]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
50395af7a9a670759b31bc5ef7a879eaba60494a
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG /* Activate rbd_assert() calls */
52
53 /*
54 * The basic unit of block I/O is a sector. It is interpreted in a
55 * number of contexts in Linux (blk, bio, genhd), but the default is
56 * universally 512 bytes. These symbols are just slightly more
57 * meaningful than the bare numbers they represent.
58 */
59 #define SECTOR_SHIFT 9
60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
61
62 /*
63 * Increment the given counter and return its updated value.
64 * If the counter is already 0 it will not be incremented.
65 * If the counter is already at its maximum value returns
66 * -EINVAL without updating it.
67 */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70 unsigned int counter;
71
72 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73 if (counter <= (unsigned int)INT_MAX)
74 return (int)counter;
75
76 atomic_dec(v);
77
78 return -EINVAL;
79 }
80
81 /* Decrement the counter. Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84 int counter;
85
86 counter = atomic_dec_return(v);
87 if (counter >= 0)
88 return counter;
89
90 atomic_inc(v);
91
92 return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR 256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN 16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN \
104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME "-"
109
110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX 64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX 64
117
118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING (1ULL<<0)
124 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
126 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
127
128 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
129 RBD_FEATURE_STRIPINGV2 | \
130 RBD_FEATURE_EXCLUSIVE_LOCK | \
131 RBD_FEATURE_DATA_POOL)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137 /*
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
140 */
141 #define DEV_NAME_LEN 32
142
143 /*
144 * block device image metadata (in-memory version)
145 */
146 struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
148 char *object_prefix;
149 __u8 obj_order;
150 u64 stripe_unit;
151 u64 stripe_count;
152 s64 data_pool_id;
153 u64 features; /* Might be changeable someday? */
154
155 /* The remaining fields need to be updated occasionally */
156 u64 image_size;
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
160 };
161
162 /*
163 * An rbd image specification.
164 *
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
168 *
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
173 *
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
179 *
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
183 *
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
186 */
187 struct rbd_spec {
188 u64 pool_id;
189 const char *pool_name;
190
191 const char *image_id;
192 const char *image_name;
193
194 u64 snap_id;
195 const char *snap_name;
196
197 struct kref kref;
198 };
199
200 /*
201 * an instance of the client. multiple devices may share an rbd client.
202 */
203 struct rbd_client {
204 struct ceph_client *client;
205 struct kref kref;
206 struct list_head node;
207 };
208
209 struct rbd_img_request;
210 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
211
212 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
213
214 struct rbd_obj_request;
215 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
216
217 enum obj_request_type {
218 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
219 };
220
221 enum obj_operation_type {
222 OBJ_OP_WRITE,
223 OBJ_OP_READ,
224 OBJ_OP_DISCARD,
225 };
226
227 enum obj_req_flags {
228 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
229 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
230 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
231 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
232 };
233
234 struct rbd_obj_request {
235 u64 object_no;
236 u64 offset; /* object start byte */
237 u64 length; /* bytes from offset */
238 unsigned long flags;
239
240 /*
241 * An object request associated with an image will have its
242 * img_data flag set; a standalone object request will not.
243 *
244 * A standalone object request will have which == BAD_WHICH
245 * and a null obj_request pointer.
246 *
247 * An object request initiated in support of a layered image
248 * object (to check for its existence before a write) will
249 * have which == BAD_WHICH and a non-null obj_request pointer.
250 *
251 * Finally, an object request for rbd image data will have
252 * which != BAD_WHICH, and will have a non-null img_request
253 * pointer. The value of which will be in the range
254 * 0..(img_request->obj_request_count-1).
255 */
256 union {
257 struct rbd_obj_request *obj_request; /* STAT op */
258 struct {
259 struct rbd_img_request *img_request;
260 u64 img_offset;
261 /* links for img_request->obj_requests list */
262 struct list_head links;
263 };
264 };
265 u32 which; /* posn image request list */
266
267 enum obj_request_type type;
268 union {
269 struct bio *bio_list;
270 struct {
271 struct page **pages;
272 u32 page_count;
273 };
274 };
275 struct page **copyup_pages;
276 u32 copyup_page_count;
277
278 struct ceph_osd_request *osd_req;
279
280 u64 xferred; /* bytes transferred */
281 int result;
282
283 rbd_obj_callback_t callback;
284 struct completion completion;
285
286 struct kref kref;
287 };
288
289 enum img_req_flags {
290 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
291 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
292 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
293 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
294 };
295
296 struct rbd_img_request {
297 struct rbd_device *rbd_dev;
298 u64 offset; /* starting image byte offset */
299 u64 length; /* byte count from offset */
300 unsigned long flags;
301 union {
302 u64 snap_id; /* for reads */
303 struct ceph_snap_context *snapc; /* for writes */
304 };
305 union {
306 struct request *rq; /* block request */
307 struct rbd_obj_request *obj_request; /* obj req initiator */
308 };
309 struct page **copyup_pages;
310 u32 copyup_page_count;
311 spinlock_t completion_lock;/* protects next_completion */
312 u32 next_completion;
313 rbd_img_callback_t callback;
314 u64 xferred;/* aggregate bytes transferred */
315 int result; /* first nonzero obj_request result */
316
317 u32 obj_request_count;
318 struct list_head obj_requests; /* rbd_obj_request structs */
319
320 struct kref kref;
321 };
322
323 #define for_each_obj_request(ireq, oreq) \
324 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_from(ireq, oreq) \
326 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
327 #define for_each_obj_request_safe(ireq, oreq, n) \
328 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
329
330 enum rbd_watch_state {
331 RBD_WATCH_STATE_UNREGISTERED,
332 RBD_WATCH_STATE_REGISTERED,
333 RBD_WATCH_STATE_ERROR,
334 };
335
336 enum rbd_lock_state {
337 RBD_LOCK_STATE_UNLOCKED,
338 RBD_LOCK_STATE_LOCKED,
339 RBD_LOCK_STATE_RELEASING,
340 };
341
342 /* WatchNotify::ClientId */
343 struct rbd_client_id {
344 u64 gid;
345 u64 handle;
346 };
347
348 struct rbd_mapping {
349 u64 size;
350 u64 features;
351 bool read_only;
352 };
353
354 /*
355 * a single device
356 */
357 struct rbd_device {
358 int dev_id; /* blkdev unique id */
359
360 int major; /* blkdev assigned major */
361 int minor;
362 struct gendisk *disk; /* blkdev's gendisk and rq */
363
364 u32 image_format; /* Either 1 or 2 */
365 struct rbd_client *rbd_client;
366
367 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
368
369 spinlock_t lock; /* queue, flags, open_count */
370
371 struct rbd_image_header header;
372 unsigned long flags; /* possibly lock protected */
373 struct rbd_spec *spec;
374 struct rbd_options *opts;
375 char *config_info; /* add{,_single_major} string */
376
377 struct ceph_object_id header_oid;
378 struct ceph_object_locator header_oloc;
379
380 struct ceph_file_layout layout; /* used for all rbd requests */
381
382 struct mutex watch_mutex;
383 enum rbd_watch_state watch_state;
384 struct ceph_osd_linger_request *watch_handle;
385 u64 watch_cookie;
386 struct delayed_work watch_dwork;
387
388 struct rw_semaphore lock_rwsem;
389 enum rbd_lock_state lock_state;
390 struct rbd_client_id owner_cid;
391 struct work_struct acquired_lock_work;
392 struct work_struct released_lock_work;
393 struct delayed_work lock_dwork;
394 struct work_struct unlock_work;
395 wait_queue_head_t lock_waitq;
396
397 struct workqueue_struct *task_wq;
398
399 struct rbd_spec *parent_spec;
400 u64 parent_overlap;
401 atomic_t parent_ref;
402 struct rbd_device *parent;
403
404 /* Block layer tags. */
405 struct blk_mq_tag_set tag_set;
406
407 /* protects updating the header */
408 struct rw_semaphore header_rwsem;
409
410 struct rbd_mapping mapping;
411
412 struct list_head node;
413
414 /* sysfs related */
415 struct device dev;
416 unsigned long open_count; /* protected by lock */
417 };
418
419 /*
420 * Flag bits for rbd_dev->flags:
421 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
422 * by rbd_dev->lock
423 * - BLACKLISTED is protected by rbd_dev->lock_rwsem
424 */
425 enum rbd_dev_flags {
426 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
427 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
428 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
429 };
430
431 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
432
433 static LIST_HEAD(rbd_dev_list); /* devices */
434 static DEFINE_SPINLOCK(rbd_dev_list_lock);
435
436 static LIST_HEAD(rbd_client_list); /* clients */
437 static DEFINE_SPINLOCK(rbd_client_list_lock);
438
439 /* Slab caches for frequently-allocated structures */
440
441 static struct kmem_cache *rbd_img_request_cache;
442 static struct kmem_cache *rbd_obj_request_cache;
443
444 static int rbd_major;
445 static DEFINE_IDA(rbd_dev_id_ida);
446
447 static struct workqueue_struct *rbd_wq;
448
449 /*
450 * Default to false for now, as single-major requires >= 0.75 version of
451 * userspace rbd utility.
452 */
453 static bool single_major = false;
454 module_param(single_major, bool, S_IRUGO);
455 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
456
457 static int rbd_img_request_submit(struct rbd_img_request *img_request);
458
459 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
460 size_t count);
461 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
462 size_t count);
463 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
464 size_t count);
465 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
466 size_t count);
467 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
468 static void rbd_spec_put(struct rbd_spec *spec);
469
470 static int rbd_dev_id_to_minor(int dev_id)
471 {
472 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
473 }
474
475 static int minor_to_rbd_dev_id(int minor)
476 {
477 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
478 }
479
480 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
481 {
482 return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
483 rbd_dev->spec->snap_id == CEPH_NOSNAP &&
484 !rbd_dev->mapping.read_only;
485 }
486
487 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
488 {
489 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
490 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
491 }
492
493 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
494 {
495 bool is_lock_owner;
496
497 down_read(&rbd_dev->lock_rwsem);
498 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
499 up_read(&rbd_dev->lock_rwsem);
500 return is_lock_owner;
501 }
502
503 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
504 {
505 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
506 }
507
508 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
509 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
510 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
511 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
512 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL);
513
514 static struct attribute *rbd_bus_attrs[] = {
515 &bus_attr_add.attr,
516 &bus_attr_remove.attr,
517 &bus_attr_add_single_major.attr,
518 &bus_attr_remove_single_major.attr,
519 &bus_attr_supported_features.attr,
520 NULL,
521 };
522
523 static umode_t rbd_bus_is_visible(struct kobject *kobj,
524 struct attribute *attr, int index)
525 {
526 if (!single_major &&
527 (attr == &bus_attr_add_single_major.attr ||
528 attr == &bus_attr_remove_single_major.attr))
529 return 0;
530
531 return attr->mode;
532 }
533
534 static const struct attribute_group rbd_bus_group = {
535 .attrs = rbd_bus_attrs,
536 .is_visible = rbd_bus_is_visible,
537 };
538 __ATTRIBUTE_GROUPS(rbd_bus);
539
540 static struct bus_type rbd_bus_type = {
541 .name = "rbd",
542 .bus_groups = rbd_bus_groups,
543 };
544
545 static void rbd_root_dev_release(struct device *dev)
546 {
547 }
548
549 static struct device rbd_root_dev = {
550 .init_name = "rbd",
551 .release = rbd_root_dev_release,
552 };
553
554 static __printf(2, 3)
555 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
556 {
557 struct va_format vaf;
558 va_list args;
559
560 va_start(args, fmt);
561 vaf.fmt = fmt;
562 vaf.va = &args;
563
564 if (!rbd_dev)
565 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
566 else if (rbd_dev->disk)
567 printk(KERN_WARNING "%s: %s: %pV\n",
568 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
569 else if (rbd_dev->spec && rbd_dev->spec->image_name)
570 printk(KERN_WARNING "%s: image %s: %pV\n",
571 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
572 else if (rbd_dev->spec && rbd_dev->spec->image_id)
573 printk(KERN_WARNING "%s: id %s: %pV\n",
574 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
575 else /* punt */
576 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
577 RBD_DRV_NAME, rbd_dev, &vaf);
578 va_end(args);
579 }
580
581 #ifdef RBD_DEBUG
582 #define rbd_assert(expr) \
583 if (unlikely(!(expr))) { \
584 printk(KERN_ERR "\nAssertion failure in %s() " \
585 "at line %d:\n\n" \
586 "\trbd_assert(%s);\n\n", \
587 __func__, __LINE__, #expr); \
588 BUG(); \
589 }
590 #else /* !RBD_DEBUG */
591 # define rbd_assert(expr) ((void) 0)
592 #endif /* !RBD_DEBUG */
593
594 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
595 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
596 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
597 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
598
599 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
600 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
601 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
602 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
603 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
604 u64 snap_id);
605 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
606 u8 *order, u64 *snap_size);
607 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
608 u64 *snap_features);
609
610 static int rbd_open(struct block_device *bdev, fmode_t mode)
611 {
612 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
613 bool removing = false;
614
615 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
616 return -EROFS;
617
618 spin_lock_irq(&rbd_dev->lock);
619 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
620 removing = true;
621 else
622 rbd_dev->open_count++;
623 spin_unlock_irq(&rbd_dev->lock);
624 if (removing)
625 return -ENOENT;
626
627 (void) get_device(&rbd_dev->dev);
628
629 return 0;
630 }
631
632 static void rbd_release(struct gendisk *disk, fmode_t mode)
633 {
634 struct rbd_device *rbd_dev = disk->private_data;
635 unsigned long open_count_before;
636
637 spin_lock_irq(&rbd_dev->lock);
638 open_count_before = rbd_dev->open_count--;
639 spin_unlock_irq(&rbd_dev->lock);
640 rbd_assert(open_count_before > 0);
641
642 put_device(&rbd_dev->dev);
643 }
644
645 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
646 {
647 int ret = 0;
648 int val;
649 bool ro;
650 bool ro_changed = false;
651
652 /* get_user() may sleep, so call it before taking rbd_dev->lock */
653 if (get_user(val, (int __user *)(arg)))
654 return -EFAULT;
655
656 ro = val ? true : false;
657 /* Snapshot doesn't allow to write*/
658 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
659 return -EROFS;
660
661 spin_lock_irq(&rbd_dev->lock);
662 /* prevent others open this device */
663 if (rbd_dev->open_count > 1) {
664 ret = -EBUSY;
665 goto out;
666 }
667
668 if (rbd_dev->mapping.read_only != ro) {
669 rbd_dev->mapping.read_only = ro;
670 ro_changed = true;
671 }
672
673 out:
674 spin_unlock_irq(&rbd_dev->lock);
675 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
676 if (ret == 0 && ro_changed)
677 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
678
679 return ret;
680 }
681
682 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
683 unsigned int cmd, unsigned long arg)
684 {
685 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
686 int ret = 0;
687
688 switch (cmd) {
689 case BLKROSET:
690 ret = rbd_ioctl_set_ro(rbd_dev, arg);
691 break;
692 default:
693 ret = -ENOTTY;
694 }
695
696 return ret;
697 }
698
699 #ifdef CONFIG_COMPAT
700 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
701 unsigned int cmd, unsigned long arg)
702 {
703 return rbd_ioctl(bdev, mode, cmd, arg);
704 }
705 #endif /* CONFIG_COMPAT */
706
707 static const struct block_device_operations rbd_bd_ops = {
708 .owner = THIS_MODULE,
709 .open = rbd_open,
710 .release = rbd_release,
711 .ioctl = rbd_ioctl,
712 #ifdef CONFIG_COMPAT
713 .compat_ioctl = rbd_compat_ioctl,
714 #endif
715 };
716
717 /*
718 * Initialize an rbd client instance. Success or not, this function
719 * consumes ceph_opts. Caller holds client_mutex.
720 */
721 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
722 {
723 struct rbd_client *rbdc;
724 int ret = -ENOMEM;
725
726 dout("%s:\n", __func__);
727 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
728 if (!rbdc)
729 goto out_opt;
730
731 kref_init(&rbdc->kref);
732 INIT_LIST_HEAD(&rbdc->node);
733
734 rbdc->client = ceph_create_client(ceph_opts, rbdc);
735 if (IS_ERR(rbdc->client))
736 goto out_rbdc;
737 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
738
739 ret = ceph_open_session(rbdc->client);
740 if (ret < 0)
741 goto out_client;
742
743 spin_lock(&rbd_client_list_lock);
744 list_add_tail(&rbdc->node, &rbd_client_list);
745 spin_unlock(&rbd_client_list_lock);
746
747 dout("%s: rbdc %p\n", __func__, rbdc);
748
749 return rbdc;
750 out_client:
751 ceph_destroy_client(rbdc->client);
752 out_rbdc:
753 kfree(rbdc);
754 out_opt:
755 if (ceph_opts)
756 ceph_destroy_options(ceph_opts);
757 dout("%s: error %d\n", __func__, ret);
758
759 return ERR_PTR(ret);
760 }
761
762 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
763 {
764 kref_get(&rbdc->kref);
765
766 return rbdc;
767 }
768
769 /*
770 * Find a ceph client with specific addr and configuration. If
771 * found, bump its reference count.
772 */
773 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
774 {
775 struct rbd_client *client_node;
776 bool found = false;
777
778 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
779 return NULL;
780
781 spin_lock(&rbd_client_list_lock);
782 list_for_each_entry(client_node, &rbd_client_list, node) {
783 if (!ceph_compare_options(ceph_opts, client_node->client)) {
784 __rbd_get_client(client_node);
785
786 found = true;
787 break;
788 }
789 }
790 spin_unlock(&rbd_client_list_lock);
791
792 return found ? client_node : NULL;
793 }
794
795 /*
796 * (Per device) rbd map options
797 */
798 enum {
799 Opt_queue_depth,
800 Opt_last_int,
801 /* int args above */
802 Opt_last_string,
803 /* string args above */
804 Opt_read_only,
805 Opt_read_write,
806 Opt_lock_on_read,
807 Opt_err
808 };
809
810 static match_table_t rbd_opts_tokens = {
811 {Opt_queue_depth, "queue_depth=%d"},
812 /* int args above */
813 /* string args above */
814 {Opt_read_only, "read_only"},
815 {Opt_read_only, "ro"}, /* Alternate spelling */
816 {Opt_read_write, "read_write"},
817 {Opt_read_write, "rw"}, /* Alternate spelling */
818 {Opt_lock_on_read, "lock_on_read"},
819 {Opt_err, NULL}
820 };
821
822 struct rbd_options {
823 int queue_depth;
824 bool read_only;
825 bool lock_on_read;
826 };
827
828 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
829 #define RBD_READ_ONLY_DEFAULT false
830 #define RBD_LOCK_ON_READ_DEFAULT false
831
832 static int parse_rbd_opts_token(char *c, void *private)
833 {
834 struct rbd_options *rbd_opts = private;
835 substring_t argstr[MAX_OPT_ARGS];
836 int token, intval, ret;
837
838 token = match_token(c, rbd_opts_tokens, argstr);
839 if (token < Opt_last_int) {
840 ret = match_int(&argstr[0], &intval);
841 if (ret < 0) {
842 pr_err("bad mount option arg (not int) at '%s'\n", c);
843 return ret;
844 }
845 dout("got int token %d val %d\n", token, intval);
846 } else if (token > Opt_last_int && token < Opt_last_string) {
847 dout("got string token %d val %s\n", token, argstr[0].from);
848 } else {
849 dout("got token %d\n", token);
850 }
851
852 switch (token) {
853 case Opt_queue_depth:
854 if (intval < 1) {
855 pr_err("queue_depth out of range\n");
856 return -EINVAL;
857 }
858 rbd_opts->queue_depth = intval;
859 break;
860 case Opt_read_only:
861 rbd_opts->read_only = true;
862 break;
863 case Opt_read_write:
864 rbd_opts->read_only = false;
865 break;
866 case Opt_lock_on_read:
867 rbd_opts->lock_on_read = true;
868 break;
869 default:
870 /* libceph prints "bad option" msg */
871 return -EINVAL;
872 }
873
874 return 0;
875 }
876
877 static char* obj_op_name(enum obj_operation_type op_type)
878 {
879 switch (op_type) {
880 case OBJ_OP_READ:
881 return "read";
882 case OBJ_OP_WRITE:
883 return "write";
884 case OBJ_OP_DISCARD:
885 return "discard";
886 default:
887 return "???";
888 }
889 }
890
891 /*
892 * Get a ceph client with specific addr and configuration, if one does
893 * not exist create it. Either way, ceph_opts is consumed by this
894 * function.
895 */
896 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
897 {
898 struct rbd_client *rbdc;
899
900 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
901 rbdc = rbd_client_find(ceph_opts);
902 if (rbdc) /* using an existing client */
903 ceph_destroy_options(ceph_opts);
904 else
905 rbdc = rbd_client_create(ceph_opts);
906 mutex_unlock(&client_mutex);
907
908 return rbdc;
909 }
910
911 /*
912 * Destroy ceph client
913 *
914 * Caller must hold rbd_client_list_lock.
915 */
916 static void rbd_client_release(struct kref *kref)
917 {
918 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
919
920 dout("%s: rbdc %p\n", __func__, rbdc);
921 spin_lock(&rbd_client_list_lock);
922 list_del(&rbdc->node);
923 spin_unlock(&rbd_client_list_lock);
924
925 ceph_destroy_client(rbdc->client);
926 kfree(rbdc);
927 }
928
929 /*
930 * Drop reference to ceph client node. If it's not referenced anymore, release
931 * it.
932 */
933 static void rbd_put_client(struct rbd_client *rbdc)
934 {
935 if (rbdc)
936 kref_put(&rbdc->kref, rbd_client_release);
937 }
938
939 static bool rbd_image_format_valid(u32 image_format)
940 {
941 return image_format == 1 || image_format == 2;
942 }
943
944 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
945 {
946 size_t size;
947 u32 snap_count;
948
949 /* The header has to start with the magic rbd header text */
950 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
951 return false;
952
953 /* The bio layer requires at least sector-sized I/O */
954
955 if (ondisk->options.order < SECTOR_SHIFT)
956 return false;
957
958 /* If we use u64 in a few spots we may be able to loosen this */
959
960 if (ondisk->options.order > 8 * sizeof (int) - 1)
961 return false;
962
963 /*
964 * The size of a snapshot header has to fit in a size_t, and
965 * that limits the number of snapshots.
966 */
967 snap_count = le32_to_cpu(ondisk->snap_count);
968 size = SIZE_MAX - sizeof (struct ceph_snap_context);
969 if (snap_count > size / sizeof (__le64))
970 return false;
971
972 /*
973 * Not only that, but the size of the entire the snapshot
974 * header must also be representable in a size_t.
975 */
976 size -= snap_count * sizeof (__le64);
977 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
978 return false;
979
980 return true;
981 }
982
983 /*
984 * returns the size of an object in the image
985 */
986 static u32 rbd_obj_bytes(struct rbd_image_header *header)
987 {
988 return 1U << header->obj_order;
989 }
990
991 static void rbd_init_layout(struct rbd_device *rbd_dev)
992 {
993 if (rbd_dev->header.stripe_unit == 0 ||
994 rbd_dev->header.stripe_count == 0) {
995 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
996 rbd_dev->header.stripe_count = 1;
997 }
998
999 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1000 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1001 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1002 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1003 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1004 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1005 }
1006
1007 /*
1008 * Fill an rbd image header with information from the given format 1
1009 * on-disk header.
1010 */
1011 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1012 struct rbd_image_header_ondisk *ondisk)
1013 {
1014 struct rbd_image_header *header = &rbd_dev->header;
1015 bool first_time = header->object_prefix == NULL;
1016 struct ceph_snap_context *snapc;
1017 char *object_prefix = NULL;
1018 char *snap_names = NULL;
1019 u64 *snap_sizes = NULL;
1020 u32 snap_count;
1021 int ret = -ENOMEM;
1022 u32 i;
1023
1024 /* Allocate this now to avoid having to handle failure below */
1025
1026 if (first_time) {
1027 object_prefix = kstrndup(ondisk->object_prefix,
1028 sizeof(ondisk->object_prefix),
1029 GFP_KERNEL);
1030 if (!object_prefix)
1031 return -ENOMEM;
1032 }
1033
1034 /* Allocate the snapshot context and fill it in */
1035
1036 snap_count = le32_to_cpu(ondisk->snap_count);
1037 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1038 if (!snapc)
1039 goto out_err;
1040 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1041 if (snap_count) {
1042 struct rbd_image_snap_ondisk *snaps;
1043 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1044
1045 /* We'll keep a copy of the snapshot names... */
1046
1047 if (snap_names_len > (u64)SIZE_MAX)
1048 goto out_2big;
1049 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1050 if (!snap_names)
1051 goto out_err;
1052
1053 /* ...as well as the array of their sizes. */
1054 snap_sizes = kmalloc_array(snap_count,
1055 sizeof(*header->snap_sizes),
1056 GFP_KERNEL);
1057 if (!snap_sizes)
1058 goto out_err;
1059
1060 /*
1061 * Copy the names, and fill in each snapshot's id
1062 * and size.
1063 *
1064 * Note that rbd_dev_v1_header_info() guarantees the
1065 * ondisk buffer we're working with has
1066 * snap_names_len bytes beyond the end of the
1067 * snapshot id array, this memcpy() is safe.
1068 */
1069 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1070 snaps = ondisk->snaps;
1071 for (i = 0; i < snap_count; i++) {
1072 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1073 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1074 }
1075 }
1076
1077 /* We won't fail any more, fill in the header */
1078
1079 if (first_time) {
1080 header->object_prefix = object_prefix;
1081 header->obj_order = ondisk->options.order;
1082 rbd_init_layout(rbd_dev);
1083 } else {
1084 ceph_put_snap_context(header->snapc);
1085 kfree(header->snap_names);
1086 kfree(header->snap_sizes);
1087 }
1088
1089 /* The remaining fields always get updated (when we refresh) */
1090
1091 header->image_size = le64_to_cpu(ondisk->image_size);
1092 header->snapc = snapc;
1093 header->snap_names = snap_names;
1094 header->snap_sizes = snap_sizes;
1095
1096 return 0;
1097 out_2big:
1098 ret = -EIO;
1099 out_err:
1100 kfree(snap_sizes);
1101 kfree(snap_names);
1102 ceph_put_snap_context(snapc);
1103 kfree(object_prefix);
1104
1105 return ret;
1106 }
1107
1108 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1109 {
1110 const char *snap_name;
1111
1112 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1113
1114 /* Skip over names until we find the one we are looking for */
1115
1116 snap_name = rbd_dev->header.snap_names;
1117 while (which--)
1118 snap_name += strlen(snap_name) + 1;
1119
1120 return kstrdup(snap_name, GFP_KERNEL);
1121 }
1122
1123 /*
1124 * Snapshot id comparison function for use with qsort()/bsearch().
1125 * Note that result is for snapshots in *descending* order.
1126 */
1127 static int snapid_compare_reverse(const void *s1, const void *s2)
1128 {
1129 u64 snap_id1 = *(u64 *)s1;
1130 u64 snap_id2 = *(u64 *)s2;
1131
1132 if (snap_id1 < snap_id2)
1133 return 1;
1134 return snap_id1 == snap_id2 ? 0 : -1;
1135 }
1136
1137 /*
1138 * Search a snapshot context to see if the given snapshot id is
1139 * present.
1140 *
1141 * Returns the position of the snapshot id in the array if it's found,
1142 * or BAD_SNAP_INDEX otherwise.
1143 *
1144 * Note: The snapshot array is in kept sorted (by the osd) in
1145 * reverse order, highest snapshot id first.
1146 */
1147 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1148 {
1149 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1150 u64 *found;
1151
1152 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1153 sizeof (snap_id), snapid_compare_reverse);
1154
1155 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1156 }
1157
1158 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1159 u64 snap_id)
1160 {
1161 u32 which;
1162 const char *snap_name;
1163
1164 which = rbd_dev_snap_index(rbd_dev, snap_id);
1165 if (which == BAD_SNAP_INDEX)
1166 return ERR_PTR(-ENOENT);
1167
1168 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1169 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1170 }
1171
1172 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1173 {
1174 if (snap_id == CEPH_NOSNAP)
1175 return RBD_SNAP_HEAD_NAME;
1176
1177 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1178 if (rbd_dev->image_format == 1)
1179 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1180
1181 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1182 }
1183
1184 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1185 u64 *snap_size)
1186 {
1187 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1188 if (snap_id == CEPH_NOSNAP) {
1189 *snap_size = rbd_dev->header.image_size;
1190 } else if (rbd_dev->image_format == 1) {
1191 u32 which;
1192
1193 which = rbd_dev_snap_index(rbd_dev, snap_id);
1194 if (which == BAD_SNAP_INDEX)
1195 return -ENOENT;
1196
1197 *snap_size = rbd_dev->header.snap_sizes[which];
1198 } else {
1199 u64 size = 0;
1200 int ret;
1201
1202 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1203 if (ret)
1204 return ret;
1205
1206 *snap_size = size;
1207 }
1208 return 0;
1209 }
1210
1211 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1212 u64 *snap_features)
1213 {
1214 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1215 if (snap_id == CEPH_NOSNAP) {
1216 *snap_features = rbd_dev->header.features;
1217 } else if (rbd_dev->image_format == 1) {
1218 *snap_features = 0; /* No features for format 1 */
1219 } else {
1220 u64 features = 0;
1221 int ret;
1222
1223 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1224 if (ret)
1225 return ret;
1226
1227 *snap_features = features;
1228 }
1229 return 0;
1230 }
1231
1232 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1233 {
1234 u64 snap_id = rbd_dev->spec->snap_id;
1235 u64 size = 0;
1236 u64 features = 0;
1237 int ret;
1238
1239 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1240 if (ret)
1241 return ret;
1242 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1243 if (ret)
1244 return ret;
1245
1246 rbd_dev->mapping.size = size;
1247 rbd_dev->mapping.features = features;
1248
1249 return 0;
1250 }
1251
1252 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1253 {
1254 rbd_dev->mapping.size = 0;
1255 rbd_dev->mapping.features = 0;
1256 }
1257
1258 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1259 {
1260 u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1261
1262 return offset & (segment_size - 1);
1263 }
1264
1265 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1266 u64 offset, u64 length)
1267 {
1268 u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1269
1270 offset &= segment_size - 1;
1271
1272 rbd_assert(length <= U64_MAX - offset);
1273 if (offset + length > segment_size)
1274 length = segment_size - offset;
1275
1276 return length;
1277 }
1278
1279 /*
1280 * bio helpers
1281 */
1282
1283 static void bio_chain_put(struct bio *chain)
1284 {
1285 struct bio *tmp;
1286
1287 while (chain) {
1288 tmp = chain;
1289 chain = chain->bi_next;
1290 bio_put(tmp);
1291 }
1292 }
1293
1294 /*
1295 * zeros a bio chain, starting at specific offset
1296 */
1297 static void zero_bio_chain(struct bio *chain, int start_ofs)
1298 {
1299 struct bio_vec bv;
1300 struct bvec_iter iter;
1301 unsigned long flags;
1302 void *buf;
1303 int pos = 0;
1304
1305 while (chain) {
1306 bio_for_each_segment(bv, chain, iter) {
1307 if (pos + bv.bv_len > start_ofs) {
1308 int remainder = max(start_ofs - pos, 0);
1309 buf = bvec_kmap_irq(&bv, &flags);
1310 memset(buf + remainder, 0,
1311 bv.bv_len - remainder);
1312 flush_dcache_page(bv.bv_page);
1313 bvec_kunmap_irq(buf, &flags);
1314 }
1315 pos += bv.bv_len;
1316 }
1317
1318 chain = chain->bi_next;
1319 }
1320 }
1321
1322 /*
1323 * similar to zero_bio_chain(), zeros data defined by a page array,
1324 * starting at the given byte offset from the start of the array and
1325 * continuing up to the given end offset. The pages array is
1326 * assumed to be big enough to hold all bytes up to the end.
1327 */
1328 static void zero_pages(struct page **pages, u64 offset, u64 end)
1329 {
1330 struct page **page = &pages[offset >> PAGE_SHIFT];
1331
1332 rbd_assert(end > offset);
1333 rbd_assert(end - offset <= (u64)SIZE_MAX);
1334 while (offset < end) {
1335 size_t page_offset;
1336 size_t length;
1337 unsigned long flags;
1338 void *kaddr;
1339
1340 page_offset = offset & ~PAGE_MASK;
1341 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1342 local_irq_save(flags);
1343 kaddr = kmap_atomic(*page);
1344 memset(kaddr + page_offset, 0, length);
1345 flush_dcache_page(*page);
1346 kunmap_atomic(kaddr);
1347 local_irq_restore(flags);
1348
1349 offset += length;
1350 page++;
1351 }
1352 }
1353
1354 /*
1355 * Clone a portion of a bio, starting at the given byte offset
1356 * and continuing for the number of bytes indicated.
1357 */
1358 static struct bio *bio_clone_range(struct bio *bio_src,
1359 unsigned int offset,
1360 unsigned int len,
1361 gfp_t gfpmask)
1362 {
1363 struct bio *bio;
1364
1365 bio = bio_clone(bio_src, gfpmask);
1366 if (!bio)
1367 return NULL; /* ENOMEM */
1368
1369 bio_advance(bio, offset);
1370 bio->bi_iter.bi_size = len;
1371
1372 return bio;
1373 }
1374
1375 /*
1376 * Clone a portion of a bio chain, starting at the given byte offset
1377 * into the first bio in the source chain and continuing for the
1378 * number of bytes indicated. The result is another bio chain of
1379 * exactly the given length, or a null pointer on error.
1380 *
1381 * The bio_src and offset parameters are both in-out. On entry they
1382 * refer to the first source bio and the offset into that bio where
1383 * the start of data to be cloned is located.
1384 *
1385 * On return, bio_src is updated to refer to the bio in the source
1386 * chain that contains first un-cloned byte, and *offset will
1387 * contain the offset of that byte within that bio.
1388 */
1389 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1390 unsigned int *offset,
1391 unsigned int len,
1392 gfp_t gfpmask)
1393 {
1394 struct bio *bi = *bio_src;
1395 unsigned int off = *offset;
1396 struct bio *chain = NULL;
1397 struct bio **end;
1398
1399 /* Build up a chain of clone bios up to the limit */
1400
1401 if (!bi || off >= bi->bi_iter.bi_size || !len)
1402 return NULL; /* Nothing to clone */
1403
1404 end = &chain;
1405 while (len) {
1406 unsigned int bi_size;
1407 struct bio *bio;
1408
1409 if (!bi) {
1410 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1411 goto out_err; /* EINVAL; ran out of bio's */
1412 }
1413 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1414 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1415 if (!bio)
1416 goto out_err; /* ENOMEM */
1417
1418 *end = bio;
1419 end = &bio->bi_next;
1420
1421 off += bi_size;
1422 if (off == bi->bi_iter.bi_size) {
1423 bi = bi->bi_next;
1424 off = 0;
1425 }
1426 len -= bi_size;
1427 }
1428 *bio_src = bi;
1429 *offset = off;
1430
1431 return chain;
1432 out_err:
1433 bio_chain_put(chain);
1434
1435 return NULL;
1436 }
1437
1438 /*
1439 * The default/initial value for all object request flags is 0. For
1440 * each flag, once its value is set to 1 it is never reset to 0
1441 * again.
1442 */
1443 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1444 {
1445 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1446 struct rbd_device *rbd_dev;
1447
1448 rbd_dev = obj_request->img_request->rbd_dev;
1449 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1450 obj_request);
1451 }
1452 }
1453
1454 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1455 {
1456 smp_mb();
1457 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1458 }
1459
1460 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1461 {
1462 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1463 struct rbd_device *rbd_dev = NULL;
1464
1465 if (obj_request_img_data_test(obj_request))
1466 rbd_dev = obj_request->img_request->rbd_dev;
1467 rbd_warn(rbd_dev, "obj_request %p already marked done",
1468 obj_request);
1469 }
1470 }
1471
1472 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1473 {
1474 smp_mb();
1475 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1476 }
1477
1478 /*
1479 * This sets the KNOWN flag after (possibly) setting the EXISTS
1480 * flag. The latter is set based on the "exists" value provided.
1481 *
1482 * Note that for our purposes once an object exists it never goes
1483 * away again. It's possible that the response from two existence
1484 * checks are separated by the creation of the target object, and
1485 * the first ("doesn't exist") response arrives *after* the second
1486 * ("does exist"). In that case we ignore the second one.
1487 */
1488 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1489 bool exists)
1490 {
1491 if (exists)
1492 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1493 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1494 smp_mb();
1495 }
1496
1497 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1498 {
1499 smp_mb();
1500 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1501 }
1502
1503 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1504 {
1505 smp_mb();
1506 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1507 }
1508
1509 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1510 {
1511 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1512
1513 return obj_request->img_offset <
1514 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1515 }
1516
1517 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1518 {
1519 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1520 kref_read(&obj_request->kref));
1521 kref_get(&obj_request->kref);
1522 }
1523
1524 static void rbd_obj_request_destroy(struct kref *kref);
1525 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1526 {
1527 rbd_assert(obj_request != NULL);
1528 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1529 kref_read(&obj_request->kref));
1530 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1531 }
1532
1533 static void rbd_img_request_get(struct rbd_img_request *img_request)
1534 {
1535 dout("%s: img %p (was %d)\n", __func__, img_request,
1536 kref_read(&img_request->kref));
1537 kref_get(&img_request->kref);
1538 }
1539
1540 static bool img_request_child_test(struct rbd_img_request *img_request);
1541 static void rbd_parent_request_destroy(struct kref *kref);
1542 static void rbd_img_request_destroy(struct kref *kref);
1543 static void rbd_img_request_put(struct rbd_img_request *img_request)
1544 {
1545 rbd_assert(img_request != NULL);
1546 dout("%s: img %p (was %d)\n", __func__, img_request,
1547 kref_read(&img_request->kref));
1548 if (img_request_child_test(img_request))
1549 kref_put(&img_request->kref, rbd_parent_request_destroy);
1550 else
1551 kref_put(&img_request->kref, rbd_img_request_destroy);
1552 }
1553
1554 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1555 struct rbd_obj_request *obj_request)
1556 {
1557 rbd_assert(obj_request->img_request == NULL);
1558
1559 /* Image request now owns object's original reference */
1560 obj_request->img_request = img_request;
1561 obj_request->which = img_request->obj_request_count;
1562 rbd_assert(!obj_request_img_data_test(obj_request));
1563 obj_request_img_data_set(obj_request);
1564 rbd_assert(obj_request->which != BAD_WHICH);
1565 img_request->obj_request_count++;
1566 list_add_tail(&obj_request->links, &img_request->obj_requests);
1567 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1568 obj_request->which);
1569 }
1570
1571 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1572 struct rbd_obj_request *obj_request)
1573 {
1574 rbd_assert(obj_request->which != BAD_WHICH);
1575
1576 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1577 obj_request->which);
1578 list_del(&obj_request->links);
1579 rbd_assert(img_request->obj_request_count > 0);
1580 img_request->obj_request_count--;
1581 rbd_assert(obj_request->which == img_request->obj_request_count);
1582 obj_request->which = BAD_WHICH;
1583 rbd_assert(obj_request_img_data_test(obj_request));
1584 rbd_assert(obj_request->img_request == img_request);
1585 obj_request->img_request = NULL;
1586 obj_request->callback = NULL;
1587 rbd_obj_request_put(obj_request);
1588 }
1589
1590 static bool obj_request_type_valid(enum obj_request_type type)
1591 {
1592 switch (type) {
1593 case OBJ_REQUEST_NODATA:
1594 case OBJ_REQUEST_BIO:
1595 case OBJ_REQUEST_PAGES:
1596 return true;
1597 default:
1598 return false;
1599 }
1600 }
1601
1602 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1603
1604 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1605 {
1606 struct ceph_osd_request *osd_req = obj_request->osd_req;
1607
1608 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1609 obj_request, obj_request->object_no, obj_request->offset,
1610 obj_request->length, osd_req);
1611 if (obj_request_img_data_test(obj_request)) {
1612 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1613 rbd_img_request_get(obj_request->img_request);
1614 }
1615 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1616 }
1617
1618 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1619 {
1620
1621 dout("%s: img %p\n", __func__, img_request);
1622
1623 /*
1624 * If no error occurred, compute the aggregate transfer
1625 * count for the image request. We could instead use
1626 * atomic64_cmpxchg() to update it as each object request
1627 * completes; not clear which way is better off hand.
1628 */
1629 if (!img_request->result) {
1630 struct rbd_obj_request *obj_request;
1631 u64 xferred = 0;
1632
1633 for_each_obj_request(img_request, obj_request)
1634 xferred += obj_request->xferred;
1635 img_request->xferred = xferred;
1636 }
1637
1638 if (img_request->callback)
1639 img_request->callback(img_request);
1640 else
1641 rbd_img_request_put(img_request);
1642 }
1643
1644 /*
1645 * The default/initial value for all image request flags is 0. Each
1646 * is conditionally set to 1 at image request initialization time
1647 * and currently never change thereafter.
1648 */
1649 static void img_request_write_set(struct rbd_img_request *img_request)
1650 {
1651 set_bit(IMG_REQ_WRITE, &img_request->flags);
1652 smp_mb();
1653 }
1654
1655 static bool img_request_write_test(struct rbd_img_request *img_request)
1656 {
1657 smp_mb();
1658 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1659 }
1660
1661 /*
1662 * Set the discard flag when the img_request is an discard request
1663 */
1664 static void img_request_discard_set(struct rbd_img_request *img_request)
1665 {
1666 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1667 smp_mb();
1668 }
1669
1670 static bool img_request_discard_test(struct rbd_img_request *img_request)
1671 {
1672 smp_mb();
1673 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1674 }
1675
1676 static void img_request_child_set(struct rbd_img_request *img_request)
1677 {
1678 set_bit(IMG_REQ_CHILD, &img_request->flags);
1679 smp_mb();
1680 }
1681
1682 static void img_request_child_clear(struct rbd_img_request *img_request)
1683 {
1684 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1685 smp_mb();
1686 }
1687
1688 static bool img_request_child_test(struct rbd_img_request *img_request)
1689 {
1690 smp_mb();
1691 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1692 }
1693
1694 static void img_request_layered_set(struct rbd_img_request *img_request)
1695 {
1696 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1697 smp_mb();
1698 }
1699
1700 static void img_request_layered_clear(struct rbd_img_request *img_request)
1701 {
1702 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1703 smp_mb();
1704 }
1705
1706 static bool img_request_layered_test(struct rbd_img_request *img_request)
1707 {
1708 smp_mb();
1709 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1710 }
1711
1712 static enum obj_operation_type
1713 rbd_img_request_op_type(struct rbd_img_request *img_request)
1714 {
1715 if (img_request_write_test(img_request))
1716 return OBJ_OP_WRITE;
1717 else if (img_request_discard_test(img_request))
1718 return OBJ_OP_DISCARD;
1719 else
1720 return OBJ_OP_READ;
1721 }
1722
1723 static void
1724 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1725 {
1726 u64 xferred = obj_request->xferred;
1727 u64 length = obj_request->length;
1728
1729 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1730 obj_request, obj_request->img_request, obj_request->result,
1731 xferred, length);
1732 /*
1733 * ENOENT means a hole in the image. We zero-fill the entire
1734 * length of the request. A short read also implies zero-fill
1735 * to the end of the request. An error requires the whole
1736 * length of the request to be reported finished with an error
1737 * to the block layer. In each case we update the xferred
1738 * count to indicate the whole request was satisfied.
1739 */
1740 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1741 if (obj_request->result == -ENOENT) {
1742 if (obj_request->type == OBJ_REQUEST_BIO)
1743 zero_bio_chain(obj_request->bio_list, 0);
1744 else
1745 zero_pages(obj_request->pages, 0, length);
1746 obj_request->result = 0;
1747 } else if (xferred < length && !obj_request->result) {
1748 if (obj_request->type == OBJ_REQUEST_BIO)
1749 zero_bio_chain(obj_request->bio_list, xferred);
1750 else
1751 zero_pages(obj_request->pages, xferred, length);
1752 }
1753 obj_request->xferred = length;
1754 obj_request_done_set(obj_request);
1755 }
1756
1757 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1758 {
1759 dout("%s: obj %p cb %p\n", __func__, obj_request,
1760 obj_request->callback);
1761 if (obj_request->callback)
1762 obj_request->callback(obj_request);
1763 else
1764 complete_all(&obj_request->completion);
1765 }
1766
1767 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1768 {
1769 obj_request->result = err;
1770 obj_request->xferred = 0;
1771 /*
1772 * kludge - mirror rbd_obj_request_submit() to match a put in
1773 * rbd_img_obj_callback()
1774 */
1775 if (obj_request_img_data_test(obj_request)) {
1776 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1777 rbd_img_request_get(obj_request->img_request);
1778 }
1779 obj_request_done_set(obj_request);
1780 rbd_obj_request_complete(obj_request);
1781 }
1782
1783 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1784 {
1785 struct rbd_img_request *img_request = NULL;
1786 struct rbd_device *rbd_dev = NULL;
1787 bool layered = false;
1788
1789 if (obj_request_img_data_test(obj_request)) {
1790 img_request = obj_request->img_request;
1791 layered = img_request && img_request_layered_test(img_request);
1792 rbd_dev = img_request->rbd_dev;
1793 }
1794
1795 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1796 obj_request, img_request, obj_request->result,
1797 obj_request->xferred, obj_request->length);
1798 if (layered && obj_request->result == -ENOENT &&
1799 obj_request->img_offset < rbd_dev->parent_overlap)
1800 rbd_img_parent_read(obj_request);
1801 else if (img_request)
1802 rbd_img_obj_request_read_callback(obj_request);
1803 else
1804 obj_request_done_set(obj_request);
1805 }
1806
1807 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1808 {
1809 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1810 obj_request->result, obj_request->length);
1811 /*
1812 * There is no such thing as a successful short write. Set
1813 * it to our originally-requested length.
1814 */
1815 obj_request->xferred = obj_request->length;
1816 obj_request_done_set(obj_request);
1817 }
1818
1819 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1820 {
1821 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1822 obj_request->result, obj_request->length);
1823 /*
1824 * There is no such thing as a successful short discard. Set
1825 * it to our originally-requested length.
1826 */
1827 obj_request->xferred = obj_request->length;
1828 /* discarding a non-existent object is not a problem */
1829 if (obj_request->result == -ENOENT)
1830 obj_request->result = 0;
1831 obj_request_done_set(obj_request);
1832 }
1833
1834 /*
1835 * For a simple stat call there's nothing to do. We'll do more if
1836 * this is part of a write sequence for a layered image.
1837 */
1838 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1839 {
1840 dout("%s: obj %p\n", __func__, obj_request);
1841 obj_request_done_set(obj_request);
1842 }
1843
1844 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1845 {
1846 dout("%s: obj %p\n", __func__, obj_request);
1847
1848 if (obj_request_img_data_test(obj_request))
1849 rbd_osd_copyup_callback(obj_request);
1850 else
1851 obj_request_done_set(obj_request);
1852 }
1853
1854 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1855 {
1856 struct rbd_obj_request *obj_request = osd_req->r_priv;
1857 u16 opcode;
1858
1859 dout("%s: osd_req %p\n", __func__, osd_req);
1860 rbd_assert(osd_req == obj_request->osd_req);
1861 if (obj_request_img_data_test(obj_request)) {
1862 rbd_assert(obj_request->img_request);
1863 rbd_assert(obj_request->which != BAD_WHICH);
1864 } else {
1865 rbd_assert(obj_request->which == BAD_WHICH);
1866 }
1867
1868 if (osd_req->r_result < 0)
1869 obj_request->result = osd_req->r_result;
1870
1871 /*
1872 * We support a 64-bit length, but ultimately it has to be
1873 * passed to the block layer, which just supports a 32-bit
1874 * length field.
1875 */
1876 obj_request->xferred = osd_req->r_ops[0].outdata_len;
1877 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1878
1879 opcode = osd_req->r_ops[0].op;
1880 switch (opcode) {
1881 case CEPH_OSD_OP_READ:
1882 rbd_osd_read_callback(obj_request);
1883 break;
1884 case CEPH_OSD_OP_SETALLOCHINT:
1885 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1886 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1887 /* fall through */
1888 case CEPH_OSD_OP_WRITE:
1889 case CEPH_OSD_OP_WRITEFULL:
1890 rbd_osd_write_callback(obj_request);
1891 break;
1892 case CEPH_OSD_OP_STAT:
1893 rbd_osd_stat_callback(obj_request);
1894 break;
1895 case CEPH_OSD_OP_DELETE:
1896 case CEPH_OSD_OP_TRUNCATE:
1897 case CEPH_OSD_OP_ZERO:
1898 rbd_osd_discard_callback(obj_request);
1899 break;
1900 case CEPH_OSD_OP_CALL:
1901 rbd_osd_call_callback(obj_request);
1902 break;
1903 default:
1904 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d",
1905 obj_request->object_no, opcode);
1906 break;
1907 }
1908
1909 if (obj_request_done_test(obj_request))
1910 rbd_obj_request_complete(obj_request);
1911 }
1912
1913 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1914 {
1915 struct ceph_osd_request *osd_req = obj_request->osd_req;
1916
1917 rbd_assert(obj_request_img_data_test(obj_request));
1918 osd_req->r_snapid = obj_request->img_request->snap_id;
1919 }
1920
1921 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1922 {
1923 struct ceph_osd_request *osd_req = obj_request->osd_req;
1924
1925 osd_req->r_mtime = CURRENT_TIME;
1926 osd_req->r_data_offset = obj_request->offset;
1927 }
1928
1929 static struct ceph_osd_request *
1930 __rbd_osd_req_create(struct rbd_device *rbd_dev,
1931 struct ceph_snap_context *snapc,
1932 int num_ops, unsigned int flags,
1933 struct rbd_obj_request *obj_request)
1934 {
1935 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1936 struct ceph_osd_request *req;
1937 const char *name_format = rbd_dev->image_format == 1 ?
1938 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1939
1940 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1941 if (!req)
1942 return NULL;
1943
1944 req->r_flags = flags;
1945 req->r_callback = rbd_osd_req_callback;
1946 req->r_priv = obj_request;
1947
1948 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1949 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1950 rbd_dev->header.object_prefix, obj_request->object_no))
1951 goto err_req;
1952
1953 if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1954 goto err_req;
1955
1956 return req;
1957
1958 err_req:
1959 ceph_osdc_put_request(req);
1960 return NULL;
1961 }
1962
1963 /*
1964 * Create an osd request. A read request has one osd op (read).
1965 * A write request has either one (watch) or two (hint+write) osd ops.
1966 * (All rbd data writes are prefixed with an allocation hint op, but
1967 * technically osd watch is a write request, hence this distinction.)
1968 */
1969 static struct ceph_osd_request *rbd_osd_req_create(
1970 struct rbd_device *rbd_dev,
1971 enum obj_operation_type op_type,
1972 unsigned int num_ops,
1973 struct rbd_obj_request *obj_request)
1974 {
1975 struct ceph_snap_context *snapc = NULL;
1976
1977 if (obj_request_img_data_test(obj_request) &&
1978 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1979 struct rbd_img_request *img_request = obj_request->img_request;
1980 if (op_type == OBJ_OP_WRITE) {
1981 rbd_assert(img_request_write_test(img_request));
1982 } else {
1983 rbd_assert(img_request_discard_test(img_request));
1984 }
1985 snapc = img_request->snapc;
1986 }
1987
1988 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1989
1990 return __rbd_osd_req_create(rbd_dev, snapc, num_ops,
1991 (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ?
1992 CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request);
1993 }
1994
1995 /*
1996 * Create a copyup osd request based on the information in the object
1997 * request supplied. A copyup request has two or three osd ops, a
1998 * copyup method call, potentially a hint op, and a write or truncate
1999 * or zero op.
2000 */
2001 static struct ceph_osd_request *
2002 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2003 {
2004 struct rbd_img_request *img_request;
2005 int num_osd_ops = 3;
2006
2007 rbd_assert(obj_request_img_data_test(obj_request));
2008 img_request = obj_request->img_request;
2009 rbd_assert(img_request);
2010 rbd_assert(img_request_write_test(img_request) ||
2011 img_request_discard_test(img_request));
2012
2013 if (img_request_discard_test(img_request))
2014 num_osd_ops = 2;
2015
2016 return __rbd_osd_req_create(img_request->rbd_dev,
2017 img_request->snapc, num_osd_ops,
2018 CEPH_OSD_FLAG_WRITE, obj_request);
2019 }
2020
2021 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2022 {
2023 ceph_osdc_put_request(osd_req);
2024 }
2025
2026 static struct rbd_obj_request *
2027 rbd_obj_request_create(enum obj_request_type type)
2028 {
2029 struct rbd_obj_request *obj_request;
2030
2031 rbd_assert(obj_request_type_valid(type));
2032
2033 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2034 if (!obj_request)
2035 return NULL;
2036
2037 obj_request->which = BAD_WHICH;
2038 obj_request->type = type;
2039 INIT_LIST_HEAD(&obj_request->links);
2040 init_completion(&obj_request->completion);
2041 kref_init(&obj_request->kref);
2042
2043 dout("%s %p\n", __func__, obj_request);
2044 return obj_request;
2045 }
2046
2047 static void rbd_obj_request_destroy(struct kref *kref)
2048 {
2049 struct rbd_obj_request *obj_request;
2050
2051 obj_request = container_of(kref, struct rbd_obj_request, kref);
2052
2053 dout("%s: obj %p\n", __func__, obj_request);
2054
2055 rbd_assert(obj_request->img_request == NULL);
2056 rbd_assert(obj_request->which == BAD_WHICH);
2057
2058 if (obj_request->osd_req)
2059 rbd_osd_req_destroy(obj_request->osd_req);
2060
2061 rbd_assert(obj_request_type_valid(obj_request->type));
2062 switch (obj_request->type) {
2063 case OBJ_REQUEST_NODATA:
2064 break; /* Nothing to do */
2065 case OBJ_REQUEST_BIO:
2066 if (obj_request->bio_list)
2067 bio_chain_put(obj_request->bio_list);
2068 break;
2069 case OBJ_REQUEST_PAGES:
2070 /* img_data requests don't own their page array */
2071 if (obj_request->pages &&
2072 !obj_request_img_data_test(obj_request))
2073 ceph_release_page_vector(obj_request->pages,
2074 obj_request->page_count);
2075 break;
2076 }
2077
2078 kmem_cache_free(rbd_obj_request_cache, obj_request);
2079 }
2080
2081 /* It's OK to call this for a device with no parent */
2082
2083 static void rbd_spec_put(struct rbd_spec *spec);
2084 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2085 {
2086 rbd_dev_remove_parent(rbd_dev);
2087 rbd_spec_put(rbd_dev->parent_spec);
2088 rbd_dev->parent_spec = NULL;
2089 rbd_dev->parent_overlap = 0;
2090 }
2091
2092 /*
2093 * Parent image reference counting is used to determine when an
2094 * image's parent fields can be safely torn down--after there are no
2095 * more in-flight requests to the parent image. When the last
2096 * reference is dropped, cleaning them up is safe.
2097 */
2098 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2099 {
2100 int counter;
2101
2102 if (!rbd_dev->parent_spec)
2103 return;
2104
2105 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2106 if (counter > 0)
2107 return;
2108
2109 /* Last reference; clean up parent data structures */
2110
2111 if (!counter)
2112 rbd_dev_unparent(rbd_dev);
2113 else
2114 rbd_warn(rbd_dev, "parent reference underflow");
2115 }
2116
2117 /*
2118 * If an image has a non-zero parent overlap, get a reference to its
2119 * parent.
2120 *
2121 * Returns true if the rbd device has a parent with a non-zero
2122 * overlap and a reference for it was successfully taken, or
2123 * false otherwise.
2124 */
2125 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2126 {
2127 int counter = 0;
2128
2129 if (!rbd_dev->parent_spec)
2130 return false;
2131
2132 down_read(&rbd_dev->header_rwsem);
2133 if (rbd_dev->parent_overlap)
2134 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2135 up_read(&rbd_dev->header_rwsem);
2136
2137 if (counter < 0)
2138 rbd_warn(rbd_dev, "parent reference overflow");
2139
2140 return counter > 0;
2141 }
2142
2143 /*
2144 * Caller is responsible for filling in the list of object requests
2145 * that comprises the image request, and the Linux request pointer
2146 * (if there is one).
2147 */
2148 static struct rbd_img_request *rbd_img_request_create(
2149 struct rbd_device *rbd_dev,
2150 u64 offset, u64 length,
2151 enum obj_operation_type op_type,
2152 struct ceph_snap_context *snapc)
2153 {
2154 struct rbd_img_request *img_request;
2155
2156 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2157 if (!img_request)
2158 return NULL;
2159
2160 img_request->rq = NULL;
2161 img_request->rbd_dev = rbd_dev;
2162 img_request->offset = offset;
2163 img_request->length = length;
2164 img_request->flags = 0;
2165 if (op_type == OBJ_OP_DISCARD) {
2166 img_request_discard_set(img_request);
2167 img_request->snapc = snapc;
2168 } else if (op_type == OBJ_OP_WRITE) {
2169 img_request_write_set(img_request);
2170 img_request->snapc = snapc;
2171 } else {
2172 img_request->snap_id = rbd_dev->spec->snap_id;
2173 }
2174 if (rbd_dev_parent_get(rbd_dev))
2175 img_request_layered_set(img_request);
2176 spin_lock_init(&img_request->completion_lock);
2177 img_request->next_completion = 0;
2178 img_request->callback = NULL;
2179 img_request->result = 0;
2180 img_request->obj_request_count = 0;
2181 INIT_LIST_HEAD(&img_request->obj_requests);
2182 kref_init(&img_request->kref);
2183
2184 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2185 obj_op_name(op_type), offset, length, img_request);
2186
2187 return img_request;
2188 }
2189
2190 static void rbd_img_request_destroy(struct kref *kref)
2191 {
2192 struct rbd_img_request *img_request;
2193 struct rbd_obj_request *obj_request;
2194 struct rbd_obj_request *next_obj_request;
2195
2196 img_request = container_of(kref, struct rbd_img_request, kref);
2197
2198 dout("%s: img %p\n", __func__, img_request);
2199
2200 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2201 rbd_img_obj_request_del(img_request, obj_request);
2202 rbd_assert(img_request->obj_request_count == 0);
2203
2204 if (img_request_layered_test(img_request)) {
2205 img_request_layered_clear(img_request);
2206 rbd_dev_parent_put(img_request->rbd_dev);
2207 }
2208
2209 if (img_request_write_test(img_request) ||
2210 img_request_discard_test(img_request))
2211 ceph_put_snap_context(img_request->snapc);
2212
2213 kmem_cache_free(rbd_img_request_cache, img_request);
2214 }
2215
2216 static struct rbd_img_request *rbd_parent_request_create(
2217 struct rbd_obj_request *obj_request,
2218 u64 img_offset, u64 length)
2219 {
2220 struct rbd_img_request *parent_request;
2221 struct rbd_device *rbd_dev;
2222
2223 rbd_assert(obj_request->img_request);
2224 rbd_dev = obj_request->img_request->rbd_dev;
2225
2226 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2227 length, OBJ_OP_READ, NULL);
2228 if (!parent_request)
2229 return NULL;
2230
2231 img_request_child_set(parent_request);
2232 rbd_obj_request_get(obj_request);
2233 parent_request->obj_request = obj_request;
2234
2235 return parent_request;
2236 }
2237
2238 static void rbd_parent_request_destroy(struct kref *kref)
2239 {
2240 struct rbd_img_request *parent_request;
2241 struct rbd_obj_request *orig_request;
2242
2243 parent_request = container_of(kref, struct rbd_img_request, kref);
2244 orig_request = parent_request->obj_request;
2245
2246 parent_request->obj_request = NULL;
2247 rbd_obj_request_put(orig_request);
2248 img_request_child_clear(parent_request);
2249
2250 rbd_img_request_destroy(kref);
2251 }
2252
2253 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2254 {
2255 struct rbd_img_request *img_request;
2256 unsigned int xferred;
2257 int result;
2258 bool more;
2259
2260 rbd_assert(obj_request_img_data_test(obj_request));
2261 img_request = obj_request->img_request;
2262
2263 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2264 xferred = (unsigned int)obj_request->xferred;
2265 result = obj_request->result;
2266 if (result) {
2267 struct rbd_device *rbd_dev = img_request->rbd_dev;
2268 enum obj_operation_type op_type;
2269
2270 if (img_request_discard_test(img_request))
2271 op_type = OBJ_OP_DISCARD;
2272 else if (img_request_write_test(img_request))
2273 op_type = OBJ_OP_WRITE;
2274 else
2275 op_type = OBJ_OP_READ;
2276
2277 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2278 obj_op_name(op_type), obj_request->length,
2279 obj_request->img_offset, obj_request->offset);
2280 rbd_warn(rbd_dev, " result %d xferred %x",
2281 result, xferred);
2282 if (!img_request->result)
2283 img_request->result = result;
2284 /*
2285 * Need to end I/O on the entire obj_request worth of
2286 * bytes in case of error.
2287 */
2288 xferred = obj_request->length;
2289 }
2290
2291 if (img_request_child_test(img_request)) {
2292 rbd_assert(img_request->obj_request != NULL);
2293 more = obj_request->which < img_request->obj_request_count - 1;
2294 } else {
2295 rbd_assert(img_request->rq != NULL);
2296
2297 more = blk_update_request(img_request->rq, result, xferred);
2298 if (!more)
2299 __blk_mq_end_request(img_request->rq, result);
2300 }
2301
2302 return more;
2303 }
2304
2305 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2306 {
2307 struct rbd_img_request *img_request;
2308 u32 which = obj_request->which;
2309 bool more = true;
2310
2311 rbd_assert(obj_request_img_data_test(obj_request));
2312 img_request = obj_request->img_request;
2313
2314 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2315 rbd_assert(img_request != NULL);
2316 rbd_assert(img_request->obj_request_count > 0);
2317 rbd_assert(which != BAD_WHICH);
2318 rbd_assert(which < img_request->obj_request_count);
2319
2320 spin_lock_irq(&img_request->completion_lock);
2321 if (which != img_request->next_completion)
2322 goto out;
2323
2324 for_each_obj_request_from(img_request, obj_request) {
2325 rbd_assert(more);
2326 rbd_assert(which < img_request->obj_request_count);
2327
2328 if (!obj_request_done_test(obj_request))
2329 break;
2330 more = rbd_img_obj_end_request(obj_request);
2331 which++;
2332 }
2333
2334 rbd_assert(more ^ (which == img_request->obj_request_count));
2335 img_request->next_completion = which;
2336 out:
2337 spin_unlock_irq(&img_request->completion_lock);
2338 rbd_img_request_put(img_request);
2339
2340 if (!more)
2341 rbd_img_request_complete(img_request);
2342 }
2343
2344 /*
2345 * Add individual osd ops to the given ceph_osd_request and prepare
2346 * them for submission. num_ops is the current number of
2347 * osd operations already to the object request.
2348 */
2349 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2350 struct ceph_osd_request *osd_request,
2351 enum obj_operation_type op_type,
2352 unsigned int num_ops)
2353 {
2354 struct rbd_img_request *img_request = obj_request->img_request;
2355 struct rbd_device *rbd_dev = img_request->rbd_dev;
2356 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2357 u64 offset = obj_request->offset;
2358 u64 length = obj_request->length;
2359 u64 img_end;
2360 u16 opcode;
2361
2362 if (op_type == OBJ_OP_DISCARD) {
2363 if (!offset && length == object_size &&
2364 (!img_request_layered_test(img_request) ||
2365 !obj_request_overlaps_parent(obj_request))) {
2366 opcode = CEPH_OSD_OP_DELETE;
2367 } else if ((offset + length == object_size)) {
2368 opcode = CEPH_OSD_OP_TRUNCATE;
2369 } else {
2370 down_read(&rbd_dev->header_rwsem);
2371 img_end = rbd_dev->header.image_size;
2372 up_read(&rbd_dev->header_rwsem);
2373
2374 if (obj_request->img_offset + length == img_end)
2375 opcode = CEPH_OSD_OP_TRUNCATE;
2376 else
2377 opcode = CEPH_OSD_OP_ZERO;
2378 }
2379 } else if (op_type == OBJ_OP_WRITE) {
2380 if (!offset && length == object_size)
2381 opcode = CEPH_OSD_OP_WRITEFULL;
2382 else
2383 opcode = CEPH_OSD_OP_WRITE;
2384 osd_req_op_alloc_hint_init(osd_request, num_ops,
2385 object_size, object_size);
2386 num_ops++;
2387 } else {
2388 opcode = CEPH_OSD_OP_READ;
2389 }
2390
2391 if (opcode == CEPH_OSD_OP_DELETE)
2392 osd_req_op_init(osd_request, num_ops, opcode, 0);
2393 else
2394 osd_req_op_extent_init(osd_request, num_ops, opcode,
2395 offset, length, 0, 0);
2396
2397 if (obj_request->type == OBJ_REQUEST_BIO)
2398 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2399 obj_request->bio_list, length);
2400 else if (obj_request->type == OBJ_REQUEST_PAGES)
2401 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2402 obj_request->pages, length,
2403 offset & ~PAGE_MASK, false, false);
2404
2405 /* Discards are also writes */
2406 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2407 rbd_osd_req_format_write(obj_request);
2408 else
2409 rbd_osd_req_format_read(obj_request);
2410 }
2411
2412 /*
2413 * Split up an image request into one or more object requests, each
2414 * to a different object. The "type" parameter indicates whether
2415 * "data_desc" is the pointer to the head of a list of bio
2416 * structures, or the base of a page array. In either case this
2417 * function assumes data_desc describes memory sufficient to hold
2418 * all data described by the image request.
2419 */
2420 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2421 enum obj_request_type type,
2422 void *data_desc)
2423 {
2424 struct rbd_device *rbd_dev = img_request->rbd_dev;
2425 struct rbd_obj_request *obj_request = NULL;
2426 struct rbd_obj_request *next_obj_request;
2427 struct bio *bio_list = NULL;
2428 unsigned int bio_offset = 0;
2429 struct page **pages = NULL;
2430 enum obj_operation_type op_type;
2431 u64 img_offset;
2432 u64 resid;
2433
2434 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2435 (int)type, data_desc);
2436
2437 img_offset = img_request->offset;
2438 resid = img_request->length;
2439 rbd_assert(resid > 0);
2440 op_type = rbd_img_request_op_type(img_request);
2441
2442 if (type == OBJ_REQUEST_BIO) {
2443 bio_list = data_desc;
2444 rbd_assert(img_offset ==
2445 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2446 } else if (type == OBJ_REQUEST_PAGES) {
2447 pages = data_desc;
2448 }
2449
2450 while (resid) {
2451 struct ceph_osd_request *osd_req;
2452 u64 object_no = img_offset >> rbd_dev->header.obj_order;
2453 u64 offset = rbd_segment_offset(rbd_dev, img_offset);
2454 u64 length = rbd_segment_length(rbd_dev, img_offset, resid);
2455
2456 obj_request = rbd_obj_request_create(type);
2457 if (!obj_request)
2458 goto out_unwind;
2459
2460 obj_request->object_no = object_no;
2461 obj_request->offset = offset;
2462 obj_request->length = length;
2463
2464 /*
2465 * set obj_request->img_request before creating the
2466 * osd_request so that it gets the right snapc
2467 */
2468 rbd_img_obj_request_add(img_request, obj_request);
2469
2470 if (type == OBJ_REQUEST_BIO) {
2471 unsigned int clone_size;
2472
2473 rbd_assert(length <= (u64)UINT_MAX);
2474 clone_size = (unsigned int)length;
2475 obj_request->bio_list =
2476 bio_chain_clone_range(&bio_list,
2477 &bio_offset,
2478 clone_size,
2479 GFP_NOIO);
2480 if (!obj_request->bio_list)
2481 goto out_unwind;
2482 } else if (type == OBJ_REQUEST_PAGES) {
2483 unsigned int page_count;
2484
2485 obj_request->pages = pages;
2486 page_count = (u32)calc_pages_for(offset, length);
2487 obj_request->page_count = page_count;
2488 if ((offset + length) & ~PAGE_MASK)
2489 page_count--; /* more on last page */
2490 pages += page_count;
2491 }
2492
2493 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2494 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2495 obj_request);
2496 if (!osd_req)
2497 goto out_unwind;
2498
2499 obj_request->osd_req = osd_req;
2500 obj_request->callback = rbd_img_obj_callback;
2501 obj_request->img_offset = img_offset;
2502
2503 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2504
2505 img_offset += length;
2506 resid -= length;
2507 }
2508
2509 return 0;
2510
2511 out_unwind:
2512 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2513 rbd_img_obj_request_del(img_request, obj_request);
2514
2515 return -ENOMEM;
2516 }
2517
2518 static void
2519 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2520 {
2521 struct rbd_img_request *img_request;
2522 struct rbd_device *rbd_dev;
2523 struct page **pages;
2524 u32 page_count;
2525
2526 dout("%s: obj %p\n", __func__, obj_request);
2527
2528 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2529 obj_request->type == OBJ_REQUEST_NODATA);
2530 rbd_assert(obj_request_img_data_test(obj_request));
2531 img_request = obj_request->img_request;
2532 rbd_assert(img_request);
2533
2534 rbd_dev = img_request->rbd_dev;
2535 rbd_assert(rbd_dev);
2536
2537 pages = obj_request->copyup_pages;
2538 rbd_assert(pages != NULL);
2539 obj_request->copyup_pages = NULL;
2540 page_count = obj_request->copyup_page_count;
2541 rbd_assert(page_count);
2542 obj_request->copyup_page_count = 0;
2543 ceph_release_page_vector(pages, page_count);
2544
2545 /*
2546 * We want the transfer count to reflect the size of the
2547 * original write request. There is no such thing as a
2548 * successful short write, so if the request was successful
2549 * we can just set it to the originally-requested length.
2550 */
2551 if (!obj_request->result)
2552 obj_request->xferred = obj_request->length;
2553
2554 obj_request_done_set(obj_request);
2555 }
2556
2557 static void
2558 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2559 {
2560 struct rbd_obj_request *orig_request;
2561 struct ceph_osd_request *osd_req;
2562 struct rbd_device *rbd_dev;
2563 struct page **pages;
2564 enum obj_operation_type op_type;
2565 u32 page_count;
2566 int img_result;
2567 u64 parent_length;
2568
2569 rbd_assert(img_request_child_test(img_request));
2570
2571 /* First get what we need from the image request */
2572
2573 pages = img_request->copyup_pages;
2574 rbd_assert(pages != NULL);
2575 img_request->copyup_pages = NULL;
2576 page_count = img_request->copyup_page_count;
2577 rbd_assert(page_count);
2578 img_request->copyup_page_count = 0;
2579
2580 orig_request = img_request->obj_request;
2581 rbd_assert(orig_request != NULL);
2582 rbd_assert(obj_request_type_valid(orig_request->type));
2583 img_result = img_request->result;
2584 parent_length = img_request->length;
2585 rbd_assert(img_result || parent_length == img_request->xferred);
2586 rbd_img_request_put(img_request);
2587
2588 rbd_assert(orig_request->img_request);
2589 rbd_dev = orig_request->img_request->rbd_dev;
2590 rbd_assert(rbd_dev);
2591
2592 /*
2593 * If the overlap has become 0 (most likely because the
2594 * image has been flattened) we need to free the pages
2595 * and re-submit the original write request.
2596 */
2597 if (!rbd_dev->parent_overlap) {
2598 ceph_release_page_vector(pages, page_count);
2599 rbd_obj_request_submit(orig_request);
2600 return;
2601 }
2602
2603 if (img_result)
2604 goto out_err;
2605
2606 /*
2607 * The original osd request is of no use to use any more.
2608 * We need a new one that can hold the three ops in a copyup
2609 * request. Allocate the new copyup osd request for the
2610 * original request, and release the old one.
2611 */
2612 img_result = -ENOMEM;
2613 osd_req = rbd_osd_req_create_copyup(orig_request);
2614 if (!osd_req)
2615 goto out_err;
2616 rbd_osd_req_destroy(orig_request->osd_req);
2617 orig_request->osd_req = osd_req;
2618 orig_request->copyup_pages = pages;
2619 orig_request->copyup_page_count = page_count;
2620
2621 /* Initialize the copyup op */
2622
2623 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2624 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2625 false, false);
2626
2627 /* Add the other op(s) */
2628
2629 op_type = rbd_img_request_op_type(orig_request->img_request);
2630 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2631
2632 /* All set, send it off. */
2633
2634 rbd_obj_request_submit(orig_request);
2635 return;
2636
2637 out_err:
2638 ceph_release_page_vector(pages, page_count);
2639 rbd_obj_request_error(orig_request, img_result);
2640 }
2641
2642 /*
2643 * Read from the parent image the range of data that covers the
2644 * entire target of the given object request. This is used for
2645 * satisfying a layered image write request when the target of an
2646 * object request from the image request does not exist.
2647 *
2648 * A page array big enough to hold the returned data is allocated
2649 * and supplied to rbd_img_request_fill() as the "data descriptor."
2650 * When the read completes, this page array will be transferred to
2651 * the original object request for the copyup operation.
2652 *
2653 * If an error occurs, it is recorded as the result of the original
2654 * object request in rbd_img_obj_exists_callback().
2655 */
2656 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2657 {
2658 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2659 struct rbd_img_request *parent_request = NULL;
2660 u64 img_offset;
2661 u64 length;
2662 struct page **pages = NULL;
2663 u32 page_count;
2664 int result;
2665
2666 rbd_assert(rbd_dev->parent != NULL);
2667
2668 /*
2669 * Determine the byte range covered by the object in the
2670 * child image to which the original request was to be sent.
2671 */
2672 img_offset = obj_request->img_offset - obj_request->offset;
2673 length = rbd_obj_bytes(&rbd_dev->header);
2674
2675 /*
2676 * There is no defined parent data beyond the parent
2677 * overlap, so limit what we read at that boundary if
2678 * necessary.
2679 */
2680 if (img_offset + length > rbd_dev->parent_overlap) {
2681 rbd_assert(img_offset < rbd_dev->parent_overlap);
2682 length = rbd_dev->parent_overlap - img_offset;
2683 }
2684
2685 /*
2686 * Allocate a page array big enough to receive the data read
2687 * from the parent.
2688 */
2689 page_count = (u32)calc_pages_for(0, length);
2690 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2691 if (IS_ERR(pages)) {
2692 result = PTR_ERR(pages);
2693 pages = NULL;
2694 goto out_err;
2695 }
2696
2697 result = -ENOMEM;
2698 parent_request = rbd_parent_request_create(obj_request,
2699 img_offset, length);
2700 if (!parent_request)
2701 goto out_err;
2702
2703 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2704 if (result)
2705 goto out_err;
2706
2707 parent_request->copyup_pages = pages;
2708 parent_request->copyup_page_count = page_count;
2709 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2710
2711 result = rbd_img_request_submit(parent_request);
2712 if (!result)
2713 return 0;
2714
2715 parent_request->copyup_pages = NULL;
2716 parent_request->copyup_page_count = 0;
2717 parent_request->obj_request = NULL;
2718 rbd_obj_request_put(obj_request);
2719 out_err:
2720 if (pages)
2721 ceph_release_page_vector(pages, page_count);
2722 if (parent_request)
2723 rbd_img_request_put(parent_request);
2724 return result;
2725 }
2726
2727 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2728 {
2729 struct rbd_obj_request *orig_request;
2730 struct rbd_device *rbd_dev;
2731 int result;
2732
2733 rbd_assert(!obj_request_img_data_test(obj_request));
2734
2735 /*
2736 * All we need from the object request is the original
2737 * request and the result of the STAT op. Grab those, then
2738 * we're done with the request.
2739 */
2740 orig_request = obj_request->obj_request;
2741 obj_request->obj_request = NULL;
2742 rbd_obj_request_put(orig_request);
2743 rbd_assert(orig_request);
2744 rbd_assert(orig_request->img_request);
2745
2746 result = obj_request->result;
2747 obj_request->result = 0;
2748
2749 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2750 obj_request, orig_request, result,
2751 obj_request->xferred, obj_request->length);
2752 rbd_obj_request_put(obj_request);
2753
2754 /*
2755 * If the overlap has become 0 (most likely because the
2756 * image has been flattened) we need to re-submit the
2757 * original request.
2758 */
2759 rbd_dev = orig_request->img_request->rbd_dev;
2760 if (!rbd_dev->parent_overlap) {
2761 rbd_obj_request_submit(orig_request);
2762 return;
2763 }
2764
2765 /*
2766 * Our only purpose here is to determine whether the object
2767 * exists, and we don't want to treat the non-existence as
2768 * an error. If something else comes back, transfer the
2769 * error to the original request and complete it now.
2770 */
2771 if (!result) {
2772 obj_request_existence_set(orig_request, true);
2773 } else if (result == -ENOENT) {
2774 obj_request_existence_set(orig_request, false);
2775 } else {
2776 goto fail_orig_request;
2777 }
2778
2779 /*
2780 * Resubmit the original request now that we have recorded
2781 * whether the target object exists.
2782 */
2783 result = rbd_img_obj_request_submit(orig_request);
2784 if (result)
2785 goto fail_orig_request;
2786
2787 return;
2788
2789 fail_orig_request:
2790 rbd_obj_request_error(orig_request, result);
2791 }
2792
2793 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2794 {
2795 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2796 struct rbd_obj_request *stat_request;
2797 struct page **pages;
2798 u32 page_count;
2799 size_t size;
2800 int ret;
2801
2802 stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES);
2803 if (!stat_request)
2804 return -ENOMEM;
2805
2806 stat_request->object_no = obj_request->object_no;
2807
2808 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2809 stat_request);
2810 if (!stat_request->osd_req) {
2811 ret = -ENOMEM;
2812 goto fail_stat_request;
2813 }
2814
2815 /*
2816 * The response data for a STAT call consists of:
2817 * le64 length;
2818 * struct {
2819 * le32 tv_sec;
2820 * le32 tv_nsec;
2821 * } mtime;
2822 */
2823 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2824 page_count = (u32)calc_pages_for(0, size);
2825 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2826 if (IS_ERR(pages)) {
2827 ret = PTR_ERR(pages);
2828 goto fail_stat_request;
2829 }
2830
2831 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2832 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2833 false, false);
2834
2835 rbd_obj_request_get(obj_request);
2836 stat_request->obj_request = obj_request;
2837 stat_request->pages = pages;
2838 stat_request->page_count = page_count;
2839 stat_request->callback = rbd_img_obj_exists_callback;
2840
2841 rbd_obj_request_submit(stat_request);
2842 return 0;
2843
2844 fail_stat_request:
2845 rbd_obj_request_put(stat_request);
2846 return ret;
2847 }
2848
2849 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2850 {
2851 struct rbd_img_request *img_request = obj_request->img_request;
2852 struct rbd_device *rbd_dev = img_request->rbd_dev;
2853
2854 /* Reads */
2855 if (!img_request_write_test(img_request) &&
2856 !img_request_discard_test(img_request))
2857 return true;
2858
2859 /* Non-layered writes */
2860 if (!img_request_layered_test(img_request))
2861 return true;
2862
2863 /*
2864 * Layered writes outside of the parent overlap range don't
2865 * share any data with the parent.
2866 */
2867 if (!obj_request_overlaps_parent(obj_request))
2868 return true;
2869
2870 /*
2871 * Entire-object layered writes - we will overwrite whatever
2872 * parent data there is anyway.
2873 */
2874 if (!obj_request->offset &&
2875 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2876 return true;
2877
2878 /*
2879 * If the object is known to already exist, its parent data has
2880 * already been copied.
2881 */
2882 if (obj_request_known_test(obj_request) &&
2883 obj_request_exists_test(obj_request))
2884 return true;
2885
2886 return false;
2887 }
2888
2889 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2890 {
2891 rbd_assert(obj_request_img_data_test(obj_request));
2892 rbd_assert(obj_request_type_valid(obj_request->type));
2893 rbd_assert(obj_request->img_request);
2894
2895 if (img_obj_request_simple(obj_request)) {
2896 rbd_obj_request_submit(obj_request);
2897 return 0;
2898 }
2899
2900 /*
2901 * It's a layered write. The target object might exist but
2902 * we may not know that yet. If we know it doesn't exist,
2903 * start by reading the data for the full target object from
2904 * the parent so we can use it for a copyup to the target.
2905 */
2906 if (obj_request_known_test(obj_request))
2907 return rbd_img_obj_parent_read_full(obj_request);
2908
2909 /* We don't know whether the target exists. Go find out. */
2910
2911 return rbd_img_obj_exists_submit(obj_request);
2912 }
2913
2914 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2915 {
2916 struct rbd_obj_request *obj_request;
2917 struct rbd_obj_request *next_obj_request;
2918 int ret = 0;
2919
2920 dout("%s: img %p\n", __func__, img_request);
2921
2922 rbd_img_request_get(img_request);
2923 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2924 ret = rbd_img_obj_request_submit(obj_request);
2925 if (ret)
2926 goto out_put_ireq;
2927 }
2928
2929 out_put_ireq:
2930 rbd_img_request_put(img_request);
2931 return ret;
2932 }
2933
2934 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2935 {
2936 struct rbd_obj_request *obj_request;
2937 struct rbd_device *rbd_dev;
2938 u64 obj_end;
2939 u64 img_xferred;
2940 int img_result;
2941
2942 rbd_assert(img_request_child_test(img_request));
2943
2944 /* First get what we need from the image request and release it */
2945
2946 obj_request = img_request->obj_request;
2947 img_xferred = img_request->xferred;
2948 img_result = img_request->result;
2949 rbd_img_request_put(img_request);
2950
2951 /*
2952 * If the overlap has become 0 (most likely because the
2953 * image has been flattened) we need to re-submit the
2954 * original request.
2955 */
2956 rbd_assert(obj_request);
2957 rbd_assert(obj_request->img_request);
2958 rbd_dev = obj_request->img_request->rbd_dev;
2959 if (!rbd_dev->parent_overlap) {
2960 rbd_obj_request_submit(obj_request);
2961 return;
2962 }
2963
2964 obj_request->result = img_result;
2965 if (obj_request->result)
2966 goto out;
2967
2968 /*
2969 * We need to zero anything beyond the parent overlap
2970 * boundary. Since rbd_img_obj_request_read_callback()
2971 * will zero anything beyond the end of a short read, an
2972 * easy way to do this is to pretend the data from the
2973 * parent came up short--ending at the overlap boundary.
2974 */
2975 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2976 obj_end = obj_request->img_offset + obj_request->length;
2977 if (obj_end > rbd_dev->parent_overlap) {
2978 u64 xferred = 0;
2979
2980 if (obj_request->img_offset < rbd_dev->parent_overlap)
2981 xferred = rbd_dev->parent_overlap -
2982 obj_request->img_offset;
2983
2984 obj_request->xferred = min(img_xferred, xferred);
2985 } else {
2986 obj_request->xferred = img_xferred;
2987 }
2988 out:
2989 rbd_img_obj_request_read_callback(obj_request);
2990 rbd_obj_request_complete(obj_request);
2991 }
2992
2993 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2994 {
2995 struct rbd_img_request *img_request;
2996 int result;
2997
2998 rbd_assert(obj_request_img_data_test(obj_request));
2999 rbd_assert(obj_request->img_request != NULL);
3000 rbd_assert(obj_request->result == (s32) -ENOENT);
3001 rbd_assert(obj_request_type_valid(obj_request->type));
3002
3003 /* rbd_read_finish(obj_request, obj_request->length); */
3004 img_request = rbd_parent_request_create(obj_request,
3005 obj_request->img_offset,
3006 obj_request->length);
3007 result = -ENOMEM;
3008 if (!img_request)
3009 goto out_err;
3010
3011 if (obj_request->type == OBJ_REQUEST_BIO)
3012 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3013 obj_request->bio_list);
3014 else
3015 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3016 obj_request->pages);
3017 if (result)
3018 goto out_err;
3019
3020 img_request->callback = rbd_img_parent_read_callback;
3021 result = rbd_img_request_submit(img_request);
3022 if (result)
3023 goto out_err;
3024
3025 return;
3026 out_err:
3027 if (img_request)
3028 rbd_img_request_put(img_request);
3029 obj_request->result = result;
3030 obj_request->xferred = 0;
3031 obj_request_done_set(obj_request);
3032 }
3033
3034 static const struct rbd_client_id rbd_empty_cid;
3035
3036 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3037 const struct rbd_client_id *rhs)
3038 {
3039 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3040 }
3041
3042 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3043 {
3044 struct rbd_client_id cid;
3045
3046 mutex_lock(&rbd_dev->watch_mutex);
3047 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3048 cid.handle = rbd_dev->watch_cookie;
3049 mutex_unlock(&rbd_dev->watch_mutex);
3050 return cid;
3051 }
3052
3053 /*
3054 * lock_rwsem must be held for write
3055 */
3056 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3057 const struct rbd_client_id *cid)
3058 {
3059 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3060 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3061 cid->gid, cid->handle);
3062 rbd_dev->owner_cid = *cid; /* struct */
3063 }
3064
3065 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3066 {
3067 mutex_lock(&rbd_dev->watch_mutex);
3068 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3069 mutex_unlock(&rbd_dev->watch_mutex);
3070 }
3071
3072 /*
3073 * lock_rwsem must be held for write
3074 */
3075 static int rbd_lock(struct rbd_device *rbd_dev)
3076 {
3077 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3078 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3079 char cookie[32];
3080 int ret;
3081
3082 WARN_ON(__rbd_is_lock_owner(rbd_dev));
3083
3084 format_lock_cookie(rbd_dev, cookie);
3085 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3086 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3087 RBD_LOCK_TAG, "", 0);
3088 if (ret)
3089 return ret;
3090
3091 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3092 rbd_set_owner_cid(rbd_dev, &cid);
3093 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3094 return 0;
3095 }
3096
3097 /*
3098 * lock_rwsem must be held for write
3099 */
3100 static int rbd_unlock(struct rbd_device *rbd_dev)
3101 {
3102 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3103 char cookie[32];
3104 int ret;
3105
3106 WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3107
3108 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3109
3110 format_lock_cookie(rbd_dev, cookie);
3111 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3112 RBD_LOCK_NAME, cookie);
3113 if (ret && ret != -ENOENT) {
3114 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3115 return ret;
3116 }
3117
3118 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3119 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3120 return 0;
3121 }
3122
3123 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3124 enum rbd_notify_op notify_op,
3125 struct page ***preply_pages,
3126 size_t *preply_len)
3127 {
3128 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3129 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3130 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3131 char buf[buf_size];
3132 void *p = buf;
3133
3134 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3135
3136 /* encode *LockPayload NotifyMessage (op + ClientId) */
3137 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3138 ceph_encode_32(&p, notify_op);
3139 ceph_encode_64(&p, cid.gid);
3140 ceph_encode_64(&p, cid.handle);
3141
3142 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3143 &rbd_dev->header_oloc, buf, buf_size,
3144 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3145 }
3146
3147 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3148 enum rbd_notify_op notify_op)
3149 {
3150 struct page **reply_pages;
3151 size_t reply_len;
3152
3153 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3154 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3155 }
3156
3157 static void rbd_notify_acquired_lock(struct work_struct *work)
3158 {
3159 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3160 acquired_lock_work);
3161
3162 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3163 }
3164
3165 static void rbd_notify_released_lock(struct work_struct *work)
3166 {
3167 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3168 released_lock_work);
3169
3170 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3171 }
3172
3173 static int rbd_request_lock(struct rbd_device *rbd_dev)
3174 {
3175 struct page **reply_pages;
3176 size_t reply_len;
3177 bool lock_owner_responded = false;
3178 int ret;
3179
3180 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3181
3182 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3183 &reply_pages, &reply_len);
3184 if (ret && ret != -ETIMEDOUT) {
3185 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3186 goto out;
3187 }
3188
3189 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3190 void *p = page_address(reply_pages[0]);
3191 void *const end = p + reply_len;
3192 u32 n;
3193
3194 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3195 while (n--) {
3196 u8 struct_v;
3197 u32 len;
3198
3199 ceph_decode_need(&p, end, 8 + 8, e_inval);
3200 p += 8 + 8; /* skip gid and cookie */
3201
3202 ceph_decode_32_safe(&p, end, len, e_inval);
3203 if (!len)
3204 continue;
3205
3206 if (lock_owner_responded) {
3207 rbd_warn(rbd_dev,
3208 "duplicate lock owners detected");
3209 ret = -EIO;
3210 goto out;
3211 }
3212
3213 lock_owner_responded = true;
3214 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3215 &struct_v, &len);
3216 if (ret) {
3217 rbd_warn(rbd_dev,
3218 "failed to decode ResponseMessage: %d",
3219 ret);
3220 goto e_inval;
3221 }
3222
3223 ret = ceph_decode_32(&p);
3224 }
3225 }
3226
3227 if (!lock_owner_responded) {
3228 rbd_warn(rbd_dev, "no lock owners detected");
3229 ret = -ETIMEDOUT;
3230 }
3231
3232 out:
3233 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3234 return ret;
3235
3236 e_inval:
3237 ret = -EINVAL;
3238 goto out;
3239 }
3240
3241 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3242 {
3243 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3244
3245 cancel_delayed_work(&rbd_dev->lock_dwork);
3246 if (wake_all)
3247 wake_up_all(&rbd_dev->lock_waitq);
3248 else
3249 wake_up(&rbd_dev->lock_waitq);
3250 }
3251
3252 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3253 struct ceph_locker **lockers, u32 *num_lockers)
3254 {
3255 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3256 u8 lock_type;
3257 char *lock_tag;
3258 int ret;
3259
3260 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3261
3262 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3263 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3264 &lock_type, &lock_tag, lockers, num_lockers);
3265 if (ret)
3266 return ret;
3267
3268 if (*num_lockers == 0) {
3269 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3270 goto out;
3271 }
3272
3273 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3274 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3275 lock_tag);
3276 ret = -EBUSY;
3277 goto out;
3278 }
3279
3280 if (lock_type == CEPH_CLS_LOCK_SHARED) {
3281 rbd_warn(rbd_dev, "shared lock type detected");
3282 ret = -EBUSY;
3283 goto out;
3284 }
3285
3286 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3287 strlen(RBD_LOCK_COOKIE_PREFIX))) {
3288 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3289 (*lockers)[0].id.cookie);
3290 ret = -EBUSY;
3291 goto out;
3292 }
3293
3294 out:
3295 kfree(lock_tag);
3296 return ret;
3297 }
3298
3299 static int find_watcher(struct rbd_device *rbd_dev,
3300 const struct ceph_locker *locker)
3301 {
3302 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3303 struct ceph_watch_item *watchers;
3304 u32 num_watchers;
3305 u64 cookie;
3306 int i;
3307 int ret;
3308
3309 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3310 &rbd_dev->header_oloc, &watchers,
3311 &num_watchers);
3312 if (ret)
3313 return ret;
3314
3315 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3316 for (i = 0; i < num_watchers; i++) {
3317 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3318 sizeof(locker->info.addr)) &&
3319 watchers[i].cookie == cookie) {
3320 struct rbd_client_id cid = {
3321 .gid = le64_to_cpu(watchers[i].name.num),
3322 .handle = cookie,
3323 };
3324
3325 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3326 rbd_dev, cid.gid, cid.handle);
3327 rbd_set_owner_cid(rbd_dev, &cid);
3328 ret = 1;
3329 goto out;
3330 }
3331 }
3332
3333 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3334 ret = 0;
3335 out:
3336 kfree(watchers);
3337 return ret;
3338 }
3339
3340 /*
3341 * lock_rwsem must be held for write
3342 */
3343 static int rbd_try_lock(struct rbd_device *rbd_dev)
3344 {
3345 struct ceph_client *client = rbd_dev->rbd_client->client;
3346 struct ceph_locker *lockers;
3347 u32 num_lockers;
3348 int ret;
3349
3350 for (;;) {
3351 ret = rbd_lock(rbd_dev);
3352 if (ret != -EBUSY)
3353 return ret;
3354
3355 /* determine if the current lock holder is still alive */
3356 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3357 if (ret)
3358 return ret;
3359
3360 if (num_lockers == 0)
3361 goto again;
3362
3363 ret = find_watcher(rbd_dev, lockers);
3364 if (ret) {
3365 if (ret > 0)
3366 ret = 0; /* have to request lock */
3367 goto out;
3368 }
3369
3370 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3371 ENTITY_NAME(lockers[0].id.name));
3372
3373 ret = ceph_monc_blacklist_add(&client->monc,
3374 &lockers[0].info.addr);
3375 if (ret) {
3376 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3377 ENTITY_NAME(lockers[0].id.name), ret);
3378 goto out;
3379 }
3380
3381 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3382 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3383 lockers[0].id.cookie,
3384 &lockers[0].id.name);
3385 if (ret && ret != -ENOENT)
3386 goto out;
3387
3388 again:
3389 ceph_free_lockers(lockers, num_lockers);
3390 }
3391
3392 out:
3393 ceph_free_lockers(lockers, num_lockers);
3394 return ret;
3395 }
3396
3397 /*
3398 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3399 */
3400 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3401 int *pret)
3402 {
3403 enum rbd_lock_state lock_state;
3404
3405 down_read(&rbd_dev->lock_rwsem);
3406 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3407 rbd_dev->lock_state);
3408 if (__rbd_is_lock_owner(rbd_dev)) {
3409 lock_state = rbd_dev->lock_state;
3410 up_read(&rbd_dev->lock_rwsem);
3411 return lock_state;
3412 }
3413
3414 up_read(&rbd_dev->lock_rwsem);
3415 down_write(&rbd_dev->lock_rwsem);
3416 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3417 rbd_dev->lock_state);
3418 if (!__rbd_is_lock_owner(rbd_dev)) {
3419 *pret = rbd_try_lock(rbd_dev);
3420 if (*pret)
3421 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3422 }
3423
3424 lock_state = rbd_dev->lock_state;
3425 up_write(&rbd_dev->lock_rwsem);
3426 return lock_state;
3427 }
3428
3429 static void rbd_acquire_lock(struct work_struct *work)
3430 {
3431 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3432 struct rbd_device, lock_dwork);
3433 enum rbd_lock_state lock_state;
3434 int ret;
3435
3436 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3437 again:
3438 lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3439 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3440 if (lock_state == RBD_LOCK_STATE_LOCKED)
3441 wake_requests(rbd_dev, true);
3442 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3443 rbd_dev, lock_state, ret);
3444 return;
3445 }
3446
3447 ret = rbd_request_lock(rbd_dev);
3448 if (ret == -ETIMEDOUT) {
3449 goto again; /* treat this as a dead client */
3450 } else if (ret < 0) {
3451 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3452 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3453 RBD_RETRY_DELAY);
3454 } else {
3455 /*
3456 * lock owner acked, but resend if we don't see them
3457 * release the lock
3458 */
3459 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3460 rbd_dev);
3461 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3462 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3463 }
3464 }
3465
3466 /*
3467 * lock_rwsem must be held for write
3468 */
3469 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3470 {
3471 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3472 rbd_dev->lock_state);
3473 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3474 return false;
3475
3476 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3477 downgrade_write(&rbd_dev->lock_rwsem);
3478 /*
3479 * Ensure that all in-flight IO is flushed.
3480 *
3481 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3482 * may be shared with other devices.
3483 */
3484 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3485 up_read(&rbd_dev->lock_rwsem);
3486
3487 down_write(&rbd_dev->lock_rwsem);
3488 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3489 rbd_dev->lock_state);
3490 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3491 return false;
3492
3493 if (!rbd_unlock(rbd_dev))
3494 /*
3495 * Give others a chance to grab the lock - we would re-acquire
3496 * almost immediately if we got new IO during ceph_osdc_sync()
3497 * otherwise. We need to ack our own notifications, so this
3498 * lock_dwork will be requeued from rbd_wait_state_locked()
3499 * after wake_requests() in rbd_handle_released_lock().
3500 */
3501 cancel_delayed_work(&rbd_dev->lock_dwork);
3502
3503 return true;
3504 }
3505
3506 static void rbd_release_lock_work(struct work_struct *work)
3507 {
3508 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3509 unlock_work);
3510
3511 down_write(&rbd_dev->lock_rwsem);
3512 rbd_release_lock(rbd_dev);
3513 up_write(&rbd_dev->lock_rwsem);
3514 }
3515
3516 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3517 void **p)
3518 {
3519 struct rbd_client_id cid = { 0 };
3520
3521 if (struct_v >= 2) {
3522 cid.gid = ceph_decode_64(p);
3523 cid.handle = ceph_decode_64(p);
3524 }
3525
3526 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3527 cid.handle);
3528 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3529 down_write(&rbd_dev->lock_rwsem);
3530 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3531 /*
3532 * we already know that the remote client is
3533 * the owner
3534 */
3535 up_write(&rbd_dev->lock_rwsem);
3536 return;
3537 }
3538
3539 rbd_set_owner_cid(rbd_dev, &cid);
3540 downgrade_write(&rbd_dev->lock_rwsem);
3541 } else {
3542 down_read(&rbd_dev->lock_rwsem);
3543 }
3544
3545 if (!__rbd_is_lock_owner(rbd_dev))
3546 wake_requests(rbd_dev, false);
3547 up_read(&rbd_dev->lock_rwsem);
3548 }
3549
3550 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3551 void **p)
3552 {
3553 struct rbd_client_id cid = { 0 };
3554
3555 if (struct_v >= 2) {
3556 cid.gid = ceph_decode_64(p);
3557 cid.handle = ceph_decode_64(p);
3558 }
3559
3560 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3561 cid.handle);
3562 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3563 down_write(&rbd_dev->lock_rwsem);
3564 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3565 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3566 __func__, rbd_dev, cid.gid, cid.handle,
3567 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3568 up_write(&rbd_dev->lock_rwsem);
3569 return;
3570 }
3571
3572 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3573 downgrade_write(&rbd_dev->lock_rwsem);
3574 } else {
3575 down_read(&rbd_dev->lock_rwsem);
3576 }
3577
3578 if (!__rbd_is_lock_owner(rbd_dev))
3579 wake_requests(rbd_dev, false);
3580 up_read(&rbd_dev->lock_rwsem);
3581 }
3582
3583 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3584 void **p)
3585 {
3586 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3587 struct rbd_client_id cid = { 0 };
3588 bool need_to_send;
3589
3590 if (struct_v >= 2) {
3591 cid.gid = ceph_decode_64(p);
3592 cid.handle = ceph_decode_64(p);
3593 }
3594
3595 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3596 cid.handle);
3597 if (rbd_cid_equal(&cid, &my_cid))
3598 return false;
3599
3600 down_read(&rbd_dev->lock_rwsem);
3601 need_to_send = __rbd_is_lock_owner(rbd_dev);
3602 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3603 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3604 dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3605 rbd_dev);
3606 queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3607 }
3608 }
3609 up_read(&rbd_dev->lock_rwsem);
3610 return need_to_send;
3611 }
3612
3613 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3614 u64 notify_id, u64 cookie, s32 *result)
3615 {
3616 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3617 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3618 char buf[buf_size];
3619 int ret;
3620
3621 if (result) {
3622 void *p = buf;
3623
3624 /* encode ResponseMessage */
3625 ceph_start_encoding(&p, 1, 1,
3626 buf_size - CEPH_ENCODING_START_BLK_LEN);
3627 ceph_encode_32(&p, *result);
3628 } else {
3629 buf_size = 0;
3630 }
3631
3632 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3633 &rbd_dev->header_oloc, notify_id, cookie,
3634 buf, buf_size);
3635 if (ret)
3636 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3637 }
3638
3639 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3640 u64 cookie)
3641 {
3642 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3643 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3644 }
3645
3646 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3647 u64 notify_id, u64 cookie, s32 result)
3648 {
3649 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3650 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3651 }
3652
3653 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3654 u64 notifier_id, void *data, size_t data_len)
3655 {
3656 struct rbd_device *rbd_dev = arg;
3657 void *p = data;
3658 void *const end = p + data_len;
3659 u8 struct_v = 0;
3660 u32 len;
3661 u32 notify_op;
3662 int ret;
3663
3664 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3665 __func__, rbd_dev, cookie, notify_id, data_len);
3666 if (data_len) {
3667 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3668 &struct_v, &len);
3669 if (ret) {
3670 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3671 ret);
3672 return;
3673 }
3674
3675 notify_op = ceph_decode_32(&p);
3676 } else {
3677 /* legacy notification for header updates */
3678 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3679 len = 0;
3680 }
3681
3682 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3683 switch (notify_op) {
3684 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3685 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3686 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3687 break;
3688 case RBD_NOTIFY_OP_RELEASED_LOCK:
3689 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3690 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3691 break;
3692 case RBD_NOTIFY_OP_REQUEST_LOCK:
3693 if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3694 /*
3695 * send ResponseMessage(0) back so the client
3696 * can detect a missing owner
3697 */
3698 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3699 cookie, 0);
3700 else
3701 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3702 break;
3703 case RBD_NOTIFY_OP_HEADER_UPDATE:
3704 ret = rbd_dev_refresh(rbd_dev);
3705 if (ret)
3706 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3707
3708 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3709 break;
3710 default:
3711 if (rbd_is_lock_owner(rbd_dev))
3712 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3713 cookie, -EOPNOTSUPP);
3714 else
3715 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3716 break;
3717 }
3718 }
3719
3720 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3721
3722 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3723 {
3724 struct rbd_device *rbd_dev = arg;
3725
3726 rbd_warn(rbd_dev, "encountered watch error: %d", err);
3727
3728 down_write(&rbd_dev->lock_rwsem);
3729 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3730 up_write(&rbd_dev->lock_rwsem);
3731
3732 mutex_lock(&rbd_dev->watch_mutex);
3733 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3734 __rbd_unregister_watch(rbd_dev);
3735 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3736
3737 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3738 }
3739 mutex_unlock(&rbd_dev->watch_mutex);
3740 }
3741
3742 /*
3743 * watch_mutex must be locked
3744 */
3745 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3746 {
3747 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3748 struct ceph_osd_linger_request *handle;
3749
3750 rbd_assert(!rbd_dev->watch_handle);
3751 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3752
3753 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3754 &rbd_dev->header_oloc, rbd_watch_cb,
3755 rbd_watch_errcb, rbd_dev);
3756 if (IS_ERR(handle))
3757 return PTR_ERR(handle);
3758
3759 rbd_dev->watch_handle = handle;
3760 return 0;
3761 }
3762
3763 /*
3764 * watch_mutex must be locked
3765 */
3766 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3767 {
3768 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3769 int ret;
3770
3771 rbd_assert(rbd_dev->watch_handle);
3772 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3773
3774 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3775 if (ret)
3776 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3777
3778 rbd_dev->watch_handle = NULL;
3779 }
3780
3781 static int rbd_register_watch(struct rbd_device *rbd_dev)
3782 {
3783 int ret;
3784
3785 mutex_lock(&rbd_dev->watch_mutex);
3786 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3787 ret = __rbd_register_watch(rbd_dev);
3788 if (ret)
3789 goto out;
3790
3791 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3792 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3793
3794 out:
3795 mutex_unlock(&rbd_dev->watch_mutex);
3796 return ret;
3797 }
3798
3799 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3800 {
3801 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3802
3803 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3804 cancel_work_sync(&rbd_dev->acquired_lock_work);
3805 cancel_work_sync(&rbd_dev->released_lock_work);
3806 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3807 cancel_work_sync(&rbd_dev->unlock_work);
3808 }
3809
3810 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3811 {
3812 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3813 cancel_tasks_sync(rbd_dev);
3814
3815 mutex_lock(&rbd_dev->watch_mutex);
3816 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3817 __rbd_unregister_watch(rbd_dev);
3818 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3819 mutex_unlock(&rbd_dev->watch_mutex);
3820
3821 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3822 }
3823
3824 static void rbd_reregister_watch(struct work_struct *work)
3825 {
3826 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3827 struct rbd_device, watch_dwork);
3828 bool was_lock_owner = false;
3829 bool need_to_wake = false;
3830 int ret;
3831
3832 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3833
3834 down_write(&rbd_dev->lock_rwsem);
3835 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3836 was_lock_owner = rbd_release_lock(rbd_dev);
3837
3838 mutex_lock(&rbd_dev->watch_mutex);
3839 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3840 mutex_unlock(&rbd_dev->watch_mutex);
3841 goto out;
3842 }
3843
3844 ret = __rbd_register_watch(rbd_dev);
3845 if (ret) {
3846 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3847 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3848 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3849 need_to_wake = true;
3850 } else {
3851 queue_delayed_work(rbd_dev->task_wq,
3852 &rbd_dev->watch_dwork,
3853 RBD_RETRY_DELAY);
3854 }
3855 mutex_unlock(&rbd_dev->watch_mutex);
3856 goto out;
3857 }
3858
3859 need_to_wake = true;
3860 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3861 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3862 mutex_unlock(&rbd_dev->watch_mutex);
3863
3864 ret = rbd_dev_refresh(rbd_dev);
3865 if (ret)
3866 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3867
3868 if (was_lock_owner) {
3869 ret = rbd_try_lock(rbd_dev);
3870 if (ret)
3871 rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3872 ret);
3873 }
3874
3875 out:
3876 up_write(&rbd_dev->lock_rwsem);
3877 if (need_to_wake)
3878 wake_requests(rbd_dev, true);
3879 }
3880
3881 /*
3882 * Synchronous osd object method call. Returns the number of bytes
3883 * returned in the outbound buffer, or a negative error code.
3884 */
3885 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3886 struct ceph_object_id *oid,
3887 struct ceph_object_locator *oloc,
3888 const char *method_name,
3889 const void *outbound,
3890 size_t outbound_size,
3891 void *inbound,
3892 size_t inbound_size)
3893 {
3894 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3895 struct page *req_page = NULL;
3896 struct page *reply_page;
3897 int ret;
3898
3899 /*
3900 * Method calls are ultimately read operations. The result
3901 * should placed into the inbound buffer provided. They
3902 * also supply outbound data--parameters for the object
3903 * method. Currently if this is present it will be a
3904 * snapshot id.
3905 */
3906 if (outbound) {
3907 if (outbound_size > PAGE_SIZE)
3908 return -E2BIG;
3909
3910 req_page = alloc_page(GFP_KERNEL);
3911 if (!req_page)
3912 return -ENOMEM;
3913
3914 memcpy(page_address(req_page), outbound, outbound_size);
3915 }
3916
3917 reply_page = alloc_page(GFP_KERNEL);
3918 if (!reply_page) {
3919 if (req_page)
3920 __free_page(req_page);
3921 return -ENOMEM;
3922 }
3923
3924 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3925 CEPH_OSD_FLAG_READ, req_page, outbound_size,
3926 reply_page, &inbound_size);
3927 if (!ret) {
3928 memcpy(inbound, page_address(reply_page), inbound_size);
3929 ret = inbound_size;
3930 }
3931
3932 if (req_page)
3933 __free_page(req_page);
3934 __free_page(reply_page);
3935 return ret;
3936 }
3937
3938 /*
3939 * lock_rwsem must be held for read
3940 */
3941 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
3942 {
3943 DEFINE_WAIT(wait);
3944
3945 do {
3946 /*
3947 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3948 * and cancel_delayed_work() in wake_requests().
3949 */
3950 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3951 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3952 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3953 TASK_UNINTERRUPTIBLE);
3954 up_read(&rbd_dev->lock_rwsem);
3955 schedule();
3956 down_read(&rbd_dev->lock_rwsem);
3957 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
3958 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
3959
3960 finish_wait(&rbd_dev->lock_waitq, &wait);
3961 }
3962
3963 static void rbd_queue_workfn(struct work_struct *work)
3964 {
3965 struct request *rq = blk_mq_rq_from_pdu(work);
3966 struct rbd_device *rbd_dev = rq->q->queuedata;
3967 struct rbd_img_request *img_request;
3968 struct ceph_snap_context *snapc = NULL;
3969 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3970 u64 length = blk_rq_bytes(rq);
3971 enum obj_operation_type op_type;
3972 u64 mapping_size;
3973 bool must_be_locked;
3974 int result;
3975
3976 switch (req_op(rq)) {
3977 case REQ_OP_DISCARD:
3978 op_type = OBJ_OP_DISCARD;
3979 break;
3980 case REQ_OP_WRITE:
3981 op_type = OBJ_OP_WRITE;
3982 break;
3983 case REQ_OP_READ:
3984 op_type = OBJ_OP_READ;
3985 break;
3986 default:
3987 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3988 result = -EIO;
3989 goto err;
3990 }
3991
3992 /* Ignore/skip any zero-length requests */
3993
3994 if (!length) {
3995 dout("%s: zero-length request\n", __func__);
3996 result = 0;
3997 goto err_rq;
3998 }
3999
4000 /* Only reads are allowed to a read-only device */
4001
4002 if (op_type != OBJ_OP_READ) {
4003 if (rbd_dev->mapping.read_only) {
4004 result = -EROFS;
4005 goto err_rq;
4006 }
4007 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4008 }
4009
4010 /*
4011 * Quit early if the mapped snapshot no longer exists. It's
4012 * still possible the snapshot will have disappeared by the
4013 * time our request arrives at the osd, but there's no sense in
4014 * sending it if we already know.
4015 */
4016 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4017 dout("request for non-existent snapshot");
4018 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4019 result = -ENXIO;
4020 goto err_rq;
4021 }
4022
4023 if (offset && length > U64_MAX - offset + 1) {
4024 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4025 length);
4026 result = -EINVAL;
4027 goto err_rq; /* Shouldn't happen */
4028 }
4029
4030 blk_mq_start_request(rq);
4031
4032 down_read(&rbd_dev->header_rwsem);
4033 mapping_size = rbd_dev->mapping.size;
4034 if (op_type != OBJ_OP_READ) {
4035 snapc = rbd_dev->header.snapc;
4036 ceph_get_snap_context(snapc);
4037 must_be_locked = rbd_is_lock_supported(rbd_dev);
4038 } else {
4039 must_be_locked = rbd_dev->opts->lock_on_read &&
4040 rbd_is_lock_supported(rbd_dev);
4041 }
4042 up_read(&rbd_dev->header_rwsem);
4043
4044 if (offset + length > mapping_size) {
4045 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4046 length, mapping_size);
4047 result = -EIO;
4048 goto err_rq;
4049 }
4050
4051 if (must_be_locked) {
4052 down_read(&rbd_dev->lock_rwsem);
4053 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4054 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
4055 rbd_wait_state_locked(rbd_dev);
4056
4057 WARN_ON((rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) ^
4058 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4059 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4060 result = -EBLACKLISTED;
4061 goto err_unlock;
4062 }
4063 }
4064
4065 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4066 snapc);
4067 if (!img_request) {
4068 result = -ENOMEM;
4069 goto err_unlock;
4070 }
4071 img_request->rq = rq;
4072 snapc = NULL; /* img_request consumes a ref */
4073
4074 if (op_type == OBJ_OP_DISCARD)
4075 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4076 NULL);
4077 else
4078 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4079 rq->bio);
4080 if (result)
4081 goto err_img_request;
4082
4083 result = rbd_img_request_submit(img_request);
4084 if (result)
4085 goto err_img_request;
4086
4087 if (must_be_locked)
4088 up_read(&rbd_dev->lock_rwsem);
4089 return;
4090
4091 err_img_request:
4092 rbd_img_request_put(img_request);
4093 err_unlock:
4094 if (must_be_locked)
4095 up_read(&rbd_dev->lock_rwsem);
4096 err_rq:
4097 if (result)
4098 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4099 obj_op_name(op_type), length, offset, result);
4100 ceph_put_snap_context(snapc);
4101 err:
4102 blk_mq_end_request(rq, result);
4103 }
4104
4105 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4106 const struct blk_mq_queue_data *bd)
4107 {
4108 struct request *rq = bd->rq;
4109 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4110
4111 queue_work(rbd_wq, work);
4112 return BLK_MQ_RQ_QUEUE_OK;
4113 }
4114
4115 static void rbd_free_disk(struct rbd_device *rbd_dev)
4116 {
4117 blk_cleanup_queue(rbd_dev->disk->queue);
4118 blk_mq_free_tag_set(&rbd_dev->tag_set);
4119 put_disk(rbd_dev->disk);
4120 rbd_dev->disk = NULL;
4121 }
4122
4123 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4124 struct ceph_object_id *oid,
4125 struct ceph_object_locator *oloc,
4126 void *buf, int buf_len)
4127
4128 {
4129 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4130 struct ceph_osd_request *req;
4131 struct page **pages;
4132 int num_pages = calc_pages_for(0, buf_len);
4133 int ret;
4134
4135 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4136 if (!req)
4137 return -ENOMEM;
4138
4139 ceph_oid_copy(&req->r_base_oid, oid);
4140 ceph_oloc_copy(&req->r_base_oloc, oloc);
4141 req->r_flags = CEPH_OSD_FLAG_READ;
4142
4143 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4144 if (ret)
4145 goto out_req;
4146
4147 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4148 if (IS_ERR(pages)) {
4149 ret = PTR_ERR(pages);
4150 goto out_req;
4151 }
4152
4153 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4154 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4155 true);
4156
4157 ceph_osdc_start_request(osdc, req, false);
4158 ret = ceph_osdc_wait_request(osdc, req);
4159 if (ret >= 0)
4160 ceph_copy_from_page_vector(pages, buf, 0, ret);
4161
4162 out_req:
4163 ceph_osdc_put_request(req);
4164 return ret;
4165 }
4166
4167 /*
4168 * Read the complete header for the given rbd device. On successful
4169 * return, the rbd_dev->header field will contain up-to-date
4170 * information about the image.
4171 */
4172 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4173 {
4174 struct rbd_image_header_ondisk *ondisk = NULL;
4175 u32 snap_count = 0;
4176 u64 names_size = 0;
4177 u32 want_count;
4178 int ret;
4179
4180 /*
4181 * The complete header will include an array of its 64-bit
4182 * snapshot ids, followed by the names of those snapshots as
4183 * a contiguous block of NUL-terminated strings. Note that
4184 * the number of snapshots could change by the time we read
4185 * it in, in which case we re-read it.
4186 */
4187 do {
4188 size_t size;
4189
4190 kfree(ondisk);
4191
4192 size = sizeof (*ondisk);
4193 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4194 size += names_size;
4195 ondisk = kmalloc(size, GFP_KERNEL);
4196 if (!ondisk)
4197 return -ENOMEM;
4198
4199 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4200 &rbd_dev->header_oloc, ondisk, size);
4201 if (ret < 0)
4202 goto out;
4203 if ((size_t)ret < size) {
4204 ret = -ENXIO;
4205 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4206 size, ret);
4207 goto out;
4208 }
4209 if (!rbd_dev_ondisk_valid(ondisk)) {
4210 ret = -ENXIO;
4211 rbd_warn(rbd_dev, "invalid header");
4212 goto out;
4213 }
4214
4215 names_size = le64_to_cpu(ondisk->snap_names_len);
4216 want_count = snap_count;
4217 snap_count = le32_to_cpu(ondisk->snap_count);
4218 } while (snap_count != want_count);
4219
4220 ret = rbd_header_from_disk(rbd_dev, ondisk);
4221 out:
4222 kfree(ondisk);
4223
4224 return ret;
4225 }
4226
4227 /*
4228 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4229 * has disappeared from the (just updated) snapshot context.
4230 */
4231 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4232 {
4233 u64 snap_id;
4234
4235 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4236 return;
4237
4238 snap_id = rbd_dev->spec->snap_id;
4239 if (snap_id == CEPH_NOSNAP)
4240 return;
4241
4242 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4243 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4244 }
4245
4246 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4247 {
4248 sector_t size;
4249
4250 /*
4251 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4252 * try to update its size. If REMOVING is set, updating size
4253 * is just useless work since the device can't be opened.
4254 */
4255 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4256 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4257 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4258 dout("setting size to %llu sectors", (unsigned long long)size);
4259 set_capacity(rbd_dev->disk, size);
4260 revalidate_disk(rbd_dev->disk);
4261 }
4262 }
4263
4264 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4265 {
4266 u64 mapping_size;
4267 int ret;
4268
4269 down_write(&rbd_dev->header_rwsem);
4270 mapping_size = rbd_dev->mapping.size;
4271
4272 ret = rbd_dev_header_info(rbd_dev);
4273 if (ret)
4274 goto out;
4275
4276 /*
4277 * If there is a parent, see if it has disappeared due to the
4278 * mapped image getting flattened.
4279 */
4280 if (rbd_dev->parent) {
4281 ret = rbd_dev_v2_parent_info(rbd_dev);
4282 if (ret)
4283 goto out;
4284 }
4285
4286 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4287 rbd_dev->mapping.size = rbd_dev->header.image_size;
4288 } else {
4289 /* validate mapped snapshot's EXISTS flag */
4290 rbd_exists_validate(rbd_dev);
4291 }
4292
4293 out:
4294 up_write(&rbd_dev->header_rwsem);
4295 if (!ret && mapping_size != rbd_dev->mapping.size)
4296 rbd_dev_update_size(rbd_dev);
4297
4298 return ret;
4299 }
4300
4301 static int rbd_init_request(void *data, struct request *rq,
4302 unsigned int hctx_idx, unsigned int request_idx,
4303 unsigned int numa_node)
4304 {
4305 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4306
4307 INIT_WORK(work, rbd_queue_workfn);
4308 return 0;
4309 }
4310
4311 static struct blk_mq_ops rbd_mq_ops = {
4312 .queue_rq = rbd_queue_rq,
4313 .init_request = rbd_init_request,
4314 };
4315
4316 static int rbd_init_disk(struct rbd_device *rbd_dev)
4317 {
4318 struct gendisk *disk;
4319 struct request_queue *q;
4320 u64 segment_size;
4321 int err;
4322
4323 /* create gendisk info */
4324 disk = alloc_disk(single_major ?
4325 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4326 RBD_MINORS_PER_MAJOR);
4327 if (!disk)
4328 return -ENOMEM;
4329
4330 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4331 rbd_dev->dev_id);
4332 disk->major = rbd_dev->major;
4333 disk->first_minor = rbd_dev->minor;
4334 if (single_major)
4335 disk->flags |= GENHD_FL_EXT_DEVT;
4336 disk->fops = &rbd_bd_ops;
4337 disk->private_data = rbd_dev;
4338
4339 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4340 rbd_dev->tag_set.ops = &rbd_mq_ops;
4341 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4342 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4343 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4344 rbd_dev->tag_set.nr_hw_queues = 1;
4345 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4346
4347 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4348 if (err)
4349 goto out_disk;
4350
4351 q = blk_mq_init_queue(&rbd_dev->tag_set);
4352 if (IS_ERR(q)) {
4353 err = PTR_ERR(q);
4354 goto out_tag_set;
4355 }
4356
4357 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4358 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4359
4360 /* set io sizes to object size */
4361 segment_size = rbd_obj_bytes(&rbd_dev->header);
4362 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4363 q->limits.max_sectors = queue_max_hw_sectors(q);
4364 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4365 blk_queue_max_segment_size(q, segment_size);
4366 blk_queue_io_min(q, segment_size);
4367 blk_queue_io_opt(q, segment_size);
4368
4369 /* enable the discard support */
4370 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4371 q->limits.discard_granularity = segment_size;
4372 q->limits.discard_alignment = segment_size;
4373 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4374 q->limits.discard_zeroes_data = 1;
4375
4376 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4377 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4378
4379 /*
4380 * disk_release() expects a queue ref from add_disk() and will
4381 * put it. Hold an extra ref until add_disk() is called.
4382 */
4383 WARN_ON(!blk_get_queue(q));
4384 disk->queue = q;
4385 q->queuedata = rbd_dev;
4386
4387 rbd_dev->disk = disk;
4388
4389 return 0;
4390 out_tag_set:
4391 blk_mq_free_tag_set(&rbd_dev->tag_set);
4392 out_disk:
4393 put_disk(disk);
4394 return err;
4395 }
4396
4397 /*
4398 sysfs
4399 */
4400
4401 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4402 {
4403 return container_of(dev, struct rbd_device, dev);
4404 }
4405
4406 static ssize_t rbd_size_show(struct device *dev,
4407 struct device_attribute *attr, char *buf)
4408 {
4409 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4410
4411 return sprintf(buf, "%llu\n",
4412 (unsigned long long)rbd_dev->mapping.size);
4413 }
4414
4415 /*
4416 * Note this shows the features for whatever's mapped, which is not
4417 * necessarily the base image.
4418 */
4419 static ssize_t rbd_features_show(struct device *dev,
4420 struct device_attribute *attr, char *buf)
4421 {
4422 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4423
4424 return sprintf(buf, "0x%016llx\n",
4425 (unsigned long long)rbd_dev->mapping.features);
4426 }
4427
4428 static ssize_t rbd_major_show(struct device *dev,
4429 struct device_attribute *attr, char *buf)
4430 {
4431 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4432
4433 if (rbd_dev->major)
4434 return sprintf(buf, "%d\n", rbd_dev->major);
4435
4436 return sprintf(buf, "(none)\n");
4437 }
4438
4439 static ssize_t rbd_minor_show(struct device *dev,
4440 struct device_attribute *attr, char *buf)
4441 {
4442 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4443
4444 return sprintf(buf, "%d\n", rbd_dev->minor);
4445 }
4446
4447 static ssize_t rbd_client_addr_show(struct device *dev,
4448 struct device_attribute *attr, char *buf)
4449 {
4450 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4451 struct ceph_entity_addr *client_addr =
4452 ceph_client_addr(rbd_dev->rbd_client->client);
4453
4454 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4455 le32_to_cpu(client_addr->nonce));
4456 }
4457
4458 static ssize_t rbd_client_id_show(struct device *dev,
4459 struct device_attribute *attr, char *buf)
4460 {
4461 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4462
4463 return sprintf(buf, "client%lld\n",
4464 ceph_client_gid(rbd_dev->rbd_client->client));
4465 }
4466
4467 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4468 struct device_attribute *attr, char *buf)
4469 {
4470 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4471
4472 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4473 }
4474
4475 static ssize_t rbd_config_info_show(struct device *dev,
4476 struct device_attribute *attr, char *buf)
4477 {
4478 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4479
4480 return sprintf(buf, "%s\n", rbd_dev->config_info);
4481 }
4482
4483 static ssize_t rbd_pool_show(struct device *dev,
4484 struct device_attribute *attr, char *buf)
4485 {
4486 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4487
4488 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4489 }
4490
4491 static ssize_t rbd_pool_id_show(struct device *dev,
4492 struct device_attribute *attr, char *buf)
4493 {
4494 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4495
4496 return sprintf(buf, "%llu\n",
4497 (unsigned long long) rbd_dev->spec->pool_id);
4498 }
4499
4500 static ssize_t rbd_name_show(struct device *dev,
4501 struct device_attribute *attr, char *buf)
4502 {
4503 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4504
4505 if (rbd_dev->spec->image_name)
4506 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4507
4508 return sprintf(buf, "(unknown)\n");
4509 }
4510
4511 static ssize_t rbd_image_id_show(struct device *dev,
4512 struct device_attribute *attr, char *buf)
4513 {
4514 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4515
4516 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4517 }
4518
4519 /*
4520 * Shows the name of the currently-mapped snapshot (or
4521 * RBD_SNAP_HEAD_NAME for the base image).
4522 */
4523 static ssize_t rbd_snap_show(struct device *dev,
4524 struct device_attribute *attr,
4525 char *buf)
4526 {
4527 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4528
4529 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4530 }
4531
4532 static ssize_t rbd_snap_id_show(struct device *dev,
4533 struct device_attribute *attr, char *buf)
4534 {
4535 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4536
4537 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4538 }
4539
4540 /*
4541 * For a v2 image, shows the chain of parent images, separated by empty
4542 * lines. For v1 images or if there is no parent, shows "(no parent
4543 * image)".
4544 */
4545 static ssize_t rbd_parent_show(struct device *dev,
4546 struct device_attribute *attr,
4547 char *buf)
4548 {
4549 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4550 ssize_t count = 0;
4551
4552 if (!rbd_dev->parent)
4553 return sprintf(buf, "(no parent image)\n");
4554
4555 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4556 struct rbd_spec *spec = rbd_dev->parent_spec;
4557
4558 count += sprintf(&buf[count], "%s"
4559 "pool_id %llu\npool_name %s\n"
4560 "image_id %s\nimage_name %s\n"
4561 "snap_id %llu\nsnap_name %s\n"
4562 "overlap %llu\n",
4563 !count ? "" : "\n", /* first? */
4564 spec->pool_id, spec->pool_name,
4565 spec->image_id, spec->image_name ?: "(unknown)",
4566 spec->snap_id, spec->snap_name,
4567 rbd_dev->parent_overlap);
4568 }
4569
4570 return count;
4571 }
4572
4573 static ssize_t rbd_image_refresh(struct device *dev,
4574 struct device_attribute *attr,
4575 const char *buf,
4576 size_t size)
4577 {
4578 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4579 int ret;
4580
4581 ret = rbd_dev_refresh(rbd_dev);
4582 if (ret)
4583 return ret;
4584
4585 return size;
4586 }
4587
4588 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4589 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4590 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4591 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4592 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4593 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4594 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4595 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4596 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4597 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4598 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4599 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4600 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4601 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4602 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4603 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4604
4605 static struct attribute *rbd_attrs[] = {
4606 &dev_attr_size.attr,
4607 &dev_attr_features.attr,
4608 &dev_attr_major.attr,
4609 &dev_attr_minor.attr,
4610 &dev_attr_client_addr.attr,
4611 &dev_attr_client_id.attr,
4612 &dev_attr_cluster_fsid.attr,
4613 &dev_attr_config_info.attr,
4614 &dev_attr_pool.attr,
4615 &dev_attr_pool_id.attr,
4616 &dev_attr_name.attr,
4617 &dev_attr_image_id.attr,
4618 &dev_attr_current_snap.attr,
4619 &dev_attr_snap_id.attr,
4620 &dev_attr_parent.attr,
4621 &dev_attr_refresh.attr,
4622 NULL
4623 };
4624
4625 static struct attribute_group rbd_attr_group = {
4626 .attrs = rbd_attrs,
4627 };
4628
4629 static const struct attribute_group *rbd_attr_groups[] = {
4630 &rbd_attr_group,
4631 NULL
4632 };
4633
4634 static void rbd_dev_release(struct device *dev);
4635
4636 static const struct device_type rbd_device_type = {
4637 .name = "rbd",
4638 .groups = rbd_attr_groups,
4639 .release = rbd_dev_release,
4640 };
4641
4642 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4643 {
4644 kref_get(&spec->kref);
4645
4646 return spec;
4647 }
4648
4649 static void rbd_spec_free(struct kref *kref);
4650 static void rbd_spec_put(struct rbd_spec *spec)
4651 {
4652 if (spec)
4653 kref_put(&spec->kref, rbd_spec_free);
4654 }
4655
4656 static struct rbd_spec *rbd_spec_alloc(void)
4657 {
4658 struct rbd_spec *spec;
4659
4660 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4661 if (!spec)
4662 return NULL;
4663
4664 spec->pool_id = CEPH_NOPOOL;
4665 spec->snap_id = CEPH_NOSNAP;
4666 kref_init(&spec->kref);
4667
4668 return spec;
4669 }
4670
4671 static void rbd_spec_free(struct kref *kref)
4672 {
4673 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4674
4675 kfree(spec->pool_name);
4676 kfree(spec->image_id);
4677 kfree(spec->image_name);
4678 kfree(spec->snap_name);
4679 kfree(spec);
4680 }
4681
4682 static void rbd_dev_free(struct rbd_device *rbd_dev)
4683 {
4684 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4685 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4686
4687 ceph_oid_destroy(&rbd_dev->header_oid);
4688 ceph_oloc_destroy(&rbd_dev->header_oloc);
4689 kfree(rbd_dev->config_info);
4690
4691 rbd_put_client(rbd_dev->rbd_client);
4692 rbd_spec_put(rbd_dev->spec);
4693 kfree(rbd_dev->opts);
4694 kfree(rbd_dev);
4695 }
4696
4697 static void rbd_dev_release(struct device *dev)
4698 {
4699 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4700 bool need_put = !!rbd_dev->opts;
4701
4702 if (need_put) {
4703 destroy_workqueue(rbd_dev->task_wq);
4704 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4705 }
4706
4707 rbd_dev_free(rbd_dev);
4708
4709 /*
4710 * This is racy, but way better than putting module outside of
4711 * the release callback. The race window is pretty small, so
4712 * doing something similar to dm (dm-builtin.c) is overkill.
4713 */
4714 if (need_put)
4715 module_put(THIS_MODULE);
4716 }
4717
4718 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4719 struct rbd_spec *spec)
4720 {
4721 struct rbd_device *rbd_dev;
4722
4723 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4724 if (!rbd_dev)
4725 return NULL;
4726
4727 spin_lock_init(&rbd_dev->lock);
4728 INIT_LIST_HEAD(&rbd_dev->node);
4729 init_rwsem(&rbd_dev->header_rwsem);
4730
4731 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4732 ceph_oid_init(&rbd_dev->header_oid);
4733 rbd_dev->header_oloc.pool = spec->pool_id;
4734
4735 mutex_init(&rbd_dev->watch_mutex);
4736 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4737 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4738
4739 init_rwsem(&rbd_dev->lock_rwsem);
4740 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4741 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4742 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4743 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4744 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4745 init_waitqueue_head(&rbd_dev->lock_waitq);
4746
4747 rbd_dev->dev.bus = &rbd_bus_type;
4748 rbd_dev->dev.type = &rbd_device_type;
4749 rbd_dev->dev.parent = &rbd_root_dev;
4750 device_initialize(&rbd_dev->dev);
4751
4752 rbd_dev->rbd_client = rbdc;
4753 rbd_dev->spec = spec;
4754
4755 return rbd_dev;
4756 }
4757
4758 /*
4759 * Create a mapping rbd_dev.
4760 */
4761 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4762 struct rbd_spec *spec,
4763 struct rbd_options *opts)
4764 {
4765 struct rbd_device *rbd_dev;
4766
4767 rbd_dev = __rbd_dev_create(rbdc, spec);
4768 if (!rbd_dev)
4769 return NULL;
4770
4771 rbd_dev->opts = opts;
4772
4773 /* get an id and fill in device name */
4774 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4775 minor_to_rbd_dev_id(1 << MINORBITS),
4776 GFP_KERNEL);
4777 if (rbd_dev->dev_id < 0)
4778 goto fail_rbd_dev;
4779
4780 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4781 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4782 rbd_dev->name);
4783 if (!rbd_dev->task_wq)
4784 goto fail_dev_id;
4785
4786 /* we have a ref from do_rbd_add() */
4787 __module_get(THIS_MODULE);
4788
4789 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4790 return rbd_dev;
4791
4792 fail_dev_id:
4793 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4794 fail_rbd_dev:
4795 rbd_dev_free(rbd_dev);
4796 return NULL;
4797 }
4798
4799 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4800 {
4801 if (rbd_dev)
4802 put_device(&rbd_dev->dev);
4803 }
4804
4805 /*
4806 * Get the size and object order for an image snapshot, or if
4807 * snap_id is CEPH_NOSNAP, gets this information for the base
4808 * image.
4809 */
4810 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4811 u8 *order, u64 *snap_size)
4812 {
4813 __le64 snapid = cpu_to_le64(snap_id);
4814 int ret;
4815 struct {
4816 u8 order;
4817 __le64 size;
4818 } __attribute__ ((packed)) size_buf = { 0 };
4819
4820 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4821 &rbd_dev->header_oloc, "get_size",
4822 &snapid, sizeof(snapid),
4823 &size_buf, sizeof(size_buf));
4824 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4825 if (ret < 0)
4826 return ret;
4827 if (ret < sizeof (size_buf))
4828 return -ERANGE;
4829
4830 if (order) {
4831 *order = size_buf.order;
4832 dout(" order %u", (unsigned int)*order);
4833 }
4834 *snap_size = le64_to_cpu(size_buf.size);
4835
4836 dout(" snap_id 0x%016llx snap_size = %llu\n",
4837 (unsigned long long)snap_id,
4838 (unsigned long long)*snap_size);
4839
4840 return 0;
4841 }
4842
4843 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4844 {
4845 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4846 &rbd_dev->header.obj_order,
4847 &rbd_dev->header.image_size);
4848 }
4849
4850 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4851 {
4852 void *reply_buf;
4853 int ret;
4854 void *p;
4855
4856 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4857 if (!reply_buf)
4858 return -ENOMEM;
4859
4860 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4861 &rbd_dev->header_oloc, "get_object_prefix",
4862 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4863 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4864 if (ret < 0)
4865 goto out;
4866
4867 p = reply_buf;
4868 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4869 p + ret, NULL, GFP_NOIO);
4870 ret = 0;
4871
4872 if (IS_ERR(rbd_dev->header.object_prefix)) {
4873 ret = PTR_ERR(rbd_dev->header.object_prefix);
4874 rbd_dev->header.object_prefix = NULL;
4875 } else {
4876 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4877 }
4878 out:
4879 kfree(reply_buf);
4880
4881 return ret;
4882 }
4883
4884 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4885 u64 *snap_features)
4886 {
4887 __le64 snapid = cpu_to_le64(snap_id);
4888 struct {
4889 __le64 features;
4890 __le64 incompat;
4891 } __attribute__ ((packed)) features_buf = { 0 };
4892 u64 unsup;
4893 int ret;
4894
4895 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4896 &rbd_dev->header_oloc, "get_features",
4897 &snapid, sizeof(snapid),
4898 &features_buf, sizeof(features_buf));
4899 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4900 if (ret < 0)
4901 return ret;
4902 if (ret < sizeof (features_buf))
4903 return -ERANGE;
4904
4905 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4906 if (unsup) {
4907 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4908 unsup);
4909 return -ENXIO;
4910 }
4911
4912 *snap_features = le64_to_cpu(features_buf.features);
4913
4914 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4915 (unsigned long long)snap_id,
4916 (unsigned long long)*snap_features,
4917 (unsigned long long)le64_to_cpu(features_buf.incompat));
4918
4919 return 0;
4920 }
4921
4922 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4923 {
4924 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4925 &rbd_dev->header.features);
4926 }
4927
4928 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4929 {
4930 struct rbd_spec *parent_spec;
4931 size_t size;
4932 void *reply_buf = NULL;
4933 __le64 snapid;
4934 void *p;
4935 void *end;
4936 u64 pool_id;
4937 char *image_id;
4938 u64 snap_id;
4939 u64 overlap;
4940 int ret;
4941
4942 parent_spec = rbd_spec_alloc();
4943 if (!parent_spec)
4944 return -ENOMEM;
4945
4946 size = sizeof (__le64) + /* pool_id */
4947 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4948 sizeof (__le64) + /* snap_id */
4949 sizeof (__le64); /* overlap */
4950 reply_buf = kmalloc(size, GFP_KERNEL);
4951 if (!reply_buf) {
4952 ret = -ENOMEM;
4953 goto out_err;
4954 }
4955
4956 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4957 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4958 &rbd_dev->header_oloc, "get_parent",
4959 &snapid, sizeof(snapid), reply_buf, size);
4960 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4961 if (ret < 0)
4962 goto out_err;
4963
4964 p = reply_buf;
4965 end = reply_buf + ret;
4966 ret = -ERANGE;
4967 ceph_decode_64_safe(&p, end, pool_id, out_err);
4968 if (pool_id == CEPH_NOPOOL) {
4969 /*
4970 * Either the parent never existed, or we have
4971 * record of it but the image got flattened so it no
4972 * longer has a parent. When the parent of a
4973 * layered image disappears we immediately set the
4974 * overlap to 0. The effect of this is that all new
4975 * requests will be treated as if the image had no
4976 * parent.
4977 */
4978 if (rbd_dev->parent_overlap) {
4979 rbd_dev->parent_overlap = 0;
4980 rbd_dev_parent_put(rbd_dev);
4981 pr_info("%s: clone image has been flattened\n",
4982 rbd_dev->disk->disk_name);
4983 }
4984
4985 goto out; /* No parent? No problem. */
4986 }
4987
4988 /* The ceph file layout needs to fit pool id in 32 bits */
4989
4990 ret = -EIO;
4991 if (pool_id > (u64)U32_MAX) {
4992 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4993 (unsigned long long)pool_id, U32_MAX);
4994 goto out_err;
4995 }
4996
4997 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4998 if (IS_ERR(image_id)) {
4999 ret = PTR_ERR(image_id);
5000 goto out_err;
5001 }
5002 ceph_decode_64_safe(&p, end, snap_id, out_err);
5003 ceph_decode_64_safe(&p, end, overlap, out_err);
5004
5005 /*
5006 * The parent won't change (except when the clone is
5007 * flattened, already handled that). So we only need to
5008 * record the parent spec we have not already done so.
5009 */
5010 if (!rbd_dev->parent_spec) {
5011 parent_spec->pool_id = pool_id;
5012 parent_spec->image_id = image_id;
5013 parent_spec->snap_id = snap_id;
5014 rbd_dev->parent_spec = parent_spec;
5015 parent_spec = NULL; /* rbd_dev now owns this */
5016 } else {
5017 kfree(image_id);
5018 }
5019
5020 /*
5021 * We always update the parent overlap. If it's zero we issue
5022 * a warning, as we will proceed as if there was no parent.
5023 */
5024 if (!overlap) {
5025 if (parent_spec) {
5026 /* refresh, careful to warn just once */
5027 if (rbd_dev->parent_overlap)
5028 rbd_warn(rbd_dev,
5029 "clone now standalone (overlap became 0)");
5030 } else {
5031 /* initial probe */
5032 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5033 }
5034 }
5035 rbd_dev->parent_overlap = overlap;
5036
5037 out:
5038 ret = 0;
5039 out_err:
5040 kfree(reply_buf);
5041 rbd_spec_put(parent_spec);
5042
5043 return ret;
5044 }
5045
5046 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5047 {
5048 struct {
5049 __le64 stripe_unit;
5050 __le64 stripe_count;
5051 } __attribute__ ((packed)) striping_info_buf = { 0 };
5052 size_t size = sizeof (striping_info_buf);
5053 void *p;
5054 u64 obj_size;
5055 u64 stripe_unit;
5056 u64 stripe_count;
5057 int ret;
5058
5059 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5060 &rbd_dev->header_oloc, "get_stripe_unit_count",
5061 NULL, 0, &striping_info_buf, size);
5062 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5063 if (ret < 0)
5064 return ret;
5065 if (ret < size)
5066 return -ERANGE;
5067
5068 /*
5069 * We don't actually support the "fancy striping" feature
5070 * (STRIPINGV2) yet, but if the striping sizes are the
5071 * defaults the behavior is the same as before. So find
5072 * out, and only fail if the image has non-default values.
5073 */
5074 ret = -EINVAL;
5075 obj_size = rbd_obj_bytes(&rbd_dev->header);
5076 p = &striping_info_buf;
5077 stripe_unit = ceph_decode_64(&p);
5078 if (stripe_unit != obj_size) {
5079 rbd_warn(rbd_dev, "unsupported stripe unit "
5080 "(got %llu want %llu)",
5081 stripe_unit, obj_size);
5082 return -EINVAL;
5083 }
5084 stripe_count = ceph_decode_64(&p);
5085 if (stripe_count != 1) {
5086 rbd_warn(rbd_dev, "unsupported stripe count "
5087 "(got %llu want 1)", stripe_count);
5088 return -EINVAL;
5089 }
5090 rbd_dev->header.stripe_unit = stripe_unit;
5091 rbd_dev->header.stripe_count = stripe_count;
5092
5093 return 0;
5094 }
5095
5096 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5097 {
5098 __le64 data_pool_id;
5099 int ret;
5100
5101 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5102 &rbd_dev->header_oloc, "get_data_pool",
5103 NULL, 0, &data_pool_id, sizeof(data_pool_id));
5104 if (ret < 0)
5105 return ret;
5106 if (ret < sizeof(data_pool_id))
5107 return -EBADMSG;
5108
5109 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5110 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5111 return 0;
5112 }
5113
5114 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5115 {
5116 CEPH_DEFINE_OID_ONSTACK(oid);
5117 size_t image_id_size;
5118 char *image_id;
5119 void *p;
5120 void *end;
5121 size_t size;
5122 void *reply_buf = NULL;
5123 size_t len = 0;
5124 char *image_name = NULL;
5125 int ret;
5126
5127 rbd_assert(!rbd_dev->spec->image_name);
5128
5129 len = strlen(rbd_dev->spec->image_id);
5130 image_id_size = sizeof (__le32) + len;
5131 image_id = kmalloc(image_id_size, GFP_KERNEL);
5132 if (!image_id)
5133 return NULL;
5134
5135 p = image_id;
5136 end = image_id + image_id_size;
5137 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5138
5139 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5140 reply_buf = kmalloc(size, GFP_KERNEL);
5141 if (!reply_buf)
5142 goto out;
5143
5144 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5145 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5146 "dir_get_name", image_id, image_id_size,
5147 reply_buf, size);
5148 if (ret < 0)
5149 goto out;
5150 p = reply_buf;
5151 end = reply_buf + ret;
5152
5153 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5154 if (IS_ERR(image_name))
5155 image_name = NULL;
5156 else
5157 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5158 out:
5159 kfree(reply_buf);
5160 kfree(image_id);
5161
5162 return image_name;
5163 }
5164
5165 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5166 {
5167 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5168 const char *snap_name;
5169 u32 which = 0;
5170
5171 /* Skip over names until we find the one we are looking for */
5172
5173 snap_name = rbd_dev->header.snap_names;
5174 while (which < snapc->num_snaps) {
5175 if (!strcmp(name, snap_name))
5176 return snapc->snaps[which];
5177 snap_name += strlen(snap_name) + 1;
5178 which++;
5179 }
5180 return CEPH_NOSNAP;
5181 }
5182
5183 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5184 {
5185 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5186 u32 which;
5187 bool found = false;
5188 u64 snap_id;
5189
5190 for (which = 0; !found && which < snapc->num_snaps; which++) {
5191 const char *snap_name;
5192
5193 snap_id = snapc->snaps[which];
5194 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5195 if (IS_ERR(snap_name)) {
5196 /* ignore no-longer existing snapshots */
5197 if (PTR_ERR(snap_name) == -ENOENT)
5198 continue;
5199 else
5200 break;
5201 }
5202 found = !strcmp(name, snap_name);
5203 kfree(snap_name);
5204 }
5205 return found ? snap_id : CEPH_NOSNAP;
5206 }
5207
5208 /*
5209 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5210 * no snapshot by that name is found, or if an error occurs.
5211 */
5212 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5213 {
5214 if (rbd_dev->image_format == 1)
5215 return rbd_v1_snap_id_by_name(rbd_dev, name);
5216
5217 return rbd_v2_snap_id_by_name(rbd_dev, name);
5218 }
5219
5220 /*
5221 * An image being mapped will have everything but the snap id.
5222 */
5223 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5224 {
5225 struct rbd_spec *spec = rbd_dev->spec;
5226
5227 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5228 rbd_assert(spec->image_id && spec->image_name);
5229 rbd_assert(spec->snap_name);
5230
5231 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5232 u64 snap_id;
5233
5234 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5235 if (snap_id == CEPH_NOSNAP)
5236 return -ENOENT;
5237
5238 spec->snap_id = snap_id;
5239 } else {
5240 spec->snap_id = CEPH_NOSNAP;
5241 }
5242
5243 return 0;
5244 }
5245
5246 /*
5247 * A parent image will have all ids but none of the names.
5248 *
5249 * All names in an rbd spec are dynamically allocated. It's OK if we
5250 * can't figure out the name for an image id.
5251 */
5252 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5253 {
5254 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5255 struct rbd_spec *spec = rbd_dev->spec;
5256 const char *pool_name;
5257 const char *image_name;
5258 const char *snap_name;
5259 int ret;
5260
5261 rbd_assert(spec->pool_id != CEPH_NOPOOL);
5262 rbd_assert(spec->image_id);
5263 rbd_assert(spec->snap_id != CEPH_NOSNAP);
5264
5265 /* Get the pool name; we have to make our own copy of this */
5266
5267 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5268 if (!pool_name) {
5269 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5270 return -EIO;
5271 }
5272 pool_name = kstrdup(pool_name, GFP_KERNEL);
5273 if (!pool_name)
5274 return -ENOMEM;
5275
5276 /* Fetch the image name; tolerate failure here */
5277
5278 image_name = rbd_dev_image_name(rbd_dev);
5279 if (!image_name)
5280 rbd_warn(rbd_dev, "unable to get image name");
5281
5282 /* Fetch the snapshot name */
5283
5284 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5285 if (IS_ERR(snap_name)) {
5286 ret = PTR_ERR(snap_name);
5287 goto out_err;
5288 }
5289
5290 spec->pool_name = pool_name;
5291 spec->image_name = image_name;
5292 spec->snap_name = snap_name;
5293
5294 return 0;
5295
5296 out_err:
5297 kfree(image_name);
5298 kfree(pool_name);
5299 return ret;
5300 }
5301
5302 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5303 {
5304 size_t size;
5305 int ret;
5306 void *reply_buf;
5307 void *p;
5308 void *end;
5309 u64 seq;
5310 u32 snap_count;
5311 struct ceph_snap_context *snapc;
5312 u32 i;
5313
5314 /*
5315 * We'll need room for the seq value (maximum snapshot id),
5316 * snapshot count, and array of that many snapshot ids.
5317 * For now we have a fixed upper limit on the number we're
5318 * prepared to receive.
5319 */
5320 size = sizeof (__le64) + sizeof (__le32) +
5321 RBD_MAX_SNAP_COUNT * sizeof (__le64);
5322 reply_buf = kzalloc(size, GFP_KERNEL);
5323 if (!reply_buf)
5324 return -ENOMEM;
5325
5326 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5327 &rbd_dev->header_oloc, "get_snapcontext",
5328 NULL, 0, reply_buf, size);
5329 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5330 if (ret < 0)
5331 goto out;
5332
5333 p = reply_buf;
5334 end = reply_buf + ret;
5335 ret = -ERANGE;
5336 ceph_decode_64_safe(&p, end, seq, out);
5337 ceph_decode_32_safe(&p, end, snap_count, out);
5338
5339 /*
5340 * Make sure the reported number of snapshot ids wouldn't go
5341 * beyond the end of our buffer. But before checking that,
5342 * make sure the computed size of the snapshot context we
5343 * allocate is representable in a size_t.
5344 */
5345 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5346 / sizeof (u64)) {
5347 ret = -EINVAL;
5348 goto out;
5349 }
5350 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5351 goto out;
5352 ret = 0;
5353
5354 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5355 if (!snapc) {
5356 ret = -ENOMEM;
5357 goto out;
5358 }
5359 snapc->seq = seq;
5360 for (i = 0; i < snap_count; i++)
5361 snapc->snaps[i] = ceph_decode_64(&p);
5362
5363 ceph_put_snap_context(rbd_dev->header.snapc);
5364 rbd_dev->header.snapc = snapc;
5365
5366 dout(" snap context seq = %llu, snap_count = %u\n",
5367 (unsigned long long)seq, (unsigned int)snap_count);
5368 out:
5369 kfree(reply_buf);
5370
5371 return ret;
5372 }
5373
5374 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5375 u64 snap_id)
5376 {
5377 size_t size;
5378 void *reply_buf;
5379 __le64 snapid;
5380 int ret;
5381 void *p;
5382 void *end;
5383 char *snap_name;
5384
5385 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5386 reply_buf = kmalloc(size, GFP_KERNEL);
5387 if (!reply_buf)
5388 return ERR_PTR(-ENOMEM);
5389
5390 snapid = cpu_to_le64(snap_id);
5391 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5392 &rbd_dev->header_oloc, "get_snapshot_name",
5393 &snapid, sizeof(snapid), reply_buf, size);
5394 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5395 if (ret < 0) {
5396 snap_name = ERR_PTR(ret);
5397 goto out;
5398 }
5399
5400 p = reply_buf;
5401 end = reply_buf + ret;
5402 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5403 if (IS_ERR(snap_name))
5404 goto out;
5405
5406 dout(" snap_id 0x%016llx snap_name = %s\n",
5407 (unsigned long long)snap_id, snap_name);
5408 out:
5409 kfree(reply_buf);
5410
5411 return snap_name;
5412 }
5413
5414 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5415 {
5416 bool first_time = rbd_dev->header.object_prefix == NULL;
5417 int ret;
5418
5419 ret = rbd_dev_v2_image_size(rbd_dev);
5420 if (ret)
5421 return ret;
5422
5423 if (first_time) {
5424 ret = rbd_dev_v2_header_onetime(rbd_dev);
5425 if (ret)
5426 return ret;
5427 }
5428
5429 ret = rbd_dev_v2_snap_context(rbd_dev);
5430 if (ret && first_time) {
5431 kfree(rbd_dev->header.object_prefix);
5432 rbd_dev->header.object_prefix = NULL;
5433 }
5434
5435 return ret;
5436 }
5437
5438 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5439 {
5440 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5441
5442 if (rbd_dev->image_format == 1)
5443 return rbd_dev_v1_header_info(rbd_dev);
5444
5445 return rbd_dev_v2_header_info(rbd_dev);
5446 }
5447
5448 /*
5449 * Skips over white space at *buf, and updates *buf to point to the
5450 * first found non-space character (if any). Returns the length of
5451 * the token (string of non-white space characters) found. Note
5452 * that *buf must be terminated with '\0'.
5453 */
5454 static inline size_t next_token(const char **buf)
5455 {
5456 /*
5457 * These are the characters that produce nonzero for
5458 * isspace() in the "C" and "POSIX" locales.
5459 */
5460 const char *spaces = " \f\n\r\t\v";
5461
5462 *buf += strspn(*buf, spaces); /* Find start of token */
5463
5464 return strcspn(*buf, spaces); /* Return token length */
5465 }
5466
5467 /*
5468 * Finds the next token in *buf, dynamically allocates a buffer big
5469 * enough to hold a copy of it, and copies the token into the new
5470 * buffer. The copy is guaranteed to be terminated with '\0'. Note
5471 * that a duplicate buffer is created even for a zero-length token.
5472 *
5473 * Returns a pointer to the newly-allocated duplicate, or a null
5474 * pointer if memory for the duplicate was not available. If
5475 * the lenp argument is a non-null pointer, the length of the token
5476 * (not including the '\0') is returned in *lenp.
5477 *
5478 * If successful, the *buf pointer will be updated to point beyond
5479 * the end of the found token.
5480 *
5481 * Note: uses GFP_KERNEL for allocation.
5482 */
5483 static inline char *dup_token(const char **buf, size_t *lenp)
5484 {
5485 char *dup;
5486 size_t len;
5487
5488 len = next_token(buf);
5489 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5490 if (!dup)
5491 return NULL;
5492 *(dup + len) = '\0';
5493 *buf += len;
5494
5495 if (lenp)
5496 *lenp = len;
5497
5498 return dup;
5499 }
5500
5501 /*
5502 * Parse the options provided for an "rbd add" (i.e., rbd image
5503 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
5504 * and the data written is passed here via a NUL-terminated buffer.
5505 * Returns 0 if successful or an error code otherwise.
5506 *
5507 * The information extracted from these options is recorded in
5508 * the other parameters which return dynamically-allocated
5509 * structures:
5510 * ceph_opts
5511 * The address of a pointer that will refer to a ceph options
5512 * structure. Caller must release the returned pointer using
5513 * ceph_destroy_options() when it is no longer needed.
5514 * rbd_opts
5515 * Address of an rbd options pointer. Fully initialized by
5516 * this function; caller must release with kfree().
5517 * spec
5518 * Address of an rbd image specification pointer. Fully
5519 * initialized by this function based on parsed options.
5520 * Caller must release with rbd_spec_put().
5521 *
5522 * The options passed take this form:
5523 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5524 * where:
5525 * <mon_addrs>
5526 * A comma-separated list of one or more monitor addresses.
5527 * A monitor address is an ip address, optionally followed
5528 * by a port number (separated by a colon).
5529 * I.e.: ip1[:port1][,ip2[:port2]...]
5530 * <options>
5531 * A comma-separated list of ceph and/or rbd options.
5532 * <pool_name>
5533 * The name of the rados pool containing the rbd image.
5534 * <image_name>
5535 * The name of the image in that pool to map.
5536 * <snap_id>
5537 * An optional snapshot id. If provided, the mapping will
5538 * present data from the image at the time that snapshot was
5539 * created. The image head is used if no snapshot id is
5540 * provided. Snapshot mappings are always read-only.
5541 */
5542 static int rbd_add_parse_args(const char *buf,
5543 struct ceph_options **ceph_opts,
5544 struct rbd_options **opts,
5545 struct rbd_spec **rbd_spec)
5546 {
5547 size_t len;
5548 char *options;
5549 const char *mon_addrs;
5550 char *snap_name;
5551 size_t mon_addrs_size;
5552 struct rbd_spec *spec = NULL;
5553 struct rbd_options *rbd_opts = NULL;
5554 struct ceph_options *copts;
5555 int ret;
5556
5557 /* The first four tokens are required */
5558
5559 len = next_token(&buf);
5560 if (!len) {
5561 rbd_warn(NULL, "no monitor address(es) provided");
5562 return -EINVAL;
5563 }
5564 mon_addrs = buf;
5565 mon_addrs_size = len + 1;
5566 buf += len;
5567
5568 ret = -EINVAL;
5569 options = dup_token(&buf, NULL);
5570 if (!options)
5571 return -ENOMEM;
5572 if (!*options) {
5573 rbd_warn(NULL, "no options provided");
5574 goto out_err;
5575 }
5576
5577 spec = rbd_spec_alloc();
5578 if (!spec)
5579 goto out_mem;
5580
5581 spec->pool_name = dup_token(&buf, NULL);
5582 if (!spec->pool_name)
5583 goto out_mem;
5584 if (!*spec->pool_name) {
5585 rbd_warn(NULL, "no pool name provided");
5586 goto out_err;
5587 }
5588
5589 spec->image_name = dup_token(&buf, NULL);
5590 if (!spec->image_name)
5591 goto out_mem;
5592 if (!*spec->image_name) {
5593 rbd_warn(NULL, "no image name provided");
5594 goto out_err;
5595 }
5596
5597 /*
5598 * Snapshot name is optional; default is to use "-"
5599 * (indicating the head/no snapshot).
5600 */
5601 len = next_token(&buf);
5602 if (!len) {
5603 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5604 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5605 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5606 ret = -ENAMETOOLONG;
5607 goto out_err;
5608 }
5609 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5610 if (!snap_name)
5611 goto out_mem;
5612 *(snap_name + len) = '\0';
5613 spec->snap_name = snap_name;
5614
5615 /* Initialize all rbd options to the defaults */
5616
5617 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5618 if (!rbd_opts)
5619 goto out_mem;
5620
5621 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5622 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5623 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5624
5625 copts = ceph_parse_options(options, mon_addrs,
5626 mon_addrs + mon_addrs_size - 1,
5627 parse_rbd_opts_token, rbd_opts);
5628 if (IS_ERR(copts)) {
5629 ret = PTR_ERR(copts);
5630 goto out_err;
5631 }
5632 kfree(options);
5633
5634 *ceph_opts = copts;
5635 *opts = rbd_opts;
5636 *rbd_spec = spec;
5637
5638 return 0;
5639 out_mem:
5640 ret = -ENOMEM;
5641 out_err:
5642 kfree(rbd_opts);
5643 rbd_spec_put(spec);
5644 kfree(options);
5645
5646 return ret;
5647 }
5648
5649 /*
5650 * Return pool id (>= 0) or a negative error code.
5651 */
5652 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5653 {
5654 struct ceph_options *opts = rbdc->client->options;
5655 u64 newest_epoch;
5656 int tries = 0;
5657 int ret;
5658
5659 again:
5660 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5661 if (ret == -ENOENT && tries++ < 1) {
5662 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5663 &newest_epoch);
5664 if (ret < 0)
5665 return ret;
5666
5667 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5668 ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5669 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5670 newest_epoch,
5671 opts->mount_timeout);
5672 goto again;
5673 } else {
5674 /* the osdmap we have is new enough */
5675 return -ENOENT;
5676 }
5677 }
5678
5679 return ret;
5680 }
5681
5682 /*
5683 * An rbd format 2 image has a unique identifier, distinct from the
5684 * name given to it by the user. Internally, that identifier is
5685 * what's used to specify the names of objects related to the image.
5686 *
5687 * A special "rbd id" object is used to map an rbd image name to its
5688 * id. If that object doesn't exist, then there is no v2 rbd image
5689 * with the supplied name.
5690 *
5691 * This function will record the given rbd_dev's image_id field if
5692 * it can be determined, and in that case will return 0. If any
5693 * errors occur a negative errno will be returned and the rbd_dev's
5694 * image_id field will be unchanged (and should be NULL).
5695 */
5696 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5697 {
5698 int ret;
5699 size_t size;
5700 CEPH_DEFINE_OID_ONSTACK(oid);
5701 void *response;
5702 char *image_id;
5703
5704 /*
5705 * When probing a parent image, the image id is already
5706 * known (and the image name likely is not). There's no
5707 * need to fetch the image id again in this case. We
5708 * do still need to set the image format though.
5709 */
5710 if (rbd_dev->spec->image_id) {
5711 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5712
5713 return 0;
5714 }
5715
5716 /*
5717 * First, see if the format 2 image id file exists, and if
5718 * so, get the image's persistent id from it.
5719 */
5720 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5721 rbd_dev->spec->image_name);
5722 if (ret)
5723 return ret;
5724
5725 dout("rbd id object name is %s\n", oid.name);
5726
5727 /* Response will be an encoded string, which includes a length */
5728
5729 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5730 response = kzalloc(size, GFP_NOIO);
5731 if (!response) {
5732 ret = -ENOMEM;
5733 goto out;
5734 }
5735
5736 /* If it doesn't exist we'll assume it's a format 1 image */
5737
5738 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5739 "get_id", NULL, 0,
5740 response, RBD_IMAGE_ID_LEN_MAX);
5741 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5742 if (ret == -ENOENT) {
5743 image_id = kstrdup("", GFP_KERNEL);
5744 ret = image_id ? 0 : -ENOMEM;
5745 if (!ret)
5746 rbd_dev->image_format = 1;
5747 } else if (ret >= 0) {
5748 void *p = response;
5749
5750 image_id = ceph_extract_encoded_string(&p, p + ret,
5751 NULL, GFP_NOIO);
5752 ret = PTR_ERR_OR_ZERO(image_id);
5753 if (!ret)
5754 rbd_dev->image_format = 2;
5755 }
5756
5757 if (!ret) {
5758 rbd_dev->spec->image_id = image_id;
5759 dout("image_id is %s\n", image_id);
5760 }
5761 out:
5762 kfree(response);
5763 ceph_oid_destroy(&oid);
5764 return ret;
5765 }
5766
5767 /*
5768 * Undo whatever state changes are made by v1 or v2 header info
5769 * call.
5770 */
5771 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5772 {
5773 struct rbd_image_header *header;
5774
5775 rbd_dev_parent_put(rbd_dev);
5776
5777 /* Free dynamic fields from the header, then zero it out */
5778
5779 header = &rbd_dev->header;
5780 ceph_put_snap_context(header->snapc);
5781 kfree(header->snap_sizes);
5782 kfree(header->snap_names);
5783 kfree(header->object_prefix);
5784 memset(header, 0, sizeof (*header));
5785 }
5786
5787 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5788 {
5789 int ret;
5790
5791 ret = rbd_dev_v2_object_prefix(rbd_dev);
5792 if (ret)
5793 goto out_err;
5794
5795 /*
5796 * Get the and check features for the image. Currently the
5797 * features are assumed to never change.
5798 */
5799 ret = rbd_dev_v2_features(rbd_dev);
5800 if (ret)
5801 goto out_err;
5802
5803 /* If the image supports fancy striping, get its parameters */
5804
5805 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5806 ret = rbd_dev_v2_striping_info(rbd_dev);
5807 if (ret < 0)
5808 goto out_err;
5809 }
5810
5811 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5812 ret = rbd_dev_v2_data_pool(rbd_dev);
5813 if (ret)
5814 goto out_err;
5815 }
5816
5817 rbd_init_layout(rbd_dev);
5818 return 0;
5819
5820 out_err:
5821 rbd_dev->header.features = 0;
5822 kfree(rbd_dev->header.object_prefix);
5823 rbd_dev->header.object_prefix = NULL;
5824 return ret;
5825 }
5826
5827 /*
5828 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5829 * rbd_dev_image_probe() recursion depth, which means it's also the
5830 * length of the already discovered part of the parent chain.
5831 */
5832 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5833 {
5834 struct rbd_device *parent = NULL;
5835 int ret;
5836
5837 if (!rbd_dev->parent_spec)
5838 return 0;
5839
5840 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5841 pr_info("parent chain is too long (%d)\n", depth);
5842 ret = -EINVAL;
5843 goto out_err;
5844 }
5845
5846 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5847 if (!parent) {
5848 ret = -ENOMEM;
5849 goto out_err;
5850 }
5851
5852 /*
5853 * Images related by parent/child relationships always share
5854 * rbd_client and spec/parent_spec, so bump their refcounts.
5855 */
5856 __rbd_get_client(rbd_dev->rbd_client);
5857 rbd_spec_get(rbd_dev->parent_spec);
5858
5859 ret = rbd_dev_image_probe(parent, depth);
5860 if (ret < 0)
5861 goto out_err;
5862
5863 rbd_dev->parent = parent;
5864 atomic_set(&rbd_dev->parent_ref, 1);
5865 return 0;
5866
5867 out_err:
5868 rbd_dev_unparent(rbd_dev);
5869 rbd_dev_destroy(parent);
5870 return ret;
5871 }
5872
5873 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5874 {
5875 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5876 rbd_dev_mapping_clear(rbd_dev);
5877 rbd_free_disk(rbd_dev);
5878 if (!single_major)
5879 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5880 }
5881
5882 /*
5883 * rbd_dev->header_rwsem must be locked for write and will be unlocked
5884 * upon return.
5885 */
5886 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5887 {
5888 int ret;
5889
5890 /* Record our major and minor device numbers. */
5891
5892 if (!single_major) {
5893 ret = register_blkdev(0, rbd_dev->name);
5894 if (ret < 0)
5895 goto err_out_unlock;
5896
5897 rbd_dev->major = ret;
5898 rbd_dev->minor = 0;
5899 } else {
5900 rbd_dev->major = rbd_major;
5901 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5902 }
5903
5904 /* Set up the blkdev mapping. */
5905
5906 ret = rbd_init_disk(rbd_dev);
5907 if (ret)
5908 goto err_out_blkdev;
5909
5910 ret = rbd_dev_mapping_set(rbd_dev);
5911 if (ret)
5912 goto err_out_disk;
5913
5914 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5915 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5916
5917 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5918 if (ret)
5919 goto err_out_mapping;
5920
5921 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5922 up_write(&rbd_dev->header_rwsem);
5923 return 0;
5924
5925 err_out_mapping:
5926 rbd_dev_mapping_clear(rbd_dev);
5927 err_out_disk:
5928 rbd_free_disk(rbd_dev);
5929 err_out_blkdev:
5930 if (!single_major)
5931 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5932 err_out_unlock:
5933 up_write(&rbd_dev->header_rwsem);
5934 return ret;
5935 }
5936
5937 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5938 {
5939 struct rbd_spec *spec = rbd_dev->spec;
5940 int ret;
5941
5942 /* Record the header object name for this rbd image. */
5943
5944 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5945 if (rbd_dev->image_format == 1)
5946 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5947 spec->image_name, RBD_SUFFIX);
5948 else
5949 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5950 RBD_HEADER_PREFIX, spec->image_id);
5951
5952 return ret;
5953 }
5954
5955 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5956 {
5957 rbd_dev_unprobe(rbd_dev);
5958 if (rbd_dev->opts)
5959 rbd_unregister_watch(rbd_dev);
5960 rbd_dev->image_format = 0;
5961 kfree(rbd_dev->spec->image_id);
5962 rbd_dev->spec->image_id = NULL;
5963 }
5964
5965 /*
5966 * Probe for the existence of the header object for the given rbd
5967 * device. If this image is the one being mapped (i.e., not a
5968 * parent), initiate a watch on its header object before using that
5969 * object to get detailed information about the rbd image.
5970 */
5971 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5972 {
5973 int ret;
5974
5975 /*
5976 * Get the id from the image id object. Unless there's an
5977 * error, rbd_dev->spec->image_id will be filled in with
5978 * a dynamically-allocated string, and rbd_dev->image_format
5979 * will be set to either 1 or 2.
5980 */
5981 ret = rbd_dev_image_id(rbd_dev);
5982 if (ret)
5983 return ret;
5984
5985 ret = rbd_dev_header_name(rbd_dev);
5986 if (ret)
5987 goto err_out_format;
5988
5989 if (!depth) {
5990 ret = rbd_register_watch(rbd_dev);
5991 if (ret) {
5992 if (ret == -ENOENT)
5993 pr_info("image %s/%s does not exist\n",
5994 rbd_dev->spec->pool_name,
5995 rbd_dev->spec->image_name);
5996 goto err_out_format;
5997 }
5998 }
5999
6000 ret = rbd_dev_header_info(rbd_dev);
6001 if (ret)
6002 goto err_out_watch;
6003
6004 /*
6005 * If this image is the one being mapped, we have pool name and
6006 * id, image name and id, and snap name - need to fill snap id.
6007 * Otherwise this is a parent image, identified by pool, image
6008 * and snap ids - need to fill in names for those ids.
6009 */
6010 if (!depth)
6011 ret = rbd_spec_fill_snap_id(rbd_dev);
6012 else
6013 ret = rbd_spec_fill_names(rbd_dev);
6014 if (ret) {
6015 if (ret == -ENOENT)
6016 pr_info("snap %s/%s@%s does not exist\n",
6017 rbd_dev->spec->pool_name,
6018 rbd_dev->spec->image_name,
6019 rbd_dev->spec->snap_name);
6020 goto err_out_probe;
6021 }
6022
6023 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6024 ret = rbd_dev_v2_parent_info(rbd_dev);
6025 if (ret)
6026 goto err_out_probe;
6027
6028 /*
6029 * Need to warn users if this image is the one being
6030 * mapped and has a parent.
6031 */
6032 if (!depth && rbd_dev->parent_spec)
6033 rbd_warn(rbd_dev,
6034 "WARNING: kernel layering is EXPERIMENTAL!");
6035 }
6036
6037 ret = rbd_dev_probe_parent(rbd_dev, depth);
6038 if (ret)
6039 goto err_out_probe;
6040
6041 dout("discovered format %u image, header name is %s\n",
6042 rbd_dev->image_format, rbd_dev->header_oid.name);
6043 return 0;
6044
6045 err_out_probe:
6046 rbd_dev_unprobe(rbd_dev);
6047 err_out_watch:
6048 if (!depth)
6049 rbd_unregister_watch(rbd_dev);
6050 err_out_format:
6051 rbd_dev->image_format = 0;
6052 kfree(rbd_dev->spec->image_id);
6053 rbd_dev->spec->image_id = NULL;
6054 return ret;
6055 }
6056
6057 static ssize_t do_rbd_add(struct bus_type *bus,
6058 const char *buf,
6059 size_t count)
6060 {
6061 struct rbd_device *rbd_dev = NULL;
6062 struct ceph_options *ceph_opts = NULL;
6063 struct rbd_options *rbd_opts = NULL;
6064 struct rbd_spec *spec = NULL;
6065 struct rbd_client *rbdc;
6066 bool read_only;
6067 int rc;
6068
6069 if (!try_module_get(THIS_MODULE))
6070 return -ENODEV;
6071
6072 /* parse add command */
6073 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6074 if (rc < 0)
6075 goto out;
6076
6077 rbdc = rbd_get_client(ceph_opts);
6078 if (IS_ERR(rbdc)) {
6079 rc = PTR_ERR(rbdc);
6080 goto err_out_args;
6081 }
6082
6083 /* pick the pool */
6084 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6085 if (rc < 0) {
6086 if (rc == -ENOENT)
6087 pr_info("pool %s does not exist\n", spec->pool_name);
6088 goto err_out_client;
6089 }
6090 spec->pool_id = (u64)rc;
6091
6092 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6093 if (!rbd_dev) {
6094 rc = -ENOMEM;
6095 goto err_out_client;
6096 }
6097 rbdc = NULL; /* rbd_dev now owns this */
6098 spec = NULL; /* rbd_dev now owns this */
6099 rbd_opts = NULL; /* rbd_dev now owns this */
6100
6101 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6102 if (!rbd_dev->config_info) {
6103 rc = -ENOMEM;
6104 goto err_out_rbd_dev;
6105 }
6106
6107 down_write(&rbd_dev->header_rwsem);
6108 rc = rbd_dev_image_probe(rbd_dev, 0);
6109 if (rc < 0) {
6110 up_write(&rbd_dev->header_rwsem);
6111 goto err_out_rbd_dev;
6112 }
6113
6114 /* If we are mapping a snapshot it must be marked read-only */
6115
6116 read_only = rbd_dev->opts->read_only;
6117 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6118 read_only = true;
6119 rbd_dev->mapping.read_only = read_only;
6120
6121 rc = rbd_dev_device_setup(rbd_dev);
6122 if (rc)
6123 goto err_out_image_probe;
6124
6125 /* Everything's ready. Announce the disk to the world. */
6126
6127 rc = device_add(&rbd_dev->dev);
6128 if (rc)
6129 goto err_out_device_setup;
6130
6131 add_disk(rbd_dev->disk);
6132 /* see rbd_init_disk() */
6133 blk_put_queue(rbd_dev->disk->queue);
6134
6135 spin_lock(&rbd_dev_list_lock);
6136 list_add_tail(&rbd_dev->node, &rbd_dev_list);
6137 spin_unlock(&rbd_dev_list_lock);
6138
6139 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6140 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6141 rbd_dev->header.features);
6142 rc = count;
6143 out:
6144 module_put(THIS_MODULE);
6145 return rc;
6146
6147 err_out_device_setup:
6148 rbd_dev_device_release(rbd_dev);
6149 err_out_image_probe:
6150 rbd_dev_image_release(rbd_dev);
6151 err_out_rbd_dev:
6152 rbd_dev_destroy(rbd_dev);
6153 err_out_client:
6154 rbd_put_client(rbdc);
6155 err_out_args:
6156 rbd_spec_put(spec);
6157 kfree(rbd_opts);
6158 goto out;
6159 }
6160
6161 static ssize_t rbd_add(struct bus_type *bus,
6162 const char *buf,
6163 size_t count)
6164 {
6165 if (single_major)
6166 return -EINVAL;
6167
6168 return do_rbd_add(bus, buf, count);
6169 }
6170
6171 static ssize_t rbd_add_single_major(struct bus_type *bus,
6172 const char *buf,
6173 size_t count)
6174 {
6175 return do_rbd_add(bus, buf, count);
6176 }
6177
6178 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6179 {
6180 while (rbd_dev->parent) {
6181 struct rbd_device *first = rbd_dev;
6182 struct rbd_device *second = first->parent;
6183 struct rbd_device *third;
6184
6185 /*
6186 * Follow to the parent with no grandparent and
6187 * remove it.
6188 */
6189 while (second && (third = second->parent)) {
6190 first = second;
6191 second = third;
6192 }
6193 rbd_assert(second);
6194 rbd_dev_image_release(second);
6195 rbd_dev_destroy(second);
6196 first->parent = NULL;
6197 first->parent_overlap = 0;
6198
6199 rbd_assert(first->parent_spec);
6200 rbd_spec_put(first->parent_spec);
6201 first->parent_spec = NULL;
6202 }
6203 }
6204
6205 static ssize_t do_rbd_remove(struct bus_type *bus,
6206 const char *buf,
6207 size_t count)
6208 {
6209 struct rbd_device *rbd_dev = NULL;
6210 struct list_head *tmp;
6211 int dev_id;
6212 char opt_buf[6];
6213 bool already = false;
6214 bool force = false;
6215 int ret;
6216
6217 dev_id = -1;
6218 opt_buf[0] = '\0';
6219 sscanf(buf, "%d %5s", &dev_id, opt_buf);
6220 if (dev_id < 0) {
6221 pr_err("dev_id out of range\n");
6222 return -EINVAL;
6223 }
6224 if (opt_buf[0] != '\0') {
6225 if (!strcmp(opt_buf, "force")) {
6226 force = true;
6227 } else {
6228 pr_err("bad remove option at '%s'\n", opt_buf);
6229 return -EINVAL;
6230 }
6231 }
6232
6233 ret = -ENOENT;
6234 spin_lock(&rbd_dev_list_lock);
6235 list_for_each(tmp, &rbd_dev_list) {
6236 rbd_dev = list_entry(tmp, struct rbd_device, node);
6237 if (rbd_dev->dev_id == dev_id) {
6238 ret = 0;
6239 break;
6240 }
6241 }
6242 if (!ret) {
6243 spin_lock_irq(&rbd_dev->lock);
6244 if (rbd_dev->open_count && !force)
6245 ret = -EBUSY;
6246 else
6247 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6248 &rbd_dev->flags);
6249 spin_unlock_irq(&rbd_dev->lock);
6250 }
6251 spin_unlock(&rbd_dev_list_lock);
6252 if (ret < 0 || already)
6253 return ret;
6254
6255 if (force) {
6256 /*
6257 * Prevent new IO from being queued and wait for existing
6258 * IO to complete/fail.
6259 */
6260 blk_mq_freeze_queue(rbd_dev->disk->queue);
6261 blk_set_queue_dying(rbd_dev->disk->queue);
6262 }
6263
6264 del_gendisk(rbd_dev->disk);
6265 spin_lock(&rbd_dev_list_lock);
6266 list_del_init(&rbd_dev->node);
6267 spin_unlock(&rbd_dev_list_lock);
6268 device_del(&rbd_dev->dev);
6269
6270 down_write(&rbd_dev->lock_rwsem);
6271 if (__rbd_is_lock_owner(rbd_dev))
6272 rbd_unlock(rbd_dev);
6273 up_write(&rbd_dev->lock_rwsem);
6274
6275 rbd_dev_device_release(rbd_dev);
6276 rbd_dev_image_release(rbd_dev);
6277 rbd_dev_destroy(rbd_dev);
6278 return count;
6279 }
6280
6281 static ssize_t rbd_remove(struct bus_type *bus,
6282 const char *buf,
6283 size_t count)
6284 {
6285 if (single_major)
6286 return -EINVAL;
6287
6288 return do_rbd_remove(bus, buf, count);
6289 }
6290
6291 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6292 const char *buf,
6293 size_t count)
6294 {
6295 return do_rbd_remove(bus, buf, count);
6296 }
6297
6298 /*
6299 * create control files in sysfs
6300 * /sys/bus/rbd/...
6301 */
6302 static int rbd_sysfs_init(void)
6303 {
6304 int ret;
6305
6306 ret = device_register(&rbd_root_dev);
6307 if (ret < 0)
6308 return ret;
6309
6310 ret = bus_register(&rbd_bus_type);
6311 if (ret < 0)
6312 device_unregister(&rbd_root_dev);
6313
6314 return ret;
6315 }
6316
6317 static void rbd_sysfs_cleanup(void)
6318 {
6319 bus_unregister(&rbd_bus_type);
6320 device_unregister(&rbd_root_dev);
6321 }
6322
6323 static int rbd_slab_init(void)
6324 {
6325 rbd_assert(!rbd_img_request_cache);
6326 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6327 if (!rbd_img_request_cache)
6328 return -ENOMEM;
6329
6330 rbd_assert(!rbd_obj_request_cache);
6331 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6332 if (!rbd_obj_request_cache)
6333 goto out_err;
6334
6335 return 0;
6336
6337 out_err:
6338 kmem_cache_destroy(rbd_img_request_cache);
6339 rbd_img_request_cache = NULL;
6340 return -ENOMEM;
6341 }
6342
6343 static void rbd_slab_exit(void)
6344 {
6345 rbd_assert(rbd_obj_request_cache);
6346 kmem_cache_destroy(rbd_obj_request_cache);
6347 rbd_obj_request_cache = NULL;
6348
6349 rbd_assert(rbd_img_request_cache);
6350 kmem_cache_destroy(rbd_img_request_cache);
6351 rbd_img_request_cache = NULL;
6352 }
6353
6354 static int __init rbd_init(void)
6355 {
6356 int rc;
6357
6358 if (!libceph_compatible(NULL)) {
6359 rbd_warn(NULL, "libceph incompatibility (quitting)");
6360 return -EINVAL;
6361 }
6362
6363 rc = rbd_slab_init();
6364 if (rc)
6365 return rc;
6366
6367 /*
6368 * The number of active work items is limited by the number of
6369 * rbd devices * queue depth, so leave @max_active at default.
6370 */
6371 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6372 if (!rbd_wq) {
6373 rc = -ENOMEM;
6374 goto err_out_slab;
6375 }
6376
6377 if (single_major) {
6378 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6379 if (rbd_major < 0) {
6380 rc = rbd_major;
6381 goto err_out_wq;
6382 }
6383 }
6384
6385 rc = rbd_sysfs_init();
6386 if (rc)
6387 goto err_out_blkdev;
6388
6389 if (single_major)
6390 pr_info("loaded (major %d)\n", rbd_major);
6391 else
6392 pr_info("loaded\n");
6393
6394 return 0;
6395
6396 err_out_blkdev:
6397 if (single_major)
6398 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6399 err_out_wq:
6400 destroy_workqueue(rbd_wq);
6401 err_out_slab:
6402 rbd_slab_exit();
6403 return rc;
6404 }
6405
6406 static void __exit rbd_exit(void)
6407 {
6408 ida_destroy(&rbd_dev_id_ida);
6409 rbd_sysfs_cleanup();
6410 if (single_major)
6411 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6412 destroy_workqueue(rbd_wq);
6413 rbd_slab_exit();
6414 }
6415
6416 module_init(rbd_init);
6417 module_exit(rbd_exit);
6418
6419 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6420 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6421 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6422 /* following authorship retained from original osdblk.c */
6423 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6424
6425 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6426 MODULE_LICENSE("GPL");