]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
Merge tag 'xfs-for-linus-3.15-rc6' of git://oss.sgi.com/xfs/xfs
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG /* Activate rbd_assert() calls */
49
50 /*
51 * The basic unit of block I/O is a sector. It is interpreted in a
52 * number of contexts in Linux (blk, bio, genhd), but the default is
53 * universally 512 bytes. These symbols are just slightly more
54 * meaningful than the bare numbers they represent.
55 */
56 #define SECTOR_SHIFT 9
57 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
58
59 /*
60 * Increment the given counter and return its updated value.
61 * If the counter is already 0 it will not be incremented.
62 * If the counter is already at its maximum value returns
63 * -EINVAL without updating it.
64 */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67 unsigned int counter;
68
69 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70 if (counter <= (unsigned int)INT_MAX)
71 return (int)counter;
72
73 atomic_dec(v);
74
75 return -EINVAL;
76 }
77
78 /* Decrement the counter. Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81 int counter;
82
83 counter = atomic_dec_return(v);
84 if (counter >= 0)
85 return counter;
86
87 atomic_inc(v);
88
89 return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR 256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN \
99 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME "-"
104
105 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX 64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX 64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING (1<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1<<1)
117 #define RBD_FEATURES_ALL \
118 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
123
124 /*
125 * An RBD device name will be "rbd#", where the "rbd" comes from
126 * RBD_DRV_NAME above, and # is a unique integer identifier.
127 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128 * enough to hold all possible device names.
129 */
130 #define DEV_NAME_LEN 32
131 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134 * block device image metadata (in-memory version)
135 */
136 struct rbd_image_header {
137 /* These six fields never change for a given rbd image */
138 char *object_prefix;
139 __u8 obj_order;
140 __u8 crypt_type;
141 __u8 comp_type;
142 u64 stripe_unit;
143 u64 stripe_count;
144 u64 features; /* Might be changeable someday? */
145
146 /* The remaining fields need to be updated occasionally */
147 u64 image_size;
148 struct ceph_snap_context *snapc;
149 char *snap_names; /* format 1 only */
150 u64 *snap_sizes; /* format 1 only */
151 };
152
153 /*
154 * An rbd image specification.
155 *
156 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157 * identify an image. Each rbd_dev structure includes a pointer to
158 * an rbd_spec structure that encapsulates this identity.
159 *
160 * Each of the id's in an rbd_spec has an associated name. For a
161 * user-mapped image, the names are supplied and the id's associated
162 * with them are looked up. For a layered image, a parent image is
163 * defined by the tuple, and the names are looked up.
164 *
165 * An rbd_dev structure contains a parent_spec pointer which is
166 * non-null if the image it represents is a child in a layered
167 * image. This pointer will refer to the rbd_spec structure used
168 * by the parent rbd_dev for its own identity (i.e., the structure
169 * is shared between the parent and child).
170 *
171 * Since these structures are populated once, during the discovery
172 * phase of image construction, they are effectively immutable so
173 * we make no effort to synchronize access to them.
174 *
175 * Note that code herein does not assume the image name is known (it
176 * could be a null pointer).
177 */
178 struct rbd_spec {
179 u64 pool_id;
180 const char *pool_name;
181
182 const char *image_id;
183 const char *image_name;
184
185 u64 snap_id;
186 const char *snap_name;
187
188 struct kref kref;
189 };
190
191 /*
192 * an instance of the client. multiple devices may share an rbd client.
193 */
194 struct rbd_client {
195 struct ceph_client *client;
196 struct kref kref;
197 struct list_head node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
214 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
215 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
216 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220 const char *object_name;
221 u64 offset; /* object start byte */
222 u64 length; /* bytes from offset */
223 unsigned long flags;
224
225 /*
226 * An object request associated with an image will have its
227 * img_data flag set; a standalone object request will not.
228 *
229 * A standalone object request will have which == BAD_WHICH
230 * and a null obj_request pointer.
231 *
232 * An object request initiated in support of a layered image
233 * object (to check for its existence before a write) will
234 * have which == BAD_WHICH and a non-null obj_request pointer.
235 *
236 * Finally, an object request for rbd image data will have
237 * which != BAD_WHICH, and will have a non-null img_request
238 * pointer. The value of which will be in the range
239 * 0..(img_request->obj_request_count-1).
240 */
241 union {
242 struct rbd_obj_request *obj_request; /* STAT op */
243 struct {
244 struct rbd_img_request *img_request;
245 u64 img_offset;
246 /* links for img_request->obj_requests list */
247 struct list_head links;
248 };
249 };
250 u32 which; /* posn image request list */
251
252 enum obj_request_type type;
253 union {
254 struct bio *bio_list;
255 struct {
256 struct page **pages;
257 u32 page_count;
258 };
259 };
260 struct page **copyup_pages;
261 u32 copyup_page_count;
262
263 struct ceph_osd_request *osd_req;
264
265 u64 xferred; /* bytes transferred */
266 int result;
267
268 rbd_obj_callback_t callback;
269 struct completion completion;
270
271 struct kref kref;
272 };
273
274 enum img_req_flags {
275 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
276 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
277 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281 struct rbd_device *rbd_dev;
282 u64 offset; /* starting image byte offset */
283 u64 length; /* byte count from offset */
284 unsigned long flags;
285 union {
286 u64 snap_id; /* for reads */
287 struct ceph_snap_context *snapc; /* for writes */
288 };
289 union {
290 struct request *rq; /* block request */
291 struct rbd_obj_request *obj_request; /* obj req initiator */
292 };
293 struct page **copyup_pages;
294 u32 copyup_page_count;
295 spinlock_t completion_lock;/* protects next_completion */
296 u32 next_completion;
297 rbd_img_callback_t callback;
298 u64 xferred;/* aggregate bytes transferred */
299 int result; /* first nonzero obj_request result */
300
301 u32 obj_request_count;
302 struct list_head obj_requests; /* rbd_obj_request structs */
303
304 struct kref kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315 u64 size;
316 u64 features;
317 bool read_only;
318 };
319
320 /*
321 * a single device
322 */
323 struct rbd_device {
324 int dev_id; /* blkdev unique id */
325
326 int major; /* blkdev assigned major */
327 int minor;
328 struct gendisk *disk; /* blkdev's gendisk and rq */
329
330 u32 image_format; /* Either 1 or 2 */
331 struct rbd_client *rbd_client;
332
333 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335 spinlock_t lock; /* queue, flags, open_count */
336
337 struct rbd_image_header header;
338 unsigned long flags; /* possibly lock protected */
339 struct rbd_spec *spec;
340
341 char *header_name;
342
343 struct ceph_file_layout layout;
344
345 struct ceph_osd_event *watch_event;
346 struct rbd_obj_request *watch_request;
347
348 struct rbd_spec *parent_spec;
349 u64 parent_overlap;
350 atomic_t parent_ref;
351 struct rbd_device *parent;
352
353 /* protects updating the header */
354 struct rw_semaphore header_rwsem;
355
356 struct rbd_mapping mapping;
357
358 struct list_head node;
359
360 /* sysfs related */
361 struct device dev;
362 unsigned long open_count; /* protected by lock */
363 };
364
365 /*
366 * Flag bits for rbd_dev->flags. If atomicity is required,
367 * rbd_dev->lock is used to protect access.
368 *
369 * Currently, only the "removing" flag (which is coupled with the
370 * "open_count" field) requires atomic access.
371 */
372 enum rbd_dev_flags {
373 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
374 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list); /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list); /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache *rbd_img_request_cache;
388 static struct kmem_cache *rbd_obj_request_cache;
389 static struct kmem_cache *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395 * Default to false for now, as single-major requires >= 0.75 version of
396 * userspace rbd utility.
397 */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407 size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409 size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411 size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413 size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433 &bus_attr_add.attr,
434 &bus_attr_remove.attr,
435 &bus_attr_add_single_major.attr,
436 &bus_attr_remove_single_major.attr,
437 NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441 struct attribute *attr, int index)
442 {
443 if (!single_major &&
444 (attr == &bus_attr_add_single_major.attr ||
445 attr == &bus_attr_remove_single_major.attr))
446 return 0;
447
448 return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452 .attrs = rbd_bus_attrs,
453 .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458 .name = "rbd",
459 .bus_groups = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467 .init_name = "rbd",
468 .release = rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474 struct va_format vaf;
475 va_list args;
476
477 va_start(args, fmt);
478 vaf.fmt = fmt;
479 vaf.va = &args;
480
481 if (!rbd_dev)
482 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483 else if (rbd_dev->disk)
484 printk(KERN_WARNING "%s: %s: %pV\n",
485 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486 else if (rbd_dev->spec && rbd_dev->spec->image_name)
487 printk(KERN_WARNING "%s: image %s: %pV\n",
488 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489 else if (rbd_dev->spec && rbd_dev->spec->image_id)
490 printk(KERN_WARNING "%s: id %s: %pV\n",
491 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492 else /* punt */
493 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494 RBD_DRV_NAME, rbd_dev, &vaf);
495 va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr) \
500 if (unlikely(!(expr))) { \
501 printk(KERN_ERR "\nAssertion failure in %s() " \
502 "at line %d:\n\n" \
503 "\trbd_assert(%s);\n\n", \
504 __func__, __LINE__, #expr); \
505 BUG(); \
506 }
507 #else /* !RBD_DEBUG */
508 # define rbd_assert(expr) ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519 u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529 bool removing = false;
530
531 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532 return -EROFS;
533
534 spin_lock_irq(&rbd_dev->lock);
535 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536 removing = true;
537 else
538 rbd_dev->open_count++;
539 spin_unlock_irq(&rbd_dev->lock);
540 if (removing)
541 return -ENOENT;
542
543 (void) get_device(&rbd_dev->dev);
544 set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546 return 0;
547 }
548
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551 struct rbd_device *rbd_dev = disk->private_data;
552 unsigned long open_count_before;
553
554 spin_lock_irq(&rbd_dev->lock);
555 open_count_before = rbd_dev->open_count--;
556 spin_unlock_irq(&rbd_dev->lock);
557 rbd_assert(open_count_before > 0);
558
559 put_device(&rbd_dev->dev);
560 }
561
562 static const struct block_device_operations rbd_bd_ops = {
563 .owner = THIS_MODULE,
564 .open = rbd_open,
565 .release = rbd_release,
566 };
567
568 /*
569 * Initialize an rbd client instance. Success or not, this function
570 * consumes ceph_opts. Caller holds client_mutex.
571 */
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573 {
574 struct rbd_client *rbdc;
575 int ret = -ENOMEM;
576
577 dout("%s:\n", __func__);
578 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579 if (!rbdc)
580 goto out_opt;
581
582 kref_init(&rbdc->kref);
583 INIT_LIST_HEAD(&rbdc->node);
584
585 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586 if (IS_ERR(rbdc->client))
587 goto out_rbdc;
588 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589
590 ret = ceph_open_session(rbdc->client);
591 if (ret < 0)
592 goto out_client;
593
594 spin_lock(&rbd_client_list_lock);
595 list_add_tail(&rbdc->node, &rbd_client_list);
596 spin_unlock(&rbd_client_list_lock);
597
598 dout("%s: rbdc %p\n", __func__, rbdc);
599
600 return rbdc;
601 out_client:
602 ceph_destroy_client(rbdc->client);
603 out_rbdc:
604 kfree(rbdc);
605 out_opt:
606 if (ceph_opts)
607 ceph_destroy_options(ceph_opts);
608 dout("%s: error %d\n", __func__, ret);
609
610 return ERR_PTR(ret);
611 }
612
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614 {
615 kref_get(&rbdc->kref);
616
617 return rbdc;
618 }
619
620 /*
621 * Find a ceph client with specific addr and configuration. If
622 * found, bump its reference count.
623 */
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625 {
626 struct rbd_client *client_node;
627 bool found = false;
628
629 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630 return NULL;
631
632 spin_lock(&rbd_client_list_lock);
633 list_for_each_entry(client_node, &rbd_client_list, node) {
634 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635 __rbd_get_client(client_node);
636
637 found = true;
638 break;
639 }
640 }
641 spin_unlock(&rbd_client_list_lock);
642
643 return found ? client_node : NULL;
644 }
645
646 /*
647 * mount options
648 */
649 enum {
650 Opt_last_int,
651 /* int args above */
652 Opt_last_string,
653 /* string args above */
654 Opt_read_only,
655 Opt_read_write,
656 /* Boolean args above */
657 Opt_last_bool,
658 };
659
660 static match_table_t rbd_opts_tokens = {
661 /* int args above */
662 /* string args above */
663 {Opt_read_only, "read_only"},
664 {Opt_read_only, "ro"}, /* Alternate spelling */
665 {Opt_read_write, "read_write"},
666 {Opt_read_write, "rw"}, /* Alternate spelling */
667 /* Boolean args above */
668 {-1, NULL}
669 };
670
671 struct rbd_options {
672 bool read_only;
673 };
674
675 #define RBD_READ_ONLY_DEFAULT false
676
677 static int parse_rbd_opts_token(char *c, void *private)
678 {
679 struct rbd_options *rbd_opts = private;
680 substring_t argstr[MAX_OPT_ARGS];
681 int token, intval, ret;
682
683 token = match_token(c, rbd_opts_tokens, argstr);
684 if (token < 0)
685 return -EINVAL;
686
687 if (token < Opt_last_int) {
688 ret = match_int(&argstr[0], &intval);
689 if (ret < 0) {
690 pr_err("bad mount option arg (not int) "
691 "at '%s'\n", c);
692 return ret;
693 }
694 dout("got int token %d val %d\n", token, intval);
695 } else if (token > Opt_last_int && token < Opt_last_string) {
696 dout("got string token %d val %s\n", token,
697 argstr[0].from);
698 } else if (token > Opt_last_string && token < Opt_last_bool) {
699 dout("got Boolean token %d\n", token);
700 } else {
701 dout("got token %d\n", token);
702 }
703
704 switch (token) {
705 case Opt_read_only:
706 rbd_opts->read_only = true;
707 break;
708 case Opt_read_write:
709 rbd_opts->read_only = false;
710 break;
711 default:
712 rbd_assert(false);
713 break;
714 }
715 return 0;
716 }
717
718 /*
719 * Get a ceph client with specific addr and configuration, if one does
720 * not exist create it. Either way, ceph_opts is consumed by this
721 * function.
722 */
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724 {
725 struct rbd_client *rbdc;
726
727 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728 rbdc = rbd_client_find(ceph_opts);
729 if (rbdc) /* using an existing client */
730 ceph_destroy_options(ceph_opts);
731 else
732 rbdc = rbd_client_create(ceph_opts);
733 mutex_unlock(&client_mutex);
734
735 return rbdc;
736 }
737
738 /*
739 * Destroy ceph client
740 *
741 * Caller must hold rbd_client_list_lock.
742 */
743 static void rbd_client_release(struct kref *kref)
744 {
745 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746
747 dout("%s: rbdc %p\n", __func__, rbdc);
748 spin_lock(&rbd_client_list_lock);
749 list_del(&rbdc->node);
750 spin_unlock(&rbd_client_list_lock);
751
752 ceph_destroy_client(rbdc->client);
753 kfree(rbdc);
754 }
755
756 /*
757 * Drop reference to ceph client node. If it's not referenced anymore, release
758 * it.
759 */
760 static void rbd_put_client(struct rbd_client *rbdc)
761 {
762 if (rbdc)
763 kref_put(&rbdc->kref, rbd_client_release);
764 }
765
766 static bool rbd_image_format_valid(u32 image_format)
767 {
768 return image_format == 1 || image_format == 2;
769 }
770
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772 {
773 size_t size;
774 u32 snap_count;
775
776 /* The header has to start with the magic rbd header text */
777 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778 return false;
779
780 /* The bio layer requires at least sector-sized I/O */
781
782 if (ondisk->options.order < SECTOR_SHIFT)
783 return false;
784
785 /* If we use u64 in a few spots we may be able to loosen this */
786
787 if (ondisk->options.order > 8 * sizeof (int) - 1)
788 return false;
789
790 /*
791 * The size of a snapshot header has to fit in a size_t, and
792 * that limits the number of snapshots.
793 */
794 snap_count = le32_to_cpu(ondisk->snap_count);
795 size = SIZE_MAX - sizeof (struct ceph_snap_context);
796 if (snap_count > size / sizeof (__le64))
797 return false;
798
799 /*
800 * Not only that, but the size of the entire the snapshot
801 * header must also be representable in a size_t.
802 */
803 size -= snap_count * sizeof (__le64);
804 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805 return false;
806
807 return true;
808 }
809
810 /*
811 * Fill an rbd image header with information from the given format 1
812 * on-disk header.
813 */
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815 struct rbd_image_header_ondisk *ondisk)
816 {
817 struct rbd_image_header *header = &rbd_dev->header;
818 bool first_time = header->object_prefix == NULL;
819 struct ceph_snap_context *snapc;
820 char *object_prefix = NULL;
821 char *snap_names = NULL;
822 u64 *snap_sizes = NULL;
823 u32 snap_count;
824 size_t size;
825 int ret = -ENOMEM;
826 u32 i;
827
828 /* Allocate this now to avoid having to handle failure below */
829
830 if (first_time) {
831 size_t len;
832
833 len = strnlen(ondisk->object_prefix,
834 sizeof (ondisk->object_prefix));
835 object_prefix = kmalloc(len + 1, GFP_KERNEL);
836 if (!object_prefix)
837 return -ENOMEM;
838 memcpy(object_prefix, ondisk->object_prefix, len);
839 object_prefix[len] = '\0';
840 }
841
842 /* Allocate the snapshot context and fill it in */
843
844 snap_count = le32_to_cpu(ondisk->snap_count);
845 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846 if (!snapc)
847 goto out_err;
848 snapc->seq = le64_to_cpu(ondisk->snap_seq);
849 if (snap_count) {
850 struct rbd_image_snap_ondisk *snaps;
851 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852
853 /* We'll keep a copy of the snapshot names... */
854
855 if (snap_names_len > (u64)SIZE_MAX)
856 goto out_2big;
857 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858 if (!snap_names)
859 goto out_err;
860
861 /* ...as well as the array of their sizes. */
862
863 size = snap_count * sizeof (*header->snap_sizes);
864 snap_sizes = kmalloc(size, GFP_KERNEL);
865 if (!snap_sizes)
866 goto out_err;
867
868 /*
869 * Copy the names, and fill in each snapshot's id
870 * and size.
871 *
872 * Note that rbd_dev_v1_header_info() guarantees the
873 * ondisk buffer we're working with has
874 * snap_names_len bytes beyond the end of the
875 * snapshot id array, this memcpy() is safe.
876 */
877 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878 snaps = ondisk->snaps;
879 for (i = 0; i < snap_count; i++) {
880 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882 }
883 }
884
885 /* We won't fail any more, fill in the header */
886
887 if (first_time) {
888 header->object_prefix = object_prefix;
889 header->obj_order = ondisk->options.order;
890 header->crypt_type = ondisk->options.crypt_type;
891 header->comp_type = ondisk->options.comp_type;
892 /* The rest aren't used for format 1 images */
893 header->stripe_unit = 0;
894 header->stripe_count = 0;
895 header->features = 0;
896 } else {
897 ceph_put_snap_context(header->snapc);
898 kfree(header->snap_names);
899 kfree(header->snap_sizes);
900 }
901
902 /* The remaining fields always get updated (when we refresh) */
903
904 header->image_size = le64_to_cpu(ondisk->image_size);
905 header->snapc = snapc;
906 header->snap_names = snap_names;
907 header->snap_sizes = snap_sizes;
908
909 /* Make sure mapping size is consistent with header info */
910
911 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912 if (rbd_dev->mapping.size != header->image_size)
913 rbd_dev->mapping.size = header->image_size;
914
915 return 0;
916 out_2big:
917 ret = -EIO;
918 out_err:
919 kfree(snap_sizes);
920 kfree(snap_names);
921 ceph_put_snap_context(snapc);
922 kfree(object_prefix);
923
924 return ret;
925 }
926
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928 {
929 const char *snap_name;
930
931 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932
933 /* Skip over names until we find the one we are looking for */
934
935 snap_name = rbd_dev->header.snap_names;
936 while (which--)
937 snap_name += strlen(snap_name) + 1;
938
939 return kstrdup(snap_name, GFP_KERNEL);
940 }
941
942 /*
943 * Snapshot id comparison function for use with qsort()/bsearch().
944 * Note that result is for snapshots in *descending* order.
945 */
946 static int snapid_compare_reverse(const void *s1, const void *s2)
947 {
948 u64 snap_id1 = *(u64 *)s1;
949 u64 snap_id2 = *(u64 *)s2;
950
951 if (snap_id1 < snap_id2)
952 return 1;
953 return snap_id1 == snap_id2 ? 0 : -1;
954 }
955
956 /*
957 * Search a snapshot context to see if the given snapshot id is
958 * present.
959 *
960 * Returns the position of the snapshot id in the array if it's found,
961 * or BAD_SNAP_INDEX otherwise.
962 *
963 * Note: The snapshot array is in kept sorted (by the osd) in
964 * reverse order, highest snapshot id first.
965 */
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967 {
968 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969 u64 *found;
970
971 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972 sizeof (snap_id), snapid_compare_reverse);
973
974 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975 }
976
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978 u64 snap_id)
979 {
980 u32 which;
981 const char *snap_name;
982
983 which = rbd_dev_snap_index(rbd_dev, snap_id);
984 if (which == BAD_SNAP_INDEX)
985 return ERR_PTR(-ENOENT);
986
987 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989 }
990
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992 {
993 if (snap_id == CEPH_NOSNAP)
994 return RBD_SNAP_HEAD_NAME;
995
996 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997 if (rbd_dev->image_format == 1)
998 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999
1000 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001 }
1002
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004 u64 *snap_size)
1005 {
1006 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007 if (snap_id == CEPH_NOSNAP) {
1008 *snap_size = rbd_dev->header.image_size;
1009 } else if (rbd_dev->image_format == 1) {
1010 u32 which;
1011
1012 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013 if (which == BAD_SNAP_INDEX)
1014 return -ENOENT;
1015
1016 *snap_size = rbd_dev->header.snap_sizes[which];
1017 } else {
1018 u64 size = 0;
1019 int ret;
1020
1021 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022 if (ret)
1023 return ret;
1024
1025 *snap_size = size;
1026 }
1027 return 0;
1028 }
1029
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031 u64 *snap_features)
1032 {
1033 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034 if (snap_id == CEPH_NOSNAP) {
1035 *snap_features = rbd_dev->header.features;
1036 } else if (rbd_dev->image_format == 1) {
1037 *snap_features = 0; /* No features for format 1 */
1038 } else {
1039 u64 features = 0;
1040 int ret;
1041
1042 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043 if (ret)
1044 return ret;
1045
1046 *snap_features = features;
1047 }
1048 return 0;
1049 }
1050
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052 {
1053 u64 snap_id = rbd_dev->spec->snap_id;
1054 u64 size = 0;
1055 u64 features = 0;
1056 int ret;
1057
1058 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059 if (ret)
1060 return ret;
1061 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062 if (ret)
1063 return ret;
1064
1065 rbd_dev->mapping.size = size;
1066 rbd_dev->mapping.features = features;
1067
1068 return 0;
1069 }
1070
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072 {
1073 rbd_dev->mapping.size = 0;
1074 rbd_dev->mapping.features = 0;
1075 }
1076
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078 {
1079 char *name;
1080 u64 segment;
1081 int ret;
1082 char *name_format;
1083
1084 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085 if (!name)
1086 return NULL;
1087 segment = offset >> rbd_dev->header.obj_order;
1088 name_format = "%s.%012llx";
1089 if (rbd_dev->image_format == 2)
1090 name_format = "%s.%016llx";
1091 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092 rbd_dev->header.object_prefix, segment);
1093 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094 pr_err("error formatting segment name for #%llu (%d)\n",
1095 segment, ret);
1096 kfree(name);
1097 name = NULL;
1098 }
1099
1100 return name;
1101 }
1102
1103 static void rbd_segment_name_free(const char *name)
1104 {
1105 /* The explicit cast here is needed to drop the const qualifier */
1106
1107 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108 }
1109
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111 {
1112 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114 return offset & (segment_size - 1);
1115 }
1116
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118 u64 offset, u64 length)
1119 {
1120 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122 offset &= segment_size - 1;
1123
1124 rbd_assert(length <= U64_MAX - offset);
1125 if (offset + length > segment_size)
1126 length = segment_size - offset;
1127
1128 return length;
1129 }
1130
1131 /*
1132 * returns the size of an object in the image
1133 */
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135 {
1136 return 1 << header->obj_order;
1137 }
1138
1139 /*
1140 * bio helpers
1141 */
1142
1143 static void bio_chain_put(struct bio *chain)
1144 {
1145 struct bio *tmp;
1146
1147 while (chain) {
1148 tmp = chain;
1149 chain = chain->bi_next;
1150 bio_put(tmp);
1151 }
1152 }
1153
1154 /*
1155 * zeros a bio chain, starting at specific offset
1156 */
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1158 {
1159 struct bio_vec bv;
1160 struct bvec_iter iter;
1161 unsigned long flags;
1162 void *buf;
1163 int pos = 0;
1164
1165 while (chain) {
1166 bio_for_each_segment(bv, chain, iter) {
1167 if (pos + bv.bv_len > start_ofs) {
1168 int remainder = max(start_ofs - pos, 0);
1169 buf = bvec_kmap_irq(&bv, &flags);
1170 memset(buf + remainder, 0,
1171 bv.bv_len - remainder);
1172 flush_dcache_page(bv.bv_page);
1173 bvec_kunmap_irq(buf, &flags);
1174 }
1175 pos += bv.bv_len;
1176 }
1177
1178 chain = chain->bi_next;
1179 }
1180 }
1181
1182 /*
1183 * similar to zero_bio_chain(), zeros data defined by a page array,
1184 * starting at the given byte offset from the start of the array and
1185 * continuing up to the given end offset. The pages array is
1186 * assumed to be big enough to hold all bytes up to the end.
1187 */
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1189 {
1190 struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192 rbd_assert(end > offset);
1193 rbd_assert(end - offset <= (u64)SIZE_MAX);
1194 while (offset < end) {
1195 size_t page_offset;
1196 size_t length;
1197 unsigned long flags;
1198 void *kaddr;
1199
1200 page_offset = offset & ~PAGE_MASK;
1201 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202 local_irq_save(flags);
1203 kaddr = kmap_atomic(*page);
1204 memset(kaddr + page_offset, 0, length);
1205 flush_dcache_page(*page);
1206 kunmap_atomic(kaddr);
1207 local_irq_restore(flags);
1208
1209 offset += length;
1210 page++;
1211 }
1212 }
1213
1214 /*
1215 * Clone a portion of a bio, starting at the given byte offset
1216 * and continuing for the number of bytes indicated.
1217 */
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219 unsigned int offset,
1220 unsigned int len,
1221 gfp_t gfpmask)
1222 {
1223 struct bio *bio;
1224
1225 bio = bio_clone(bio_src, gfpmask);
1226 if (!bio)
1227 return NULL; /* ENOMEM */
1228
1229 bio_advance(bio, offset);
1230 bio->bi_iter.bi_size = len;
1231
1232 return bio;
1233 }
1234
1235 /*
1236 * Clone a portion of a bio chain, starting at the given byte offset
1237 * into the first bio in the source chain and continuing for the
1238 * number of bytes indicated. The result is another bio chain of
1239 * exactly the given length, or a null pointer on error.
1240 *
1241 * The bio_src and offset parameters are both in-out. On entry they
1242 * refer to the first source bio and the offset into that bio where
1243 * the start of data to be cloned is located.
1244 *
1245 * On return, bio_src is updated to refer to the bio in the source
1246 * chain that contains first un-cloned byte, and *offset will
1247 * contain the offset of that byte within that bio.
1248 */
1249 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250 unsigned int *offset,
1251 unsigned int len,
1252 gfp_t gfpmask)
1253 {
1254 struct bio *bi = *bio_src;
1255 unsigned int off = *offset;
1256 struct bio *chain = NULL;
1257 struct bio **end;
1258
1259 /* Build up a chain of clone bios up to the limit */
1260
1261 if (!bi || off >= bi->bi_iter.bi_size || !len)
1262 return NULL; /* Nothing to clone */
1263
1264 end = &chain;
1265 while (len) {
1266 unsigned int bi_size;
1267 struct bio *bio;
1268
1269 if (!bi) {
1270 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271 goto out_err; /* EINVAL; ran out of bio's */
1272 }
1273 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1275 if (!bio)
1276 goto out_err; /* ENOMEM */
1277
1278 *end = bio;
1279 end = &bio->bi_next;
1280
1281 off += bi_size;
1282 if (off == bi->bi_iter.bi_size) {
1283 bi = bi->bi_next;
1284 off = 0;
1285 }
1286 len -= bi_size;
1287 }
1288 *bio_src = bi;
1289 *offset = off;
1290
1291 return chain;
1292 out_err:
1293 bio_chain_put(chain);
1294
1295 return NULL;
1296 }
1297
1298 /*
1299 * The default/initial value for all object request flags is 0. For
1300 * each flag, once its value is set to 1 it is never reset to 0
1301 * again.
1302 */
1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1304 {
1305 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306 struct rbd_device *rbd_dev;
1307
1308 rbd_dev = obj_request->img_request->rbd_dev;
1309 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1310 obj_request);
1311 }
1312 }
1313
1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1315 {
1316 smp_mb();
1317 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1318 }
1319
1320 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1321 {
1322 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323 struct rbd_device *rbd_dev = NULL;
1324
1325 if (obj_request_img_data_test(obj_request))
1326 rbd_dev = obj_request->img_request->rbd_dev;
1327 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1328 obj_request);
1329 }
1330 }
1331
1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1333 {
1334 smp_mb();
1335 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1336 }
1337
1338 /*
1339 * This sets the KNOWN flag after (possibly) setting the EXISTS
1340 * flag. The latter is set based on the "exists" value provided.
1341 *
1342 * Note that for our purposes once an object exists it never goes
1343 * away again. It's possible that the response from two existence
1344 * checks are separated by the creation of the target object, and
1345 * the first ("doesn't exist") response arrives *after* the second
1346 * ("does exist"). In that case we ignore the second one.
1347 */
1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1349 bool exists)
1350 {
1351 if (exists)
1352 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1354 smp_mb();
1355 }
1356
1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1358 {
1359 smp_mb();
1360 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1361 }
1362
1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1364 {
1365 smp_mb();
1366 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1367 }
1368
1369 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1370 {
1371 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1372 atomic_read(&obj_request->kref.refcount));
1373 kref_get(&obj_request->kref);
1374 }
1375
1376 static void rbd_obj_request_destroy(struct kref *kref);
1377 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1378 {
1379 rbd_assert(obj_request != NULL);
1380 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1381 atomic_read(&obj_request->kref.refcount));
1382 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1383 }
1384
1385 static bool img_request_child_test(struct rbd_img_request *img_request);
1386 static void rbd_parent_request_destroy(struct kref *kref);
1387 static void rbd_img_request_destroy(struct kref *kref);
1388 static void rbd_img_request_put(struct rbd_img_request *img_request)
1389 {
1390 rbd_assert(img_request != NULL);
1391 dout("%s: img %p (was %d)\n", __func__, img_request,
1392 atomic_read(&img_request->kref.refcount));
1393 if (img_request_child_test(img_request))
1394 kref_put(&img_request->kref, rbd_parent_request_destroy);
1395 else
1396 kref_put(&img_request->kref, rbd_img_request_destroy);
1397 }
1398
1399 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1400 struct rbd_obj_request *obj_request)
1401 {
1402 rbd_assert(obj_request->img_request == NULL);
1403
1404 /* Image request now owns object's original reference */
1405 obj_request->img_request = img_request;
1406 obj_request->which = img_request->obj_request_count;
1407 rbd_assert(!obj_request_img_data_test(obj_request));
1408 obj_request_img_data_set(obj_request);
1409 rbd_assert(obj_request->which != BAD_WHICH);
1410 img_request->obj_request_count++;
1411 list_add_tail(&obj_request->links, &img_request->obj_requests);
1412 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1413 obj_request->which);
1414 }
1415
1416 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1417 struct rbd_obj_request *obj_request)
1418 {
1419 rbd_assert(obj_request->which != BAD_WHICH);
1420
1421 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1422 obj_request->which);
1423 list_del(&obj_request->links);
1424 rbd_assert(img_request->obj_request_count > 0);
1425 img_request->obj_request_count--;
1426 rbd_assert(obj_request->which == img_request->obj_request_count);
1427 obj_request->which = BAD_WHICH;
1428 rbd_assert(obj_request_img_data_test(obj_request));
1429 rbd_assert(obj_request->img_request == img_request);
1430 obj_request->img_request = NULL;
1431 obj_request->callback = NULL;
1432 rbd_obj_request_put(obj_request);
1433 }
1434
1435 static bool obj_request_type_valid(enum obj_request_type type)
1436 {
1437 switch (type) {
1438 case OBJ_REQUEST_NODATA:
1439 case OBJ_REQUEST_BIO:
1440 case OBJ_REQUEST_PAGES:
1441 return true;
1442 default:
1443 return false;
1444 }
1445 }
1446
1447 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1448 struct rbd_obj_request *obj_request)
1449 {
1450 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1451
1452 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1453 }
1454
1455 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1456 {
1457
1458 dout("%s: img %p\n", __func__, img_request);
1459
1460 /*
1461 * If no error occurred, compute the aggregate transfer
1462 * count for the image request. We could instead use
1463 * atomic64_cmpxchg() to update it as each object request
1464 * completes; not clear which way is better off hand.
1465 */
1466 if (!img_request->result) {
1467 struct rbd_obj_request *obj_request;
1468 u64 xferred = 0;
1469
1470 for_each_obj_request(img_request, obj_request)
1471 xferred += obj_request->xferred;
1472 img_request->xferred = xferred;
1473 }
1474
1475 if (img_request->callback)
1476 img_request->callback(img_request);
1477 else
1478 rbd_img_request_put(img_request);
1479 }
1480
1481 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1482
1483 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1484 {
1485 dout("%s: obj %p\n", __func__, obj_request);
1486
1487 return wait_for_completion_interruptible(&obj_request->completion);
1488 }
1489
1490 /*
1491 * The default/initial value for all image request flags is 0. Each
1492 * is conditionally set to 1 at image request initialization time
1493 * and currently never change thereafter.
1494 */
1495 static void img_request_write_set(struct rbd_img_request *img_request)
1496 {
1497 set_bit(IMG_REQ_WRITE, &img_request->flags);
1498 smp_mb();
1499 }
1500
1501 static bool img_request_write_test(struct rbd_img_request *img_request)
1502 {
1503 smp_mb();
1504 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1505 }
1506
1507 static void img_request_child_set(struct rbd_img_request *img_request)
1508 {
1509 set_bit(IMG_REQ_CHILD, &img_request->flags);
1510 smp_mb();
1511 }
1512
1513 static void img_request_child_clear(struct rbd_img_request *img_request)
1514 {
1515 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1516 smp_mb();
1517 }
1518
1519 static bool img_request_child_test(struct rbd_img_request *img_request)
1520 {
1521 smp_mb();
1522 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1523 }
1524
1525 static void img_request_layered_set(struct rbd_img_request *img_request)
1526 {
1527 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1528 smp_mb();
1529 }
1530
1531 static void img_request_layered_clear(struct rbd_img_request *img_request)
1532 {
1533 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1534 smp_mb();
1535 }
1536
1537 static bool img_request_layered_test(struct rbd_img_request *img_request)
1538 {
1539 smp_mb();
1540 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1541 }
1542
1543 static void
1544 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1545 {
1546 u64 xferred = obj_request->xferred;
1547 u64 length = obj_request->length;
1548
1549 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1550 obj_request, obj_request->img_request, obj_request->result,
1551 xferred, length);
1552 /*
1553 * ENOENT means a hole in the image. We zero-fill the entire
1554 * length of the request. A short read also implies zero-fill
1555 * to the end of the request. An error requires the whole
1556 * length of the request to be reported finished with an error
1557 * to the block layer. In each case we update the xferred
1558 * count to indicate the whole request was satisfied.
1559 */
1560 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1561 if (obj_request->result == -ENOENT) {
1562 if (obj_request->type == OBJ_REQUEST_BIO)
1563 zero_bio_chain(obj_request->bio_list, 0);
1564 else
1565 zero_pages(obj_request->pages, 0, length);
1566 obj_request->result = 0;
1567 } else if (xferred < length && !obj_request->result) {
1568 if (obj_request->type == OBJ_REQUEST_BIO)
1569 zero_bio_chain(obj_request->bio_list, xferred);
1570 else
1571 zero_pages(obj_request->pages, xferred, length);
1572 }
1573 obj_request->xferred = length;
1574 obj_request_done_set(obj_request);
1575 }
1576
1577 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1578 {
1579 dout("%s: obj %p cb %p\n", __func__, obj_request,
1580 obj_request->callback);
1581 if (obj_request->callback)
1582 obj_request->callback(obj_request);
1583 else
1584 complete_all(&obj_request->completion);
1585 }
1586
1587 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1588 {
1589 dout("%s: obj %p\n", __func__, obj_request);
1590 obj_request_done_set(obj_request);
1591 }
1592
1593 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1594 {
1595 struct rbd_img_request *img_request = NULL;
1596 struct rbd_device *rbd_dev = NULL;
1597 bool layered = false;
1598
1599 if (obj_request_img_data_test(obj_request)) {
1600 img_request = obj_request->img_request;
1601 layered = img_request && img_request_layered_test(img_request);
1602 rbd_dev = img_request->rbd_dev;
1603 }
1604
1605 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1606 obj_request, img_request, obj_request->result,
1607 obj_request->xferred, obj_request->length);
1608 if (layered && obj_request->result == -ENOENT &&
1609 obj_request->img_offset < rbd_dev->parent_overlap)
1610 rbd_img_parent_read(obj_request);
1611 else if (img_request)
1612 rbd_img_obj_request_read_callback(obj_request);
1613 else
1614 obj_request_done_set(obj_request);
1615 }
1616
1617 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1618 {
1619 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1620 obj_request->result, obj_request->length);
1621 /*
1622 * There is no such thing as a successful short write. Set
1623 * it to our originally-requested length.
1624 */
1625 obj_request->xferred = obj_request->length;
1626 obj_request_done_set(obj_request);
1627 }
1628
1629 /*
1630 * For a simple stat call there's nothing to do. We'll do more if
1631 * this is part of a write sequence for a layered image.
1632 */
1633 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1634 {
1635 dout("%s: obj %p\n", __func__, obj_request);
1636 obj_request_done_set(obj_request);
1637 }
1638
1639 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1640 struct ceph_msg *msg)
1641 {
1642 struct rbd_obj_request *obj_request = osd_req->r_priv;
1643 u16 opcode;
1644
1645 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1646 rbd_assert(osd_req == obj_request->osd_req);
1647 if (obj_request_img_data_test(obj_request)) {
1648 rbd_assert(obj_request->img_request);
1649 rbd_assert(obj_request->which != BAD_WHICH);
1650 } else {
1651 rbd_assert(obj_request->which == BAD_WHICH);
1652 }
1653
1654 if (osd_req->r_result < 0)
1655 obj_request->result = osd_req->r_result;
1656
1657 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1658
1659 /*
1660 * We support a 64-bit length, but ultimately it has to be
1661 * passed to blk_end_request(), which takes an unsigned int.
1662 */
1663 obj_request->xferred = osd_req->r_reply_op_len[0];
1664 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1665
1666 opcode = osd_req->r_ops[0].op;
1667 switch (opcode) {
1668 case CEPH_OSD_OP_READ:
1669 rbd_osd_read_callback(obj_request);
1670 break;
1671 case CEPH_OSD_OP_SETALLOCHINT:
1672 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1673 /* fall through */
1674 case CEPH_OSD_OP_WRITE:
1675 rbd_osd_write_callback(obj_request);
1676 break;
1677 case CEPH_OSD_OP_STAT:
1678 rbd_osd_stat_callback(obj_request);
1679 break;
1680 case CEPH_OSD_OP_CALL:
1681 case CEPH_OSD_OP_NOTIFY_ACK:
1682 case CEPH_OSD_OP_WATCH:
1683 rbd_osd_trivial_callback(obj_request);
1684 break;
1685 default:
1686 rbd_warn(NULL, "%s: unsupported op %hu\n",
1687 obj_request->object_name, (unsigned short) opcode);
1688 break;
1689 }
1690
1691 if (obj_request_done_test(obj_request))
1692 rbd_obj_request_complete(obj_request);
1693 }
1694
1695 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1696 {
1697 struct rbd_img_request *img_request = obj_request->img_request;
1698 struct ceph_osd_request *osd_req = obj_request->osd_req;
1699 u64 snap_id;
1700
1701 rbd_assert(osd_req != NULL);
1702
1703 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1704 ceph_osdc_build_request(osd_req, obj_request->offset,
1705 NULL, snap_id, NULL);
1706 }
1707
1708 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1709 {
1710 struct rbd_img_request *img_request = obj_request->img_request;
1711 struct ceph_osd_request *osd_req = obj_request->osd_req;
1712 struct ceph_snap_context *snapc;
1713 struct timespec mtime = CURRENT_TIME;
1714
1715 rbd_assert(osd_req != NULL);
1716
1717 snapc = img_request ? img_request->snapc : NULL;
1718 ceph_osdc_build_request(osd_req, obj_request->offset,
1719 snapc, CEPH_NOSNAP, &mtime);
1720 }
1721
1722 /*
1723 * Create an osd request. A read request has one osd op (read).
1724 * A write request has either one (watch) or two (hint+write) osd ops.
1725 * (All rbd data writes are prefixed with an allocation hint op, but
1726 * technically osd watch is a write request, hence this distinction.)
1727 */
1728 static struct ceph_osd_request *rbd_osd_req_create(
1729 struct rbd_device *rbd_dev,
1730 bool write_request,
1731 unsigned int num_ops,
1732 struct rbd_obj_request *obj_request)
1733 {
1734 struct ceph_snap_context *snapc = NULL;
1735 struct ceph_osd_client *osdc;
1736 struct ceph_osd_request *osd_req;
1737
1738 if (obj_request_img_data_test(obj_request)) {
1739 struct rbd_img_request *img_request = obj_request->img_request;
1740
1741 rbd_assert(write_request ==
1742 img_request_write_test(img_request));
1743 if (write_request)
1744 snapc = img_request->snapc;
1745 }
1746
1747 rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1748
1749 /* Allocate and initialize the request, for the num_ops ops */
1750
1751 osdc = &rbd_dev->rbd_client->client->osdc;
1752 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1753 GFP_ATOMIC);
1754 if (!osd_req)
1755 return NULL; /* ENOMEM */
1756
1757 if (write_request)
1758 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1759 else
1760 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1761
1762 osd_req->r_callback = rbd_osd_req_callback;
1763 osd_req->r_priv = obj_request;
1764
1765 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1766 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1767
1768 return osd_req;
1769 }
1770
1771 /*
1772 * Create a copyup osd request based on the information in the
1773 * object request supplied. A copyup request has three osd ops,
1774 * a copyup method call, a hint op, and a write op.
1775 */
1776 static struct ceph_osd_request *
1777 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778 {
1779 struct rbd_img_request *img_request;
1780 struct ceph_snap_context *snapc;
1781 struct rbd_device *rbd_dev;
1782 struct ceph_osd_client *osdc;
1783 struct ceph_osd_request *osd_req;
1784
1785 rbd_assert(obj_request_img_data_test(obj_request));
1786 img_request = obj_request->img_request;
1787 rbd_assert(img_request);
1788 rbd_assert(img_request_write_test(img_request));
1789
1790 /* Allocate and initialize the request, for the three ops */
1791
1792 snapc = img_request->snapc;
1793 rbd_dev = img_request->rbd_dev;
1794 osdc = &rbd_dev->rbd_client->client->osdc;
1795 osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1796 if (!osd_req)
1797 return NULL; /* ENOMEM */
1798
1799 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800 osd_req->r_callback = rbd_osd_req_callback;
1801 osd_req->r_priv = obj_request;
1802
1803 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1804 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1805
1806 return osd_req;
1807 }
1808
1809
1810 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1811 {
1812 ceph_osdc_put_request(osd_req);
1813 }
1814
1815 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1816
1817 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1818 u64 offset, u64 length,
1819 enum obj_request_type type)
1820 {
1821 struct rbd_obj_request *obj_request;
1822 size_t size;
1823 char *name;
1824
1825 rbd_assert(obj_request_type_valid(type));
1826
1827 size = strlen(object_name) + 1;
1828 name = kmalloc(size, GFP_KERNEL);
1829 if (!name)
1830 return NULL;
1831
1832 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1833 if (!obj_request) {
1834 kfree(name);
1835 return NULL;
1836 }
1837
1838 obj_request->object_name = memcpy(name, object_name, size);
1839 obj_request->offset = offset;
1840 obj_request->length = length;
1841 obj_request->flags = 0;
1842 obj_request->which = BAD_WHICH;
1843 obj_request->type = type;
1844 INIT_LIST_HEAD(&obj_request->links);
1845 init_completion(&obj_request->completion);
1846 kref_init(&obj_request->kref);
1847
1848 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1849 offset, length, (int)type, obj_request);
1850
1851 return obj_request;
1852 }
1853
1854 static void rbd_obj_request_destroy(struct kref *kref)
1855 {
1856 struct rbd_obj_request *obj_request;
1857
1858 obj_request = container_of(kref, struct rbd_obj_request, kref);
1859
1860 dout("%s: obj %p\n", __func__, obj_request);
1861
1862 rbd_assert(obj_request->img_request == NULL);
1863 rbd_assert(obj_request->which == BAD_WHICH);
1864
1865 if (obj_request->osd_req)
1866 rbd_osd_req_destroy(obj_request->osd_req);
1867
1868 rbd_assert(obj_request_type_valid(obj_request->type));
1869 switch (obj_request->type) {
1870 case OBJ_REQUEST_NODATA:
1871 break; /* Nothing to do */
1872 case OBJ_REQUEST_BIO:
1873 if (obj_request->bio_list)
1874 bio_chain_put(obj_request->bio_list);
1875 break;
1876 case OBJ_REQUEST_PAGES:
1877 if (obj_request->pages)
1878 ceph_release_page_vector(obj_request->pages,
1879 obj_request->page_count);
1880 break;
1881 }
1882
1883 kfree(obj_request->object_name);
1884 obj_request->object_name = NULL;
1885 kmem_cache_free(rbd_obj_request_cache, obj_request);
1886 }
1887
1888 /* It's OK to call this for a device with no parent */
1889
1890 static void rbd_spec_put(struct rbd_spec *spec);
1891 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1892 {
1893 rbd_dev_remove_parent(rbd_dev);
1894 rbd_spec_put(rbd_dev->parent_spec);
1895 rbd_dev->parent_spec = NULL;
1896 rbd_dev->parent_overlap = 0;
1897 }
1898
1899 /*
1900 * Parent image reference counting is used to determine when an
1901 * image's parent fields can be safely torn down--after there are no
1902 * more in-flight requests to the parent image. When the last
1903 * reference is dropped, cleaning them up is safe.
1904 */
1905 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1906 {
1907 int counter;
1908
1909 if (!rbd_dev->parent_spec)
1910 return;
1911
1912 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1913 if (counter > 0)
1914 return;
1915
1916 /* Last reference; clean up parent data structures */
1917
1918 if (!counter)
1919 rbd_dev_unparent(rbd_dev);
1920 else
1921 rbd_warn(rbd_dev, "parent reference underflow\n");
1922 }
1923
1924 /*
1925 * If an image has a non-zero parent overlap, get a reference to its
1926 * parent.
1927 *
1928 * We must get the reference before checking for the overlap to
1929 * coordinate properly with zeroing the parent overlap in
1930 * rbd_dev_v2_parent_info() when an image gets flattened. We
1931 * drop it again if there is no overlap.
1932 *
1933 * Returns true if the rbd device has a parent with a non-zero
1934 * overlap and a reference for it was successfully taken, or
1935 * false otherwise.
1936 */
1937 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1938 {
1939 int counter;
1940
1941 if (!rbd_dev->parent_spec)
1942 return false;
1943
1944 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1945 if (counter > 0 && rbd_dev->parent_overlap)
1946 return true;
1947
1948 /* Image was flattened, but parent is not yet torn down */
1949
1950 if (counter < 0)
1951 rbd_warn(rbd_dev, "parent reference overflow\n");
1952
1953 return false;
1954 }
1955
1956 /*
1957 * Caller is responsible for filling in the list of object requests
1958 * that comprises the image request, and the Linux request pointer
1959 * (if there is one).
1960 */
1961 static struct rbd_img_request *rbd_img_request_create(
1962 struct rbd_device *rbd_dev,
1963 u64 offset, u64 length,
1964 bool write_request)
1965 {
1966 struct rbd_img_request *img_request;
1967
1968 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1969 if (!img_request)
1970 return NULL;
1971
1972 if (write_request) {
1973 down_read(&rbd_dev->header_rwsem);
1974 ceph_get_snap_context(rbd_dev->header.snapc);
1975 up_read(&rbd_dev->header_rwsem);
1976 }
1977
1978 img_request->rq = NULL;
1979 img_request->rbd_dev = rbd_dev;
1980 img_request->offset = offset;
1981 img_request->length = length;
1982 img_request->flags = 0;
1983 if (write_request) {
1984 img_request_write_set(img_request);
1985 img_request->snapc = rbd_dev->header.snapc;
1986 } else {
1987 img_request->snap_id = rbd_dev->spec->snap_id;
1988 }
1989 if (rbd_dev_parent_get(rbd_dev))
1990 img_request_layered_set(img_request);
1991 spin_lock_init(&img_request->completion_lock);
1992 img_request->next_completion = 0;
1993 img_request->callback = NULL;
1994 img_request->result = 0;
1995 img_request->obj_request_count = 0;
1996 INIT_LIST_HEAD(&img_request->obj_requests);
1997 kref_init(&img_request->kref);
1998
1999 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2000 write_request ? "write" : "read", offset, length,
2001 img_request);
2002
2003 return img_request;
2004 }
2005
2006 static void rbd_img_request_destroy(struct kref *kref)
2007 {
2008 struct rbd_img_request *img_request;
2009 struct rbd_obj_request *obj_request;
2010 struct rbd_obj_request *next_obj_request;
2011
2012 img_request = container_of(kref, struct rbd_img_request, kref);
2013
2014 dout("%s: img %p\n", __func__, img_request);
2015
2016 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2017 rbd_img_obj_request_del(img_request, obj_request);
2018 rbd_assert(img_request->obj_request_count == 0);
2019
2020 if (img_request_layered_test(img_request)) {
2021 img_request_layered_clear(img_request);
2022 rbd_dev_parent_put(img_request->rbd_dev);
2023 }
2024
2025 if (img_request_write_test(img_request))
2026 ceph_put_snap_context(img_request->snapc);
2027
2028 kmem_cache_free(rbd_img_request_cache, img_request);
2029 }
2030
2031 static struct rbd_img_request *rbd_parent_request_create(
2032 struct rbd_obj_request *obj_request,
2033 u64 img_offset, u64 length)
2034 {
2035 struct rbd_img_request *parent_request;
2036 struct rbd_device *rbd_dev;
2037
2038 rbd_assert(obj_request->img_request);
2039 rbd_dev = obj_request->img_request->rbd_dev;
2040
2041 parent_request = rbd_img_request_create(rbd_dev->parent,
2042 img_offset, length, false);
2043 if (!parent_request)
2044 return NULL;
2045
2046 img_request_child_set(parent_request);
2047 rbd_obj_request_get(obj_request);
2048 parent_request->obj_request = obj_request;
2049
2050 return parent_request;
2051 }
2052
2053 static void rbd_parent_request_destroy(struct kref *kref)
2054 {
2055 struct rbd_img_request *parent_request;
2056 struct rbd_obj_request *orig_request;
2057
2058 parent_request = container_of(kref, struct rbd_img_request, kref);
2059 orig_request = parent_request->obj_request;
2060
2061 parent_request->obj_request = NULL;
2062 rbd_obj_request_put(orig_request);
2063 img_request_child_clear(parent_request);
2064
2065 rbd_img_request_destroy(kref);
2066 }
2067
2068 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2069 {
2070 struct rbd_img_request *img_request;
2071 unsigned int xferred;
2072 int result;
2073 bool more;
2074
2075 rbd_assert(obj_request_img_data_test(obj_request));
2076 img_request = obj_request->img_request;
2077
2078 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2079 xferred = (unsigned int)obj_request->xferred;
2080 result = obj_request->result;
2081 if (result) {
2082 struct rbd_device *rbd_dev = img_request->rbd_dev;
2083
2084 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2085 img_request_write_test(img_request) ? "write" : "read",
2086 obj_request->length, obj_request->img_offset,
2087 obj_request->offset);
2088 rbd_warn(rbd_dev, " result %d xferred %x\n",
2089 result, xferred);
2090 if (!img_request->result)
2091 img_request->result = result;
2092 }
2093
2094 /* Image object requests don't own their page array */
2095
2096 if (obj_request->type == OBJ_REQUEST_PAGES) {
2097 obj_request->pages = NULL;
2098 obj_request->page_count = 0;
2099 }
2100
2101 if (img_request_child_test(img_request)) {
2102 rbd_assert(img_request->obj_request != NULL);
2103 more = obj_request->which < img_request->obj_request_count - 1;
2104 } else {
2105 rbd_assert(img_request->rq != NULL);
2106 more = blk_end_request(img_request->rq, result, xferred);
2107 }
2108
2109 return more;
2110 }
2111
2112 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2113 {
2114 struct rbd_img_request *img_request;
2115 u32 which = obj_request->which;
2116 bool more = true;
2117
2118 rbd_assert(obj_request_img_data_test(obj_request));
2119 img_request = obj_request->img_request;
2120
2121 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2122 rbd_assert(img_request != NULL);
2123 rbd_assert(img_request->obj_request_count > 0);
2124 rbd_assert(which != BAD_WHICH);
2125 rbd_assert(which < img_request->obj_request_count);
2126
2127 spin_lock_irq(&img_request->completion_lock);
2128 if (which != img_request->next_completion)
2129 goto out;
2130
2131 for_each_obj_request_from(img_request, obj_request) {
2132 rbd_assert(more);
2133 rbd_assert(which < img_request->obj_request_count);
2134
2135 if (!obj_request_done_test(obj_request))
2136 break;
2137 more = rbd_img_obj_end_request(obj_request);
2138 which++;
2139 }
2140
2141 rbd_assert(more ^ (which == img_request->obj_request_count));
2142 img_request->next_completion = which;
2143 out:
2144 spin_unlock_irq(&img_request->completion_lock);
2145
2146 if (!more)
2147 rbd_img_request_complete(img_request);
2148 }
2149
2150 /*
2151 * Split up an image request into one or more object requests, each
2152 * to a different object. The "type" parameter indicates whether
2153 * "data_desc" is the pointer to the head of a list of bio
2154 * structures, or the base of a page array. In either case this
2155 * function assumes data_desc describes memory sufficient to hold
2156 * all data described by the image request.
2157 */
2158 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2159 enum obj_request_type type,
2160 void *data_desc)
2161 {
2162 struct rbd_device *rbd_dev = img_request->rbd_dev;
2163 struct rbd_obj_request *obj_request = NULL;
2164 struct rbd_obj_request *next_obj_request;
2165 bool write_request = img_request_write_test(img_request);
2166 struct bio *bio_list = NULL;
2167 unsigned int bio_offset = 0;
2168 struct page **pages = NULL;
2169 u64 img_offset;
2170 u64 resid;
2171 u16 opcode;
2172
2173 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2174 (int)type, data_desc);
2175
2176 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2177 img_offset = img_request->offset;
2178 resid = img_request->length;
2179 rbd_assert(resid > 0);
2180
2181 if (type == OBJ_REQUEST_BIO) {
2182 bio_list = data_desc;
2183 rbd_assert(img_offset ==
2184 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2185 } else {
2186 rbd_assert(type == OBJ_REQUEST_PAGES);
2187 pages = data_desc;
2188 }
2189
2190 while (resid) {
2191 struct ceph_osd_request *osd_req;
2192 const char *object_name;
2193 u64 offset;
2194 u64 length;
2195 unsigned int which = 0;
2196
2197 object_name = rbd_segment_name(rbd_dev, img_offset);
2198 if (!object_name)
2199 goto out_unwind;
2200 offset = rbd_segment_offset(rbd_dev, img_offset);
2201 length = rbd_segment_length(rbd_dev, img_offset, resid);
2202 obj_request = rbd_obj_request_create(object_name,
2203 offset, length, type);
2204 /* object request has its own copy of the object name */
2205 rbd_segment_name_free(object_name);
2206 if (!obj_request)
2207 goto out_unwind;
2208
2209 /*
2210 * set obj_request->img_request before creating the
2211 * osd_request so that it gets the right snapc
2212 */
2213 rbd_img_obj_request_add(img_request, obj_request);
2214
2215 if (type == OBJ_REQUEST_BIO) {
2216 unsigned int clone_size;
2217
2218 rbd_assert(length <= (u64)UINT_MAX);
2219 clone_size = (unsigned int)length;
2220 obj_request->bio_list =
2221 bio_chain_clone_range(&bio_list,
2222 &bio_offset,
2223 clone_size,
2224 GFP_ATOMIC);
2225 if (!obj_request->bio_list)
2226 goto out_unwind;
2227 } else {
2228 unsigned int page_count;
2229
2230 obj_request->pages = pages;
2231 page_count = (u32)calc_pages_for(offset, length);
2232 obj_request->page_count = page_count;
2233 if ((offset + length) & ~PAGE_MASK)
2234 page_count--; /* more on last page */
2235 pages += page_count;
2236 }
2237
2238 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239 (write_request ? 2 : 1),
2240 obj_request);
2241 if (!osd_req)
2242 goto out_unwind;
2243 obj_request->osd_req = osd_req;
2244 obj_request->callback = rbd_img_obj_callback;
2245
2246 if (write_request) {
2247 osd_req_op_alloc_hint_init(osd_req, which,
2248 rbd_obj_bytes(&rbd_dev->header),
2249 rbd_obj_bytes(&rbd_dev->header));
2250 which++;
2251 }
2252
2253 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2254 0, 0);
2255 if (type == OBJ_REQUEST_BIO)
2256 osd_req_op_extent_osd_data_bio(osd_req, which,
2257 obj_request->bio_list, length);
2258 else
2259 osd_req_op_extent_osd_data_pages(osd_req, which,
2260 obj_request->pages, length,
2261 offset & ~PAGE_MASK, false, false);
2262
2263 if (write_request)
2264 rbd_osd_req_format_write(obj_request);
2265 else
2266 rbd_osd_req_format_read(obj_request);
2267
2268 obj_request->img_offset = img_offset;
2269
2270 img_offset += length;
2271 resid -= length;
2272 }
2273
2274 return 0;
2275
2276 out_unwind:
2277 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2278 rbd_img_obj_request_del(img_request, obj_request);
2279
2280 return -ENOMEM;
2281 }
2282
2283 static void
2284 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2285 {
2286 struct rbd_img_request *img_request;
2287 struct rbd_device *rbd_dev;
2288 struct page **pages;
2289 u32 page_count;
2290
2291 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2292 rbd_assert(obj_request_img_data_test(obj_request));
2293 img_request = obj_request->img_request;
2294 rbd_assert(img_request);
2295
2296 rbd_dev = img_request->rbd_dev;
2297 rbd_assert(rbd_dev);
2298
2299 pages = obj_request->copyup_pages;
2300 rbd_assert(pages != NULL);
2301 obj_request->copyup_pages = NULL;
2302 page_count = obj_request->copyup_page_count;
2303 rbd_assert(page_count);
2304 obj_request->copyup_page_count = 0;
2305 ceph_release_page_vector(pages, page_count);
2306
2307 /*
2308 * We want the transfer count to reflect the size of the
2309 * original write request. There is no such thing as a
2310 * successful short write, so if the request was successful
2311 * we can just set it to the originally-requested length.
2312 */
2313 if (!obj_request->result)
2314 obj_request->xferred = obj_request->length;
2315
2316 /* Finish up with the normal image object callback */
2317
2318 rbd_img_obj_callback(obj_request);
2319 }
2320
2321 static void
2322 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2323 {
2324 struct rbd_obj_request *orig_request;
2325 struct ceph_osd_request *osd_req;
2326 struct ceph_osd_client *osdc;
2327 struct rbd_device *rbd_dev;
2328 struct page **pages;
2329 u32 page_count;
2330 int img_result;
2331 u64 parent_length;
2332 u64 offset;
2333 u64 length;
2334
2335 rbd_assert(img_request_child_test(img_request));
2336
2337 /* First get what we need from the image request */
2338
2339 pages = img_request->copyup_pages;
2340 rbd_assert(pages != NULL);
2341 img_request->copyup_pages = NULL;
2342 page_count = img_request->copyup_page_count;
2343 rbd_assert(page_count);
2344 img_request->copyup_page_count = 0;
2345
2346 orig_request = img_request->obj_request;
2347 rbd_assert(orig_request != NULL);
2348 rbd_assert(obj_request_type_valid(orig_request->type));
2349 img_result = img_request->result;
2350 parent_length = img_request->length;
2351 rbd_assert(parent_length == img_request->xferred);
2352 rbd_img_request_put(img_request);
2353
2354 rbd_assert(orig_request->img_request);
2355 rbd_dev = orig_request->img_request->rbd_dev;
2356 rbd_assert(rbd_dev);
2357
2358 /*
2359 * If the overlap has become 0 (most likely because the
2360 * image has been flattened) we need to free the pages
2361 * and re-submit the original write request.
2362 */
2363 if (!rbd_dev->parent_overlap) {
2364 struct ceph_osd_client *osdc;
2365
2366 ceph_release_page_vector(pages, page_count);
2367 osdc = &rbd_dev->rbd_client->client->osdc;
2368 img_result = rbd_obj_request_submit(osdc, orig_request);
2369 if (!img_result)
2370 return;
2371 }
2372
2373 if (img_result)
2374 goto out_err;
2375
2376 /*
2377 * The original osd request is of no use to use any more.
2378 * We need a new one that can hold the three ops in a copyup
2379 * request. Allocate the new copyup osd request for the
2380 * original request, and release the old one.
2381 */
2382 img_result = -ENOMEM;
2383 osd_req = rbd_osd_req_create_copyup(orig_request);
2384 if (!osd_req)
2385 goto out_err;
2386 rbd_osd_req_destroy(orig_request->osd_req);
2387 orig_request->osd_req = osd_req;
2388 orig_request->copyup_pages = pages;
2389 orig_request->copyup_page_count = page_count;
2390
2391 /* Initialize the copyup op */
2392
2393 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2394 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2395 false, false);
2396
2397 /* Then the hint op */
2398
2399 osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2400 rbd_obj_bytes(&rbd_dev->header));
2401
2402 /* And the original write request op */
2403
2404 offset = orig_request->offset;
2405 length = orig_request->length;
2406 osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2407 offset, length, 0, 0);
2408 if (orig_request->type == OBJ_REQUEST_BIO)
2409 osd_req_op_extent_osd_data_bio(osd_req, 2,
2410 orig_request->bio_list, length);
2411 else
2412 osd_req_op_extent_osd_data_pages(osd_req, 2,
2413 orig_request->pages, length,
2414 offset & ~PAGE_MASK, false, false);
2415
2416 rbd_osd_req_format_write(orig_request);
2417
2418 /* All set, send it off. */
2419
2420 orig_request->callback = rbd_img_obj_copyup_callback;
2421 osdc = &rbd_dev->rbd_client->client->osdc;
2422 img_result = rbd_obj_request_submit(osdc, orig_request);
2423 if (!img_result)
2424 return;
2425 out_err:
2426 /* Record the error code and complete the request */
2427
2428 orig_request->result = img_result;
2429 orig_request->xferred = 0;
2430 obj_request_done_set(orig_request);
2431 rbd_obj_request_complete(orig_request);
2432 }
2433
2434 /*
2435 * Read from the parent image the range of data that covers the
2436 * entire target of the given object request. This is used for
2437 * satisfying a layered image write request when the target of an
2438 * object request from the image request does not exist.
2439 *
2440 * A page array big enough to hold the returned data is allocated
2441 * and supplied to rbd_img_request_fill() as the "data descriptor."
2442 * When the read completes, this page array will be transferred to
2443 * the original object request for the copyup operation.
2444 *
2445 * If an error occurs, record it as the result of the original
2446 * object request and mark it done so it gets completed.
2447 */
2448 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2449 {
2450 struct rbd_img_request *img_request = NULL;
2451 struct rbd_img_request *parent_request = NULL;
2452 struct rbd_device *rbd_dev;
2453 u64 img_offset;
2454 u64 length;
2455 struct page **pages = NULL;
2456 u32 page_count;
2457 int result;
2458
2459 rbd_assert(obj_request_img_data_test(obj_request));
2460 rbd_assert(obj_request_type_valid(obj_request->type));
2461
2462 img_request = obj_request->img_request;
2463 rbd_assert(img_request != NULL);
2464 rbd_dev = img_request->rbd_dev;
2465 rbd_assert(rbd_dev->parent != NULL);
2466
2467 /*
2468 * Determine the byte range covered by the object in the
2469 * child image to which the original request was to be sent.
2470 */
2471 img_offset = obj_request->img_offset - obj_request->offset;
2472 length = (u64)1 << rbd_dev->header.obj_order;
2473
2474 /*
2475 * There is no defined parent data beyond the parent
2476 * overlap, so limit what we read at that boundary if
2477 * necessary.
2478 */
2479 if (img_offset + length > rbd_dev->parent_overlap) {
2480 rbd_assert(img_offset < rbd_dev->parent_overlap);
2481 length = rbd_dev->parent_overlap - img_offset;
2482 }
2483
2484 /*
2485 * Allocate a page array big enough to receive the data read
2486 * from the parent.
2487 */
2488 page_count = (u32)calc_pages_for(0, length);
2489 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2490 if (IS_ERR(pages)) {
2491 result = PTR_ERR(pages);
2492 pages = NULL;
2493 goto out_err;
2494 }
2495
2496 result = -ENOMEM;
2497 parent_request = rbd_parent_request_create(obj_request,
2498 img_offset, length);
2499 if (!parent_request)
2500 goto out_err;
2501
2502 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2503 if (result)
2504 goto out_err;
2505 parent_request->copyup_pages = pages;
2506 parent_request->copyup_page_count = page_count;
2507
2508 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2509 result = rbd_img_request_submit(parent_request);
2510 if (!result)
2511 return 0;
2512
2513 parent_request->copyup_pages = NULL;
2514 parent_request->copyup_page_count = 0;
2515 parent_request->obj_request = NULL;
2516 rbd_obj_request_put(obj_request);
2517 out_err:
2518 if (pages)
2519 ceph_release_page_vector(pages, page_count);
2520 if (parent_request)
2521 rbd_img_request_put(parent_request);
2522 obj_request->result = result;
2523 obj_request->xferred = 0;
2524 obj_request_done_set(obj_request);
2525
2526 return result;
2527 }
2528
2529 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2530 {
2531 struct rbd_obj_request *orig_request;
2532 struct rbd_device *rbd_dev;
2533 int result;
2534
2535 rbd_assert(!obj_request_img_data_test(obj_request));
2536
2537 /*
2538 * All we need from the object request is the original
2539 * request and the result of the STAT op. Grab those, then
2540 * we're done with the request.
2541 */
2542 orig_request = obj_request->obj_request;
2543 obj_request->obj_request = NULL;
2544 rbd_obj_request_put(orig_request);
2545 rbd_assert(orig_request);
2546 rbd_assert(orig_request->img_request);
2547
2548 result = obj_request->result;
2549 obj_request->result = 0;
2550
2551 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2552 obj_request, orig_request, result,
2553 obj_request->xferred, obj_request->length);
2554 rbd_obj_request_put(obj_request);
2555
2556 /*
2557 * If the overlap has become 0 (most likely because the
2558 * image has been flattened) we need to free the pages
2559 * and re-submit the original write request.
2560 */
2561 rbd_dev = orig_request->img_request->rbd_dev;
2562 if (!rbd_dev->parent_overlap) {
2563 struct ceph_osd_client *osdc;
2564
2565 osdc = &rbd_dev->rbd_client->client->osdc;
2566 result = rbd_obj_request_submit(osdc, orig_request);
2567 if (!result)
2568 return;
2569 }
2570
2571 /*
2572 * Our only purpose here is to determine whether the object
2573 * exists, and we don't want to treat the non-existence as
2574 * an error. If something else comes back, transfer the
2575 * error to the original request and complete it now.
2576 */
2577 if (!result) {
2578 obj_request_existence_set(orig_request, true);
2579 } else if (result == -ENOENT) {
2580 obj_request_existence_set(orig_request, false);
2581 } else if (result) {
2582 orig_request->result = result;
2583 goto out;
2584 }
2585
2586 /*
2587 * Resubmit the original request now that we have recorded
2588 * whether the target object exists.
2589 */
2590 orig_request->result = rbd_img_obj_request_submit(orig_request);
2591 out:
2592 if (orig_request->result)
2593 rbd_obj_request_complete(orig_request);
2594 }
2595
2596 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2597 {
2598 struct rbd_obj_request *stat_request;
2599 struct rbd_device *rbd_dev;
2600 struct ceph_osd_client *osdc;
2601 struct page **pages = NULL;
2602 u32 page_count;
2603 size_t size;
2604 int ret;
2605
2606 /*
2607 * The response data for a STAT call consists of:
2608 * le64 length;
2609 * struct {
2610 * le32 tv_sec;
2611 * le32 tv_nsec;
2612 * } mtime;
2613 */
2614 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2615 page_count = (u32)calc_pages_for(0, size);
2616 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2617 if (IS_ERR(pages))
2618 return PTR_ERR(pages);
2619
2620 ret = -ENOMEM;
2621 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2622 OBJ_REQUEST_PAGES);
2623 if (!stat_request)
2624 goto out;
2625
2626 rbd_obj_request_get(obj_request);
2627 stat_request->obj_request = obj_request;
2628 stat_request->pages = pages;
2629 stat_request->page_count = page_count;
2630
2631 rbd_assert(obj_request->img_request);
2632 rbd_dev = obj_request->img_request->rbd_dev;
2633 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2634 stat_request);
2635 if (!stat_request->osd_req)
2636 goto out;
2637 stat_request->callback = rbd_img_obj_exists_callback;
2638
2639 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2640 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2641 false, false);
2642 rbd_osd_req_format_read(stat_request);
2643
2644 osdc = &rbd_dev->rbd_client->client->osdc;
2645 ret = rbd_obj_request_submit(osdc, stat_request);
2646 out:
2647 if (ret)
2648 rbd_obj_request_put(obj_request);
2649
2650 return ret;
2651 }
2652
2653 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2654 {
2655 struct rbd_img_request *img_request;
2656 struct rbd_device *rbd_dev;
2657 bool known;
2658
2659 rbd_assert(obj_request_img_data_test(obj_request));
2660
2661 img_request = obj_request->img_request;
2662 rbd_assert(img_request);
2663 rbd_dev = img_request->rbd_dev;
2664
2665 /*
2666 * Only writes to layered images need special handling.
2667 * Reads and non-layered writes are simple object requests.
2668 * Layered writes that start beyond the end of the overlap
2669 * with the parent have no parent data, so they too are
2670 * simple object requests. Finally, if the target object is
2671 * known to already exist, its parent data has already been
2672 * copied, so a write to the object can also be handled as a
2673 * simple object request.
2674 */
2675 if (!img_request_write_test(img_request) ||
2676 !img_request_layered_test(img_request) ||
2677 rbd_dev->parent_overlap <= obj_request->img_offset ||
2678 ((known = obj_request_known_test(obj_request)) &&
2679 obj_request_exists_test(obj_request))) {
2680
2681 struct rbd_device *rbd_dev;
2682 struct ceph_osd_client *osdc;
2683
2684 rbd_dev = obj_request->img_request->rbd_dev;
2685 osdc = &rbd_dev->rbd_client->client->osdc;
2686
2687 return rbd_obj_request_submit(osdc, obj_request);
2688 }
2689
2690 /*
2691 * It's a layered write. The target object might exist but
2692 * we may not know that yet. If we know it doesn't exist,
2693 * start by reading the data for the full target object from
2694 * the parent so we can use it for a copyup to the target.
2695 */
2696 if (known)
2697 return rbd_img_obj_parent_read_full(obj_request);
2698
2699 /* We don't know whether the target exists. Go find out. */
2700
2701 return rbd_img_obj_exists_submit(obj_request);
2702 }
2703
2704 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2705 {
2706 struct rbd_obj_request *obj_request;
2707 struct rbd_obj_request *next_obj_request;
2708
2709 dout("%s: img %p\n", __func__, img_request);
2710 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2711 int ret;
2712
2713 ret = rbd_img_obj_request_submit(obj_request);
2714 if (ret)
2715 return ret;
2716 }
2717
2718 return 0;
2719 }
2720
2721 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2722 {
2723 struct rbd_obj_request *obj_request;
2724 struct rbd_device *rbd_dev;
2725 u64 obj_end;
2726 u64 img_xferred;
2727 int img_result;
2728
2729 rbd_assert(img_request_child_test(img_request));
2730
2731 /* First get what we need from the image request and release it */
2732
2733 obj_request = img_request->obj_request;
2734 img_xferred = img_request->xferred;
2735 img_result = img_request->result;
2736 rbd_img_request_put(img_request);
2737
2738 /*
2739 * If the overlap has become 0 (most likely because the
2740 * image has been flattened) we need to re-submit the
2741 * original request.
2742 */
2743 rbd_assert(obj_request);
2744 rbd_assert(obj_request->img_request);
2745 rbd_dev = obj_request->img_request->rbd_dev;
2746 if (!rbd_dev->parent_overlap) {
2747 struct ceph_osd_client *osdc;
2748
2749 osdc = &rbd_dev->rbd_client->client->osdc;
2750 img_result = rbd_obj_request_submit(osdc, obj_request);
2751 if (!img_result)
2752 return;
2753 }
2754
2755 obj_request->result = img_result;
2756 if (obj_request->result)
2757 goto out;
2758
2759 /*
2760 * We need to zero anything beyond the parent overlap
2761 * boundary. Since rbd_img_obj_request_read_callback()
2762 * will zero anything beyond the end of a short read, an
2763 * easy way to do this is to pretend the data from the
2764 * parent came up short--ending at the overlap boundary.
2765 */
2766 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2767 obj_end = obj_request->img_offset + obj_request->length;
2768 if (obj_end > rbd_dev->parent_overlap) {
2769 u64 xferred = 0;
2770
2771 if (obj_request->img_offset < rbd_dev->parent_overlap)
2772 xferred = rbd_dev->parent_overlap -
2773 obj_request->img_offset;
2774
2775 obj_request->xferred = min(img_xferred, xferred);
2776 } else {
2777 obj_request->xferred = img_xferred;
2778 }
2779 out:
2780 rbd_img_obj_request_read_callback(obj_request);
2781 rbd_obj_request_complete(obj_request);
2782 }
2783
2784 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2785 {
2786 struct rbd_img_request *img_request;
2787 int result;
2788
2789 rbd_assert(obj_request_img_data_test(obj_request));
2790 rbd_assert(obj_request->img_request != NULL);
2791 rbd_assert(obj_request->result == (s32) -ENOENT);
2792 rbd_assert(obj_request_type_valid(obj_request->type));
2793
2794 /* rbd_read_finish(obj_request, obj_request->length); */
2795 img_request = rbd_parent_request_create(obj_request,
2796 obj_request->img_offset,
2797 obj_request->length);
2798 result = -ENOMEM;
2799 if (!img_request)
2800 goto out_err;
2801
2802 if (obj_request->type == OBJ_REQUEST_BIO)
2803 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2804 obj_request->bio_list);
2805 else
2806 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2807 obj_request->pages);
2808 if (result)
2809 goto out_err;
2810
2811 img_request->callback = rbd_img_parent_read_callback;
2812 result = rbd_img_request_submit(img_request);
2813 if (result)
2814 goto out_err;
2815
2816 return;
2817 out_err:
2818 if (img_request)
2819 rbd_img_request_put(img_request);
2820 obj_request->result = result;
2821 obj_request->xferred = 0;
2822 obj_request_done_set(obj_request);
2823 }
2824
2825 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2826 {
2827 struct rbd_obj_request *obj_request;
2828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2829 int ret;
2830
2831 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2832 OBJ_REQUEST_NODATA);
2833 if (!obj_request)
2834 return -ENOMEM;
2835
2836 ret = -ENOMEM;
2837 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2838 obj_request);
2839 if (!obj_request->osd_req)
2840 goto out;
2841
2842 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2843 notify_id, 0, 0);
2844 rbd_osd_req_format_read(obj_request);
2845
2846 ret = rbd_obj_request_submit(osdc, obj_request);
2847 if (ret)
2848 goto out;
2849 ret = rbd_obj_request_wait(obj_request);
2850 out:
2851 rbd_obj_request_put(obj_request);
2852
2853 return ret;
2854 }
2855
2856 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2857 {
2858 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2859 int ret;
2860
2861 if (!rbd_dev)
2862 return;
2863
2864 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2865 rbd_dev->header_name, (unsigned long long)notify_id,
2866 (unsigned int)opcode);
2867 ret = rbd_dev_refresh(rbd_dev);
2868 if (ret)
2869 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2870
2871 rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2872 }
2873
2874 /*
2875 * Request sync osd watch/unwatch. The value of "start" determines
2876 * whether a watch request is being initiated or torn down.
2877 */
2878 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2879 {
2880 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2881 struct rbd_obj_request *obj_request;
2882 int ret;
2883
2884 rbd_assert(start ^ !!rbd_dev->watch_event);
2885 rbd_assert(start ^ !!rbd_dev->watch_request);
2886
2887 if (start) {
2888 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2889 &rbd_dev->watch_event);
2890 if (ret < 0)
2891 return ret;
2892 rbd_assert(rbd_dev->watch_event != NULL);
2893 }
2894
2895 ret = -ENOMEM;
2896 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2897 OBJ_REQUEST_NODATA);
2898 if (!obj_request)
2899 goto out_cancel;
2900
2901 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2902 obj_request);
2903 if (!obj_request->osd_req)
2904 goto out_cancel;
2905
2906 if (start)
2907 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2908 else
2909 ceph_osdc_unregister_linger_request(osdc,
2910 rbd_dev->watch_request->osd_req);
2911
2912 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2913 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2914 rbd_osd_req_format_write(obj_request);
2915
2916 ret = rbd_obj_request_submit(osdc, obj_request);
2917 if (ret)
2918 goto out_cancel;
2919 ret = rbd_obj_request_wait(obj_request);
2920 if (ret)
2921 goto out_cancel;
2922 ret = obj_request->result;
2923 if (ret)
2924 goto out_cancel;
2925
2926 /*
2927 * A watch request is set to linger, so the underlying osd
2928 * request won't go away until we unregister it. We retain
2929 * a pointer to the object request during that time (in
2930 * rbd_dev->watch_request), so we'll keep a reference to
2931 * it. We'll drop that reference (below) after we've
2932 * unregistered it.
2933 */
2934 if (start) {
2935 rbd_dev->watch_request = obj_request;
2936
2937 return 0;
2938 }
2939
2940 /* We have successfully torn down the watch request */
2941
2942 rbd_obj_request_put(rbd_dev->watch_request);
2943 rbd_dev->watch_request = NULL;
2944 out_cancel:
2945 /* Cancel the event if we're tearing down, or on error */
2946 ceph_osdc_cancel_event(rbd_dev->watch_event);
2947 rbd_dev->watch_event = NULL;
2948 if (obj_request)
2949 rbd_obj_request_put(obj_request);
2950
2951 return ret;
2952 }
2953
2954 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2955 {
2956 return __rbd_dev_header_watch_sync(rbd_dev, true);
2957 }
2958
2959 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2960 {
2961 int ret;
2962
2963 ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2964 if (ret) {
2965 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2966 ret);
2967 }
2968 }
2969
2970 /*
2971 * Synchronous osd object method call. Returns the number of bytes
2972 * returned in the outbound buffer, or a negative error code.
2973 */
2974 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2975 const char *object_name,
2976 const char *class_name,
2977 const char *method_name,
2978 const void *outbound,
2979 size_t outbound_size,
2980 void *inbound,
2981 size_t inbound_size)
2982 {
2983 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2984 struct rbd_obj_request *obj_request;
2985 struct page **pages;
2986 u32 page_count;
2987 int ret;
2988
2989 /*
2990 * Method calls are ultimately read operations. The result
2991 * should placed into the inbound buffer provided. They
2992 * also supply outbound data--parameters for the object
2993 * method. Currently if this is present it will be a
2994 * snapshot id.
2995 */
2996 page_count = (u32)calc_pages_for(0, inbound_size);
2997 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2998 if (IS_ERR(pages))
2999 return PTR_ERR(pages);
3000
3001 ret = -ENOMEM;
3002 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3003 OBJ_REQUEST_PAGES);
3004 if (!obj_request)
3005 goto out;
3006
3007 obj_request->pages = pages;
3008 obj_request->page_count = page_count;
3009
3010 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3011 obj_request);
3012 if (!obj_request->osd_req)
3013 goto out;
3014
3015 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3016 class_name, method_name);
3017 if (outbound_size) {
3018 struct ceph_pagelist *pagelist;
3019
3020 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3021 if (!pagelist)
3022 goto out;
3023
3024 ceph_pagelist_init(pagelist);
3025 ceph_pagelist_append(pagelist, outbound, outbound_size);
3026 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3027 pagelist);
3028 }
3029 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3030 obj_request->pages, inbound_size,
3031 0, false, false);
3032 rbd_osd_req_format_read(obj_request);
3033
3034 ret = rbd_obj_request_submit(osdc, obj_request);
3035 if (ret)
3036 goto out;
3037 ret = rbd_obj_request_wait(obj_request);
3038 if (ret)
3039 goto out;
3040
3041 ret = obj_request->result;
3042 if (ret < 0)
3043 goto out;
3044
3045 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3046 ret = (int)obj_request->xferred;
3047 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3048 out:
3049 if (obj_request)
3050 rbd_obj_request_put(obj_request);
3051 else
3052 ceph_release_page_vector(pages, page_count);
3053
3054 return ret;
3055 }
3056
3057 static void rbd_request_fn(struct request_queue *q)
3058 __releases(q->queue_lock) __acquires(q->queue_lock)
3059 {
3060 struct rbd_device *rbd_dev = q->queuedata;
3061 bool read_only = rbd_dev->mapping.read_only;
3062 struct request *rq;
3063 int result;
3064
3065 while ((rq = blk_fetch_request(q))) {
3066 bool write_request = rq_data_dir(rq) == WRITE;
3067 struct rbd_img_request *img_request;
3068 u64 offset;
3069 u64 length;
3070
3071 /* Ignore any non-FS requests that filter through. */
3072
3073 if (rq->cmd_type != REQ_TYPE_FS) {
3074 dout("%s: non-fs request type %d\n", __func__,
3075 (int) rq->cmd_type);
3076 __blk_end_request_all(rq, 0);
3077 continue;
3078 }
3079
3080 /* Ignore/skip any zero-length requests */
3081
3082 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3083 length = (u64) blk_rq_bytes(rq);
3084
3085 if (!length) {
3086 dout("%s: zero-length request\n", __func__);
3087 __blk_end_request_all(rq, 0);
3088 continue;
3089 }
3090
3091 spin_unlock_irq(q->queue_lock);
3092
3093 /* Disallow writes to a read-only device */
3094
3095 if (write_request) {
3096 result = -EROFS;
3097 if (read_only)
3098 goto end_request;
3099 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3100 }
3101
3102 /*
3103 * Quit early if the mapped snapshot no longer
3104 * exists. It's still possible the snapshot will
3105 * have disappeared by the time our request arrives
3106 * at the osd, but there's no sense in sending it if
3107 * we already know.
3108 */
3109 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3110 dout("request for non-existent snapshot");
3111 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3112 result = -ENXIO;
3113 goto end_request;
3114 }
3115
3116 result = -EINVAL;
3117 if (offset && length > U64_MAX - offset + 1) {
3118 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3119 offset, length);
3120 goto end_request; /* Shouldn't happen */
3121 }
3122
3123 result = -EIO;
3124 if (offset + length > rbd_dev->mapping.size) {
3125 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3126 offset, length, rbd_dev->mapping.size);
3127 goto end_request;
3128 }
3129
3130 result = -ENOMEM;
3131 img_request = rbd_img_request_create(rbd_dev, offset, length,
3132 write_request);
3133 if (!img_request)
3134 goto end_request;
3135
3136 img_request->rq = rq;
3137
3138 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3139 rq->bio);
3140 if (!result)
3141 result = rbd_img_request_submit(img_request);
3142 if (result)
3143 rbd_img_request_put(img_request);
3144 end_request:
3145 spin_lock_irq(q->queue_lock);
3146 if (result < 0) {
3147 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3148 write_request ? "write" : "read",
3149 length, offset, result);
3150
3151 __blk_end_request_all(rq, result);
3152 }
3153 }
3154 }
3155
3156 /*
3157 * a queue callback. Makes sure that we don't create a bio that spans across
3158 * multiple osd objects. One exception would be with a single page bios,
3159 * which we handle later at bio_chain_clone_range()
3160 */
3161 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3162 struct bio_vec *bvec)
3163 {
3164 struct rbd_device *rbd_dev = q->queuedata;
3165 sector_t sector_offset;
3166 sector_t sectors_per_obj;
3167 sector_t obj_sector_offset;
3168 int ret;
3169
3170 /*
3171 * Find how far into its rbd object the partition-relative
3172 * bio start sector is to offset relative to the enclosing
3173 * device.
3174 */
3175 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3176 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3177 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3178
3179 /*
3180 * Compute the number of bytes from that offset to the end
3181 * of the object. Account for what's already used by the bio.
3182 */
3183 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3184 if (ret > bmd->bi_size)
3185 ret -= bmd->bi_size;
3186 else
3187 ret = 0;
3188
3189 /*
3190 * Don't send back more than was asked for. And if the bio
3191 * was empty, let the whole thing through because: "Note
3192 * that a block device *must* allow a single page to be
3193 * added to an empty bio."
3194 */
3195 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3196 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3197 ret = (int) bvec->bv_len;
3198
3199 return ret;
3200 }
3201
3202 static void rbd_free_disk(struct rbd_device *rbd_dev)
3203 {
3204 struct gendisk *disk = rbd_dev->disk;
3205
3206 if (!disk)
3207 return;
3208
3209 rbd_dev->disk = NULL;
3210 if (disk->flags & GENHD_FL_UP) {
3211 del_gendisk(disk);
3212 if (disk->queue)
3213 blk_cleanup_queue(disk->queue);
3214 }
3215 put_disk(disk);
3216 }
3217
3218 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3219 const char *object_name,
3220 u64 offset, u64 length, void *buf)
3221
3222 {
3223 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3224 struct rbd_obj_request *obj_request;
3225 struct page **pages = NULL;
3226 u32 page_count;
3227 size_t size;
3228 int ret;
3229
3230 page_count = (u32) calc_pages_for(offset, length);
3231 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3232 if (IS_ERR(pages))
3233 ret = PTR_ERR(pages);
3234
3235 ret = -ENOMEM;
3236 obj_request = rbd_obj_request_create(object_name, offset, length,
3237 OBJ_REQUEST_PAGES);
3238 if (!obj_request)
3239 goto out;
3240
3241 obj_request->pages = pages;
3242 obj_request->page_count = page_count;
3243
3244 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3245 obj_request);
3246 if (!obj_request->osd_req)
3247 goto out;
3248
3249 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3250 offset, length, 0, 0);
3251 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3252 obj_request->pages,
3253 obj_request->length,
3254 obj_request->offset & ~PAGE_MASK,
3255 false, false);
3256 rbd_osd_req_format_read(obj_request);
3257
3258 ret = rbd_obj_request_submit(osdc, obj_request);
3259 if (ret)
3260 goto out;
3261 ret = rbd_obj_request_wait(obj_request);
3262 if (ret)
3263 goto out;
3264
3265 ret = obj_request->result;
3266 if (ret < 0)
3267 goto out;
3268
3269 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3270 size = (size_t) obj_request->xferred;
3271 ceph_copy_from_page_vector(pages, buf, 0, size);
3272 rbd_assert(size <= (size_t)INT_MAX);
3273 ret = (int)size;
3274 out:
3275 if (obj_request)
3276 rbd_obj_request_put(obj_request);
3277 else
3278 ceph_release_page_vector(pages, page_count);
3279
3280 return ret;
3281 }
3282
3283 /*
3284 * Read the complete header for the given rbd device. On successful
3285 * return, the rbd_dev->header field will contain up-to-date
3286 * information about the image.
3287 */
3288 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3289 {
3290 struct rbd_image_header_ondisk *ondisk = NULL;
3291 u32 snap_count = 0;
3292 u64 names_size = 0;
3293 u32 want_count;
3294 int ret;
3295
3296 /*
3297 * The complete header will include an array of its 64-bit
3298 * snapshot ids, followed by the names of those snapshots as
3299 * a contiguous block of NUL-terminated strings. Note that
3300 * the number of snapshots could change by the time we read
3301 * it in, in which case we re-read it.
3302 */
3303 do {
3304 size_t size;
3305
3306 kfree(ondisk);
3307
3308 size = sizeof (*ondisk);
3309 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3310 size += names_size;
3311 ondisk = kmalloc(size, GFP_KERNEL);
3312 if (!ondisk)
3313 return -ENOMEM;
3314
3315 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3316 0, size, ondisk);
3317 if (ret < 0)
3318 goto out;
3319 if ((size_t)ret < size) {
3320 ret = -ENXIO;
3321 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3322 size, ret);
3323 goto out;
3324 }
3325 if (!rbd_dev_ondisk_valid(ondisk)) {
3326 ret = -ENXIO;
3327 rbd_warn(rbd_dev, "invalid header");
3328 goto out;
3329 }
3330
3331 names_size = le64_to_cpu(ondisk->snap_names_len);
3332 want_count = snap_count;
3333 snap_count = le32_to_cpu(ondisk->snap_count);
3334 } while (snap_count != want_count);
3335
3336 ret = rbd_header_from_disk(rbd_dev, ondisk);
3337 out:
3338 kfree(ondisk);
3339
3340 return ret;
3341 }
3342
3343 /*
3344 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3345 * has disappeared from the (just updated) snapshot context.
3346 */
3347 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3348 {
3349 u64 snap_id;
3350
3351 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3352 return;
3353
3354 snap_id = rbd_dev->spec->snap_id;
3355 if (snap_id == CEPH_NOSNAP)
3356 return;
3357
3358 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3359 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3360 }
3361
3362 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3363 {
3364 sector_t size;
3365 bool removing;
3366
3367 /*
3368 * Don't hold the lock while doing disk operations,
3369 * or lock ordering will conflict with the bdev mutex via:
3370 * rbd_add() -> blkdev_get() -> rbd_open()
3371 */
3372 spin_lock_irq(&rbd_dev->lock);
3373 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3374 spin_unlock_irq(&rbd_dev->lock);
3375 /*
3376 * If the device is being removed, rbd_dev->disk has
3377 * been destroyed, so don't try to update its size
3378 */
3379 if (!removing) {
3380 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3381 dout("setting size to %llu sectors", (unsigned long long)size);
3382 set_capacity(rbd_dev->disk, size);
3383 revalidate_disk(rbd_dev->disk);
3384 }
3385 }
3386
3387 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3388 {
3389 u64 mapping_size;
3390 int ret;
3391
3392 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3393 down_write(&rbd_dev->header_rwsem);
3394 mapping_size = rbd_dev->mapping.size;
3395 if (rbd_dev->image_format == 1)
3396 ret = rbd_dev_v1_header_info(rbd_dev);
3397 else
3398 ret = rbd_dev_v2_header_info(rbd_dev);
3399
3400 /* If it's a mapped snapshot, validate its EXISTS flag */
3401
3402 rbd_exists_validate(rbd_dev);
3403 up_write(&rbd_dev->header_rwsem);
3404
3405 if (mapping_size != rbd_dev->mapping.size) {
3406 rbd_dev_update_size(rbd_dev);
3407 }
3408
3409 return ret;
3410 }
3411
3412 static int rbd_init_disk(struct rbd_device *rbd_dev)
3413 {
3414 struct gendisk *disk;
3415 struct request_queue *q;
3416 u64 segment_size;
3417
3418 /* create gendisk info */
3419 disk = alloc_disk(single_major ?
3420 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3421 RBD_MINORS_PER_MAJOR);
3422 if (!disk)
3423 return -ENOMEM;
3424
3425 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3426 rbd_dev->dev_id);
3427 disk->major = rbd_dev->major;
3428 disk->first_minor = rbd_dev->minor;
3429 if (single_major)
3430 disk->flags |= GENHD_FL_EXT_DEVT;
3431 disk->fops = &rbd_bd_ops;
3432 disk->private_data = rbd_dev;
3433
3434 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3435 if (!q)
3436 goto out_disk;
3437
3438 /* We use the default size, but let's be explicit about it. */
3439 blk_queue_physical_block_size(q, SECTOR_SIZE);
3440
3441 /* set io sizes to object size */
3442 segment_size = rbd_obj_bytes(&rbd_dev->header);
3443 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3444 blk_queue_max_segment_size(q, segment_size);
3445 blk_queue_io_min(q, segment_size);
3446 blk_queue_io_opt(q, segment_size);
3447
3448 blk_queue_merge_bvec(q, rbd_merge_bvec);
3449 disk->queue = q;
3450
3451 q->queuedata = rbd_dev;
3452
3453 rbd_dev->disk = disk;
3454
3455 return 0;
3456 out_disk:
3457 put_disk(disk);
3458
3459 return -ENOMEM;
3460 }
3461
3462 /*
3463 sysfs
3464 */
3465
3466 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3467 {
3468 return container_of(dev, struct rbd_device, dev);
3469 }
3470
3471 static ssize_t rbd_size_show(struct device *dev,
3472 struct device_attribute *attr, char *buf)
3473 {
3474 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475
3476 return sprintf(buf, "%llu\n",
3477 (unsigned long long)rbd_dev->mapping.size);
3478 }
3479
3480 /*
3481 * Note this shows the features for whatever's mapped, which is not
3482 * necessarily the base image.
3483 */
3484 static ssize_t rbd_features_show(struct device *dev,
3485 struct device_attribute *attr, char *buf)
3486 {
3487 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3488
3489 return sprintf(buf, "0x%016llx\n",
3490 (unsigned long long)rbd_dev->mapping.features);
3491 }
3492
3493 static ssize_t rbd_major_show(struct device *dev,
3494 struct device_attribute *attr, char *buf)
3495 {
3496 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3497
3498 if (rbd_dev->major)
3499 return sprintf(buf, "%d\n", rbd_dev->major);
3500
3501 return sprintf(buf, "(none)\n");
3502 }
3503
3504 static ssize_t rbd_minor_show(struct device *dev,
3505 struct device_attribute *attr, char *buf)
3506 {
3507 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3508
3509 return sprintf(buf, "%d\n", rbd_dev->minor);
3510 }
3511
3512 static ssize_t rbd_client_id_show(struct device *dev,
3513 struct device_attribute *attr, char *buf)
3514 {
3515 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3516
3517 return sprintf(buf, "client%lld\n",
3518 ceph_client_id(rbd_dev->rbd_client->client));
3519 }
3520
3521 static ssize_t rbd_pool_show(struct device *dev,
3522 struct device_attribute *attr, char *buf)
3523 {
3524 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3525
3526 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3527 }
3528
3529 static ssize_t rbd_pool_id_show(struct device *dev,
3530 struct device_attribute *attr, char *buf)
3531 {
3532 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3533
3534 return sprintf(buf, "%llu\n",
3535 (unsigned long long) rbd_dev->spec->pool_id);
3536 }
3537
3538 static ssize_t rbd_name_show(struct device *dev,
3539 struct device_attribute *attr, char *buf)
3540 {
3541 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3542
3543 if (rbd_dev->spec->image_name)
3544 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3545
3546 return sprintf(buf, "(unknown)\n");
3547 }
3548
3549 static ssize_t rbd_image_id_show(struct device *dev,
3550 struct device_attribute *attr, char *buf)
3551 {
3552 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553
3554 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3555 }
3556
3557 /*
3558 * Shows the name of the currently-mapped snapshot (or
3559 * RBD_SNAP_HEAD_NAME for the base image).
3560 */
3561 static ssize_t rbd_snap_show(struct device *dev,
3562 struct device_attribute *attr,
3563 char *buf)
3564 {
3565 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3566
3567 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3568 }
3569
3570 /*
3571 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3572 * for the parent image. If there is no parent, simply shows
3573 * "(no parent image)".
3574 */
3575 static ssize_t rbd_parent_show(struct device *dev,
3576 struct device_attribute *attr,
3577 char *buf)
3578 {
3579 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3580 struct rbd_spec *spec = rbd_dev->parent_spec;
3581 int count;
3582 char *bufp = buf;
3583
3584 if (!spec)
3585 return sprintf(buf, "(no parent image)\n");
3586
3587 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3588 (unsigned long long) spec->pool_id, spec->pool_name);
3589 if (count < 0)
3590 return count;
3591 bufp += count;
3592
3593 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3594 spec->image_name ? spec->image_name : "(unknown)");
3595 if (count < 0)
3596 return count;
3597 bufp += count;
3598
3599 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3600 (unsigned long long) spec->snap_id, spec->snap_name);
3601 if (count < 0)
3602 return count;
3603 bufp += count;
3604
3605 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3606 if (count < 0)
3607 return count;
3608 bufp += count;
3609
3610 return (ssize_t) (bufp - buf);
3611 }
3612
3613 static ssize_t rbd_image_refresh(struct device *dev,
3614 struct device_attribute *attr,
3615 const char *buf,
3616 size_t size)
3617 {
3618 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3619 int ret;
3620
3621 ret = rbd_dev_refresh(rbd_dev);
3622 if (ret)
3623 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3624
3625 return ret < 0 ? ret : size;
3626 }
3627
3628 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3629 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3630 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3631 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3632 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3633 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3634 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3635 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3636 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3637 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3638 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3639 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3640
3641 static struct attribute *rbd_attrs[] = {
3642 &dev_attr_size.attr,
3643 &dev_attr_features.attr,
3644 &dev_attr_major.attr,
3645 &dev_attr_minor.attr,
3646 &dev_attr_client_id.attr,
3647 &dev_attr_pool.attr,
3648 &dev_attr_pool_id.attr,
3649 &dev_attr_name.attr,
3650 &dev_attr_image_id.attr,
3651 &dev_attr_current_snap.attr,
3652 &dev_attr_parent.attr,
3653 &dev_attr_refresh.attr,
3654 NULL
3655 };
3656
3657 static struct attribute_group rbd_attr_group = {
3658 .attrs = rbd_attrs,
3659 };
3660
3661 static const struct attribute_group *rbd_attr_groups[] = {
3662 &rbd_attr_group,
3663 NULL
3664 };
3665
3666 static void rbd_sysfs_dev_release(struct device *dev)
3667 {
3668 }
3669
3670 static struct device_type rbd_device_type = {
3671 .name = "rbd",
3672 .groups = rbd_attr_groups,
3673 .release = rbd_sysfs_dev_release,
3674 };
3675
3676 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3677 {
3678 kref_get(&spec->kref);
3679
3680 return spec;
3681 }
3682
3683 static void rbd_spec_free(struct kref *kref);
3684 static void rbd_spec_put(struct rbd_spec *spec)
3685 {
3686 if (spec)
3687 kref_put(&spec->kref, rbd_spec_free);
3688 }
3689
3690 static struct rbd_spec *rbd_spec_alloc(void)
3691 {
3692 struct rbd_spec *spec;
3693
3694 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3695 if (!spec)
3696 return NULL;
3697 kref_init(&spec->kref);
3698
3699 return spec;
3700 }
3701
3702 static void rbd_spec_free(struct kref *kref)
3703 {
3704 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3705
3706 kfree(spec->pool_name);
3707 kfree(spec->image_id);
3708 kfree(spec->image_name);
3709 kfree(spec->snap_name);
3710 kfree(spec);
3711 }
3712
3713 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3714 struct rbd_spec *spec)
3715 {
3716 struct rbd_device *rbd_dev;
3717
3718 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3719 if (!rbd_dev)
3720 return NULL;
3721
3722 spin_lock_init(&rbd_dev->lock);
3723 rbd_dev->flags = 0;
3724 atomic_set(&rbd_dev->parent_ref, 0);
3725 INIT_LIST_HEAD(&rbd_dev->node);
3726 init_rwsem(&rbd_dev->header_rwsem);
3727
3728 rbd_dev->spec = spec;
3729 rbd_dev->rbd_client = rbdc;
3730
3731 /* Initialize the layout used for all rbd requests */
3732
3733 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3734 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3735 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3736 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3737
3738 return rbd_dev;
3739 }
3740
3741 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3742 {
3743 rbd_put_client(rbd_dev->rbd_client);
3744 rbd_spec_put(rbd_dev->spec);
3745 kfree(rbd_dev);
3746 }
3747
3748 /*
3749 * Get the size and object order for an image snapshot, or if
3750 * snap_id is CEPH_NOSNAP, gets this information for the base
3751 * image.
3752 */
3753 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3754 u8 *order, u64 *snap_size)
3755 {
3756 __le64 snapid = cpu_to_le64(snap_id);
3757 int ret;
3758 struct {
3759 u8 order;
3760 __le64 size;
3761 } __attribute__ ((packed)) size_buf = { 0 };
3762
3763 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3764 "rbd", "get_size",
3765 &snapid, sizeof (snapid),
3766 &size_buf, sizeof (size_buf));
3767 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3768 if (ret < 0)
3769 return ret;
3770 if (ret < sizeof (size_buf))
3771 return -ERANGE;
3772
3773 if (order) {
3774 *order = size_buf.order;
3775 dout(" order %u", (unsigned int)*order);
3776 }
3777 *snap_size = le64_to_cpu(size_buf.size);
3778
3779 dout(" snap_id 0x%016llx snap_size = %llu\n",
3780 (unsigned long long)snap_id,
3781 (unsigned long long)*snap_size);
3782
3783 return 0;
3784 }
3785
3786 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3787 {
3788 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3789 &rbd_dev->header.obj_order,
3790 &rbd_dev->header.image_size);
3791 }
3792
3793 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3794 {
3795 void *reply_buf;
3796 int ret;
3797 void *p;
3798
3799 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3800 if (!reply_buf)
3801 return -ENOMEM;
3802
3803 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3804 "rbd", "get_object_prefix", NULL, 0,
3805 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3806 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3807 if (ret < 0)
3808 goto out;
3809
3810 p = reply_buf;
3811 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3812 p + ret, NULL, GFP_NOIO);
3813 ret = 0;
3814
3815 if (IS_ERR(rbd_dev->header.object_prefix)) {
3816 ret = PTR_ERR(rbd_dev->header.object_prefix);
3817 rbd_dev->header.object_prefix = NULL;
3818 } else {
3819 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3820 }
3821 out:
3822 kfree(reply_buf);
3823
3824 return ret;
3825 }
3826
3827 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3828 u64 *snap_features)
3829 {
3830 __le64 snapid = cpu_to_le64(snap_id);
3831 struct {
3832 __le64 features;
3833 __le64 incompat;
3834 } __attribute__ ((packed)) features_buf = { 0 };
3835 u64 incompat;
3836 int ret;
3837
3838 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3839 "rbd", "get_features",
3840 &snapid, sizeof (snapid),
3841 &features_buf, sizeof (features_buf));
3842 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3843 if (ret < 0)
3844 return ret;
3845 if (ret < sizeof (features_buf))
3846 return -ERANGE;
3847
3848 incompat = le64_to_cpu(features_buf.incompat);
3849 if (incompat & ~RBD_FEATURES_SUPPORTED)
3850 return -ENXIO;
3851
3852 *snap_features = le64_to_cpu(features_buf.features);
3853
3854 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3855 (unsigned long long)snap_id,
3856 (unsigned long long)*snap_features,
3857 (unsigned long long)le64_to_cpu(features_buf.incompat));
3858
3859 return 0;
3860 }
3861
3862 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3863 {
3864 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3865 &rbd_dev->header.features);
3866 }
3867
3868 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3869 {
3870 struct rbd_spec *parent_spec;
3871 size_t size;
3872 void *reply_buf = NULL;
3873 __le64 snapid;
3874 void *p;
3875 void *end;
3876 u64 pool_id;
3877 char *image_id;
3878 u64 snap_id;
3879 u64 overlap;
3880 int ret;
3881
3882 parent_spec = rbd_spec_alloc();
3883 if (!parent_spec)
3884 return -ENOMEM;
3885
3886 size = sizeof (__le64) + /* pool_id */
3887 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3888 sizeof (__le64) + /* snap_id */
3889 sizeof (__le64); /* overlap */
3890 reply_buf = kmalloc(size, GFP_KERNEL);
3891 if (!reply_buf) {
3892 ret = -ENOMEM;
3893 goto out_err;
3894 }
3895
3896 snapid = cpu_to_le64(CEPH_NOSNAP);
3897 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3898 "rbd", "get_parent",
3899 &snapid, sizeof (snapid),
3900 reply_buf, size);
3901 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3902 if (ret < 0)
3903 goto out_err;
3904
3905 p = reply_buf;
3906 end = reply_buf + ret;
3907 ret = -ERANGE;
3908 ceph_decode_64_safe(&p, end, pool_id, out_err);
3909 if (pool_id == CEPH_NOPOOL) {
3910 /*
3911 * Either the parent never existed, or we have
3912 * record of it but the image got flattened so it no
3913 * longer has a parent. When the parent of a
3914 * layered image disappears we immediately set the
3915 * overlap to 0. The effect of this is that all new
3916 * requests will be treated as if the image had no
3917 * parent.
3918 */
3919 if (rbd_dev->parent_overlap) {
3920 rbd_dev->parent_overlap = 0;
3921 smp_mb();
3922 rbd_dev_parent_put(rbd_dev);
3923 pr_info("%s: clone image has been flattened\n",
3924 rbd_dev->disk->disk_name);
3925 }
3926
3927 goto out; /* No parent? No problem. */
3928 }
3929
3930 /* The ceph file layout needs to fit pool id in 32 bits */
3931
3932 ret = -EIO;
3933 if (pool_id > (u64)U32_MAX) {
3934 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3935 (unsigned long long)pool_id, U32_MAX);
3936 goto out_err;
3937 }
3938
3939 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3940 if (IS_ERR(image_id)) {
3941 ret = PTR_ERR(image_id);
3942 goto out_err;
3943 }
3944 ceph_decode_64_safe(&p, end, snap_id, out_err);
3945 ceph_decode_64_safe(&p, end, overlap, out_err);
3946
3947 /*
3948 * The parent won't change (except when the clone is
3949 * flattened, already handled that). So we only need to
3950 * record the parent spec we have not already done so.
3951 */
3952 if (!rbd_dev->parent_spec) {
3953 parent_spec->pool_id = pool_id;
3954 parent_spec->image_id = image_id;
3955 parent_spec->snap_id = snap_id;
3956 rbd_dev->parent_spec = parent_spec;
3957 parent_spec = NULL; /* rbd_dev now owns this */
3958 }
3959
3960 /*
3961 * We always update the parent overlap. If it's zero we
3962 * treat it specially.
3963 */
3964 rbd_dev->parent_overlap = overlap;
3965 smp_mb();
3966 if (!overlap) {
3967
3968 /* A null parent_spec indicates it's the initial probe */
3969
3970 if (parent_spec) {
3971 /*
3972 * The overlap has become zero, so the clone
3973 * must have been resized down to 0 at some
3974 * point. Treat this the same as a flatten.
3975 */
3976 rbd_dev_parent_put(rbd_dev);
3977 pr_info("%s: clone image now standalone\n",
3978 rbd_dev->disk->disk_name);
3979 } else {
3980 /*
3981 * For the initial probe, if we find the
3982 * overlap is zero we just pretend there was
3983 * no parent image.
3984 */
3985 rbd_warn(rbd_dev, "ignoring parent of "
3986 "clone with overlap 0\n");
3987 }
3988 }
3989 out:
3990 ret = 0;
3991 out_err:
3992 kfree(reply_buf);
3993 rbd_spec_put(parent_spec);
3994
3995 return ret;
3996 }
3997
3998 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3999 {
4000 struct {
4001 __le64 stripe_unit;
4002 __le64 stripe_count;
4003 } __attribute__ ((packed)) striping_info_buf = { 0 };
4004 size_t size = sizeof (striping_info_buf);
4005 void *p;
4006 u64 obj_size;
4007 u64 stripe_unit;
4008 u64 stripe_count;
4009 int ret;
4010
4011 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4012 "rbd", "get_stripe_unit_count", NULL, 0,
4013 (char *)&striping_info_buf, size);
4014 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4015 if (ret < 0)
4016 return ret;
4017 if (ret < size)
4018 return -ERANGE;
4019
4020 /*
4021 * We don't actually support the "fancy striping" feature
4022 * (STRIPINGV2) yet, but if the striping sizes are the
4023 * defaults the behavior is the same as before. So find
4024 * out, and only fail if the image has non-default values.
4025 */
4026 ret = -EINVAL;
4027 obj_size = (u64)1 << rbd_dev->header.obj_order;
4028 p = &striping_info_buf;
4029 stripe_unit = ceph_decode_64(&p);
4030 if (stripe_unit != obj_size) {
4031 rbd_warn(rbd_dev, "unsupported stripe unit "
4032 "(got %llu want %llu)",
4033 stripe_unit, obj_size);
4034 return -EINVAL;
4035 }
4036 stripe_count = ceph_decode_64(&p);
4037 if (stripe_count != 1) {
4038 rbd_warn(rbd_dev, "unsupported stripe count "
4039 "(got %llu want 1)", stripe_count);
4040 return -EINVAL;
4041 }
4042 rbd_dev->header.stripe_unit = stripe_unit;
4043 rbd_dev->header.stripe_count = stripe_count;
4044
4045 return 0;
4046 }
4047
4048 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4049 {
4050 size_t image_id_size;
4051 char *image_id;
4052 void *p;
4053 void *end;
4054 size_t size;
4055 void *reply_buf = NULL;
4056 size_t len = 0;
4057 char *image_name = NULL;
4058 int ret;
4059
4060 rbd_assert(!rbd_dev->spec->image_name);
4061
4062 len = strlen(rbd_dev->spec->image_id);
4063 image_id_size = sizeof (__le32) + len;
4064 image_id = kmalloc(image_id_size, GFP_KERNEL);
4065 if (!image_id)
4066 return NULL;
4067
4068 p = image_id;
4069 end = image_id + image_id_size;
4070 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4071
4072 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4073 reply_buf = kmalloc(size, GFP_KERNEL);
4074 if (!reply_buf)
4075 goto out;
4076
4077 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4078 "rbd", "dir_get_name",
4079 image_id, image_id_size,
4080 reply_buf, size);
4081 if (ret < 0)
4082 goto out;
4083 p = reply_buf;
4084 end = reply_buf + ret;
4085
4086 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4087 if (IS_ERR(image_name))
4088 image_name = NULL;
4089 else
4090 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4091 out:
4092 kfree(reply_buf);
4093 kfree(image_id);
4094
4095 return image_name;
4096 }
4097
4098 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4099 {
4100 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4101 const char *snap_name;
4102 u32 which = 0;
4103
4104 /* Skip over names until we find the one we are looking for */
4105
4106 snap_name = rbd_dev->header.snap_names;
4107 while (which < snapc->num_snaps) {
4108 if (!strcmp(name, snap_name))
4109 return snapc->snaps[which];
4110 snap_name += strlen(snap_name) + 1;
4111 which++;
4112 }
4113 return CEPH_NOSNAP;
4114 }
4115
4116 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4117 {
4118 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4119 u32 which;
4120 bool found = false;
4121 u64 snap_id;
4122
4123 for (which = 0; !found && which < snapc->num_snaps; which++) {
4124 const char *snap_name;
4125
4126 snap_id = snapc->snaps[which];
4127 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4128 if (IS_ERR(snap_name)) {
4129 /* ignore no-longer existing snapshots */
4130 if (PTR_ERR(snap_name) == -ENOENT)
4131 continue;
4132 else
4133 break;
4134 }
4135 found = !strcmp(name, snap_name);
4136 kfree(snap_name);
4137 }
4138 return found ? snap_id : CEPH_NOSNAP;
4139 }
4140
4141 /*
4142 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4143 * no snapshot by that name is found, or if an error occurs.
4144 */
4145 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4146 {
4147 if (rbd_dev->image_format == 1)
4148 return rbd_v1_snap_id_by_name(rbd_dev, name);
4149
4150 return rbd_v2_snap_id_by_name(rbd_dev, name);
4151 }
4152
4153 /*
4154 * When an rbd image has a parent image, it is identified by the
4155 * pool, image, and snapshot ids (not names). This function fills
4156 * in the names for those ids. (It's OK if we can't figure out the
4157 * name for an image id, but the pool and snapshot ids should always
4158 * exist and have names.) All names in an rbd spec are dynamically
4159 * allocated.
4160 *
4161 * When an image being mapped (not a parent) is probed, we have the
4162 * pool name and pool id, image name and image id, and the snapshot
4163 * name. The only thing we're missing is the snapshot id.
4164 */
4165 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4166 {
4167 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4168 struct rbd_spec *spec = rbd_dev->spec;
4169 const char *pool_name;
4170 const char *image_name;
4171 const char *snap_name;
4172 int ret;
4173
4174 /*
4175 * An image being mapped will have the pool name (etc.), but
4176 * we need to look up the snapshot id.
4177 */
4178 if (spec->pool_name) {
4179 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4180 u64 snap_id;
4181
4182 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4183 if (snap_id == CEPH_NOSNAP)
4184 return -ENOENT;
4185 spec->snap_id = snap_id;
4186 } else {
4187 spec->snap_id = CEPH_NOSNAP;
4188 }
4189
4190 return 0;
4191 }
4192
4193 /* Get the pool name; we have to make our own copy of this */
4194
4195 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4196 if (!pool_name) {
4197 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4198 return -EIO;
4199 }
4200 pool_name = kstrdup(pool_name, GFP_KERNEL);
4201 if (!pool_name)
4202 return -ENOMEM;
4203
4204 /* Fetch the image name; tolerate failure here */
4205
4206 image_name = rbd_dev_image_name(rbd_dev);
4207 if (!image_name)
4208 rbd_warn(rbd_dev, "unable to get image name");
4209
4210 /* Look up the snapshot name, and make a copy */
4211
4212 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4213 if (IS_ERR(snap_name)) {
4214 ret = PTR_ERR(snap_name);
4215 goto out_err;
4216 }
4217
4218 spec->pool_name = pool_name;
4219 spec->image_name = image_name;
4220 spec->snap_name = snap_name;
4221
4222 return 0;
4223 out_err:
4224 kfree(image_name);
4225 kfree(pool_name);
4226
4227 return ret;
4228 }
4229
4230 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4231 {
4232 size_t size;
4233 int ret;
4234 void *reply_buf;
4235 void *p;
4236 void *end;
4237 u64 seq;
4238 u32 snap_count;
4239 struct ceph_snap_context *snapc;
4240 u32 i;
4241
4242 /*
4243 * We'll need room for the seq value (maximum snapshot id),
4244 * snapshot count, and array of that many snapshot ids.
4245 * For now we have a fixed upper limit on the number we're
4246 * prepared to receive.
4247 */
4248 size = sizeof (__le64) + sizeof (__le32) +
4249 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4250 reply_buf = kzalloc(size, GFP_KERNEL);
4251 if (!reply_buf)
4252 return -ENOMEM;
4253
4254 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4255 "rbd", "get_snapcontext", NULL, 0,
4256 reply_buf, size);
4257 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4258 if (ret < 0)
4259 goto out;
4260
4261 p = reply_buf;
4262 end = reply_buf + ret;
4263 ret = -ERANGE;
4264 ceph_decode_64_safe(&p, end, seq, out);
4265 ceph_decode_32_safe(&p, end, snap_count, out);
4266
4267 /*
4268 * Make sure the reported number of snapshot ids wouldn't go
4269 * beyond the end of our buffer. But before checking that,
4270 * make sure the computed size of the snapshot context we
4271 * allocate is representable in a size_t.
4272 */
4273 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4274 / sizeof (u64)) {
4275 ret = -EINVAL;
4276 goto out;
4277 }
4278 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4279 goto out;
4280 ret = 0;
4281
4282 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4283 if (!snapc) {
4284 ret = -ENOMEM;
4285 goto out;
4286 }
4287 snapc->seq = seq;
4288 for (i = 0; i < snap_count; i++)
4289 snapc->snaps[i] = ceph_decode_64(&p);
4290
4291 ceph_put_snap_context(rbd_dev->header.snapc);
4292 rbd_dev->header.snapc = snapc;
4293
4294 dout(" snap context seq = %llu, snap_count = %u\n",
4295 (unsigned long long)seq, (unsigned int)snap_count);
4296 out:
4297 kfree(reply_buf);
4298
4299 return ret;
4300 }
4301
4302 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4303 u64 snap_id)
4304 {
4305 size_t size;
4306 void *reply_buf;
4307 __le64 snapid;
4308 int ret;
4309 void *p;
4310 void *end;
4311 char *snap_name;
4312
4313 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4314 reply_buf = kmalloc(size, GFP_KERNEL);
4315 if (!reply_buf)
4316 return ERR_PTR(-ENOMEM);
4317
4318 snapid = cpu_to_le64(snap_id);
4319 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4320 "rbd", "get_snapshot_name",
4321 &snapid, sizeof (snapid),
4322 reply_buf, size);
4323 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4324 if (ret < 0) {
4325 snap_name = ERR_PTR(ret);
4326 goto out;
4327 }
4328
4329 p = reply_buf;
4330 end = reply_buf + ret;
4331 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4332 if (IS_ERR(snap_name))
4333 goto out;
4334
4335 dout(" snap_id 0x%016llx snap_name = %s\n",
4336 (unsigned long long)snap_id, snap_name);
4337 out:
4338 kfree(reply_buf);
4339
4340 return snap_name;
4341 }
4342
4343 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4344 {
4345 bool first_time = rbd_dev->header.object_prefix == NULL;
4346 int ret;
4347
4348 ret = rbd_dev_v2_image_size(rbd_dev);
4349 if (ret)
4350 return ret;
4351
4352 if (first_time) {
4353 ret = rbd_dev_v2_header_onetime(rbd_dev);
4354 if (ret)
4355 return ret;
4356 }
4357
4358 /*
4359 * If the image supports layering, get the parent info. We
4360 * need to probe the first time regardless. Thereafter we
4361 * only need to if there's a parent, to see if it has
4362 * disappeared due to the mapped image getting flattened.
4363 */
4364 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4365 (first_time || rbd_dev->parent_spec)) {
4366 bool warn;
4367
4368 ret = rbd_dev_v2_parent_info(rbd_dev);
4369 if (ret)
4370 return ret;
4371
4372 /*
4373 * Print a warning if this is the initial probe and
4374 * the image has a parent. Don't print it if the
4375 * image now being probed is itself a parent. We
4376 * can tell at this point because we won't know its
4377 * pool name yet (just its pool id).
4378 */
4379 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4380 if (first_time && warn)
4381 rbd_warn(rbd_dev, "WARNING: kernel layering "
4382 "is EXPERIMENTAL!");
4383 }
4384
4385 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4386 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4387 rbd_dev->mapping.size = rbd_dev->header.image_size;
4388
4389 ret = rbd_dev_v2_snap_context(rbd_dev);
4390 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4391
4392 return ret;
4393 }
4394
4395 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4396 {
4397 struct device *dev;
4398 int ret;
4399
4400 dev = &rbd_dev->dev;
4401 dev->bus = &rbd_bus_type;
4402 dev->type = &rbd_device_type;
4403 dev->parent = &rbd_root_dev;
4404 dev->release = rbd_dev_device_release;
4405 dev_set_name(dev, "%d", rbd_dev->dev_id);
4406 ret = device_register(dev);
4407
4408 return ret;
4409 }
4410
4411 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4412 {
4413 device_unregister(&rbd_dev->dev);
4414 }
4415
4416 /*
4417 * Get a unique rbd identifier for the given new rbd_dev, and add
4418 * the rbd_dev to the global list.
4419 */
4420 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4421 {
4422 int new_dev_id;
4423
4424 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4425 0, minor_to_rbd_dev_id(1 << MINORBITS),
4426 GFP_KERNEL);
4427 if (new_dev_id < 0)
4428 return new_dev_id;
4429
4430 rbd_dev->dev_id = new_dev_id;
4431
4432 spin_lock(&rbd_dev_list_lock);
4433 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4434 spin_unlock(&rbd_dev_list_lock);
4435
4436 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4437
4438 return 0;
4439 }
4440
4441 /*
4442 * Remove an rbd_dev from the global list, and record that its
4443 * identifier is no longer in use.
4444 */
4445 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4446 {
4447 spin_lock(&rbd_dev_list_lock);
4448 list_del_init(&rbd_dev->node);
4449 spin_unlock(&rbd_dev_list_lock);
4450
4451 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4452
4453 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4454 }
4455
4456 /*
4457 * Skips over white space at *buf, and updates *buf to point to the
4458 * first found non-space character (if any). Returns the length of
4459 * the token (string of non-white space characters) found. Note
4460 * that *buf must be terminated with '\0'.
4461 */
4462 static inline size_t next_token(const char **buf)
4463 {
4464 /*
4465 * These are the characters that produce nonzero for
4466 * isspace() in the "C" and "POSIX" locales.
4467 */
4468 const char *spaces = " \f\n\r\t\v";
4469
4470 *buf += strspn(*buf, spaces); /* Find start of token */
4471
4472 return strcspn(*buf, spaces); /* Return token length */
4473 }
4474
4475 /*
4476 * Finds the next token in *buf, and if the provided token buffer is
4477 * big enough, copies the found token into it. The result, if
4478 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4479 * must be terminated with '\0' on entry.
4480 *
4481 * Returns the length of the token found (not including the '\0').
4482 * Return value will be 0 if no token is found, and it will be >=
4483 * token_size if the token would not fit.
4484 *
4485 * The *buf pointer will be updated to point beyond the end of the
4486 * found token. Note that this occurs even if the token buffer is
4487 * too small to hold it.
4488 */
4489 static inline size_t copy_token(const char **buf,
4490 char *token,
4491 size_t token_size)
4492 {
4493 size_t len;
4494
4495 len = next_token(buf);
4496 if (len < token_size) {
4497 memcpy(token, *buf, len);
4498 *(token + len) = '\0';
4499 }
4500 *buf += len;
4501
4502 return len;
4503 }
4504
4505 /*
4506 * Finds the next token in *buf, dynamically allocates a buffer big
4507 * enough to hold a copy of it, and copies the token into the new
4508 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4509 * that a duplicate buffer is created even for a zero-length token.
4510 *
4511 * Returns a pointer to the newly-allocated duplicate, or a null
4512 * pointer if memory for the duplicate was not available. If
4513 * the lenp argument is a non-null pointer, the length of the token
4514 * (not including the '\0') is returned in *lenp.
4515 *
4516 * If successful, the *buf pointer will be updated to point beyond
4517 * the end of the found token.
4518 *
4519 * Note: uses GFP_KERNEL for allocation.
4520 */
4521 static inline char *dup_token(const char **buf, size_t *lenp)
4522 {
4523 char *dup;
4524 size_t len;
4525
4526 len = next_token(buf);
4527 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4528 if (!dup)
4529 return NULL;
4530 *(dup + len) = '\0';
4531 *buf += len;
4532
4533 if (lenp)
4534 *lenp = len;
4535
4536 return dup;
4537 }
4538
4539 /*
4540 * Parse the options provided for an "rbd add" (i.e., rbd image
4541 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4542 * and the data written is passed here via a NUL-terminated buffer.
4543 * Returns 0 if successful or an error code otherwise.
4544 *
4545 * The information extracted from these options is recorded in
4546 * the other parameters which return dynamically-allocated
4547 * structures:
4548 * ceph_opts
4549 * The address of a pointer that will refer to a ceph options
4550 * structure. Caller must release the returned pointer using
4551 * ceph_destroy_options() when it is no longer needed.
4552 * rbd_opts
4553 * Address of an rbd options pointer. Fully initialized by
4554 * this function; caller must release with kfree().
4555 * spec
4556 * Address of an rbd image specification pointer. Fully
4557 * initialized by this function based on parsed options.
4558 * Caller must release with rbd_spec_put().
4559 *
4560 * The options passed take this form:
4561 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4562 * where:
4563 * <mon_addrs>
4564 * A comma-separated list of one or more monitor addresses.
4565 * A monitor address is an ip address, optionally followed
4566 * by a port number (separated by a colon).
4567 * I.e.: ip1[:port1][,ip2[:port2]...]
4568 * <options>
4569 * A comma-separated list of ceph and/or rbd options.
4570 * <pool_name>
4571 * The name of the rados pool containing the rbd image.
4572 * <image_name>
4573 * The name of the image in that pool to map.
4574 * <snap_id>
4575 * An optional snapshot id. If provided, the mapping will
4576 * present data from the image at the time that snapshot was
4577 * created. The image head is used if no snapshot id is
4578 * provided. Snapshot mappings are always read-only.
4579 */
4580 static int rbd_add_parse_args(const char *buf,
4581 struct ceph_options **ceph_opts,
4582 struct rbd_options **opts,
4583 struct rbd_spec **rbd_spec)
4584 {
4585 size_t len;
4586 char *options;
4587 const char *mon_addrs;
4588 char *snap_name;
4589 size_t mon_addrs_size;
4590 struct rbd_spec *spec = NULL;
4591 struct rbd_options *rbd_opts = NULL;
4592 struct ceph_options *copts;
4593 int ret;
4594
4595 /* The first four tokens are required */
4596
4597 len = next_token(&buf);
4598 if (!len) {
4599 rbd_warn(NULL, "no monitor address(es) provided");
4600 return -EINVAL;
4601 }
4602 mon_addrs = buf;
4603 mon_addrs_size = len + 1;
4604 buf += len;
4605
4606 ret = -EINVAL;
4607 options = dup_token(&buf, NULL);
4608 if (!options)
4609 return -ENOMEM;
4610 if (!*options) {
4611 rbd_warn(NULL, "no options provided");
4612 goto out_err;
4613 }
4614
4615 spec = rbd_spec_alloc();
4616 if (!spec)
4617 goto out_mem;
4618
4619 spec->pool_name = dup_token(&buf, NULL);
4620 if (!spec->pool_name)
4621 goto out_mem;
4622 if (!*spec->pool_name) {
4623 rbd_warn(NULL, "no pool name provided");
4624 goto out_err;
4625 }
4626
4627 spec->image_name = dup_token(&buf, NULL);
4628 if (!spec->image_name)
4629 goto out_mem;
4630 if (!*spec->image_name) {
4631 rbd_warn(NULL, "no image name provided");
4632 goto out_err;
4633 }
4634
4635 /*
4636 * Snapshot name is optional; default is to use "-"
4637 * (indicating the head/no snapshot).
4638 */
4639 len = next_token(&buf);
4640 if (!len) {
4641 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4642 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4643 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4644 ret = -ENAMETOOLONG;
4645 goto out_err;
4646 }
4647 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4648 if (!snap_name)
4649 goto out_mem;
4650 *(snap_name + len) = '\0';
4651 spec->snap_name = snap_name;
4652
4653 /* Initialize all rbd options to the defaults */
4654
4655 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4656 if (!rbd_opts)
4657 goto out_mem;
4658
4659 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4660
4661 copts = ceph_parse_options(options, mon_addrs,
4662 mon_addrs + mon_addrs_size - 1,
4663 parse_rbd_opts_token, rbd_opts);
4664 if (IS_ERR(copts)) {
4665 ret = PTR_ERR(copts);
4666 goto out_err;
4667 }
4668 kfree(options);
4669
4670 *ceph_opts = copts;
4671 *opts = rbd_opts;
4672 *rbd_spec = spec;
4673
4674 return 0;
4675 out_mem:
4676 ret = -ENOMEM;
4677 out_err:
4678 kfree(rbd_opts);
4679 rbd_spec_put(spec);
4680 kfree(options);
4681
4682 return ret;
4683 }
4684
4685 /*
4686 * An rbd format 2 image has a unique identifier, distinct from the
4687 * name given to it by the user. Internally, that identifier is
4688 * what's used to specify the names of objects related to the image.
4689 *
4690 * A special "rbd id" object is used to map an rbd image name to its
4691 * id. If that object doesn't exist, then there is no v2 rbd image
4692 * with the supplied name.
4693 *
4694 * This function will record the given rbd_dev's image_id field if
4695 * it can be determined, and in that case will return 0. If any
4696 * errors occur a negative errno will be returned and the rbd_dev's
4697 * image_id field will be unchanged (and should be NULL).
4698 */
4699 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4700 {
4701 int ret;
4702 size_t size;
4703 char *object_name;
4704 void *response;
4705 char *image_id;
4706
4707 /*
4708 * When probing a parent image, the image id is already
4709 * known (and the image name likely is not). There's no
4710 * need to fetch the image id again in this case. We
4711 * do still need to set the image format though.
4712 */
4713 if (rbd_dev->spec->image_id) {
4714 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4715
4716 return 0;
4717 }
4718
4719 /*
4720 * First, see if the format 2 image id file exists, and if
4721 * so, get the image's persistent id from it.
4722 */
4723 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4724 object_name = kmalloc(size, GFP_NOIO);
4725 if (!object_name)
4726 return -ENOMEM;
4727 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4728 dout("rbd id object name is %s\n", object_name);
4729
4730 /* Response will be an encoded string, which includes a length */
4731
4732 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4733 response = kzalloc(size, GFP_NOIO);
4734 if (!response) {
4735 ret = -ENOMEM;
4736 goto out;
4737 }
4738
4739 /* If it doesn't exist we'll assume it's a format 1 image */
4740
4741 ret = rbd_obj_method_sync(rbd_dev, object_name,
4742 "rbd", "get_id", NULL, 0,
4743 response, RBD_IMAGE_ID_LEN_MAX);
4744 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4745 if (ret == -ENOENT) {
4746 image_id = kstrdup("", GFP_KERNEL);
4747 ret = image_id ? 0 : -ENOMEM;
4748 if (!ret)
4749 rbd_dev->image_format = 1;
4750 } else if (ret > sizeof (__le32)) {
4751 void *p = response;
4752
4753 image_id = ceph_extract_encoded_string(&p, p + ret,
4754 NULL, GFP_NOIO);
4755 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4756 if (!ret)
4757 rbd_dev->image_format = 2;
4758 } else {
4759 ret = -EINVAL;
4760 }
4761
4762 if (!ret) {
4763 rbd_dev->spec->image_id = image_id;
4764 dout("image_id is %s\n", image_id);
4765 }
4766 out:
4767 kfree(response);
4768 kfree(object_name);
4769
4770 return ret;
4771 }
4772
4773 /*
4774 * Undo whatever state changes are made by v1 or v2 header info
4775 * call.
4776 */
4777 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4778 {
4779 struct rbd_image_header *header;
4780
4781 /* Drop parent reference unless it's already been done (or none) */
4782
4783 if (rbd_dev->parent_overlap)
4784 rbd_dev_parent_put(rbd_dev);
4785
4786 /* Free dynamic fields from the header, then zero it out */
4787
4788 header = &rbd_dev->header;
4789 ceph_put_snap_context(header->snapc);
4790 kfree(header->snap_sizes);
4791 kfree(header->snap_names);
4792 kfree(header->object_prefix);
4793 memset(header, 0, sizeof (*header));
4794 }
4795
4796 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4797 {
4798 int ret;
4799
4800 ret = rbd_dev_v2_object_prefix(rbd_dev);
4801 if (ret)
4802 goto out_err;
4803
4804 /*
4805 * Get the and check features for the image. Currently the
4806 * features are assumed to never change.
4807 */
4808 ret = rbd_dev_v2_features(rbd_dev);
4809 if (ret)
4810 goto out_err;
4811
4812 /* If the image supports fancy striping, get its parameters */
4813
4814 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4815 ret = rbd_dev_v2_striping_info(rbd_dev);
4816 if (ret < 0)
4817 goto out_err;
4818 }
4819 /* No support for crypto and compression type format 2 images */
4820
4821 return 0;
4822 out_err:
4823 rbd_dev->header.features = 0;
4824 kfree(rbd_dev->header.object_prefix);
4825 rbd_dev->header.object_prefix = NULL;
4826
4827 return ret;
4828 }
4829
4830 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4831 {
4832 struct rbd_device *parent = NULL;
4833 struct rbd_spec *parent_spec;
4834 struct rbd_client *rbdc;
4835 int ret;
4836
4837 if (!rbd_dev->parent_spec)
4838 return 0;
4839 /*
4840 * We need to pass a reference to the client and the parent
4841 * spec when creating the parent rbd_dev. Images related by
4842 * parent/child relationships always share both.
4843 */
4844 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4845 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4846
4847 ret = -ENOMEM;
4848 parent = rbd_dev_create(rbdc, parent_spec);
4849 if (!parent)
4850 goto out_err;
4851
4852 ret = rbd_dev_image_probe(parent, false);
4853 if (ret < 0)
4854 goto out_err;
4855 rbd_dev->parent = parent;
4856 atomic_set(&rbd_dev->parent_ref, 1);
4857
4858 return 0;
4859 out_err:
4860 if (parent) {
4861 rbd_dev_unparent(rbd_dev);
4862 kfree(rbd_dev->header_name);
4863 rbd_dev_destroy(parent);
4864 } else {
4865 rbd_put_client(rbdc);
4866 rbd_spec_put(parent_spec);
4867 }
4868
4869 return ret;
4870 }
4871
4872 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4873 {
4874 int ret;
4875
4876 /* Get an id and fill in device name. */
4877
4878 ret = rbd_dev_id_get(rbd_dev);
4879 if (ret)
4880 return ret;
4881
4882 BUILD_BUG_ON(DEV_NAME_LEN
4883 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4884 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4885
4886 /* Record our major and minor device numbers. */
4887
4888 if (!single_major) {
4889 ret = register_blkdev(0, rbd_dev->name);
4890 if (ret < 0)
4891 goto err_out_id;
4892
4893 rbd_dev->major = ret;
4894 rbd_dev->minor = 0;
4895 } else {
4896 rbd_dev->major = rbd_major;
4897 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4898 }
4899
4900 /* Set up the blkdev mapping. */
4901
4902 ret = rbd_init_disk(rbd_dev);
4903 if (ret)
4904 goto err_out_blkdev;
4905
4906 ret = rbd_dev_mapping_set(rbd_dev);
4907 if (ret)
4908 goto err_out_disk;
4909 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4910
4911 ret = rbd_bus_add_dev(rbd_dev);
4912 if (ret)
4913 goto err_out_mapping;
4914
4915 /* Everything's ready. Announce the disk to the world. */
4916
4917 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4918 add_disk(rbd_dev->disk);
4919
4920 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4921 (unsigned long long) rbd_dev->mapping.size);
4922
4923 return ret;
4924
4925 err_out_mapping:
4926 rbd_dev_mapping_clear(rbd_dev);
4927 err_out_disk:
4928 rbd_free_disk(rbd_dev);
4929 err_out_blkdev:
4930 if (!single_major)
4931 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4932 err_out_id:
4933 rbd_dev_id_put(rbd_dev);
4934 rbd_dev_mapping_clear(rbd_dev);
4935
4936 return ret;
4937 }
4938
4939 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4940 {
4941 struct rbd_spec *spec = rbd_dev->spec;
4942 size_t size;
4943
4944 /* Record the header object name for this rbd image. */
4945
4946 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4947
4948 if (rbd_dev->image_format == 1)
4949 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4950 else
4951 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4952
4953 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4954 if (!rbd_dev->header_name)
4955 return -ENOMEM;
4956
4957 if (rbd_dev->image_format == 1)
4958 sprintf(rbd_dev->header_name, "%s%s",
4959 spec->image_name, RBD_SUFFIX);
4960 else
4961 sprintf(rbd_dev->header_name, "%s%s",
4962 RBD_HEADER_PREFIX, spec->image_id);
4963 return 0;
4964 }
4965
4966 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4967 {
4968 rbd_dev_unprobe(rbd_dev);
4969 kfree(rbd_dev->header_name);
4970 rbd_dev->header_name = NULL;
4971 rbd_dev->image_format = 0;
4972 kfree(rbd_dev->spec->image_id);
4973 rbd_dev->spec->image_id = NULL;
4974
4975 rbd_dev_destroy(rbd_dev);
4976 }
4977
4978 /*
4979 * Probe for the existence of the header object for the given rbd
4980 * device. If this image is the one being mapped (i.e., not a
4981 * parent), initiate a watch on its header object before using that
4982 * object to get detailed information about the rbd image.
4983 */
4984 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4985 {
4986 int ret;
4987
4988 /*
4989 * Get the id from the image id object. Unless there's an
4990 * error, rbd_dev->spec->image_id will be filled in with
4991 * a dynamically-allocated string, and rbd_dev->image_format
4992 * will be set to either 1 or 2.
4993 */
4994 ret = rbd_dev_image_id(rbd_dev);
4995 if (ret)
4996 return ret;
4997 rbd_assert(rbd_dev->spec->image_id);
4998 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4999
5000 ret = rbd_dev_header_name(rbd_dev);
5001 if (ret)
5002 goto err_out_format;
5003
5004 if (mapping) {
5005 ret = rbd_dev_header_watch_sync(rbd_dev);
5006 if (ret)
5007 goto out_header_name;
5008 }
5009
5010 if (rbd_dev->image_format == 1)
5011 ret = rbd_dev_v1_header_info(rbd_dev);
5012 else
5013 ret = rbd_dev_v2_header_info(rbd_dev);
5014 if (ret)
5015 goto err_out_watch;
5016
5017 ret = rbd_dev_spec_update(rbd_dev);
5018 if (ret)
5019 goto err_out_probe;
5020
5021 ret = rbd_dev_probe_parent(rbd_dev);
5022 if (ret)
5023 goto err_out_probe;
5024
5025 dout("discovered format %u image, header name is %s\n",
5026 rbd_dev->image_format, rbd_dev->header_name);
5027
5028 return 0;
5029 err_out_probe:
5030 rbd_dev_unprobe(rbd_dev);
5031 err_out_watch:
5032 if (mapping)
5033 rbd_dev_header_unwatch_sync(rbd_dev);
5034 out_header_name:
5035 kfree(rbd_dev->header_name);
5036 rbd_dev->header_name = NULL;
5037 err_out_format:
5038 rbd_dev->image_format = 0;
5039 kfree(rbd_dev->spec->image_id);
5040 rbd_dev->spec->image_id = NULL;
5041
5042 dout("probe failed, returning %d\n", ret);
5043
5044 return ret;
5045 }
5046
5047 static ssize_t do_rbd_add(struct bus_type *bus,
5048 const char *buf,
5049 size_t count)
5050 {
5051 struct rbd_device *rbd_dev = NULL;
5052 struct ceph_options *ceph_opts = NULL;
5053 struct rbd_options *rbd_opts = NULL;
5054 struct rbd_spec *spec = NULL;
5055 struct rbd_client *rbdc;
5056 struct ceph_osd_client *osdc;
5057 bool read_only;
5058 int rc = -ENOMEM;
5059
5060 if (!try_module_get(THIS_MODULE))
5061 return -ENODEV;
5062
5063 /* parse add command */
5064 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5065 if (rc < 0)
5066 goto err_out_module;
5067 read_only = rbd_opts->read_only;
5068 kfree(rbd_opts);
5069 rbd_opts = NULL; /* done with this */
5070
5071 rbdc = rbd_get_client(ceph_opts);
5072 if (IS_ERR(rbdc)) {
5073 rc = PTR_ERR(rbdc);
5074 goto err_out_args;
5075 }
5076
5077 /* pick the pool */
5078 osdc = &rbdc->client->osdc;
5079 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5080 if (rc < 0)
5081 goto err_out_client;
5082 spec->pool_id = (u64)rc;
5083
5084 /* The ceph file layout needs to fit pool id in 32 bits */
5085
5086 if (spec->pool_id > (u64)U32_MAX) {
5087 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5088 (unsigned long long)spec->pool_id, U32_MAX);
5089 rc = -EIO;
5090 goto err_out_client;
5091 }
5092
5093 rbd_dev = rbd_dev_create(rbdc, spec);
5094 if (!rbd_dev)
5095 goto err_out_client;
5096 rbdc = NULL; /* rbd_dev now owns this */
5097 spec = NULL; /* rbd_dev now owns this */
5098
5099 rc = rbd_dev_image_probe(rbd_dev, true);
5100 if (rc < 0)
5101 goto err_out_rbd_dev;
5102
5103 /* If we are mapping a snapshot it must be marked read-only */
5104
5105 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5106 read_only = true;
5107 rbd_dev->mapping.read_only = read_only;
5108
5109 rc = rbd_dev_device_setup(rbd_dev);
5110 if (rc) {
5111 /*
5112 * rbd_dev_header_unwatch_sync() can't be moved into
5113 * rbd_dev_image_release() without refactoring, see
5114 * commit 1f3ef78861ac.
5115 */
5116 rbd_dev_header_unwatch_sync(rbd_dev);
5117 rbd_dev_image_release(rbd_dev);
5118 goto err_out_module;
5119 }
5120
5121 return count;
5122
5123 err_out_rbd_dev:
5124 rbd_dev_destroy(rbd_dev);
5125 err_out_client:
5126 rbd_put_client(rbdc);
5127 err_out_args:
5128 rbd_spec_put(spec);
5129 err_out_module:
5130 module_put(THIS_MODULE);
5131
5132 dout("Error adding device %s\n", buf);
5133
5134 return (ssize_t)rc;
5135 }
5136
5137 static ssize_t rbd_add(struct bus_type *bus,
5138 const char *buf,
5139 size_t count)
5140 {
5141 if (single_major)
5142 return -EINVAL;
5143
5144 return do_rbd_add(bus, buf, count);
5145 }
5146
5147 static ssize_t rbd_add_single_major(struct bus_type *bus,
5148 const char *buf,
5149 size_t count)
5150 {
5151 return do_rbd_add(bus, buf, count);
5152 }
5153
5154 static void rbd_dev_device_release(struct device *dev)
5155 {
5156 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5157
5158 rbd_free_disk(rbd_dev);
5159 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5160 rbd_dev_mapping_clear(rbd_dev);
5161 if (!single_major)
5162 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5163 rbd_dev_id_put(rbd_dev);
5164 rbd_dev_mapping_clear(rbd_dev);
5165 }
5166
5167 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5168 {
5169 while (rbd_dev->parent) {
5170 struct rbd_device *first = rbd_dev;
5171 struct rbd_device *second = first->parent;
5172 struct rbd_device *third;
5173
5174 /*
5175 * Follow to the parent with no grandparent and
5176 * remove it.
5177 */
5178 while (second && (third = second->parent)) {
5179 first = second;
5180 second = third;
5181 }
5182 rbd_assert(second);
5183 rbd_dev_image_release(second);
5184 first->parent = NULL;
5185 first->parent_overlap = 0;
5186
5187 rbd_assert(first->parent_spec);
5188 rbd_spec_put(first->parent_spec);
5189 first->parent_spec = NULL;
5190 }
5191 }
5192
5193 static ssize_t do_rbd_remove(struct bus_type *bus,
5194 const char *buf,
5195 size_t count)
5196 {
5197 struct rbd_device *rbd_dev = NULL;
5198 struct list_head *tmp;
5199 int dev_id;
5200 unsigned long ul;
5201 bool already = false;
5202 int ret;
5203
5204 ret = kstrtoul(buf, 10, &ul);
5205 if (ret)
5206 return ret;
5207
5208 /* convert to int; abort if we lost anything in the conversion */
5209 dev_id = (int)ul;
5210 if (dev_id != ul)
5211 return -EINVAL;
5212
5213 ret = -ENOENT;
5214 spin_lock(&rbd_dev_list_lock);
5215 list_for_each(tmp, &rbd_dev_list) {
5216 rbd_dev = list_entry(tmp, struct rbd_device, node);
5217 if (rbd_dev->dev_id == dev_id) {
5218 ret = 0;
5219 break;
5220 }
5221 }
5222 if (!ret) {
5223 spin_lock_irq(&rbd_dev->lock);
5224 if (rbd_dev->open_count)
5225 ret = -EBUSY;
5226 else
5227 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5228 &rbd_dev->flags);
5229 spin_unlock_irq(&rbd_dev->lock);
5230 }
5231 spin_unlock(&rbd_dev_list_lock);
5232 if (ret < 0 || already)
5233 return ret;
5234
5235 rbd_dev_header_unwatch_sync(rbd_dev);
5236 /*
5237 * flush remaining watch callbacks - these must be complete
5238 * before the osd_client is shutdown
5239 */
5240 dout("%s: flushing notifies", __func__);
5241 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5242
5243 /*
5244 * Don't free anything from rbd_dev->disk until after all
5245 * notifies are completely processed. Otherwise
5246 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5247 * in a potential use after free of rbd_dev->disk or rbd_dev.
5248 */
5249 rbd_bus_del_dev(rbd_dev);
5250 rbd_dev_image_release(rbd_dev);
5251 module_put(THIS_MODULE);
5252
5253 return count;
5254 }
5255
5256 static ssize_t rbd_remove(struct bus_type *bus,
5257 const char *buf,
5258 size_t count)
5259 {
5260 if (single_major)
5261 return -EINVAL;
5262
5263 return do_rbd_remove(bus, buf, count);
5264 }
5265
5266 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5267 const char *buf,
5268 size_t count)
5269 {
5270 return do_rbd_remove(bus, buf, count);
5271 }
5272
5273 /*
5274 * create control files in sysfs
5275 * /sys/bus/rbd/...
5276 */
5277 static int rbd_sysfs_init(void)
5278 {
5279 int ret;
5280
5281 ret = device_register(&rbd_root_dev);
5282 if (ret < 0)
5283 return ret;
5284
5285 ret = bus_register(&rbd_bus_type);
5286 if (ret < 0)
5287 device_unregister(&rbd_root_dev);
5288
5289 return ret;
5290 }
5291
5292 static void rbd_sysfs_cleanup(void)
5293 {
5294 bus_unregister(&rbd_bus_type);
5295 device_unregister(&rbd_root_dev);
5296 }
5297
5298 static int rbd_slab_init(void)
5299 {
5300 rbd_assert(!rbd_img_request_cache);
5301 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5302 sizeof (struct rbd_img_request),
5303 __alignof__(struct rbd_img_request),
5304 0, NULL);
5305 if (!rbd_img_request_cache)
5306 return -ENOMEM;
5307
5308 rbd_assert(!rbd_obj_request_cache);
5309 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5310 sizeof (struct rbd_obj_request),
5311 __alignof__(struct rbd_obj_request),
5312 0, NULL);
5313 if (!rbd_obj_request_cache)
5314 goto out_err;
5315
5316 rbd_assert(!rbd_segment_name_cache);
5317 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5318 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5319 if (rbd_segment_name_cache)
5320 return 0;
5321 out_err:
5322 if (rbd_obj_request_cache) {
5323 kmem_cache_destroy(rbd_obj_request_cache);
5324 rbd_obj_request_cache = NULL;
5325 }
5326
5327 kmem_cache_destroy(rbd_img_request_cache);
5328 rbd_img_request_cache = NULL;
5329
5330 return -ENOMEM;
5331 }
5332
5333 static void rbd_slab_exit(void)
5334 {
5335 rbd_assert(rbd_segment_name_cache);
5336 kmem_cache_destroy(rbd_segment_name_cache);
5337 rbd_segment_name_cache = NULL;
5338
5339 rbd_assert(rbd_obj_request_cache);
5340 kmem_cache_destroy(rbd_obj_request_cache);
5341 rbd_obj_request_cache = NULL;
5342
5343 rbd_assert(rbd_img_request_cache);
5344 kmem_cache_destroy(rbd_img_request_cache);
5345 rbd_img_request_cache = NULL;
5346 }
5347
5348 static int __init rbd_init(void)
5349 {
5350 int rc;
5351
5352 if (!libceph_compatible(NULL)) {
5353 rbd_warn(NULL, "libceph incompatibility (quitting)");
5354 return -EINVAL;
5355 }
5356
5357 rc = rbd_slab_init();
5358 if (rc)
5359 return rc;
5360
5361 if (single_major) {
5362 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5363 if (rbd_major < 0) {
5364 rc = rbd_major;
5365 goto err_out_slab;
5366 }
5367 }
5368
5369 rc = rbd_sysfs_init();
5370 if (rc)
5371 goto err_out_blkdev;
5372
5373 if (single_major)
5374 pr_info("loaded (major %d)\n", rbd_major);
5375 else
5376 pr_info("loaded\n");
5377
5378 return 0;
5379
5380 err_out_blkdev:
5381 if (single_major)
5382 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5383 err_out_slab:
5384 rbd_slab_exit();
5385 return rc;
5386 }
5387
5388 static void __exit rbd_exit(void)
5389 {
5390 rbd_sysfs_cleanup();
5391 if (single_major)
5392 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5393 rbd_slab_exit();
5394 }
5395
5396 module_init(rbd_init);
5397 module_exit(rbd_exit);
5398
5399 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5400 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5401 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5402 /* following authorship retained from original osdblk.c */
5403 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5404
5405 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5406 MODULE_LICENSE("GPL");