]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG /* Activate rbd_assert() calls */
52
53 /*
54 * The basic unit of block I/O is a sector. It is interpreted in a
55 * number of contexts in Linux (blk, bio, genhd), but the default is
56 * universally 512 bytes. These symbols are just slightly more
57 * meaningful than the bare numbers they represent.
58 */
59 #define SECTOR_SHIFT 9
60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
61
62 /*
63 * Increment the given counter and return its updated value.
64 * If the counter is already 0 it will not be incremented.
65 * If the counter is already at its maximum value returns
66 * -EINVAL without updating it.
67 */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70 unsigned int counter;
71
72 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73 if (counter <= (unsigned int)INT_MAX)
74 return (int)counter;
75
76 atomic_dec(v);
77
78 return -EINVAL;
79 }
80
81 /* Decrement the counter. Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84 int counter;
85
86 counter = atomic_dec_return(v);
87 if (counter >= 0)
88 return counter;
89
90 atomic_inc(v);
91
92 return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR 256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN 16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN \
104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME "-"
109
110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX 64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX 64
117
118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING (1<<0)
124 #define RBD_FEATURE_STRIPINGV2 (1<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2)
126 #define RBD_FEATURE_DATA_POOL (1<<7)
127 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
128 RBD_FEATURE_STRIPINGV2 | \
129 RBD_FEATURE_EXCLUSIVE_LOCK | \
130 RBD_FEATURE_DATA_POOL)
131
132 /* Features supported by this (client software) implementation. */
133
134 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
135
136 /*
137 * An RBD device name will be "rbd#", where the "rbd" comes from
138 * RBD_DRV_NAME above, and # is a unique integer identifier.
139 */
140 #define DEV_NAME_LEN 32
141
142 /*
143 * block device image metadata (in-memory version)
144 */
145 struct rbd_image_header {
146 /* These six fields never change for a given rbd image */
147 char *object_prefix;
148 __u8 obj_order;
149 u64 stripe_unit;
150 u64 stripe_count;
151 s64 data_pool_id;
152 u64 features; /* Might be changeable someday? */
153
154 /* The remaining fields need to be updated occasionally */
155 u64 image_size;
156 struct ceph_snap_context *snapc;
157 char *snap_names; /* format 1 only */
158 u64 *snap_sizes; /* format 1 only */
159 };
160
161 /*
162 * An rbd image specification.
163 *
164 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
165 * identify an image. Each rbd_dev structure includes a pointer to
166 * an rbd_spec structure that encapsulates this identity.
167 *
168 * Each of the id's in an rbd_spec has an associated name. For a
169 * user-mapped image, the names are supplied and the id's associated
170 * with them are looked up. For a layered image, a parent image is
171 * defined by the tuple, and the names are looked up.
172 *
173 * An rbd_dev structure contains a parent_spec pointer which is
174 * non-null if the image it represents is a child in a layered
175 * image. This pointer will refer to the rbd_spec structure used
176 * by the parent rbd_dev for its own identity (i.e., the structure
177 * is shared between the parent and child).
178 *
179 * Since these structures are populated once, during the discovery
180 * phase of image construction, they are effectively immutable so
181 * we make no effort to synchronize access to them.
182 *
183 * Note that code herein does not assume the image name is known (it
184 * could be a null pointer).
185 */
186 struct rbd_spec {
187 u64 pool_id;
188 const char *pool_name;
189
190 const char *image_id;
191 const char *image_name;
192
193 u64 snap_id;
194 const char *snap_name;
195
196 struct kref kref;
197 };
198
199 /*
200 * an instance of the client. multiple devices may share an rbd client.
201 */
202 struct rbd_client {
203 struct ceph_client *client;
204 struct kref kref;
205 struct list_head node;
206 };
207
208 struct rbd_img_request;
209 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
210
211 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
212
213 struct rbd_obj_request;
214 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
215
216 enum obj_request_type {
217 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
218 };
219
220 enum obj_operation_type {
221 OBJ_OP_WRITE,
222 OBJ_OP_READ,
223 OBJ_OP_DISCARD,
224 };
225
226 enum obj_req_flags {
227 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
228 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
229 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
230 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
231 };
232
233 struct rbd_obj_request {
234 u64 object_no;
235 u64 offset; /* object start byte */
236 u64 length; /* bytes from offset */
237 unsigned long flags;
238
239 /*
240 * An object request associated with an image will have its
241 * img_data flag set; a standalone object request will not.
242 *
243 * A standalone object request will have which == BAD_WHICH
244 * and a null obj_request pointer.
245 *
246 * An object request initiated in support of a layered image
247 * object (to check for its existence before a write) will
248 * have which == BAD_WHICH and a non-null obj_request pointer.
249 *
250 * Finally, an object request for rbd image data will have
251 * which != BAD_WHICH, and will have a non-null img_request
252 * pointer. The value of which will be in the range
253 * 0..(img_request->obj_request_count-1).
254 */
255 union {
256 struct rbd_obj_request *obj_request; /* STAT op */
257 struct {
258 struct rbd_img_request *img_request;
259 u64 img_offset;
260 /* links for img_request->obj_requests list */
261 struct list_head links;
262 };
263 };
264 u32 which; /* posn image request list */
265
266 enum obj_request_type type;
267 union {
268 struct bio *bio_list;
269 struct {
270 struct page **pages;
271 u32 page_count;
272 };
273 };
274 struct page **copyup_pages;
275 u32 copyup_page_count;
276
277 struct ceph_osd_request *osd_req;
278
279 u64 xferred; /* bytes transferred */
280 int result;
281
282 rbd_obj_callback_t callback;
283 struct completion completion;
284
285 struct kref kref;
286 };
287
288 enum img_req_flags {
289 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
290 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
291 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
292 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
293 };
294
295 struct rbd_img_request {
296 struct rbd_device *rbd_dev;
297 u64 offset; /* starting image byte offset */
298 u64 length; /* byte count from offset */
299 unsigned long flags;
300 union {
301 u64 snap_id; /* for reads */
302 struct ceph_snap_context *snapc; /* for writes */
303 };
304 union {
305 struct request *rq; /* block request */
306 struct rbd_obj_request *obj_request; /* obj req initiator */
307 };
308 struct page **copyup_pages;
309 u32 copyup_page_count;
310 spinlock_t completion_lock;/* protects next_completion */
311 u32 next_completion;
312 rbd_img_callback_t callback;
313 u64 xferred;/* aggregate bytes transferred */
314 int result; /* first nonzero obj_request result */
315
316 u32 obj_request_count;
317 struct list_head obj_requests; /* rbd_obj_request structs */
318
319 struct kref kref;
320 };
321
322 #define for_each_obj_request(ireq, oreq) \
323 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
324 #define for_each_obj_request_from(ireq, oreq) \
325 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
326 #define for_each_obj_request_safe(ireq, oreq, n) \
327 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
328
329 enum rbd_watch_state {
330 RBD_WATCH_STATE_UNREGISTERED,
331 RBD_WATCH_STATE_REGISTERED,
332 RBD_WATCH_STATE_ERROR,
333 };
334
335 enum rbd_lock_state {
336 RBD_LOCK_STATE_UNLOCKED,
337 RBD_LOCK_STATE_LOCKED,
338 RBD_LOCK_STATE_RELEASING,
339 };
340
341 /* WatchNotify::ClientId */
342 struct rbd_client_id {
343 u64 gid;
344 u64 handle;
345 };
346
347 struct rbd_mapping {
348 u64 size;
349 u64 features;
350 bool read_only;
351 };
352
353 /*
354 * a single device
355 */
356 struct rbd_device {
357 int dev_id; /* blkdev unique id */
358
359 int major; /* blkdev assigned major */
360 int minor;
361 struct gendisk *disk; /* blkdev's gendisk and rq */
362
363 u32 image_format; /* Either 1 or 2 */
364 struct rbd_client *rbd_client;
365
366 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
367
368 spinlock_t lock; /* queue, flags, open_count */
369
370 struct rbd_image_header header;
371 unsigned long flags; /* possibly lock protected */
372 struct rbd_spec *spec;
373 struct rbd_options *opts;
374 char *config_info; /* add{,_single_major} string */
375
376 struct ceph_object_id header_oid;
377 struct ceph_object_locator header_oloc;
378
379 struct ceph_file_layout layout; /* used for all rbd requests */
380
381 struct mutex watch_mutex;
382 enum rbd_watch_state watch_state;
383 struct ceph_osd_linger_request *watch_handle;
384 u64 watch_cookie;
385 struct delayed_work watch_dwork;
386
387 struct rw_semaphore lock_rwsem;
388 enum rbd_lock_state lock_state;
389 struct rbd_client_id owner_cid;
390 struct work_struct acquired_lock_work;
391 struct work_struct released_lock_work;
392 struct delayed_work lock_dwork;
393 struct work_struct unlock_work;
394 wait_queue_head_t lock_waitq;
395
396 struct workqueue_struct *task_wq;
397
398 struct rbd_spec *parent_spec;
399 u64 parent_overlap;
400 atomic_t parent_ref;
401 struct rbd_device *parent;
402
403 /* Block layer tags. */
404 struct blk_mq_tag_set tag_set;
405
406 /* protects updating the header */
407 struct rw_semaphore header_rwsem;
408
409 struct rbd_mapping mapping;
410
411 struct list_head node;
412
413 /* sysfs related */
414 struct device dev;
415 unsigned long open_count; /* protected by lock */
416 };
417
418 /*
419 * Flag bits for rbd_dev->flags:
420 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
421 * by rbd_dev->lock
422 * - BLACKLISTED is protected by rbd_dev->lock_rwsem
423 */
424 enum rbd_dev_flags {
425 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
426 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
427 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
428 };
429
430 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
431
432 static LIST_HEAD(rbd_dev_list); /* devices */
433 static DEFINE_SPINLOCK(rbd_dev_list_lock);
434
435 static LIST_HEAD(rbd_client_list); /* clients */
436 static DEFINE_SPINLOCK(rbd_client_list_lock);
437
438 /* Slab caches for frequently-allocated structures */
439
440 static struct kmem_cache *rbd_img_request_cache;
441 static struct kmem_cache *rbd_obj_request_cache;
442
443 static int rbd_major;
444 static DEFINE_IDA(rbd_dev_id_ida);
445
446 static struct workqueue_struct *rbd_wq;
447
448 /*
449 * Default to false for now, as single-major requires >= 0.75 version of
450 * userspace rbd utility.
451 */
452 static bool single_major = false;
453 module_param(single_major, bool, S_IRUGO);
454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
455
456 static int rbd_img_request_submit(struct rbd_img_request *img_request);
457
458 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
459 size_t count);
460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
461 size_t count);
462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
463 size_t count);
464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
465 size_t count);
466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
467 static void rbd_spec_put(struct rbd_spec *spec);
468
469 static int rbd_dev_id_to_minor(int dev_id)
470 {
471 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
472 }
473
474 static int minor_to_rbd_dev_id(int minor)
475 {
476 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
477 }
478
479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
480 {
481 return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
482 rbd_dev->spec->snap_id == CEPH_NOSNAP &&
483 !rbd_dev->mapping.read_only;
484 }
485
486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
487 {
488 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
489 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
490 }
491
492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
493 {
494 bool is_lock_owner;
495
496 down_read(&rbd_dev->lock_rwsem);
497 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
498 up_read(&rbd_dev->lock_rwsem);
499 return is_lock_owner;
500 }
501
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506
507 static struct attribute *rbd_bus_attrs[] = {
508 &bus_attr_add.attr,
509 &bus_attr_remove.attr,
510 &bus_attr_add_single_major.attr,
511 &bus_attr_remove_single_major.attr,
512 NULL,
513 };
514
515 static umode_t rbd_bus_is_visible(struct kobject *kobj,
516 struct attribute *attr, int index)
517 {
518 if (!single_major &&
519 (attr == &bus_attr_add_single_major.attr ||
520 attr == &bus_attr_remove_single_major.attr))
521 return 0;
522
523 return attr->mode;
524 }
525
526 static const struct attribute_group rbd_bus_group = {
527 .attrs = rbd_bus_attrs,
528 .is_visible = rbd_bus_is_visible,
529 };
530 __ATTRIBUTE_GROUPS(rbd_bus);
531
532 static struct bus_type rbd_bus_type = {
533 .name = "rbd",
534 .bus_groups = rbd_bus_groups,
535 };
536
537 static void rbd_root_dev_release(struct device *dev)
538 {
539 }
540
541 static struct device rbd_root_dev = {
542 .init_name = "rbd",
543 .release = rbd_root_dev_release,
544 };
545
546 static __printf(2, 3)
547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
548 {
549 struct va_format vaf;
550 va_list args;
551
552 va_start(args, fmt);
553 vaf.fmt = fmt;
554 vaf.va = &args;
555
556 if (!rbd_dev)
557 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
558 else if (rbd_dev->disk)
559 printk(KERN_WARNING "%s: %s: %pV\n",
560 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
561 else if (rbd_dev->spec && rbd_dev->spec->image_name)
562 printk(KERN_WARNING "%s: image %s: %pV\n",
563 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
564 else if (rbd_dev->spec && rbd_dev->spec->image_id)
565 printk(KERN_WARNING "%s: id %s: %pV\n",
566 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
567 else /* punt */
568 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
569 RBD_DRV_NAME, rbd_dev, &vaf);
570 va_end(args);
571 }
572
573 #ifdef RBD_DEBUG
574 #define rbd_assert(expr) \
575 if (unlikely(!(expr))) { \
576 printk(KERN_ERR "\nAssertion failure in %s() " \
577 "at line %d:\n\n" \
578 "\trbd_assert(%s);\n\n", \
579 __func__, __LINE__, #expr); \
580 BUG(); \
581 }
582 #else /* !RBD_DEBUG */
583 # define rbd_assert(expr) ((void) 0)
584 #endif /* !RBD_DEBUG */
585
586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
590
591 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
593 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
596 u64 snap_id);
597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
598 u8 *order, u64 *snap_size);
599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
600 u64 *snap_features);
601
602 static int rbd_open(struct block_device *bdev, fmode_t mode)
603 {
604 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
605 bool removing = false;
606
607 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
608 return -EROFS;
609
610 spin_lock_irq(&rbd_dev->lock);
611 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
612 removing = true;
613 else
614 rbd_dev->open_count++;
615 spin_unlock_irq(&rbd_dev->lock);
616 if (removing)
617 return -ENOENT;
618
619 (void) get_device(&rbd_dev->dev);
620
621 return 0;
622 }
623
624 static void rbd_release(struct gendisk *disk, fmode_t mode)
625 {
626 struct rbd_device *rbd_dev = disk->private_data;
627 unsigned long open_count_before;
628
629 spin_lock_irq(&rbd_dev->lock);
630 open_count_before = rbd_dev->open_count--;
631 spin_unlock_irq(&rbd_dev->lock);
632 rbd_assert(open_count_before > 0);
633
634 put_device(&rbd_dev->dev);
635 }
636
637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
638 {
639 int ret = 0;
640 int val;
641 bool ro;
642 bool ro_changed = false;
643
644 /* get_user() may sleep, so call it before taking rbd_dev->lock */
645 if (get_user(val, (int __user *)(arg)))
646 return -EFAULT;
647
648 ro = val ? true : false;
649 /* Snapshot doesn't allow to write*/
650 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
651 return -EROFS;
652
653 spin_lock_irq(&rbd_dev->lock);
654 /* prevent others open this device */
655 if (rbd_dev->open_count > 1) {
656 ret = -EBUSY;
657 goto out;
658 }
659
660 if (rbd_dev->mapping.read_only != ro) {
661 rbd_dev->mapping.read_only = ro;
662 ro_changed = true;
663 }
664
665 out:
666 spin_unlock_irq(&rbd_dev->lock);
667 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
668 if (ret == 0 && ro_changed)
669 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
670
671 return ret;
672 }
673
674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
675 unsigned int cmd, unsigned long arg)
676 {
677 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
678 int ret = 0;
679
680 switch (cmd) {
681 case BLKROSET:
682 ret = rbd_ioctl_set_ro(rbd_dev, arg);
683 break;
684 default:
685 ret = -ENOTTY;
686 }
687
688 return ret;
689 }
690
691 #ifdef CONFIG_COMPAT
692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
693 unsigned int cmd, unsigned long arg)
694 {
695 return rbd_ioctl(bdev, mode, cmd, arg);
696 }
697 #endif /* CONFIG_COMPAT */
698
699 static const struct block_device_operations rbd_bd_ops = {
700 .owner = THIS_MODULE,
701 .open = rbd_open,
702 .release = rbd_release,
703 .ioctl = rbd_ioctl,
704 #ifdef CONFIG_COMPAT
705 .compat_ioctl = rbd_compat_ioctl,
706 #endif
707 };
708
709 /*
710 * Initialize an rbd client instance. Success or not, this function
711 * consumes ceph_opts. Caller holds client_mutex.
712 */
713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
714 {
715 struct rbd_client *rbdc;
716 int ret = -ENOMEM;
717
718 dout("%s:\n", __func__);
719 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
720 if (!rbdc)
721 goto out_opt;
722
723 kref_init(&rbdc->kref);
724 INIT_LIST_HEAD(&rbdc->node);
725
726 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
727 if (IS_ERR(rbdc->client))
728 goto out_rbdc;
729 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
730
731 ret = ceph_open_session(rbdc->client);
732 if (ret < 0)
733 goto out_client;
734
735 spin_lock(&rbd_client_list_lock);
736 list_add_tail(&rbdc->node, &rbd_client_list);
737 spin_unlock(&rbd_client_list_lock);
738
739 dout("%s: rbdc %p\n", __func__, rbdc);
740
741 return rbdc;
742 out_client:
743 ceph_destroy_client(rbdc->client);
744 out_rbdc:
745 kfree(rbdc);
746 out_opt:
747 if (ceph_opts)
748 ceph_destroy_options(ceph_opts);
749 dout("%s: error %d\n", __func__, ret);
750
751 return ERR_PTR(ret);
752 }
753
754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
755 {
756 kref_get(&rbdc->kref);
757
758 return rbdc;
759 }
760
761 /*
762 * Find a ceph client with specific addr and configuration. If
763 * found, bump its reference count.
764 */
765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
766 {
767 struct rbd_client *client_node;
768 bool found = false;
769
770 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
771 return NULL;
772
773 spin_lock(&rbd_client_list_lock);
774 list_for_each_entry(client_node, &rbd_client_list, node) {
775 if (!ceph_compare_options(ceph_opts, client_node->client)) {
776 __rbd_get_client(client_node);
777
778 found = true;
779 break;
780 }
781 }
782 spin_unlock(&rbd_client_list_lock);
783
784 return found ? client_node : NULL;
785 }
786
787 /*
788 * (Per device) rbd map options
789 */
790 enum {
791 Opt_queue_depth,
792 Opt_last_int,
793 /* int args above */
794 Opt_last_string,
795 /* string args above */
796 Opt_read_only,
797 Opt_read_write,
798 Opt_lock_on_read,
799 Opt_err
800 };
801
802 static match_table_t rbd_opts_tokens = {
803 {Opt_queue_depth, "queue_depth=%d"},
804 /* int args above */
805 /* string args above */
806 {Opt_read_only, "read_only"},
807 {Opt_read_only, "ro"}, /* Alternate spelling */
808 {Opt_read_write, "read_write"},
809 {Opt_read_write, "rw"}, /* Alternate spelling */
810 {Opt_lock_on_read, "lock_on_read"},
811 {Opt_err, NULL}
812 };
813
814 struct rbd_options {
815 int queue_depth;
816 bool read_only;
817 bool lock_on_read;
818 };
819
820 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
821 #define RBD_READ_ONLY_DEFAULT false
822 #define RBD_LOCK_ON_READ_DEFAULT false
823
824 static int parse_rbd_opts_token(char *c, void *private)
825 {
826 struct rbd_options *rbd_opts = private;
827 substring_t argstr[MAX_OPT_ARGS];
828 int token, intval, ret;
829
830 token = match_token(c, rbd_opts_tokens, argstr);
831 if (token < Opt_last_int) {
832 ret = match_int(&argstr[0], &intval);
833 if (ret < 0) {
834 pr_err("bad mount option arg (not int) at '%s'\n", c);
835 return ret;
836 }
837 dout("got int token %d val %d\n", token, intval);
838 } else if (token > Opt_last_int && token < Opt_last_string) {
839 dout("got string token %d val %s\n", token, argstr[0].from);
840 } else {
841 dout("got token %d\n", token);
842 }
843
844 switch (token) {
845 case Opt_queue_depth:
846 if (intval < 1) {
847 pr_err("queue_depth out of range\n");
848 return -EINVAL;
849 }
850 rbd_opts->queue_depth = intval;
851 break;
852 case Opt_read_only:
853 rbd_opts->read_only = true;
854 break;
855 case Opt_read_write:
856 rbd_opts->read_only = false;
857 break;
858 case Opt_lock_on_read:
859 rbd_opts->lock_on_read = true;
860 break;
861 default:
862 /* libceph prints "bad option" msg */
863 return -EINVAL;
864 }
865
866 return 0;
867 }
868
869 static char* obj_op_name(enum obj_operation_type op_type)
870 {
871 switch (op_type) {
872 case OBJ_OP_READ:
873 return "read";
874 case OBJ_OP_WRITE:
875 return "write";
876 case OBJ_OP_DISCARD:
877 return "discard";
878 default:
879 return "???";
880 }
881 }
882
883 /*
884 * Get a ceph client with specific addr and configuration, if one does
885 * not exist create it. Either way, ceph_opts is consumed by this
886 * function.
887 */
888 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
889 {
890 struct rbd_client *rbdc;
891
892 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
893 rbdc = rbd_client_find(ceph_opts);
894 if (rbdc) /* using an existing client */
895 ceph_destroy_options(ceph_opts);
896 else
897 rbdc = rbd_client_create(ceph_opts);
898 mutex_unlock(&client_mutex);
899
900 return rbdc;
901 }
902
903 /*
904 * Destroy ceph client
905 *
906 * Caller must hold rbd_client_list_lock.
907 */
908 static void rbd_client_release(struct kref *kref)
909 {
910 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
911
912 dout("%s: rbdc %p\n", __func__, rbdc);
913 spin_lock(&rbd_client_list_lock);
914 list_del(&rbdc->node);
915 spin_unlock(&rbd_client_list_lock);
916
917 ceph_destroy_client(rbdc->client);
918 kfree(rbdc);
919 }
920
921 /*
922 * Drop reference to ceph client node. If it's not referenced anymore, release
923 * it.
924 */
925 static void rbd_put_client(struct rbd_client *rbdc)
926 {
927 if (rbdc)
928 kref_put(&rbdc->kref, rbd_client_release);
929 }
930
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933 return image_format == 1 || image_format == 2;
934 }
935
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938 size_t size;
939 u32 snap_count;
940
941 /* The header has to start with the magic rbd header text */
942 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943 return false;
944
945 /* The bio layer requires at least sector-sized I/O */
946
947 if (ondisk->options.order < SECTOR_SHIFT)
948 return false;
949
950 /* If we use u64 in a few spots we may be able to loosen this */
951
952 if (ondisk->options.order > 8 * sizeof (int) - 1)
953 return false;
954
955 /*
956 * The size of a snapshot header has to fit in a size_t, and
957 * that limits the number of snapshots.
958 */
959 snap_count = le32_to_cpu(ondisk->snap_count);
960 size = SIZE_MAX - sizeof (struct ceph_snap_context);
961 if (snap_count > size / sizeof (__le64))
962 return false;
963
964 /*
965 * Not only that, but the size of the entire the snapshot
966 * header must also be representable in a size_t.
967 */
968 size -= snap_count * sizeof (__le64);
969 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970 return false;
971
972 return true;
973 }
974
975 /*
976 * returns the size of an object in the image
977 */
978 static u32 rbd_obj_bytes(struct rbd_image_header *header)
979 {
980 return 1U << header->obj_order;
981 }
982
983 static void rbd_init_layout(struct rbd_device *rbd_dev)
984 {
985 if (rbd_dev->header.stripe_unit == 0 ||
986 rbd_dev->header.stripe_count == 0) {
987 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
988 rbd_dev->header.stripe_count = 1;
989 }
990
991 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
992 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
993 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
994 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
995 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
996 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
997 }
998
999 /*
1000 * Fill an rbd image header with information from the given format 1
1001 * on-disk header.
1002 */
1003 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1004 struct rbd_image_header_ondisk *ondisk)
1005 {
1006 struct rbd_image_header *header = &rbd_dev->header;
1007 bool first_time = header->object_prefix == NULL;
1008 struct ceph_snap_context *snapc;
1009 char *object_prefix = NULL;
1010 char *snap_names = NULL;
1011 u64 *snap_sizes = NULL;
1012 u32 snap_count;
1013 int ret = -ENOMEM;
1014 u32 i;
1015
1016 /* Allocate this now to avoid having to handle failure below */
1017
1018 if (first_time) {
1019 object_prefix = kstrndup(ondisk->object_prefix,
1020 sizeof(ondisk->object_prefix),
1021 GFP_KERNEL);
1022 if (!object_prefix)
1023 return -ENOMEM;
1024 }
1025
1026 /* Allocate the snapshot context and fill it in */
1027
1028 snap_count = le32_to_cpu(ondisk->snap_count);
1029 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1030 if (!snapc)
1031 goto out_err;
1032 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1033 if (snap_count) {
1034 struct rbd_image_snap_ondisk *snaps;
1035 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1036
1037 /* We'll keep a copy of the snapshot names... */
1038
1039 if (snap_names_len > (u64)SIZE_MAX)
1040 goto out_2big;
1041 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1042 if (!snap_names)
1043 goto out_err;
1044
1045 /* ...as well as the array of their sizes. */
1046 snap_sizes = kmalloc_array(snap_count,
1047 sizeof(*header->snap_sizes),
1048 GFP_KERNEL);
1049 if (!snap_sizes)
1050 goto out_err;
1051
1052 /*
1053 * Copy the names, and fill in each snapshot's id
1054 * and size.
1055 *
1056 * Note that rbd_dev_v1_header_info() guarantees the
1057 * ondisk buffer we're working with has
1058 * snap_names_len bytes beyond the end of the
1059 * snapshot id array, this memcpy() is safe.
1060 */
1061 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1062 snaps = ondisk->snaps;
1063 for (i = 0; i < snap_count; i++) {
1064 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1065 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1066 }
1067 }
1068
1069 /* We won't fail any more, fill in the header */
1070
1071 if (first_time) {
1072 header->object_prefix = object_prefix;
1073 header->obj_order = ondisk->options.order;
1074 rbd_init_layout(rbd_dev);
1075 } else {
1076 ceph_put_snap_context(header->snapc);
1077 kfree(header->snap_names);
1078 kfree(header->snap_sizes);
1079 }
1080
1081 /* The remaining fields always get updated (when we refresh) */
1082
1083 header->image_size = le64_to_cpu(ondisk->image_size);
1084 header->snapc = snapc;
1085 header->snap_names = snap_names;
1086 header->snap_sizes = snap_sizes;
1087
1088 return 0;
1089 out_2big:
1090 ret = -EIO;
1091 out_err:
1092 kfree(snap_sizes);
1093 kfree(snap_names);
1094 ceph_put_snap_context(snapc);
1095 kfree(object_prefix);
1096
1097 return ret;
1098 }
1099
1100 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1101 {
1102 const char *snap_name;
1103
1104 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1105
1106 /* Skip over names until we find the one we are looking for */
1107
1108 snap_name = rbd_dev->header.snap_names;
1109 while (which--)
1110 snap_name += strlen(snap_name) + 1;
1111
1112 return kstrdup(snap_name, GFP_KERNEL);
1113 }
1114
1115 /*
1116 * Snapshot id comparison function for use with qsort()/bsearch().
1117 * Note that result is for snapshots in *descending* order.
1118 */
1119 static int snapid_compare_reverse(const void *s1, const void *s2)
1120 {
1121 u64 snap_id1 = *(u64 *)s1;
1122 u64 snap_id2 = *(u64 *)s2;
1123
1124 if (snap_id1 < snap_id2)
1125 return 1;
1126 return snap_id1 == snap_id2 ? 0 : -1;
1127 }
1128
1129 /*
1130 * Search a snapshot context to see if the given snapshot id is
1131 * present.
1132 *
1133 * Returns the position of the snapshot id in the array if it's found,
1134 * or BAD_SNAP_INDEX otherwise.
1135 *
1136 * Note: The snapshot array is in kept sorted (by the osd) in
1137 * reverse order, highest snapshot id first.
1138 */
1139 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1140 {
1141 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1142 u64 *found;
1143
1144 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1145 sizeof (snap_id), snapid_compare_reverse);
1146
1147 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1148 }
1149
1150 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1151 u64 snap_id)
1152 {
1153 u32 which;
1154 const char *snap_name;
1155
1156 which = rbd_dev_snap_index(rbd_dev, snap_id);
1157 if (which == BAD_SNAP_INDEX)
1158 return ERR_PTR(-ENOENT);
1159
1160 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1161 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1162 }
1163
1164 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1165 {
1166 if (snap_id == CEPH_NOSNAP)
1167 return RBD_SNAP_HEAD_NAME;
1168
1169 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1170 if (rbd_dev->image_format == 1)
1171 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1172
1173 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1174 }
1175
1176 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1177 u64 *snap_size)
1178 {
1179 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1180 if (snap_id == CEPH_NOSNAP) {
1181 *snap_size = rbd_dev->header.image_size;
1182 } else if (rbd_dev->image_format == 1) {
1183 u32 which;
1184
1185 which = rbd_dev_snap_index(rbd_dev, snap_id);
1186 if (which == BAD_SNAP_INDEX)
1187 return -ENOENT;
1188
1189 *snap_size = rbd_dev->header.snap_sizes[which];
1190 } else {
1191 u64 size = 0;
1192 int ret;
1193
1194 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1195 if (ret)
1196 return ret;
1197
1198 *snap_size = size;
1199 }
1200 return 0;
1201 }
1202
1203 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1204 u64 *snap_features)
1205 {
1206 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1207 if (snap_id == CEPH_NOSNAP) {
1208 *snap_features = rbd_dev->header.features;
1209 } else if (rbd_dev->image_format == 1) {
1210 *snap_features = 0; /* No features for format 1 */
1211 } else {
1212 u64 features = 0;
1213 int ret;
1214
1215 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1216 if (ret)
1217 return ret;
1218
1219 *snap_features = features;
1220 }
1221 return 0;
1222 }
1223
1224 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1225 {
1226 u64 snap_id = rbd_dev->spec->snap_id;
1227 u64 size = 0;
1228 u64 features = 0;
1229 int ret;
1230
1231 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1232 if (ret)
1233 return ret;
1234 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1235 if (ret)
1236 return ret;
1237
1238 rbd_dev->mapping.size = size;
1239 rbd_dev->mapping.features = features;
1240
1241 return 0;
1242 }
1243
1244 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1245 {
1246 rbd_dev->mapping.size = 0;
1247 rbd_dev->mapping.features = 0;
1248 }
1249
1250 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1251 {
1252 u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1253
1254 return offset & (segment_size - 1);
1255 }
1256
1257 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1258 u64 offset, u64 length)
1259 {
1260 u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1261
1262 offset &= segment_size - 1;
1263
1264 rbd_assert(length <= U64_MAX - offset);
1265 if (offset + length > segment_size)
1266 length = segment_size - offset;
1267
1268 return length;
1269 }
1270
1271 /*
1272 * bio helpers
1273 */
1274
1275 static void bio_chain_put(struct bio *chain)
1276 {
1277 struct bio *tmp;
1278
1279 while (chain) {
1280 tmp = chain;
1281 chain = chain->bi_next;
1282 bio_put(tmp);
1283 }
1284 }
1285
1286 /*
1287 * zeros a bio chain, starting at specific offset
1288 */
1289 static void zero_bio_chain(struct bio *chain, int start_ofs)
1290 {
1291 struct bio_vec bv;
1292 struct bvec_iter iter;
1293 unsigned long flags;
1294 void *buf;
1295 int pos = 0;
1296
1297 while (chain) {
1298 bio_for_each_segment(bv, chain, iter) {
1299 if (pos + bv.bv_len > start_ofs) {
1300 int remainder = max(start_ofs - pos, 0);
1301 buf = bvec_kmap_irq(&bv, &flags);
1302 memset(buf + remainder, 0,
1303 bv.bv_len - remainder);
1304 flush_dcache_page(bv.bv_page);
1305 bvec_kunmap_irq(buf, &flags);
1306 }
1307 pos += bv.bv_len;
1308 }
1309
1310 chain = chain->bi_next;
1311 }
1312 }
1313
1314 /*
1315 * similar to zero_bio_chain(), zeros data defined by a page array,
1316 * starting at the given byte offset from the start of the array and
1317 * continuing up to the given end offset. The pages array is
1318 * assumed to be big enough to hold all bytes up to the end.
1319 */
1320 static void zero_pages(struct page **pages, u64 offset, u64 end)
1321 {
1322 struct page **page = &pages[offset >> PAGE_SHIFT];
1323
1324 rbd_assert(end > offset);
1325 rbd_assert(end - offset <= (u64)SIZE_MAX);
1326 while (offset < end) {
1327 size_t page_offset;
1328 size_t length;
1329 unsigned long flags;
1330 void *kaddr;
1331
1332 page_offset = offset & ~PAGE_MASK;
1333 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1334 local_irq_save(flags);
1335 kaddr = kmap_atomic(*page);
1336 memset(kaddr + page_offset, 0, length);
1337 flush_dcache_page(*page);
1338 kunmap_atomic(kaddr);
1339 local_irq_restore(flags);
1340
1341 offset += length;
1342 page++;
1343 }
1344 }
1345
1346 /*
1347 * Clone a portion of a bio, starting at the given byte offset
1348 * and continuing for the number of bytes indicated.
1349 */
1350 static struct bio *bio_clone_range(struct bio *bio_src,
1351 unsigned int offset,
1352 unsigned int len,
1353 gfp_t gfpmask)
1354 {
1355 struct bio *bio;
1356
1357 bio = bio_clone(bio_src, gfpmask);
1358 if (!bio)
1359 return NULL; /* ENOMEM */
1360
1361 bio_advance(bio, offset);
1362 bio->bi_iter.bi_size = len;
1363
1364 return bio;
1365 }
1366
1367 /*
1368 * Clone a portion of a bio chain, starting at the given byte offset
1369 * into the first bio in the source chain and continuing for the
1370 * number of bytes indicated. The result is another bio chain of
1371 * exactly the given length, or a null pointer on error.
1372 *
1373 * The bio_src and offset parameters are both in-out. On entry they
1374 * refer to the first source bio and the offset into that bio where
1375 * the start of data to be cloned is located.
1376 *
1377 * On return, bio_src is updated to refer to the bio in the source
1378 * chain that contains first un-cloned byte, and *offset will
1379 * contain the offset of that byte within that bio.
1380 */
1381 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1382 unsigned int *offset,
1383 unsigned int len,
1384 gfp_t gfpmask)
1385 {
1386 struct bio *bi = *bio_src;
1387 unsigned int off = *offset;
1388 struct bio *chain = NULL;
1389 struct bio **end;
1390
1391 /* Build up a chain of clone bios up to the limit */
1392
1393 if (!bi || off >= bi->bi_iter.bi_size || !len)
1394 return NULL; /* Nothing to clone */
1395
1396 end = &chain;
1397 while (len) {
1398 unsigned int bi_size;
1399 struct bio *bio;
1400
1401 if (!bi) {
1402 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1403 goto out_err; /* EINVAL; ran out of bio's */
1404 }
1405 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1406 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1407 if (!bio)
1408 goto out_err; /* ENOMEM */
1409
1410 *end = bio;
1411 end = &bio->bi_next;
1412
1413 off += bi_size;
1414 if (off == bi->bi_iter.bi_size) {
1415 bi = bi->bi_next;
1416 off = 0;
1417 }
1418 len -= bi_size;
1419 }
1420 *bio_src = bi;
1421 *offset = off;
1422
1423 return chain;
1424 out_err:
1425 bio_chain_put(chain);
1426
1427 return NULL;
1428 }
1429
1430 /*
1431 * The default/initial value for all object request flags is 0. For
1432 * each flag, once its value is set to 1 it is never reset to 0
1433 * again.
1434 */
1435 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1436 {
1437 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1438 struct rbd_device *rbd_dev;
1439
1440 rbd_dev = obj_request->img_request->rbd_dev;
1441 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1442 obj_request);
1443 }
1444 }
1445
1446 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1447 {
1448 smp_mb();
1449 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1450 }
1451
1452 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1453 {
1454 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1455 struct rbd_device *rbd_dev = NULL;
1456
1457 if (obj_request_img_data_test(obj_request))
1458 rbd_dev = obj_request->img_request->rbd_dev;
1459 rbd_warn(rbd_dev, "obj_request %p already marked done",
1460 obj_request);
1461 }
1462 }
1463
1464 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1465 {
1466 smp_mb();
1467 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1468 }
1469
1470 /*
1471 * This sets the KNOWN flag after (possibly) setting the EXISTS
1472 * flag. The latter is set based on the "exists" value provided.
1473 *
1474 * Note that for our purposes once an object exists it never goes
1475 * away again. It's possible that the response from two existence
1476 * checks are separated by the creation of the target object, and
1477 * the first ("doesn't exist") response arrives *after* the second
1478 * ("does exist"). In that case we ignore the second one.
1479 */
1480 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1481 bool exists)
1482 {
1483 if (exists)
1484 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1485 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1486 smp_mb();
1487 }
1488
1489 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1490 {
1491 smp_mb();
1492 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1493 }
1494
1495 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1496 {
1497 smp_mb();
1498 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1499 }
1500
1501 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1502 {
1503 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1504
1505 return obj_request->img_offset <
1506 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1507 }
1508
1509 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1510 {
1511 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1512 kref_read(&obj_request->kref));
1513 kref_get(&obj_request->kref);
1514 }
1515
1516 static void rbd_obj_request_destroy(struct kref *kref);
1517 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1518 {
1519 rbd_assert(obj_request != NULL);
1520 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1521 kref_read(&obj_request->kref));
1522 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1523 }
1524
1525 static void rbd_img_request_get(struct rbd_img_request *img_request)
1526 {
1527 dout("%s: img %p (was %d)\n", __func__, img_request,
1528 kref_read(&img_request->kref));
1529 kref_get(&img_request->kref);
1530 }
1531
1532 static bool img_request_child_test(struct rbd_img_request *img_request);
1533 static void rbd_parent_request_destroy(struct kref *kref);
1534 static void rbd_img_request_destroy(struct kref *kref);
1535 static void rbd_img_request_put(struct rbd_img_request *img_request)
1536 {
1537 rbd_assert(img_request != NULL);
1538 dout("%s: img %p (was %d)\n", __func__, img_request,
1539 kref_read(&img_request->kref));
1540 if (img_request_child_test(img_request))
1541 kref_put(&img_request->kref, rbd_parent_request_destroy);
1542 else
1543 kref_put(&img_request->kref, rbd_img_request_destroy);
1544 }
1545
1546 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1547 struct rbd_obj_request *obj_request)
1548 {
1549 rbd_assert(obj_request->img_request == NULL);
1550
1551 /* Image request now owns object's original reference */
1552 obj_request->img_request = img_request;
1553 obj_request->which = img_request->obj_request_count;
1554 rbd_assert(!obj_request_img_data_test(obj_request));
1555 obj_request_img_data_set(obj_request);
1556 rbd_assert(obj_request->which != BAD_WHICH);
1557 img_request->obj_request_count++;
1558 list_add_tail(&obj_request->links, &img_request->obj_requests);
1559 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1560 obj_request->which);
1561 }
1562
1563 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1564 struct rbd_obj_request *obj_request)
1565 {
1566 rbd_assert(obj_request->which != BAD_WHICH);
1567
1568 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1569 obj_request->which);
1570 list_del(&obj_request->links);
1571 rbd_assert(img_request->obj_request_count > 0);
1572 img_request->obj_request_count--;
1573 rbd_assert(obj_request->which == img_request->obj_request_count);
1574 obj_request->which = BAD_WHICH;
1575 rbd_assert(obj_request_img_data_test(obj_request));
1576 rbd_assert(obj_request->img_request == img_request);
1577 obj_request->img_request = NULL;
1578 obj_request->callback = NULL;
1579 rbd_obj_request_put(obj_request);
1580 }
1581
1582 static bool obj_request_type_valid(enum obj_request_type type)
1583 {
1584 switch (type) {
1585 case OBJ_REQUEST_NODATA:
1586 case OBJ_REQUEST_BIO:
1587 case OBJ_REQUEST_PAGES:
1588 return true;
1589 default:
1590 return false;
1591 }
1592 }
1593
1594 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1595
1596 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1597 {
1598 struct ceph_osd_request *osd_req = obj_request->osd_req;
1599
1600 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1601 obj_request, obj_request->object_no, obj_request->offset,
1602 obj_request->length, osd_req);
1603 if (obj_request_img_data_test(obj_request)) {
1604 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1605 rbd_img_request_get(obj_request->img_request);
1606 }
1607 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1608 }
1609
1610 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1611 {
1612
1613 dout("%s: img %p\n", __func__, img_request);
1614
1615 /*
1616 * If no error occurred, compute the aggregate transfer
1617 * count for the image request. We could instead use
1618 * atomic64_cmpxchg() to update it as each object request
1619 * completes; not clear which way is better off hand.
1620 */
1621 if (!img_request->result) {
1622 struct rbd_obj_request *obj_request;
1623 u64 xferred = 0;
1624
1625 for_each_obj_request(img_request, obj_request)
1626 xferred += obj_request->xferred;
1627 img_request->xferred = xferred;
1628 }
1629
1630 if (img_request->callback)
1631 img_request->callback(img_request);
1632 else
1633 rbd_img_request_put(img_request);
1634 }
1635
1636 /*
1637 * The default/initial value for all image request flags is 0. Each
1638 * is conditionally set to 1 at image request initialization time
1639 * and currently never change thereafter.
1640 */
1641 static void img_request_write_set(struct rbd_img_request *img_request)
1642 {
1643 set_bit(IMG_REQ_WRITE, &img_request->flags);
1644 smp_mb();
1645 }
1646
1647 static bool img_request_write_test(struct rbd_img_request *img_request)
1648 {
1649 smp_mb();
1650 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1651 }
1652
1653 /*
1654 * Set the discard flag when the img_request is an discard request
1655 */
1656 static void img_request_discard_set(struct rbd_img_request *img_request)
1657 {
1658 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1659 smp_mb();
1660 }
1661
1662 static bool img_request_discard_test(struct rbd_img_request *img_request)
1663 {
1664 smp_mb();
1665 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1666 }
1667
1668 static void img_request_child_set(struct rbd_img_request *img_request)
1669 {
1670 set_bit(IMG_REQ_CHILD, &img_request->flags);
1671 smp_mb();
1672 }
1673
1674 static void img_request_child_clear(struct rbd_img_request *img_request)
1675 {
1676 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1677 smp_mb();
1678 }
1679
1680 static bool img_request_child_test(struct rbd_img_request *img_request)
1681 {
1682 smp_mb();
1683 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1684 }
1685
1686 static void img_request_layered_set(struct rbd_img_request *img_request)
1687 {
1688 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1689 smp_mb();
1690 }
1691
1692 static void img_request_layered_clear(struct rbd_img_request *img_request)
1693 {
1694 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1695 smp_mb();
1696 }
1697
1698 static bool img_request_layered_test(struct rbd_img_request *img_request)
1699 {
1700 smp_mb();
1701 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1702 }
1703
1704 static enum obj_operation_type
1705 rbd_img_request_op_type(struct rbd_img_request *img_request)
1706 {
1707 if (img_request_write_test(img_request))
1708 return OBJ_OP_WRITE;
1709 else if (img_request_discard_test(img_request))
1710 return OBJ_OP_DISCARD;
1711 else
1712 return OBJ_OP_READ;
1713 }
1714
1715 static void
1716 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1717 {
1718 u64 xferred = obj_request->xferred;
1719 u64 length = obj_request->length;
1720
1721 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1722 obj_request, obj_request->img_request, obj_request->result,
1723 xferred, length);
1724 /*
1725 * ENOENT means a hole in the image. We zero-fill the entire
1726 * length of the request. A short read also implies zero-fill
1727 * to the end of the request. An error requires the whole
1728 * length of the request to be reported finished with an error
1729 * to the block layer. In each case we update the xferred
1730 * count to indicate the whole request was satisfied.
1731 */
1732 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1733 if (obj_request->result == -ENOENT) {
1734 if (obj_request->type == OBJ_REQUEST_BIO)
1735 zero_bio_chain(obj_request->bio_list, 0);
1736 else
1737 zero_pages(obj_request->pages, 0, length);
1738 obj_request->result = 0;
1739 } else if (xferred < length && !obj_request->result) {
1740 if (obj_request->type == OBJ_REQUEST_BIO)
1741 zero_bio_chain(obj_request->bio_list, xferred);
1742 else
1743 zero_pages(obj_request->pages, xferred, length);
1744 }
1745 obj_request->xferred = length;
1746 obj_request_done_set(obj_request);
1747 }
1748
1749 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1750 {
1751 dout("%s: obj %p cb %p\n", __func__, obj_request,
1752 obj_request->callback);
1753 if (obj_request->callback)
1754 obj_request->callback(obj_request);
1755 else
1756 complete_all(&obj_request->completion);
1757 }
1758
1759 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1760 {
1761 obj_request->result = err;
1762 obj_request->xferred = 0;
1763 /*
1764 * kludge - mirror rbd_obj_request_submit() to match a put in
1765 * rbd_img_obj_callback()
1766 */
1767 if (obj_request_img_data_test(obj_request)) {
1768 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1769 rbd_img_request_get(obj_request->img_request);
1770 }
1771 obj_request_done_set(obj_request);
1772 rbd_obj_request_complete(obj_request);
1773 }
1774
1775 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1776 {
1777 struct rbd_img_request *img_request = NULL;
1778 struct rbd_device *rbd_dev = NULL;
1779 bool layered = false;
1780
1781 if (obj_request_img_data_test(obj_request)) {
1782 img_request = obj_request->img_request;
1783 layered = img_request && img_request_layered_test(img_request);
1784 rbd_dev = img_request->rbd_dev;
1785 }
1786
1787 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1788 obj_request, img_request, obj_request->result,
1789 obj_request->xferred, obj_request->length);
1790 if (layered && obj_request->result == -ENOENT &&
1791 obj_request->img_offset < rbd_dev->parent_overlap)
1792 rbd_img_parent_read(obj_request);
1793 else if (img_request)
1794 rbd_img_obj_request_read_callback(obj_request);
1795 else
1796 obj_request_done_set(obj_request);
1797 }
1798
1799 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1800 {
1801 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1802 obj_request->result, obj_request->length);
1803 /*
1804 * There is no such thing as a successful short write. Set
1805 * it to our originally-requested length.
1806 */
1807 obj_request->xferred = obj_request->length;
1808 obj_request_done_set(obj_request);
1809 }
1810
1811 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1812 {
1813 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1814 obj_request->result, obj_request->length);
1815 /*
1816 * There is no such thing as a successful short discard. Set
1817 * it to our originally-requested length.
1818 */
1819 obj_request->xferred = obj_request->length;
1820 /* discarding a non-existent object is not a problem */
1821 if (obj_request->result == -ENOENT)
1822 obj_request->result = 0;
1823 obj_request_done_set(obj_request);
1824 }
1825
1826 /*
1827 * For a simple stat call there's nothing to do. We'll do more if
1828 * this is part of a write sequence for a layered image.
1829 */
1830 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1831 {
1832 dout("%s: obj %p\n", __func__, obj_request);
1833 obj_request_done_set(obj_request);
1834 }
1835
1836 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1837 {
1838 dout("%s: obj %p\n", __func__, obj_request);
1839
1840 if (obj_request_img_data_test(obj_request))
1841 rbd_osd_copyup_callback(obj_request);
1842 else
1843 obj_request_done_set(obj_request);
1844 }
1845
1846 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1847 {
1848 struct rbd_obj_request *obj_request = osd_req->r_priv;
1849 u16 opcode;
1850
1851 dout("%s: osd_req %p\n", __func__, osd_req);
1852 rbd_assert(osd_req == obj_request->osd_req);
1853 if (obj_request_img_data_test(obj_request)) {
1854 rbd_assert(obj_request->img_request);
1855 rbd_assert(obj_request->which != BAD_WHICH);
1856 } else {
1857 rbd_assert(obj_request->which == BAD_WHICH);
1858 }
1859
1860 if (osd_req->r_result < 0)
1861 obj_request->result = osd_req->r_result;
1862
1863 /*
1864 * We support a 64-bit length, but ultimately it has to be
1865 * passed to the block layer, which just supports a 32-bit
1866 * length field.
1867 */
1868 obj_request->xferred = osd_req->r_ops[0].outdata_len;
1869 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1870
1871 opcode = osd_req->r_ops[0].op;
1872 switch (opcode) {
1873 case CEPH_OSD_OP_READ:
1874 rbd_osd_read_callback(obj_request);
1875 break;
1876 case CEPH_OSD_OP_SETALLOCHINT:
1877 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1878 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1879 /* fall through */
1880 case CEPH_OSD_OP_WRITE:
1881 case CEPH_OSD_OP_WRITEFULL:
1882 rbd_osd_write_callback(obj_request);
1883 break;
1884 case CEPH_OSD_OP_STAT:
1885 rbd_osd_stat_callback(obj_request);
1886 break;
1887 case CEPH_OSD_OP_DELETE:
1888 case CEPH_OSD_OP_TRUNCATE:
1889 case CEPH_OSD_OP_ZERO:
1890 rbd_osd_discard_callback(obj_request);
1891 break;
1892 case CEPH_OSD_OP_CALL:
1893 rbd_osd_call_callback(obj_request);
1894 break;
1895 default:
1896 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d",
1897 obj_request->object_no, opcode);
1898 break;
1899 }
1900
1901 if (obj_request_done_test(obj_request))
1902 rbd_obj_request_complete(obj_request);
1903 }
1904
1905 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1906 {
1907 struct ceph_osd_request *osd_req = obj_request->osd_req;
1908
1909 rbd_assert(obj_request_img_data_test(obj_request));
1910 osd_req->r_snapid = obj_request->img_request->snap_id;
1911 }
1912
1913 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1914 {
1915 struct ceph_osd_request *osd_req = obj_request->osd_req;
1916
1917 osd_req->r_mtime = CURRENT_TIME;
1918 osd_req->r_data_offset = obj_request->offset;
1919 }
1920
1921 static struct ceph_osd_request *
1922 __rbd_osd_req_create(struct rbd_device *rbd_dev,
1923 struct ceph_snap_context *snapc,
1924 int num_ops, unsigned int flags,
1925 struct rbd_obj_request *obj_request)
1926 {
1927 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1928 struct ceph_osd_request *req;
1929 const char *name_format = rbd_dev->image_format == 1 ?
1930 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1931
1932 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1933 if (!req)
1934 return NULL;
1935
1936 req->r_flags = flags;
1937 req->r_callback = rbd_osd_req_callback;
1938 req->r_priv = obj_request;
1939
1940 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1941 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1942 rbd_dev->header.object_prefix, obj_request->object_no))
1943 goto err_req;
1944
1945 if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1946 goto err_req;
1947
1948 return req;
1949
1950 err_req:
1951 ceph_osdc_put_request(req);
1952 return NULL;
1953 }
1954
1955 /*
1956 * Create an osd request. A read request has one osd op (read).
1957 * A write request has either one (watch) or two (hint+write) osd ops.
1958 * (All rbd data writes are prefixed with an allocation hint op, but
1959 * technically osd watch is a write request, hence this distinction.)
1960 */
1961 static struct ceph_osd_request *rbd_osd_req_create(
1962 struct rbd_device *rbd_dev,
1963 enum obj_operation_type op_type,
1964 unsigned int num_ops,
1965 struct rbd_obj_request *obj_request)
1966 {
1967 struct ceph_snap_context *snapc = NULL;
1968
1969 if (obj_request_img_data_test(obj_request) &&
1970 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1971 struct rbd_img_request *img_request = obj_request->img_request;
1972 if (op_type == OBJ_OP_WRITE) {
1973 rbd_assert(img_request_write_test(img_request));
1974 } else {
1975 rbd_assert(img_request_discard_test(img_request));
1976 }
1977 snapc = img_request->snapc;
1978 }
1979
1980 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1981
1982 return __rbd_osd_req_create(rbd_dev, snapc, num_ops,
1983 (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ?
1984 CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request);
1985 }
1986
1987 /*
1988 * Create a copyup osd request based on the information in the object
1989 * request supplied. A copyup request has two or three osd ops, a
1990 * copyup method call, potentially a hint op, and a write or truncate
1991 * or zero op.
1992 */
1993 static struct ceph_osd_request *
1994 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1995 {
1996 struct rbd_img_request *img_request;
1997 int num_osd_ops = 3;
1998
1999 rbd_assert(obj_request_img_data_test(obj_request));
2000 img_request = obj_request->img_request;
2001 rbd_assert(img_request);
2002 rbd_assert(img_request_write_test(img_request) ||
2003 img_request_discard_test(img_request));
2004
2005 if (img_request_discard_test(img_request))
2006 num_osd_ops = 2;
2007
2008 return __rbd_osd_req_create(img_request->rbd_dev,
2009 img_request->snapc, num_osd_ops,
2010 CEPH_OSD_FLAG_WRITE, obj_request);
2011 }
2012
2013 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2014 {
2015 ceph_osdc_put_request(osd_req);
2016 }
2017
2018 static struct rbd_obj_request *
2019 rbd_obj_request_create(enum obj_request_type type)
2020 {
2021 struct rbd_obj_request *obj_request;
2022
2023 rbd_assert(obj_request_type_valid(type));
2024
2025 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2026 if (!obj_request)
2027 return NULL;
2028
2029 obj_request->which = BAD_WHICH;
2030 obj_request->type = type;
2031 INIT_LIST_HEAD(&obj_request->links);
2032 init_completion(&obj_request->completion);
2033 kref_init(&obj_request->kref);
2034
2035 dout("%s %p\n", __func__, obj_request);
2036 return obj_request;
2037 }
2038
2039 static void rbd_obj_request_destroy(struct kref *kref)
2040 {
2041 struct rbd_obj_request *obj_request;
2042
2043 obj_request = container_of(kref, struct rbd_obj_request, kref);
2044
2045 dout("%s: obj %p\n", __func__, obj_request);
2046
2047 rbd_assert(obj_request->img_request == NULL);
2048 rbd_assert(obj_request->which == BAD_WHICH);
2049
2050 if (obj_request->osd_req)
2051 rbd_osd_req_destroy(obj_request->osd_req);
2052
2053 rbd_assert(obj_request_type_valid(obj_request->type));
2054 switch (obj_request->type) {
2055 case OBJ_REQUEST_NODATA:
2056 break; /* Nothing to do */
2057 case OBJ_REQUEST_BIO:
2058 if (obj_request->bio_list)
2059 bio_chain_put(obj_request->bio_list);
2060 break;
2061 case OBJ_REQUEST_PAGES:
2062 /* img_data requests don't own their page array */
2063 if (obj_request->pages &&
2064 !obj_request_img_data_test(obj_request))
2065 ceph_release_page_vector(obj_request->pages,
2066 obj_request->page_count);
2067 break;
2068 }
2069
2070 kmem_cache_free(rbd_obj_request_cache, obj_request);
2071 }
2072
2073 /* It's OK to call this for a device with no parent */
2074
2075 static void rbd_spec_put(struct rbd_spec *spec);
2076 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2077 {
2078 rbd_dev_remove_parent(rbd_dev);
2079 rbd_spec_put(rbd_dev->parent_spec);
2080 rbd_dev->parent_spec = NULL;
2081 rbd_dev->parent_overlap = 0;
2082 }
2083
2084 /*
2085 * Parent image reference counting is used to determine when an
2086 * image's parent fields can be safely torn down--after there are no
2087 * more in-flight requests to the parent image. When the last
2088 * reference is dropped, cleaning them up is safe.
2089 */
2090 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2091 {
2092 int counter;
2093
2094 if (!rbd_dev->parent_spec)
2095 return;
2096
2097 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2098 if (counter > 0)
2099 return;
2100
2101 /* Last reference; clean up parent data structures */
2102
2103 if (!counter)
2104 rbd_dev_unparent(rbd_dev);
2105 else
2106 rbd_warn(rbd_dev, "parent reference underflow");
2107 }
2108
2109 /*
2110 * If an image has a non-zero parent overlap, get a reference to its
2111 * parent.
2112 *
2113 * Returns true if the rbd device has a parent with a non-zero
2114 * overlap and a reference for it was successfully taken, or
2115 * false otherwise.
2116 */
2117 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2118 {
2119 int counter = 0;
2120
2121 if (!rbd_dev->parent_spec)
2122 return false;
2123
2124 down_read(&rbd_dev->header_rwsem);
2125 if (rbd_dev->parent_overlap)
2126 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2127 up_read(&rbd_dev->header_rwsem);
2128
2129 if (counter < 0)
2130 rbd_warn(rbd_dev, "parent reference overflow");
2131
2132 return counter > 0;
2133 }
2134
2135 /*
2136 * Caller is responsible for filling in the list of object requests
2137 * that comprises the image request, and the Linux request pointer
2138 * (if there is one).
2139 */
2140 static struct rbd_img_request *rbd_img_request_create(
2141 struct rbd_device *rbd_dev,
2142 u64 offset, u64 length,
2143 enum obj_operation_type op_type,
2144 struct ceph_snap_context *snapc)
2145 {
2146 struct rbd_img_request *img_request;
2147
2148 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2149 if (!img_request)
2150 return NULL;
2151
2152 img_request->rq = NULL;
2153 img_request->rbd_dev = rbd_dev;
2154 img_request->offset = offset;
2155 img_request->length = length;
2156 img_request->flags = 0;
2157 if (op_type == OBJ_OP_DISCARD) {
2158 img_request_discard_set(img_request);
2159 img_request->snapc = snapc;
2160 } else if (op_type == OBJ_OP_WRITE) {
2161 img_request_write_set(img_request);
2162 img_request->snapc = snapc;
2163 } else {
2164 img_request->snap_id = rbd_dev->spec->snap_id;
2165 }
2166 if (rbd_dev_parent_get(rbd_dev))
2167 img_request_layered_set(img_request);
2168 spin_lock_init(&img_request->completion_lock);
2169 img_request->next_completion = 0;
2170 img_request->callback = NULL;
2171 img_request->result = 0;
2172 img_request->obj_request_count = 0;
2173 INIT_LIST_HEAD(&img_request->obj_requests);
2174 kref_init(&img_request->kref);
2175
2176 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2177 obj_op_name(op_type), offset, length, img_request);
2178
2179 return img_request;
2180 }
2181
2182 static void rbd_img_request_destroy(struct kref *kref)
2183 {
2184 struct rbd_img_request *img_request;
2185 struct rbd_obj_request *obj_request;
2186 struct rbd_obj_request *next_obj_request;
2187
2188 img_request = container_of(kref, struct rbd_img_request, kref);
2189
2190 dout("%s: img %p\n", __func__, img_request);
2191
2192 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2193 rbd_img_obj_request_del(img_request, obj_request);
2194 rbd_assert(img_request->obj_request_count == 0);
2195
2196 if (img_request_layered_test(img_request)) {
2197 img_request_layered_clear(img_request);
2198 rbd_dev_parent_put(img_request->rbd_dev);
2199 }
2200
2201 if (img_request_write_test(img_request) ||
2202 img_request_discard_test(img_request))
2203 ceph_put_snap_context(img_request->snapc);
2204
2205 kmem_cache_free(rbd_img_request_cache, img_request);
2206 }
2207
2208 static struct rbd_img_request *rbd_parent_request_create(
2209 struct rbd_obj_request *obj_request,
2210 u64 img_offset, u64 length)
2211 {
2212 struct rbd_img_request *parent_request;
2213 struct rbd_device *rbd_dev;
2214
2215 rbd_assert(obj_request->img_request);
2216 rbd_dev = obj_request->img_request->rbd_dev;
2217
2218 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2219 length, OBJ_OP_READ, NULL);
2220 if (!parent_request)
2221 return NULL;
2222
2223 img_request_child_set(parent_request);
2224 rbd_obj_request_get(obj_request);
2225 parent_request->obj_request = obj_request;
2226
2227 return parent_request;
2228 }
2229
2230 static void rbd_parent_request_destroy(struct kref *kref)
2231 {
2232 struct rbd_img_request *parent_request;
2233 struct rbd_obj_request *orig_request;
2234
2235 parent_request = container_of(kref, struct rbd_img_request, kref);
2236 orig_request = parent_request->obj_request;
2237
2238 parent_request->obj_request = NULL;
2239 rbd_obj_request_put(orig_request);
2240 img_request_child_clear(parent_request);
2241
2242 rbd_img_request_destroy(kref);
2243 }
2244
2245 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2246 {
2247 struct rbd_img_request *img_request;
2248 unsigned int xferred;
2249 int result;
2250 bool more;
2251
2252 rbd_assert(obj_request_img_data_test(obj_request));
2253 img_request = obj_request->img_request;
2254
2255 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2256 xferred = (unsigned int)obj_request->xferred;
2257 result = obj_request->result;
2258 if (result) {
2259 struct rbd_device *rbd_dev = img_request->rbd_dev;
2260 enum obj_operation_type op_type;
2261
2262 if (img_request_discard_test(img_request))
2263 op_type = OBJ_OP_DISCARD;
2264 else if (img_request_write_test(img_request))
2265 op_type = OBJ_OP_WRITE;
2266 else
2267 op_type = OBJ_OP_READ;
2268
2269 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2270 obj_op_name(op_type), obj_request->length,
2271 obj_request->img_offset, obj_request->offset);
2272 rbd_warn(rbd_dev, " result %d xferred %x",
2273 result, xferred);
2274 if (!img_request->result)
2275 img_request->result = result;
2276 /*
2277 * Need to end I/O on the entire obj_request worth of
2278 * bytes in case of error.
2279 */
2280 xferred = obj_request->length;
2281 }
2282
2283 if (img_request_child_test(img_request)) {
2284 rbd_assert(img_request->obj_request != NULL);
2285 more = obj_request->which < img_request->obj_request_count - 1;
2286 } else {
2287 rbd_assert(img_request->rq != NULL);
2288
2289 more = blk_update_request(img_request->rq, result, xferred);
2290 if (!more)
2291 __blk_mq_end_request(img_request->rq, result);
2292 }
2293
2294 return more;
2295 }
2296
2297 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2298 {
2299 struct rbd_img_request *img_request;
2300 u32 which = obj_request->which;
2301 bool more = true;
2302
2303 rbd_assert(obj_request_img_data_test(obj_request));
2304 img_request = obj_request->img_request;
2305
2306 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2307 rbd_assert(img_request != NULL);
2308 rbd_assert(img_request->obj_request_count > 0);
2309 rbd_assert(which != BAD_WHICH);
2310 rbd_assert(which < img_request->obj_request_count);
2311
2312 spin_lock_irq(&img_request->completion_lock);
2313 if (which != img_request->next_completion)
2314 goto out;
2315
2316 for_each_obj_request_from(img_request, obj_request) {
2317 rbd_assert(more);
2318 rbd_assert(which < img_request->obj_request_count);
2319
2320 if (!obj_request_done_test(obj_request))
2321 break;
2322 more = rbd_img_obj_end_request(obj_request);
2323 which++;
2324 }
2325
2326 rbd_assert(more ^ (which == img_request->obj_request_count));
2327 img_request->next_completion = which;
2328 out:
2329 spin_unlock_irq(&img_request->completion_lock);
2330 rbd_img_request_put(img_request);
2331
2332 if (!more)
2333 rbd_img_request_complete(img_request);
2334 }
2335
2336 /*
2337 * Add individual osd ops to the given ceph_osd_request and prepare
2338 * them for submission. num_ops is the current number of
2339 * osd operations already to the object request.
2340 */
2341 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2342 struct ceph_osd_request *osd_request,
2343 enum obj_operation_type op_type,
2344 unsigned int num_ops)
2345 {
2346 struct rbd_img_request *img_request = obj_request->img_request;
2347 struct rbd_device *rbd_dev = img_request->rbd_dev;
2348 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2349 u64 offset = obj_request->offset;
2350 u64 length = obj_request->length;
2351 u64 img_end;
2352 u16 opcode;
2353
2354 if (op_type == OBJ_OP_DISCARD) {
2355 if (!offset && length == object_size &&
2356 (!img_request_layered_test(img_request) ||
2357 !obj_request_overlaps_parent(obj_request))) {
2358 opcode = CEPH_OSD_OP_DELETE;
2359 } else if ((offset + length == object_size)) {
2360 opcode = CEPH_OSD_OP_TRUNCATE;
2361 } else {
2362 down_read(&rbd_dev->header_rwsem);
2363 img_end = rbd_dev->header.image_size;
2364 up_read(&rbd_dev->header_rwsem);
2365
2366 if (obj_request->img_offset + length == img_end)
2367 opcode = CEPH_OSD_OP_TRUNCATE;
2368 else
2369 opcode = CEPH_OSD_OP_ZERO;
2370 }
2371 } else if (op_type == OBJ_OP_WRITE) {
2372 if (!offset && length == object_size)
2373 opcode = CEPH_OSD_OP_WRITEFULL;
2374 else
2375 opcode = CEPH_OSD_OP_WRITE;
2376 osd_req_op_alloc_hint_init(osd_request, num_ops,
2377 object_size, object_size);
2378 num_ops++;
2379 } else {
2380 opcode = CEPH_OSD_OP_READ;
2381 }
2382
2383 if (opcode == CEPH_OSD_OP_DELETE)
2384 osd_req_op_init(osd_request, num_ops, opcode, 0);
2385 else
2386 osd_req_op_extent_init(osd_request, num_ops, opcode,
2387 offset, length, 0, 0);
2388
2389 if (obj_request->type == OBJ_REQUEST_BIO)
2390 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2391 obj_request->bio_list, length);
2392 else if (obj_request->type == OBJ_REQUEST_PAGES)
2393 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2394 obj_request->pages, length,
2395 offset & ~PAGE_MASK, false, false);
2396
2397 /* Discards are also writes */
2398 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2399 rbd_osd_req_format_write(obj_request);
2400 else
2401 rbd_osd_req_format_read(obj_request);
2402 }
2403
2404 /*
2405 * Split up an image request into one or more object requests, each
2406 * to a different object. The "type" parameter indicates whether
2407 * "data_desc" is the pointer to the head of a list of bio
2408 * structures, or the base of a page array. In either case this
2409 * function assumes data_desc describes memory sufficient to hold
2410 * all data described by the image request.
2411 */
2412 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2413 enum obj_request_type type,
2414 void *data_desc)
2415 {
2416 struct rbd_device *rbd_dev = img_request->rbd_dev;
2417 struct rbd_obj_request *obj_request = NULL;
2418 struct rbd_obj_request *next_obj_request;
2419 struct bio *bio_list = NULL;
2420 unsigned int bio_offset = 0;
2421 struct page **pages = NULL;
2422 enum obj_operation_type op_type;
2423 u64 img_offset;
2424 u64 resid;
2425
2426 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2427 (int)type, data_desc);
2428
2429 img_offset = img_request->offset;
2430 resid = img_request->length;
2431 rbd_assert(resid > 0);
2432 op_type = rbd_img_request_op_type(img_request);
2433
2434 if (type == OBJ_REQUEST_BIO) {
2435 bio_list = data_desc;
2436 rbd_assert(img_offset ==
2437 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2438 } else if (type == OBJ_REQUEST_PAGES) {
2439 pages = data_desc;
2440 }
2441
2442 while (resid) {
2443 struct ceph_osd_request *osd_req;
2444 u64 object_no = img_offset >> rbd_dev->header.obj_order;
2445 u64 offset = rbd_segment_offset(rbd_dev, img_offset);
2446 u64 length = rbd_segment_length(rbd_dev, img_offset, resid);
2447
2448 obj_request = rbd_obj_request_create(type);
2449 if (!obj_request)
2450 goto out_unwind;
2451
2452 obj_request->object_no = object_no;
2453 obj_request->offset = offset;
2454 obj_request->length = length;
2455
2456 /*
2457 * set obj_request->img_request before creating the
2458 * osd_request so that it gets the right snapc
2459 */
2460 rbd_img_obj_request_add(img_request, obj_request);
2461
2462 if (type == OBJ_REQUEST_BIO) {
2463 unsigned int clone_size;
2464
2465 rbd_assert(length <= (u64)UINT_MAX);
2466 clone_size = (unsigned int)length;
2467 obj_request->bio_list =
2468 bio_chain_clone_range(&bio_list,
2469 &bio_offset,
2470 clone_size,
2471 GFP_NOIO);
2472 if (!obj_request->bio_list)
2473 goto out_unwind;
2474 } else if (type == OBJ_REQUEST_PAGES) {
2475 unsigned int page_count;
2476
2477 obj_request->pages = pages;
2478 page_count = (u32)calc_pages_for(offset, length);
2479 obj_request->page_count = page_count;
2480 if ((offset + length) & ~PAGE_MASK)
2481 page_count--; /* more on last page */
2482 pages += page_count;
2483 }
2484
2485 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2486 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2487 obj_request);
2488 if (!osd_req)
2489 goto out_unwind;
2490
2491 obj_request->osd_req = osd_req;
2492 obj_request->callback = rbd_img_obj_callback;
2493 obj_request->img_offset = img_offset;
2494
2495 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2496
2497 img_offset += length;
2498 resid -= length;
2499 }
2500
2501 return 0;
2502
2503 out_unwind:
2504 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2505 rbd_img_obj_request_del(img_request, obj_request);
2506
2507 return -ENOMEM;
2508 }
2509
2510 static void
2511 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2512 {
2513 struct rbd_img_request *img_request;
2514 struct rbd_device *rbd_dev;
2515 struct page **pages;
2516 u32 page_count;
2517
2518 dout("%s: obj %p\n", __func__, obj_request);
2519
2520 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2521 obj_request->type == OBJ_REQUEST_NODATA);
2522 rbd_assert(obj_request_img_data_test(obj_request));
2523 img_request = obj_request->img_request;
2524 rbd_assert(img_request);
2525
2526 rbd_dev = img_request->rbd_dev;
2527 rbd_assert(rbd_dev);
2528
2529 pages = obj_request->copyup_pages;
2530 rbd_assert(pages != NULL);
2531 obj_request->copyup_pages = NULL;
2532 page_count = obj_request->copyup_page_count;
2533 rbd_assert(page_count);
2534 obj_request->copyup_page_count = 0;
2535 ceph_release_page_vector(pages, page_count);
2536
2537 /*
2538 * We want the transfer count to reflect the size of the
2539 * original write request. There is no such thing as a
2540 * successful short write, so if the request was successful
2541 * we can just set it to the originally-requested length.
2542 */
2543 if (!obj_request->result)
2544 obj_request->xferred = obj_request->length;
2545
2546 obj_request_done_set(obj_request);
2547 }
2548
2549 static void
2550 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2551 {
2552 struct rbd_obj_request *orig_request;
2553 struct ceph_osd_request *osd_req;
2554 struct rbd_device *rbd_dev;
2555 struct page **pages;
2556 enum obj_operation_type op_type;
2557 u32 page_count;
2558 int img_result;
2559 u64 parent_length;
2560
2561 rbd_assert(img_request_child_test(img_request));
2562
2563 /* First get what we need from the image request */
2564
2565 pages = img_request->copyup_pages;
2566 rbd_assert(pages != NULL);
2567 img_request->copyup_pages = NULL;
2568 page_count = img_request->copyup_page_count;
2569 rbd_assert(page_count);
2570 img_request->copyup_page_count = 0;
2571
2572 orig_request = img_request->obj_request;
2573 rbd_assert(orig_request != NULL);
2574 rbd_assert(obj_request_type_valid(orig_request->type));
2575 img_result = img_request->result;
2576 parent_length = img_request->length;
2577 rbd_assert(img_result || parent_length == img_request->xferred);
2578 rbd_img_request_put(img_request);
2579
2580 rbd_assert(orig_request->img_request);
2581 rbd_dev = orig_request->img_request->rbd_dev;
2582 rbd_assert(rbd_dev);
2583
2584 /*
2585 * If the overlap has become 0 (most likely because the
2586 * image has been flattened) we need to free the pages
2587 * and re-submit the original write request.
2588 */
2589 if (!rbd_dev->parent_overlap) {
2590 ceph_release_page_vector(pages, page_count);
2591 rbd_obj_request_submit(orig_request);
2592 return;
2593 }
2594
2595 if (img_result)
2596 goto out_err;
2597
2598 /*
2599 * The original osd request is of no use to use any more.
2600 * We need a new one that can hold the three ops in a copyup
2601 * request. Allocate the new copyup osd request for the
2602 * original request, and release the old one.
2603 */
2604 img_result = -ENOMEM;
2605 osd_req = rbd_osd_req_create_copyup(orig_request);
2606 if (!osd_req)
2607 goto out_err;
2608 rbd_osd_req_destroy(orig_request->osd_req);
2609 orig_request->osd_req = osd_req;
2610 orig_request->copyup_pages = pages;
2611 orig_request->copyup_page_count = page_count;
2612
2613 /* Initialize the copyup op */
2614
2615 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2616 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2617 false, false);
2618
2619 /* Add the other op(s) */
2620
2621 op_type = rbd_img_request_op_type(orig_request->img_request);
2622 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2623
2624 /* All set, send it off. */
2625
2626 rbd_obj_request_submit(orig_request);
2627 return;
2628
2629 out_err:
2630 ceph_release_page_vector(pages, page_count);
2631 rbd_obj_request_error(orig_request, img_result);
2632 }
2633
2634 /*
2635 * Read from the parent image the range of data that covers the
2636 * entire target of the given object request. This is used for
2637 * satisfying a layered image write request when the target of an
2638 * object request from the image request does not exist.
2639 *
2640 * A page array big enough to hold the returned data is allocated
2641 * and supplied to rbd_img_request_fill() as the "data descriptor."
2642 * When the read completes, this page array will be transferred to
2643 * the original object request for the copyup operation.
2644 *
2645 * If an error occurs, it is recorded as the result of the original
2646 * object request in rbd_img_obj_exists_callback().
2647 */
2648 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2649 {
2650 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2651 struct rbd_img_request *parent_request = NULL;
2652 u64 img_offset;
2653 u64 length;
2654 struct page **pages = NULL;
2655 u32 page_count;
2656 int result;
2657
2658 rbd_assert(rbd_dev->parent != NULL);
2659
2660 /*
2661 * Determine the byte range covered by the object in the
2662 * child image to which the original request was to be sent.
2663 */
2664 img_offset = obj_request->img_offset - obj_request->offset;
2665 length = rbd_obj_bytes(&rbd_dev->header);
2666
2667 /*
2668 * There is no defined parent data beyond the parent
2669 * overlap, so limit what we read at that boundary if
2670 * necessary.
2671 */
2672 if (img_offset + length > rbd_dev->parent_overlap) {
2673 rbd_assert(img_offset < rbd_dev->parent_overlap);
2674 length = rbd_dev->parent_overlap - img_offset;
2675 }
2676
2677 /*
2678 * Allocate a page array big enough to receive the data read
2679 * from the parent.
2680 */
2681 page_count = (u32)calc_pages_for(0, length);
2682 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2683 if (IS_ERR(pages)) {
2684 result = PTR_ERR(pages);
2685 pages = NULL;
2686 goto out_err;
2687 }
2688
2689 result = -ENOMEM;
2690 parent_request = rbd_parent_request_create(obj_request,
2691 img_offset, length);
2692 if (!parent_request)
2693 goto out_err;
2694
2695 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2696 if (result)
2697 goto out_err;
2698
2699 parent_request->copyup_pages = pages;
2700 parent_request->copyup_page_count = page_count;
2701 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2702
2703 result = rbd_img_request_submit(parent_request);
2704 if (!result)
2705 return 0;
2706
2707 parent_request->copyup_pages = NULL;
2708 parent_request->copyup_page_count = 0;
2709 parent_request->obj_request = NULL;
2710 rbd_obj_request_put(obj_request);
2711 out_err:
2712 if (pages)
2713 ceph_release_page_vector(pages, page_count);
2714 if (parent_request)
2715 rbd_img_request_put(parent_request);
2716 return result;
2717 }
2718
2719 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2720 {
2721 struct rbd_obj_request *orig_request;
2722 struct rbd_device *rbd_dev;
2723 int result;
2724
2725 rbd_assert(!obj_request_img_data_test(obj_request));
2726
2727 /*
2728 * All we need from the object request is the original
2729 * request and the result of the STAT op. Grab those, then
2730 * we're done with the request.
2731 */
2732 orig_request = obj_request->obj_request;
2733 obj_request->obj_request = NULL;
2734 rbd_obj_request_put(orig_request);
2735 rbd_assert(orig_request);
2736 rbd_assert(orig_request->img_request);
2737
2738 result = obj_request->result;
2739 obj_request->result = 0;
2740
2741 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2742 obj_request, orig_request, result,
2743 obj_request->xferred, obj_request->length);
2744 rbd_obj_request_put(obj_request);
2745
2746 /*
2747 * If the overlap has become 0 (most likely because the
2748 * image has been flattened) we need to re-submit the
2749 * original request.
2750 */
2751 rbd_dev = orig_request->img_request->rbd_dev;
2752 if (!rbd_dev->parent_overlap) {
2753 rbd_obj_request_submit(orig_request);
2754 return;
2755 }
2756
2757 /*
2758 * Our only purpose here is to determine whether the object
2759 * exists, and we don't want to treat the non-existence as
2760 * an error. If something else comes back, transfer the
2761 * error to the original request and complete it now.
2762 */
2763 if (!result) {
2764 obj_request_existence_set(orig_request, true);
2765 } else if (result == -ENOENT) {
2766 obj_request_existence_set(orig_request, false);
2767 } else {
2768 goto fail_orig_request;
2769 }
2770
2771 /*
2772 * Resubmit the original request now that we have recorded
2773 * whether the target object exists.
2774 */
2775 result = rbd_img_obj_request_submit(orig_request);
2776 if (result)
2777 goto fail_orig_request;
2778
2779 return;
2780
2781 fail_orig_request:
2782 rbd_obj_request_error(orig_request, result);
2783 }
2784
2785 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2786 {
2787 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2788 struct rbd_obj_request *stat_request;
2789 struct page **pages;
2790 u32 page_count;
2791 size_t size;
2792 int ret;
2793
2794 stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES);
2795 if (!stat_request)
2796 return -ENOMEM;
2797
2798 stat_request->object_no = obj_request->object_no;
2799
2800 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2801 stat_request);
2802 if (!stat_request->osd_req) {
2803 ret = -ENOMEM;
2804 goto fail_stat_request;
2805 }
2806
2807 /*
2808 * The response data for a STAT call consists of:
2809 * le64 length;
2810 * struct {
2811 * le32 tv_sec;
2812 * le32 tv_nsec;
2813 * } mtime;
2814 */
2815 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2816 page_count = (u32)calc_pages_for(0, size);
2817 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2818 if (IS_ERR(pages)) {
2819 ret = PTR_ERR(pages);
2820 goto fail_stat_request;
2821 }
2822
2823 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2824 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2825 false, false);
2826
2827 rbd_obj_request_get(obj_request);
2828 stat_request->obj_request = obj_request;
2829 stat_request->pages = pages;
2830 stat_request->page_count = page_count;
2831 stat_request->callback = rbd_img_obj_exists_callback;
2832
2833 rbd_obj_request_submit(stat_request);
2834 return 0;
2835
2836 fail_stat_request:
2837 rbd_obj_request_put(stat_request);
2838 return ret;
2839 }
2840
2841 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2842 {
2843 struct rbd_img_request *img_request = obj_request->img_request;
2844 struct rbd_device *rbd_dev = img_request->rbd_dev;
2845
2846 /* Reads */
2847 if (!img_request_write_test(img_request) &&
2848 !img_request_discard_test(img_request))
2849 return true;
2850
2851 /* Non-layered writes */
2852 if (!img_request_layered_test(img_request))
2853 return true;
2854
2855 /*
2856 * Layered writes outside of the parent overlap range don't
2857 * share any data with the parent.
2858 */
2859 if (!obj_request_overlaps_parent(obj_request))
2860 return true;
2861
2862 /*
2863 * Entire-object layered writes - we will overwrite whatever
2864 * parent data there is anyway.
2865 */
2866 if (!obj_request->offset &&
2867 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2868 return true;
2869
2870 /*
2871 * If the object is known to already exist, its parent data has
2872 * already been copied.
2873 */
2874 if (obj_request_known_test(obj_request) &&
2875 obj_request_exists_test(obj_request))
2876 return true;
2877
2878 return false;
2879 }
2880
2881 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2882 {
2883 rbd_assert(obj_request_img_data_test(obj_request));
2884 rbd_assert(obj_request_type_valid(obj_request->type));
2885 rbd_assert(obj_request->img_request);
2886
2887 if (img_obj_request_simple(obj_request)) {
2888 rbd_obj_request_submit(obj_request);
2889 return 0;
2890 }
2891
2892 /*
2893 * It's a layered write. The target object might exist but
2894 * we may not know that yet. If we know it doesn't exist,
2895 * start by reading the data for the full target object from
2896 * the parent so we can use it for a copyup to the target.
2897 */
2898 if (obj_request_known_test(obj_request))
2899 return rbd_img_obj_parent_read_full(obj_request);
2900
2901 /* We don't know whether the target exists. Go find out. */
2902
2903 return rbd_img_obj_exists_submit(obj_request);
2904 }
2905
2906 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2907 {
2908 struct rbd_obj_request *obj_request;
2909 struct rbd_obj_request *next_obj_request;
2910 int ret = 0;
2911
2912 dout("%s: img %p\n", __func__, img_request);
2913
2914 rbd_img_request_get(img_request);
2915 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2916 ret = rbd_img_obj_request_submit(obj_request);
2917 if (ret)
2918 goto out_put_ireq;
2919 }
2920
2921 out_put_ireq:
2922 rbd_img_request_put(img_request);
2923 return ret;
2924 }
2925
2926 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2927 {
2928 struct rbd_obj_request *obj_request;
2929 struct rbd_device *rbd_dev;
2930 u64 obj_end;
2931 u64 img_xferred;
2932 int img_result;
2933
2934 rbd_assert(img_request_child_test(img_request));
2935
2936 /* First get what we need from the image request and release it */
2937
2938 obj_request = img_request->obj_request;
2939 img_xferred = img_request->xferred;
2940 img_result = img_request->result;
2941 rbd_img_request_put(img_request);
2942
2943 /*
2944 * If the overlap has become 0 (most likely because the
2945 * image has been flattened) we need to re-submit the
2946 * original request.
2947 */
2948 rbd_assert(obj_request);
2949 rbd_assert(obj_request->img_request);
2950 rbd_dev = obj_request->img_request->rbd_dev;
2951 if (!rbd_dev->parent_overlap) {
2952 rbd_obj_request_submit(obj_request);
2953 return;
2954 }
2955
2956 obj_request->result = img_result;
2957 if (obj_request->result)
2958 goto out;
2959
2960 /*
2961 * We need to zero anything beyond the parent overlap
2962 * boundary. Since rbd_img_obj_request_read_callback()
2963 * will zero anything beyond the end of a short read, an
2964 * easy way to do this is to pretend the data from the
2965 * parent came up short--ending at the overlap boundary.
2966 */
2967 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2968 obj_end = obj_request->img_offset + obj_request->length;
2969 if (obj_end > rbd_dev->parent_overlap) {
2970 u64 xferred = 0;
2971
2972 if (obj_request->img_offset < rbd_dev->parent_overlap)
2973 xferred = rbd_dev->parent_overlap -
2974 obj_request->img_offset;
2975
2976 obj_request->xferred = min(img_xferred, xferred);
2977 } else {
2978 obj_request->xferred = img_xferred;
2979 }
2980 out:
2981 rbd_img_obj_request_read_callback(obj_request);
2982 rbd_obj_request_complete(obj_request);
2983 }
2984
2985 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2986 {
2987 struct rbd_img_request *img_request;
2988 int result;
2989
2990 rbd_assert(obj_request_img_data_test(obj_request));
2991 rbd_assert(obj_request->img_request != NULL);
2992 rbd_assert(obj_request->result == (s32) -ENOENT);
2993 rbd_assert(obj_request_type_valid(obj_request->type));
2994
2995 /* rbd_read_finish(obj_request, obj_request->length); */
2996 img_request = rbd_parent_request_create(obj_request,
2997 obj_request->img_offset,
2998 obj_request->length);
2999 result = -ENOMEM;
3000 if (!img_request)
3001 goto out_err;
3002
3003 if (obj_request->type == OBJ_REQUEST_BIO)
3004 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3005 obj_request->bio_list);
3006 else
3007 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3008 obj_request->pages);
3009 if (result)
3010 goto out_err;
3011
3012 img_request->callback = rbd_img_parent_read_callback;
3013 result = rbd_img_request_submit(img_request);
3014 if (result)
3015 goto out_err;
3016
3017 return;
3018 out_err:
3019 if (img_request)
3020 rbd_img_request_put(img_request);
3021 obj_request->result = result;
3022 obj_request->xferred = 0;
3023 obj_request_done_set(obj_request);
3024 }
3025
3026 static const struct rbd_client_id rbd_empty_cid;
3027
3028 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3029 const struct rbd_client_id *rhs)
3030 {
3031 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3032 }
3033
3034 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3035 {
3036 struct rbd_client_id cid;
3037
3038 mutex_lock(&rbd_dev->watch_mutex);
3039 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3040 cid.handle = rbd_dev->watch_cookie;
3041 mutex_unlock(&rbd_dev->watch_mutex);
3042 return cid;
3043 }
3044
3045 /*
3046 * lock_rwsem must be held for write
3047 */
3048 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3049 const struct rbd_client_id *cid)
3050 {
3051 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3052 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3053 cid->gid, cid->handle);
3054 rbd_dev->owner_cid = *cid; /* struct */
3055 }
3056
3057 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3058 {
3059 mutex_lock(&rbd_dev->watch_mutex);
3060 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3061 mutex_unlock(&rbd_dev->watch_mutex);
3062 }
3063
3064 /*
3065 * lock_rwsem must be held for write
3066 */
3067 static int rbd_lock(struct rbd_device *rbd_dev)
3068 {
3069 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3070 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3071 char cookie[32];
3072 int ret;
3073
3074 WARN_ON(__rbd_is_lock_owner(rbd_dev));
3075
3076 format_lock_cookie(rbd_dev, cookie);
3077 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3078 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3079 RBD_LOCK_TAG, "", 0);
3080 if (ret)
3081 return ret;
3082
3083 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3084 rbd_set_owner_cid(rbd_dev, &cid);
3085 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3086 return 0;
3087 }
3088
3089 /*
3090 * lock_rwsem must be held for write
3091 */
3092 static int rbd_unlock(struct rbd_device *rbd_dev)
3093 {
3094 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3095 char cookie[32];
3096 int ret;
3097
3098 WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3099
3100 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3101
3102 format_lock_cookie(rbd_dev, cookie);
3103 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3104 RBD_LOCK_NAME, cookie);
3105 if (ret && ret != -ENOENT) {
3106 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3107 return ret;
3108 }
3109
3110 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3111 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3112 return 0;
3113 }
3114
3115 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3116 enum rbd_notify_op notify_op,
3117 struct page ***preply_pages,
3118 size_t *preply_len)
3119 {
3120 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3121 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3122 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3123 char buf[buf_size];
3124 void *p = buf;
3125
3126 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3127
3128 /* encode *LockPayload NotifyMessage (op + ClientId) */
3129 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3130 ceph_encode_32(&p, notify_op);
3131 ceph_encode_64(&p, cid.gid);
3132 ceph_encode_64(&p, cid.handle);
3133
3134 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3135 &rbd_dev->header_oloc, buf, buf_size,
3136 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3137 }
3138
3139 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3140 enum rbd_notify_op notify_op)
3141 {
3142 struct page **reply_pages;
3143 size_t reply_len;
3144
3145 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3146 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3147 }
3148
3149 static void rbd_notify_acquired_lock(struct work_struct *work)
3150 {
3151 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3152 acquired_lock_work);
3153
3154 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3155 }
3156
3157 static void rbd_notify_released_lock(struct work_struct *work)
3158 {
3159 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3160 released_lock_work);
3161
3162 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3163 }
3164
3165 static int rbd_request_lock(struct rbd_device *rbd_dev)
3166 {
3167 struct page **reply_pages;
3168 size_t reply_len;
3169 bool lock_owner_responded = false;
3170 int ret;
3171
3172 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3173
3174 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3175 &reply_pages, &reply_len);
3176 if (ret && ret != -ETIMEDOUT) {
3177 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3178 goto out;
3179 }
3180
3181 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3182 void *p = page_address(reply_pages[0]);
3183 void *const end = p + reply_len;
3184 u32 n;
3185
3186 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3187 while (n--) {
3188 u8 struct_v;
3189 u32 len;
3190
3191 ceph_decode_need(&p, end, 8 + 8, e_inval);
3192 p += 8 + 8; /* skip gid and cookie */
3193
3194 ceph_decode_32_safe(&p, end, len, e_inval);
3195 if (!len)
3196 continue;
3197
3198 if (lock_owner_responded) {
3199 rbd_warn(rbd_dev,
3200 "duplicate lock owners detected");
3201 ret = -EIO;
3202 goto out;
3203 }
3204
3205 lock_owner_responded = true;
3206 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3207 &struct_v, &len);
3208 if (ret) {
3209 rbd_warn(rbd_dev,
3210 "failed to decode ResponseMessage: %d",
3211 ret);
3212 goto e_inval;
3213 }
3214
3215 ret = ceph_decode_32(&p);
3216 }
3217 }
3218
3219 if (!lock_owner_responded) {
3220 rbd_warn(rbd_dev, "no lock owners detected");
3221 ret = -ETIMEDOUT;
3222 }
3223
3224 out:
3225 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3226 return ret;
3227
3228 e_inval:
3229 ret = -EINVAL;
3230 goto out;
3231 }
3232
3233 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3234 {
3235 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3236
3237 cancel_delayed_work(&rbd_dev->lock_dwork);
3238 if (wake_all)
3239 wake_up_all(&rbd_dev->lock_waitq);
3240 else
3241 wake_up(&rbd_dev->lock_waitq);
3242 }
3243
3244 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3245 struct ceph_locker **lockers, u32 *num_lockers)
3246 {
3247 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3248 u8 lock_type;
3249 char *lock_tag;
3250 int ret;
3251
3252 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3253
3254 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3255 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3256 &lock_type, &lock_tag, lockers, num_lockers);
3257 if (ret)
3258 return ret;
3259
3260 if (*num_lockers == 0) {
3261 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3262 goto out;
3263 }
3264
3265 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3266 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3267 lock_tag);
3268 ret = -EBUSY;
3269 goto out;
3270 }
3271
3272 if (lock_type == CEPH_CLS_LOCK_SHARED) {
3273 rbd_warn(rbd_dev, "shared lock type detected");
3274 ret = -EBUSY;
3275 goto out;
3276 }
3277
3278 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3279 strlen(RBD_LOCK_COOKIE_PREFIX))) {
3280 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3281 (*lockers)[0].id.cookie);
3282 ret = -EBUSY;
3283 goto out;
3284 }
3285
3286 out:
3287 kfree(lock_tag);
3288 return ret;
3289 }
3290
3291 static int find_watcher(struct rbd_device *rbd_dev,
3292 const struct ceph_locker *locker)
3293 {
3294 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3295 struct ceph_watch_item *watchers;
3296 u32 num_watchers;
3297 u64 cookie;
3298 int i;
3299 int ret;
3300
3301 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3302 &rbd_dev->header_oloc, &watchers,
3303 &num_watchers);
3304 if (ret)
3305 return ret;
3306
3307 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3308 for (i = 0; i < num_watchers; i++) {
3309 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3310 sizeof(locker->info.addr)) &&
3311 watchers[i].cookie == cookie) {
3312 struct rbd_client_id cid = {
3313 .gid = le64_to_cpu(watchers[i].name.num),
3314 .handle = cookie,
3315 };
3316
3317 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3318 rbd_dev, cid.gid, cid.handle);
3319 rbd_set_owner_cid(rbd_dev, &cid);
3320 ret = 1;
3321 goto out;
3322 }
3323 }
3324
3325 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3326 ret = 0;
3327 out:
3328 kfree(watchers);
3329 return ret;
3330 }
3331
3332 /*
3333 * lock_rwsem must be held for write
3334 */
3335 static int rbd_try_lock(struct rbd_device *rbd_dev)
3336 {
3337 struct ceph_client *client = rbd_dev->rbd_client->client;
3338 struct ceph_locker *lockers;
3339 u32 num_lockers;
3340 int ret;
3341
3342 for (;;) {
3343 ret = rbd_lock(rbd_dev);
3344 if (ret != -EBUSY)
3345 return ret;
3346
3347 /* determine if the current lock holder is still alive */
3348 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3349 if (ret)
3350 return ret;
3351
3352 if (num_lockers == 0)
3353 goto again;
3354
3355 ret = find_watcher(rbd_dev, lockers);
3356 if (ret) {
3357 if (ret > 0)
3358 ret = 0; /* have to request lock */
3359 goto out;
3360 }
3361
3362 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3363 ENTITY_NAME(lockers[0].id.name));
3364
3365 ret = ceph_monc_blacklist_add(&client->monc,
3366 &lockers[0].info.addr);
3367 if (ret) {
3368 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3369 ENTITY_NAME(lockers[0].id.name), ret);
3370 goto out;
3371 }
3372
3373 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3374 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3375 lockers[0].id.cookie,
3376 &lockers[0].id.name);
3377 if (ret && ret != -ENOENT)
3378 goto out;
3379
3380 again:
3381 ceph_free_lockers(lockers, num_lockers);
3382 }
3383
3384 out:
3385 ceph_free_lockers(lockers, num_lockers);
3386 return ret;
3387 }
3388
3389 /*
3390 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3391 */
3392 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3393 int *pret)
3394 {
3395 enum rbd_lock_state lock_state;
3396
3397 down_read(&rbd_dev->lock_rwsem);
3398 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3399 rbd_dev->lock_state);
3400 if (__rbd_is_lock_owner(rbd_dev)) {
3401 lock_state = rbd_dev->lock_state;
3402 up_read(&rbd_dev->lock_rwsem);
3403 return lock_state;
3404 }
3405
3406 up_read(&rbd_dev->lock_rwsem);
3407 down_write(&rbd_dev->lock_rwsem);
3408 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3409 rbd_dev->lock_state);
3410 if (!__rbd_is_lock_owner(rbd_dev)) {
3411 *pret = rbd_try_lock(rbd_dev);
3412 if (*pret)
3413 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3414 }
3415
3416 lock_state = rbd_dev->lock_state;
3417 up_write(&rbd_dev->lock_rwsem);
3418 return lock_state;
3419 }
3420
3421 static void rbd_acquire_lock(struct work_struct *work)
3422 {
3423 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3424 struct rbd_device, lock_dwork);
3425 enum rbd_lock_state lock_state;
3426 int ret;
3427
3428 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3429 again:
3430 lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3431 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3432 if (lock_state == RBD_LOCK_STATE_LOCKED)
3433 wake_requests(rbd_dev, true);
3434 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3435 rbd_dev, lock_state, ret);
3436 return;
3437 }
3438
3439 ret = rbd_request_lock(rbd_dev);
3440 if (ret == -ETIMEDOUT) {
3441 goto again; /* treat this as a dead client */
3442 } else if (ret < 0) {
3443 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3444 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3445 RBD_RETRY_DELAY);
3446 } else {
3447 /*
3448 * lock owner acked, but resend if we don't see them
3449 * release the lock
3450 */
3451 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3452 rbd_dev);
3453 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3454 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3455 }
3456 }
3457
3458 /*
3459 * lock_rwsem must be held for write
3460 */
3461 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3462 {
3463 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3464 rbd_dev->lock_state);
3465 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3466 return false;
3467
3468 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3469 downgrade_write(&rbd_dev->lock_rwsem);
3470 /*
3471 * Ensure that all in-flight IO is flushed.
3472 *
3473 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3474 * may be shared with other devices.
3475 */
3476 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3477 up_read(&rbd_dev->lock_rwsem);
3478
3479 down_write(&rbd_dev->lock_rwsem);
3480 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3481 rbd_dev->lock_state);
3482 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3483 return false;
3484
3485 if (!rbd_unlock(rbd_dev))
3486 /*
3487 * Give others a chance to grab the lock - we would re-acquire
3488 * almost immediately if we got new IO during ceph_osdc_sync()
3489 * otherwise. We need to ack our own notifications, so this
3490 * lock_dwork will be requeued from rbd_wait_state_locked()
3491 * after wake_requests() in rbd_handle_released_lock().
3492 */
3493 cancel_delayed_work(&rbd_dev->lock_dwork);
3494
3495 return true;
3496 }
3497
3498 static void rbd_release_lock_work(struct work_struct *work)
3499 {
3500 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3501 unlock_work);
3502
3503 down_write(&rbd_dev->lock_rwsem);
3504 rbd_release_lock(rbd_dev);
3505 up_write(&rbd_dev->lock_rwsem);
3506 }
3507
3508 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3509 void **p)
3510 {
3511 struct rbd_client_id cid = { 0 };
3512
3513 if (struct_v >= 2) {
3514 cid.gid = ceph_decode_64(p);
3515 cid.handle = ceph_decode_64(p);
3516 }
3517
3518 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3519 cid.handle);
3520 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3521 down_write(&rbd_dev->lock_rwsem);
3522 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3523 /*
3524 * we already know that the remote client is
3525 * the owner
3526 */
3527 up_write(&rbd_dev->lock_rwsem);
3528 return;
3529 }
3530
3531 rbd_set_owner_cid(rbd_dev, &cid);
3532 downgrade_write(&rbd_dev->lock_rwsem);
3533 } else {
3534 down_read(&rbd_dev->lock_rwsem);
3535 }
3536
3537 if (!__rbd_is_lock_owner(rbd_dev))
3538 wake_requests(rbd_dev, false);
3539 up_read(&rbd_dev->lock_rwsem);
3540 }
3541
3542 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3543 void **p)
3544 {
3545 struct rbd_client_id cid = { 0 };
3546
3547 if (struct_v >= 2) {
3548 cid.gid = ceph_decode_64(p);
3549 cid.handle = ceph_decode_64(p);
3550 }
3551
3552 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3553 cid.handle);
3554 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3555 down_write(&rbd_dev->lock_rwsem);
3556 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3557 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3558 __func__, rbd_dev, cid.gid, cid.handle,
3559 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3560 up_write(&rbd_dev->lock_rwsem);
3561 return;
3562 }
3563
3564 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3565 downgrade_write(&rbd_dev->lock_rwsem);
3566 } else {
3567 down_read(&rbd_dev->lock_rwsem);
3568 }
3569
3570 if (!__rbd_is_lock_owner(rbd_dev))
3571 wake_requests(rbd_dev, false);
3572 up_read(&rbd_dev->lock_rwsem);
3573 }
3574
3575 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3576 void **p)
3577 {
3578 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3579 struct rbd_client_id cid = { 0 };
3580 bool need_to_send;
3581
3582 if (struct_v >= 2) {
3583 cid.gid = ceph_decode_64(p);
3584 cid.handle = ceph_decode_64(p);
3585 }
3586
3587 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3588 cid.handle);
3589 if (rbd_cid_equal(&cid, &my_cid))
3590 return false;
3591
3592 down_read(&rbd_dev->lock_rwsem);
3593 need_to_send = __rbd_is_lock_owner(rbd_dev);
3594 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3595 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3596 dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3597 rbd_dev);
3598 queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3599 }
3600 }
3601 up_read(&rbd_dev->lock_rwsem);
3602 return need_to_send;
3603 }
3604
3605 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3606 u64 notify_id, u64 cookie, s32 *result)
3607 {
3608 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3609 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3610 char buf[buf_size];
3611 int ret;
3612
3613 if (result) {
3614 void *p = buf;
3615
3616 /* encode ResponseMessage */
3617 ceph_start_encoding(&p, 1, 1,
3618 buf_size - CEPH_ENCODING_START_BLK_LEN);
3619 ceph_encode_32(&p, *result);
3620 } else {
3621 buf_size = 0;
3622 }
3623
3624 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3625 &rbd_dev->header_oloc, notify_id, cookie,
3626 buf, buf_size);
3627 if (ret)
3628 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3629 }
3630
3631 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3632 u64 cookie)
3633 {
3634 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3635 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3636 }
3637
3638 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3639 u64 notify_id, u64 cookie, s32 result)
3640 {
3641 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3642 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3643 }
3644
3645 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3646 u64 notifier_id, void *data, size_t data_len)
3647 {
3648 struct rbd_device *rbd_dev = arg;
3649 void *p = data;
3650 void *const end = p + data_len;
3651 u8 struct_v = 0;
3652 u32 len;
3653 u32 notify_op;
3654 int ret;
3655
3656 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3657 __func__, rbd_dev, cookie, notify_id, data_len);
3658 if (data_len) {
3659 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3660 &struct_v, &len);
3661 if (ret) {
3662 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3663 ret);
3664 return;
3665 }
3666
3667 notify_op = ceph_decode_32(&p);
3668 } else {
3669 /* legacy notification for header updates */
3670 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3671 len = 0;
3672 }
3673
3674 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3675 switch (notify_op) {
3676 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3677 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3678 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3679 break;
3680 case RBD_NOTIFY_OP_RELEASED_LOCK:
3681 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3682 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3683 break;
3684 case RBD_NOTIFY_OP_REQUEST_LOCK:
3685 if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3686 /*
3687 * send ResponseMessage(0) back so the client
3688 * can detect a missing owner
3689 */
3690 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3691 cookie, 0);
3692 else
3693 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3694 break;
3695 case RBD_NOTIFY_OP_HEADER_UPDATE:
3696 ret = rbd_dev_refresh(rbd_dev);
3697 if (ret)
3698 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3699
3700 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3701 break;
3702 default:
3703 if (rbd_is_lock_owner(rbd_dev))
3704 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3705 cookie, -EOPNOTSUPP);
3706 else
3707 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3708 break;
3709 }
3710 }
3711
3712 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3713
3714 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3715 {
3716 struct rbd_device *rbd_dev = arg;
3717
3718 rbd_warn(rbd_dev, "encountered watch error: %d", err);
3719
3720 down_write(&rbd_dev->lock_rwsem);
3721 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3722 up_write(&rbd_dev->lock_rwsem);
3723
3724 mutex_lock(&rbd_dev->watch_mutex);
3725 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3726 __rbd_unregister_watch(rbd_dev);
3727 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3728
3729 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3730 }
3731 mutex_unlock(&rbd_dev->watch_mutex);
3732 }
3733
3734 /*
3735 * watch_mutex must be locked
3736 */
3737 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3738 {
3739 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3740 struct ceph_osd_linger_request *handle;
3741
3742 rbd_assert(!rbd_dev->watch_handle);
3743 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3744
3745 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3746 &rbd_dev->header_oloc, rbd_watch_cb,
3747 rbd_watch_errcb, rbd_dev);
3748 if (IS_ERR(handle))
3749 return PTR_ERR(handle);
3750
3751 rbd_dev->watch_handle = handle;
3752 return 0;
3753 }
3754
3755 /*
3756 * watch_mutex must be locked
3757 */
3758 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3759 {
3760 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3761 int ret;
3762
3763 rbd_assert(rbd_dev->watch_handle);
3764 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3765
3766 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3767 if (ret)
3768 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3769
3770 rbd_dev->watch_handle = NULL;
3771 }
3772
3773 static int rbd_register_watch(struct rbd_device *rbd_dev)
3774 {
3775 int ret;
3776
3777 mutex_lock(&rbd_dev->watch_mutex);
3778 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3779 ret = __rbd_register_watch(rbd_dev);
3780 if (ret)
3781 goto out;
3782
3783 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3784 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3785
3786 out:
3787 mutex_unlock(&rbd_dev->watch_mutex);
3788 return ret;
3789 }
3790
3791 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3792 {
3793 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3794
3795 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3796 cancel_work_sync(&rbd_dev->acquired_lock_work);
3797 cancel_work_sync(&rbd_dev->released_lock_work);
3798 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3799 cancel_work_sync(&rbd_dev->unlock_work);
3800 }
3801
3802 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3803 {
3804 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3805 cancel_tasks_sync(rbd_dev);
3806
3807 mutex_lock(&rbd_dev->watch_mutex);
3808 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3809 __rbd_unregister_watch(rbd_dev);
3810 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3811 mutex_unlock(&rbd_dev->watch_mutex);
3812
3813 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3814 }
3815
3816 static void rbd_reregister_watch(struct work_struct *work)
3817 {
3818 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3819 struct rbd_device, watch_dwork);
3820 bool was_lock_owner = false;
3821 bool need_to_wake = false;
3822 int ret;
3823
3824 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3825
3826 down_write(&rbd_dev->lock_rwsem);
3827 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3828 was_lock_owner = rbd_release_lock(rbd_dev);
3829
3830 mutex_lock(&rbd_dev->watch_mutex);
3831 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3832 mutex_unlock(&rbd_dev->watch_mutex);
3833 goto out;
3834 }
3835
3836 ret = __rbd_register_watch(rbd_dev);
3837 if (ret) {
3838 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3839 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3840 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3841 need_to_wake = true;
3842 } else {
3843 queue_delayed_work(rbd_dev->task_wq,
3844 &rbd_dev->watch_dwork,
3845 RBD_RETRY_DELAY);
3846 }
3847 mutex_unlock(&rbd_dev->watch_mutex);
3848 goto out;
3849 }
3850
3851 need_to_wake = true;
3852 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3853 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3854 mutex_unlock(&rbd_dev->watch_mutex);
3855
3856 ret = rbd_dev_refresh(rbd_dev);
3857 if (ret)
3858 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3859
3860 if (was_lock_owner) {
3861 ret = rbd_try_lock(rbd_dev);
3862 if (ret)
3863 rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3864 ret);
3865 }
3866
3867 out:
3868 up_write(&rbd_dev->lock_rwsem);
3869 if (need_to_wake)
3870 wake_requests(rbd_dev, true);
3871 }
3872
3873 /*
3874 * Synchronous osd object method call. Returns the number of bytes
3875 * returned in the outbound buffer, or a negative error code.
3876 */
3877 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3878 struct ceph_object_id *oid,
3879 struct ceph_object_locator *oloc,
3880 const char *method_name,
3881 const void *outbound,
3882 size_t outbound_size,
3883 void *inbound,
3884 size_t inbound_size)
3885 {
3886 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3887 struct page *req_page = NULL;
3888 struct page *reply_page;
3889 int ret;
3890
3891 /*
3892 * Method calls are ultimately read operations. The result
3893 * should placed into the inbound buffer provided. They
3894 * also supply outbound data--parameters for the object
3895 * method. Currently if this is present it will be a
3896 * snapshot id.
3897 */
3898 if (outbound) {
3899 if (outbound_size > PAGE_SIZE)
3900 return -E2BIG;
3901
3902 req_page = alloc_page(GFP_KERNEL);
3903 if (!req_page)
3904 return -ENOMEM;
3905
3906 memcpy(page_address(req_page), outbound, outbound_size);
3907 }
3908
3909 reply_page = alloc_page(GFP_KERNEL);
3910 if (!reply_page) {
3911 if (req_page)
3912 __free_page(req_page);
3913 return -ENOMEM;
3914 }
3915
3916 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3917 CEPH_OSD_FLAG_READ, req_page, outbound_size,
3918 reply_page, &inbound_size);
3919 if (!ret) {
3920 memcpy(inbound, page_address(reply_page), inbound_size);
3921 ret = inbound_size;
3922 }
3923
3924 if (req_page)
3925 __free_page(req_page);
3926 __free_page(reply_page);
3927 return ret;
3928 }
3929
3930 /*
3931 * lock_rwsem must be held for read
3932 */
3933 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
3934 {
3935 DEFINE_WAIT(wait);
3936
3937 do {
3938 /*
3939 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3940 * and cancel_delayed_work() in wake_requests().
3941 */
3942 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3943 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3944 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3945 TASK_UNINTERRUPTIBLE);
3946 up_read(&rbd_dev->lock_rwsem);
3947 schedule();
3948 down_read(&rbd_dev->lock_rwsem);
3949 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
3950 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
3951
3952 finish_wait(&rbd_dev->lock_waitq, &wait);
3953 }
3954
3955 static void rbd_queue_workfn(struct work_struct *work)
3956 {
3957 struct request *rq = blk_mq_rq_from_pdu(work);
3958 struct rbd_device *rbd_dev = rq->q->queuedata;
3959 struct rbd_img_request *img_request;
3960 struct ceph_snap_context *snapc = NULL;
3961 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3962 u64 length = blk_rq_bytes(rq);
3963 enum obj_operation_type op_type;
3964 u64 mapping_size;
3965 bool must_be_locked;
3966 int result;
3967
3968 switch (req_op(rq)) {
3969 case REQ_OP_DISCARD:
3970 op_type = OBJ_OP_DISCARD;
3971 break;
3972 case REQ_OP_WRITE:
3973 op_type = OBJ_OP_WRITE;
3974 break;
3975 case REQ_OP_READ:
3976 op_type = OBJ_OP_READ;
3977 break;
3978 default:
3979 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3980 result = -EIO;
3981 goto err;
3982 }
3983
3984 /* Ignore/skip any zero-length requests */
3985
3986 if (!length) {
3987 dout("%s: zero-length request\n", __func__);
3988 result = 0;
3989 goto err_rq;
3990 }
3991
3992 /* Only reads are allowed to a read-only device */
3993
3994 if (op_type != OBJ_OP_READ) {
3995 if (rbd_dev->mapping.read_only) {
3996 result = -EROFS;
3997 goto err_rq;
3998 }
3999 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4000 }
4001
4002 /*
4003 * Quit early if the mapped snapshot no longer exists. It's
4004 * still possible the snapshot will have disappeared by the
4005 * time our request arrives at the osd, but there's no sense in
4006 * sending it if we already know.
4007 */
4008 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4009 dout("request for non-existent snapshot");
4010 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4011 result = -ENXIO;
4012 goto err_rq;
4013 }
4014
4015 if (offset && length > U64_MAX - offset + 1) {
4016 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4017 length);
4018 result = -EINVAL;
4019 goto err_rq; /* Shouldn't happen */
4020 }
4021
4022 blk_mq_start_request(rq);
4023
4024 down_read(&rbd_dev->header_rwsem);
4025 mapping_size = rbd_dev->mapping.size;
4026 if (op_type != OBJ_OP_READ) {
4027 snapc = rbd_dev->header.snapc;
4028 ceph_get_snap_context(snapc);
4029 must_be_locked = rbd_is_lock_supported(rbd_dev);
4030 } else {
4031 must_be_locked = rbd_dev->opts->lock_on_read &&
4032 rbd_is_lock_supported(rbd_dev);
4033 }
4034 up_read(&rbd_dev->header_rwsem);
4035
4036 if (offset + length > mapping_size) {
4037 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4038 length, mapping_size);
4039 result = -EIO;
4040 goto err_rq;
4041 }
4042
4043 if (must_be_locked) {
4044 down_read(&rbd_dev->lock_rwsem);
4045 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4046 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
4047 rbd_wait_state_locked(rbd_dev);
4048
4049 WARN_ON((rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) ^
4050 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4051 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4052 result = -EBLACKLISTED;
4053 goto err_unlock;
4054 }
4055 }
4056
4057 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4058 snapc);
4059 if (!img_request) {
4060 result = -ENOMEM;
4061 goto err_unlock;
4062 }
4063 img_request->rq = rq;
4064 snapc = NULL; /* img_request consumes a ref */
4065
4066 if (op_type == OBJ_OP_DISCARD)
4067 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4068 NULL);
4069 else
4070 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4071 rq->bio);
4072 if (result)
4073 goto err_img_request;
4074
4075 result = rbd_img_request_submit(img_request);
4076 if (result)
4077 goto err_img_request;
4078
4079 if (must_be_locked)
4080 up_read(&rbd_dev->lock_rwsem);
4081 return;
4082
4083 err_img_request:
4084 rbd_img_request_put(img_request);
4085 err_unlock:
4086 if (must_be_locked)
4087 up_read(&rbd_dev->lock_rwsem);
4088 err_rq:
4089 if (result)
4090 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4091 obj_op_name(op_type), length, offset, result);
4092 ceph_put_snap_context(snapc);
4093 err:
4094 blk_mq_end_request(rq, result);
4095 }
4096
4097 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4098 const struct blk_mq_queue_data *bd)
4099 {
4100 struct request *rq = bd->rq;
4101 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4102
4103 queue_work(rbd_wq, work);
4104 return BLK_MQ_RQ_QUEUE_OK;
4105 }
4106
4107 static void rbd_free_disk(struct rbd_device *rbd_dev)
4108 {
4109 struct gendisk *disk = rbd_dev->disk;
4110
4111 if (!disk)
4112 return;
4113
4114 rbd_dev->disk = NULL;
4115 if (disk->flags & GENHD_FL_UP) {
4116 del_gendisk(disk);
4117 if (disk->queue)
4118 blk_cleanup_queue(disk->queue);
4119 blk_mq_free_tag_set(&rbd_dev->tag_set);
4120 }
4121 put_disk(disk);
4122 }
4123
4124 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4125 struct ceph_object_id *oid,
4126 struct ceph_object_locator *oloc,
4127 void *buf, int buf_len)
4128
4129 {
4130 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4131 struct ceph_osd_request *req;
4132 struct page **pages;
4133 int num_pages = calc_pages_for(0, buf_len);
4134 int ret;
4135
4136 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4137 if (!req)
4138 return -ENOMEM;
4139
4140 ceph_oid_copy(&req->r_base_oid, oid);
4141 ceph_oloc_copy(&req->r_base_oloc, oloc);
4142 req->r_flags = CEPH_OSD_FLAG_READ;
4143
4144 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4145 if (ret)
4146 goto out_req;
4147
4148 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4149 if (IS_ERR(pages)) {
4150 ret = PTR_ERR(pages);
4151 goto out_req;
4152 }
4153
4154 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4155 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4156 true);
4157
4158 ceph_osdc_start_request(osdc, req, false);
4159 ret = ceph_osdc_wait_request(osdc, req);
4160 if (ret >= 0)
4161 ceph_copy_from_page_vector(pages, buf, 0, ret);
4162
4163 out_req:
4164 ceph_osdc_put_request(req);
4165 return ret;
4166 }
4167
4168 /*
4169 * Read the complete header for the given rbd device. On successful
4170 * return, the rbd_dev->header field will contain up-to-date
4171 * information about the image.
4172 */
4173 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4174 {
4175 struct rbd_image_header_ondisk *ondisk = NULL;
4176 u32 snap_count = 0;
4177 u64 names_size = 0;
4178 u32 want_count;
4179 int ret;
4180
4181 /*
4182 * The complete header will include an array of its 64-bit
4183 * snapshot ids, followed by the names of those snapshots as
4184 * a contiguous block of NUL-terminated strings. Note that
4185 * the number of snapshots could change by the time we read
4186 * it in, in which case we re-read it.
4187 */
4188 do {
4189 size_t size;
4190
4191 kfree(ondisk);
4192
4193 size = sizeof (*ondisk);
4194 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4195 size += names_size;
4196 ondisk = kmalloc(size, GFP_KERNEL);
4197 if (!ondisk)
4198 return -ENOMEM;
4199
4200 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4201 &rbd_dev->header_oloc, ondisk, size);
4202 if (ret < 0)
4203 goto out;
4204 if ((size_t)ret < size) {
4205 ret = -ENXIO;
4206 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4207 size, ret);
4208 goto out;
4209 }
4210 if (!rbd_dev_ondisk_valid(ondisk)) {
4211 ret = -ENXIO;
4212 rbd_warn(rbd_dev, "invalid header");
4213 goto out;
4214 }
4215
4216 names_size = le64_to_cpu(ondisk->snap_names_len);
4217 want_count = snap_count;
4218 snap_count = le32_to_cpu(ondisk->snap_count);
4219 } while (snap_count != want_count);
4220
4221 ret = rbd_header_from_disk(rbd_dev, ondisk);
4222 out:
4223 kfree(ondisk);
4224
4225 return ret;
4226 }
4227
4228 /*
4229 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4230 * has disappeared from the (just updated) snapshot context.
4231 */
4232 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4233 {
4234 u64 snap_id;
4235
4236 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4237 return;
4238
4239 snap_id = rbd_dev->spec->snap_id;
4240 if (snap_id == CEPH_NOSNAP)
4241 return;
4242
4243 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4244 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4245 }
4246
4247 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4248 {
4249 sector_t size;
4250
4251 /*
4252 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4253 * try to update its size. If REMOVING is set, updating size
4254 * is just useless work since the device can't be opened.
4255 */
4256 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4257 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4258 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4259 dout("setting size to %llu sectors", (unsigned long long)size);
4260 set_capacity(rbd_dev->disk, size);
4261 revalidate_disk(rbd_dev->disk);
4262 }
4263 }
4264
4265 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4266 {
4267 u64 mapping_size;
4268 int ret;
4269
4270 down_write(&rbd_dev->header_rwsem);
4271 mapping_size = rbd_dev->mapping.size;
4272
4273 ret = rbd_dev_header_info(rbd_dev);
4274 if (ret)
4275 goto out;
4276
4277 /*
4278 * If there is a parent, see if it has disappeared due to the
4279 * mapped image getting flattened.
4280 */
4281 if (rbd_dev->parent) {
4282 ret = rbd_dev_v2_parent_info(rbd_dev);
4283 if (ret)
4284 goto out;
4285 }
4286
4287 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4288 rbd_dev->mapping.size = rbd_dev->header.image_size;
4289 } else {
4290 /* validate mapped snapshot's EXISTS flag */
4291 rbd_exists_validate(rbd_dev);
4292 }
4293
4294 out:
4295 up_write(&rbd_dev->header_rwsem);
4296 if (!ret && mapping_size != rbd_dev->mapping.size)
4297 rbd_dev_update_size(rbd_dev);
4298
4299 return ret;
4300 }
4301
4302 static int rbd_init_request(void *data, struct request *rq,
4303 unsigned int hctx_idx, unsigned int request_idx,
4304 unsigned int numa_node)
4305 {
4306 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4307
4308 INIT_WORK(work, rbd_queue_workfn);
4309 return 0;
4310 }
4311
4312 static struct blk_mq_ops rbd_mq_ops = {
4313 .queue_rq = rbd_queue_rq,
4314 .init_request = rbd_init_request,
4315 };
4316
4317 static int rbd_init_disk(struct rbd_device *rbd_dev)
4318 {
4319 struct gendisk *disk;
4320 struct request_queue *q;
4321 u64 segment_size;
4322 int err;
4323
4324 /* create gendisk info */
4325 disk = alloc_disk(single_major ?
4326 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4327 RBD_MINORS_PER_MAJOR);
4328 if (!disk)
4329 return -ENOMEM;
4330
4331 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4332 rbd_dev->dev_id);
4333 disk->major = rbd_dev->major;
4334 disk->first_minor = rbd_dev->minor;
4335 if (single_major)
4336 disk->flags |= GENHD_FL_EXT_DEVT;
4337 disk->fops = &rbd_bd_ops;
4338 disk->private_data = rbd_dev;
4339
4340 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4341 rbd_dev->tag_set.ops = &rbd_mq_ops;
4342 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4343 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4344 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4345 rbd_dev->tag_set.nr_hw_queues = 1;
4346 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4347
4348 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4349 if (err)
4350 goto out_disk;
4351
4352 q = blk_mq_init_queue(&rbd_dev->tag_set);
4353 if (IS_ERR(q)) {
4354 err = PTR_ERR(q);
4355 goto out_tag_set;
4356 }
4357
4358 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4359 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4360
4361 /* set io sizes to object size */
4362 segment_size = rbd_obj_bytes(&rbd_dev->header);
4363 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4364 q->limits.max_sectors = queue_max_hw_sectors(q);
4365 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4366 blk_queue_max_segment_size(q, segment_size);
4367 blk_queue_io_min(q, segment_size);
4368 blk_queue_io_opt(q, segment_size);
4369
4370 /* enable the discard support */
4371 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4372 q->limits.discard_granularity = segment_size;
4373 q->limits.discard_alignment = segment_size;
4374 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4375 q->limits.discard_zeroes_data = 1;
4376
4377 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4378 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4379
4380 disk->queue = q;
4381
4382 q->queuedata = rbd_dev;
4383
4384 rbd_dev->disk = disk;
4385
4386 return 0;
4387 out_tag_set:
4388 blk_mq_free_tag_set(&rbd_dev->tag_set);
4389 out_disk:
4390 put_disk(disk);
4391 return err;
4392 }
4393
4394 /*
4395 sysfs
4396 */
4397
4398 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4399 {
4400 return container_of(dev, struct rbd_device, dev);
4401 }
4402
4403 static ssize_t rbd_size_show(struct device *dev,
4404 struct device_attribute *attr, char *buf)
4405 {
4406 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4407
4408 return sprintf(buf, "%llu\n",
4409 (unsigned long long)rbd_dev->mapping.size);
4410 }
4411
4412 /*
4413 * Note this shows the features for whatever's mapped, which is not
4414 * necessarily the base image.
4415 */
4416 static ssize_t rbd_features_show(struct device *dev,
4417 struct device_attribute *attr, char *buf)
4418 {
4419 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4420
4421 return sprintf(buf, "0x%016llx\n",
4422 (unsigned long long)rbd_dev->mapping.features);
4423 }
4424
4425 static ssize_t rbd_major_show(struct device *dev,
4426 struct device_attribute *attr, char *buf)
4427 {
4428 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4429
4430 if (rbd_dev->major)
4431 return sprintf(buf, "%d\n", rbd_dev->major);
4432
4433 return sprintf(buf, "(none)\n");
4434 }
4435
4436 static ssize_t rbd_minor_show(struct device *dev,
4437 struct device_attribute *attr, char *buf)
4438 {
4439 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4440
4441 return sprintf(buf, "%d\n", rbd_dev->minor);
4442 }
4443
4444 static ssize_t rbd_client_addr_show(struct device *dev,
4445 struct device_attribute *attr, char *buf)
4446 {
4447 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4448 struct ceph_entity_addr *client_addr =
4449 ceph_client_addr(rbd_dev->rbd_client->client);
4450
4451 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4452 le32_to_cpu(client_addr->nonce));
4453 }
4454
4455 static ssize_t rbd_client_id_show(struct device *dev,
4456 struct device_attribute *attr, char *buf)
4457 {
4458 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4459
4460 return sprintf(buf, "client%lld\n",
4461 ceph_client_gid(rbd_dev->rbd_client->client));
4462 }
4463
4464 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4465 struct device_attribute *attr, char *buf)
4466 {
4467 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4468
4469 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4470 }
4471
4472 static ssize_t rbd_config_info_show(struct device *dev,
4473 struct device_attribute *attr, char *buf)
4474 {
4475 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4476
4477 return sprintf(buf, "%s\n", rbd_dev->config_info);
4478 }
4479
4480 static ssize_t rbd_pool_show(struct device *dev,
4481 struct device_attribute *attr, char *buf)
4482 {
4483 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4484
4485 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4486 }
4487
4488 static ssize_t rbd_pool_id_show(struct device *dev,
4489 struct device_attribute *attr, char *buf)
4490 {
4491 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4492
4493 return sprintf(buf, "%llu\n",
4494 (unsigned long long) rbd_dev->spec->pool_id);
4495 }
4496
4497 static ssize_t rbd_name_show(struct device *dev,
4498 struct device_attribute *attr, char *buf)
4499 {
4500 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4501
4502 if (rbd_dev->spec->image_name)
4503 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4504
4505 return sprintf(buf, "(unknown)\n");
4506 }
4507
4508 static ssize_t rbd_image_id_show(struct device *dev,
4509 struct device_attribute *attr, char *buf)
4510 {
4511 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4512
4513 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4514 }
4515
4516 /*
4517 * Shows the name of the currently-mapped snapshot (or
4518 * RBD_SNAP_HEAD_NAME for the base image).
4519 */
4520 static ssize_t rbd_snap_show(struct device *dev,
4521 struct device_attribute *attr,
4522 char *buf)
4523 {
4524 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4525
4526 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4527 }
4528
4529 static ssize_t rbd_snap_id_show(struct device *dev,
4530 struct device_attribute *attr, char *buf)
4531 {
4532 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4533
4534 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4535 }
4536
4537 /*
4538 * For a v2 image, shows the chain of parent images, separated by empty
4539 * lines. For v1 images or if there is no parent, shows "(no parent
4540 * image)".
4541 */
4542 static ssize_t rbd_parent_show(struct device *dev,
4543 struct device_attribute *attr,
4544 char *buf)
4545 {
4546 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4547 ssize_t count = 0;
4548
4549 if (!rbd_dev->parent)
4550 return sprintf(buf, "(no parent image)\n");
4551
4552 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4553 struct rbd_spec *spec = rbd_dev->parent_spec;
4554
4555 count += sprintf(&buf[count], "%s"
4556 "pool_id %llu\npool_name %s\n"
4557 "image_id %s\nimage_name %s\n"
4558 "snap_id %llu\nsnap_name %s\n"
4559 "overlap %llu\n",
4560 !count ? "" : "\n", /* first? */
4561 spec->pool_id, spec->pool_name,
4562 spec->image_id, spec->image_name ?: "(unknown)",
4563 spec->snap_id, spec->snap_name,
4564 rbd_dev->parent_overlap);
4565 }
4566
4567 return count;
4568 }
4569
4570 static ssize_t rbd_image_refresh(struct device *dev,
4571 struct device_attribute *attr,
4572 const char *buf,
4573 size_t size)
4574 {
4575 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4576 int ret;
4577
4578 ret = rbd_dev_refresh(rbd_dev);
4579 if (ret)
4580 return ret;
4581
4582 return size;
4583 }
4584
4585 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4586 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4587 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4588 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4589 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4590 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4591 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4592 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4593 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4594 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4595 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4596 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4597 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4598 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4599 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4600 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4601
4602 static struct attribute *rbd_attrs[] = {
4603 &dev_attr_size.attr,
4604 &dev_attr_features.attr,
4605 &dev_attr_major.attr,
4606 &dev_attr_minor.attr,
4607 &dev_attr_client_addr.attr,
4608 &dev_attr_client_id.attr,
4609 &dev_attr_cluster_fsid.attr,
4610 &dev_attr_config_info.attr,
4611 &dev_attr_pool.attr,
4612 &dev_attr_pool_id.attr,
4613 &dev_attr_name.attr,
4614 &dev_attr_image_id.attr,
4615 &dev_attr_current_snap.attr,
4616 &dev_attr_snap_id.attr,
4617 &dev_attr_parent.attr,
4618 &dev_attr_refresh.attr,
4619 NULL
4620 };
4621
4622 static struct attribute_group rbd_attr_group = {
4623 .attrs = rbd_attrs,
4624 };
4625
4626 static const struct attribute_group *rbd_attr_groups[] = {
4627 &rbd_attr_group,
4628 NULL
4629 };
4630
4631 static void rbd_dev_release(struct device *dev);
4632
4633 static const struct device_type rbd_device_type = {
4634 .name = "rbd",
4635 .groups = rbd_attr_groups,
4636 .release = rbd_dev_release,
4637 };
4638
4639 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4640 {
4641 kref_get(&spec->kref);
4642
4643 return spec;
4644 }
4645
4646 static void rbd_spec_free(struct kref *kref);
4647 static void rbd_spec_put(struct rbd_spec *spec)
4648 {
4649 if (spec)
4650 kref_put(&spec->kref, rbd_spec_free);
4651 }
4652
4653 static struct rbd_spec *rbd_spec_alloc(void)
4654 {
4655 struct rbd_spec *spec;
4656
4657 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4658 if (!spec)
4659 return NULL;
4660
4661 spec->pool_id = CEPH_NOPOOL;
4662 spec->snap_id = CEPH_NOSNAP;
4663 kref_init(&spec->kref);
4664
4665 return spec;
4666 }
4667
4668 static void rbd_spec_free(struct kref *kref)
4669 {
4670 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4671
4672 kfree(spec->pool_name);
4673 kfree(spec->image_id);
4674 kfree(spec->image_name);
4675 kfree(spec->snap_name);
4676 kfree(spec);
4677 }
4678
4679 static void rbd_dev_free(struct rbd_device *rbd_dev)
4680 {
4681 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4682 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4683
4684 ceph_oid_destroy(&rbd_dev->header_oid);
4685 ceph_oloc_destroy(&rbd_dev->header_oloc);
4686 kfree(rbd_dev->config_info);
4687
4688 rbd_put_client(rbd_dev->rbd_client);
4689 rbd_spec_put(rbd_dev->spec);
4690 kfree(rbd_dev->opts);
4691 kfree(rbd_dev);
4692 }
4693
4694 static void rbd_dev_release(struct device *dev)
4695 {
4696 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4697 bool need_put = !!rbd_dev->opts;
4698
4699 if (need_put) {
4700 destroy_workqueue(rbd_dev->task_wq);
4701 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4702 }
4703
4704 rbd_dev_free(rbd_dev);
4705
4706 /*
4707 * This is racy, but way better than putting module outside of
4708 * the release callback. The race window is pretty small, so
4709 * doing something similar to dm (dm-builtin.c) is overkill.
4710 */
4711 if (need_put)
4712 module_put(THIS_MODULE);
4713 }
4714
4715 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4716 struct rbd_spec *spec)
4717 {
4718 struct rbd_device *rbd_dev;
4719
4720 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4721 if (!rbd_dev)
4722 return NULL;
4723
4724 spin_lock_init(&rbd_dev->lock);
4725 INIT_LIST_HEAD(&rbd_dev->node);
4726 init_rwsem(&rbd_dev->header_rwsem);
4727
4728 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4729 ceph_oid_init(&rbd_dev->header_oid);
4730 rbd_dev->header_oloc.pool = spec->pool_id;
4731
4732 mutex_init(&rbd_dev->watch_mutex);
4733 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4734 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4735
4736 init_rwsem(&rbd_dev->lock_rwsem);
4737 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4738 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4739 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4740 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4741 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4742 init_waitqueue_head(&rbd_dev->lock_waitq);
4743
4744 rbd_dev->dev.bus = &rbd_bus_type;
4745 rbd_dev->dev.type = &rbd_device_type;
4746 rbd_dev->dev.parent = &rbd_root_dev;
4747 device_initialize(&rbd_dev->dev);
4748
4749 rbd_dev->rbd_client = rbdc;
4750 rbd_dev->spec = spec;
4751
4752 return rbd_dev;
4753 }
4754
4755 /*
4756 * Create a mapping rbd_dev.
4757 */
4758 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4759 struct rbd_spec *spec,
4760 struct rbd_options *opts)
4761 {
4762 struct rbd_device *rbd_dev;
4763
4764 rbd_dev = __rbd_dev_create(rbdc, spec);
4765 if (!rbd_dev)
4766 return NULL;
4767
4768 rbd_dev->opts = opts;
4769
4770 /* get an id and fill in device name */
4771 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4772 minor_to_rbd_dev_id(1 << MINORBITS),
4773 GFP_KERNEL);
4774 if (rbd_dev->dev_id < 0)
4775 goto fail_rbd_dev;
4776
4777 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4778 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4779 rbd_dev->name);
4780 if (!rbd_dev->task_wq)
4781 goto fail_dev_id;
4782
4783 /* we have a ref from do_rbd_add() */
4784 __module_get(THIS_MODULE);
4785
4786 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4787 return rbd_dev;
4788
4789 fail_dev_id:
4790 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4791 fail_rbd_dev:
4792 rbd_dev_free(rbd_dev);
4793 return NULL;
4794 }
4795
4796 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4797 {
4798 if (rbd_dev)
4799 put_device(&rbd_dev->dev);
4800 }
4801
4802 /*
4803 * Get the size and object order for an image snapshot, or if
4804 * snap_id is CEPH_NOSNAP, gets this information for the base
4805 * image.
4806 */
4807 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4808 u8 *order, u64 *snap_size)
4809 {
4810 __le64 snapid = cpu_to_le64(snap_id);
4811 int ret;
4812 struct {
4813 u8 order;
4814 __le64 size;
4815 } __attribute__ ((packed)) size_buf = { 0 };
4816
4817 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4818 &rbd_dev->header_oloc, "get_size",
4819 &snapid, sizeof(snapid),
4820 &size_buf, sizeof(size_buf));
4821 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4822 if (ret < 0)
4823 return ret;
4824 if (ret < sizeof (size_buf))
4825 return -ERANGE;
4826
4827 if (order) {
4828 *order = size_buf.order;
4829 dout(" order %u", (unsigned int)*order);
4830 }
4831 *snap_size = le64_to_cpu(size_buf.size);
4832
4833 dout(" snap_id 0x%016llx snap_size = %llu\n",
4834 (unsigned long long)snap_id,
4835 (unsigned long long)*snap_size);
4836
4837 return 0;
4838 }
4839
4840 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4841 {
4842 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4843 &rbd_dev->header.obj_order,
4844 &rbd_dev->header.image_size);
4845 }
4846
4847 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4848 {
4849 void *reply_buf;
4850 int ret;
4851 void *p;
4852
4853 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4854 if (!reply_buf)
4855 return -ENOMEM;
4856
4857 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4858 &rbd_dev->header_oloc, "get_object_prefix",
4859 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4860 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4861 if (ret < 0)
4862 goto out;
4863
4864 p = reply_buf;
4865 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4866 p + ret, NULL, GFP_NOIO);
4867 ret = 0;
4868
4869 if (IS_ERR(rbd_dev->header.object_prefix)) {
4870 ret = PTR_ERR(rbd_dev->header.object_prefix);
4871 rbd_dev->header.object_prefix = NULL;
4872 } else {
4873 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4874 }
4875 out:
4876 kfree(reply_buf);
4877
4878 return ret;
4879 }
4880
4881 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4882 u64 *snap_features)
4883 {
4884 __le64 snapid = cpu_to_le64(snap_id);
4885 struct {
4886 __le64 features;
4887 __le64 incompat;
4888 } __attribute__ ((packed)) features_buf = { 0 };
4889 u64 unsup;
4890 int ret;
4891
4892 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4893 &rbd_dev->header_oloc, "get_features",
4894 &snapid, sizeof(snapid),
4895 &features_buf, sizeof(features_buf));
4896 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4897 if (ret < 0)
4898 return ret;
4899 if (ret < sizeof (features_buf))
4900 return -ERANGE;
4901
4902 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4903 if (unsup) {
4904 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4905 unsup);
4906 return -ENXIO;
4907 }
4908
4909 *snap_features = le64_to_cpu(features_buf.features);
4910
4911 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4912 (unsigned long long)snap_id,
4913 (unsigned long long)*snap_features,
4914 (unsigned long long)le64_to_cpu(features_buf.incompat));
4915
4916 return 0;
4917 }
4918
4919 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4920 {
4921 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4922 &rbd_dev->header.features);
4923 }
4924
4925 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4926 {
4927 struct rbd_spec *parent_spec;
4928 size_t size;
4929 void *reply_buf = NULL;
4930 __le64 snapid;
4931 void *p;
4932 void *end;
4933 u64 pool_id;
4934 char *image_id;
4935 u64 snap_id;
4936 u64 overlap;
4937 int ret;
4938
4939 parent_spec = rbd_spec_alloc();
4940 if (!parent_spec)
4941 return -ENOMEM;
4942
4943 size = sizeof (__le64) + /* pool_id */
4944 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4945 sizeof (__le64) + /* snap_id */
4946 sizeof (__le64); /* overlap */
4947 reply_buf = kmalloc(size, GFP_KERNEL);
4948 if (!reply_buf) {
4949 ret = -ENOMEM;
4950 goto out_err;
4951 }
4952
4953 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4954 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4955 &rbd_dev->header_oloc, "get_parent",
4956 &snapid, sizeof(snapid), reply_buf, size);
4957 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4958 if (ret < 0)
4959 goto out_err;
4960
4961 p = reply_buf;
4962 end = reply_buf + ret;
4963 ret = -ERANGE;
4964 ceph_decode_64_safe(&p, end, pool_id, out_err);
4965 if (pool_id == CEPH_NOPOOL) {
4966 /*
4967 * Either the parent never existed, or we have
4968 * record of it but the image got flattened so it no
4969 * longer has a parent. When the parent of a
4970 * layered image disappears we immediately set the
4971 * overlap to 0. The effect of this is that all new
4972 * requests will be treated as if the image had no
4973 * parent.
4974 */
4975 if (rbd_dev->parent_overlap) {
4976 rbd_dev->parent_overlap = 0;
4977 rbd_dev_parent_put(rbd_dev);
4978 pr_info("%s: clone image has been flattened\n",
4979 rbd_dev->disk->disk_name);
4980 }
4981
4982 goto out; /* No parent? No problem. */
4983 }
4984
4985 /* The ceph file layout needs to fit pool id in 32 bits */
4986
4987 ret = -EIO;
4988 if (pool_id > (u64)U32_MAX) {
4989 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4990 (unsigned long long)pool_id, U32_MAX);
4991 goto out_err;
4992 }
4993
4994 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4995 if (IS_ERR(image_id)) {
4996 ret = PTR_ERR(image_id);
4997 goto out_err;
4998 }
4999 ceph_decode_64_safe(&p, end, snap_id, out_err);
5000 ceph_decode_64_safe(&p, end, overlap, out_err);
5001
5002 /*
5003 * The parent won't change (except when the clone is
5004 * flattened, already handled that). So we only need to
5005 * record the parent spec we have not already done so.
5006 */
5007 if (!rbd_dev->parent_spec) {
5008 parent_spec->pool_id = pool_id;
5009 parent_spec->image_id = image_id;
5010 parent_spec->snap_id = snap_id;
5011 rbd_dev->parent_spec = parent_spec;
5012 parent_spec = NULL; /* rbd_dev now owns this */
5013 } else {
5014 kfree(image_id);
5015 }
5016
5017 /*
5018 * We always update the parent overlap. If it's zero we issue
5019 * a warning, as we will proceed as if there was no parent.
5020 */
5021 if (!overlap) {
5022 if (parent_spec) {
5023 /* refresh, careful to warn just once */
5024 if (rbd_dev->parent_overlap)
5025 rbd_warn(rbd_dev,
5026 "clone now standalone (overlap became 0)");
5027 } else {
5028 /* initial probe */
5029 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5030 }
5031 }
5032 rbd_dev->parent_overlap = overlap;
5033
5034 out:
5035 ret = 0;
5036 out_err:
5037 kfree(reply_buf);
5038 rbd_spec_put(parent_spec);
5039
5040 return ret;
5041 }
5042
5043 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5044 {
5045 struct {
5046 __le64 stripe_unit;
5047 __le64 stripe_count;
5048 } __attribute__ ((packed)) striping_info_buf = { 0 };
5049 size_t size = sizeof (striping_info_buf);
5050 void *p;
5051 u64 obj_size;
5052 u64 stripe_unit;
5053 u64 stripe_count;
5054 int ret;
5055
5056 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5057 &rbd_dev->header_oloc, "get_stripe_unit_count",
5058 NULL, 0, &striping_info_buf, size);
5059 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5060 if (ret < 0)
5061 return ret;
5062 if (ret < size)
5063 return -ERANGE;
5064
5065 /*
5066 * We don't actually support the "fancy striping" feature
5067 * (STRIPINGV2) yet, but if the striping sizes are the
5068 * defaults the behavior is the same as before. So find
5069 * out, and only fail if the image has non-default values.
5070 */
5071 ret = -EINVAL;
5072 obj_size = rbd_obj_bytes(&rbd_dev->header);
5073 p = &striping_info_buf;
5074 stripe_unit = ceph_decode_64(&p);
5075 if (stripe_unit != obj_size) {
5076 rbd_warn(rbd_dev, "unsupported stripe unit "
5077 "(got %llu want %llu)",
5078 stripe_unit, obj_size);
5079 return -EINVAL;
5080 }
5081 stripe_count = ceph_decode_64(&p);
5082 if (stripe_count != 1) {
5083 rbd_warn(rbd_dev, "unsupported stripe count "
5084 "(got %llu want 1)", stripe_count);
5085 return -EINVAL;
5086 }
5087 rbd_dev->header.stripe_unit = stripe_unit;
5088 rbd_dev->header.stripe_count = stripe_count;
5089
5090 return 0;
5091 }
5092
5093 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5094 {
5095 __le64 data_pool_id;
5096 int ret;
5097
5098 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5099 &rbd_dev->header_oloc, "get_data_pool",
5100 NULL, 0, &data_pool_id, sizeof(data_pool_id));
5101 if (ret < 0)
5102 return ret;
5103 if (ret < sizeof(data_pool_id))
5104 return -EBADMSG;
5105
5106 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5107 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5108 return 0;
5109 }
5110
5111 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5112 {
5113 CEPH_DEFINE_OID_ONSTACK(oid);
5114 size_t image_id_size;
5115 char *image_id;
5116 void *p;
5117 void *end;
5118 size_t size;
5119 void *reply_buf = NULL;
5120 size_t len = 0;
5121 char *image_name = NULL;
5122 int ret;
5123
5124 rbd_assert(!rbd_dev->spec->image_name);
5125
5126 len = strlen(rbd_dev->spec->image_id);
5127 image_id_size = sizeof (__le32) + len;
5128 image_id = kmalloc(image_id_size, GFP_KERNEL);
5129 if (!image_id)
5130 return NULL;
5131
5132 p = image_id;
5133 end = image_id + image_id_size;
5134 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5135
5136 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5137 reply_buf = kmalloc(size, GFP_KERNEL);
5138 if (!reply_buf)
5139 goto out;
5140
5141 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5142 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5143 "dir_get_name", image_id, image_id_size,
5144 reply_buf, size);
5145 if (ret < 0)
5146 goto out;
5147 p = reply_buf;
5148 end = reply_buf + ret;
5149
5150 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5151 if (IS_ERR(image_name))
5152 image_name = NULL;
5153 else
5154 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5155 out:
5156 kfree(reply_buf);
5157 kfree(image_id);
5158
5159 return image_name;
5160 }
5161
5162 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5163 {
5164 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5165 const char *snap_name;
5166 u32 which = 0;
5167
5168 /* Skip over names until we find the one we are looking for */
5169
5170 snap_name = rbd_dev->header.snap_names;
5171 while (which < snapc->num_snaps) {
5172 if (!strcmp(name, snap_name))
5173 return snapc->snaps[which];
5174 snap_name += strlen(snap_name) + 1;
5175 which++;
5176 }
5177 return CEPH_NOSNAP;
5178 }
5179
5180 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5181 {
5182 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5183 u32 which;
5184 bool found = false;
5185 u64 snap_id;
5186
5187 for (which = 0; !found && which < snapc->num_snaps; which++) {
5188 const char *snap_name;
5189
5190 snap_id = snapc->snaps[which];
5191 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5192 if (IS_ERR(snap_name)) {
5193 /* ignore no-longer existing snapshots */
5194 if (PTR_ERR(snap_name) == -ENOENT)
5195 continue;
5196 else
5197 break;
5198 }
5199 found = !strcmp(name, snap_name);
5200 kfree(snap_name);
5201 }
5202 return found ? snap_id : CEPH_NOSNAP;
5203 }
5204
5205 /*
5206 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5207 * no snapshot by that name is found, or if an error occurs.
5208 */
5209 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5210 {
5211 if (rbd_dev->image_format == 1)
5212 return rbd_v1_snap_id_by_name(rbd_dev, name);
5213
5214 return rbd_v2_snap_id_by_name(rbd_dev, name);
5215 }
5216
5217 /*
5218 * An image being mapped will have everything but the snap id.
5219 */
5220 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5221 {
5222 struct rbd_spec *spec = rbd_dev->spec;
5223
5224 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5225 rbd_assert(spec->image_id && spec->image_name);
5226 rbd_assert(spec->snap_name);
5227
5228 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5229 u64 snap_id;
5230
5231 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5232 if (snap_id == CEPH_NOSNAP)
5233 return -ENOENT;
5234
5235 spec->snap_id = snap_id;
5236 } else {
5237 spec->snap_id = CEPH_NOSNAP;
5238 }
5239
5240 return 0;
5241 }
5242
5243 /*
5244 * A parent image will have all ids but none of the names.
5245 *
5246 * All names in an rbd spec are dynamically allocated. It's OK if we
5247 * can't figure out the name for an image id.
5248 */
5249 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5250 {
5251 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5252 struct rbd_spec *spec = rbd_dev->spec;
5253 const char *pool_name;
5254 const char *image_name;
5255 const char *snap_name;
5256 int ret;
5257
5258 rbd_assert(spec->pool_id != CEPH_NOPOOL);
5259 rbd_assert(spec->image_id);
5260 rbd_assert(spec->snap_id != CEPH_NOSNAP);
5261
5262 /* Get the pool name; we have to make our own copy of this */
5263
5264 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5265 if (!pool_name) {
5266 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5267 return -EIO;
5268 }
5269 pool_name = kstrdup(pool_name, GFP_KERNEL);
5270 if (!pool_name)
5271 return -ENOMEM;
5272
5273 /* Fetch the image name; tolerate failure here */
5274
5275 image_name = rbd_dev_image_name(rbd_dev);
5276 if (!image_name)
5277 rbd_warn(rbd_dev, "unable to get image name");
5278
5279 /* Fetch the snapshot name */
5280
5281 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5282 if (IS_ERR(snap_name)) {
5283 ret = PTR_ERR(snap_name);
5284 goto out_err;
5285 }
5286
5287 spec->pool_name = pool_name;
5288 spec->image_name = image_name;
5289 spec->snap_name = snap_name;
5290
5291 return 0;
5292
5293 out_err:
5294 kfree(image_name);
5295 kfree(pool_name);
5296 return ret;
5297 }
5298
5299 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5300 {
5301 size_t size;
5302 int ret;
5303 void *reply_buf;
5304 void *p;
5305 void *end;
5306 u64 seq;
5307 u32 snap_count;
5308 struct ceph_snap_context *snapc;
5309 u32 i;
5310
5311 /*
5312 * We'll need room for the seq value (maximum snapshot id),
5313 * snapshot count, and array of that many snapshot ids.
5314 * For now we have a fixed upper limit on the number we're
5315 * prepared to receive.
5316 */
5317 size = sizeof (__le64) + sizeof (__le32) +
5318 RBD_MAX_SNAP_COUNT * sizeof (__le64);
5319 reply_buf = kzalloc(size, GFP_KERNEL);
5320 if (!reply_buf)
5321 return -ENOMEM;
5322
5323 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5324 &rbd_dev->header_oloc, "get_snapcontext",
5325 NULL, 0, reply_buf, size);
5326 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5327 if (ret < 0)
5328 goto out;
5329
5330 p = reply_buf;
5331 end = reply_buf + ret;
5332 ret = -ERANGE;
5333 ceph_decode_64_safe(&p, end, seq, out);
5334 ceph_decode_32_safe(&p, end, snap_count, out);
5335
5336 /*
5337 * Make sure the reported number of snapshot ids wouldn't go
5338 * beyond the end of our buffer. But before checking that,
5339 * make sure the computed size of the snapshot context we
5340 * allocate is representable in a size_t.
5341 */
5342 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5343 / sizeof (u64)) {
5344 ret = -EINVAL;
5345 goto out;
5346 }
5347 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5348 goto out;
5349 ret = 0;
5350
5351 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5352 if (!snapc) {
5353 ret = -ENOMEM;
5354 goto out;
5355 }
5356 snapc->seq = seq;
5357 for (i = 0; i < snap_count; i++)
5358 snapc->snaps[i] = ceph_decode_64(&p);
5359
5360 ceph_put_snap_context(rbd_dev->header.snapc);
5361 rbd_dev->header.snapc = snapc;
5362
5363 dout(" snap context seq = %llu, snap_count = %u\n",
5364 (unsigned long long)seq, (unsigned int)snap_count);
5365 out:
5366 kfree(reply_buf);
5367
5368 return ret;
5369 }
5370
5371 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5372 u64 snap_id)
5373 {
5374 size_t size;
5375 void *reply_buf;
5376 __le64 snapid;
5377 int ret;
5378 void *p;
5379 void *end;
5380 char *snap_name;
5381
5382 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5383 reply_buf = kmalloc(size, GFP_KERNEL);
5384 if (!reply_buf)
5385 return ERR_PTR(-ENOMEM);
5386
5387 snapid = cpu_to_le64(snap_id);
5388 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5389 &rbd_dev->header_oloc, "get_snapshot_name",
5390 &snapid, sizeof(snapid), reply_buf, size);
5391 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5392 if (ret < 0) {
5393 snap_name = ERR_PTR(ret);
5394 goto out;
5395 }
5396
5397 p = reply_buf;
5398 end = reply_buf + ret;
5399 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5400 if (IS_ERR(snap_name))
5401 goto out;
5402
5403 dout(" snap_id 0x%016llx snap_name = %s\n",
5404 (unsigned long long)snap_id, snap_name);
5405 out:
5406 kfree(reply_buf);
5407
5408 return snap_name;
5409 }
5410
5411 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5412 {
5413 bool first_time = rbd_dev->header.object_prefix == NULL;
5414 int ret;
5415
5416 ret = rbd_dev_v2_image_size(rbd_dev);
5417 if (ret)
5418 return ret;
5419
5420 if (first_time) {
5421 ret = rbd_dev_v2_header_onetime(rbd_dev);
5422 if (ret)
5423 return ret;
5424 }
5425
5426 ret = rbd_dev_v2_snap_context(rbd_dev);
5427 if (ret && first_time) {
5428 kfree(rbd_dev->header.object_prefix);
5429 rbd_dev->header.object_prefix = NULL;
5430 }
5431
5432 return ret;
5433 }
5434
5435 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5436 {
5437 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5438
5439 if (rbd_dev->image_format == 1)
5440 return rbd_dev_v1_header_info(rbd_dev);
5441
5442 return rbd_dev_v2_header_info(rbd_dev);
5443 }
5444
5445 /*
5446 * Skips over white space at *buf, and updates *buf to point to the
5447 * first found non-space character (if any). Returns the length of
5448 * the token (string of non-white space characters) found. Note
5449 * that *buf must be terminated with '\0'.
5450 */
5451 static inline size_t next_token(const char **buf)
5452 {
5453 /*
5454 * These are the characters that produce nonzero for
5455 * isspace() in the "C" and "POSIX" locales.
5456 */
5457 const char *spaces = " \f\n\r\t\v";
5458
5459 *buf += strspn(*buf, spaces); /* Find start of token */
5460
5461 return strcspn(*buf, spaces); /* Return token length */
5462 }
5463
5464 /*
5465 * Finds the next token in *buf, dynamically allocates a buffer big
5466 * enough to hold a copy of it, and copies the token into the new
5467 * buffer. The copy is guaranteed to be terminated with '\0'. Note
5468 * that a duplicate buffer is created even for a zero-length token.
5469 *
5470 * Returns a pointer to the newly-allocated duplicate, or a null
5471 * pointer if memory for the duplicate was not available. If
5472 * the lenp argument is a non-null pointer, the length of the token
5473 * (not including the '\0') is returned in *lenp.
5474 *
5475 * If successful, the *buf pointer will be updated to point beyond
5476 * the end of the found token.
5477 *
5478 * Note: uses GFP_KERNEL for allocation.
5479 */
5480 static inline char *dup_token(const char **buf, size_t *lenp)
5481 {
5482 char *dup;
5483 size_t len;
5484
5485 len = next_token(buf);
5486 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5487 if (!dup)
5488 return NULL;
5489 *(dup + len) = '\0';
5490 *buf += len;
5491
5492 if (lenp)
5493 *lenp = len;
5494
5495 return dup;
5496 }
5497
5498 /*
5499 * Parse the options provided for an "rbd add" (i.e., rbd image
5500 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
5501 * and the data written is passed here via a NUL-terminated buffer.
5502 * Returns 0 if successful or an error code otherwise.
5503 *
5504 * The information extracted from these options is recorded in
5505 * the other parameters which return dynamically-allocated
5506 * structures:
5507 * ceph_opts
5508 * The address of a pointer that will refer to a ceph options
5509 * structure. Caller must release the returned pointer using
5510 * ceph_destroy_options() when it is no longer needed.
5511 * rbd_opts
5512 * Address of an rbd options pointer. Fully initialized by
5513 * this function; caller must release with kfree().
5514 * spec
5515 * Address of an rbd image specification pointer. Fully
5516 * initialized by this function based on parsed options.
5517 * Caller must release with rbd_spec_put().
5518 *
5519 * The options passed take this form:
5520 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5521 * where:
5522 * <mon_addrs>
5523 * A comma-separated list of one or more monitor addresses.
5524 * A monitor address is an ip address, optionally followed
5525 * by a port number (separated by a colon).
5526 * I.e.: ip1[:port1][,ip2[:port2]...]
5527 * <options>
5528 * A comma-separated list of ceph and/or rbd options.
5529 * <pool_name>
5530 * The name of the rados pool containing the rbd image.
5531 * <image_name>
5532 * The name of the image in that pool to map.
5533 * <snap_id>
5534 * An optional snapshot id. If provided, the mapping will
5535 * present data from the image at the time that snapshot was
5536 * created. The image head is used if no snapshot id is
5537 * provided. Snapshot mappings are always read-only.
5538 */
5539 static int rbd_add_parse_args(const char *buf,
5540 struct ceph_options **ceph_opts,
5541 struct rbd_options **opts,
5542 struct rbd_spec **rbd_spec)
5543 {
5544 size_t len;
5545 char *options;
5546 const char *mon_addrs;
5547 char *snap_name;
5548 size_t mon_addrs_size;
5549 struct rbd_spec *spec = NULL;
5550 struct rbd_options *rbd_opts = NULL;
5551 struct ceph_options *copts;
5552 int ret;
5553
5554 /* The first four tokens are required */
5555
5556 len = next_token(&buf);
5557 if (!len) {
5558 rbd_warn(NULL, "no monitor address(es) provided");
5559 return -EINVAL;
5560 }
5561 mon_addrs = buf;
5562 mon_addrs_size = len + 1;
5563 buf += len;
5564
5565 ret = -EINVAL;
5566 options = dup_token(&buf, NULL);
5567 if (!options)
5568 return -ENOMEM;
5569 if (!*options) {
5570 rbd_warn(NULL, "no options provided");
5571 goto out_err;
5572 }
5573
5574 spec = rbd_spec_alloc();
5575 if (!spec)
5576 goto out_mem;
5577
5578 spec->pool_name = dup_token(&buf, NULL);
5579 if (!spec->pool_name)
5580 goto out_mem;
5581 if (!*spec->pool_name) {
5582 rbd_warn(NULL, "no pool name provided");
5583 goto out_err;
5584 }
5585
5586 spec->image_name = dup_token(&buf, NULL);
5587 if (!spec->image_name)
5588 goto out_mem;
5589 if (!*spec->image_name) {
5590 rbd_warn(NULL, "no image name provided");
5591 goto out_err;
5592 }
5593
5594 /*
5595 * Snapshot name is optional; default is to use "-"
5596 * (indicating the head/no snapshot).
5597 */
5598 len = next_token(&buf);
5599 if (!len) {
5600 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5601 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5602 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5603 ret = -ENAMETOOLONG;
5604 goto out_err;
5605 }
5606 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5607 if (!snap_name)
5608 goto out_mem;
5609 *(snap_name + len) = '\0';
5610 spec->snap_name = snap_name;
5611
5612 /* Initialize all rbd options to the defaults */
5613
5614 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5615 if (!rbd_opts)
5616 goto out_mem;
5617
5618 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5619 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5620 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5621
5622 copts = ceph_parse_options(options, mon_addrs,
5623 mon_addrs + mon_addrs_size - 1,
5624 parse_rbd_opts_token, rbd_opts);
5625 if (IS_ERR(copts)) {
5626 ret = PTR_ERR(copts);
5627 goto out_err;
5628 }
5629 kfree(options);
5630
5631 *ceph_opts = copts;
5632 *opts = rbd_opts;
5633 *rbd_spec = spec;
5634
5635 return 0;
5636 out_mem:
5637 ret = -ENOMEM;
5638 out_err:
5639 kfree(rbd_opts);
5640 rbd_spec_put(spec);
5641 kfree(options);
5642
5643 return ret;
5644 }
5645
5646 /*
5647 * Return pool id (>= 0) or a negative error code.
5648 */
5649 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5650 {
5651 struct ceph_options *opts = rbdc->client->options;
5652 u64 newest_epoch;
5653 int tries = 0;
5654 int ret;
5655
5656 again:
5657 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5658 if (ret == -ENOENT && tries++ < 1) {
5659 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5660 &newest_epoch);
5661 if (ret < 0)
5662 return ret;
5663
5664 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5665 ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5666 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5667 newest_epoch,
5668 opts->mount_timeout);
5669 goto again;
5670 } else {
5671 /* the osdmap we have is new enough */
5672 return -ENOENT;
5673 }
5674 }
5675
5676 return ret;
5677 }
5678
5679 /*
5680 * An rbd format 2 image has a unique identifier, distinct from the
5681 * name given to it by the user. Internally, that identifier is
5682 * what's used to specify the names of objects related to the image.
5683 *
5684 * A special "rbd id" object is used to map an rbd image name to its
5685 * id. If that object doesn't exist, then there is no v2 rbd image
5686 * with the supplied name.
5687 *
5688 * This function will record the given rbd_dev's image_id field if
5689 * it can be determined, and in that case will return 0. If any
5690 * errors occur a negative errno will be returned and the rbd_dev's
5691 * image_id field will be unchanged (and should be NULL).
5692 */
5693 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5694 {
5695 int ret;
5696 size_t size;
5697 CEPH_DEFINE_OID_ONSTACK(oid);
5698 void *response;
5699 char *image_id;
5700
5701 /*
5702 * When probing a parent image, the image id is already
5703 * known (and the image name likely is not). There's no
5704 * need to fetch the image id again in this case. We
5705 * do still need to set the image format though.
5706 */
5707 if (rbd_dev->spec->image_id) {
5708 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5709
5710 return 0;
5711 }
5712
5713 /*
5714 * First, see if the format 2 image id file exists, and if
5715 * so, get the image's persistent id from it.
5716 */
5717 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5718 rbd_dev->spec->image_name);
5719 if (ret)
5720 return ret;
5721
5722 dout("rbd id object name is %s\n", oid.name);
5723
5724 /* Response will be an encoded string, which includes a length */
5725
5726 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5727 response = kzalloc(size, GFP_NOIO);
5728 if (!response) {
5729 ret = -ENOMEM;
5730 goto out;
5731 }
5732
5733 /* If it doesn't exist we'll assume it's a format 1 image */
5734
5735 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5736 "get_id", NULL, 0,
5737 response, RBD_IMAGE_ID_LEN_MAX);
5738 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5739 if (ret == -ENOENT) {
5740 image_id = kstrdup("", GFP_KERNEL);
5741 ret = image_id ? 0 : -ENOMEM;
5742 if (!ret)
5743 rbd_dev->image_format = 1;
5744 } else if (ret >= 0) {
5745 void *p = response;
5746
5747 image_id = ceph_extract_encoded_string(&p, p + ret,
5748 NULL, GFP_NOIO);
5749 ret = PTR_ERR_OR_ZERO(image_id);
5750 if (!ret)
5751 rbd_dev->image_format = 2;
5752 }
5753
5754 if (!ret) {
5755 rbd_dev->spec->image_id = image_id;
5756 dout("image_id is %s\n", image_id);
5757 }
5758 out:
5759 kfree(response);
5760 ceph_oid_destroy(&oid);
5761 return ret;
5762 }
5763
5764 /*
5765 * Undo whatever state changes are made by v1 or v2 header info
5766 * call.
5767 */
5768 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5769 {
5770 struct rbd_image_header *header;
5771
5772 rbd_dev_parent_put(rbd_dev);
5773
5774 /* Free dynamic fields from the header, then zero it out */
5775
5776 header = &rbd_dev->header;
5777 ceph_put_snap_context(header->snapc);
5778 kfree(header->snap_sizes);
5779 kfree(header->snap_names);
5780 kfree(header->object_prefix);
5781 memset(header, 0, sizeof (*header));
5782 }
5783
5784 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5785 {
5786 int ret;
5787
5788 ret = rbd_dev_v2_object_prefix(rbd_dev);
5789 if (ret)
5790 goto out_err;
5791
5792 /*
5793 * Get the and check features for the image. Currently the
5794 * features are assumed to never change.
5795 */
5796 ret = rbd_dev_v2_features(rbd_dev);
5797 if (ret)
5798 goto out_err;
5799
5800 /* If the image supports fancy striping, get its parameters */
5801
5802 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5803 ret = rbd_dev_v2_striping_info(rbd_dev);
5804 if (ret < 0)
5805 goto out_err;
5806 }
5807
5808 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5809 ret = rbd_dev_v2_data_pool(rbd_dev);
5810 if (ret)
5811 goto out_err;
5812 }
5813
5814 rbd_init_layout(rbd_dev);
5815 return 0;
5816
5817 out_err:
5818 rbd_dev->header.features = 0;
5819 kfree(rbd_dev->header.object_prefix);
5820 rbd_dev->header.object_prefix = NULL;
5821 return ret;
5822 }
5823
5824 /*
5825 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5826 * rbd_dev_image_probe() recursion depth, which means it's also the
5827 * length of the already discovered part of the parent chain.
5828 */
5829 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5830 {
5831 struct rbd_device *parent = NULL;
5832 int ret;
5833
5834 if (!rbd_dev->parent_spec)
5835 return 0;
5836
5837 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5838 pr_info("parent chain is too long (%d)\n", depth);
5839 ret = -EINVAL;
5840 goto out_err;
5841 }
5842
5843 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5844 if (!parent) {
5845 ret = -ENOMEM;
5846 goto out_err;
5847 }
5848
5849 /*
5850 * Images related by parent/child relationships always share
5851 * rbd_client and spec/parent_spec, so bump their refcounts.
5852 */
5853 __rbd_get_client(rbd_dev->rbd_client);
5854 rbd_spec_get(rbd_dev->parent_spec);
5855
5856 ret = rbd_dev_image_probe(parent, depth);
5857 if (ret < 0)
5858 goto out_err;
5859
5860 rbd_dev->parent = parent;
5861 atomic_set(&rbd_dev->parent_ref, 1);
5862 return 0;
5863
5864 out_err:
5865 rbd_dev_unparent(rbd_dev);
5866 rbd_dev_destroy(parent);
5867 return ret;
5868 }
5869
5870 /*
5871 * rbd_dev->header_rwsem must be locked for write and will be unlocked
5872 * upon return.
5873 */
5874 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5875 {
5876 int ret;
5877
5878 /* Record our major and minor device numbers. */
5879
5880 if (!single_major) {
5881 ret = register_blkdev(0, rbd_dev->name);
5882 if (ret < 0)
5883 goto err_out_unlock;
5884
5885 rbd_dev->major = ret;
5886 rbd_dev->minor = 0;
5887 } else {
5888 rbd_dev->major = rbd_major;
5889 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5890 }
5891
5892 /* Set up the blkdev mapping. */
5893
5894 ret = rbd_init_disk(rbd_dev);
5895 if (ret)
5896 goto err_out_blkdev;
5897
5898 ret = rbd_dev_mapping_set(rbd_dev);
5899 if (ret)
5900 goto err_out_disk;
5901
5902 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5903 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5904
5905 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5906 ret = device_add(&rbd_dev->dev);
5907 if (ret)
5908 goto err_out_mapping;
5909
5910 /* Everything's ready. Announce the disk to the world. */
5911
5912 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5913 up_write(&rbd_dev->header_rwsem);
5914
5915 spin_lock(&rbd_dev_list_lock);
5916 list_add_tail(&rbd_dev->node, &rbd_dev_list);
5917 spin_unlock(&rbd_dev_list_lock);
5918
5919 add_disk(rbd_dev->disk);
5920 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5921 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5922 rbd_dev->header.features);
5923
5924 return ret;
5925
5926 err_out_mapping:
5927 rbd_dev_mapping_clear(rbd_dev);
5928 err_out_disk:
5929 rbd_free_disk(rbd_dev);
5930 err_out_blkdev:
5931 if (!single_major)
5932 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5933 err_out_unlock:
5934 up_write(&rbd_dev->header_rwsem);
5935 return ret;
5936 }
5937
5938 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5939 {
5940 struct rbd_spec *spec = rbd_dev->spec;
5941 int ret;
5942
5943 /* Record the header object name for this rbd image. */
5944
5945 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5946 if (rbd_dev->image_format == 1)
5947 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5948 spec->image_name, RBD_SUFFIX);
5949 else
5950 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5951 RBD_HEADER_PREFIX, spec->image_id);
5952
5953 return ret;
5954 }
5955
5956 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5957 {
5958 rbd_dev_unprobe(rbd_dev);
5959 rbd_dev->image_format = 0;
5960 kfree(rbd_dev->spec->image_id);
5961 rbd_dev->spec->image_id = NULL;
5962
5963 rbd_dev_destroy(rbd_dev);
5964 }
5965
5966 /*
5967 * Probe for the existence of the header object for the given rbd
5968 * device. If this image is the one being mapped (i.e., not a
5969 * parent), initiate a watch on its header object before using that
5970 * object to get detailed information about the rbd image.
5971 */
5972 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5973 {
5974 int ret;
5975
5976 /*
5977 * Get the id from the image id object. Unless there's an
5978 * error, rbd_dev->spec->image_id will be filled in with
5979 * a dynamically-allocated string, and rbd_dev->image_format
5980 * will be set to either 1 or 2.
5981 */
5982 ret = rbd_dev_image_id(rbd_dev);
5983 if (ret)
5984 return ret;
5985
5986 ret = rbd_dev_header_name(rbd_dev);
5987 if (ret)
5988 goto err_out_format;
5989
5990 if (!depth) {
5991 ret = rbd_register_watch(rbd_dev);
5992 if (ret) {
5993 if (ret == -ENOENT)
5994 pr_info("image %s/%s does not exist\n",
5995 rbd_dev->spec->pool_name,
5996 rbd_dev->spec->image_name);
5997 goto err_out_format;
5998 }
5999 }
6000
6001 ret = rbd_dev_header_info(rbd_dev);
6002 if (ret)
6003 goto err_out_watch;
6004
6005 /*
6006 * If this image is the one being mapped, we have pool name and
6007 * id, image name and id, and snap name - need to fill snap id.
6008 * Otherwise this is a parent image, identified by pool, image
6009 * and snap ids - need to fill in names for those ids.
6010 */
6011 if (!depth)
6012 ret = rbd_spec_fill_snap_id(rbd_dev);
6013 else
6014 ret = rbd_spec_fill_names(rbd_dev);
6015 if (ret) {
6016 if (ret == -ENOENT)
6017 pr_info("snap %s/%s@%s does not exist\n",
6018 rbd_dev->spec->pool_name,
6019 rbd_dev->spec->image_name,
6020 rbd_dev->spec->snap_name);
6021 goto err_out_probe;
6022 }
6023
6024 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6025 ret = rbd_dev_v2_parent_info(rbd_dev);
6026 if (ret)
6027 goto err_out_probe;
6028
6029 /*
6030 * Need to warn users if this image is the one being
6031 * mapped and has a parent.
6032 */
6033 if (!depth && rbd_dev->parent_spec)
6034 rbd_warn(rbd_dev,
6035 "WARNING: kernel layering is EXPERIMENTAL!");
6036 }
6037
6038 ret = rbd_dev_probe_parent(rbd_dev, depth);
6039 if (ret)
6040 goto err_out_probe;
6041
6042 dout("discovered format %u image, header name is %s\n",
6043 rbd_dev->image_format, rbd_dev->header_oid.name);
6044 return 0;
6045
6046 err_out_probe:
6047 rbd_dev_unprobe(rbd_dev);
6048 err_out_watch:
6049 if (!depth)
6050 rbd_unregister_watch(rbd_dev);
6051 err_out_format:
6052 rbd_dev->image_format = 0;
6053 kfree(rbd_dev->spec->image_id);
6054 rbd_dev->spec->image_id = NULL;
6055 return ret;
6056 }
6057
6058 static ssize_t do_rbd_add(struct bus_type *bus,
6059 const char *buf,
6060 size_t count)
6061 {
6062 struct rbd_device *rbd_dev = NULL;
6063 struct ceph_options *ceph_opts = NULL;
6064 struct rbd_options *rbd_opts = NULL;
6065 struct rbd_spec *spec = NULL;
6066 struct rbd_client *rbdc;
6067 bool read_only;
6068 int rc;
6069
6070 if (!try_module_get(THIS_MODULE))
6071 return -ENODEV;
6072
6073 /* parse add command */
6074 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6075 if (rc < 0)
6076 goto out;
6077
6078 rbdc = rbd_get_client(ceph_opts);
6079 if (IS_ERR(rbdc)) {
6080 rc = PTR_ERR(rbdc);
6081 goto err_out_args;
6082 }
6083
6084 /* pick the pool */
6085 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6086 if (rc < 0) {
6087 if (rc == -ENOENT)
6088 pr_info("pool %s does not exist\n", spec->pool_name);
6089 goto err_out_client;
6090 }
6091 spec->pool_id = (u64)rc;
6092
6093 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6094 if (!rbd_dev) {
6095 rc = -ENOMEM;
6096 goto err_out_client;
6097 }
6098 rbdc = NULL; /* rbd_dev now owns this */
6099 spec = NULL; /* rbd_dev now owns this */
6100 rbd_opts = NULL; /* rbd_dev now owns this */
6101
6102 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6103 if (!rbd_dev->config_info) {
6104 rc = -ENOMEM;
6105 goto err_out_rbd_dev;
6106 }
6107
6108 down_write(&rbd_dev->header_rwsem);
6109 rc = rbd_dev_image_probe(rbd_dev, 0);
6110 if (rc < 0) {
6111 up_write(&rbd_dev->header_rwsem);
6112 goto err_out_rbd_dev;
6113 }
6114
6115 /* If we are mapping a snapshot it must be marked read-only */
6116
6117 read_only = rbd_dev->opts->read_only;
6118 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6119 read_only = true;
6120 rbd_dev->mapping.read_only = read_only;
6121
6122 rc = rbd_dev_device_setup(rbd_dev);
6123 if (rc) {
6124 /*
6125 * rbd_unregister_watch() can't be moved into
6126 * rbd_dev_image_release() without refactoring, see
6127 * commit 1f3ef78861ac.
6128 */
6129 rbd_unregister_watch(rbd_dev);
6130 rbd_dev_image_release(rbd_dev);
6131 goto out;
6132 }
6133
6134 rc = count;
6135 out:
6136 module_put(THIS_MODULE);
6137 return rc;
6138
6139 err_out_rbd_dev:
6140 rbd_dev_destroy(rbd_dev);
6141 err_out_client:
6142 rbd_put_client(rbdc);
6143 err_out_args:
6144 rbd_spec_put(spec);
6145 kfree(rbd_opts);
6146 goto out;
6147 }
6148
6149 static ssize_t rbd_add(struct bus_type *bus,
6150 const char *buf,
6151 size_t count)
6152 {
6153 if (single_major)
6154 return -EINVAL;
6155
6156 return do_rbd_add(bus, buf, count);
6157 }
6158
6159 static ssize_t rbd_add_single_major(struct bus_type *bus,
6160 const char *buf,
6161 size_t count)
6162 {
6163 return do_rbd_add(bus, buf, count);
6164 }
6165
6166 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6167 {
6168 rbd_free_disk(rbd_dev);
6169
6170 spin_lock(&rbd_dev_list_lock);
6171 list_del_init(&rbd_dev->node);
6172 spin_unlock(&rbd_dev_list_lock);
6173
6174 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6175 device_del(&rbd_dev->dev);
6176 rbd_dev_mapping_clear(rbd_dev);
6177 if (!single_major)
6178 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6179 }
6180
6181 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6182 {
6183 while (rbd_dev->parent) {
6184 struct rbd_device *first = rbd_dev;
6185 struct rbd_device *second = first->parent;
6186 struct rbd_device *third;
6187
6188 /*
6189 * Follow to the parent with no grandparent and
6190 * remove it.
6191 */
6192 while (second && (third = second->parent)) {
6193 first = second;
6194 second = third;
6195 }
6196 rbd_assert(second);
6197 rbd_dev_image_release(second);
6198 first->parent = NULL;
6199 first->parent_overlap = 0;
6200
6201 rbd_assert(first->parent_spec);
6202 rbd_spec_put(first->parent_spec);
6203 first->parent_spec = NULL;
6204 }
6205 }
6206
6207 static ssize_t do_rbd_remove(struct bus_type *bus,
6208 const char *buf,
6209 size_t count)
6210 {
6211 struct rbd_device *rbd_dev = NULL;
6212 struct list_head *tmp;
6213 int dev_id;
6214 char opt_buf[6];
6215 bool already = false;
6216 bool force = false;
6217 int ret;
6218
6219 dev_id = -1;
6220 opt_buf[0] = '\0';
6221 sscanf(buf, "%d %5s", &dev_id, opt_buf);
6222 if (dev_id < 0) {
6223 pr_err("dev_id out of range\n");
6224 return -EINVAL;
6225 }
6226 if (opt_buf[0] != '\0') {
6227 if (!strcmp(opt_buf, "force")) {
6228 force = true;
6229 } else {
6230 pr_err("bad remove option at '%s'\n", opt_buf);
6231 return -EINVAL;
6232 }
6233 }
6234
6235 ret = -ENOENT;
6236 spin_lock(&rbd_dev_list_lock);
6237 list_for_each(tmp, &rbd_dev_list) {
6238 rbd_dev = list_entry(tmp, struct rbd_device, node);
6239 if (rbd_dev->dev_id == dev_id) {
6240 ret = 0;
6241 break;
6242 }
6243 }
6244 if (!ret) {
6245 spin_lock_irq(&rbd_dev->lock);
6246 if (rbd_dev->open_count && !force)
6247 ret = -EBUSY;
6248 else
6249 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6250 &rbd_dev->flags);
6251 spin_unlock_irq(&rbd_dev->lock);
6252 }
6253 spin_unlock(&rbd_dev_list_lock);
6254 if (ret < 0 || already)
6255 return ret;
6256
6257 if (force) {
6258 /*
6259 * Prevent new IO from being queued and wait for existing
6260 * IO to complete/fail.
6261 */
6262 blk_mq_freeze_queue(rbd_dev->disk->queue);
6263 blk_set_queue_dying(rbd_dev->disk->queue);
6264 }
6265
6266 down_write(&rbd_dev->lock_rwsem);
6267 if (__rbd_is_lock_owner(rbd_dev))
6268 rbd_unlock(rbd_dev);
6269 up_write(&rbd_dev->lock_rwsem);
6270 rbd_unregister_watch(rbd_dev);
6271
6272 /*
6273 * Don't free anything from rbd_dev->disk until after all
6274 * notifies are completely processed. Otherwise
6275 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
6276 * in a potential use after free of rbd_dev->disk or rbd_dev.
6277 */
6278 rbd_dev_device_release(rbd_dev);
6279 rbd_dev_image_release(rbd_dev);
6280
6281 return count;
6282 }
6283
6284 static ssize_t rbd_remove(struct bus_type *bus,
6285 const char *buf,
6286 size_t count)
6287 {
6288 if (single_major)
6289 return -EINVAL;
6290
6291 return do_rbd_remove(bus, buf, count);
6292 }
6293
6294 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6295 const char *buf,
6296 size_t count)
6297 {
6298 return do_rbd_remove(bus, buf, count);
6299 }
6300
6301 /*
6302 * create control files in sysfs
6303 * /sys/bus/rbd/...
6304 */
6305 static int rbd_sysfs_init(void)
6306 {
6307 int ret;
6308
6309 ret = device_register(&rbd_root_dev);
6310 if (ret < 0)
6311 return ret;
6312
6313 ret = bus_register(&rbd_bus_type);
6314 if (ret < 0)
6315 device_unregister(&rbd_root_dev);
6316
6317 return ret;
6318 }
6319
6320 static void rbd_sysfs_cleanup(void)
6321 {
6322 bus_unregister(&rbd_bus_type);
6323 device_unregister(&rbd_root_dev);
6324 }
6325
6326 static int rbd_slab_init(void)
6327 {
6328 rbd_assert(!rbd_img_request_cache);
6329 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6330 if (!rbd_img_request_cache)
6331 return -ENOMEM;
6332
6333 rbd_assert(!rbd_obj_request_cache);
6334 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6335 if (!rbd_obj_request_cache)
6336 goto out_err;
6337
6338 return 0;
6339
6340 out_err:
6341 kmem_cache_destroy(rbd_img_request_cache);
6342 rbd_img_request_cache = NULL;
6343 return -ENOMEM;
6344 }
6345
6346 static void rbd_slab_exit(void)
6347 {
6348 rbd_assert(rbd_obj_request_cache);
6349 kmem_cache_destroy(rbd_obj_request_cache);
6350 rbd_obj_request_cache = NULL;
6351
6352 rbd_assert(rbd_img_request_cache);
6353 kmem_cache_destroy(rbd_img_request_cache);
6354 rbd_img_request_cache = NULL;
6355 }
6356
6357 static int __init rbd_init(void)
6358 {
6359 int rc;
6360
6361 if (!libceph_compatible(NULL)) {
6362 rbd_warn(NULL, "libceph incompatibility (quitting)");
6363 return -EINVAL;
6364 }
6365
6366 rc = rbd_slab_init();
6367 if (rc)
6368 return rc;
6369
6370 /*
6371 * The number of active work items is limited by the number of
6372 * rbd devices * queue depth, so leave @max_active at default.
6373 */
6374 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6375 if (!rbd_wq) {
6376 rc = -ENOMEM;
6377 goto err_out_slab;
6378 }
6379
6380 if (single_major) {
6381 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6382 if (rbd_major < 0) {
6383 rc = rbd_major;
6384 goto err_out_wq;
6385 }
6386 }
6387
6388 rc = rbd_sysfs_init();
6389 if (rc)
6390 goto err_out_blkdev;
6391
6392 if (single_major)
6393 pr_info("loaded (major %d)\n", rbd_major);
6394 else
6395 pr_info("loaded\n");
6396
6397 return 0;
6398
6399 err_out_blkdev:
6400 if (single_major)
6401 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6402 err_out_wq:
6403 destroy_workqueue(rbd_wq);
6404 err_out_slab:
6405 rbd_slab_exit();
6406 return rc;
6407 }
6408
6409 static void __exit rbd_exit(void)
6410 {
6411 ida_destroy(&rbd_dev_id_ida);
6412 rbd_sysfs_cleanup();
6413 if (single_major)
6414 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6415 destroy_workqueue(rbd_wq);
6416 rbd_slab_exit();
6417 }
6418
6419 module_init(rbd_init);
6420 module_exit(rbd_exit);
6421
6422 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6423 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6424 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6425 /* following authorship retained from original osdblk.c */
6426 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6427
6428 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6429 MODULE_LICENSE("GPL");