]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/rbd.c
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-zesty-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46
47 #include "rbd_types.h"
48
49 #define RBD_DEBUG /* Activate rbd_assert() calls */
50
51 /*
52 * The basic unit of block I/O is a sector. It is interpreted in a
53 * number of contexts in Linux (blk, bio, genhd), but the default is
54 * universally 512 bytes. These symbols are just slightly more
55 * meaningful than the bare numbers they represent.
56 */
57 #define SECTOR_SHIFT 9
58 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
59
60 /*
61 * Increment the given counter and return its updated value.
62 * If the counter is already 0 it will not be incremented.
63 * If the counter is already at its maximum value returns
64 * -EINVAL without updating it.
65 */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68 unsigned int counter;
69
70 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 if (counter <= (unsigned int)INT_MAX)
72 return (int)counter;
73
74 atomic_dec(v);
75
76 return -EINVAL;
77 }
78
79 /* Decrement the counter. Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82 int counter;
83
84 counter = atomic_dec_return(v);
85 if (counter >= 0)
86 return counter;
87
88 atomic_inc(v);
89
90 return -EINVAL;
91 }
92
93 #define RBD_DRV_NAME "rbd"
94
95 #define RBD_MINORS_PER_MAJOR 256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
97
98 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
99 #define RBD_MAX_SNAP_NAME_LEN \
100 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101
102 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
103
104 #define RBD_SNAP_HEAD_NAME "-"
105
106 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
107
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX 64
111
112 #define RBD_OBJ_PREFIX_LEN_MAX 64
113
114 /* Feature bits */
115
116 #define RBD_FEATURE_LAYERING (1<<0)
117 #define RBD_FEATURE_STRIPINGV2 (1<<1)
118 #define RBD_FEATURES_ALL \
119 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120
121 /* Features supported by this (client software) implementation. */
122
123 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
124
125 /*
126 * An RBD device name will be "rbd#", where the "rbd" comes from
127 * RBD_DRV_NAME above, and # is a unique integer identifier.
128 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129 * enough to hold all possible device names.
130 */
131 #define DEV_NAME_LEN 32
132 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
133
134 /*
135 * block device image metadata (in-memory version)
136 */
137 struct rbd_image_header {
138 /* These six fields never change for a given rbd image */
139 char *object_prefix;
140 __u8 obj_order;
141 __u8 crypt_type;
142 __u8 comp_type;
143 u64 stripe_unit;
144 u64 stripe_count;
145 u64 features; /* Might be changeable someday? */
146
147 /* The remaining fields need to be updated occasionally */
148 u64 image_size;
149 struct ceph_snap_context *snapc;
150 char *snap_names; /* format 1 only */
151 u64 *snap_sizes; /* format 1 only */
152 };
153
154 /*
155 * An rbd image specification.
156 *
157 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158 * identify an image. Each rbd_dev structure includes a pointer to
159 * an rbd_spec structure that encapsulates this identity.
160 *
161 * Each of the id's in an rbd_spec has an associated name. For a
162 * user-mapped image, the names are supplied and the id's associated
163 * with them are looked up. For a layered image, a parent image is
164 * defined by the tuple, and the names are looked up.
165 *
166 * An rbd_dev structure contains a parent_spec pointer which is
167 * non-null if the image it represents is a child in a layered
168 * image. This pointer will refer to the rbd_spec structure used
169 * by the parent rbd_dev for its own identity (i.e., the structure
170 * is shared between the parent and child).
171 *
172 * Since these structures are populated once, during the discovery
173 * phase of image construction, they are effectively immutable so
174 * we make no effort to synchronize access to them.
175 *
176 * Note that code herein does not assume the image name is known (it
177 * could be a null pointer).
178 */
179 struct rbd_spec {
180 u64 pool_id;
181 const char *pool_name;
182
183 const char *image_id;
184 const char *image_name;
185
186 u64 snap_id;
187 const char *snap_name;
188
189 struct kref kref;
190 };
191
192 /*
193 * an instance of the client. multiple devices may share an rbd client.
194 */
195 struct rbd_client {
196 struct ceph_client *client;
197 struct kref kref;
198 struct list_head node;
199 };
200
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203
204 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
205
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208
209 enum obj_request_type {
210 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212
213 enum obj_operation_type {
214 OBJ_OP_WRITE,
215 OBJ_OP_READ,
216 OBJ_OP_DISCARD,
217 };
218
219 enum obj_req_flags {
220 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
221 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
222 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
223 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
224 };
225
226 struct rbd_obj_request {
227 const char *object_name;
228 u64 offset; /* object start byte */
229 u64 length; /* bytes from offset */
230 unsigned long flags;
231
232 /*
233 * An object request associated with an image will have its
234 * img_data flag set; a standalone object request will not.
235 *
236 * A standalone object request will have which == BAD_WHICH
237 * and a null obj_request pointer.
238 *
239 * An object request initiated in support of a layered image
240 * object (to check for its existence before a write) will
241 * have which == BAD_WHICH and a non-null obj_request pointer.
242 *
243 * Finally, an object request for rbd image data will have
244 * which != BAD_WHICH, and will have a non-null img_request
245 * pointer. The value of which will be in the range
246 * 0..(img_request->obj_request_count-1).
247 */
248 union {
249 struct rbd_obj_request *obj_request; /* STAT op */
250 struct {
251 struct rbd_img_request *img_request;
252 u64 img_offset;
253 /* links for img_request->obj_requests list */
254 struct list_head links;
255 };
256 };
257 u32 which; /* posn image request list */
258
259 enum obj_request_type type;
260 union {
261 struct bio *bio_list;
262 struct {
263 struct page **pages;
264 u32 page_count;
265 };
266 };
267 struct page **copyup_pages;
268 u32 copyup_page_count;
269
270 struct ceph_osd_request *osd_req;
271
272 u64 xferred; /* bytes transferred */
273 int result;
274
275 rbd_obj_callback_t callback;
276 struct completion completion;
277
278 struct kref kref;
279 };
280
281 enum img_req_flags {
282 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
283 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
284 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
285 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
286 };
287
288 struct rbd_img_request {
289 struct rbd_device *rbd_dev;
290 u64 offset; /* starting image byte offset */
291 u64 length; /* byte count from offset */
292 unsigned long flags;
293 union {
294 u64 snap_id; /* for reads */
295 struct ceph_snap_context *snapc; /* for writes */
296 };
297 union {
298 struct request *rq; /* block request */
299 struct rbd_obj_request *obj_request; /* obj req initiator */
300 };
301 struct page **copyup_pages;
302 u32 copyup_page_count;
303 spinlock_t completion_lock;/* protects next_completion */
304 u32 next_completion;
305 rbd_img_callback_t callback;
306 u64 xferred;/* aggregate bytes transferred */
307 int result; /* first nonzero obj_request result */
308
309 u32 obj_request_count;
310 struct list_head obj_requests; /* rbd_obj_request structs */
311
312 struct kref kref;
313 };
314
315 #define for_each_obj_request(ireq, oreq) \
316 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321
322 struct rbd_mapping {
323 u64 size;
324 u64 features;
325 bool read_only;
326 };
327
328 /*
329 * a single device
330 */
331 struct rbd_device {
332 int dev_id; /* blkdev unique id */
333
334 int major; /* blkdev assigned major */
335 int minor;
336 struct gendisk *disk; /* blkdev's gendisk and rq */
337
338 u32 image_format; /* Either 1 or 2 */
339 struct rbd_client *rbd_client;
340
341 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342
343 struct list_head rq_queue; /* incoming rq queue */
344 spinlock_t lock; /* queue, flags, open_count */
345 struct work_struct rq_work;
346
347 struct rbd_image_header header;
348 unsigned long flags; /* possibly lock protected */
349 struct rbd_spec *spec;
350
351 char *header_name;
352
353 struct ceph_file_layout layout;
354
355 struct ceph_osd_event *watch_event;
356 struct rbd_obj_request *watch_request;
357
358 struct rbd_spec *parent_spec;
359 u64 parent_overlap;
360 atomic_t parent_ref;
361 struct rbd_device *parent;
362
363 /* protects updating the header */
364 struct rw_semaphore header_rwsem;
365
366 struct rbd_mapping mapping;
367
368 struct list_head node;
369
370 /* sysfs related */
371 struct device dev;
372 unsigned long open_count; /* protected by lock */
373 };
374
375 /*
376 * Flag bits for rbd_dev->flags. If atomicity is required,
377 * rbd_dev->lock is used to protect access.
378 *
379 * Currently, only the "removing" flag (which is coupled with the
380 * "open_count" field) requires atomic access.
381 */
382 enum rbd_dev_flags {
383 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
384 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
385 };
386
387 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
388
389 static LIST_HEAD(rbd_dev_list); /* devices */
390 static DEFINE_SPINLOCK(rbd_dev_list_lock);
391
392 static LIST_HEAD(rbd_client_list); /* clients */
393 static DEFINE_SPINLOCK(rbd_client_list_lock);
394
395 /* Slab caches for frequently-allocated structures */
396
397 static struct kmem_cache *rbd_img_request_cache;
398 static struct kmem_cache *rbd_obj_request_cache;
399 static struct kmem_cache *rbd_segment_name_cache;
400
401 static int rbd_major;
402 static DEFINE_IDA(rbd_dev_id_ida);
403
404 static struct workqueue_struct *rbd_wq;
405
406 /*
407 * Default to false for now, as single-major requires >= 0.75 version of
408 * userspace rbd utility.
409 */
410 static bool single_major = false;
411 module_param(single_major, bool, S_IRUGO);
412 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
413
414 static int rbd_img_request_submit(struct rbd_img_request *img_request);
415
416 static void rbd_dev_device_release(struct device *dev);
417
418 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
419 size_t count);
420 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
421 size_t count);
422 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
423 size_t count);
424 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
425 size_t count);
426 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
427 static void rbd_spec_put(struct rbd_spec *spec);
428
429 static int rbd_dev_id_to_minor(int dev_id)
430 {
431 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
432 }
433
434 static int minor_to_rbd_dev_id(int minor)
435 {
436 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
437 }
438
439 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
440 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
441 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
442 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
443
444 static struct attribute *rbd_bus_attrs[] = {
445 &bus_attr_add.attr,
446 &bus_attr_remove.attr,
447 &bus_attr_add_single_major.attr,
448 &bus_attr_remove_single_major.attr,
449 NULL,
450 };
451
452 static umode_t rbd_bus_is_visible(struct kobject *kobj,
453 struct attribute *attr, int index)
454 {
455 if (!single_major &&
456 (attr == &bus_attr_add_single_major.attr ||
457 attr == &bus_attr_remove_single_major.attr))
458 return 0;
459
460 return attr->mode;
461 }
462
463 static const struct attribute_group rbd_bus_group = {
464 .attrs = rbd_bus_attrs,
465 .is_visible = rbd_bus_is_visible,
466 };
467 __ATTRIBUTE_GROUPS(rbd_bus);
468
469 static struct bus_type rbd_bus_type = {
470 .name = "rbd",
471 .bus_groups = rbd_bus_groups,
472 };
473
474 static void rbd_root_dev_release(struct device *dev)
475 {
476 }
477
478 static struct device rbd_root_dev = {
479 .init_name = "rbd",
480 .release = rbd_root_dev_release,
481 };
482
483 static __printf(2, 3)
484 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
485 {
486 struct va_format vaf;
487 va_list args;
488
489 va_start(args, fmt);
490 vaf.fmt = fmt;
491 vaf.va = &args;
492
493 if (!rbd_dev)
494 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
495 else if (rbd_dev->disk)
496 printk(KERN_WARNING "%s: %s: %pV\n",
497 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
498 else if (rbd_dev->spec && rbd_dev->spec->image_name)
499 printk(KERN_WARNING "%s: image %s: %pV\n",
500 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
501 else if (rbd_dev->spec && rbd_dev->spec->image_id)
502 printk(KERN_WARNING "%s: id %s: %pV\n",
503 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
504 else /* punt */
505 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
506 RBD_DRV_NAME, rbd_dev, &vaf);
507 va_end(args);
508 }
509
510 #ifdef RBD_DEBUG
511 #define rbd_assert(expr) \
512 if (unlikely(!(expr))) { \
513 printk(KERN_ERR "\nAssertion failure in %s() " \
514 "at line %d:\n\n" \
515 "\trbd_assert(%s);\n\n", \
516 __func__, __LINE__, #expr); \
517 BUG(); \
518 }
519 #else /* !RBD_DEBUG */
520 # define rbd_assert(expr) ((void) 0)
521 #endif /* !RBD_DEBUG */
522
523 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
524 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
525 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
526
527 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
528 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
529 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
531 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
532 u64 snap_id);
533 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
534 u8 *order, u64 *snap_size);
535 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
536 u64 *snap_features);
537 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
538
539 static int rbd_open(struct block_device *bdev, fmode_t mode)
540 {
541 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
542 bool removing = false;
543
544 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
545 return -EROFS;
546
547 spin_lock_irq(&rbd_dev->lock);
548 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
549 removing = true;
550 else
551 rbd_dev->open_count++;
552 spin_unlock_irq(&rbd_dev->lock);
553 if (removing)
554 return -ENOENT;
555
556 (void) get_device(&rbd_dev->dev);
557
558 return 0;
559 }
560
561 static void rbd_release(struct gendisk *disk, fmode_t mode)
562 {
563 struct rbd_device *rbd_dev = disk->private_data;
564 unsigned long open_count_before;
565
566 spin_lock_irq(&rbd_dev->lock);
567 open_count_before = rbd_dev->open_count--;
568 spin_unlock_irq(&rbd_dev->lock);
569 rbd_assert(open_count_before > 0);
570
571 put_device(&rbd_dev->dev);
572 }
573
574 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
575 {
576 int ret = 0;
577 int val;
578 bool ro;
579 bool ro_changed = false;
580
581 /* get_user() may sleep, so call it before taking rbd_dev->lock */
582 if (get_user(val, (int __user *)(arg)))
583 return -EFAULT;
584
585 ro = val ? true : false;
586 /* Snapshot doesn't allow to write*/
587 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
588 return -EROFS;
589
590 spin_lock_irq(&rbd_dev->lock);
591 /* prevent others open this device */
592 if (rbd_dev->open_count > 1) {
593 ret = -EBUSY;
594 goto out;
595 }
596
597 if (rbd_dev->mapping.read_only != ro) {
598 rbd_dev->mapping.read_only = ro;
599 ro_changed = true;
600 }
601
602 out:
603 spin_unlock_irq(&rbd_dev->lock);
604 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
605 if (ret == 0 && ro_changed)
606 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
607
608 return ret;
609 }
610
611 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
612 unsigned int cmd, unsigned long arg)
613 {
614 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
615 int ret = 0;
616
617 switch (cmd) {
618 case BLKROSET:
619 ret = rbd_ioctl_set_ro(rbd_dev, arg);
620 break;
621 default:
622 ret = -ENOTTY;
623 }
624
625 return ret;
626 }
627
628 #ifdef CONFIG_COMPAT
629 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
630 unsigned int cmd, unsigned long arg)
631 {
632 return rbd_ioctl(bdev, mode, cmd, arg);
633 }
634 #endif /* CONFIG_COMPAT */
635
636 static const struct block_device_operations rbd_bd_ops = {
637 .owner = THIS_MODULE,
638 .open = rbd_open,
639 .release = rbd_release,
640 .ioctl = rbd_ioctl,
641 #ifdef CONFIG_COMPAT
642 .compat_ioctl = rbd_compat_ioctl,
643 #endif
644 };
645
646 /*
647 * Initialize an rbd client instance. Success or not, this function
648 * consumes ceph_opts. Caller holds client_mutex.
649 */
650 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
651 {
652 struct rbd_client *rbdc;
653 int ret = -ENOMEM;
654
655 dout("%s:\n", __func__);
656 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
657 if (!rbdc)
658 goto out_opt;
659
660 kref_init(&rbdc->kref);
661 INIT_LIST_HEAD(&rbdc->node);
662
663 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
664 if (IS_ERR(rbdc->client))
665 goto out_rbdc;
666 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
667
668 ret = ceph_open_session(rbdc->client);
669 if (ret < 0)
670 goto out_client;
671
672 spin_lock(&rbd_client_list_lock);
673 list_add_tail(&rbdc->node, &rbd_client_list);
674 spin_unlock(&rbd_client_list_lock);
675
676 dout("%s: rbdc %p\n", __func__, rbdc);
677
678 return rbdc;
679 out_client:
680 ceph_destroy_client(rbdc->client);
681 out_rbdc:
682 kfree(rbdc);
683 out_opt:
684 if (ceph_opts)
685 ceph_destroy_options(ceph_opts);
686 dout("%s: error %d\n", __func__, ret);
687
688 return ERR_PTR(ret);
689 }
690
691 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
692 {
693 kref_get(&rbdc->kref);
694
695 return rbdc;
696 }
697
698 /*
699 * Find a ceph client with specific addr and configuration. If
700 * found, bump its reference count.
701 */
702 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
703 {
704 struct rbd_client *client_node;
705 bool found = false;
706
707 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
708 return NULL;
709
710 spin_lock(&rbd_client_list_lock);
711 list_for_each_entry(client_node, &rbd_client_list, node) {
712 if (!ceph_compare_options(ceph_opts, client_node->client)) {
713 __rbd_get_client(client_node);
714
715 found = true;
716 break;
717 }
718 }
719 spin_unlock(&rbd_client_list_lock);
720
721 return found ? client_node : NULL;
722 }
723
724 /*
725 * mount options
726 */
727 enum {
728 Opt_last_int,
729 /* int args above */
730 Opt_last_string,
731 /* string args above */
732 Opt_read_only,
733 Opt_read_write,
734 /* Boolean args above */
735 Opt_last_bool,
736 };
737
738 static match_table_t rbd_opts_tokens = {
739 /* int args above */
740 /* string args above */
741 {Opt_read_only, "read_only"},
742 {Opt_read_only, "ro"}, /* Alternate spelling */
743 {Opt_read_write, "read_write"},
744 {Opt_read_write, "rw"}, /* Alternate spelling */
745 /* Boolean args above */
746 {-1, NULL}
747 };
748
749 struct rbd_options {
750 bool read_only;
751 };
752
753 #define RBD_READ_ONLY_DEFAULT false
754
755 static int parse_rbd_opts_token(char *c, void *private)
756 {
757 struct rbd_options *rbd_opts = private;
758 substring_t argstr[MAX_OPT_ARGS];
759 int token, intval, ret;
760
761 token = match_token(c, rbd_opts_tokens, argstr);
762 if (token < 0)
763 return -EINVAL;
764
765 if (token < Opt_last_int) {
766 ret = match_int(&argstr[0], &intval);
767 if (ret < 0) {
768 pr_err("bad mount option arg (not int) "
769 "at '%s'\n", c);
770 return ret;
771 }
772 dout("got int token %d val %d\n", token, intval);
773 } else if (token > Opt_last_int && token < Opt_last_string) {
774 dout("got string token %d val %s\n", token,
775 argstr[0].from);
776 } else if (token > Opt_last_string && token < Opt_last_bool) {
777 dout("got Boolean token %d\n", token);
778 } else {
779 dout("got token %d\n", token);
780 }
781
782 switch (token) {
783 case Opt_read_only:
784 rbd_opts->read_only = true;
785 break;
786 case Opt_read_write:
787 rbd_opts->read_only = false;
788 break;
789 default:
790 rbd_assert(false);
791 break;
792 }
793 return 0;
794 }
795
796 static char* obj_op_name(enum obj_operation_type op_type)
797 {
798 switch (op_type) {
799 case OBJ_OP_READ:
800 return "read";
801 case OBJ_OP_WRITE:
802 return "write";
803 case OBJ_OP_DISCARD:
804 return "discard";
805 default:
806 return "???";
807 }
808 }
809
810 /*
811 * Get a ceph client with specific addr and configuration, if one does
812 * not exist create it. Either way, ceph_opts is consumed by this
813 * function.
814 */
815 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
816 {
817 struct rbd_client *rbdc;
818
819 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
820 rbdc = rbd_client_find(ceph_opts);
821 if (rbdc) /* using an existing client */
822 ceph_destroy_options(ceph_opts);
823 else
824 rbdc = rbd_client_create(ceph_opts);
825 mutex_unlock(&client_mutex);
826
827 return rbdc;
828 }
829
830 /*
831 * Destroy ceph client
832 *
833 * Caller must hold rbd_client_list_lock.
834 */
835 static void rbd_client_release(struct kref *kref)
836 {
837 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
838
839 dout("%s: rbdc %p\n", __func__, rbdc);
840 spin_lock(&rbd_client_list_lock);
841 list_del(&rbdc->node);
842 spin_unlock(&rbd_client_list_lock);
843
844 ceph_destroy_client(rbdc->client);
845 kfree(rbdc);
846 }
847
848 /*
849 * Drop reference to ceph client node. If it's not referenced anymore, release
850 * it.
851 */
852 static void rbd_put_client(struct rbd_client *rbdc)
853 {
854 if (rbdc)
855 kref_put(&rbdc->kref, rbd_client_release);
856 }
857
858 static bool rbd_image_format_valid(u32 image_format)
859 {
860 return image_format == 1 || image_format == 2;
861 }
862
863 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
864 {
865 size_t size;
866 u32 snap_count;
867
868 /* The header has to start with the magic rbd header text */
869 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
870 return false;
871
872 /* The bio layer requires at least sector-sized I/O */
873
874 if (ondisk->options.order < SECTOR_SHIFT)
875 return false;
876
877 /* If we use u64 in a few spots we may be able to loosen this */
878
879 if (ondisk->options.order > 8 * sizeof (int) - 1)
880 return false;
881
882 /*
883 * The size of a snapshot header has to fit in a size_t, and
884 * that limits the number of snapshots.
885 */
886 snap_count = le32_to_cpu(ondisk->snap_count);
887 size = SIZE_MAX - sizeof (struct ceph_snap_context);
888 if (snap_count > size / sizeof (__le64))
889 return false;
890
891 /*
892 * Not only that, but the size of the entire the snapshot
893 * header must also be representable in a size_t.
894 */
895 size -= snap_count * sizeof (__le64);
896 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
897 return false;
898
899 return true;
900 }
901
902 /*
903 * Fill an rbd image header with information from the given format 1
904 * on-disk header.
905 */
906 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
907 struct rbd_image_header_ondisk *ondisk)
908 {
909 struct rbd_image_header *header = &rbd_dev->header;
910 bool first_time = header->object_prefix == NULL;
911 struct ceph_snap_context *snapc;
912 char *object_prefix = NULL;
913 char *snap_names = NULL;
914 u64 *snap_sizes = NULL;
915 u32 snap_count;
916 size_t size;
917 int ret = -ENOMEM;
918 u32 i;
919
920 /* Allocate this now to avoid having to handle failure below */
921
922 if (first_time) {
923 size_t len;
924
925 len = strnlen(ondisk->object_prefix,
926 sizeof (ondisk->object_prefix));
927 object_prefix = kmalloc(len + 1, GFP_KERNEL);
928 if (!object_prefix)
929 return -ENOMEM;
930 memcpy(object_prefix, ondisk->object_prefix, len);
931 object_prefix[len] = '\0';
932 }
933
934 /* Allocate the snapshot context and fill it in */
935
936 snap_count = le32_to_cpu(ondisk->snap_count);
937 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
938 if (!snapc)
939 goto out_err;
940 snapc->seq = le64_to_cpu(ondisk->snap_seq);
941 if (snap_count) {
942 struct rbd_image_snap_ondisk *snaps;
943 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
944
945 /* We'll keep a copy of the snapshot names... */
946
947 if (snap_names_len > (u64)SIZE_MAX)
948 goto out_2big;
949 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
950 if (!snap_names)
951 goto out_err;
952
953 /* ...as well as the array of their sizes. */
954
955 size = snap_count * sizeof (*header->snap_sizes);
956 snap_sizes = kmalloc(size, GFP_KERNEL);
957 if (!snap_sizes)
958 goto out_err;
959
960 /*
961 * Copy the names, and fill in each snapshot's id
962 * and size.
963 *
964 * Note that rbd_dev_v1_header_info() guarantees the
965 * ondisk buffer we're working with has
966 * snap_names_len bytes beyond the end of the
967 * snapshot id array, this memcpy() is safe.
968 */
969 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
970 snaps = ondisk->snaps;
971 for (i = 0; i < snap_count; i++) {
972 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
973 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
974 }
975 }
976
977 /* We won't fail any more, fill in the header */
978
979 if (first_time) {
980 header->object_prefix = object_prefix;
981 header->obj_order = ondisk->options.order;
982 header->crypt_type = ondisk->options.crypt_type;
983 header->comp_type = ondisk->options.comp_type;
984 /* The rest aren't used for format 1 images */
985 header->stripe_unit = 0;
986 header->stripe_count = 0;
987 header->features = 0;
988 } else {
989 ceph_put_snap_context(header->snapc);
990 kfree(header->snap_names);
991 kfree(header->snap_sizes);
992 }
993
994 /* The remaining fields always get updated (when we refresh) */
995
996 header->image_size = le64_to_cpu(ondisk->image_size);
997 header->snapc = snapc;
998 header->snap_names = snap_names;
999 header->snap_sizes = snap_sizes;
1000
1001 return 0;
1002 out_2big:
1003 ret = -EIO;
1004 out_err:
1005 kfree(snap_sizes);
1006 kfree(snap_names);
1007 ceph_put_snap_context(snapc);
1008 kfree(object_prefix);
1009
1010 return ret;
1011 }
1012
1013 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1014 {
1015 const char *snap_name;
1016
1017 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1018
1019 /* Skip over names until we find the one we are looking for */
1020
1021 snap_name = rbd_dev->header.snap_names;
1022 while (which--)
1023 snap_name += strlen(snap_name) + 1;
1024
1025 return kstrdup(snap_name, GFP_KERNEL);
1026 }
1027
1028 /*
1029 * Snapshot id comparison function for use with qsort()/bsearch().
1030 * Note that result is for snapshots in *descending* order.
1031 */
1032 static int snapid_compare_reverse(const void *s1, const void *s2)
1033 {
1034 u64 snap_id1 = *(u64 *)s1;
1035 u64 snap_id2 = *(u64 *)s2;
1036
1037 if (snap_id1 < snap_id2)
1038 return 1;
1039 return snap_id1 == snap_id2 ? 0 : -1;
1040 }
1041
1042 /*
1043 * Search a snapshot context to see if the given snapshot id is
1044 * present.
1045 *
1046 * Returns the position of the snapshot id in the array if it's found,
1047 * or BAD_SNAP_INDEX otherwise.
1048 *
1049 * Note: The snapshot array is in kept sorted (by the osd) in
1050 * reverse order, highest snapshot id first.
1051 */
1052 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1053 {
1054 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1055 u64 *found;
1056
1057 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1058 sizeof (snap_id), snapid_compare_reverse);
1059
1060 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1061 }
1062
1063 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1064 u64 snap_id)
1065 {
1066 u32 which;
1067 const char *snap_name;
1068
1069 which = rbd_dev_snap_index(rbd_dev, snap_id);
1070 if (which == BAD_SNAP_INDEX)
1071 return ERR_PTR(-ENOENT);
1072
1073 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1074 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1075 }
1076
1077 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1078 {
1079 if (snap_id == CEPH_NOSNAP)
1080 return RBD_SNAP_HEAD_NAME;
1081
1082 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1083 if (rbd_dev->image_format == 1)
1084 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1085
1086 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1087 }
1088
1089 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1090 u64 *snap_size)
1091 {
1092 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1093 if (snap_id == CEPH_NOSNAP) {
1094 *snap_size = rbd_dev->header.image_size;
1095 } else if (rbd_dev->image_format == 1) {
1096 u32 which;
1097
1098 which = rbd_dev_snap_index(rbd_dev, snap_id);
1099 if (which == BAD_SNAP_INDEX)
1100 return -ENOENT;
1101
1102 *snap_size = rbd_dev->header.snap_sizes[which];
1103 } else {
1104 u64 size = 0;
1105 int ret;
1106
1107 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1108 if (ret)
1109 return ret;
1110
1111 *snap_size = size;
1112 }
1113 return 0;
1114 }
1115
1116 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1117 u64 *snap_features)
1118 {
1119 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1120 if (snap_id == CEPH_NOSNAP) {
1121 *snap_features = rbd_dev->header.features;
1122 } else if (rbd_dev->image_format == 1) {
1123 *snap_features = 0; /* No features for format 1 */
1124 } else {
1125 u64 features = 0;
1126 int ret;
1127
1128 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1129 if (ret)
1130 return ret;
1131
1132 *snap_features = features;
1133 }
1134 return 0;
1135 }
1136
1137 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1138 {
1139 u64 snap_id = rbd_dev->spec->snap_id;
1140 u64 size = 0;
1141 u64 features = 0;
1142 int ret;
1143
1144 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1145 if (ret)
1146 return ret;
1147 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1148 if (ret)
1149 return ret;
1150
1151 rbd_dev->mapping.size = size;
1152 rbd_dev->mapping.features = features;
1153
1154 return 0;
1155 }
1156
1157 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1158 {
1159 rbd_dev->mapping.size = 0;
1160 rbd_dev->mapping.features = 0;
1161 }
1162
1163 static void rbd_segment_name_free(const char *name)
1164 {
1165 /* The explicit cast here is needed to drop the const qualifier */
1166
1167 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1168 }
1169
1170 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1171 {
1172 char *name;
1173 u64 segment;
1174 int ret;
1175 char *name_format;
1176
1177 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1178 if (!name)
1179 return NULL;
1180 segment = offset >> rbd_dev->header.obj_order;
1181 name_format = "%s.%012llx";
1182 if (rbd_dev->image_format == 2)
1183 name_format = "%s.%016llx";
1184 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1185 rbd_dev->header.object_prefix, segment);
1186 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1187 pr_err("error formatting segment name for #%llu (%d)\n",
1188 segment, ret);
1189 rbd_segment_name_free(name);
1190 name = NULL;
1191 }
1192
1193 return name;
1194 }
1195
1196 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1197 {
1198 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1199
1200 return offset & (segment_size - 1);
1201 }
1202
1203 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1204 u64 offset, u64 length)
1205 {
1206 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1207
1208 offset &= segment_size - 1;
1209
1210 rbd_assert(length <= U64_MAX - offset);
1211 if (offset + length > segment_size)
1212 length = segment_size - offset;
1213
1214 return length;
1215 }
1216
1217 /*
1218 * returns the size of an object in the image
1219 */
1220 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1221 {
1222 return 1 << header->obj_order;
1223 }
1224
1225 /*
1226 * bio helpers
1227 */
1228
1229 static void bio_chain_put(struct bio *chain)
1230 {
1231 struct bio *tmp;
1232
1233 while (chain) {
1234 tmp = chain;
1235 chain = chain->bi_next;
1236 bio_put(tmp);
1237 }
1238 }
1239
1240 /*
1241 * zeros a bio chain, starting at specific offset
1242 */
1243 static void zero_bio_chain(struct bio *chain, int start_ofs)
1244 {
1245 struct bio_vec bv;
1246 struct bvec_iter iter;
1247 unsigned long flags;
1248 void *buf;
1249 int pos = 0;
1250
1251 while (chain) {
1252 bio_for_each_segment(bv, chain, iter) {
1253 if (pos + bv.bv_len > start_ofs) {
1254 int remainder = max(start_ofs - pos, 0);
1255 buf = bvec_kmap_irq(&bv, &flags);
1256 memset(buf + remainder, 0,
1257 bv.bv_len - remainder);
1258 flush_dcache_page(bv.bv_page);
1259 bvec_kunmap_irq(buf, &flags);
1260 }
1261 pos += bv.bv_len;
1262 }
1263
1264 chain = chain->bi_next;
1265 }
1266 }
1267
1268 /*
1269 * similar to zero_bio_chain(), zeros data defined by a page array,
1270 * starting at the given byte offset from the start of the array and
1271 * continuing up to the given end offset. The pages array is
1272 * assumed to be big enough to hold all bytes up to the end.
1273 */
1274 static void zero_pages(struct page **pages, u64 offset, u64 end)
1275 {
1276 struct page **page = &pages[offset >> PAGE_SHIFT];
1277
1278 rbd_assert(end > offset);
1279 rbd_assert(end - offset <= (u64)SIZE_MAX);
1280 while (offset < end) {
1281 size_t page_offset;
1282 size_t length;
1283 unsigned long flags;
1284 void *kaddr;
1285
1286 page_offset = offset & ~PAGE_MASK;
1287 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1288 local_irq_save(flags);
1289 kaddr = kmap_atomic(*page);
1290 memset(kaddr + page_offset, 0, length);
1291 flush_dcache_page(*page);
1292 kunmap_atomic(kaddr);
1293 local_irq_restore(flags);
1294
1295 offset += length;
1296 page++;
1297 }
1298 }
1299
1300 /*
1301 * Clone a portion of a bio, starting at the given byte offset
1302 * and continuing for the number of bytes indicated.
1303 */
1304 static struct bio *bio_clone_range(struct bio *bio_src,
1305 unsigned int offset,
1306 unsigned int len,
1307 gfp_t gfpmask)
1308 {
1309 struct bio *bio;
1310
1311 bio = bio_clone(bio_src, gfpmask);
1312 if (!bio)
1313 return NULL; /* ENOMEM */
1314
1315 bio_advance(bio, offset);
1316 bio->bi_iter.bi_size = len;
1317
1318 return bio;
1319 }
1320
1321 /*
1322 * Clone a portion of a bio chain, starting at the given byte offset
1323 * into the first bio in the source chain and continuing for the
1324 * number of bytes indicated. The result is another bio chain of
1325 * exactly the given length, or a null pointer on error.
1326 *
1327 * The bio_src and offset parameters are both in-out. On entry they
1328 * refer to the first source bio and the offset into that bio where
1329 * the start of data to be cloned is located.
1330 *
1331 * On return, bio_src is updated to refer to the bio in the source
1332 * chain that contains first un-cloned byte, and *offset will
1333 * contain the offset of that byte within that bio.
1334 */
1335 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1336 unsigned int *offset,
1337 unsigned int len,
1338 gfp_t gfpmask)
1339 {
1340 struct bio *bi = *bio_src;
1341 unsigned int off = *offset;
1342 struct bio *chain = NULL;
1343 struct bio **end;
1344
1345 /* Build up a chain of clone bios up to the limit */
1346
1347 if (!bi || off >= bi->bi_iter.bi_size || !len)
1348 return NULL; /* Nothing to clone */
1349
1350 end = &chain;
1351 while (len) {
1352 unsigned int bi_size;
1353 struct bio *bio;
1354
1355 if (!bi) {
1356 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1357 goto out_err; /* EINVAL; ran out of bio's */
1358 }
1359 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1360 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1361 if (!bio)
1362 goto out_err; /* ENOMEM */
1363
1364 *end = bio;
1365 end = &bio->bi_next;
1366
1367 off += bi_size;
1368 if (off == bi->bi_iter.bi_size) {
1369 bi = bi->bi_next;
1370 off = 0;
1371 }
1372 len -= bi_size;
1373 }
1374 *bio_src = bi;
1375 *offset = off;
1376
1377 return chain;
1378 out_err:
1379 bio_chain_put(chain);
1380
1381 return NULL;
1382 }
1383
1384 /*
1385 * The default/initial value for all object request flags is 0. For
1386 * each flag, once its value is set to 1 it is never reset to 0
1387 * again.
1388 */
1389 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1390 {
1391 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1392 struct rbd_device *rbd_dev;
1393
1394 rbd_dev = obj_request->img_request->rbd_dev;
1395 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1396 obj_request);
1397 }
1398 }
1399
1400 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1401 {
1402 smp_mb();
1403 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1404 }
1405
1406 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1407 {
1408 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1409 struct rbd_device *rbd_dev = NULL;
1410
1411 if (obj_request_img_data_test(obj_request))
1412 rbd_dev = obj_request->img_request->rbd_dev;
1413 rbd_warn(rbd_dev, "obj_request %p already marked done",
1414 obj_request);
1415 }
1416 }
1417
1418 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1419 {
1420 smp_mb();
1421 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1422 }
1423
1424 /*
1425 * This sets the KNOWN flag after (possibly) setting the EXISTS
1426 * flag. The latter is set based on the "exists" value provided.
1427 *
1428 * Note that for our purposes once an object exists it never goes
1429 * away again. It's possible that the response from two existence
1430 * checks are separated by the creation of the target object, and
1431 * the first ("doesn't exist") response arrives *after* the second
1432 * ("does exist"). In that case we ignore the second one.
1433 */
1434 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1435 bool exists)
1436 {
1437 if (exists)
1438 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1439 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1440 smp_mb();
1441 }
1442
1443 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1444 {
1445 smp_mb();
1446 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1447 }
1448
1449 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1450 {
1451 smp_mb();
1452 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1456 {
1457 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1458
1459 return obj_request->img_offset <
1460 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1461 }
1462
1463 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1464 {
1465 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1466 atomic_read(&obj_request->kref.refcount));
1467 kref_get(&obj_request->kref);
1468 }
1469
1470 static void rbd_obj_request_destroy(struct kref *kref);
1471 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1472 {
1473 rbd_assert(obj_request != NULL);
1474 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1475 atomic_read(&obj_request->kref.refcount));
1476 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1477 }
1478
1479 static void rbd_img_request_get(struct rbd_img_request *img_request)
1480 {
1481 dout("%s: img %p (was %d)\n", __func__, img_request,
1482 atomic_read(&img_request->kref.refcount));
1483 kref_get(&img_request->kref);
1484 }
1485
1486 static bool img_request_child_test(struct rbd_img_request *img_request);
1487 static void rbd_parent_request_destroy(struct kref *kref);
1488 static void rbd_img_request_destroy(struct kref *kref);
1489 static void rbd_img_request_put(struct rbd_img_request *img_request)
1490 {
1491 rbd_assert(img_request != NULL);
1492 dout("%s: img %p (was %d)\n", __func__, img_request,
1493 atomic_read(&img_request->kref.refcount));
1494 if (img_request_child_test(img_request))
1495 kref_put(&img_request->kref, rbd_parent_request_destroy);
1496 else
1497 kref_put(&img_request->kref, rbd_img_request_destroy);
1498 }
1499
1500 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1501 struct rbd_obj_request *obj_request)
1502 {
1503 rbd_assert(obj_request->img_request == NULL);
1504
1505 /* Image request now owns object's original reference */
1506 obj_request->img_request = img_request;
1507 obj_request->which = img_request->obj_request_count;
1508 rbd_assert(!obj_request_img_data_test(obj_request));
1509 obj_request_img_data_set(obj_request);
1510 rbd_assert(obj_request->which != BAD_WHICH);
1511 img_request->obj_request_count++;
1512 list_add_tail(&obj_request->links, &img_request->obj_requests);
1513 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1514 obj_request->which);
1515 }
1516
1517 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1518 struct rbd_obj_request *obj_request)
1519 {
1520 rbd_assert(obj_request->which != BAD_WHICH);
1521
1522 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1523 obj_request->which);
1524 list_del(&obj_request->links);
1525 rbd_assert(img_request->obj_request_count > 0);
1526 img_request->obj_request_count--;
1527 rbd_assert(obj_request->which == img_request->obj_request_count);
1528 obj_request->which = BAD_WHICH;
1529 rbd_assert(obj_request_img_data_test(obj_request));
1530 rbd_assert(obj_request->img_request == img_request);
1531 obj_request->img_request = NULL;
1532 obj_request->callback = NULL;
1533 rbd_obj_request_put(obj_request);
1534 }
1535
1536 static bool obj_request_type_valid(enum obj_request_type type)
1537 {
1538 switch (type) {
1539 case OBJ_REQUEST_NODATA:
1540 case OBJ_REQUEST_BIO:
1541 case OBJ_REQUEST_PAGES:
1542 return true;
1543 default:
1544 return false;
1545 }
1546 }
1547
1548 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1549 struct rbd_obj_request *obj_request)
1550 {
1551 dout("%s %p\n", __func__, obj_request);
1552 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1553 }
1554
1555 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1556 {
1557 dout("%s %p\n", __func__, obj_request);
1558 ceph_osdc_cancel_request(obj_request->osd_req);
1559 }
1560
1561 /*
1562 * Wait for an object request to complete. If interrupted, cancel the
1563 * underlying osd request.
1564 */
1565 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1566 {
1567 int ret;
1568
1569 dout("%s %p\n", __func__, obj_request);
1570
1571 ret = wait_for_completion_interruptible(&obj_request->completion);
1572 if (ret < 0) {
1573 dout("%s %p interrupted\n", __func__, obj_request);
1574 rbd_obj_request_end(obj_request);
1575 return ret;
1576 }
1577
1578 dout("%s %p done\n", __func__, obj_request);
1579 return 0;
1580 }
1581
1582 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1583 {
1584
1585 dout("%s: img %p\n", __func__, img_request);
1586
1587 /*
1588 * If no error occurred, compute the aggregate transfer
1589 * count for the image request. We could instead use
1590 * atomic64_cmpxchg() to update it as each object request
1591 * completes; not clear which way is better off hand.
1592 */
1593 if (!img_request->result) {
1594 struct rbd_obj_request *obj_request;
1595 u64 xferred = 0;
1596
1597 for_each_obj_request(img_request, obj_request)
1598 xferred += obj_request->xferred;
1599 img_request->xferred = xferred;
1600 }
1601
1602 if (img_request->callback)
1603 img_request->callback(img_request);
1604 else
1605 rbd_img_request_put(img_request);
1606 }
1607
1608 /*
1609 * The default/initial value for all image request flags is 0. Each
1610 * is conditionally set to 1 at image request initialization time
1611 * and currently never change thereafter.
1612 */
1613 static void img_request_write_set(struct rbd_img_request *img_request)
1614 {
1615 set_bit(IMG_REQ_WRITE, &img_request->flags);
1616 smp_mb();
1617 }
1618
1619 static bool img_request_write_test(struct rbd_img_request *img_request)
1620 {
1621 smp_mb();
1622 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1623 }
1624
1625 /*
1626 * Set the discard flag when the img_request is an discard request
1627 */
1628 static void img_request_discard_set(struct rbd_img_request *img_request)
1629 {
1630 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1631 smp_mb();
1632 }
1633
1634 static bool img_request_discard_test(struct rbd_img_request *img_request)
1635 {
1636 smp_mb();
1637 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1638 }
1639
1640 static void img_request_child_set(struct rbd_img_request *img_request)
1641 {
1642 set_bit(IMG_REQ_CHILD, &img_request->flags);
1643 smp_mb();
1644 }
1645
1646 static void img_request_child_clear(struct rbd_img_request *img_request)
1647 {
1648 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1649 smp_mb();
1650 }
1651
1652 static bool img_request_child_test(struct rbd_img_request *img_request)
1653 {
1654 smp_mb();
1655 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1656 }
1657
1658 static void img_request_layered_set(struct rbd_img_request *img_request)
1659 {
1660 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1661 smp_mb();
1662 }
1663
1664 static void img_request_layered_clear(struct rbd_img_request *img_request)
1665 {
1666 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1667 smp_mb();
1668 }
1669
1670 static bool img_request_layered_test(struct rbd_img_request *img_request)
1671 {
1672 smp_mb();
1673 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1674 }
1675
1676 static enum obj_operation_type
1677 rbd_img_request_op_type(struct rbd_img_request *img_request)
1678 {
1679 if (img_request_write_test(img_request))
1680 return OBJ_OP_WRITE;
1681 else if (img_request_discard_test(img_request))
1682 return OBJ_OP_DISCARD;
1683 else
1684 return OBJ_OP_READ;
1685 }
1686
1687 static void
1688 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1689 {
1690 u64 xferred = obj_request->xferred;
1691 u64 length = obj_request->length;
1692
1693 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1694 obj_request, obj_request->img_request, obj_request->result,
1695 xferred, length);
1696 /*
1697 * ENOENT means a hole in the image. We zero-fill the entire
1698 * length of the request. A short read also implies zero-fill
1699 * to the end of the request. An error requires the whole
1700 * length of the request to be reported finished with an error
1701 * to the block layer. In each case we update the xferred
1702 * count to indicate the whole request was satisfied.
1703 */
1704 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1705 if (obj_request->result == -ENOENT) {
1706 if (obj_request->type == OBJ_REQUEST_BIO)
1707 zero_bio_chain(obj_request->bio_list, 0);
1708 else
1709 zero_pages(obj_request->pages, 0, length);
1710 obj_request->result = 0;
1711 } else if (xferred < length && !obj_request->result) {
1712 if (obj_request->type == OBJ_REQUEST_BIO)
1713 zero_bio_chain(obj_request->bio_list, xferred);
1714 else
1715 zero_pages(obj_request->pages, xferred, length);
1716 }
1717 obj_request->xferred = length;
1718 obj_request_done_set(obj_request);
1719 }
1720
1721 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1722 {
1723 dout("%s: obj %p cb %p\n", __func__, obj_request,
1724 obj_request->callback);
1725 if (obj_request->callback)
1726 obj_request->callback(obj_request);
1727 else
1728 complete_all(&obj_request->completion);
1729 }
1730
1731 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1732 {
1733 dout("%s: obj %p\n", __func__, obj_request);
1734 obj_request_done_set(obj_request);
1735 }
1736
1737 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1738 {
1739 struct rbd_img_request *img_request = NULL;
1740 struct rbd_device *rbd_dev = NULL;
1741 bool layered = false;
1742
1743 if (obj_request_img_data_test(obj_request)) {
1744 img_request = obj_request->img_request;
1745 layered = img_request && img_request_layered_test(img_request);
1746 rbd_dev = img_request->rbd_dev;
1747 }
1748
1749 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1750 obj_request, img_request, obj_request->result,
1751 obj_request->xferred, obj_request->length);
1752 if (layered && obj_request->result == -ENOENT &&
1753 obj_request->img_offset < rbd_dev->parent_overlap)
1754 rbd_img_parent_read(obj_request);
1755 else if (img_request)
1756 rbd_img_obj_request_read_callback(obj_request);
1757 else
1758 obj_request_done_set(obj_request);
1759 }
1760
1761 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1762 {
1763 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1764 obj_request->result, obj_request->length);
1765 /*
1766 * There is no such thing as a successful short write. Set
1767 * it to our originally-requested length.
1768 */
1769 obj_request->xferred = obj_request->length;
1770 obj_request_done_set(obj_request);
1771 }
1772
1773 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1774 {
1775 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1776 obj_request->result, obj_request->length);
1777 /*
1778 * There is no such thing as a successful short discard. Set
1779 * it to our originally-requested length.
1780 */
1781 obj_request->xferred = obj_request->length;
1782 /* discarding a non-existent object is not a problem */
1783 if (obj_request->result == -ENOENT)
1784 obj_request->result = 0;
1785 obj_request_done_set(obj_request);
1786 }
1787
1788 /*
1789 * For a simple stat call there's nothing to do. We'll do more if
1790 * this is part of a write sequence for a layered image.
1791 */
1792 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1793 {
1794 dout("%s: obj %p\n", __func__, obj_request);
1795 obj_request_done_set(obj_request);
1796 }
1797
1798 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1799 struct ceph_msg *msg)
1800 {
1801 struct rbd_obj_request *obj_request = osd_req->r_priv;
1802 u16 opcode;
1803
1804 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1805 rbd_assert(osd_req == obj_request->osd_req);
1806 if (obj_request_img_data_test(obj_request)) {
1807 rbd_assert(obj_request->img_request);
1808 rbd_assert(obj_request->which != BAD_WHICH);
1809 } else {
1810 rbd_assert(obj_request->which == BAD_WHICH);
1811 }
1812
1813 if (osd_req->r_result < 0)
1814 obj_request->result = osd_req->r_result;
1815
1816 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1817
1818 /*
1819 * We support a 64-bit length, but ultimately it has to be
1820 * passed to blk_end_request(), which takes an unsigned int.
1821 */
1822 obj_request->xferred = osd_req->r_reply_op_len[0];
1823 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1824
1825 opcode = osd_req->r_ops[0].op;
1826 switch (opcode) {
1827 case CEPH_OSD_OP_READ:
1828 rbd_osd_read_callback(obj_request);
1829 break;
1830 case CEPH_OSD_OP_SETALLOCHINT:
1831 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1832 /* fall through */
1833 case CEPH_OSD_OP_WRITE:
1834 rbd_osd_write_callback(obj_request);
1835 break;
1836 case CEPH_OSD_OP_STAT:
1837 rbd_osd_stat_callback(obj_request);
1838 break;
1839 case CEPH_OSD_OP_DELETE:
1840 case CEPH_OSD_OP_TRUNCATE:
1841 case CEPH_OSD_OP_ZERO:
1842 rbd_osd_discard_callback(obj_request);
1843 break;
1844 case CEPH_OSD_OP_CALL:
1845 case CEPH_OSD_OP_NOTIFY_ACK:
1846 case CEPH_OSD_OP_WATCH:
1847 rbd_osd_trivial_callback(obj_request);
1848 break;
1849 default:
1850 rbd_warn(NULL, "%s: unsupported op %hu",
1851 obj_request->object_name, (unsigned short) opcode);
1852 break;
1853 }
1854
1855 if (obj_request_done_test(obj_request))
1856 rbd_obj_request_complete(obj_request);
1857 }
1858
1859 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1860 {
1861 struct rbd_img_request *img_request = obj_request->img_request;
1862 struct ceph_osd_request *osd_req = obj_request->osd_req;
1863 u64 snap_id;
1864
1865 rbd_assert(osd_req != NULL);
1866
1867 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1868 ceph_osdc_build_request(osd_req, obj_request->offset,
1869 NULL, snap_id, NULL);
1870 }
1871
1872 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1873 {
1874 struct rbd_img_request *img_request = obj_request->img_request;
1875 struct ceph_osd_request *osd_req = obj_request->osd_req;
1876 struct ceph_snap_context *snapc;
1877 struct timespec mtime = CURRENT_TIME;
1878
1879 rbd_assert(osd_req != NULL);
1880
1881 snapc = img_request ? img_request->snapc : NULL;
1882 ceph_osdc_build_request(osd_req, obj_request->offset,
1883 snapc, CEPH_NOSNAP, &mtime);
1884 }
1885
1886 /*
1887 * Create an osd request. A read request has one osd op (read).
1888 * A write request has either one (watch) or two (hint+write) osd ops.
1889 * (All rbd data writes are prefixed with an allocation hint op, but
1890 * technically osd watch is a write request, hence this distinction.)
1891 */
1892 static struct ceph_osd_request *rbd_osd_req_create(
1893 struct rbd_device *rbd_dev,
1894 enum obj_operation_type op_type,
1895 unsigned int num_ops,
1896 struct rbd_obj_request *obj_request)
1897 {
1898 struct ceph_snap_context *snapc = NULL;
1899 struct ceph_osd_client *osdc;
1900 struct ceph_osd_request *osd_req;
1901
1902 if (obj_request_img_data_test(obj_request) &&
1903 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1904 struct rbd_img_request *img_request = obj_request->img_request;
1905 if (op_type == OBJ_OP_WRITE) {
1906 rbd_assert(img_request_write_test(img_request));
1907 } else {
1908 rbd_assert(img_request_discard_test(img_request));
1909 }
1910 snapc = img_request->snapc;
1911 }
1912
1913 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1914
1915 /* Allocate and initialize the request, for the num_ops ops */
1916
1917 osdc = &rbd_dev->rbd_client->client->osdc;
1918 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1919 GFP_ATOMIC);
1920 if (!osd_req)
1921 return NULL; /* ENOMEM */
1922
1923 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1924 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1925 else
1926 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1927
1928 osd_req->r_callback = rbd_osd_req_callback;
1929 osd_req->r_priv = obj_request;
1930
1931 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1932 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1933
1934 return osd_req;
1935 }
1936
1937 /*
1938 * Create a copyup osd request based on the information in the object
1939 * request supplied. A copyup request has two or three osd ops, a
1940 * copyup method call, potentially a hint op, and a write or truncate
1941 * or zero op.
1942 */
1943 static struct ceph_osd_request *
1944 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1945 {
1946 struct rbd_img_request *img_request;
1947 struct ceph_snap_context *snapc;
1948 struct rbd_device *rbd_dev;
1949 struct ceph_osd_client *osdc;
1950 struct ceph_osd_request *osd_req;
1951 int num_osd_ops = 3;
1952
1953 rbd_assert(obj_request_img_data_test(obj_request));
1954 img_request = obj_request->img_request;
1955 rbd_assert(img_request);
1956 rbd_assert(img_request_write_test(img_request) ||
1957 img_request_discard_test(img_request));
1958
1959 if (img_request_discard_test(img_request))
1960 num_osd_ops = 2;
1961
1962 /* Allocate and initialize the request, for all the ops */
1963
1964 snapc = img_request->snapc;
1965 rbd_dev = img_request->rbd_dev;
1966 osdc = &rbd_dev->rbd_client->client->osdc;
1967 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1968 false, GFP_ATOMIC);
1969 if (!osd_req)
1970 return NULL; /* ENOMEM */
1971
1972 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1973 osd_req->r_callback = rbd_osd_req_callback;
1974 osd_req->r_priv = obj_request;
1975
1976 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1977 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1978
1979 return osd_req;
1980 }
1981
1982
1983 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1984 {
1985 ceph_osdc_put_request(osd_req);
1986 }
1987
1988 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1989
1990 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1991 u64 offset, u64 length,
1992 enum obj_request_type type)
1993 {
1994 struct rbd_obj_request *obj_request;
1995 size_t size;
1996 char *name;
1997
1998 rbd_assert(obj_request_type_valid(type));
1999
2000 size = strlen(object_name) + 1;
2001 name = kmalloc(size, GFP_KERNEL);
2002 if (!name)
2003 return NULL;
2004
2005 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2006 if (!obj_request) {
2007 kfree(name);
2008 return NULL;
2009 }
2010
2011 obj_request->object_name = memcpy(name, object_name, size);
2012 obj_request->offset = offset;
2013 obj_request->length = length;
2014 obj_request->flags = 0;
2015 obj_request->which = BAD_WHICH;
2016 obj_request->type = type;
2017 INIT_LIST_HEAD(&obj_request->links);
2018 init_completion(&obj_request->completion);
2019 kref_init(&obj_request->kref);
2020
2021 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2022 offset, length, (int)type, obj_request);
2023
2024 return obj_request;
2025 }
2026
2027 static void rbd_obj_request_destroy(struct kref *kref)
2028 {
2029 struct rbd_obj_request *obj_request;
2030
2031 obj_request = container_of(kref, struct rbd_obj_request, kref);
2032
2033 dout("%s: obj %p\n", __func__, obj_request);
2034
2035 rbd_assert(obj_request->img_request == NULL);
2036 rbd_assert(obj_request->which == BAD_WHICH);
2037
2038 if (obj_request->osd_req)
2039 rbd_osd_req_destroy(obj_request->osd_req);
2040
2041 rbd_assert(obj_request_type_valid(obj_request->type));
2042 switch (obj_request->type) {
2043 case OBJ_REQUEST_NODATA:
2044 break; /* Nothing to do */
2045 case OBJ_REQUEST_BIO:
2046 if (obj_request->bio_list)
2047 bio_chain_put(obj_request->bio_list);
2048 break;
2049 case OBJ_REQUEST_PAGES:
2050 if (obj_request->pages)
2051 ceph_release_page_vector(obj_request->pages,
2052 obj_request->page_count);
2053 break;
2054 }
2055
2056 kfree(obj_request->object_name);
2057 obj_request->object_name = NULL;
2058 kmem_cache_free(rbd_obj_request_cache, obj_request);
2059 }
2060
2061 /* It's OK to call this for a device with no parent */
2062
2063 static void rbd_spec_put(struct rbd_spec *spec);
2064 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2065 {
2066 rbd_dev_remove_parent(rbd_dev);
2067 rbd_spec_put(rbd_dev->parent_spec);
2068 rbd_dev->parent_spec = NULL;
2069 rbd_dev->parent_overlap = 0;
2070 }
2071
2072 /*
2073 * Parent image reference counting is used to determine when an
2074 * image's parent fields can be safely torn down--after there are no
2075 * more in-flight requests to the parent image. When the last
2076 * reference is dropped, cleaning them up is safe.
2077 */
2078 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2079 {
2080 int counter;
2081
2082 if (!rbd_dev->parent_spec)
2083 return;
2084
2085 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2086 if (counter > 0)
2087 return;
2088
2089 /* Last reference; clean up parent data structures */
2090
2091 if (!counter)
2092 rbd_dev_unparent(rbd_dev);
2093 else
2094 rbd_warn(rbd_dev, "parent reference underflow");
2095 }
2096
2097 /*
2098 * If an image has a non-zero parent overlap, get a reference to its
2099 * parent.
2100 *
2101 * Returns true if the rbd device has a parent with a non-zero
2102 * overlap and a reference for it was successfully taken, or
2103 * false otherwise.
2104 */
2105 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2106 {
2107 int counter = 0;
2108
2109 if (!rbd_dev->parent_spec)
2110 return false;
2111
2112 down_read(&rbd_dev->header_rwsem);
2113 if (rbd_dev->parent_overlap)
2114 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2115 up_read(&rbd_dev->header_rwsem);
2116
2117 if (counter < 0)
2118 rbd_warn(rbd_dev, "parent reference overflow");
2119
2120 return counter > 0;
2121 }
2122
2123 /*
2124 * Caller is responsible for filling in the list of object requests
2125 * that comprises the image request, and the Linux request pointer
2126 * (if there is one).
2127 */
2128 static struct rbd_img_request *rbd_img_request_create(
2129 struct rbd_device *rbd_dev,
2130 u64 offset, u64 length,
2131 enum obj_operation_type op_type,
2132 struct ceph_snap_context *snapc)
2133 {
2134 struct rbd_img_request *img_request;
2135
2136 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2137 if (!img_request)
2138 return NULL;
2139
2140 img_request->rq = NULL;
2141 img_request->rbd_dev = rbd_dev;
2142 img_request->offset = offset;
2143 img_request->length = length;
2144 img_request->flags = 0;
2145 if (op_type == OBJ_OP_DISCARD) {
2146 img_request_discard_set(img_request);
2147 img_request->snapc = snapc;
2148 } else if (op_type == OBJ_OP_WRITE) {
2149 img_request_write_set(img_request);
2150 img_request->snapc = snapc;
2151 } else {
2152 img_request->snap_id = rbd_dev->spec->snap_id;
2153 }
2154 if (rbd_dev_parent_get(rbd_dev))
2155 img_request_layered_set(img_request);
2156 spin_lock_init(&img_request->completion_lock);
2157 img_request->next_completion = 0;
2158 img_request->callback = NULL;
2159 img_request->result = 0;
2160 img_request->obj_request_count = 0;
2161 INIT_LIST_HEAD(&img_request->obj_requests);
2162 kref_init(&img_request->kref);
2163
2164 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2165 obj_op_name(op_type), offset, length, img_request);
2166
2167 return img_request;
2168 }
2169
2170 static void rbd_img_request_destroy(struct kref *kref)
2171 {
2172 struct rbd_img_request *img_request;
2173 struct rbd_obj_request *obj_request;
2174 struct rbd_obj_request *next_obj_request;
2175
2176 img_request = container_of(kref, struct rbd_img_request, kref);
2177
2178 dout("%s: img %p\n", __func__, img_request);
2179
2180 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2181 rbd_img_obj_request_del(img_request, obj_request);
2182 rbd_assert(img_request->obj_request_count == 0);
2183
2184 if (img_request_layered_test(img_request)) {
2185 img_request_layered_clear(img_request);
2186 rbd_dev_parent_put(img_request->rbd_dev);
2187 }
2188
2189 if (img_request_write_test(img_request) ||
2190 img_request_discard_test(img_request))
2191 ceph_put_snap_context(img_request->snapc);
2192
2193 kmem_cache_free(rbd_img_request_cache, img_request);
2194 }
2195
2196 static struct rbd_img_request *rbd_parent_request_create(
2197 struct rbd_obj_request *obj_request,
2198 u64 img_offset, u64 length)
2199 {
2200 struct rbd_img_request *parent_request;
2201 struct rbd_device *rbd_dev;
2202
2203 rbd_assert(obj_request->img_request);
2204 rbd_dev = obj_request->img_request->rbd_dev;
2205
2206 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2207 length, OBJ_OP_READ, NULL);
2208 if (!parent_request)
2209 return NULL;
2210
2211 img_request_child_set(parent_request);
2212 rbd_obj_request_get(obj_request);
2213 parent_request->obj_request = obj_request;
2214
2215 return parent_request;
2216 }
2217
2218 static void rbd_parent_request_destroy(struct kref *kref)
2219 {
2220 struct rbd_img_request *parent_request;
2221 struct rbd_obj_request *orig_request;
2222
2223 parent_request = container_of(kref, struct rbd_img_request, kref);
2224 orig_request = parent_request->obj_request;
2225
2226 parent_request->obj_request = NULL;
2227 rbd_obj_request_put(orig_request);
2228 img_request_child_clear(parent_request);
2229
2230 rbd_img_request_destroy(kref);
2231 }
2232
2233 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2234 {
2235 struct rbd_img_request *img_request;
2236 unsigned int xferred;
2237 int result;
2238 bool more;
2239
2240 rbd_assert(obj_request_img_data_test(obj_request));
2241 img_request = obj_request->img_request;
2242
2243 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2244 xferred = (unsigned int)obj_request->xferred;
2245 result = obj_request->result;
2246 if (result) {
2247 struct rbd_device *rbd_dev = img_request->rbd_dev;
2248 enum obj_operation_type op_type;
2249
2250 if (img_request_discard_test(img_request))
2251 op_type = OBJ_OP_DISCARD;
2252 else if (img_request_write_test(img_request))
2253 op_type = OBJ_OP_WRITE;
2254 else
2255 op_type = OBJ_OP_READ;
2256
2257 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2258 obj_op_name(op_type), obj_request->length,
2259 obj_request->img_offset, obj_request->offset);
2260 rbd_warn(rbd_dev, " result %d xferred %x",
2261 result, xferred);
2262 if (!img_request->result)
2263 img_request->result = result;
2264 }
2265
2266 /* Image object requests don't own their page array */
2267
2268 if (obj_request->type == OBJ_REQUEST_PAGES) {
2269 obj_request->pages = NULL;
2270 obj_request->page_count = 0;
2271 }
2272
2273 if (img_request_child_test(img_request)) {
2274 rbd_assert(img_request->obj_request != NULL);
2275 more = obj_request->which < img_request->obj_request_count - 1;
2276 } else {
2277 rbd_assert(img_request->rq != NULL);
2278 more = blk_end_request(img_request->rq, result, xferred);
2279 }
2280
2281 return more;
2282 }
2283
2284 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2285 {
2286 struct rbd_img_request *img_request;
2287 u32 which = obj_request->which;
2288 bool more = true;
2289
2290 rbd_assert(obj_request_img_data_test(obj_request));
2291 img_request = obj_request->img_request;
2292
2293 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2294 rbd_assert(img_request != NULL);
2295 rbd_assert(img_request->obj_request_count > 0);
2296 rbd_assert(which != BAD_WHICH);
2297 rbd_assert(which < img_request->obj_request_count);
2298
2299 spin_lock_irq(&img_request->completion_lock);
2300 if (which != img_request->next_completion)
2301 goto out;
2302
2303 for_each_obj_request_from(img_request, obj_request) {
2304 rbd_assert(more);
2305 rbd_assert(which < img_request->obj_request_count);
2306
2307 if (!obj_request_done_test(obj_request))
2308 break;
2309 more = rbd_img_obj_end_request(obj_request);
2310 which++;
2311 }
2312
2313 rbd_assert(more ^ (which == img_request->obj_request_count));
2314 img_request->next_completion = which;
2315 out:
2316 spin_unlock_irq(&img_request->completion_lock);
2317 rbd_img_request_put(img_request);
2318
2319 if (!more)
2320 rbd_img_request_complete(img_request);
2321 }
2322
2323 /*
2324 * Add individual osd ops to the given ceph_osd_request and prepare
2325 * them for submission. num_ops is the current number of
2326 * osd operations already to the object request.
2327 */
2328 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2329 struct ceph_osd_request *osd_request,
2330 enum obj_operation_type op_type,
2331 unsigned int num_ops)
2332 {
2333 struct rbd_img_request *img_request = obj_request->img_request;
2334 struct rbd_device *rbd_dev = img_request->rbd_dev;
2335 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2336 u64 offset = obj_request->offset;
2337 u64 length = obj_request->length;
2338 u64 img_end;
2339 u16 opcode;
2340
2341 if (op_type == OBJ_OP_DISCARD) {
2342 if (!offset && length == object_size &&
2343 (!img_request_layered_test(img_request) ||
2344 !obj_request_overlaps_parent(obj_request))) {
2345 opcode = CEPH_OSD_OP_DELETE;
2346 } else if ((offset + length == object_size)) {
2347 opcode = CEPH_OSD_OP_TRUNCATE;
2348 } else {
2349 down_read(&rbd_dev->header_rwsem);
2350 img_end = rbd_dev->header.image_size;
2351 up_read(&rbd_dev->header_rwsem);
2352
2353 if (obj_request->img_offset + length == img_end)
2354 opcode = CEPH_OSD_OP_TRUNCATE;
2355 else
2356 opcode = CEPH_OSD_OP_ZERO;
2357 }
2358 } else if (op_type == OBJ_OP_WRITE) {
2359 opcode = CEPH_OSD_OP_WRITE;
2360 osd_req_op_alloc_hint_init(osd_request, num_ops,
2361 object_size, object_size);
2362 num_ops++;
2363 } else {
2364 opcode = CEPH_OSD_OP_READ;
2365 }
2366
2367 if (opcode == CEPH_OSD_OP_DELETE)
2368 osd_req_op_init(osd_request, num_ops, opcode);
2369 else
2370 osd_req_op_extent_init(osd_request, num_ops, opcode,
2371 offset, length, 0, 0);
2372
2373 if (obj_request->type == OBJ_REQUEST_BIO)
2374 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2375 obj_request->bio_list, length);
2376 else if (obj_request->type == OBJ_REQUEST_PAGES)
2377 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2378 obj_request->pages, length,
2379 offset & ~PAGE_MASK, false, false);
2380
2381 /* Discards are also writes */
2382 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2383 rbd_osd_req_format_write(obj_request);
2384 else
2385 rbd_osd_req_format_read(obj_request);
2386 }
2387
2388 /*
2389 * Split up an image request into one or more object requests, each
2390 * to a different object. The "type" parameter indicates whether
2391 * "data_desc" is the pointer to the head of a list of bio
2392 * structures, or the base of a page array. In either case this
2393 * function assumes data_desc describes memory sufficient to hold
2394 * all data described by the image request.
2395 */
2396 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2397 enum obj_request_type type,
2398 void *data_desc)
2399 {
2400 struct rbd_device *rbd_dev = img_request->rbd_dev;
2401 struct rbd_obj_request *obj_request = NULL;
2402 struct rbd_obj_request *next_obj_request;
2403 struct bio *bio_list = NULL;
2404 unsigned int bio_offset = 0;
2405 struct page **pages = NULL;
2406 enum obj_operation_type op_type;
2407 u64 img_offset;
2408 u64 resid;
2409
2410 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2411 (int)type, data_desc);
2412
2413 img_offset = img_request->offset;
2414 resid = img_request->length;
2415 rbd_assert(resid > 0);
2416 op_type = rbd_img_request_op_type(img_request);
2417
2418 if (type == OBJ_REQUEST_BIO) {
2419 bio_list = data_desc;
2420 rbd_assert(img_offset ==
2421 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2422 } else if (type == OBJ_REQUEST_PAGES) {
2423 pages = data_desc;
2424 }
2425
2426 while (resid) {
2427 struct ceph_osd_request *osd_req;
2428 const char *object_name;
2429 u64 offset;
2430 u64 length;
2431
2432 object_name = rbd_segment_name(rbd_dev, img_offset);
2433 if (!object_name)
2434 goto out_unwind;
2435 offset = rbd_segment_offset(rbd_dev, img_offset);
2436 length = rbd_segment_length(rbd_dev, img_offset, resid);
2437 obj_request = rbd_obj_request_create(object_name,
2438 offset, length, type);
2439 /* object request has its own copy of the object name */
2440 rbd_segment_name_free(object_name);
2441 if (!obj_request)
2442 goto out_unwind;
2443
2444 /*
2445 * set obj_request->img_request before creating the
2446 * osd_request so that it gets the right snapc
2447 */
2448 rbd_img_obj_request_add(img_request, obj_request);
2449
2450 if (type == OBJ_REQUEST_BIO) {
2451 unsigned int clone_size;
2452
2453 rbd_assert(length <= (u64)UINT_MAX);
2454 clone_size = (unsigned int)length;
2455 obj_request->bio_list =
2456 bio_chain_clone_range(&bio_list,
2457 &bio_offset,
2458 clone_size,
2459 GFP_ATOMIC);
2460 if (!obj_request->bio_list)
2461 goto out_unwind;
2462 } else if (type == OBJ_REQUEST_PAGES) {
2463 unsigned int page_count;
2464
2465 obj_request->pages = pages;
2466 page_count = (u32)calc_pages_for(offset, length);
2467 obj_request->page_count = page_count;
2468 if ((offset + length) & ~PAGE_MASK)
2469 page_count--; /* more on last page */
2470 pages += page_count;
2471 }
2472
2473 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2474 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2475 obj_request);
2476 if (!osd_req)
2477 goto out_unwind;
2478
2479 obj_request->osd_req = osd_req;
2480 obj_request->callback = rbd_img_obj_callback;
2481 obj_request->img_offset = img_offset;
2482
2483 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2484
2485 rbd_img_request_get(img_request);
2486
2487 img_offset += length;
2488 resid -= length;
2489 }
2490
2491 return 0;
2492
2493 out_unwind:
2494 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2495 rbd_img_obj_request_del(img_request, obj_request);
2496
2497 return -ENOMEM;
2498 }
2499
2500 static void
2501 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2502 {
2503 struct rbd_img_request *img_request;
2504 struct rbd_device *rbd_dev;
2505 struct page **pages;
2506 u32 page_count;
2507
2508 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2509 obj_request->type == OBJ_REQUEST_NODATA);
2510 rbd_assert(obj_request_img_data_test(obj_request));
2511 img_request = obj_request->img_request;
2512 rbd_assert(img_request);
2513
2514 rbd_dev = img_request->rbd_dev;
2515 rbd_assert(rbd_dev);
2516
2517 pages = obj_request->copyup_pages;
2518 rbd_assert(pages != NULL);
2519 obj_request->copyup_pages = NULL;
2520 page_count = obj_request->copyup_page_count;
2521 rbd_assert(page_count);
2522 obj_request->copyup_page_count = 0;
2523 ceph_release_page_vector(pages, page_count);
2524
2525 /*
2526 * We want the transfer count to reflect the size of the
2527 * original write request. There is no such thing as a
2528 * successful short write, so if the request was successful
2529 * we can just set it to the originally-requested length.
2530 */
2531 if (!obj_request->result)
2532 obj_request->xferred = obj_request->length;
2533
2534 /* Finish up with the normal image object callback */
2535
2536 rbd_img_obj_callback(obj_request);
2537 }
2538
2539 static void
2540 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2541 {
2542 struct rbd_obj_request *orig_request;
2543 struct ceph_osd_request *osd_req;
2544 struct ceph_osd_client *osdc;
2545 struct rbd_device *rbd_dev;
2546 struct page **pages;
2547 enum obj_operation_type op_type;
2548 u32 page_count;
2549 int img_result;
2550 u64 parent_length;
2551
2552 rbd_assert(img_request_child_test(img_request));
2553
2554 /* First get what we need from the image request */
2555
2556 pages = img_request->copyup_pages;
2557 rbd_assert(pages != NULL);
2558 img_request->copyup_pages = NULL;
2559 page_count = img_request->copyup_page_count;
2560 rbd_assert(page_count);
2561 img_request->copyup_page_count = 0;
2562
2563 orig_request = img_request->obj_request;
2564 rbd_assert(orig_request != NULL);
2565 rbd_assert(obj_request_type_valid(orig_request->type));
2566 img_result = img_request->result;
2567 parent_length = img_request->length;
2568 rbd_assert(parent_length == img_request->xferred);
2569 rbd_img_request_put(img_request);
2570
2571 rbd_assert(orig_request->img_request);
2572 rbd_dev = orig_request->img_request->rbd_dev;
2573 rbd_assert(rbd_dev);
2574
2575 /*
2576 * If the overlap has become 0 (most likely because the
2577 * image has been flattened) we need to free the pages
2578 * and re-submit the original write request.
2579 */
2580 if (!rbd_dev->parent_overlap) {
2581 struct ceph_osd_client *osdc;
2582
2583 ceph_release_page_vector(pages, page_count);
2584 osdc = &rbd_dev->rbd_client->client->osdc;
2585 img_result = rbd_obj_request_submit(osdc, orig_request);
2586 if (!img_result)
2587 return;
2588 }
2589
2590 if (img_result)
2591 goto out_err;
2592
2593 /*
2594 * The original osd request is of no use to use any more.
2595 * We need a new one that can hold the three ops in a copyup
2596 * request. Allocate the new copyup osd request for the
2597 * original request, and release the old one.
2598 */
2599 img_result = -ENOMEM;
2600 osd_req = rbd_osd_req_create_copyup(orig_request);
2601 if (!osd_req)
2602 goto out_err;
2603 rbd_osd_req_destroy(orig_request->osd_req);
2604 orig_request->osd_req = osd_req;
2605 orig_request->copyup_pages = pages;
2606 orig_request->copyup_page_count = page_count;
2607
2608 /* Initialize the copyup op */
2609
2610 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2611 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2612 false, false);
2613
2614 /* Add the other op(s) */
2615
2616 op_type = rbd_img_request_op_type(orig_request->img_request);
2617 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2618
2619 /* All set, send it off. */
2620
2621 orig_request->callback = rbd_img_obj_copyup_callback;
2622 osdc = &rbd_dev->rbd_client->client->osdc;
2623 img_result = rbd_obj_request_submit(osdc, orig_request);
2624 if (!img_result)
2625 return;
2626 out_err:
2627 /* Record the error code and complete the request */
2628
2629 orig_request->result = img_result;
2630 orig_request->xferred = 0;
2631 obj_request_done_set(orig_request);
2632 rbd_obj_request_complete(orig_request);
2633 }
2634
2635 /*
2636 * Read from the parent image the range of data that covers the
2637 * entire target of the given object request. This is used for
2638 * satisfying a layered image write request when the target of an
2639 * object request from the image request does not exist.
2640 *
2641 * A page array big enough to hold the returned data is allocated
2642 * and supplied to rbd_img_request_fill() as the "data descriptor."
2643 * When the read completes, this page array will be transferred to
2644 * the original object request for the copyup operation.
2645 *
2646 * If an error occurs, record it as the result of the original
2647 * object request and mark it done so it gets completed.
2648 */
2649 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2650 {
2651 struct rbd_img_request *img_request = NULL;
2652 struct rbd_img_request *parent_request = NULL;
2653 struct rbd_device *rbd_dev;
2654 u64 img_offset;
2655 u64 length;
2656 struct page **pages = NULL;
2657 u32 page_count;
2658 int result;
2659
2660 rbd_assert(obj_request_img_data_test(obj_request));
2661 rbd_assert(obj_request_type_valid(obj_request->type));
2662
2663 img_request = obj_request->img_request;
2664 rbd_assert(img_request != NULL);
2665 rbd_dev = img_request->rbd_dev;
2666 rbd_assert(rbd_dev->parent != NULL);
2667
2668 /*
2669 * Determine the byte range covered by the object in the
2670 * child image to which the original request was to be sent.
2671 */
2672 img_offset = obj_request->img_offset - obj_request->offset;
2673 length = (u64)1 << rbd_dev->header.obj_order;
2674
2675 /*
2676 * There is no defined parent data beyond the parent
2677 * overlap, so limit what we read at that boundary if
2678 * necessary.
2679 */
2680 if (img_offset + length > rbd_dev->parent_overlap) {
2681 rbd_assert(img_offset < rbd_dev->parent_overlap);
2682 length = rbd_dev->parent_overlap - img_offset;
2683 }
2684
2685 /*
2686 * Allocate a page array big enough to receive the data read
2687 * from the parent.
2688 */
2689 page_count = (u32)calc_pages_for(0, length);
2690 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2691 if (IS_ERR(pages)) {
2692 result = PTR_ERR(pages);
2693 pages = NULL;
2694 goto out_err;
2695 }
2696
2697 result = -ENOMEM;
2698 parent_request = rbd_parent_request_create(obj_request,
2699 img_offset, length);
2700 if (!parent_request)
2701 goto out_err;
2702
2703 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2704 if (result)
2705 goto out_err;
2706 parent_request->copyup_pages = pages;
2707 parent_request->copyup_page_count = page_count;
2708
2709 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2710 result = rbd_img_request_submit(parent_request);
2711 if (!result)
2712 return 0;
2713
2714 parent_request->copyup_pages = NULL;
2715 parent_request->copyup_page_count = 0;
2716 parent_request->obj_request = NULL;
2717 rbd_obj_request_put(obj_request);
2718 out_err:
2719 if (pages)
2720 ceph_release_page_vector(pages, page_count);
2721 if (parent_request)
2722 rbd_img_request_put(parent_request);
2723 obj_request->result = result;
2724 obj_request->xferred = 0;
2725 obj_request_done_set(obj_request);
2726
2727 return result;
2728 }
2729
2730 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2731 {
2732 struct rbd_obj_request *orig_request;
2733 struct rbd_device *rbd_dev;
2734 int result;
2735
2736 rbd_assert(!obj_request_img_data_test(obj_request));
2737
2738 /*
2739 * All we need from the object request is the original
2740 * request and the result of the STAT op. Grab those, then
2741 * we're done with the request.
2742 */
2743 orig_request = obj_request->obj_request;
2744 obj_request->obj_request = NULL;
2745 rbd_obj_request_put(orig_request);
2746 rbd_assert(orig_request);
2747 rbd_assert(orig_request->img_request);
2748
2749 result = obj_request->result;
2750 obj_request->result = 0;
2751
2752 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2753 obj_request, orig_request, result,
2754 obj_request->xferred, obj_request->length);
2755 rbd_obj_request_put(obj_request);
2756
2757 /*
2758 * If the overlap has become 0 (most likely because the
2759 * image has been flattened) we need to free the pages
2760 * and re-submit the original write request.
2761 */
2762 rbd_dev = orig_request->img_request->rbd_dev;
2763 if (!rbd_dev->parent_overlap) {
2764 struct ceph_osd_client *osdc;
2765
2766 osdc = &rbd_dev->rbd_client->client->osdc;
2767 result = rbd_obj_request_submit(osdc, orig_request);
2768 if (!result)
2769 return;
2770 }
2771
2772 /*
2773 * Our only purpose here is to determine whether the object
2774 * exists, and we don't want to treat the non-existence as
2775 * an error. If something else comes back, transfer the
2776 * error to the original request and complete it now.
2777 */
2778 if (!result) {
2779 obj_request_existence_set(orig_request, true);
2780 } else if (result == -ENOENT) {
2781 obj_request_existence_set(orig_request, false);
2782 } else if (result) {
2783 orig_request->result = result;
2784 goto out;
2785 }
2786
2787 /*
2788 * Resubmit the original request now that we have recorded
2789 * whether the target object exists.
2790 */
2791 orig_request->result = rbd_img_obj_request_submit(orig_request);
2792 out:
2793 if (orig_request->result)
2794 rbd_obj_request_complete(orig_request);
2795 }
2796
2797 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2798 {
2799 struct rbd_obj_request *stat_request;
2800 struct rbd_device *rbd_dev;
2801 struct ceph_osd_client *osdc;
2802 struct page **pages = NULL;
2803 u32 page_count;
2804 size_t size;
2805 int ret;
2806
2807 /*
2808 * The response data for a STAT call consists of:
2809 * le64 length;
2810 * struct {
2811 * le32 tv_sec;
2812 * le32 tv_nsec;
2813 * } mtime;
2814 */
2815 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2816 page_count = (u32)calc_pages_for(0, size);
2817 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2818 if (IS_ERR(pages))
2819 return PTR_ERR(pages);
2820
2821 ret = -ENOMEM;
2822 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2823 OBJ_REQUEST_PAGES);
2824 if (!stat_request)
2825 goto out;
2826
2827 rbd_obj_request_get(obj_request);
2828 stat_request->obj_request = obj_request;
2829 stat_request->pages = pages;
2830 stat_request->page_count = page_count;
2831
2832 rbd_assert(obj_request->img_request);
2833 rbd_dev = obj_request->img_request->rbd_dev;
2834 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2835 stat_request);
2836 if (!stat_request->osd_req)
2837 goto out;
2838 stat_request->callback = rbd_img_obj_exists_callback;
2839
2840 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2841 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2842 false, false);
2843 rbd_osd_req_format_read(stat_request);
2844
2845 osdc = &rbd_dev->rbd_client->client->osdc;
2846 ret = rbd_obj_request_submit(osdc, stat_request);
2847 out:
2848 if (ret)
2849 rbd_obj_request_put(obj_request);
2850
2851 return ret;
2852 }
2853
2854 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2855 {
2856 struct rbd_img_request *img_request;
2857 struct rbd_device *rbd_dev;
2858
2859 rbd_assert(obj_request_img_data_test(obj_request));
2860
2861 img_request = obj_request->img_request;
2862 rbd_assert(img_request);
2863 rbd_dev = img_request->rbd_dev;
2864
2865 /* Reads */
2866 if (!img_request_write_test(img_request) &&
2867 !img_request_discard_test(img_request))
2868 return true;
2869
2870 /* Non-layered writes */
2871 if (!img_request_layered_test(img_request))
2872 return true;
2873
2874 /*
2875 * Layered writes outside of the parent overlap range don't
2876 * share any data with the parent.
2877 */
2878 if (!obj_request_overlaps_parent(obj_request))
2879 return true;
2880
2881 /*
2882 * Entire-object layered writes - we will overwrite whatever
2883 * parent data there is anyway.
2884 */
2885 if (!obj_request->offset &&
2886 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2887 return true;
2888
2889 /*
2890 * If the object is known to already exist, its parent data has
2891 * already been copied.
2892 */
2893 if (obj_request_known_test(obj_request) &&
2894 obj_request_exists_test(obj_request))
2895 return true;
2896
2897 return false;
2898 }
2899
2900 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2901 {
2902 if (img_obj_request_simple(obj_request)) {
2903 struct rbd_device *rbd_dev;
2904 struct ceph_osd_client *osdc;
2905
2906 rbd_dev = obj_request->img_request->rbd_dev;
2907 osdc = &rbd_dev->rbd_client->client->osdc;
2908
2909 return rbd_obj_request_submit(osdc, obj_request);
2910 }
2911
2912 /*
2913 * It's a layered write. The target object might exist but
2914 * we may not know that yet. If we know it doesn't exist,
2915 * start by reading the data for the full target object from
2916 * the parent so we can use it for a copyup to the target.
2917 */
2918 if (obj_request_known_test(obj_request))
2919 return rbd_img_obj_parent_read_full(obj_request);
2920
2921 /* We don't know whether the target exists. Go find out. */
2922
2923 return rbd_img_obj_exists_submit(obj_request);
2924 }
2925
2926 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2927 {
2928 struct rbd_obj_request *obj_request;
2929 struct rbd_obj_request *next_obj_request;
2930
2931 dout("%s: img %p\n", __func__, img_request);
2932 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2933 int ret;
2934
2935 ret = rbd_img_obj_request_submit(obj_request);
2936 if (ret)
2937 return ret;
2938 }
2939
2940 return 0;
2941 }
2942
2943 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2944 {
2945 struct rbd_obj_request *obj_request;
2946 struct rbd_device *rbd_dev;
2947 u64 obj_end;
2948 u64 img_xferred;
2949 int img_result;
2950
2951 rbd_assert(img_request_child_test(img_request));
2952
2953 /* First get what we need from the image request and release it */
2954
2955 obj_request = img_request->obj_request;
2956 img_xferred = img_request->xferred;
2957 img_result = img_request->result;
2958 rbd_img_request_put(img_request);
2959
2960 /*
2961 * If the overlap has become 0 (most likely because the
2962 * image has been flattened) we need to re-submit the
2963 * original request.
2964 */
2965 rbd_assert(obj_request);
2966 rbd_assert(obj_request->img_request);
2967 rbd_dev = obj_request->img_request->rbd_dev;
2968 if (!rbd_dev->parent_overlap) {
2969 struct ceph_osd_client *osdc;
2970
2971 osdc = &rbd_dev->rbd_client->client->osdc;
2972 img_result = rbd_obj_request_submit(osdc, obj_request);
2973 if (!img_result)
2974 return;
2975 }
2976
2977 obj_request->result = img_result;
2978 if (obj_request->result)
2979 goto out;
2980
2981 /*
2982 * We need to zero anything beyond the parent overlap
2983 * boundary. Since rbd_img_obj_request_read_callback()
2984 * will zero anything beyond the end of a short read, an
2985 * easy way to do this is to pretend the data from the
2986 * parent came up short--ending at the overlap boundary.
2987 */
2988 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2989 obj_end = obj_request->img_offset + obj_request->length;
2990 if (obj_end > rbd_dev->parent_overlap) {
2991 u64 xferred = 0;
2992
2993 if (obj_request->img_offset < rbd_dev->parent_overlap)
2994 xferred = rbd_dev->parent_overlap -
2995 obj_request->img_offset;
2996
2997 obj_request->xferred = min(img_xferred, xferred);
2998 } else {
2999 obj_request->xferred = img_xferred;
3000 }
3001 out:
3002 rbd_img_obj_request_read_callback(obj_request);
3003 rbd_obj_request_complete(obj_request);
3004 }
3005
3006 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3007 {
3008 struct rbd_img_request *img_request;
3009 int result;
3010
3011 rbd_assert(obj_request_img_data_test(obj_request));
3012 rbd_assert(obj_request->img_request != NULL);
3013 rbd_assert(obj_request->result == (s32) -ENOENT);
3014 rbd_assert(obj_request_type_valid(obj_request->type));
3015
3016 /* rbd_read_finish(obj_request, obj_request->length); */
3017 img_request = rbd_parent_request_create(obj_request,
3018 obj_request->img_offset,
3019 obj_request->length);
3020 result = -ENOMEM;
3021 if (!img_request)
3022 goto out_err;
3023
3024 if (obj_request->type == OBJ_REQUEST_BIO)
3025 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3026 obj_request->bio_list);
3027 else
3028 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3029 obj_request->pages);
3030 if (result)
3031 goto out_err;
3032
3033 img_request->callback = rbd_img_parent_read_callback;
3034 result = rbd_img_request_submit(img_request);
3035 if (result)
3036 goto out_err;
3037
3038 return;
3039 out_err:
3040 if (img_request)
3041 rbd_img_request_put(img_request);
3042 obj_request->result = result;
3043 obj_request->xferred = 0;
3044 obj_request_done_set(obj_request);
3045 }
3046
3047 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3048 {
3049 struct rbd_obj_request *obj_request;
3050 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3051 int ret;
3052
3053 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3054 OBJ_REQUEST_NODATA);
3055 if (!obj_request)
3056 return -ENOMEM;
3057
3058 ret = -ENOMEM;
3059 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3060 obj_request);
3061 if (!obj_request->osd_req)
3062 goto out;
3063
3064 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3065 notify_id, 0, 0);
3066 rbd_osd_req_format_read(obj_request);
3067
3068 ret = rbd_obj_request_submit(osdc, obj_request);
3069 if (ret)
3070 goto out;
3071 ret = rbd_obj_request_wait(obj_request);
3072 out:
3073 rbd_obj_request_put(obj_request);
3074
3075 return ret;
3076 }
3077
3078 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3079 {
3080 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3081 int ret;
3082
3083 if (!rbd_dev)
3084 return;
3085
3086 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3087 rbd_dev->header_name, (unsigned long long)notify_id,
3088 (unsigned int)opcode);
3089
3090 /*
3091 * Until adequate refresh error handling is in place, there is
3092 * not much we can do here, except warn.
3093 *
3094 * See http://tracker.ceph.com/issues/5040
3095 */
3096 ret = rbd_dev_refresh(rbd_dev);
3097 if (ret)
3098 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3099
3100 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3101 if (ret)
3102 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3103 }
3104
3105 /*
3106 * Send a (un)watch request and wait for the ack. Return a request
3107 * with a ref held on success or error.
3108 */
3109 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3110 struct rbd_device *rbd_dev,
3111 bool watch)
3112 {
3113 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3114 struct rbd_obj_request *obj_request;
3115 int ret;
3116
3117 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3118 OBJ_REQUEST_NODATA);
3119 if (!obj_request)
3120 return ERR_PTR(-ENOMEM);
3121
3122 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3123 obj_request);
3124 if (!obj_request->osd_req) {
3125 ret = -ENOMEM;
3126 goto out;
3127 }
3128
3129 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3130 rbd_dev->watch_event->cookie, 0, watch);
3131 rbd_osd_req_format_write(obj_request);
3132
3133 if (watch)
3134 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3135
3136 ret = rbd_obj_request_submit(osdc, obj_request);
3137 if (ret)
3138 goto out;
3139
3140 ret = rbd_obj_request_wait(obj_request);
3141 if (ret)
3142 goto out;
3143
3144 ret = obj_request->result;
3145 if (ret) {
3146 if (watch)
3147 rbd_obj_request_end(obj_request);
3148 goto out;
3149 }
3150
3151 return obj_request;
3152
3153 out:
3154 rbd_obj_request_put(obj_request);
3155 return ERR_PTR(ret);
3156 }
3157
3158 /*
3159 * Initiate a watch request, synchronously.
3160 */
3161 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3162 {
3163 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3164 struct rbd_obj_request *obj_request;
3165 int ret;
3166
3167 rbd_assert(!rbd_dev->watch_event);
3168 rbd_assert(!rbd_dev->watch_request);
3169
3170 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3171 &rbd_dev->watch_event);
3172 if (ret < 0)
3173 return ret;
3174
3175 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3176 if (IS_ERR(obj_request)) {
3177 ceph_osdc_cancel_event(rbd_dev->watch_event);
3178 rbd_dev->watch_event = NULL;
3179 return PTR_ERR(obj_request);
3180 }
3181
3182 /*
3183 * A watch request is set to linger, so the underlying osd
3184 * request won't go away until we unregister it. We retain
3185 * a pointer to the object request during that time (in
3186 * rbd_dev->watch_request), so we'll keep a reference to it.
3187 * We'll drop that reference after we've unregistered it in
3188 * rbd_dev_header_unwatch_sync().
3189 */
3190 rbd_dev->watch_request = obj_request;
3191
3192 return 0;
3193 }
3194
3195 /*
3196 * Tear down a watch request, synchronously.
3197 */
3198 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3199 {
3200 struct rbd_obj_request *obj_request;
3201
3202 rbd_assert(rbd_dev->watch_event);
3203 rbd_assert(rbd_dev->watch_request);
3204
3205 rbd_obj_request_end(rbd_dev->watch_request);
3206 rbd_obj_request_put(rbd_dev->watch_request);
3207 rbd_dev->watch_request = NULL;
3208
3209 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3210 if (!IS_ERR(obj_request))
3211 rbd_obj_request_put(obj_request);
3212 else
3213 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3214 PTR_ERR(obj_request));
3215
3216 ceph_osdc_cancel_event(rbd_dev->watch_event);
3217 rbd_dev->watch_event = NULL;
3218 }
3219
3220 /*
3221 * Synchronous osd object method call. Returns the number of bytes
3222 * returned in the outbound buffer, or a negative error code.
3223 */
3224 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3225 const char *object_name,
3226 const char *class_name,
3227 const char *method_name,
3228 const void *outbound,
3229 size_t outbound_size,
3230 void *inbound,
3231 size_t inbound_size)
3232 {
3233 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3234 struct rbd_obj_request *obj_request;
3235 struct page **pages;
3236 u32 page_count;
3237 int ret;
3238
3239 /*
3240 * Method calls are ultimately read operations. The result
3241 * should placed into the inbound buffer provided. They
3242 * also supply outbound data--parameters for the object
3243 * method. Currently if this is present it will be a
3244 * snapshot id.
3245 */
3246 page_count = (u32)calc_pages_for(0, inbound_size);
3247 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3248 if (IS_ERR(pages))
3249 return PTR_ERR(pages);
3250
3251 ret = -ENOMEM;
3252 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3253 OBJ_REQUEST_PAGES);
3254 if (!obj_request)
3255 goto out;
3256
3257 obj_request->pages = pages;
3258 obj_request->page_count = page_count;
3259
3260 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3261 obj_request);
3262 if (!obj_request->osd_req)
3263 goto out;
3264
3265 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3266 class_name, method_name);
3267 if (outbound_size) {
3268 struct ceph_pagelist *pagelist;
3269
3270 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3271 if (!pagelist)
3272 goto out;
3273
3274 ceph_pagelist_init(pagelist);
3275 ceph_pagelist_append(pagelist, outbound, outbound_size);
3276 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3277 pagelist);
3278 }
3279 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3280 obj_request->pages, inbound_size,
3281 0, false, false);
3282 rbd_osd_req_format_read(obj_request);
3283
3284 ret = rbd_obj_request_submit(osdc, obj_request);
3285 if (ret)
3286 goto out;
3287 ret = rbd_obj_request_wait(obj_request);
3288 if (ret)
3289 goto out;
3290
3291 ret = obj_request->result;
3292 if (ret < 0)
3293 goto out;
3294
3295 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3296 ret = (int)obj_request->xferred;
3297 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3298 out:
3299 if (obj_request)
3300 rbd_obj_request_put(obj_request);
3301 else
3302 ceph_release_page_vector(pages, page_count);
3303
3304 return ret;
3305 }
3306
3307 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3308 {
3309 struct rbd_img_request *img_request;
3310 struct ceph_snap_context *snapc = NULL;
3311 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3312 u64 length = blk_rq_bytes(rq);
3313 enum obj_operation_type op_type;
3314 u64 mapping_size;
3315 int result;
3316
3317 if (rq->cmd_flags & REQ_DISCARD)
3318 op_type = OBJ_OP_DISCARD;
3319 else if (rq->cmd_flags & REQ_WRITE)
3320 op_type = OBJ_OP_WRITE;
3321 else
3322 op_type = OBJ_OP_READ;
3323
3324 /* Ignore/skip any zero-length requests */
3325
3326 if (!length) {
3327 dout("%s: zero-length request\n", __func__);
3328 result = 0;
3329 goto err_rq;
3330 }
3331
3332 /* Only reads are allowed to a read-only device */
3333
3334 if (op_type != OBJ_OP_READ) {
3335 if (rbd_dev->mapping.read_only) {
3336 result = -EROFS;
3337 goto err_rq;
3338 }
3339 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3340 }
3341
3342 /*
3343 * Quit early if the mapped snapshot no longer exists. It's
3344 * still possible the snapshot will have disappeared by the
3345 * time our request arrives at the osd, but there's no sense in
3346 * sending it if we already know.
3347 */
3348 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3349 dout("request for non-existent snapshot");
3350 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3351 result = -ENXIO;
3352 goto err_rq;
3353 }
3354
3355 if (offset && length > U64_MAX - offset + 1) {
3356 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3357 length);
3358 result = -EINVAL;
3359 goto err_rq; /* Shouldn't happen */
3360 }
3361
3362 down_read(&rbd_dev->header_rwsem);
3363 mapping_size = rbd_dev->mapping.size;
3364 if (op_type != OBJ_OP_READ) {
3365 snapc = rbd_dev->header.snapc;
3366 ceph_get_snap_context(snapc);
3367 }
3368 up_read(&rbd_dev->header_rwsem);
3369
3370 if (offset + length > mapping_size) {
3371 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3372 length, mapping_size);
3373 result = -EIO;
3374 goto err_rq;
3375 }
3376
3377 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3378 snapc);
3379 if (!img_request) {
3380 result = -ENOMEM;
3381 goto err_rq;
3382 }
3383 img_request->rq = rq;
3384
3385 if (op_type == OBJ_OP_DISCARD)
3386 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3387 NULL);
3388 else
3389 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3390 rq->bio);
3391 if (result)
3392 goto err_img_request;
3393
3394 result = rbd_img_request_submit(img_request);
3395 if (result)
3396 goto err_img_request;
3397
3398 return;
3399
3400 err_img_request:
3401 rbd_img_request_put(img_request);
3402 err_rq:
3403 if (result)
3404 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3405 obj_op_name(op_type), length, offset, result);
3406 ceph_put_snap_context(snapc);
3407 blk_end_request_all(rq, result);
3408 }
3409
3410 static void rbd_request_workfn(struct work_struct *work)
3411 {
3412 struct rbd_device *rbd_dev =
3413 container_of(work, struct rbd_device, rq_work);
3414 struct request *rq, *next;
3415 LIST_HEAD(requests);
3416
3417 spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3418 list_splice_init(&rbd_dev->rq_queue, &requests);
3419 spin_unlock_irq(&rbd_dev->lock);
3420
3421 list_for_each_entry_safe(rq, next, &requests, queuelist) {
3422 list_del_init(&rq->queuelist);
3423 rbd_handle_request(rbd_dev, rq);
3424 }
3425 }
3426
3427 /*
3428 * Called with q->queue_lock held and interrupts disabled, possibly on
3429 * the way to schedule(). Do not sleep here!
3430 */
3431 static void rbd_request_fn(struct request_queue *q)
3432 {
3433 struct rbd_device *rbd_dev = q->queuedata;
3434 struct request *rq;
3435 int queued = 0;
3436
3437 rbd_assert(rbd_dev);
3438
3439 while ((rq = blk_fetch_request(q))) {
3440 /* Ignore any non-FS requests that filter through. */
3441 if (rq->cmd_type != REQ_TYPE_FS) {
3442 dout("%s: non-fs request type %d\n", __func__,
3443 (int) rq->cmd_type);
3444 __blk_end_request_all(rq, 0);
3445 continue;
3446 }
3447
3448 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3449 queued++;
3450 }
3451
3452 if (queued)
3453 queue_work(rbd_wq, &rbd_dev->rq_work);
3454 }
3455
3456 /*
3457 * a queue callback. Makes sure that we don't create a bio that spans across
3458 * multiple osd objects. One exception would be with a single page bios,
3459 * which we handle later at bio_chain_clone_range()
3460 */
3461 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3462 struct bio_vec *bvec)
3463 {
3464 struct rbd_device *rbd_dev = q->queuedata;
3465 sector_t sector_offset;
3466 sector_t sectors_per_obj;
3467 sector_t obj_sector_offset;
3468 int ret;
3469
3470 /*
3471 * Find how far into its rbd object the partition-relative
3472 * bio start sector is to offset relative to the enclosing
3473 * device.
3474 */
3475 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3476 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3477 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3478
3479 /*
3480 * Compute the number of bytes from that offset to the end
3481 * of the object. Account for what's already used by the bio.
3482 */
3483 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3484 if (ret > bmd->bi_size)
3485 ret -= bmd->bi_size;
3486 else
3487 ret = 0;
3488
3489 /*
3490 * Don't send back more than was asked for. And if the bio
3491 * was empty, let the whole thing through because: "Note
3492 * that a block device *must* allow a single page to be
3493 * added to an empty bio."
3494 */
3495 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3496 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3497 ret = (int) bvec->bv_len;
3498
3499 return ret;
3500 }
3501
3502 static void rbd_free_disk(struct rbd_device *rbd_dev)
3503 {
3504 struct gendisk *disk = rbd_dev->disk;
3505
3506 if (!disk)
3507 return;
3508
3509 rbd_dev->disk = NULL;
3510 if (disk->flags & GENHD_FL_UP) {
3511 del_gendisk(disk);
3512 if (disk->queue)
3513 blk_cleanup_queue(disk->queue);
3514 }
3515 put_disk(disk);
3516 }
3517
3518 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3519 const char *object_name,
3520 u64 offset, u64 length, void *buf)
3521
3522 {
3523 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3524 struct rbd_obj_request *obj_request;
3525 struct page **pages = NULL;
3526 u32 page_count;
3527 size_t size;
3528 int ret;
3529
3530 page_count = (u32) calc_pages_for(offset, length);
3531 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3532 if (IS_ERR(pages))
3533 return PTR_ERR(pages);
3534
3535 ret = -ENOMEM;
3536 obj_request = rbd_obj_request_create(object_name, offset, length,
3537 OBJ_REQUEST_PAGES);
3538 if (!obj_request)
3539 goto out;
3540
3541 obj_request->pages = pages;
3542 obj_request->page_count = page_count;
3543
3544 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3545 obj_request);
3546 if (!obj_request->osd_req)
3547 goto out;
3548
3549 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3550 offset, length, 0, 0);
3551 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3552 obj_request->pages,
3553 obj_request->length,
3554 obj_request->offset & ~PAGE_MASK,
3555 false, false);
3556 rbd_osd_req_format_read(obj_request);
3557
3558 ret = rbd_obj_request_submit(osdc, obj_request);
3559 if (ret)
3560 goto out;
3561 ret = rbd_obj_request_wait(obj_request);
3562 if (ret)
3563 goto out;
3564
3565 ret = obj_request->result;
3566 if (ret < 0)
3567 goto out;
3568
3569 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3570 size = (size_t) obj_request->xferred;
3571 ceph_copy_from_page_vector(pages, buf, 0, size);
3572 rbd_assert(size <= (size_t)INT_MAX);
3573 ret = (int)size;
3574 out:
3575 if (obj_request)
3576 rbd_obj_request_put(obj_request);
3577 else
3578 ceph_release_page_vector(pages, page_count);
3579
3580 return ret;
3581 }
3582
3583 /*
3584 * Read the complete header for the given rbd device. On successful
3585 * return, the rbd_dev->header field will contain up-to-date
3586 * information about the image.
3587 */
3588 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3589 {
3590 struct rbd_image_header_ondisk *ondisk = NULL;
3591 u32 snap_count = 0;
3592 u64 names_size = 0;
3593 u32 want_count;
3594 int ret;
3595
3596 /*
3597 * The complete header will include an array of its 64-bit
3598 * snapshot ids, followed by the names of those snapshots as
3599 * a contiguous block of NUL-terminated strings. Note that
3600 * the number of snapshots could change by the time we read
3601 * it in, in which case we re-read it.
3602 */
3603 do {
3604 size_t size;
3605
3606 kfree(ondisk);
3607
3608 size = sizeof (*ondisk);
3609 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3610 size += names_size;
3611 ondisk = kmalloc(size, GFP_KERNEL);
3612 if (!ondisk)
3613 return -ENOMEM;
3614
3615 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3616 0, size, ondisk);
3617 if (ret < 0)
3618 goto out;
3619 if ((size_t)ret < size) {
3620 ret = -ENXIO;
3621 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3622 size, ret);
3623 goto out;
3624 }
3625 if (!rbd_dev_ondisk_valid(ondisk)) {
3626 ret = -ENXIO;
3627 rbd_warn(rbd_dev, "invalid header");
3628 goto out;
3629 }
3630
3631 names_size = le64_to_cpu(ondisk->snap_names_len);
3632 want_count = snap_count;
3633 snap_count = le32_to_cpu(ondisk->snap_count);
3634 } while (snap_count != want_count);
3635
3636 ret = rbd_header_from_disk(rbd_dev, ondisk);
3637 out:
3638 kfree(ondisk);
3639
3640 return ret;
3641 }
3642
3643 /*
3644 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3645 * has disappeared from the (just updated) snapshot context.
3646 */
3647 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3648 {
3649 u64 snap_id;
3650
3651 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3652 return;
3653
3654 snap_id = rbd_dev->spec->snap_id;
3655 if (snap_id == CEPH_NOSNAP)
3656 return;
3657
3658 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3659 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3660 }
3661
3662 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3663 {
3664 sector_t size;
3665 bool removing;
3666
3667 /*
3668 * Don't hold the lock while doing disk operations,
3669 * or lock ordering will conflict with the bdev mutex via:
3670 * rbd_add() -> blkdev_get() -> rbd_open()
3671 */
3672 spin_lock_irq(&rbd_dev->lock);
3673 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3674 spin_unlock_irq(&rbd_dev->lock);
3675 /*
3676 * If the device is being removed, rbd_dev->disk has
3677 * been destroyed, so don't try to update its size
3678 */
3679 if (!removing) {
3680 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3681 dout("setting size to %llu sectors", (unsigned long long)size);
3682 set_capacity(rbd_dev->disk, size);
3683 revalidate_disk(rbd_dev->disk);
3684 }
3685 }
3686
3687 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3688 {
3689 u64 mapping_size;
3690 int ret;
3691
3692 down_write(&rbd_dev->header_rwsem);
3693 mapping_size = rbd_dev->mapping.size;
3694
3695 ret = rbd_dev_header_info(rbd_dev);
3696 if (ret)
3697 return ret;
3698
3699 /*
3700 * If there is a parent, see if it has disappeared due to the
3701 * mapped image getting flattened.
3702 */
3703 if (rbd_dev->parent) {
3704 ret = rbd_dev_v2_parent_info(rbd_dev);
3705 if (ret)
3706 return ret;
3707 }
3708
3709 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3710 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3711 rbd_dev->mapping.size = rbd_dev->header.image_size;
3712 } else {
3713 /* validate mapped snapshot's EXISTS flag */
3714 rbd_exists_validate(rbd_dev);
3715 }
3716
3717 up_write(&rbd_dev->header_rwsem);
3718
3719 if (mapping_size != rbd_dev->mapping.size)
3720 rbd_dev_update_size(rbd_dev);
3721
3722 return 0;
3723 }
3724
3725 static int rbd_init_disk(struct rbd_device *rbd_dev)
3726 {
3727 struct gendisk *disk;
3728 struct request_queue *q;
3729 u64 segment_size;
3730
3731 /* create gendisk info */
3732 disk = alloc_disk(single_major ?
3733 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3734 RBD_MINORS_PER_MAJOR);
3735 if (!disk)
3736 return -ENOMEM;
3737
3738 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3739 rbd_dev->dev_id);
3740 disk->major = rbd_dev->major;
3741 disk->first_minor = rbd_dev->minor;
3742 if (single_major)
3743 disk->flags |= GENHD_FL_EXT_DEVT;
3744 disk->fops = &rbd_bd_ops;
3745 disk->private_data = rbd_dev;
3746
3747 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3748 if (!q)
3749 goto out_disk;
3750
3751 /* We use the default size, but let's be explicit about it. */
3752 blk_queue_physical_block_size(q, SECTOR_SIZE);
3753
3754 /* set io sizes to object size */
3755 segment_size = rbd_obj_bytes(&rbd_dev->header);
3756 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3757 blk_queue_max_segment_size(q, segment_size);
3758 blk_queue_io_min(q, segment_size);
3759 blk_queue_io_opt(q, segment_size);
3760
3761 /* enable the discard support */
3762 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3763 q->limits.discard_granularity = segment_size;
3764 q->limits.discard_alignment = segment_size;
3765 q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3766 q->limits.discard_zeroes_data = 1;
3767
3768 blk_queue_merge_bvec(q, rbd_merge_bvec);
3769 disk->queue = q;
3770
3771 q->queuedata = rbd_dev;
3772
3773 rbd_dev->disk = disk;
3774
3775 return 0;
3776 out_disk:
3777 put_disk(disk);
3778
3779 return -ENOMEM;
3780 }
3781
3782 /*
3783 sysfs
3784 */
3785
3786 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3787 {
3788 return container_of(dev, struct rbd_device, dev);
3789 }
3790
3791 static ssize_t rbd_size_show(struct device *dev,
3792 struct device_attribute *attr, char *buf)
3793 {
3794 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3795
3796 return sprintf(buf, "%llu\n",
3797 (unsigned long long)rbd_dev->mapping.size);
3798 }
3799
3800 /*
3801 * Note this shows the features for whatever's mapped, which is not
3802 * necessarily the base image.
3803 */
3804 static ssize_t rbd_features_show(struct device *dev,
3805 struct device_attribute *attr, char *buf)
3806 {
3807 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3808
3809 return sprintf(buf, "0x%016llx\n",
3810 (unsigned long long)rbd_dev->mapping.features);
3811 }
3812
3813 static ssize_t rbd_major_show(struct device *dev,
3814 struct device_attribute *attr, char *buf)
3815 {
3816 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3817
3818 if (rbd_dev->major)
3819 return sprintf(buf, "%d\n", rbd_dev->major);
3820
3821 return sprintf(buf, "(none)\n");
3822 }
3823
3824 static ssize_t rbd_minor_show(struct device *dev,
3825 struct device_attribute *attr, char *buf)
3826 {
3827 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3828
3829 return sprintf(buf, "%d\n", rbd_dev->minor);
3830 }
3831
3832 static ssize_t rbd_client_id_show(struct device *dev,
3833 struct device_attribute *attr, char *buf)
3834 {
3835 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3836
3837 return sprintf(buf, "client%lld\n",
3838 ceph_client_id(rbd_dev->rbd_client->client));
3839 }
3840
3841 static ssize_t rbd_pool_show(struct device *dev,
3842 struct device_attribute *attr, char *buf)
3843 {
3844 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3845
3846 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3847 }
3848
3849 static ssize_t rbd_pool_id_show(struct device *dev,
3850 struct device_attribute *attr, char *buf)
3851 {
3852 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3853
3854 return sprintf(buf, "%llu\n",
3855 (unsigned long long) rbd_dev->spec->pool_id);
3856 }
3857
3858 static ssize_t rbd_name_show(struct device *dev,
3859 struct device_attribute *attr, char *buf)
3860 {
3861 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3862
3863 if (rbd_dev->spec->image_name)
3864 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3865
3866 return sprintf(buf, "(unknown)\n");
3867 }
3868
3869 static ssize_t rbd_image_id_show(struct device *dev,
3870 struct device_attribute *attr, char *buf)
3871 {
3872 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3873
3874 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3875 }
3876
3877 /*
3878 * Shows the name of the currently-mapped snapshot (or
3879 * RBD_SNAP_HEAD_NAME for the base image).
3880 */
3881 static ssize_t rbd_snap_show(struct device *dev,
3882 struct device_attribute *attr,
3883 char *buf)
3884 {
3885 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3886
3887 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3888 }
3889
3890 /*
3891 * For a v2 image, shows the chain of parent images, separated by empty
3892 * lines. For v1 images or if there is no parent, shows "(no parent
3893 * image)".
3894 */
3895 static ssize_t rbd_parent_show(struct device *dev,
3896 struct device_attribute *attr,
3897 char *buf)
3898 {
3899 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3900 ssize_t count = 0;
3901
3902 if (!rbd_dev->parent)
3903 return sprintf(buf, "(no parent image)\n");
3904
3905 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3906 struct rbd_spec *spec = rbd_dev->parent_spec;
3907
3908 count += sprintf(&buf[count], "%s"
3909 "pool_id %llu\npool_name %s\n"
3910 "image_id %s\nimage_name %s\n"
3911 "snap_id %llu\nsnap_name %s\n"
3912 "overlap %llu\n",
3913 !count ? "" : "\n", /* first? */
3914 spec->pool_id, spec->pool_name,
3915 spec->image_id, spec->image_name ?: "(unknown)",
3916 spec->snap_id, spec->snap_name,
3917 rbd_dev->parent_overlap);
3918 }
3919
3920 return count;
3921 }
3922
3923 static ssize_t rbd_image_refresh(struct device *dev,
3924 struct device_attribute *attr,
3925 const char *buf,
3926 size_t size)
3927 {
3928 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3929 int ret;
3930
3931 ret = rbd_dev_refresh(rbd_dev);
3932 if (ret)
3933 return ret;
3934
3935 return size;
3936 }
3937
3938 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3939 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3940 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3941 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3942 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3943 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3944 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3945 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3946 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3947 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3948 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3949 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3950
3951 static struct attribute *rbd_attrs[] = {
3952 &dev_attr_size.attr,
3953 &dev_attr_features.attr,
3954 &dev_attr_major.attr,
3955 &dev_attr_minor.attr,
3956 &dev_attr_client_id.attr,
3957 &dev_attr_pool.attr,
3958 &dev_attr_pool_id.attr,
3959 &dev_attr_name.attr,
3960 &dev_attr_image_id.attr,
3961 &dev_attr_current_snap.attr,
3962 &dev_attr_parent.attr,
3963 &dev_attr_refresh.attr,
3964 NULL
3965 };
3966
3967 static struct attribute_group rbd_attr_group = {
3968 .attrs = rbd_attrs,
3969 };
3970
3971 static const struct attribute_group *rbd_attr_groups[] = {
3972 &rbd_attr_group,
3973 NULL
3974 };
3975
3976 static void rbd_sysfs_dev_release(struct device *dev)
3977 {
3978 }
3979
3980 static struct device_type rbd_device_type = {
3981 .name = "rbd",
3982 .groups = rbd_attr_groups,
3983 .release = rbd_sysfs_dev_release,
3984 };
3985
3986 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3987 {
3988 kref_get(&spec->kref);
3989
3990 return spec;
3991 }
3992
3993 static void rbd_spec_free(struct kref *kref);
3994 static void rbd_spec_put(struct rbd_spec *spec)
3995 {
3996 if (spec)
3997 kref_put(&spec->kref, rbd_spec_free);
3998 }
3999
4000 static struct rbd_spec *rbd_spec_alloc(void)
4001 {
4002 struct rbd_spec *spec;
4003
4004 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4005 if (!spec)
4006 return NULL;
4007
4008 spec->pool_id = CEPH_NOPOOL;
4009 spec->snap_id = CEPH_NOSNAP;
4010 kref_init(&spec->kref);
4011
4012 return spec;
4013 }
4014
4015 static void rbd_spec_free(struct kref *kref)
4016 {
4017 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4018
4019 kfree(spec->pool_name);
4020 kfree(spec->image_id);
4021 kfree(spec->image_name);
4022 kfree(spec->snap_name);
4023 kfree(spec);
4024 }
4025
4026 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4027 struct rbd_spec *spec)
4028 {
4029 struct rbd_device *rbd_dev;
4030
4031 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4032 if (!rbd_dev)
4033 return NULL;
4034
4035 spin_lock_init(&rbd_dev->lock);
4036 INIT_LIST_HEAD(&rbd_dev->rq_queue);
4037 INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4038 rbd_dev->flags = 0;
4039 atomic_set(&rbd_dev->parent_ref, 0);
4040 INIT_LIST_HEAD(&rbd_dev->node);
4041 init_rwsem(&rbd_dev->header_rwsem);
4042
4043 rbd_dev->spec = spec;
4044 rbd_dev->rbd_client = rbdc;
4045
4046 /* Initialize the layout used for all rbd requests */
4047
4048 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4049 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4050 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4051 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4052
4053 return rbd_dev;
4054 }
4055
4056 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4057 {
4058 rbd_put_client(rbd_dev->rbd_client);
4059 rbd_spec_put(rbd_dev->spec);
4060 kfree(rbd_dev);
4061 }
4062
4063 /*
4064 * Get the size and object order for an image snapshot, or if
4065 * snap_id is CEPH_NOSNAP, gets this information for the base
4066 * image.
4067 */
4068 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4069 u8 *order, u64 *snap_size)
4070 {
4071 __le64 snapid = cpu_to_le64(snap_id);
4072 int ret;
4073 struct {
4074 u8 order;
4075 __le64 size;
4076 } __attribute__ ((packed)) size_buf = { 0 };
4077
4078 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4079 "rbd", "get_size",
4080 &snapid, sizeof (snapid),
4081 &size_buf, sizeof (size_buf));
4082 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4083 if (ret < 0)
4084 return ret;
4085 if (ret < sizeof (size_buf))
4086 return -ERANGE;
4087
4088 if (order) {
4089 *order = size_buf.order;
4090 dout(" order %u", (unsigned int)*order);
4091 }
4092 *snap_size = le64_to_cpu(size_buf.size);
4093
4094 dout(" snap_id 0x%016llx snap_size = %llu\n",
4095 (unsigned long long)snap_id,
4096 (unsigned long long)*snap_size);
4097
4098 return 0;
4099 }
4100
4101 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4102 {
4103 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4104 &rbd_dev->header.obj_order,
4105 &rbd_dev->header.image_size);
4106 }
4107
4108 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4109 {
4110 void *reply_buf;
4111 int ret;
4112 void *p;
4113
4114 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4115 if (!reply_buf)
4116 return -ENOMEM;
4117
4118 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4119 "rbd", "get_object_prefix", NULL, 0,
4120 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4121 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4122 if (ret < 0)
4123 goto out;
4124
4125 p = reply_buf;
4126 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4127 p + ret, NULL, GFP_NOIO);
4128 ret = 0;
4129
4130 if (IS_ERR(rbd_dev->header.object_prefix)) {
4131 ret = PTR_ERR(rbd_dev->header.object_prefix);
4132 rbd_dev->header.object_prefix = NULL;
4133 } else {
4134 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4135 }
4136 out:
4137 kfree(reply_buf);
4138
4139 return ret;
4140 }
4141
4142 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4143 u64 *snap_features)
4144 {
4145 __le64 snapid = cpu_to_le64(snap_id);
4146 struct {
4147 __le64 features;
4148 __le64 incompat;
4149 } __attribute__ ((packed)) features_buf = { 0 };
4150 u64 incompat;
4151 int ret;
4152
4153 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4154 "rbd", "get_features",
4155 &snapid, sizeof (snapid),
4156 &features_buf, sizeof (features_buf));
4157 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158 if (ret < 0)
4159 return ret;
4160 if (ret < sizeof (features_buf))
4161 return -ERANGE;
4162
4163 incompat = le64_to_cpu(features_buf.incompat);
4164 if (incompat & ~RBD_FEATURES_SUPPORTED)
4165 return -ENXIO;
4166
4167 *snap_features = le64_to_cpu(features_buf.features);
4168
4169 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4170 (unsigned long long)snap_id,
4171 (unsigned long long)*snap_features,
4172 (unsigned long long)le64_to_cpu(features_buf.incompat));
4173
4174 return 0;
4175 }
4176
4177 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4178 {
4179 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4180 &rbd_dev->header.features);
4181 }
4182
4183 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4184 {
4185 struct rbd_spec *parent_spec;
4186 size_t size;
4187 void *reply_buf = NULL;
4188 __le64 snapid;
4189 void *p;
4190 void *end;
4191 u64 pool_id;
4192 char *image_id;
4193 u64 snap_id;
4194 u64 overlap;
4195 int ret;
4196
4197 parent_spec = rbd_spec_alloc();
4198 if (!parent_spec)
4199 return -ENOMEM;
4200
4201 size = sizeof (__le64) + /* pool_id */
4202 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4203 sizeof (__le64) + /* snap_id */
4204 sizeof (__le64); /* overlap */
4205 reply_buf = kmalloc(size, GFP_KERNEL);
4206 if (!reply_buf) {
4207 ret = -ENOMEM;
4208 goto out_err;
4209 }
4210
4211 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4212 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4213 "rbd", "get_parent",
4214 &snapid, sizeof (snapid),
4215 reply_buf, size);
4216 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4217 if (ret < 0)
4218 goto out_err;
4219
4220 p = reply_buf;
4221 end = reply_buf + ret;
4222 ret = -ERANGE;
4223 ceph_decode_64_safe(&p, end, pool_id, out_err);
4224 if (pool_id == CEPH_NOPOOL) {
4225 /*
4226 * Either the parent never existed, or we have
4227 * record of it but the image got flattened so it no
4228 * longer has a parent. When the parent of a
4229 * layered image disappears we immediately set the
4230 * overlap to 0. The effect of this is that all new
4231 * requests will be treated as if the image had no
4232 * parent.
4233 */
4234 if (rbd_dev->parent_overlap) {
4235 rbd_dev->parent_overlap = 0;
4236 rbd_dev_parent_put(rbd_dev);
4237 pr_info("%s: clone image has been flattened\n",
4238 rbd_dev->disk->disk_name);
4239 }
4240
4241 goto out; /* No parent? No problem. */
4242 }
4243
4244 /* The ceph file layout needs to fit pool id in 32 bits */
4245
4246 ret = -EIO;
4247 if (pool_id > (u64)U32_MAX) {
4248 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4249 (unsigned long long)pool_id, U32_MAX);
4250 goto out_err;
4251 }
4252
4253 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4254 if (IS_ERR(image_id)) {
4255 ret = PTR_ERR(image_id);
4256 goto out_err;
4257 }
4258 ceph_decode_64_safe(&p, end, snap_id, out_err);
4259 ceph_decode_64_safe(&p, end, overlap, out_err);
4260
4261 /*
4262 * The parent won't change (except when the clone is
4263 * flattened, already handled that). So we only need to
4264 * record the parent spec we have not already done so.
4265 */
4266 if (!rbd_dev->parent_spec) {
4267 parent_spec->pool_id = pool_id;
4268 parent_spec->image_id = image_id;
4269 parent_spec->snap_id = snap_id;
4270 rbd_dev->parent_spec = parent_spec;
4271 parent_spec = NULL; /* rbd_dev now owns this */
4272 } else {
4273 kfree(image_id);
4274 }
4275
4276 /*
4277 * We always update the parent overlap. If it's zero we
4278 * treat it specially.
4279 */
4280 rbd_dev->parent_overlap = overlap;
4281 if (!overlap) {
4282
4283 /* A null parent_spec indicates it's the initial probe */
4284
4285 if (parent_spec) {
4286 /*
4287 * The overlap has become zero, so the clone
4288 * must have been resized down to 0 at some
4289 * point. Treat this the same as a flatten.
4290 */
4291 rbd_dev_parent_put(rbd_dev);
4292 pr_info("%s: clone image now standalone\n",
4293 rbd_dev->disk->disk_name);
4294 } else {
4295 /*
4296 * For the initial probe, if we find the
4297 * overlap is zero we just pretend there was
4298 * no parent image.
4299 */
4300 rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4301 }
4302 }
4303 out:
4304 ret = 0;
4305 out_err:
4306 kfree(reply_buf);
4307 rbd_spec_put(parent_spec);
4308
4309 return ret;
4310 }
4311
4312 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4313 {
4314 struct {
4315 __le64 stripe_unit;
4316 __le64 stripe_count;
4317 } __attribute__ ((packed)) striping_info_buf = { 0 };
4318 size_t size = sizeof (striping_info_buf);
4319 void *p;
4320 u64 obj_size;
4321 u64 stripe_unit;
4322 u64 stripe_count;
4323 int ret;
4324
4325 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4326 "rbd", "get_stripe_unit_count", NULL, 0,
4327 (char *)&striping_info_buf, size);
4328 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4329 if (ret < 0)
4330 return ret;
4331 if (ret < size)
4332 return -ERANGE;
4333
4334 /*
4335 * We don't actually support the "fancy striping" feature
4336 * (STRIPINGV2) yet, but if the striping sizes are the
4337 * defaults the behavior is the same as before. So find
4338 * out, and only fail if the image has non-default values.
4339 */
4340 ret = -EINVAL;
4341 obj_size = (u64)1 << rbd_dev->header.obj_order;
4342 p = &striping_info_buf;
4343 stripe_unit = ceph_decode_64(&p);
4344 if (stripe_unit != obj_size) {
4345 rbd_warn(rbd_dev, "unsupported stripe unit "
4346 "(got %llu want %llu)",
4347 stripe_unit, obj_size);
4348 return -EINVAL;
4349 }
4350 stripe_count = ceph_decode_64(&p);
4351 if (stripe_count != 1) {
4352 rbd_warn(rbd_dev, "unsupported stripe count "
4353 "(got %llu want 1)", stripe_count);
4354 return -EINVAL;
4355 }
4356 rbd_dev->header.stripe_unit = stripe_unit;
4357 rbd_dev->header.stripe_count = stripe_count;
4358
4359 return 0;
4360 }
4361
4362 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4363 {
4364 size_t image_id_size;
4365 char *image_id;
4366 void *p;
4367 void *end;
4368 size_t size;
4369 void *reply_buf = NULL;
4370 size_t len = 0;
4371 char *image_name = NULL;
4372 int ret;
4373
4374 rbd_assert(!rbd_dev->spec->image_name);
4375
4376 len = strlen(rbd_dev->spec->image_id);
4377 image_id_size = sizeof (__le32) + len;
4378 image_id = kmalloc(image_id_size, GFP_KERNEL);
4379 if (!image_id)
4380 return NULL;
4381
4382 p = image_id;
4383 end = image_id + image_id_size;
4384 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4385
4386 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4387 reply_buf = kmalloc(size, GFP_KERNEL);
4388 if (!reply_buf)
4389 goto out;
4390
4391 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4392 "rbd", "dir_get_name",
4393 image_id, image_id_size,
4394 reply_buf, size);
4395 if (ret < 0)
4396 goto out;
4397 p = reply_buf;
4398 end = reply_buf + ret;
4399
4400 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4401 if (IS_ERR(image_name))
4402 image_name = NULL;
4403 else
4404 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4405 out:
4406 kfree(reply_buf);
4407 kfree(image_id);
4408
4409 return image_name;
4410 }
4411
4412 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4413 {
4414 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4415 const char *snap_name;
4416 u32 which = 0;
4417
4418 /* Skip over names until we find the one we are looking for */
4419
4420 snap_name = rbd_dev->header.snap_names;
4421 while (which < snapc->num_snaps) {
4422 if (!strcmp(name, snap_name))
4423 return snapc->snaps[which];
4424 snap_name += strlen(snap_name) + 1;
4425 which++;
4426 }
4427 return CEPH_NOSNAP;
4428 }
4429
4430 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4431 {
4432 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4433 u32 which;
4434 bool found = false;
4435 u64 snap_id;
4436
4437 for (which = 0; !found && which < snapc->num_snaps; which++) {
4438 const char *snap_name;
4439
4440 snap_id = snapc->snaps[which];
4441 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4442 if (IS_ERR(snap_name)) {
4443 /* ignore no-longer existing snapshots */
4444 if (PTR_ERR(snap_name) == -ENOENT)
4445 continue;
4446 else
4447 break;
4448 }
4449 found = !strcmp(name, snap_name);
4450 kfree(snap_name);
4451 }
4452 return found ? snap_id : CEPH_NOSNAP;
4453 }
4454
4455 /*
4456 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4457 * no snapshot by that name is found, or if an error occurs.
4458 */
4459 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4460 {
4461 if (rbd_dev->image_format == 1)
4462 return rbd_v1_snap_id_by_name(rbd_dev, name);
4463
4464 return rbd_v2_snap_id_by_name(rbd_dev, name);
4465 }
4466
4467 /*
4468 * An image being mapped will have everything but the snap id.
4469 */
4470 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4471 {
4472 struct rbd_spec *spec = rbd_dev->spec;
4473
4474 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4475 rbd_assert(spec->image_id && spec->image_name);
4476 rbd_assert(spec->snap_name);
4477
4478 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4479 u64 snap_id;
4480
4481 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4482 if (snap_id == CEPH_NOSNAP)
4483 return -ENOENT;
4484
4485 spec->snap_id = snap_id;
4486 } else {
4487 spec->snap_id = CEPH_NOSNAP;
4488 }
4489
4490 return 0;
4491 }
4492
4493 /*
4494 * A parent image will have all ids but none of the names.
4495 *
4496 * All names in an rbd spec are dynamically allocated. It's OK if we
4497 * can't figure out the name for an image id.
4498 */
4499 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4500 {
4501 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4502 struct rbd_spec *spec = rbd_dev->spec;
4503 const char *pool_name;
4504 const char *image_name;
4505 const char *snap_name;
4506 int ret;
4507
4508 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4509 rbd_assert(spec->image_id);
4510 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4511
4512 /* Get the pool name; we have to make our own copy of this */
4513
4514 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4515 if (!pool_name) {
4516 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4517 return -EIO;
4518 }
4519 pool_name = kstrdup(pool_name, GFP_KERNEL);
4520 if (!pool_name)
4521 return -ENOMEM;
4522
4523 /* Fetch the image name; tolerate failure here */
4524
4525 image_name = rbd_dev_image_name(rbd_dev);
4526 if (!image_name)
4527 rbd_warn(rbd_dev, "unable to get image name");
4528
4529 /* Fetch the snapshot name */
4530
4531 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4532 if (IS_ERR(snap_name)) {
4533 ret = PTR_ERR(snap_name);
4534 goto out_err;
4535 }
4536
4537 spec->pool_name = pool_name;
4538 spec->image_name = image_name;
4539 spec->snap_name = snap_name;
4540
4541 return 0;
4542
4543 out_err:
4544 kfree(image_name);
4545 kfree(pool_name);
4546 return ret;
4547 }
4548
4549 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4550 {
4551 size_t size;
4552 int ret;
4553 void *reply_buf;
4554 void *p;
4555 void *end;
4556 u64 seq;
4557 u32 snap_count;
4558 struct ceph_snap_context *snapc;
4559 u32 i;
4560
4561 /*
4562 * We'll need room for the seq value (maximum snapshot id),
4563 * snapshot count, and array of that many snapshot ids.
4564 * For now we have a fixed upper limit on the number we're
4565 * prepared to receive.
4566 */
4567 size = sizeof (__le64) + sizeof (__le32) +
4568 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4569 reply_buf = kzalloc(size, GFP_KERNEL);
4570 if (!reply_buf)
4571 return -ENOMEM;
4572
4573 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4574 "rbd", "get_snapcontext", NULL, 0,
4575 reply_buf, size);
4576 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4577 if (ret < 0)
4578 goto out;
4579
4580 p = reply_buf;
4581 end = reply_buf + ret;
4582 ret = -ERANGE;
4583 ceph_decode_64_safe(&p, end, seq, out);
4584 ceph_decode_32_safe(&p, end, snap_count, out);
4585
4586 /*
4587 * Make sure the reported number of snapshot ids wouldn't go
4588 * beyond the end of our buffer. But before checking that,
4589 * make sure the computed size of the snapshot context we
4590 * allocate is representable in a size_t.
4591 */
4592 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4593 / sizeof (u64)) {
4594 ret = -EINVAL;
4595 goto out;
4596 }
4597 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4598 goto out;
4599 ret = 0;
4600
4601 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4602 if (!snapc) {
4603 ret = -ENOMEM;
4604 goto out;
4605 }
4606 snapc->seq = seq;
4607 for (i = 0; i < snap_count; i++)
4608 snapc->snaps[i] = ceph_decode_64(&p);
4609
4610 ceph_put_snap_context(rbd_dev->header.snapc);
4611 rbd_dev->header.snapc = snapc;
4612
4613 dout(" snap context seq = %llu, snap_count = %u\n",
4614 (unsigned long long)seq, (unsigned int)snap_count);
4615 out:
4616 kfree(reply_buf);
4617
4618 return ret;
4619 }
4620
4621 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4622 u64 snap_id)
4623 {
4624 size_t size;
4625 void *reply_buf;
4626 __le64 snapid;
4627 int ret;
4628 void *p;
4629 void *end;
4630 char *snap_name;
4631
4632 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4633 reply_buf = kmalloc(size, GFP_KERNEL);
4634 if (!reply_buf)
4635 return ERR_PTR(-ENOMEM);
4636
4637 snapid = cpu_to_le64(snap_id);
4638 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4639 "rbd", "get_snapshot_name",
4640 &snapid, sizeof (snapid),
4641 reply_buf, size);
4642 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4643 if (ret < 0) {
4644 snap_name = ERR_PTR(ret);
4645 goto out;
4646 }
4647
4648 p = reply_buf;
4649 end = reply_buf + ret;
4650 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4651 if (IS_ERR(snap_name))
4652 goto out;
4653
4654 dout(" snap_id 0x%016llx snap_name = %s\n",
4655 (unsigned long long)snap_id, snap_name);
4656 out:
4657 kfree(reply_buf);
4658
4659 return snap_name;
4660 }
4661
4662 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4663 {
4664 bool first_time = rbd_dev->header.object_prefix == NULL;
4665 int ret;
4666
4667 ret = rbd_dev_v2_image_size(rbd_dev);
4668 if (ret)
4669 return ret;
4670
4671 if (first_time) {
4672 ret = rbd_dev_v2_header_onetime(rbd_dev);
4673 if (ret)
4674 return ret;
4675 }
4676
4677 ret = rbd_dev_v2_snap_context(rbd_dev);
4678 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4679
4680 return ret;
4681 }
4682
4683 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4684 {
4685 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4686
4687 if (rbd_dev->image_format == 1)
4688 return rbd_dev_v1_header_info(rbd_dev);
4689
4690 return rbd_dev_v2_header_info(rbd_dev);
4691 }
4692
4693 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4694 {
4695 struct device *dev;
4696 int ret;
4697
4698 dev = &rbd_dev->dev;
4699 dev->bus = &rbd_bus_type;
4700 dev->type = &rbd_device_type;
4701 dev->parent = &rbd_root_dev;
4702 dev->release = rbd_dev_device_release;
4703 dev_set_name(dev, "%d", rbd_dev->dev_id);
4704 ret = device_register(dev);
4705
4706 return ret;
4707 }
4708
4709 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4710 {
4711 device_unregister(&rbd_dev->dev);
4712 }
4713
4714 /*
4715 * Get a unique rbd identifier for the given new rbd_dev, and add
4716 * the rbd_dev to the global list.
4717 */
4718 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4719 {
4720 int new_dev_id;
4721
4722 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4723 0, minor_to_rbd_dev_id(1 << MINORBITS),
4724 GFP_KERNEL);
4725 if (new_dev_id < 0)
4726 return new_dev_id;
4727
4728 rbd_dev->dev_id = new_dev_id;
4729
4730 spin_lock(&rbd_dev_list_lock);
4731 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4732 spin_unlock(&rbd_dev_list_lock);
4733
4734 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4735
4736 return 0;
4737 }
4738
4739 /*
4740 * Remove an rbd_dev from the global list, and record that its
4741 * identifier is no longer in use.
4742 */
4743 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4744 {
4745 spin_lock(&rbd_dev_list_lock);
4746 list_del_init(&rbd_dev->node);
4747 spin_unlock(&rbd_dev_list_lock);
4748
4749 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4750
4751 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4752 }
4753
4754 /*
4755 * Skips over white space at *buf, and updates *buf to point to the
4756 * first found non-space character (if any). Returns the length of
4757 * the token (string of non-white space characters) found. Note
4758 * that *buf must be terminated with '\0'.
4759 */
4760 static inline size_t next_token(const char **buf)
4761 {
4762 /*
4763 * These are the characters that produce nonzero for
4764 * isspace() in the "C" and "POSIX" locales.
4765 */
4766 const char *spaces = " \f\n\r\t\v";
4767
4768 *buf += strspn(*buf, spaces); /* Find start of token */
4769
4770 return strcspn(*buf, spaces); /* Return token length */
4771 }
4772
4773 /*
4774 * Finds the next token in *buf, and if the provided token buffer is
4775 * big enough, copies the found token into it. The result, if
4776 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4777 * must be terminated with '\0' on entry.
4778 *
4779 * Returns the length of the token found (not including the '\0').
4780 * Return value will be 0 if no token is found, and it will be >=
4781 * token_size if the token would not fit.
4782 *
4783 * The *buf pointer will be updated to point beyond the end of the
4784 * found token. Note that this occurs even if the token buffer is
4785 * too small to hold it.
4786 */
4787 static inline size_t copy_token(const char **buf,
4788 char *token,
4789 size_t token_size)
4790 {
4791 size_t len;
4792
4793 len = next_token(buf);
4794 if (len < token_size) {
4795 memcpy(token, *buf, len);
4796 *(token + len) = '\0';
4797 }
4798 *buf += len;
4799
4800 return len;
4801 }
4802
4803 /*
4804 * Finds the next token in *buf, dynamically allocates a buffer big
4805 * enough to hold a copy of it, and copies the token into the new
4806 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4807 * that a duplicate buffer is created even for a zero-length token.
4808 *
4809 * Returns a pointer to the newly-allocated duplicate, or a null
4810 * pointer if memory for the duplicate was not available. If
4811 * the lenp argument is a non-null pointer, the length of the token
4812 * (not including the '\0') is returned in *lenp.
4813 *
4814 * If successful, the *buf pointer will be updated to point beyond
4815 * the end of the found token.
4816 *
4817 * Note: uses GFP_KERNEL for allocation.
4818 */
4819 static inline char *dup_token(const char **buf, size_t *lenp)
4820 {
4821 char *dup;
4822 size_t len;
4823
4824 len = next_token(buf);
4825 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4826 if (!dup)
4827 return NULL;
4828 *(dup + len) = '\0';
4829 *buf += len;
4830
4831 if (lenp)
4832 *lenp = len;
4833
4834 return dup;
4835 }
4836
4837 /*
4838 * Parse the options provided for an "rbd add" (i.e., rbd image
4839 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4840 * and the data written is passed here via a NUL-terminated buffer.
4841 * Returns 0 if successful or an error code otherwise.
4842 *
4843 * The information extracted from these options is recorded in
4844 * the other parameters which return dynamically-allocated
4845 * structures:
4846 * ceph_opts
4847 * The address of a pointer that will refer to a ceph options
4848 * structure. Caller must release the returned pointer using
4849 * ceph_destroy_options() when it is no longer needed.
4850 * rbd_opts
4851 * Address of an rbd options pointer. Fully initialized by
4852 * this function; caller must release with kfree().
4853 * spec
4854 * Address of an rbd image specification pointer. Fully
4855 * initialized by this function based on parsed options.
4856 * Caller must release with rbd_spec_put().
4857 *
4858 * The options passed take this form:
4859 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4860 * where:
4861 * <mon_addrs>
4862 * A comma-separated list of one or more monitor addresses.
4863 * A monitor address is an ip address, optionally followed
4864 * by a port number (separated by a colon).
4865 * I.e.: ip1[:port1][,ip2[:port2]...]
4866 * <options>
4867 * A comma-separated list of ceph and/or rbd options.
4868 * <pool_name>
4869 * The name of the rados pool containing the rbd image.
4870 * <image_name>
4871 * The name of the image in that pool to map.
4872 * <snap_id>
4873 * An optional snapshot id. If provided, the mapping will
4874 * present data from the image at the time that snapshot was
4875 * created. The image head is used if no snapshot id is
4876 * provided. Snapshot mappings are always read-only.
4877 */
4878 static int rbd_add_parse_args(const char *buf,
4879 struct ceph_options **ceph_opts,
4880 struct rbd_options **opts,
4881 struct rbd_spec **rbd_spec)
4882 {
4883 size_t len;
4884 char *options;
4885 const char *mon_addrs;
4886 char *snap_name;
4887 size_t mon_addrs_size;
4888 struct rbd_spec *spec = NULL;
4889 struct rbd_options *rbd_opts = NULL;
4890 struct ceph_options *copts;
4891 int ret;
4892
4893 /* The first four tokens are required */
4894
4895 len = next_token(&buf);
4896 if (!len) {
4897 rbd_warn(NULL, "no monitor address(es) provided");
4898 return -EINVAL;
4899 }
4900 mon_addrs = buf;
4901 mon_addrs_size = len + 1;
4902 buf += len;
4903
4904 ret = -EINVAL;
4905 options = dup_token(&buf, NULL);
4906 if (!options)
4907 return -ENOMEM;
4908 if (!*options) {
4909 rbd_warn(NULL, "no options provided");
4910 goto out_err;
4911 }
4912
4913 spec = rbd_spec_alloc();
4914 if (!spec)
4915 goto out_mem;
4916
4917 spec->pool_name = dup_token(&buf, NULL);
4918 if (!spec->pool_name)
4919 goto out_mem;
4920 if (!*spec->pool_name) {
4921 rbd_warn(NULL, "no pool name provided");
4922 goto out_err;
4923 }
4924
4925 spec->image_name = dup_token(&buf, NULL);
4926 if (!spec->image_name)
4927 goto out_mem;
4928 if (!*spec->image_name) {
4929 rbd_warn(NULL, "no image name provided");
4930 goto out_err;
4931 }
4932
4933 /*
4934 * Snapshot name is optional; default is to use "-"
4935 * (indicating the head/no snapshot).
4936 */
4937 len = next_token(&buf);
4938 if (!len) {
4939 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4940 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4941 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4942 ret = -ENAMETOOLONG;
4943 goto out_err;
4944 }
4945 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4946 if (!snap_name)
4947 goto out_mem;
4948 *(snap_name + len) = '\0';
4949 spec->snap_name = snap_name;
4950
4951 /* Initialize all rbd options to the defaults */
4952
4953 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4954 if (!rbd_opts)
4955 goto out_mem;
4956
4957 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4958
4959 copts = ceph_parse_options(options, mon_addrs,
4960 mon_addrs + mon_addrs_size - 1,
4961 parse_rbd_opts_token, rbd_opts);
4962 if (IS_ERR(copts)) {
4963 ret = PTR_ERR(copts);
4964 goto out_err;
4965 }
4966 kfree(options);
4967
4968 *ceph_opts = copts;
4969 *opts = rbd_opts;
4970 *rbd_spec = spec;
4971
4972 return 0;
4973 out_mem:
4974 ret = -ENOMEM;
4975 out_err:
4976 kfree(rbd_opts);
4977 rbd_spec_put(spec);
4978 kfree(options);
4979
4980 return ret;
4981 }
4982
4983 /*
4984 * Return pool id (>= 0) or a negative error code.
4985 */
4986 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4987 {
4988 u64 newest_epoch;
4989 unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4990 int tries = 0;
4991 int ret;
4992
4993 again:
4994 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4995 if (ret == -ENOENT && tries++ < 1) {
4996 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4997 &newest_epoch);
4998 if (ret < 0)
4999 return ret;
5000
5001 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5002 ceph_monc_request_next_osdmap(&rbdc->client->monc);
5003 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5004 newest_epoch, timeout);
5005 goto again;
5006 } else {
5007 /* the osdmap we have is new enough */
5008 return -ENOENT;
5009 }
5010 }
5011
5012 return ret;
5013 }
5014
5015 /*
5016 * An rbd format 2 image has a unique identifier, distinct from the
5017 * name given to it by the user. Internally, that identifier is
5018 * what's used to specify the names of objects related to the image.
5019 *
5020 * A special "rbd id" object is used to map an rbd image name to its
5021 * id. If that object doesn't exist, then there is no v2 rbd image
5022 * with the supplied name.
5023 *
5024 * This function will record the given rbd_dev's image_id field if
5025 * it can be determined, and in that case will return 0. If any
5026 * errors occur a negative errno will be returned and the rbd_dev's
5027 * image_id field will be unchanged (and should be NULL).
5028 */
5029 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5030 {
5031 int ret;
5032 size_t size;
5033 char *object_name;
5034 void *response;
5035 char *image_id;
5036
5037 /*
5038 * When probing a parent image, the image id is already
5039 * known (and the image name likely is not). There's no
5040 * need to fetch the image id again in this case. We
5041 * do still need to set the image format though.
5042 */
5043 if (rbd_dev->spec->image_id) {
5044 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5045
5046 return 0;
5047 }
5048
5049 /*
5050 * First, see if the format 2 image id file exists, and if
5051 * so, get the image's persistent id from it.
5052 */
5053 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5054 object_name = kmalloc(size, GFP_NOIO);
5055 if (!object_name)
5056 return -ENOMEM;
5057 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5058 dout("rbd id object name is %s\n", object_name);
5059
5060 /* Response will be an encoded string, which includes a length */
5061
5062 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5063 response = kzalloc(size, GFP_NOIO);
5064 if (!response) {
5065 ret = -ENOMEM;
5066 goto out;
5067 }
5068
5069 /* If it doesn't exist we'll assume it's a format 1 image */
5070
5071 ret = rbd_obj_method_sync(rbd_dev, object_name,
5072 "rbd", "get_id", NULL, 0,
5073 response, RBD_IMAGE_ID_LEN_MAX);
5074 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5075 if (ret == -ENOENT) {
5076 image_id = kstrdup("", GFP_KERNEL);
5077 ret = image_id ? 0 : -ENOMEM;
5078 if (!ret)
5079 rbd_dev->image_format = 1;
5080 } else if (ret >= 0) {
5081 void *p = response;
5082
5083 image_id = ceph_extract_encoded_string(&p, p + ret,
5084 NULL, GFP_NOIO);
5085 ret = PTR_ERR_OR_ZERO(image_id);
5086 if (!ret)
5087 rbd_dev->image_format = 2;
5088 }
5089
5090 if (!ret) {
5091 rbd_dev->spec->image_id = image_id;
5092 dout("image_id is %s\n", image_id);
5093 }
5094 out:
5095 kfree(response);
5096 kfree(object_name);
5097
5098 return ret;
5099 }
5100
5101 /*
5102 * Undo whatever state changes are made by v1 or v2 header info
5103 * call.
5104 */
5105 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5106 {
5107 struct rbd_image_header *header;
5108
5109 rbd_dev_parent_put(rbd_dev);
5110
5111 /* Free dynamic fields from the header, then zero it out */
5112
5113 header = &rbd_dev->header;
5114 ceph_put_snap_context(header->snapc);
5115 kfree(header->snap_sizes);
5116 kfree(header->snap_names);
5117 kfree(header->object_prefix);
5118 memset(header, 0, sizeof (*header));
5119 }
5120
5121 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5122 {
5123 int ret;
5124
5125 ret = rbd_dev_v2_object_prefix(rbd_dev);
5126 if (ret)
5127 goto out_err;
5128
5129 /*
5130 * Get the and check features for the image. Currently the
5131 * features are assumed to never change.
5132 */
5133 ret = rbd_dev_v2_features(rbd_dev);
5134 if (ret)
5135 goto out_err;
5136
5137 /* If the image supports fancy striping, get its parameters */
5138
5139 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5140 ret = rbd_dev_v2_striping_info(rbd_dev);
5141 if (ret < 0)
5142 goto out_err;
5143 }
5144 /* No support for crypto and compression type format 2 images */
5145
5146 return 0;
5147 out_err:
5148 rbd_dev->header.features = 0;
5149 kfree(rbd_dev->header.object_prefix);
5150 rbd_dev->header.object_prefix = NULL;
5151
5152 return ret;
5153 }
5154
5155 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5156 {
5157 struct rbd_device *parent = NULL;
5158 struct rbd_spec *parent_spec;
5159 struct rbd_client *rbdc;
5160 int ret;
5161
5162 if (!rbd_dev->parent_spec)
5163 return 0;
5164 /*
5165 * We need to pass a reference to the client and the parent
5166 * spec when creating the parent rbd_dev. Images related by
5167 * parent/child relationships always share both.
5168 */
5169 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5170 rbdc = __rbd_get_client(rbd_dev->rbd_client);
5171
5172 ret = -ENOMEM;
5173 parent = rbd_dev_create(rbdc, parent_spec);
5174 if (!parent)
5175 goto out_err;
5176
5177 ret = rbd_dev_image_probe(parent, false);
5178 if (ret < 0)
5179 goto out_err;
5180 rbd_dev->parent = parent;
5181 atomic_set(&rbd_dev->parent_ref, 1);
5182
5183 return 0;
5184 out_err:
5185 if (parent) {
5186 rbd_dev_unparent(rbd_dev);
5187 kfree(rbd_dev->header_name);
5188 rbd_dev_destroy(parent);
5189 } else {
5190 rbd_put_client(rbdc);
5191 rbd_spec_put(parent_spec);
5192 }
5193
5194 return ret;
5195 }
5196
5197 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5198 {
5199 int ret;
5200
5201 /* Get an id and fill in device name. */
5202
5203 ret = rbd_dev_id_get(rbd_dev);
5204 if (ret)
5205 return ret;
5206
5207 BUILD_BUG_ON(DEV_NAME_LEN
5208 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5209 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5210
5211 /* Record our major and minor device numbers. */
5212
5213 if (!single_major) {
5214 ret = register_blkdev(0, rbd_dev->name);
5215 if (ret < 0)
5216 goto err_out_id;
5217
5218 rbd_dev->major = ret;
5219 rbd_dev->minor = 0;
5220 } else {
5221 rbd_dev->major = rbd_major;
5222 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5223 }
5224
5225 /* Set up the blkdev mapping. */
5226
5227 ret = rbd_init_disk(rbd_dev);
5228 if (ret)
5229 goto err_out_blkdev;
5230
5231 ret = rbd_dev_mapping_set(rbd_dev);
5232 if (ret)
5233 goto err_out_disk;
5234
5235 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5236 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5237
5238 ret = rbd_bus_add_dev(rbd_dev);
5239 if (ret)
5240 goto err_out_mapping;
5241
5242 /* Everything's ready. Announce the disk to the world. */
5243
5244 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5245 add_disk(rbd_dev->disk);
5246
5247 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5248 (unsigned long long) rbd_dev->mapping.size);
5249
5250 return ret;
5251
5252 err_out_mapping:
5253 rbd_dev_mapping_clear(rbd_dev);
5254 err_out_disk:
5255 rbd_free_disk(rbd_dev);
5256 err_out_blkdev:
5257 if (!single_major)
5258 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5259 err_out_id:
5260 rbd_dev_id_put(rbd_dev);
5261 rbd_dev_mapping_clear(rbd_dev);
5262
5263 return ret;
5264 }
5265
5266 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5267 {
5268 struct rbd_spec *spec = rbd_dev->spec;
5269 size_t size;
5270
5271 /* Record the header object name for this rbd image. */
5272
5273 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5274
5275 if (rbd_dev->image_format == 1)
5276 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5277 else
5278 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5279
5280 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5281 if (!rbd_dev->header_name)
5282 return -ENOMEM;
5283
5284 if (rbd_dev->image_format == 1)
5285 sprintf(rbd_dev->header_name, "%s%s",
5286 spec->image_name, RBD_SUFFIX);
5287 else
5288 sprintf(rbd_dev->header_name, "%s%s",
5289 RBD_HEADER_PREFIX, spec->image_id);
5290 return 0;
5291 }
5292
5293 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5294 {
5295 rbd_dev_unprobe(rbd_dev);
5296 kfree(rbd_dev->header_name);
5297 rbd_dev->header_name = NULL;
5298 rbd_dev->image_format = 0;
5299 kfree(rbd_dev->spec->image_id);
5300 rbd_dev->spec->image_id = NULL;
5301
5302 rbd_dev_destroy(rbd_dev);
5303 }
5304
5305 /*
5306 * Probe for the existence of the header object for the given rbd
5307 * device. If this image is the one being mapped (i.e., not a
5308 * parent), initiate a watch on its header object before using that
5309 * object to get detailed information about the rbd image.
5310 */
5311 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5312 {
5313 int ret;
5314
5315 /*
5316 * Get the id from the image id object. Unless there's an
5317 * error, rbd_dev->spec->image_id will be filled in with
5318 * a dynamically-allocated string, and rbd_dev->image_format
5319 * will be set to either 1 or 2.
5320 */
5321 ret = rbd_dev_image_id(rbd_dev);
5322 if (ret)
5323 return ret;
5324
5325 ret = rbd_dev_header_name(rbd_dev);
5326 if (ret)
5327 goto err_out_format;
5328
5329 if (mapping) {
5330 ret = rbd_dev_header_watch_sync(rbd_dev);
5331 if (ret)
5332 goto out_header_name;
5333 }
5334
5335 ret = rbd_dev_header_info(rbd_dev);
5336 if (ret)
5337 goto err_out_watch;
5338
5339 /*
5340 * If this image is the one being mapped, we have pool name and
5341 * id, image name and id, and snap name - need to fill snap id.
5342 * Otherwise this is a parent image, identified by pool, image
5343 * and snap ids - need to fill in names for those ids.
5344 */
5345 if (mapping)
5346 ret = rbd_spec_fill_snap_id(rbd_dev);
5347 else
5348 ret = rbd_spec_fill_names(rbd_dev);
5349 if (ret)
5350 goto err_out_probe;
5351
5352 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5353 ret = rbd_dev_v2_parent_info(rbd_dev);
5354 if (ret)
5355 goto err_out_probe;
5356
5357 /*
5358 * Need to warn users if this image is the one being
5359 * mapped and has a parent.
5360 */
5361 if (mapping && rbd_dev->parent_spec)
5362 rbd_warn(rbd_dev,
5363 "WARNING: kernel layering is EXPERIMENTAL!");
5364 }
5365
5366 ret = rbd_dev_probe_parent(rbd_dev);
5367 if (ret)
5368 goto err_out_probe;
5369
5370 dout("discovered format %u image, header name is %s\n",
5371 rbd_dev->image_format, rbd_dev->header_name);
5372 return 0;
5373
5374 err_out_probe:
5375 rbd_dev_unprobe(rbd_dev);
5376 err_out_watch:
5377 if (mapping)
5378 rbd_dev_header_unwatch_sync(rbd_dev);
5379 out_header_name:
5380 kfree(rbd_dev->header_name);
5381 rbd_dev->header_name = NULL;
5382 err_out_format:
5383 rbd_dev->image_format = 0;
5384 kfree(rbd_dev->spec->image_id);
5385 rbd_dev->spec->image_id = NULL;
5386 return ret;
5387 }
5388
5389 static ssize_t do_rbd_add(struct bus_type *bus,
5390 const char *buf,
5391 size_t count)
5392 {
5393 struct rbd_device *rbd_dev = NULL;
5394 struct ceph_options *ceph_opts = NULL;
5395 struct rbd_options *rbd_opts = NULL;
5396 struct rbd_spec *spec = NULL;
5397 struct rbd_client *rbdc;
5398 bool read_only;
5399 int rc = -ENOMEM;
5400
5401 if (!try_module_get(THIS_MODULE))
5402 return -ENODEV;
5403
5404 /* parse add command */
5405 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5406 if (rc < 0)
5407 goto err_out_module;
5408 read_only = rbd_opts->read_only;
5409 kfree(rbd_opts);
5410 rbd_opts = NULL; /* done with this */
5411
5412 rbdc = rbd_get_client(ceph_opts);
5413 if (IS_ERR(rbdc)) {
5414 rc = PTR_ERR(rbdc);
5415 goto err_out_args;
5416 }
5417
5418 /* pick the pool */
5419 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5420 if (rc < 0)
5421 goto err_out_client;
5422 spec->pool_id = (u64)rc;
5423
5424 /* The ceph file layout needs to fit pool id in 32 bits */
5425
5426 if (spec->pool_id > (u64)U32_MAX) {
5427 rbd_warn(NULL, "pool id too large (%llu > %u)",
5428 (unsigned long long)spec->pool_id, U32_MAX);
5429 rc = -EIO;
5430 goto err_out_client;
5431 }
5432
5433 rbd_dev = rbd_dev_create(rbdc, spec);
5434 if (!rbd_dev)
5435 goto err_out_client;
5436 rbdc = NULL; /* rbd_dev now owns this */
5437 spec = NULL; /* rbd_dev now owns this */
5438
5439 rc = rbd_dev_image_probe(rbd_dev, true);
5440 if (rc < 0)
5441 goto err_out_rbd_dev;
5442
5443 /* If we are mapping a snapshot it must be marked read-only */
5444
5445 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5446 read_only = true;
5447 rbd_dev->mapping.read_only = read_only;
5448
5449 rc = rbd_dev_device_setup(rbd_dev);
5450 if (rc) {
5451 /*
5452 * rbd_dev_header_unwatch_sync() can't be moved into
5453 * rbd_dev_image_release() without refactoring, see
5454 * commit 1f3ef78861ac.
5455 */
5456 rbd_dev_header_unwatch_sync(rbd_dev);
5457 rbd_dev_image_release(rbd_dev);
5458 goto err_out_module;
5459 }
5460
5461 return count;
5462
5463 err_out_rbd_dev:
5464 rbd_dev_destroy(rbd_dev);
5465 err_out_client:
5466 rbd_put_client(rbdc);
5467 err_out_args:
5468 rbd_spec_put(spec);
5469 err_out_module:
5470 module_put(THIS_MODULE);
5471
5472 dout("Error adding device %s\n", buf);
5473
5474 return (ssize_t)rc;
5475 }
5476
5477 static ssize_t rbd_add(struct bus_type *bus,
5478 const char *buf,
5479 size_t count)
5480 {
5481 if (single_major)
5482 return -EINVAL;
5483
5484 return do_rbd_add(bus, buf, count);
5485 }
5486
5487 static ssize_t rbd_add_single_major(struct bus_type *bus,
5488 const char *buf,
5489 size_t count)
5490 {
5491 return do_rbd_add(bus, buf, count);
5492 }
5493
5494 static void rbd_dev_device_release(struct device *dev)
5495 {
5496 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5497
5498 rbd_free_disk(rbd_dev);
5499 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5500 rbd_dev_mapping_clear(rbd_dev);
5501 if (!single_major)
5502 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5503 rbd_dev_id_put(rbd_dev);
5504 rbd_dev_mapping_clear(rbd_dev);
5505 }
5506
5507 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5508 {
5509 while (rbd_dev->parent) {
5510 struct rbd_device *first = rbd_dev;
5511 struct rbd_device *second = first->parent;
5512 struct rbd_device *third;
5513
5514 /*
5515 * Follow to the parent with no grandparent and
5516 * remove it.
5517 */
5518 while (second && (third = second->parent)) {
5519 first = second;
5520 second = third;
5521 }
5522 rbd_assert(second);
5523 rbd_dev_image_release(second);
5524 first->parent = NULL;
5525 first->parent_overlap = 0;
5526
5527 rbd_assert(first->parent_spec);
5528 rbd_spec_put(first->parent_spec);
5529 first->parent_spec = NULL;
5530 }
5531 }
5532
5533 static ssize_t do_rbd_remove(struct bus_type *bus,
5534 const char *buf,
5535 size_t count)
5536 {
5537 struct rbd_device *rbd_dev = NULL;
5538 struct list_head *tmp;
5539 int dev_id;
5540 unsigned long ul;
5541 bool already = false;
5542 int ret;
5543
5544 ret = kstrtoul(buf, 10, &ul);
5545 if (ret)
5546 return ret;
5547
5548 /* convert to int; abort if we lost anything in the conversion */
5549 dev_id = (int)ul;
5550 if (dev_id != ul)
5551 return -EINVAL;
5552
5553 ret = -ENOENT;
5554 spin_lock(&rbd_dev_list_lock);
5555 list_for_each(tmp, &rbd_dev_list) {
5556 rbd_dev = list_entry(tmp, struct rbd_device, node);
5557 if (rbd_dev->dev_id == dev_id) {
5558 ret = 0;
5559 break;
5560 }
5561 }
5562 if (!ret) {
5563 spin_lock_irq(&rbd_dev->lock);
5564 if (rbd_dev->open_count)
5565 ret = -EBUSY;
5566 else
5567 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5568 &rbd_dev->flags);
5569 spin_unlock_irq(&rbd_dev->lock);
5570 }
5571 spin_unlock(&rbd_dev_list_lock);
5572 if (ret < 0 || already)
5573 return ret;
5574
5575 rbd_dev_header_unwatch_sync(rbd_dev);
5576 /*
5577 * flush remaining watch callbacks - these must be complete
5578 * before the osd_client is shutdown
5579 */
5580 dout("%s: flushing notifies", __func__);
5581 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5582
5583 /*
5584 * Don't free anything from rbd_dev->disk until after all
5585 * notifies are completely processed. Otherwise
5586 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5587 * in a potential use after free of rbd_dev->disk or rbd_dev.
5588 */
5589 rbd_bus_del_dev(rbd_dev);
5590 rbd_dev_image_release(rbd_dev);
5591 module_put(THIS_MODULE);
5592
5593 return count;
5594 }
5595
5596 static ssize_t rbd_remove(struct bus_type *bus,
5597 const char *buf,
5598 size_t count)
5599 {
5600 if (single_major)
5601 return -EINVAL;
5602
5603 return do_rbd_remove(bus, buf, count);
5604 }
5605
5606 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5607 const char *buf,
5608 size_t count)
5609 {
5610 return do_rbd_remove(bus, buf, count);
5611 }
5612
5613 /*
5614 * create control files in sysfs
5615 * /sys/bus/rbd/...
5616 */
5617 static int rbd_sysfs_init(void)
5618 {
5619 int ret;
5620
5621 ret = device_register(&rbd_root_dev);
5622 if (ret < 0)
5623 return ret;
5624
5625 ret = bus_register(&rbd_bus_type);
5626 if (ret < 0)
5627 device_unregister(&rbd_root_dev);
5628
5629 return ret;
5630 }
5631
5632 static void rbd_sysfs_cleanup(void)
5633 {
5634 bus_unregister(&rbd_bus_type);
5635 device_unregister(&rbd_root_dev);
5636 }
5637
5638 static int rbd_slab_init(void)
5639 {
5640 rbd_assert(!rbd_img_request_cache);
5641 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5642 sizeof (struct rbd_img_request),
5643 __alignof__(struct rbd_img_request),
5644 0, NULL);
5645 if (!rbd_img_request_cache)
5646 return -ENOMEM;
5647
5648 rbd_assert(!rbd_obj_request_cache);
5649 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5650 sizeof (struct rbd_obj_request),
5651 __alignof__(struct rbd_obj_request),
5652 0, NULL);
5653 if (!rbd_obj_request_cache)
5654 goto out_err;
5655
5656 rbd_assert(!rbd_segment_name_cache);
5657 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5658 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5659 if (rbd_segment_name_cache)
5660 return 0;
5661 out_err:
5662 if (rbd_obj_request_cache) {
5663 kmem_cache_destroy(rbd_obj_request_cache);
5664 rbd_obj_request_cache = NULL;
5665 }
5666
5667 kmem_cache_destroy(rbd_img_request_cache);
5668 rbd_img_request_cache = NULL;
5669
5670 return -ENOMEM;
5671 }
5672
5673 static void rbd_slab_exit(void)
5674 {
5675 rbd_assert(rbd_segment_name_cache);
5676 kmem_cache_destroy(rbd_segment_name_cache);
5677 rbd_segment_name_cache = NULL;
5678
5679 rbd_assert(rbd_obj_request_cache);
5680 kmem_cache_destroy(rbd_obj_request_cache);
5681 rbd_obj_request_cache = NULL;
5682
5683 rbd_assert(rbd_img_request_cache);
5684 kmem_cache_destroy(rbd_img_request_cache);
5685 rbd_img_request_cache = NULL;
5686 }
5687
5688 static int __init rbd_init(void)
5689 {
5690 int rc;
5691
5692 if (!libceph_compatible(NULL)) {
5693 rbd_warn(NULL, "libceph incompatibility (quitting)");
5694 return -EINVAL;
5695 }
5696
5697 rc = rbd_slab_init();
5698 if (rc)
5699 return rc;
5700
5701 /*
5702 * The number of active work items is limited by the number of
5703 * rbd devices, so leave @max_active at default.
5704 */
5705 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5706 if (!rbd_wq) {
5707 rc = -ENOMEM;
5708 goto err_out_slab;
5709 }
5710
5711 if (single_major) {
5712 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5713 if (rbd_major < 0) {
5714 rc = rbd_major;
5715 goto err_out_wq;
5716 }
5717 }
5718
5719 rc = rbd_sysfs_init();
5720 if (rc)
5721 goto err_out_blkdev;
5722
5723 if (single_major)
5724 pr_info("loaded (major %d)\n", rbd_major);
5725 else
5726 pr_info("loaded\n");
5727
5728 return 0;
5729
5730 err_out_blkdev:
5731 if (single_major)
5732 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5733 err_out_wq:
5734 destroy_workqueue(rbd_wq);
5735 err_out_slab:
5736 rbd_slab_exit();
5737 return rc;
5738 }
5739
5740 static void __exit rbd_exit(void)
5741 {
5742 ida_destroy(&rbd_dev_id_ida);
5743 rbd_sysfs_cleanup();
5744 if (single_major)
5745 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5746 destroy_workqueue(rbd_wq);
5747 rbd_slab_exit();
5748 }
5749
5750 module_init(rbd_init);
5751 module_exit(rbd_exit);
5752
5753 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5754 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5755 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5756 /* following authorship retained from original osdblk.c */
5757 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5758
5759 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5760 MODULE_LICENSE("GPL");