client;
5079 rbdc = NULL; /* rbd_dev now owns this */
5080 spec = NULL; /* rbd_dev now owns this */
5081
5082 rc = rbd_dev_image_probe(rbd_dev, true);
5083 if (rc < 0)
5084 goto err_out_rbd_dev;
5085
5086 /* If we are mapping a snapshot it must be marked read-only */
5087
5088 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5089 read_only = true;
5090 rbd_dev->mapping.read_only = read_only;
5091
5092 rc = rbd_dev_device_setup(rbd_dev);
5093 if (rc) {
5094 rbd_dev_image_release(rbd_dev);
5095 goto err_out_module;
5096 }
5097
5098 return count;
5099
5100 err_out_rbd_dev:
5101 rbd_dev_destroy(rbd_dev);
5102 err_out_client:
5103 rbd_put_client(rbdc);
5104 err_out_args:
5105 rbd_spec_put(spec);
5106 err_out_module:
5107 module_put(THIS_MODULE);
5108
5109 dout("Error adding device %s\n", buf);
5110
5111 return (ssize_t)rc;
5112 }
5113
5114 static void rbd_dev_device_release(struct device *dev)
5115 {
5116 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5117
5118 rbd_free_disk(rbd_dev);
5119 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5120 rbd_dev_mapping_clear(rbd_dev);
5121 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5122 rbd_dev->major = 0;
5123 rbd_dev_id_put(rbd_dev);
5124 rbd_dev_mapping_clear(rbd_dev);
5125 }
5126
5127 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5128 {
5129 while (rbd_dev->parent) {
5130 struct rbd_device *first = rbd_dev;
5131 struct rbd_device *second = first->parent;
5132 struct rbd_device *third;
5133
5134 /*
5135 * Follow to the parent with no grandparent and
5136 * remove it.
5137 */
5138 while (second && (third = second->parent)) {
5139 first = second;
5140 second = third;
5141 }
5142 rbd_assert(second);
5143 rbd_dev_image_release(second);
5144 first->parent = NULL;
5145 first->parent_overlap = 0;
5146
5147 rbd_assert(first->parent_spec);
5148 rbd_spec_put(first->parent_spec);
5149 first->parent_spec = NULL;
5150 }
5151 }
5152
5153 static ssize_t rbd_remove(struct bus_type *bus,
5154 const char *buf,
5155 size_t count)
5156 {
5157 struct rbd_device *rbd_dev = NULL;
5158 struct list_head *tmp;
5159 int dev_id;
5160 unsigned long ul;
5161 bool already = false;
5162 int ret;
5163
5164 ret = kstrtoul(buf, 10, &ul);
5165 if (ret)
5166 return ret;
5167
5168 /* convert to int; abort if we lost anything in the conversion */
5169 dev_id = (int)ul;
5170 if (dev_id != ul)
5171 return -EINVAL;
5172
5173 ret = -ENOENT;
5174 spin_lock(&rbd_dev_list_lock);
5175 list_for_each(tmp, &rbd_dev_list) {
5176 rbd_dev = list_entry(tmp, struct rbd_device, node);
5177 if (rbd_dev->dev_id == dev_id) {
5178 ret = 0;
5179 break;
5180 }
5181 }
5182 if (!ret) {
5183 spin_lock_irq(&rbd_dev->lock);
5184 if (rbd_dev->open_count)
5185 ret = -EBUSY;
5186 else
5187 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5188 &rbd_dev->flags);
5189 spin_unlock_irq(&rbd_dev->lock);
5190 }
5191 spin_unlock(&rbd_dev_list_lock);
5192 if (ret < 0 || already)
5193 return ret;
5194
5195 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5196 if (ret)
5197 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5198
5199 /*
5200 * flush remaining watch callbacks - these must be complete
5201 * before the osd_client is shutdown
5202 */
5203 dout("%s: flushing notifies", __func__);
5204 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5205 /*
5206 * Don't free anything from rbd_dev->disk until after all
5207 * notifies are completely processed. Otherwise
5208 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5209 * in a potential use after free of rbd_dev->disk or rbd_dev.
5210 */
5211 rbd_bus_del_dev(rbd_dev);
5212 rbd_dev_image_release(rbd_dev);
5213 module_put(THIS_MODULE);
5214
5215 return count;
5216 }
5217
5218 /*
5219 * create control files in sysfs
5220 * /sys/bus/rbd/...
5221 */
5222 static int rbd_sysfs_init(void)
5223 {
5224 int ret;
5225
5226 ret = device_register(&rbd_root_dev);
5227 if (ret < 0)
5228 return ret;
5229
5230 ret = bus_register(&rbd_bus_type);
5231 if (ret < 0)
5232 device_unregister(&rbd_root_dev);
5233
5234 return ret;
5235 }
5236
5237 static void rbd_sysfs_cleanup(void)
5238 {
5239 bus_unregister(&rbd_bus_type);
5240 device_unregister(&rbd_root_dev);
5241 }
5242
5243 static int rbd_slab_init(void)
5244 {
5245 rbd_assert(!rbd_img_request_cache);
5246 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5247 sizeof (struct rbd_img_request),
5248 __alignof__(struct rbd_img_request),
5249 0, NULL);
5250 if (!rbd_img_request_cache)
5251 return -ENOMEM;
5252
5253 rbd_assert(!rbd_obj_request_cache);
5254 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5255 sizeof (struct rbd_obj_request),
5256 __alignof__(struct rbd_obj_request),
5257 0, NULL);
5258 if (!rbd_obj_request_cache)
5259 goto out_err;
5260
5261 rbd_assert(!rbd_segment_name_cache);
5262 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5263 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5264 if (rbd_segment_name_cache)
5265 return 0;
5266 out_err:
5267 if (rbd_obj_request_cache) {
5268 kmem_cache_destroy(rbd_obj_request_cache);
5269 rbd_obj_request_cache = NULL;
5270 }
5271
5272 kmem_cache_destroy(rbd_img_request_cache);
5273 rbd_img_request_cache = NULL;
5274
5275 return -ENOMEM;
5276 }
5277
5278 static void rbd_slab_exit(void)
5279 {
5280 rbd_assert(rbd_segment_name_cache);
5281 kmem_cache_destroy(rbd_segment_name_cache);
5282 rbd_segment_name_cache = NULL;
5283
5284 rbd_assert(rbd_obj_request_cache);
5285 kmem_cache_destroy(rbd_obj_request_cache);
5286 rbd_obj_request_cache = NULL;
5287
5288 rbd_assert(rbd_img_request_cache);
5289 kmem_cache_destroy(rbd_img_request_cache);
5290 rbd_img_request_cache = NULL;
5291 }
5292
5293 static int __init rbd_init(void)
5294 {
5295 int rc;
5296
5297 if (!libceph_compatible(NULL)) {
5298 rbd_warn(NULL, "libceph incompatibility (quitting)");
5299
5300 return -EINVAL;
5301 }
5302 rc = rbd_slab_init();
5303 if (rc)
5304 return rc;
5305 rc = rbd_sysfs_init();
5306 if (rc)
5307 rbd_slab_exit();
5308 else
5309 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5310
5311 return rc;
5312 }
5313
5314 static void __exit rbd_exit(void)
5315 {
5316 rbd_sysfs_cleanup();
5317 rbd_slab_exit();
5318 }
5319
5320 module_init(rbd_init);
5321 module_exit(rbd_exit);
5322
5323 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5324 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5325 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5326 MODULE_DESCRIPTION("rados block device");
5327
5328 /* following authorship retained from original osdblk.c */
5329 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5330
5331 MODULE_LICENSE("GPL");