]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG /* Activate rbd_assert() calls */
52
53 /*
54 * The basic unit of block I/O is a sector. It is interpreted in a
55 * number of contexts in Linux (blk, bio, genhd), but the default is
56 * universally 512 bytes. These symbols are just slightly more
57 * meaningful than the bare numbers they represent.
58 */
59 #define SECTOR_SHIFT 9
60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
61
62 /*
63 * Increment the given counter and return its updated value.
64 * If the counter is already 0 it will not be incremented.
65 * If the counter is already at its maximum value returns
66 * -EINVAL without updating it.
67 */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70 unsigned int counter;
71
72 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73 if (counter <= (unsigned int)INT_MAX)
74 return (int)counter;
75
76 atomic_dec(v);
77
78 return -EINVAL;
79 }
80
81 /* Decrement the counter. Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84 int counter;
85
86 counter = atomic_dec_return(v);
87 if (counter >= 0)
88 return counter;
89
90 atomic_inc(v);
91
92 return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR 256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN 16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN \
104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME "-"
109
110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX 64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX 64
117
118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING (1<<0)
124 #define RBD_FEATURE_STRIPINGV2 (1<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2)
126 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
127 RBD_FEATURE_STRIPINGV2 | \
128 RBD_FEATURE_EXCLUSIVE_LOCK)
129
130 /* Features supported by this (client software) implementation. */
131
132 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
133
134 /*
135 * An RBD device name will be "rbd#", where the "rbd" comes from
136 * RBD_DRV_NAME above, and # is a unique integer identifier.
137 */
138 #define DEV_NAME_LEN 32
139
140 /*
141 * block device image metadata (in-memory version)
142 */
143 struct rbd_image_header {
144 /* These six fields never change for a given rbd image */
145 char *object_prefix;
146 __u8 obj_order;
147 __u8 crypt_type;
148 __u8 comp_type;
149 u64 stripe_unit;
150 u64 stripe_count;
151 u64 features; /* Might be changeable someday? */
152
153 /* The remaining fields need to be updated occasionally */
154 u64 image_size;
155 struct ceph_snap_context *snapc;
156 char *snap_names; /* format 1 only */
157 u64 *snap_sizes; /* format 1 only */
158 };
159
160 /*
161 * An rbd image specification.
162 *
163 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
164 * identify an image. Each rbd_dev structure includes a pointer to
165 * an rbd_spec structure that encapsulates this identity.
166 *
167 * Each of the id's in an rbd_spec has an associated name. For a
168 * user-mapped image, the names are supplied and the id's associated
169 * with them are looked up. For a layered image, a parent image is
170 * defined by the tuple, and the names are looked up.
171 *
172 * An rbd_dev structure contains a parent_spec pointer which is
173 * non-null if the image it represents is a child in a layered
174 * image. This pointer will refer to the rbd_spec structure used
175 * by the parent rbd_dev for its own identity (i.e., the structure
176 * is shared between the parent and child).
177 *
178 * Since these structures are populated once, during the discovery
179 * phase of image construction, they are effectively immutable so
180 * we make no effort to synchronize access to them.
181 *
182 * Note that code herein does not assume the image name is known (it
183 * could be a null pointer).
184 */
185 struct rbd_spec {
186 u64 pool_id;
187 const char *pool_name;
188
189 const char *image_id;
190 const char *image_name;
191
192 u64 snap_id;
193 const char *snap_name;
194
195 struct kref kref;
196 };
197
198 /*
199 * an instance of the client. multiple devices may share an rbd client.
200 */
201 struct rbd_client {
202 struct ceph_client *client;
203 struct kref kref;
204 struct list_head node;
205 };
206
207 struct rbd_img_request;
208 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
209
210 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
211
212 struct rbd_obj_request;
213 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
214
215 enum obj_request_type {
216 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
217 };
218
219 enum obj_operation_type {
220 OBJ_OP_WRITE,
221 OBJ_OP_READ,
222 OBJ_OP_DISCARD,
223 };
224
225 enum obj_req_flags {
226 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
227 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
228 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
229 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
230 };
231
232 struct rbd_obj_request {
233 const char *object_name;
234 u64 offset; /* object start byte */
235 u64 length; /* bytes from offset */
236 unsigned long flags;
237
238 /*
239 * An object request associated with an image will have its
240 * img_data flag set; a standalone object request will not.
241 *
242 * A standalone object request will have which == BAD_WHICH
243 * and a null obj_request pointer.
244 *
245 * An object request initiated in support of a layered image
246 * object (to check for its existence before a write) will
247 * have which == BAD_WHICH and a non-null obj_request pointer.
248 *
249 * Finally, an object request for rbd image data will have
250 * which != BAD_WHICH, and will have a non-null img_request
251 * pointer. The value of which will be in the range
252 * 0..(img_request->obj_request_count-1).
253 */
254 union {
255 struct rbd_obj_request *obj_request; /* STAT op */
256 struct {
257 struct rbd_img_request *img_request;
258 u64 img_offset;
259 /* links for img_request->obj_requests list */
260 struct list_head links;
261 };
262 };
263 u32 which; /* posn image request list */
264
265 enum obj_request_type type;
266 union {
267 struct bio *bio_list;
268 struct {
269 struct page **pages;
270 u32 page_count;
271 };
272 };
273 struct page **copyup_pages;
274 u32 copyup_page_count;
275
276 struct ceph_osd_request *osd_req;
277
278 u64 xferred; /* bytes transferred */
279 int result;
280
281 rbd_obj_callback_t callback;
282 struct completion completion;
283
284 struct kref kref;
285 };
286
287 enum img_req_flags {
288 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
289 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
290 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
291 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
292 };
293
294 struct rbd_img_request {
295 struct rbd_device *rbd_dev;
296 u64 offset; /* starting image byte offset */
297 u64 length; /* byte count from offset */
298 unsigned long flags;
299 union {
300 u64 snap_id; /* for reads */
301 struct ceph_snap_context *snapc; /* for writes */
302 };
303 union {
304 struct request *rq; /* block request */
305 struct rbd_obj_request *obj_request; /* obj req initiator */
306 };
307 struct page **copyup_pages;
308 u32 copyup_page_count;
309 spinlock_t completion_lock;/* protects next_completion */
310 u32 next_completion;
311 rbd_img_callback_t callback;
312 u64 xferred;/* aggregate bytes transferred */
313 int result; /* first nonzero obj_request result */
314
315 u32 obj_request_count;
316 struct list_head obj_requests; /* rbd_obj_request structs */
317
318 struct kref kref;
319 };
320
321 #define for_each_obj_request(ireq, oreq) \
322 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
323 #define for_each_obj_request_from(ireq, oreq) \
324 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_safe(ireq, oreq, n) \
326 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
327
328 enum rbd_watch_state {
329 RBD_WATCH_STATE_UNREGISTERED,
330 RBD_WATCH_STATE_REGISTERED,
331 RBD_WATCH_STATE_ERROR,
332 };
333
334 enum rbd_lock_state {
335 RBD_LOCK_STATE_UNLOCKED,
336 RBD_LOCK_STATE_LOCKED,
337 RBD_LOCK_STATE_RELEASING,
338 };
339
340 /* WatchNotify::ClientId */
341 struct rbd_client_id {
342 u64 gid;
343 u64 handle;
344 };
345
346 struct rbd_mapping {
347 u64 size;
348 u64 features;
349 bool read_only;
350 };
351
352 /*
353 * a single device
354 */
355 struct rbd_device {
356 int dev_id; /* blkdev unique id */
357
358 int major; /* blkdev assigned major */
359 int minor;
360 struct gendisk *disk; /* blkdev's gendisk and rq */
361
362 u32 image_format; /* Either 1 or 2 */
363 struct rbd_client *rbd_client;
364
365 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
366
367 spinlock_t lock; /* queue, flags, open_count */
368
369 struct rbd_image_header header;
370 unsigned long flags; /* possibly lock protected */
371 struct rbd_spec *spec;
372 struct rbd_options *opts;
373 char *config_info; /* add{,_single_major} string */
374
375 struct ceph_object_id header_oid;
376 struct ceph_object_locator header_oloc;
377
378 struct ceph_file_layout layout; /* used for all rbd requests */
379
380 struct mutex watch_mutex;
381 enum rbd_watch_state watch_state;
382 struct ceph_osd_linger_request *watch_handle;
383 u64 watch_cookie;
384 struct delayed_work watch_dwork;
385
386 struct rw_semaphore lock_rwsem;
387 enum rbd_lock_state lock_state;
388 struct rbd_client_id owner_cid;
389 struct work_struct acquired_lock_work;
390 struct work_struct released_lock_work;
391 struct delayed_work lock_dwork;
392 struct work_struct unlock_work;
393 wait_queue_head_t lock_waitq;
394
395 struct workqueue_struct *task_wq;
396
397 struct rbd_spec *parent_spec;
398 u64 parent_overlap;
399 atomic_t parent_ref;
400 struct rbd_device *parent;
401
402 /* Block layer tags. */
403 struct blk_mq_tag_set tag_set;
404
405 /* protects updating the header */
406 struct rw_semaphore header_rwsem;
407
408 struct rbd_mapping mapping;
409
410 struct list_head node;
411
412 /* sysfs related */
413 struct device dev;
414 unsigned long open_count; /* protected by lock */
415 };
416
417 /*
418 * Flag bits for rbd_dev->flags. If atomicity is required,
419 * rbd_dev->lock is used to protect access.
420 *
421 * Currently, only the "removing" flag (which is coupled with the
422 * "open_count" field) requires atomic access.
423 */
424 enum rbd_dev_flags {
425 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
426 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
427 };
428
429 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
430
431 static LIST_HEAD(rbd_dev_list); /* devices */
432 static DEFINE_SPINLOCK(rbd_dev_list_lock);
433
434 static LIST_HEAD(rbd_client_list); /* clients */
435 static DEFINE_SPINLOCK(rbd_client_list_lock);
436
437 /* Slab caches for frequently-allocated structures */
438
439 static struct kmem_cache *rbd_img_request_cache;
440 static struct kmem_cache *rbd_obj_request_cache;
441 static struct kmem_cache *rbd_segment_name_cache;
442
443 static int rbd_major;
444 static DEFINE_IDA(rbd_dev_id_ida);
445
446 static struct workqueue_struct *rbd_wq;
447
448 /*
449 * Default to false for now, as single-major requires >= 0.75 version of
450 * userspace rbd utility.
451 */
452 static bool single_major = false;
453 module_param(single_major, bool, S_IRUGO);
454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
455
456 static int rbd_img_request_submit(struct rbd_img_request *img_request);
457
458 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
459 size_t count);
460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
461 size_t count);
462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
463 size_t count);
464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
465 size_t count);
466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
467 static void rbd_spec_put(struct rbd_spec *spec);
468
469 static int rbd_dev_id_to_minor(int dev_id)
470 {
471 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
472 }
473
474 static int minor_to_rbd_dev_id(int minor)
475 {
476 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
477 }
478
479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
480 {
481 return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
482 rbd_dev->spec->snap_id == CEPH_NOSNAP &&
483 !rbd_dev->mapping.read_only;
484 }
485
486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
487 {
488 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
489 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
490 }
491
492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
493 {
494 bool is_lock_owner;
495
496 down_read(&rbd_dev->lock_rwsem);
497 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
498 up_read(&rbd_dev->lock_rwsem);
499 return is_lock_owner;
500 }
501
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506
507 static struct attribute *rbd_bus_attrs[] = {
508 &bus_attr_add.attr,
509 &bus_attr_remove.attr,
510 &bus_attr_add_single_major.attr,
511 &bus_attr_remove_single_major.attr,
512 NULL,
513 };
514
515 static umode_t rbd_bus_is_visible(struct kobject *kobj,
516 struct attribute *attr, int index)
517 {
518 if (!single_major &&
519 (attr == &bus_attr_add_single_major.attr ||
520 attr == &bus_attr_remove_single_major.attr))
521 return 0;
522
523 return attr->mode;
524 }
525
526 static const struct attribute_group rbd_bus_group = {
527 .attrs = rbd_bus_attrs,
528 .is_visible = rbd_bus_is_visible,
529 };
530 __ATTRIBUTE_GROUPS(rbd_bus);
531
532 static struct bus_type rbd_bus_type = {
533 .name = "rbd",
534 .bus_groups = rbd_bus_groups,
535 };
536
537 static void rbd_root_dev_release(struct device *dev)
538 {
539 }
540
541 static struct device rbd_root_dev = {
542 .init_name = "rbd",
543 .release = rbd_root_dev_release,
544 };
545
546 static __printf(2, 3)
547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
548 {
549 struct va_format vaf;
550 va_list args;
551
552 va_start(args, fmt);
553 vaf.fmt = fmt;
554 vaf.va = &args;
555
556 if (!rbd_dev)
557 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
558 else if (rbd_dev->disk)
559 printk(KERN_WARNING "%s: %s: %pV\n",
560 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
561 else if (rbd_dev->spec && rbd_dev->spec->image_name)
562 printk(KERN_WARNING "%s: image %s: %pV\n",
563 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
564 else if (rbd_dev->spec && rbd_dev->spec->image_id)
565 printk(KERN_WARNING "%s: id %s: %pV\n",
566 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
567 else /* punt */
568 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
569 RBD_DRV_NAME, rbd_dev, &vaf);
570 va_end(args);
571 }
572
573 #ifdef RBD_DEBUG
574 #define rbd_assert(expr) \
575 if (unlikely(!(expr))) { \
576 printk(KERN_ERR "\nAssertion failure in %s() " \
577 "at line %d:\n\n" \
578 "\trbd_assert(%s);\n\n", \
579 __func__, __LINE__, #expr); \
580 BUG(); \
581 }
582 #else /* !RBD_DEBUG */
583 # define rbd_assert(expr) ((void) 0)
584 #endif /* !RBD_DEBUG */
585
586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
590
591 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
593 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
596 u64 snap_id);
597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
598 u8 *order, u64 *snap_size);
599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
600 u64 *snap_features);
601
602 static int rbd_open(struct block_device *bdev, fmode_t mode)
603 {
604 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
605 bool removing = false;
606
607 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
608 return -EROFS;
609
610 spin_lock_irq(&rbd_dev->lock);
611 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
612 removing = true;
613 else
614 rbd_dev->open_count++;
615 spin_unlock_irq(&rbd_dev->lock);
616 if (removing)
617 return -ENOENT;
618
619 (void) get_device(&rbd_dev->dev);
620
621 return 0;
622 }
623
624 static void rbd_release(struct gendisk *disk, fmode_t mode)
625 {
626 struct rbd_device *rbd_dev = disk->private_data;
627 unsigned long open_count_before;
628
629 spin_lock_irq(&rbd_dev->lock);
630 open_count_before = rbd_dev->open_count--;
631 spin_unlock_irq(&rbd_dev->lock);
632 rbd_assert(open_count_before > 0);
633
634 put_device(&rbd_dev->dev);
635 }
636
637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
638 {
639 int ret = 0;
640 int val;
641 bool ro;
642 bool ro_changed = false;
643
644 /* get_user() may sleep, so call it before taking rbd_dev->lock */
645 if (get_user(val, (int __user *)(arg)))
646 return -EFAULT;
647
648 ro = val ? true : false;
649 /* Snapshot doesn't allow to write*/
650 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
651 return -EROFS;
652
653 spin_lock_irq(&rbd_dev->lock);
654 /* prevent others open this device */
655 if (rbd_dev->open_count > 1) {
656 ret = -EBUSY;
657 goto out;
658 }
659
660 if (rbd_dev->mapping.read_only != ro) {
661 rbd_dev->mapping.read_only = ro;
662 ro_changed = true;
663 }
664
665 out:
666 spin_unlock_irq(&rbd_dev->lock);
667 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
668 if (ret == 0 && ro_changed)
669 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
670
671 return ret;
672 }
673
674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
675 unsigned int cmd, unsigned long arg)
676 {
677 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
678 int ret = 0;
679
680 switch (cmd) {
681 case BLKROSET:
682 ret = rbd_ioctl_set_ro(rbd_dev, arg);
683 break;
684 default:
685 ret = -ENOTTY;
686 }
687
688 return ret;
689 }
690
691 #ifdef CONFIG_COMPAT
692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
693 unsigned int cmd, unsigned long arg)
694 {
695 return rbd_ioctl(bdev, mode, cmd, arg);
696 }
697 #endif /* CONFIG_COMPAT */
698
699 static const struct block_device_operations rbd_bd_ops = {
700 .owner = THIS_MODULE,
701 .open = rbd_open,
702 .release = rbd_release,
703 .ioctl = rbd_ioctl,
704 #ifdef CONFIG_COMPAT
705 .compat_ioctl = rbd_compat_ioctl,
706 #endif
707 };
708
709 /*
710 * Initialize an rbd client instance. Success or not, this function
711 * consumes ceph_opts. Caller holds client_mutex.
712 */
713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
714 {
715 struct rbd_client *rbdc;
716 int ret = -ENOMEM;
717
718 dout("%s:\n", __func__);
719 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
720 if (!rbdc)
721 goto out_opt;
722
723 kref_init(&rbdc->kref);
724 INIT_LIST_HEAD(&rbdc->node);
725
726 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
727 if (IS_ERR(rbdc->client))
728 goto out_rbdc;
729 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
730
731 ret = ceph_open_session(rbdc->client);
732 if (ret < 0)
733 goto out_client;
734
735 spin_lock(&rbd_client_list_lock);
736 list_add_tail(&rbdc->node, &rbd_client_list);
737 spin_unlock(&rbd_client_list_lock);
738
739 dout("%s: rbdc %p\n", __func__, rbdc);
740
741 return rbdc;
742 out_client:
743 ceph_destroy_client(rbdc->client);
744 out_rbdc:
745 kfree(rbdc);
746 out_opt:
747 if (ceph_opts)
748 ceph_destroy_options(ceph_opts);
749 dout("%s: error %d\n", __func__, ret);
750
751 return ERR_PTR(ret);
752 }
753
754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
755 {
756 kref_get(&rbdc->kref);
757
758 return rbdc;
759 }
760
761 /*
762 * Find a ceph client with specific addr and configuration. If
763 * found, bump its reference count.
764 */
765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
766 {
767 struct rbd_client *client_node;
768 bool found = false;
769
770 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
771 return NULL;
772
773 spin_lock(&rbd_client_list_lock);
774 list_for_each_entry(client_node, &rbd_client_list, node) {
775 if (!ceph_compare_options(ceph_opts, client_node->client)) {
776 __rbd_get_client(client_node);
777
778 found = true;
779 break;
780 }
781 }
782 spin_unlock(&rbd_client_list_lock);
783
784 return found ? client_node : NULL;
785 }
786
787 /*
788 * (Per device) rbd map options
789 */
790 enum {
791 Opt_queue_depth,
792 Opt_last_int,
793 /* int args above */
794 Opt_last_string,
795 /* string args above */
796 Opt_read_only,
797 Opt_read_write,
798 Opt_lock_on_read,
799 Opt_err
800 };
801
802 static match_table_t rbd_opts_tokens = {
803 {Opt_queue_depth, "queue_depth=%d"},
804 /* int args above */
805 /* string args above */
806 {Opt_read_only, "read_only"},
807 {Opt_read_only, "ro"}, /* Alternate spelling */
808 {Opt_read_write, "read_write"},
809 {Opt_read_write, "rw"}, /* Alternate spelling */
810 {Opt_lock_on_read, "lock_on_read"},
811 {Opt_err, NULL}
812 };
813
814 struct rbd_options {
815 int queue_depth;
816 bool read_only;
817 bool lock_on_read;
818 };
819
820 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
821 #define RBD_READ_ONLY_DEFAULT false
822 #define RBD_LOCK_ON_READ_DEFAULT false
823
824 static int parse_rbd_opts_token(char *c, void *private)
825 {
826 struct rbd_options *rbd_opts = private;
827 substring_t argstr[MAX_OPT_ARGS];
828 int token, intval, ret;
829
830 token = match_token(c, rbd_opts_tokens, argstr);
831 if (token < Opt_last_int) {
832 ret = match_int(&argstr[0], &intval);
833 if (ret < 0) {
834 pr_err("bad mount option arg (not int) at '%s'\n", c);
835 return ret;
836 }
837 dout("got int token %d val %d\n", token, intval);
838 } else if (token > Opt_last_int && token < Opt_last_string) {
839 dout("got string token %d val %s\n", token, argstr[0].from);
840 } else {
841 dout("got token %d\n", token);
842 }
843
844 switch (token) {
845 case Opt_queue_depth:
846 if (intval < 1) {
847 pr_err("queue_depth out of range\n");
848 return -EINVAL;
849 }
850 rbd_opts->queue_depth = intval;
851 break;
852 case Opt_read_only:
853 rbd_opts->read_only = true;
854 break;
855 case Opt_read_write:
856 rbd_opts->read_only = false;
857 break;
858 case Opt_lock_on_read:
859 rbd_opts->lock_on_read = true;
860 break;
861 default:
862 /* libceph prints "bad option" msg */
863 return -EINVAL;
864 }
865
866 return 0;
867 }
868
869 static char* obj_op_name(enum obj_operation_type op_type)
870 {
871 switch (op_type) {
872 case OBJ_OP_READ:
873 return "read";
874 case OBJ_OP_WRITE:
875 return "write";
876 case OBJ_OP_DISCARD:
877 return "discard";
878 default:
879 return "???";
880 }
881 }
882
883 /*
884 * Get a ceph client with specific addr and configuration, if one does
885 * not exist create it. Either way, ceph_opts is consumed by this
886 * function.
887 */
888 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
889 {
890 struct rbd_client *rbdc;
891
892 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
893 rbdc = rbd_client_find(ceph_opts);
894 if (rbdc) /* using an existing client */
895 ceph_destroy_options(ceph_opts);
896 else
897 rbdc = rbd_client_create(ceph_opts);
898 mutex_unlock(&client_mutex);
899
900 return rbdc;
901 }
902
903 /*
904 * Destroy ceph client
905 *
906 * Caller must hold rbd_client_list_lock.
907 */
908 static void rbd_client_release(struct kref *kref)
909 {
910 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
911
912 dout("%s: rbdc %p\n", __func__, rbdc);
913 spin_lock(&rbd_client_list_lock);
914 list_del(&rbdc->node);
915 spin_unlock(&rbd_client_list_lock);
916
917 ceph_destroy_client(rbdc->client);
918 kfree(rbdc);
919 }
920
921 /*
922 * Drop reference to ceph client node. If it's not referenced anymore, release
923 * it.
924 */
925 static void rbd_put_client(struct rbd_client *rbdc)
926 {
927 if (rbdc)
928 kref_put(&rbdc->kref, rbd_client_release);
929 }
930
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933 return image_format == 1 || image_format == 2;
934 }
935
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938 size_t size;
939 u32 snap_count;
940
941 /* The header has to start with the magic rbd header text */
942 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943 return false;
944
945 /* The bio layer requires at least sector-sized I/O */
946
947 if (ondisk->options.order < SECTOR_SHIFT)
948 return false;
949
950 /* If we use u64 in a few spots we may be able to loosen this */
951
952 if (ondisk->options.order > 8 * sizeof (int) - 1)
953 return false;
954
955 /*
956 * The size of a snapshot header has to fit in a size_t, and
957 * that limits the number of snapshots.
958 */
959 snap_count = le32_to_cpu(ondisk->snap_count);
960 size = SIZE_MAX - sizeof (struct ceph_snap_context);
961 if (snap_count > size / sizeof (__le64))
962 return false;
963
964 /*
965 * Not only that, but the size of the entire the snapshot
966 * header must also be representable in a size_t.
967 */
968 size -= snap_count * sizeof (__le64);
969 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970 return false;
971
972 return true;
973 }
974
975 /*
976 * Fill an rbd image header with information from the given format 1
977 * on-disk header.
978 */
979 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
980 struct rbd_image_header_ondisk *ondisk)
981 {
982 struct rbd_image_header *header = &rbd_dev->header;
983 bool first_time = header->object_prefix == NULL;
984 struct ceph_snap_context *snapc;
985 char *object_prefix = NULL;
986 char *snap_names = NULL;
987 u64 *snap_sizes = NULL;
988 u32 snap_count;
989 int ret = -ENOMEM;
990 u32 i;
991
992 /* Allocate this now to avoid having to handle failure below */
993
994 if (first_time) {
995 size_t len;
996
997 len = strnlen(ondisk->object_prefix,
998 sizeof (ondisk->object_prefix));
999 object_prefix = kmalloc(len + 1, GFP_KERNEL);
1000 if (!object_prefix)
1001 return -ENOMEM;
1002 memcpy(object_prefix, ondisk->object_prefix, len);
1003 object_prefix[len] = '\0';
1004 }
1005
1006 /* Allocate the snapshot context and fill it in */
1007
1008 snap_count = le32_to_cpu(ondisk->snap_count);
1009 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1010 if (!snapc)
1011 goto out_err;
1012 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1013 if (snap_count) {
1014 struct rbd_image_snap_ondisk *snaps;
1015 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1016
1017 /* We'll keep a copy of the snapshot names... */
1018
1019 if (snap_names_len > (u64)SIZE_MAX)
1020 goto out_2big;
1021 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1022 if (!snap_names)
1023 goto out_err;
1024
1025 /* ...as well as the array of their sizes. */
1026 snap_sizes = kmalloc_array(snap_count,
1027 sizeof(*header->snap_sizes),
1028 GFP_KERNEL);
1029 if (!snap_sizes)
1030 goto out_err;
1031
1032 /*
1033 * Copy the names, and fill in each snapshot's id
1034 * and size.
1035 *
1036 * Note that rbd_dev_v1_header_info() guarantees the
1037 * ondisk buffer we're working with has
1038 * snap_names_len bytes beyond the end of the
1039 * snapshot id array, this memcpy() is safe.
1040 */
1041 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1042 snaps = ondisk->snaps;
1043 for (i = 0; i < snap_count; i++) {
1044 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1045 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1046 }
1047 }
1048
1049 /* We won't fail any more, fill in the header */
1050
1051 if (first_time) {
1052 header->object_prefix = object_prefix;
1053 header->obj_order = ondisk->options.order;
1054 header->crypt_type = ondisk->options.crypt_type;
1055 header->comp_type = ondisk->options.comp_type;
1056 /* The rest aren't used for format 1 images */
1057 header->stripe_unit = 0;
1058 header->stripe_count = 0;
1059 header->features = 0;
1060 } else {
1061 ceph_put_snap_context(header->snapc);
1062 kfree(header->snap_names);
1063 kfree(header->snap_sizes);
1064 }
1065
1066 /* The remaining fields always get updated (when we refresh) */
1067
1068 header->image_size = le64_to_cpu(ondisk->image_size);
1069 header->snapc = snapc;
1070 header->snap_names = snap_names;
1071 header->snap_sizes = snap_sizes;
1072
1073 return 0;
1074 out_2big:
1075 ret = -EIO;
1076 out_err:
1077 kfree(snap_sizes);
1078 kfree(snap_names);
1079 ceph_put_snap_context(snapc);
1080 kfree(object_prefix);
1081
1082 return ret;
1083 }
1084
1085 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1086 {
1087 const char *snap_name;
1088
1089 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1090
1091 /* Skip over names until we find the one we are looking for */
1092
1093 snap_name = rbd_dev->header.snap_names;
1094 while (which--)
1095 snap_name += strlen(snap_name) + 1;
1096
1097 return kstrdup(snap_name, GFP_KERNEL);
1098 }
1099
1100 /*
1101 * Snapshot id comparison function for use with qsort()/bsearch().
1102 * Note that result is for snapshots in *descending* order.
1103 */
1104 static int snapid_compare_reverse(const void *s1, const void *s2)
1105 {
1106 u64 snap_id1 = *(u64 *)s1;
1107 u64 snap_id2 = *(u64 *)s2;
1108
1109 if (snap_id1 < snap_id2)
1110 return 1;
1111 return snap_id1 == snap_id2 ? 0 : -1;
1112 }
1113
1114 /*
1115 * Search a snapshot context to see if the given snapshot id is
1116 * present.
1117 *
1118 * Returns the position of the snapshot id in the array if it's found,
1119 * or BAD_SNAP_INDEX otherwise.
1120 *
1121 * Note: The snapshot array is in kept sorted (by the osd) in
1122 * reverse order, highest snapshot id first.
1123 */
1124 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1125 {
1126 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1127 u64 *found;
1128
1129 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1130 sizeof (snap_id), snapid_compare_reverse);
1131
1132 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1133 }
1134
1135 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1136 u64 snap_id)
1137 {
1138 u32 which;
1139 const char *snap_name;
1140
1141 which = rbd_dev_snap_index(rbd_dev, snap_id);
1142 if (which == BAD_SNAP_INDEX)
1143 return ERR_PTR(-ENOENT);
1144
1145 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1146 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1147 }
1148
1149 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1150 {
1151 if (snap_id == CEPH_NOSNAP)
1152 return RBD_SNAP_HEAD_NAME;
1153
1154 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1155 if (rbd_dev->image_format == 1)
1156 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1157
1158 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1159 }
1160
1161 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1162 u64 *snap_size)
1163 {
1164 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1165 if (snap_id == CEPH_NOSNAP) {
1166 *snap_size = rbd_dev->header.image_size;
1167 } else if (rbd_dev->image_format == 1) {
1168 u32 which;
1169
1170 which = rbd_dev_snap_index(rbd_dev, snap_id);
1171 if (which == BAD_SNAP_INDEX)
1172 return -ENOENT;
1173
1174 *snap_size = rbd_dev->header.snap_sizes[which];
1175 } else {
1176 u64 size = 0;
1177 int ret;
1178
1179 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1180 if (ret)
1181 return ret;
1182
1183 *snap_size = size;
1184 }
1185 return 0;
1186 }
1187
1188 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1189 u64 *snap_features)
1190 {
1191 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1192 if (snap_id == CEPH_NOSNAP) {
1193 *snap_features = rbd_dev->header.features;
1194 } else if (rbd_dev->image_format == 1) {
1195 *snap_features = 0; /* No features for format 1 */
1196 } else {
1197 u64 features = 0;
1198 int ret;
1199
1200 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1201 if (ret)
1202 return ret;
1203
1204 *snap_features = features;
1205 }
1206 return 0;
1207 }
1208
1209 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1210 {
1211 u64 snap_id = rbd_dev->spec->snap_id;
1212 u64 size = 0;
1213 u64 features = 0;
1214 int ret;
1215
1216 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1217 if (ret)
1218 return ret;
1219 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1220 if (ret)
1221 return ret;
1222
1223 rbd_dev->mapping.size = size;
1224 rbd_dev->mapping.features = features;
1225
1226 return 0;
1227 }
1228
1229 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1230 {
1231 rbd_dev->mapping.size = 0;
1232 rbd_dev->mapping.features = 0;
1233 }
1234
1235 static void rbd_segment_name_free(const char *name)
1236 {
1237 /* The explicit cast here is needed to drop the const qualifier */
1238
1239 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1240 }
1241
1242 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1243 {
1244 char *name;
1245 u64 segment;
1246 int ret;
1247 char *name_format;
1248
1249 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1250 if (!name)
1251 return NULL;
1252 segment = offset >> rbd_dev->header.obj_order;
1253 name_format = "%s.%012llx";
1254 if (rbd_dev->image_format == 2)
1255 name_format = "%s.%016llx";
1256 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1257 rbd_dev->header.object_prefix, segment);
1258 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1259 pr_err("error formatting segment name for #%llu (%d)\n",
1260 segment, ret);
1261 rbd_segment_name_free(name);
1262 name = NULL;
1263 }
1264
1265 return name;
1266 }
1267
1268 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1269 {
1270 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1271
1272 return offset & (segment_size - 1);
1273 }
1274
1275 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1276 u64 offset, u64 length)
1277 {
1278 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1279
1280 offset &= segment_size - 1;
1281
1282 rbd_assert(length <= U64_MAX - offset);
1283 if (offset + length > segment_size)
1284 length = segment_size - offset;
1285
1286 return length;
1287 }
1288
1289 /*
1290 * returns the size of an object in the image
1291 */
1292 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1293 {
1294 return 1 << header->obj_order;
1295 }
1296
1297 /*
1298 * bio helpers
1299 */
1300
1301 static void bio_chain_put(struct bio *chain)
1302 {
1303 struct bio *tmp;
1304
1305 while (chain) {
1306 tmp = chain;
1307 chain = chain->bi_next;
1308 bio_put(tmp);
1309 }
1310 }
1311
1312 /*
1313 * zeros a bio chain, starting at specific offset
1314 */
1315 static void zero_bio_chain(struct bio *chain, int start_ofs)
1316 {
1317 struct bio_vec bv;
1318 struct bvec_iter iter;
1319 unsigned long flags;
1320 void *buf;
1321 int pos = 0;
1322
1323 while (chain) {
1324 bio_for_each_segment(bv, chain, iter) {
1325 if (pos + bv.bv_len > start_ofs) {
1326 int remainder = max(start_ofs - pos, 0);
1327 buf = bvec_kmap_irq(&bv, &flags);
1328 memset(buf + remainder, 0,
1329 bv.bv_len - remainder);
1330 flush_dcache_page(bv.bv_page);
1331 bvec_kunmap_irq(buf, &flags);
1332 }
1333 pos += bv.bv_len;
1334 }
1335
1336 chain = chain->bi_next;
1337 }
1338 }
1339
1340 /*
1341 * similar to zero_bio_chain(), zeros data defined by a page array,
1342 * starting at the given byte offset from the start of the array and
1343 * continuing up to the given end offset. The pages array is
1344 * assumed to be big enough to hold all bytes up to the end.
1345 */
1346 static void zero_pages(struct page **pages, u64 offset, u64 end)
1347 {
1348 struct page **page = &pages[offset >> PAGE_SHIFT];
1349
1350 rbd_assert(end > offset);
1351 rbd_assert(end - offset <= (u64)SIZE_MAX);
1352 while (offset < end) {
1353 size_t page_offset;
1354 size_t length;
1355 unsigned long flags;
1356 void *kaddr;
1357
1358 page_offset = offset & ~PAGE_MASK;
1359 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1360 local_irq_save(flags);
1361 kaddr = kmap_atomic(*page);
1362 memset(kaddr + page_offset, 0, length);
1363 flush_dcache_page(*page);
1364 kunmap_atomic(kaddr);
1365 local_irq_restore(flags);
1366
1367 offset += length;
1368 page++;
1369 }
1370 }
1371
1372 /*
1373 * Clone a portion of a bio, starting at the given byte offset
1374 * and continuing for the number of bytes indicated.
1375 */
1376 static struct bio *bio_clone_range(struct bio *bio_src,
1377 unsigned int offset,
1378 unsigned int len,
1379 gfp_t gfpmask)
1380 {
1381 struct bio *bio;
1382
1383 bio = bio_clone(bio_src, gfpmask);
1384 if (!bio)
1385 return NULL; /* ENOMEM */
1386
1387 bio_advance(bio, offset);
1388 bio->bi_iter.bi_size = len;
1389
1390 return bio;
1391 }
1392
1393 /*
1394 * Clone a portion of a bio chain, starting at the given byte offset
1395 * into the first bio in the source chain and continuing for the
1396 * number of bytes indicated. The result is another bio chain of
1397 * exactly the given length, or a null pointer on error.
1398 *
1399 * The bio_src and offset parameters are both in-out. On entry they
1400 * refer to the first source bio and the offset into that bio where
1401 * the start of data to be cloned is located.
1402 *
1403 * On return, bio_src is updated to refer to the bio in the source
1404 * chain that contains first un-cloned byte, and *offset will
1405 * contain the offset of that byte within that bio.
1406 */
1407 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1408 unsigned int *offset,
1409 unsigned int len,
1410 gfp_t gfpmask)
1411 {
1412 struct bio *bi = *bio_src;
1413 unsigned int off = *offset;
1414 struct bio *chain = NULL;
1415 struct bio **end;
1416
1417 /* Build up a chain of clone bios up to the limit */
1418
1419 if (!bi || off >= bi->bi_iter.bi_size || !len)
1420 return NULL; /* Nothing to clone */
1421
1422 end = &chain;
1423 while (len) {
1424 unsigned int bi_size;
1425 struct bio *bio;
1426
1427 if (!bi) {
1428 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1429 goto out_err; /* EINVAL; ran out of bio's */
1430 }
1431 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1432 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1433 if (!bio)
1434 goto out_err; /* ENOMEM */
1435
1436 *end = bio;
1437 end = &bio->bi_next;
1438
1439 off += bi_size;
1440 if (off == bi->bi_iter.bi_size) {
1441 bi = bi->bi_next;
1442 off = 0;
1443 }
1444 len -= bi_size;
1445 }
1446 *bio_src = bi;
1447 *offset = off;
1448
1449 return chain;
1450 out_err:
1451 bio_chain_put(chain);
1452
1453 return NULL;
1454 }
1455
1456 /*
1457 * The default/initial value for all object request flags is 0. For
1458 * each flag, once its value is set to 1 it is never reset to 0
1459 * again.
1460 */
1461 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1462 {
1463 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1464 struct rbd_device *rbd_dev;
1465
1466 rbd_dev = obj_request->img_request->rbd_dev;
1467 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1468 obj_request);
1469 }
1470 }
1471
1472 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1473 {
1474 smp_mb();
1475 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1476 }
1477
1478 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1479 {
1480 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1481 struct rbd_device *rbd_dev = NULL;
1482
1483 if (obj_request_img_data_test(obj_request))
1484 rbd_dev = obj_request->img_request->rbd_dev;
1485 rbd_warn(rbd_dev, "obj_request %p already marked done",
1486 obj_request);
1487 }
1488 }
1489
1490 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1491 {
1492 smp_mb();
1493 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1494 }
1495
1496 /*
1497 * This sets the KNOWN flag after (possibly) setting the EXISTS
1498 * flag. The latter is set based on the "exists" value provided.
1499 *
1500 * Note that for our purposes once an object exists it never goes
1501 * away again. It's possible that the response from two existence
1502 * checks are separated by the creation of the target object, and
1503 * the first ("doesn't exist") response arrives *after* the second
1504 * ("does exist"). In that case we ignore the second one.
1505 */
1506 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1507 bool exists)
1508 {
1509 if (exists)
1510 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1511 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1512 smp_mb();
1513 }
1514
1515 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1516 {
1517 smp_mb();
1518 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1519 }
1520
1521 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1522 {
1523 smp_mb();
1524 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1525 }
1526
1527 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1528 {
1529 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1530
1531 return obj_request->img_offset <
1532 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1533 }
1534
1535 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1536 {
1537 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1538 atomic_read(&obj_request->kref.refcount));
1539 kref_get(&obj_request->kref);
1540 }
1541
1542 static void rbd_obj_request_destroy(struct kref *kref);
1543 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1544 {
1545 rbd_assert(obj_request != NULL);
1546 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1547 atomic_read(&obj_request->kref.refcount));
1548 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1549 }
1550
1551 static void rbd_img_request_get(struct rbd_img_request *img_request)
1552 {
1553 dout("%s: img %p (was %d)\n", __func__, img_request,
1554 atomic_read(&img_request->kref.refcount));
1555 kref_get(&img_request->kref);
1556 }
1557
1558 static bool img_request_child_test(struct rbd_img_request *img_request);
1559 static void rbd_parent_request_destroy(struct kref *kref);
1560 static void rbd_img_request_destroy(struct kref *kref);
1561 static void rbd_img_request_put(struct rbd_img_request *img_request)
1562 {
1563 rbd_assert(img_request != NULL);
1564 dout("%s: img %p (was %d)\n", __func__, img_request,
1565 atomic_read(&img_request->kref.refcount));
1566 if (img_request_child_test(img_request))
1567 kref_put(&img_request->kref, rbd_parent_request_destroy);
1568 else
1569 kref_put(&img_request->kref, rbd_img_request_destroy);
1570 }
1571
1572 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1573 struct rbd_obj_request *obj_request)
1574 {
1575 rbd_assert(obj_request->img_request == NULL);
1576
1577 /* Image request now owns object's original reference */
1578 obj_request->img_request = img_request;
1579 obj_request->which = img_request->obj_request_count;
1580 rbd_assert(!obj_request_img_data_test(obj_request));
1581 obj_request_img_data_set(obj_request);
1582 rbd_assert(obj_request->which != BAD_WHICH);
1583 img_request->obj_request_count++;
1584 list_add_tail(&obj_request->links, &img_request->obj_requests);
1585 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1586 obj_request->which);
1587 }
1588
1589 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1590 struct rbd_obj_request *obj_request)
1591 {
1592 rbd_assert(obj_request->which != BAD_WHICH);
1593
1594 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1595 obj_request->which);
1596 list_del(&obj_request->links);
1597 rbd_assert(img_request->obj_request_count > 0);
1598 img_request->obj_request_count--;
1599 rbd_assert(obj_request->which == img_request->obj_request_count);
1600 obj_request->which = BAD_WHICH;
1601 rbd_assert(obj_request_img_data_test(obj_request));
1602 rbd_assert(obj_request->img_request == img_request);
1603 obj_request->img_request = NULL;
1604 obj_request->callback = NULL;
1605 rbd_obj_request_put(obj_request);
1606 }
1607
1608 static bool obj_request_type_valid(enum obj_request_type type)
1609 {
1610 switch (type) {
1611 case OBJ_REQUEST_NODATA:
1612 case OBJ_REQUEST_BIO:
1613 case OBJ_REQUEST_PAGES:
1614 return true;
1615 default:
1616 return false;
1617 }
1618 }
1619
1620 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1621
1622 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1623 {
1624 struct ceph_osd_request *osd_req = obj_request->osd_req;
1625
1626 dout("%s %p osd_req %p\n", __func__, obj_request, osd_req);
1627 if (obj_request_img_data_test(obj_request)) {
1628 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1629 rbd_img_request_get(obj_request->img_request);
1630 }
1631 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1632 }
1633
1634 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1635 {
1636 dout("%s %p\n", __func__, obj_request);
1637 ceph_osdc_cancel_request(obj_request->osd_req);
1638 }
1639
1640 /*
1641 * Wait for an object request to complete. If interrupted, cancel the
1642 * underlying osd request.
1643 *
1644 * @timeout: in jiffies, 0 means "wait forever"
1645 */
1646 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1647 unsigned long timeout)
1648 {
1649 long ret;
1650
1651 dout("%s %p\n", __func__, obj_request);
1652 ret = wait_for_completion_interruptible_timeout(
1653 &obj_request->completion,
1654 ceph_timeout_jiffies(timeout));
1655 if (ret <= 0) {
1656 if (ret == 0)
1657 ret = -ETIMEDOUT;
1658 rbd_obj_request_end(obj_request);
1659 } else {
1660 ret = 0;
1661 }
1662
1663 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1664 return ret;
1665 }
1666
1667 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1668 {
1669 return __rbd_obj_request_wait(obj_request, 0);
1670 }
1671
1672 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1673 {
1674
1675 dout("%s: img %p\n", __func__, img_request);
1676
1677 /*
1678 * If no error occurred, compute the aggregate transfer
1679 * count for the image request. We could instead use
1680 * atomic64_cmpxchg() to update it as each object request
1681 * completes; not clear which way is better off hand.
1682 */
1683 if (!img_request->result) {
1684 struct rbd_obj_request *obj_request;
1685 u64 xferred = 0;
1686
1687 for_each_obj_request(img_request, obj_request)
1688 xferred += obj_request->xferred;
1689 img_request->xferred = xferred;
1690 }
1691
1692 if (img_request->callback)
1693 img_request->callback(img_request);
1694 else
1695 rbd_img_request_put(img_request);
1696 }
1697
1698 /*
1699 * The default/initial value for all image request flags is 0. Each
1700 * is conditionally set to 1 at image request initialization time
1701 * and currently never change thereafter.
1702 */
1703 static void img_request_write_set(struct rbd_img_request *img_request)
1704 {
1705 set_bit(IMG_REQ_WRITE, &img_request->flags);
1706 smp_mb();
1707 }
1708
1709 static bool img_request_write_test(struct rbd_img_request *img_request)
1710 {
1711 smp_mb();
1712 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1713 }
1714
1715 /*
1716 * Set the discard flag when the img_request is an discard request
1717 */
1718 static void img_request_discard_set(struct rbd_img_request *img_request)
1719 {
1720 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1721 smp_mb();
1722 }
1723
1724 static bool img_request_discard_test(struct rbd_img_request *img_request)
1725 {
1726 smp_mb();
1727 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1728 }
1729
1730 static void img_request_child_set(struct rbd_img_request *img_request)
1731 {
1732 set_bit(IMG_REQ_CHILD, &img_request->flags);
1733 smp_mb();
1734 }
1735
1736 static void img_request_child_clear(struct rbd_img_request *img_request)
1737 {
1738 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1739 smp_mb();
1740 }
1741
1742 static bool img_request_child_test(struct rbd_img_request *img_request)
1743 {
1744 smp_mb();
1745 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1746 }
1747
1748 static void img_request_layered_set(struct rbd_img_request *img_request)
1749 {
1750 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1751 smp_mb();
1752 }
1753
1754 static void img_request_layered_clear(struct rbd_img_request *img_request)
1755 {
1756 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1757 smp_mb();
1758 }
1759
1760 static bool img_request_layered_test(struct rbd_img_request *img_request)
1761 {
1762 smp_mb();
1763 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1764 }
1765
1766 static enum obj_operation_type
1767 rbd_img_request_op_type(struct rbd_img_request *img_request)
1768 {
1769 if (img_request_write_test(img_request))
1770 return OBJ_OP_WRITE;
1771 else if (img_request_discard_test(img_request))
1772 return OBJ_OP_DISCARD;
1773 else
1774 return OBJ_OP_READ;
1775 }
1776
1777 static void
1778 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1779 {
1780 u64 xferred = obj_request->xferred;
1781 u64 length = obj_request->length;
1782
1783 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1784 obj_request, obj_request->img_request, obj_request->result,
1785 xferred, length);
1786 /*
1787 * ENOENT means a hole in the image. We zero-fill the entire
1788 * length of the request. A short read also implies zero-fill
1789 * to the end of the request. An error requires the whole
1790 * length of the request to be reported finished with an error
1791 * to the block layer. In each case we update the xferred
1792 * count to indicate the whole request was satisfied.
1793 */
1794 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1795 if (obj_request->result == -ENOENT) {
1796 if (obj_request->type == OBJ_REQUEST_BIO)
1797 zero_bio_chain(obj_request->bio_list, 0);
1798 else
1799 zero_pages(obj_request->pages, 0, length);
1800 obj_request->result = 0;
1801 } else if (xferred < length && !obj_request->result) {
1802 if (obj_request->type == OBJ_REQUEST_BIO)
1803 zero_bio_chain(obj_request->bio_list, xferred);
1804 else
1805 zero_pages(obj_request->pages, xferred, length);
1806 }
1807 obj_request->xferred = length;
1808 obj_request_done_set(obj_request);
1809 }
1810
1811 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1812 {
1813 dout("%s: obj %p cb %p\n", __func__, obj_request,
1814 obj_request->callback);
1815 if (obj_request->callback)
1816 obj_request->callback(obj_request);
1817 else
1818 complete_all(&obj_request->completion);
1819 }
1820
1821 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1822 {
1823 obj_request->result = err;
1824 obj_request->xferred = 0;
1825 /*
1826 * kludge - mirror rbd_obj_request_submit() to match a put in
1827 * rbd_img_obj_callback()
1828 */
1829 if (obj_request_img_data_test(obj_request)) {
1830 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1831 rbd_img_request_get(obj_request->img_request);
1832 }
1833 obj_request_done_set(obj_request);
1834 rbd_obj_request_complete(obj_request);
1835 }
1836
1837 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1838 {
1839 struct rbd_img_request *img_request = NULL;
1840 struct rbd_device *rbd_dev = NULL;
1841 bool layered = false;
1842
1843 if (obj_request_img_data_test(obj_request)) {
1844 img_request = obj_request->img_request;
1845 layered = img_request && img_request_layered_test(img_request);
1846 rbd_dev = img_request->rbd_dev;
1847 }
1848
1849 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1850 obj_request, img_request, obj_request->result,
1851 obj_request->xferred, obj_request->length);
1852 if (layered && obj_request->result == -ENOENT &&
1853 obj_request->img_offset < rbd_dev->parent_overlap)
1854 rbd_img_parent_read(obj_request);
1855 else if (img_request)
1856 rbd_img_obj_request_read_callback(obj_request);
1857 else
1858 obj_request_done_set(obj_request);
1859 }
1860
1861 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1862 {
1863 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1864 obj_request->result, obj_request->length);
1865 /*
1866 * There is no such thing as a successful short write. Set
1867 * it to our originally-requested length.
1868 */
1869 obj_request->xferred = obj_request->length;
1870 obj_request_done_set(obj_request);
1871 }
1872
1873 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1874 {
1875 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1876 obj_request->result, obj_request->length);
1877 /*
1878 * There is no such thing as a successful short discard. Set
1879 * it to our originally-requested length.
1880 */
1881 obj_request->xferred = obj_request->length;
1882 /* discarding a non-existent object is not a problem */
1883 if (obj_request->result == -ENOENT)
1884 obj_request->result = 0;
1885 obj_request_done_set(obj_request);
1886 }
1887
1888 /*
1889 * For a simple stat call there's nothing to do. We'll do more if
1890 * this is part of a write sequence for a layered image.
1891 */
1892 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1893 {
1894 dout("%s: obj %p\n", __func__, obj_request);
1895 obj_request_done_set(obj_request);
1896 }
1897
1898 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1899 {
1900 dout("%s: obj %p\n", __func__, obj_request);
1901
1902 if (obj_request_img_data_test(obj_request))
1903 rbd_osd_copyup_callback(obj_request);
1904 else
1905 obj_request_done_set(obj_request);
1906 }
1907
1908 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1909 {
1910 struct rbd_obj_request *obj_request = osd_req->r_priv;
1911 u16 opcode;
1912
1913 dout("%s: osd_req %p\n", __func__, osd_req);
1914 rbd_assert(osd_req == obj_request->osd_req);
1915 if (obj_request_img_data_test(obj_request)) {
1916 rbd_assert(obj_request->img_request);
1917 rbd_assert(obj_request->which != BAD_WHICH);
1918 } else {
1919 rbd_assert(obj_request->which == BAD_WHICH);
1920 }
1921
1922 if (osd_req->r_result < 0)
1923 obj_request->result = osd_req->r_result;
1924
1925 /*
1926 * We support a 64-bit length, but ultimately it has to be
1927 * passed to the block layer, which just supports a 32-bit
1928 * length field.
1929 */
1930 obj_request->xferred = osd_req->r_ops[0].outdata_len;
1931 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1932
1933 opcode = osd_req->r_ops[0].op;
1934 switch (opcode) {
1935 case CEPH_OSD_OP_READ:
1936 rbd_osd_read_callback(obj_request);
1937 break;
1938 case CEPH_OSD_OP_SETALLOCHINT:
1939 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1940 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1941 /* fall through */
1942 case CEPH_OSD_OP_WRITE:
1943 case CEPH_OSD_OP_WRITEFULL:
1944 rbd_osd_write_callback(obj_request);
1945 break;
1946 case CEPH_OSD_OP_STAT:
1947 rbd_osd_stat_callback(obj_request);
1948 break;
1949 case CEPH_OSD_OP_DELETE:
1950 case CEPH_OSD_OP_TRUNCATE:
1951 case CEPH_OSD_OP_ZERO:
1952 rbd_osd_discard_callback(obj_request);
1953 break;
1954 case CEPH_OSD_OP_CALL:
1955 rbd_osd_call_callback(obj_request);
1956 break;
1957 default:
1958 rbd_warn(NULL, "%s: unsupported op %hu",
1959 obj_request->object_name, (unsigned short) opcode);
1960 break;
1961 }
1962
1963 if (obj_request_done_test(obj_request))
1964 rbd_obj_request_complete(obj_request);
1965 }
1966
1967 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1968 {
1969 struct ceph_osd_request *osd_req = obj_request->osd_req;
1970
1971 rbd_assert(obj_request_img_data_test(obj_request));
1972 osd_req->r_snapid = obj_request->img_request->snap_id;
1973 }
1974
1975 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1976 {
1977 struct ceph_osd_request *osd_req = obj_request->osd_req;
1978
1979 osd_req->r_mtime = CURRENT_TIME;
1980 osd_req->r_data_offset = obj_request->offset;
1981 }
1982
1983 /*
1984 * Create an osd request. A read request has one osd op (read).
1985 * A write request has either one (watch) or two (hint+write) osd ops.
1986 * (All rbd data writes are prefixed with an allocation hint op, but
1987 * technically osd watch is a write request, hence this distinction.)
1988 */
1989 static struct ceph_osd_request *rbd_osd_req_create(
1990 struct rbd_device *rbd_dev,
1991 enum obj_operation_type op_type,
1992 unsigned int num_ops,
1993 struct rbd_obj_request *obj_request)
1994 {
1995 struct ceph_snap_context *snapc = NULL;
1996 struct ceph_osd_client *osdc;
1997 struct ceph_osd_request *osd_req;
1998
1999 if (obj_request_img_data_test(obj_request) &&
2000 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
2001 struct rbd_img_request *img_request = obj_request->img_request;
2002 if (op_type == OBJ_OP_WRITE) {
2003 rbd_assert(img_request_write_test(img_request));
2004 } else {
2005 rbd_assert(img_request_discard_test(img_request));
2006 }
2007 snapc = img_request->snapc;
2008 }
2009
2010 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
2011
2012 /* Allocate and initialize the request, for the num_ops ops */
2013
2014 osdc = &rbd_dev->rbd_client->client->osdc;
2015 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
2016 GFP_NOIO);
2017 if (!osd_req)
2018 goto fail;
2019
2020 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2021 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2022 else
2023 osd_req->r_flags = CEPH_OSD_FLAG_READ;
2024
2025 osd_req->r_callback = rbd_osd_req_callback;
2026 osd_req->r_priv = obj_request;
2027
2028 osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2029 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2030 obj_request->object_name))
2031 goto fail;
2032
2033 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2034 goto fail;
2035
2036 return osd_req;
2037
2038 fail:
2039 ceph_osdc_put_request(osd_req);
2040 return NULL;
2041 }
2042
2043 /*
2044 * Create a copyup osd request based on the information in the object
2045 * request supplied. A copyup request has two or three osd ops, a
2046 * copyup method call, potentially a hint op, and a write or truncate
2047 * or zero op.
2048 */
2049 static struct ceph_osd_request *
2050 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2051 {
2052 struct rbd_img_request *img_request;
2053 struct ceph_snap_context *snapc;
2054 struct rbd_device *rbd_dev;
2055 struct ceph_osd_client *osdc;
2056 struct ceph_osd_request *osd_req;
2057 int num_osd_ops = 3;
2058
2059 rbd_assert(obj_request_img_data_test(obj_request));
2060 img_request = obj_request->img_request;
2061 rbd_assert(img_request);
2062 rbd_assert(img_request_write_test(img_request) ||
2063 img_request_discard_test(img_request));
2064
2065 if (img_request_discard_test(img_request))
2066 num_osd_ops = 2;
2067
2068 /* Allocate and initialize the request, for all the ops */
2069
2070 snapc = img_request->snapc;
2071 rbd_dev = img_request->rbd_dev;
2072 osdc = &rbd_dev->rbd_client->client->osdc;
2073 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2074 false, GFP_NOIO);
2075 if (!osd_req)
2076 goto fail;
2077
2078 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2079 osd_req->r_callback = rbd_osd_req_callback;
2080 osd_req->r_priv = obj_request;
2081
2082 osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2083 if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2084 obj_request->object_name))
2085 goto fail;
2086
2087 if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2088 goto fail;
2089
2090 return osd_req;
2091
2092 fail:
2093 ceph_osdc_put_request(osd_req);
2094 return NULL;
2095 }
2096
2097
2098 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2099 {
2100 ceph_osdc_put_request(osd_req);
2101 }
2102
2103 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2104
2105 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2106 u64 offset, u64 length,
2107 enum obj_request_type type)
2108 {
2109 struct rbd_obj_request *obj_request;
2110 size_t size;
2111 char *name;
2112
2113 rbd_assert(obj_request_type_valid(type));
2114
2115 size = strlen(object_name) + 1;
2116 name = kmalloc(size, GFP_NOIO);
2117 if (!name)
2118 return NULL;
2119
2120 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2121 if (!obj_request) {
2122 kfree(name);
2123 return NULL;
2124 }
2125
2126 obj_request->object_name = memcpy(name, object_name, size);
2127 obj_request->offset = offset;
2128 obj_request->length = length;
2129 obj_request->flags = 0;
2130 obj_request->which = BAD_WHICH;
2131 obj_request->type = type;
2132 INIT_LIST_HEAD(&obj_request->links);
2133 init_completion(&obj_request->completion);
2134 kref_init(&obj_request->kref);
2135
2136 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2137 offset, length, (int)type, obj_request);
2138
2139 return obj_request;
2140 }
2141
2142 static void rbd_obj_request_destroy(struct kref *kref)
2143 {
2144 struct rbd_obj_request *obj_request;
2145
2146 obj_request = container_of(kref, struct rbd_obj_request, kref);
2147
2148 dout("%s: obj %p\n", __func__, obj_request);
2149
2150 rbd_assert(obj_request->img_request == NULL);
2151 rbd_assert(obj_request->which == BAD_WHICH);
2152
2153 if (obj_request->osd_req)
2154 rbd_osd_req_destroy(obj_request->osd_req);
2155
2156 rbd_assert(obj_request_type_valid(obj_request->type));
2157 switch (obj_request->type) {
2158 case OBJ_REQUEST_NODATA:
2159 break; /* Nothing to do */
2160 case OBJ_REQUEST_BIO:
2161 if (obj_request->bio_list)
2162 bio_chain_put(obj_request->bio_list);
2163 break;
2164 case OBJ_REQUEST_PAGES:
2165 /* img_data requests don't own their page array */
2166 if (obj_request->pages &&
2167 !obj_request_img_data_test(obj_request))
2168 ceph_release_page_vector(obj_request->pages,
2169 obj_request->page_count);
2170 break;
2171 }
2172
2173 kfree(obj_request->object_name);
2174 obj_request->object_name = NULL;
2175 kmem_cache_free(rbd_obj_request_cache, obj_request);
2176 }
2177
2178 /* It's OK to call this for a device with no parent */
2179
2180 static void rbd_spec_put(struct rbd_spec *spec);
2181 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2182 {
2183 rbd_dev_remove_parent(rbd_dev);
2184 rbd_spec_put(rbd_dev->parent_spec);
2185 rbd_dev->parent_spec = NULL;
2186 rbd_dev->parent_overlap = 0;
2187 }
2188
2189 /*
2190 * Parent image reference counting is used to determine when an
2191 * image's parent fields can be safely torn down--after there are no
2192 * more in-flight requests to the parent image. When the last
2193 * reference is dropped, cleaning them up is safe.
2194 */
2195 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2196 {
2197 int counter;
2198
2199 if (!rbd_dev->parent_spec)
2200 return;
2201
2202 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2203 if (counter > 0)
2204 return;
2205
2206 /* Last reference; clean up parent data structures */
2207
2208 if (!counter)
2209 rbd_dev_unparent(rbd_dev);
2210 else
2211 rbd_warn(rbd_dev, "parent reference underflow");
2212 }
2213
2214 /*
2215 * If an image has a non-zero parent overlap, get a reference to its
2216 * parent.
2217 *
2218 * Returns true if the rbd device has a parent with a non-zero
2219 * overlap and a reference for it was successfully taken, or
2220 * false otherwise.
2221 */
2222 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2223 {
2224 int counter = 0;
2225
2226 if (!rbd_dev->parent_spec)
2227 return false;
2228
2229 down_read(&rbd_dev->header_rwsem);
2230 if (rbd_dev->parent_overlap)
2231 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2232 up_read(&rbd_dev->header_rwsem);
2233
2234 if (counter < 0)
2235 rbd_warn(rbd_dev, "parent reference overflow");
2236
2237 return counter > 0;
2238 }
2239
2240 /*
2241 * Caller is responsible for filling in the list of object requests
2242 * that comprises the image request, and the Linux request pointer
2243 * (if there is one).
2244 */
2245 static struct rbd_img_request *rbd_img_request_create(
2246 struct rbd_device *rbd_dev,
2247 u64 offset, u64 length,
2248 enum obj_operation_type op_type,
2249 struct ceph_snap_context *snapc)
2250 {
2251 struct rbd_img_request *img_request;
2252
2253 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2254 if (!img_request)
2255 return NULL;
2256
2257 img_request->rq = NULL;
2258 img_request->rbd_dev = rbd_dev;
2259 img_request->offset = offset;
2260 img_request->length = length;
2261 img_request->flags = 0;
2262 if (op_type == OBJ_OP_DISCARD) {
2263 img_request_discard_set(img_request);
2264 img_request->snapc = snapc;
2265 } else if (op_type == OBJ_OP_WRITE) {
2266 img_request_write_set(img_request);
2267 img_request->snapc = snapc;
2268 } else {
2269 img_request->snap_id = rbd_dev->spec->snap_id;
2270 }
2271 if (rbd_dev_parent_get(rbd_dev))
2272 img_request_layered_set(img_request);
2273 spin_lock_init(&img_request->completion_lock);
2274 img_request->next_completion = 0;
2275 img_request->callback = NULL;
2276 img_request->result = 0;
2277 img_request->obj_request_count = 0;
2278 INIT_LIST_HEAD(&img_request->obj_requests);
2279 kref_init(&img_request->kref);
2280
2281 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2282 obj_op_name(op_type), offset, length, img_request);
2283
2284 return img_request;
2285 }
2286
2287 static void rbd_img_request_destroy(struct kref *kref)
2288 {
2289 struct rbd_img_request *img_request;
2290 struct rbd_obj_request *obj_request;
2291 struct rbd_obj_request *next_obj_request;
2292
2293 img_request = container_of(kref, struct rbd_img_request, kref);
2294
2295 dout("%s: img %p\n", __func__, img_request);
2296
2297 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2298 rbd_img_obj_request_del(img_request, obj_request);
2299 rbd_assert(img_request->obj_request_count == 0);
2300
2301 if (img_request_layered_test(img_request)) {
2302 img_request_layered_clear(img_request);
2303 rbd_dev_parent_put(img_request->rbd_dev);
2304 }
2305
2306 if (img_request_write_test(img_request) ||
2307 img_request_discard_test(img_request))
2308 ceph_put_snap_context(img_request->snapc);
2309
2310 kmem_cache_free(rbd_img_request_cache, img_request);
2311 }
2312
2313 static struct rbd_img_request *rbd_parent_request_create(
2314 struct rbd_obj_request *obj_request,
2315 u64 img_offset, u64 length)
2316 {
2317 struct rbd_img_request *parent_request;
2318 struct rbd_device *rbd_dev;
2319
2320 rbd_assert(obj_request->img_request);
2321 rbd_dev = obj_request->img_request->rbd_dev;
2322
2323 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2324 length, OBJ_OP_READ, NULL);
2325 if (!parent_request)
2326 return NULL;
2327
2328 img_request_child_set(parent_request);
2329 rbd_obj_request_get(obj_request);
2330 parent_request->obj_request = obj_request;
2331
2332 return parent_request;
2333 }
2334
2335 static void rbd_parent_request_destroy(struct kref *kref)
2336 {
2337 struct rbd_img_request *parent_request;
2338 struct rbd_obj_request *orig_request;
2339
2340 parent_request = container_of(kref, struct rbd_img_request, kref);
2341 orig_request = parent_request->obj_request;
2342
2343 parent_request->obj_request = NULL;
2344 rbd_obj_request_put(orig_request);
2345 img_request_child_clear(parent_request);
2346
2347 rbd_img_request_destroy(kref);
2348 }
2349
2350 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2351 {
2352 struct rbd_img_request *img_request;
2353 unsigned int xferred;
2354 int result;
2355 bool more;
2356
2357 rbd_assert(obj_request_img_data_test(obj_request));
2358 img_request = obj_request->img_request;
2359
2360 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2361 xferred = (unsigned int)obj_request->xferred;
2362 result = obj_request->result;
2363 if (result) {
2364 struct rbd_device *rbd_dev = img_request->rbd_dev;
2365 enum obj_operation_type op_type;
2366
2367 if (img_request_discard_test(img_request))
2368 op_type = OBJ_OP_DISCARD;
2369 else if (img_request_write_test(img_request))
2370 op_type = OBJ_OP_WRITE;
2371 else
2372 op_type = OBJ_OP_READ;
2373
2374 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2375 obj_op_name(op_type), obj_request->length,
2376 obj_request->img_offset, obj_request->offset);
2377 rbd_warn(rbd_dev, " result %d xferred %x",
2378 result, xferred);
2379 if (!img_request->result)
2380 img_request->result = result;
2381 /*
2382 * Need to end I/O on the entire obj_request worth of
2383 * bytes in case of error.
2384 */
2385 xferred = obj_request->length;
2386 }
2387
2388 if (img_request_child_test(img_request)) {
2389 rbd_assert(img_request->obj_request != NULL);
2390 more = obj_request->which < img_request->obj_request_count - 1;
2391 } else {
2392 rbd_assert(img_request->rq != NULL);
2393
2394 more = blk_update_request(img_request->rq, result, xferred);
2395 if (!more)
2396 __blk_mq_end_request(img_request->rq, result);
2397 }
2398
2399 return more;
2400 }
2401
2402 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2403 {
2404 struct rbd_img_request *img_request;
2405 u32 which = obj_request->which;
2406 bool more = true;
2407
2408 rbd_assert(obj_request_img_data_test(obj_request));
2409 img_request = obj_request->img_request;
2410
2411 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2412 rbd_assert(img_request != NULL);
2413 rbd_assert(img_request->obj_request_count > 0);
2414 rbd_assert(which != BAD_WHICH);
2415 rbd_assert(which < img_request->obj_request_count);
2416
2417 spin_lock_irq(&img_request->completion_lock);
2418 if (which != img_request->next_completion)
2419 goto out;
2420
2421 for_each_obj_request_from(img_request, obj_request) {
2422 rbd_assert(more);
2423 rbd_assert(which < img_request->obj_request_count);
2424
2425 if (!obj_request_done_test(obj_request))
2426 break;
2427 more = rbd_img_obj_end_request(obj_request);
2428 which++;
2429 }
2430
2431 rbd_assert(more ^ (which == img_request->obj_request_count));
2432 img_request->next_completion = which;
2433 out:
2434 spin_unlock_irq(&img_request->completion_lock);
2435 rbd_img_request_put(img_request);
2436
2437 if (!more)
2438 rbd_img_request_complete(img_request);
2439 }
2440
2441 /*
2442 * Add individual osd ops to the given ceph_osd_request and prepare
2443 * them for submission. num_ops is the current number of
2444 * osd operations already to the object request.
2445 */
2446 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2447 struct ceph_osd_request *osd_request,
2448 enum obj_operation_type op_type,
2449 unsigned int num_ops)
2450 {
2451 struct rbd_img_request *img_request = obj_request->img_request;
2452 struct rbd_device *rbd_dev = img_request->rbd_dev;
2453 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2454 u64 offset = obj_request->offset;
2455 u64 length = obj_request->length;
2456 u64 img_end;
2457 u16 opcode;
2458
2459 if (op_type == OBJ_OP_DISCARD) {
2460 if (!offset && length == object_size &&
2461 (!img_request_layered_test(img_request) ||
2462 !obj_request_overlaps_parent(obj_request))) {
2463 opcode = CEPH_OSD_OP_DELETE;
2464 } else if ((offset + length == object_size)) {
2465 opcode = CEPH_OSD_OP_TRUNCATE;
2466 } else {
2467 down_read(&rbd_dev->header_rwsem);
2468 img_end = rbd_dev->header.image_size;
2469 up_read(&rbd_dev->header_rwsem);
2470
2471 if (obj_request->img_offset + length == img_end)
2472 opcode = CEPH_OSD_OP_TRUNCATE;
2473 else
2474 opcode = CEPH_OSD_OP_ZERO;
2475 }
2476 } else if (op_type == OBJ_OP_WRITE) {
2477 if (!offset && length == object_size)
2478 opcode = CEPH_OSD_OP_WRITEFULL;
2479 else
2480 opcode = CEPH_OSD_OP_WRITE;
2481 osd_req_op_alloc_hint_init(osd_request, num_ops,
2482 object_size, object_size);
2483 num_ops++;
2484 } else {
2485 opcode = CEPH_OSD_OP_READ;
2486 }
2487
2488 if (opcode == CEPH_OSD_OP_DELETE)
2489 osd_req_op_init(osd_request, num_ops, opcode, 0);
2490 else
2491 osd_req_op_extent_init(osd_request, num_ops, opcode,
2492 offset, length, 0, 0);
2493
2494 if (obj_request->type == OBJ_REQUEST_BIO)
2495 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2496 obj_request->bio_list, length);
2497 else if (obj_request->type == OBJ_REQUEST_PAGES)
2498 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2499 obj_request->pages, length,
2500 offset & ~PAGE_MASK, false, false);
2501
2502 /* Discards are also writes */
2503 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2504 rbd_osd_req_format_write(obj_request);
2505 else
2506 rbd_osd_req_format_read(obj_request);
2507 }
2508
2509 /*
2510 * Split up an image request into one or more object requests, each
2511 * to a different object. The "type" parameter indicates whether
2512 * "data_desc" is the pointer to the head of a list of bio
2513 * structures, or the base of a page array. In either case this
2514 * function assumes data_desc describes memory sufficient to hold
2515 * all data described by the image request.
2516 */
2517 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2518 enum obj_request_type type,
2519 void *data_desc)
2520 {
2521 struct rbd_device *rbd_dev = img_request->rbd_dev;
2522 struct rbd_obj_request *obj_request = NULL;
2523 struct rbd_obj_request *next_obj_request;
2524 struct bio *bio_list = NULL;
2525 unsigned int bio_offset = 0;
2526 struct page **pages = NULL;
2527 enum obj_operation_type op_type;
2528 u64 img_offset;
2529 u64 resid;
2530
2531 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2532 (int)type, data_desc);
2533
2534 img_offset = img_request->offset;
2535 resid = img_request->length;
2536 rbd_assert(resid > 0);
2537 op_type = rbd_img_request_op_type(img_request);
2538
2539 if (type == OBJ_REQUEST_BIO) {
2540 bio_list = data_desc;
2541 rbd_assert(img_offset ==
2542 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2543 } else if (type == OBJ_REQUEST_PAGES) {
2544 pages = data_desc;
2545 }
2546
2547 while (resid) {
2548 struct ceph_osd_request *osd_req;
2549 const char *object_name;
2550 u64 offset;
2551 u64 length;
2552
2553 object_name = rbd_segment_name(rbd_dev, img_offset);
2554 if (!object_name)
2555 goto out_unwind;
2556 offset = rbd_segment_offset(rbd_dev, img_offset);
2557 length = rbd_segment_length(rbd_dev, img_offset, resid);
2558 obj_request = rbd_obj_request_create(object_name,
2559 offset, length, type);
2560 /* object request has its own copy of the object name */
2561 rbd_segment_name_free(object_name);
2562 if (!obj_request)
2563 goto out_unwind;
2564
2565 /*
2566 * set obj_request->img_request before creating the
2567 * osd_request so that it gets the right snapc
2568 */
2569 rbd_img_obj_request_add(img_request, obj_request);
2570
2571 if (type == OBJ_REQUEST_BIO) {
2572 unsigned int clone_size;
2573
2574 rbd_assert(length <= (u64)UINT_MAX);
2575 clone_size = (unsigned int)length;
2576 obj_request->bio_list =
2577 bio_chain_clone_range(&bio_list,
2578 &bio_offset,
2579 clone_size,
2580 GFP_NOIO);
2581 if (!obj_request->bio_list)
2582 goto out_unwind;
2583 } else if (type == OBJ_REQUEST_PAGES) {
2584 unsigned int page_count;
2585
2586 obj_request->pages = pages;
2587 page_count = (u32)calc_pages_for(offset, length);
2588 obj_request->page_count = page_count;
2589 if ((offset + length) & ~PAGE_MASK)
2590 page_count--; /* more on last page */
2591 pages += page_count;
2592 }
2593
2594 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2595 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2596 obj_request);
2597 if (!osd_req)
2598 goto out_unwind;
2599
2600 obj_request->osd_req = osd_req;
2601 obj_request->callback = rbd_img_obj_callback;
2602 obj_request->img_offset = img_offset;
2603
2604 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2605
2606 img_offset += length;
2607 resid -= length;
2608 }
2609
2610 return 0;
2611
2612 out_unwind:
2613 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2614 rbd_img_obj_request_del(img_request, obj_request);
2615
2616 return -ENOMEM;
2617 }
2618
2619 static void
2620 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2621 {
2622 struct rbd_img_request *img_request;
2623 struct rbd_device *rbd_dev;
2624 struct page **pages;
2625 u32 page_count;
2626
2627 dout("%s: obj %p\n", __func__, obj_request);
2628
2629 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2630 obj_request->type == OBJ_REQUEST_NODATA);
2631 rbd_assert(obj_request_img_data_test(obj_request));
2632 img_request = obj_request->img_request;
2633 rbd_assert(img_request);
2634
2635 rbd_dev = img_request->rbd_dev;
2636 rbd_assert(rbd_dev);
2637
2638 pages = obj_request->copyup_pages;
2639 rbd_assert(pages != NULL);
2640 obj_request->copyup_pages = NULL;
2641 page_count = obj_request->copyup_page_count;
2642 rbd_assert(page_count);
2643 obj_request->copyup_page_count = 0;
2644 ceph_release_page_vector(pages, page_count);
2645
2646 /*
2647 * We want the transfer count to reflect the size of the
2648 * original write request. There is no such thing as a
2649 * successful short write, so if the request was successful
2650 * we can just set it to the originally-requested length.
2651 */
2652 if (!obj_request->result)
2653 obj_request->xferred = obj_request->length;
2654
2655 obj_request_done_set(obj_request);
2656 }
2657
2658 static void
2659 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2660 {
2661 struct rbd_obj_request *orig_request;
2662 struct ceph_osd_request *osd_req;
2663 struct rbd_device *rbd_dev;
2664 struct page **pages;
2665 enum obj_operation_type op_type;
2666 u32 page_count;
2667 int img_result;
2668 u64 parent_length;
2669
2670 rbd_assert(img_request_child_test(img_request));
2671
2672 /* First get what we need from the image request */
2673
2674 pages = img_request->copyup_pages;
2675 rbd_assert(pages != NULL);
2676 img_request->copyup_pages = NULL;
2677 page_count = img_request->copyup_page_count;
2678 rbd_assert(page_count);
2679 img_request->copyup_page_count = 0;
2680
2681 orig_request = img_request->obj_request;
2682 rbd_assert(orig_request != NULL);
2683 rbd_assert(obj_request_type_valid(orig_request->type));
2684 img_result = img_request->result;
2685 parent_length = img_request->length;
2686 rbd_assert(img_result || parent_length == img_request->xferred);
2687 rbd_img_request_put(img_request);
2688
2689 rbd_assert(orig_request->img_request);
2690 rbd_dev = orig_request->img_request->rbd_dev;
2691 rbd_assert(rbd_dev);
2692
2693 /*
2694 * If the overlap has become 0 (most likely because the
2695 * image has been flattened) we need to free the pages
2696 * and re-submit the original write request.
2697 */
2698 if (!rbd_dev->parent_overlap) {
2699 ceph_release_page_vector(pages, page_count);
2700 rbd_obj_request_submit(orig_request);
2701 return;
2702 }
2703
2704 if (img_result)
2705 goto out_err;
2706
2707 /*
2708 * The original osd request is of no use to use any more.
2709 * We need a new one that can hold the three ops in a copyup
2710 * request. Allocate the new copyup osd request for the
2711 * original request, and release the old one.
2712 */
2713 img_result = -ENOMEM;
2714 osd_req = rbd_osd_req_create_copyup(orig_request);
2715 if (!osd_req)
2716 goto out_err;
2717 rbd_osd_req_destroy(orig_request->osd_req);
2718 orig_request->osd_req = osd_req;
2719 orig_request->copyup_pages = pages;
2720 orig_request->copyup_page_count = page_count;
2721
2722 /* Initialize the copyup op */
2723
2724 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2725 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2726 false, false);
2727
2728 /* Add the other op(s) */
2729
2730 op_type = rbd_img_request_op_type(orig_request->img_request);
2731 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2732
2733 /* All set, send it off. */
2734
2735 rbd_obj_request_submit(orig_request);
2736 return;
2737
2738 out_err:
2739 ceph_release_page_vector(pages, page_count);
2740 rbd_obj_request_error(orig_request, img_result);
2741 }
2742
2743 /*
2744 * Read from the parent image the range of data that covers the
2745 * entire target of the given object request. This is used for
2746 * satisfying a layered image write request when the target of an
2747 * object request from the image request does not exist.
2748 *
2749 * A page array big enough to hold the returned data is allocated
2750 * and supplied to rbd_img_request_fill() as the "data descriptor."
2751 * When the read completes, this page array will be transferred to
2752 * the original object request for the copyup operation.
2753 *
2754 * If an error occurs, it is recorded as the result of the original
2755 * object request in rbd_img_obj_exists_callback().
2756 */
2757 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2758 {
2759 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2760 struct rbd_img_request *parent_request = NULL;
2761 u64 img_offset;
2762 u64 length;
2763 struct page **pages = NULL;
2764 u32 page_count;
2765 int result;
2766
2767 rbd_assert(rbd_dev->parent != NULL);
2768
2769 /*
2770 * Determine the byte range covered by the object in the
2771 * child image to which the original request was to be sent.
2772 */
2773 img_offset = obj_request->img_offset - obj_request->offset;
2774 length = (u64)1 << rbd_dev->header.obj_order;
2775
2776 /*
2777 * There is no defined parent data beyond the parent
2778 * overlap, so limit what we read at that boundary if
2779 * necessary.
2780 */
2781 if (img_offset + length > rbd_dev->parent_overlap) {
2782 rbd_assert(img_offset < rbd_dev->parent_overlap);
2783 length = rbd_dev->parent_overlap - img_offset;
2784 }
2785
2786 /*
2787 * Allocate a page array big enough to receive the data read
2788 * from the parent.
2789 */
2790 page_count = (u32)calc_pages_for(0, length);
2791 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2792 if (IS_ERR(pages)) {
2793 result = PTR_ERR(pages);
2794 pages = NULL;
2795 goto out_err;
2796 }
2797
2798 result = -ENOMEM;
2799 parent_request = rbd_parent_request_create(obj_request,
2800 img_offset, length);
2801 if (!parent_request)
2802 goto out_err;
2803
2804 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2805 if (result)
2806 goto out_err;
2807
2808 parent_request->copyup_pages = pages;
2809 parent_request->copyup_page_count = page_count;
2810 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2811
2812 result = rbd_img_request_submit(parent_request);
2813 if (!result)
2814 return 0;
2815
2816 parent_request->copyup_pages = NULL;
2817 parent_request->copyup_page_count = 0;
2818 parent_request->obj_request = NULL;
2819 rbd_obj_request_put(obj_request);
2820 out_err:
2821 if (pages)
2822 ceph_release_page_vector(pages, page_count);
2823 if (parent_request)
2824 rbd_img_request_put(parent_request);
2825 return result;
2826 }
2827
2828 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2829 {
2830 struct rbd_obj_request *orig_request;
2831 struct rbd_device *rbd_dev;
2832 int result;
2833
2834 rbd_assert(!obj_request_img_data_test(obj_request));
2835
2836 /*
2837 * All we need from the object request is the original
2838 * request and the result of the STAT op. Grab those, then
2839 * we're done with the request.
2840 */
2841 orig_request = obj_request->obj_request;
2842 obj_request->obj_request = NULL;
2843 rbd_obj_request_put(orig_request);
2844 rbd_assert(orig_request);
2845 rbd_assert(orig_request->img_request);
2846
2847 result = obj_request->result;
2848 obj_request->result = 0;
2849
2850 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2851 obj_request, orig_request, result,
2852 obj_request->xferred, obj_request->length);
2853 rbd_obj_request_put(obj_request);
2854
2855 /*
2856 * If the overlap has become 0 (most likely because the
2857 * image has been flattened) we need to re-submit the
2858 * original request.
2859 */
2860 rbd_dev = orig_request->img_request->rbd_dev;
2861 if (!rbd_dev->parent_overlap) {
2862 rbd_obj_request_submit(orig_request);
2863 return;
2864 }
2865
2866 /*
2867 * Our only purpose here is to determine whether the object
2868 * exists, and we don't want to treat the non-existence as
2869 * an error. If something else comes back, transfer the
2870 * error to the original request and complete it now.
2871 */
2872 if (!result) {
2873 obj_request_existence_set(orig_request, true);
2874 } else if (result == -ENOENT) {
2875 obj_request_existence_set(orig_request, false);
2876 } else {
2877 goto fail_orig_request;
2878 }
2879
2880 /*
2881 * Resubmit the original request now that we have recorded
2882 * whether the target object exists.
2883 */
2884 result = rbd_img_obj_request_submit(orig_request);
2885 if (result)
2886 goto fail_orig_request;
2887
2888 return;
2889
2890 fail_orig_request:
2891 rbd_obj_request_error(orig_request, result);
2892 }
2893
2894 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2895 {
2896 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2897 struct rbd_obj_request *stat_request;
2898 struct page **pages;
2899 u32 page_count;
2900 size_t size;
2901 int ret;
2902
2903 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2904 OBJ_REQUEST_PAGES);
2905 if (!stat_request)
2906 return -ENOMEM;
2907
2908 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2909 stat_request);
2910 if (!stat_request->osd_req) {
2911 ret = -ENOMEM;
2912 goto fail_stat_request;
2913 }
2914
2915 /*
2916 * The response data for a STAT call consists of:
2917 * le64 length;
2918 * struct {
2919 * le32 tv_sec;
2920 * le32 tv_nsec;
2921 * } mtime;
2922 */
2923 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2924 page_count = (u32)calc_pages_for(0, size);
2925 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2926 if (IS_ERR(pages)) {
2927 ret = PTR_ERR(pages);
2928 goto fail_stat_request;
2929 }
2930
2931 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2932 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2933 false, false);
2934
2935 rbd_obj_request_get(obj_request);
2936 stat_request->obj_request = obj_request;
2937 stat_request->pages = pages;
2938 stat_request->page_count = page_count;
2939 stat_request->callback = rbd_img_obj_exists_callback;
2940
2941 rbd_obj_request_submit(stat_request);
2942 return 0;
2943
2944 fail_stat_request:
2945 rbd_obj_request_put(stat_request);
2946 return ret;
2947 }
2948
2949 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2950 {
2951 struct rbd_img_request *img_request = obj_request->img_request;
2952 struct rbd_device *rbd_dev = img_request->rbd_dev;
2953
2954 /* Reads */
2955 if (!img_request_write_test(img_request) &&
2956 !img_request_discard_test(img_request))
2957 return true;
2958
2959 /* Non-layered writes */
2960 if (!img_request_layered_test(img_request))
2961 return true;
2962
2963 /*
2964 * Layered writes outside of the parent overlap range don't
2965 * share any data with the parent.
2966 */
2967 if (!obj_request_overlaps_parent(obj_request))
2968 return true;
2969
2970 /*
2971 * Entire-object layered writes - we will overwrite whatever
2972 * parent data there is anyway.
2973 */
2974 if (!obj_request->offset &&
2975 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2976 return true;
2977
2978 /*
2979 * If the object is known to already exist, its parent data has
2980 * already been copied.
2981 */
2982 if (obj_request_known_test(obj_request) &&
2983 obj_request_exists_test(obj_request))
2984 return true;
2985
2986 return false;
2987 }
2988
2989 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2990 {
2991 rbd_assert(obj_request_img_data_test(obj_request));
2992 rbd_assert(obj_request_type_valid(obj_request->type));
2993 rbd_assert(obj_request->img_request);
2994
2995 if (img_obj_request_simple(obj_request)) {
2996 rbd_obj_request_submit(obj_request);
2997 return 0;
2998 }
2999
3000 /*
3001 * It's a layered write. The target object might exist but
3002 * we may not know that yet. If we know it doesn't exist,
3003 * start by reading the data for the full target object from
3004 * the parent so we can use it for a copyup to the target.
3005 */
3006 if (obj_request_known_test(obj_request))
3007 return rbd_img_obj_parent_read_full(obj_request);
3008
3009 /* We don't know whether the target exists. Go find out. */
3010
3011 return rbd_img_obj_exists_submit(obj_request);
3012 }
3013
3014 static int rbd_img_request_submit(struct rbd_img_request *img_request)
3015 {
3016 struct rbd_obj_request *obj_request;
3017 struct rbd_obj_request *next_obj_request;
3018 int ret = 0;
3019
3020 dout("%s: img %p\n", __func__, img_request);
3021
3022 rbd_img_request_get(img_request);
3023 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
3024 ret = rbd_img_obj_request_submit(obj_request);
3025 if (ret)
3026 goto out_put_ireq;
3027 }
3028
3029 out_put_ireq:
3030 rbd_img_request_put(img_request);
3031 return ret;
3032 }
3033
3034 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
3035 {
3036 struct rbd_obj_request *obj_request;
3037 struct rbd_device *rbd_dev;
3038 u64 obj_end;
3039 u64 img_xferred;
3040 int img_result;
3041
3042 rbd_assert(img_request_child_test(img_request));
3043
3044 /* First get what we need from the image request and release it */
3045
3046 obj_request = img_request->obj_request;
3047 img_xferred = img_request->xferred;
3048 img_result = img_request->result;
3049 rbd_img_request_put(img_request);
3050
3051 /*
3052 * If the overlap has become 0 (most likely because the
3053 * image has been flattened) we need to re-submit the
3054 * original request.
3055 */
3056 rbd_assert(obj_request);
3057 rbd_assert(obj_request->img_request);
3058 rbd_dev = obj_request->img_request->rbd_dev;
3059 if (!rbd_dev->parent_overlap) {
3060 rbd_obj_request_submit(obj_request);
3061 return;
3062 }
3063
3064 obj_request->result = img_result;
3065 if (obj_request->result)
3066 goto out;
3067
3068 /*
3069 * We need to zero anything beyond the parent overlap
3070 * boundary. Since rbd_img_obj_request_read_callback()
3071 * will zero anything beyond the end of a short read, an
3072 * easy way to do this is to pretend the data from the
3073 * parent came up short--ending at the overlap boundary.
3074 */
3075 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3076 obj_end = obj_request->img_offset + obj_request->length;
3077 if (obj_end > rbd_dev->parent_overlap) {
3078 u64 xferred = 0;
3079
3080 if (obj_request->img_offset < rbd_dev->parent_overlap)
3081 xferred = rbd_dev->parent_overlap -
3082 obj_request->img_offset;
3083
3084 obj_request->xferred = min(img_xferred, xferred);
3085 } else {
3086 obj_request->xferred = img_xferred;
3087 }
3088 out:
3089 rbd_img_obj_request_read_callback(obj_request);
3090 rbd_obj_request_complete(obj_request);
3091 }
3092
3093 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3094 {
3095 struct rbd_img_request *img_request;
3096 int result;
3097
3098 rbd_assert(obj_request_img_data_test(obj_request));
3099 rbd_assert(obj_request->img_request != NULL);
3100 rbd_assert(obj_request->result == (s32) -ENOENT);
3101 rbd_assert(obj_request_type_valid(obj_request->type));
3102
3103 /* rbd_read_finish(obj_request, obj_request->length); */
3104 img_request = rbd_parent_request_create(obj_request,
3105 obj_request->img_offset,
3106 obj_request->length);
3107 result = -ENOMEM;
3108 if (!img_request)
3109 goto out_err;
3110
3111 if (obj_request->type == OBJ_REQUEST_BIO)
3112 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3113 obj_request->bio_list);
3114 else
3115 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3116 obj_request->pages);
3117 if (result)
3118 goto out_err;
3119
3120 img_request->callback = rbd_img_parent_read_callback;
3121 result = rbd_img_request_submit(img_request);
3122 if (result)
3123 goto out_err;
3124
3125 return;
3126 out_err:
3127 if (img_request)
3128 rbd_img_request_put(img_request);
3129 obj_request->result = result;
3130 obj_request->xferred = 0;
3131 obj_request_done_set(obj_request);
3132 }
3133
3134 static const struct rbd_client_id rbd_empty_cid;
3135
3136 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3137 const struct rbd_client_id *rhs)
3138 {
3139 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3140 }
3141
3142 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3143 {
3144 struct rbd_client_id cid;
3145
3146 mutex_lock(&rbd_dev->watch_mutex);
3147 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3148 cid.handle = rbd_dev->watch_cookie;
3149 mutex_unlock(&rbd_dev->watch_mutex);
3150 return cid;
3151 }
3152
3153 /*
3154 * lock_rwsem must be held for write
3155 */
3156 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3157 const struct rbd_client_id *cid)
3158 {
3159 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3160 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3161 cid->gid, cid->handle);
3162 rbd_dev->owner_cid = *cid; /* struct */
3163 }
3164
3165 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3166 {
3167 mutex_lock(&rbd_dev->watch_mutex);
3168 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3169 mutex_unlock(&rbd_dev->watch_mutex);
3170 }
3171
3172 /*
3173 * lock_rwsem must be held for write
3174 */
3175 static int rbd_lock(struct rbd_device *rbd_dev)
3176 {
3177 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3178 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3179 char cookie[32];
3180 int ret;
3181
3182 WARN_ON(__rbd_is_lock_owner(rbd_dev));
3183
3184 format_lock_cookie(rbd_dev, cookie);
3185 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3186 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3187 RBD_LOCK_TAG, "", 0);
3188 if (ret)
3189 return ret;
3190
3191 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3192 rbd_set_owner_cid(rbd_dev, &cid);
3193 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3194 return 0;
3195 }
3196
3197 /*
3198 * lock_rwsem must be held for write
3199 */
3200 static int rbd_unlock(struct rbd_device *rbd_dev)
3201 {
3202 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3203 char cookie[32];
3204 int ret;
3205
3206 WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3207
3208 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3209
3210 format_lock_cookie(rbd_dev, cookie);
3211 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3212 RBD_LOCK_NAME, cookie);
3213 if (ret && ret != -ENOENT) {
3214 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3215 return ret;
3216 }
3217
3218 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3219 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3220 return 0;
3221 }
3222
3223 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3224 enum rbd_notify_op notify_op,
3225 struct page ***preply_pages,
3226 size_t *preply_len)
3227 {
3228 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3229 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3230 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3231 char buf[buf_size];
3232 void *p = buf;
3233
3234 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3235
3236 /* encode *LockPayload NotifyMessage (op + ClientId) */
3237 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3238 ceph_encode_32(&p, notify_op);
3239 ceph_encode_64(&p, cid.gid);
3240 ceph_encode_64(&p, cid.handle);
3241
3242 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3243 &rbd_dev->header_oloc, buf, buf_size,
3244 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3245 }
3246
3247 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3248 enum rbd_notify_op notify_op)
3249 {
3250 struct page **reply_pages;
3251 size_t reply_len;
3252
3253 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3254 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3255 }
3256
3257 static void rbd_notify_acquired_lock(struct work_struct *work)
3258 {
3259 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3260 acquired_lock_work);
3261
3262 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3263 }
3264
3265 static void rbd_notify_released_lock(struct work_struct *work)
3266 {
3267 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3268 released_lock_work);
3269
3270 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3271 }
3272
3273 static int rbd_request_lock(struct rbd_device *rbd_dev)
3274 {
3275 struct page **reply_pages;
3276 size_t reply_len;
3277 bool lock_owner_responded = false;
3278 int ret;
3279
3280 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3281
3282 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3283 &reply_pages, &reply_len);
3284 if (ret && ret != -ETIMEDOUT) {
3285 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3286 goto out;
3287 }
3288
3289 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3290 void *p = page_address(reply_pages[0]);
3291 void *const end = p + reply_len;
3292 u32 n;
3293
3294 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3295 while (n--) {
3296 u8 struct_v;
3297 u32 len;
3298
3299 ceph_decode_need(&p, end, 8 + 8, e_inval);
3300 p += 8 + 8; /* skip gid and cookie */
3301
3302 ceph_decode_32_safe(&p, end, len, e_inval);
3303 if (!len)
3304 continue;
3305
3306 if (lock_owner_responded) {
3307 rbd_warn(rbd_dev,
3308 "duplicate lock owners detected");
3309 ret = -EIO;
3310 goto out;
3311 }
3312
3313 lock_owner_responded = true;
3314 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3315 &struct_v, &len);
3316 if (ret) {
3317 rbd_warn(rbd_dev,
3318 "failed to decode ResponseMessage: %d",
3319 ret);
3320 goto e_inval;
3321 }
3322
3323 ret = ceph_decode_32(&p);
3324 }
3325 }
3326
3327 if (!lock_owner_responded) {
3328 rbd_warn(rbd_dev, "no lock owners detected");
3329 ret = -ETIMEDOUT;
3330 }
3331
3332 out:
3333 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3334 return ret;
3335
3336 e_inval:
3337 ret = -EINVAL;
3338 goto out;
3339 }
3340
3341 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3342 {
3343 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3344
3345 cancel_delayed_work(&rbd_dev->lock_dwork);
3346 if (wake_all)
3347 wake_up_all(&rbd_dev->lock_waitq);
3348 else
3349 wake_up(&rbd_dev->lock_waitq);
3350 }
3351
3352 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3353 struct ceph_locker **lockers, u32 *num_lockers)
3354 {
3355 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3356 u8 lock_type;
3357 char *lock_tag;
3358 int ret;
3359
3360 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3361
3362 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3363 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3364 &lock_type, &lock_tag, lockers, num_lockers);
3365 if (ret)
3366 return ret;
3367
3368 if (*num_lockers == 0) {
3369 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3370 goto out;
3371 }
3372
3373 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3374 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3375 lock_tag);
3376 ret = -EBUSY;
3377 goto out;
3378 }
3379
3380 if (lock_type == CEPH_CLS_LOCK_SHARED) {
3381 rbd_warn(rbd_dev, "shared lock type detected");
3382 ret = -EBUSY;
3383 goto out;
3384 }
3385
3386 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3387 strlen(RBD_LOCK_COOKIE_PREFIX))) {
3388 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3389 (*lockers)[0].id.cookie);
3390 ret = -EBUSY;
3391 goto out;
3392 }
3393
3394 out:
3395 kfree(lock_tag);
3396 return ret;
3397 }
3398
3399 static int find_watcher(struct rbd_device *rbd_dev,
3400 const struct ceph_locker *locker)
3401 {
3402 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3403 struct ceph_watch_item *watchers;
3404 u32 num_watchers;
3405 u64 cookie;
3406 int i;
3407 int ret;
3408
3409 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3410 &rbd_dev->header_oloc, &watchers,
3411 &num_watchers);
3412 if (ret)
3413 return ret;
3414
3415 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3416 for (i = 0; i < num_watchers; i++) {
3417 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3418 sizeof(locker->info.addr)) &&
3419 watchers[i].cookie == cookie) {
3420 struct rbd_client_id cid = {
3421 .gid = le64_to_cpu(watchers[i].name.num),
3422 .handle = cookie,
3423 };
3424
3425 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3426 rbd_dev, cid.gid, cid.handle);
3427 rbd_set_owner_cid(rbd_dev, &cid);
3428 ret = 1;
3429 goto out;
3430 }
3431 }
3432
3433 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3434 ret = 0;
3435 out:
3436 kfree(watchers);
3437 return ret;
3438 }
3439
3440 /*
3441 * lock_rwsem must be held for write
3442 */
3443 static int rbd_try_lock(struct rbd_device *rbd_dev)
3444 {
3445 struct ceph_client *client = rbd_dev->rbd_client->client;
3446 struct ceph_locker *lockers;
3447 u32 num_lockers;
3448 int ret;
3449
3450 for (;;) {
3451 ret = rbd_lock(rbd_dev);
3452 if (ret != -EBUSY)
3453 return ret;
3454
3455 /* determine if the current lock holder is still alive */
3456 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3457 if (ret)
3458 return ret;
3459
3460 if (num_lockers == 0)
3461 goto again;
3462
3463 ret = find_watcher(rbd_dev, lockers);
3464 if (ret) {
3465 if (ret > 0)
3466 ret = 0; /* have to request lock */
3467 goto out;
3468 }
3469
3470 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3471 ENTITY_NAME(lockers[0].id.name));
3472
3473 ret = ceph_monc_blacklist_add(&client->monc,
3474 &lockers[0].info.addr);
3475 if (ret) {
3476 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3477 ENTITY_NAME(lockers[0].id.name), ret);
3478 goto out;
3479 }
3480
3481 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3482 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3483 lockers[0].id.cookie,
3484 &lockers[0].id.name);
3485 if (ret && ret != -ENOENT)
3486 goto out;
3487
3488 again:
3489 ceph_free_lockers(lockers, num_lockers);
3490 }
3491
3492 out:
3493 ceph_free_lockers(lockers, num_lockers);
3494 return ret;
3495 }
3496
3497 /*
3498 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3499 */
3500 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3501 int *pret)
3502 {
3503 enum rbd_lock_state lock_state;
3504
3505 down_read(&rbd_dev->lock_rwsem);
3506 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3507 rbd_dev->lock_state);
3508 if (__rbd_is_lock_owner(rbd_dev)) {
3509 lock_state = rbd_dev->lock_state;
3510 up_read(&rbd_dev->lock_rwsem);
3511 return lock_state;
3512 }
3513
3514 up_read(&rbd_dev->lock_rwsem);
3515 down_write(&rbd_dev->lock_rwsem);
3516 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3517 rbd_dev->lock_state);
3518 if (!__rbd_is_lock_owner(rbd_dev)) {
3519 *pret = rbd_try_lock(rbd_dev);
3520 if (*pret)
3521 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3522 }
3523
3524 lock_state = rbd_dev->lock_state;
3525 up_write(&rbd_dev->lock_rwsem);
3526 return lock_state;
3527 }
3528
3529 static void rbd_acquire_lock(struct work_struct *work)
3530 {
3531 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3532 struct rbd_device, lock_dwork);
3533 enum rbd_lock_state lock_state;
3534 int ret;
3535
3536 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3537 again:
3538 lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3539 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3540 if (lock_state == RBD_LOCK_STATE_LOCKED)
3541 wake_requests(rbd_dev, true);
3542 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3543 rbd_dev, lock_state, ret);
3544 return;
3545 }
3546
3547 ret = rbd_request_lock(rbd_dev);
3548 if (ret == -ETIMEDOUT) {
3549 goto again; /* treat this as a dead client */
3550 } else if (ret < 0) {
3551 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3552 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3553 RBD_RETRY_DELAY);
3554 } else {
3555 /*
3556 * lock owner acked, but resend if we don't see them
3557 * release the lock
3558 */
3559 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3560 rbd_dev);
3561 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3562 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3563 }
3564 }
3565
3566 /*
3567 * lock_rwsem must be held for write
3568 */
3569 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3570 {
3571 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3572 rbd_dev->lock_state);
3573 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3574 return false;
3575
3576 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3577 downgrade_write(&rbd_dev->lock_rwsem);
3578 /*
3579 * Ensure that all in-flight IO is flushed.
3580 *
3581 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3582 * may be shared with other devices.
3583 */
3584 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3585 up_read(&rbd_dev->lock_rwsem);
3586
3587 down_write(&rbd_dev->lock_rwsem);
3588 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3589 rbd_dev->lock_state);
3590 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3591 return false;
3592
3593 if (!rbd_unlock(rbd_dev))
3594 /*
3595 * Give others a chance to grab the lock - we would re-acquire
3596 * almost immediately if we got new IO during ceph_osdc_sync()
3597 * otherwise. We need to ack our own notifications, so this
3598 * lock_dwork will be requeued from rbd_wait_state_locked()
3599 * after wake_requests() in rbd_handle_released_lock().
3600 */
3601 cancel_delayed_work(&rbd_dev->lock_dwork);
3602
3603 return true;
3604 }
3605
3606 static void rbd_release_lock_work(struct work_struct *work)
3607 {
3608 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3609 unlock_work);
3610
3611 down_write(&rbd_dev->lock_rwsem);
3612 rbd_release_lock(rbd_dev);
3613 up_write(&rbd_dev->lock_rwsem);
3614 }
3615
3616 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3617 void **p)
3618 {
3619 struct rbd_client_id cid = { 0 };
3620
3621 if (struct_v >= 2) {
3622 cid.gid = ceph_decode_64(p);
3623 cid.handle = ceph_decode_64(p);
3624 }
3625
3626 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3627 cid.handle);
3628 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3629 down_write(&rbd_dev->lock_rwsem);
3630 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3631 /*
3632 * we already know that the remote client is
3633 * the owner
3634 */
3635 up_write(&rbd_dev->lock_rwsem);
3636 return;
3637 }
3638
3639 rbd_set_owner_cid(rbd_dev, &cid);
3640 downgrade_write(&rbd_dev->lock_rwsem);
3641 } else {
3642 down_read(&rbd_dev->lock_rwsem);
3643 }
3644
3645 if (!__rbd_is_lock_owner(rbd_dev))
3646 wake_requests(rbd_dev, false);
3647 up_read(&rbd_dev->lock_rwsem);
3648 }
3649
3650 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3651 void **p)
3652 {
3653 struct rbd_client_id cid = { 0 };
3654
3655 if (struct_v >= 2) {
3656 cid.gid = ceph_decode_64(p);
3657 cid.handle = ceph_decode_64(p);
3658 }
3659
3660 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3661 cid.handle);
3662 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3663 down_write(&rbd_dev->lock_rwsem);
3664 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3665 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3666 __func__, rbd_dev, cid.gid, cid.handle,
3667 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3668 up_write(&rbd_dev->lock_rwsem);
3669 return;
3670 }
3671
3672 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3673 downgrade_write(&rbd_dev->lock_rwsem);
3674 } else {
3675 down_read(&rbd_dev->lock_rwsem);
3676 }
3677
3678 if (!__rbd_is_lock_owner(rbd_dev))
3679 wake_requests(rbd_dev, false);
3680 up_read(&rbd_dev->lock_rwsem);
3681 }
3682
3683 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3684 void **p)
3685 {
3686 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3687 struct rbd_client_id cid = { 0 };
3688 bool need_to_send;
3689
3690 if (struct_v >= 2) {
3691 cid.gid = ceph_decode_64(p);
3692 cid.handle = ceph_decode_64(p);
3693 }
3694
3695 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3696 cid.handle);
3697 if (rbd_cid_equal(&cid, &my_cid))
3698 return false;
3699
3700 down_read(&rbd_dev->lock_rwsem);
3701 need_to_send = __rbd_is_lock_owner(rbd_dev);
3702 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3703 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3704 dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3705 rbd_dev);
3706 queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3707 }
3708 }
3709 up_read(&rbd_dev->lock_rwsem);
3710 return need_to_send;
3711 }
3712
3713 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3714 u64 notify_id, u64 cookie, s32 *result)
3715 {
3716 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3717 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3718 char buf[buf_size];
3719 int ret;
3720
3721 if (result) {
3722 void *p = buf;
3723
3724 /* encode ResponseMessage */
3725 ceph_start_encoding(&p, 1, 1,
3726 buf_size - CEPH_ENCODING_START_BLK_LEN);
3727 ceph_encode_32(&p, *result);
3728 } else {
3729 buf_size = 0;
3730 }
3731
3732 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3733 &rbd_dev->header_oloc, notify_id, cookie,
3734 buf, buf_size);
3735 if (ret)
3736 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3737 }
3738
3739 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3740 u64 cookie)
3741 {
3742 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3743 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3744 }
3745
3746 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3747 u64 notify_id, u64 cookie, s32 result)
3748 {
3749 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3750 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3751 }
3752
3753 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3754 u64 notifier_id, void *data, size_t data_len)
3755 {
3756 struct rbd_device *rbd_dev = arg;
3757 void *p = data;
3758 void *const end = p + data_len;
3759 u8 struct_v;
3760 u32 len;
3761 u32 notify_op;
3762 int ret;
3763
3764 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3765 __func__, rbd_dev, cookie, notify_id, data_len);
3766 if (data_len) {
3767 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3768 &struct_v, &len);
3769 if (ret) {
3770 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3771 ret);
3772 return;
3773 }
3774
3775 notify_op = ceph_decode_32(&p);
3776 } else {
3777 /* legacy notification for header updates */
3778 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3779 len = 0;
3780 }
3781
3782 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3783 switch (notify_op) {
3784 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3785 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3786 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3787 break;
3788 case RBD_NOTIFY_OP_RELEASED_LOCK:
3789 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3790 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3791 break;
3792 case RBD_NOTIFY_OP_REQUEST_LOCK:
3793 if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3794 /*
3795 * send ResponseMessage(0) back so the client
3796 * can detect a missing owner
3797 */
3798 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3799 cookie, 0);
3800 else
3801 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3802 break;
3803 case RBD_NOTIFY_OP_HEADER_UPDATE:
3804 ret = rbd_dev_refresh(rbd_dev);
3805 if (ret)
3806 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3807
3808 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3809 break;
3810 default:
3811 if (rbd_is_lock_owner(rbd_dev))
3812 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3813 cookie, -EOPNOTSUPP);
3814 else
3815 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3816 break;
3817 }
3818 }
3819
3820 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3821
3822 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3823 {
3824 struct rbd_device *rbd_dev = arg;
3825
3826 rbd_warn(rbd_dev, "encountered watch error: %d", err);
3827
3828 down_write(&rbd_dev->lock_rwsem);
3829 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3830 up_write(&rbd_dev->lock_rwsem);
3831
3832 mutex_lock(&rbd_dev->watch_mutex);
3833 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3834 __rbd_unregister_watch(rbd_dev);
3835 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3836
3837 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3838 }
3839 mutex_unlock(&rbd_dev->watch_mutex);
3840 }
3841
3842 /*
3843 * watch_mutex must be locked
3844 */
3845 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3846 {
3847 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3848 struct ceph_osd_linger_request *handle;
3849
3850 rbd_assert(!rbd_dev->watch_handle);
3851 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3852
3853 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3854 &rbd_dev->header_oloc, rbd_watch_cb,
3855 rbd_watch_errcb, rbd_dev);
3856 if (IS_ERR(handle))
3857 return PTR_ERR(handle);
3858
3859 rbd_dev->watch_handle = handle;
3860 return 0;
3861 }
3862
3863 /*
3864 * watch_mutex must be locked
3865 */
3866 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3867 {
3868 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3869 int ret;
3870
3871 rbd_assert(rbd_dev->watch_handle);
3872 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3873
3874 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3875 if (ret)
3876 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3877
3878 rbd_dev->watch_handle = NULL;
3879 }
3880
3881 static int rbd_register_watch(struct rbd_device *rbd_dev)
3882 {
3883 int ret;
3884
3885 mutex_lock(&rbd_dev->watch_mutex);
3886 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3887 ret = __rbd_register_watch(rbd_dev);
3888 if (ret)
3889 goto out;
3890
3891 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3892 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3893
3894 out:
3895 mutex_unlock(&rbd_dev->watch_mutex);
3896 return ret;
3897 }
3898
3899 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3900 {
3901 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3902
3903 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3904 cancel_work_sync(&rbd_dev->acquired_lock_work);
3905 cancel_work_sync(&rbd_dev->released_lock_work);
3906 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3907 cancel_work_sync(&rbd_dev->unlock_work);
3908 }
3909
3910 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3911 {
3912 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3913 cancel_tasks_sync(rbd_dev);
3914
3915 mutex_lock(&rbd_dev->watch_mutex);
3916 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3917 __rbd_unregister_watch(rbd_dev);
3918 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3919 mutex_unlock(&rbd_dev->watch_mutex);
3920
3921 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3922 }
3923
3924 static void rbd_reregister_watch(struct work_struct *work)
3925 {
3926 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3927 struct rbd_device, watch_dwork);
3928 bool was_lock_owner = false;
3929 int ret;
3930
3931 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3932
3933 down_write(&rbd_dev->lock_rwsem);
3934 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3935 was_lock_owner = rbd_release_lock(rbd_dev);
3936
3937 mutex_lock(&rbd_dev->watch_mutex);
3938 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR)
3939 goto fail_unlock;
3940
3941 ret = __rbd_register_watch(rbd_dev);
3942 if (ret) {
3943 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3944 if (ret != -EBLACKLISTED)
3945 queue_delayed_work(rbd_dev->task_wq,
3946 &rbd_dev->watch_dwork,
3947 RBD_RETRY_DELAY);
3948 goto fail_unlock;
3949 }
3950
3951 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3952 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3953 mutex_unlock(&rbd_dev->watch_mutex);
3954
3955 ret = rbd_dev_refresh(rbd_dev);
3956 if (ret)
3957 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3958
3959 if (was_lock_owner) {
3960 ret = rbd_try_lock(rbd_dev);
3961 if (ret)
3962 rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3963 ret);
3964 }
3965
3966 up_write(&rbd_dev->lock_rwsem);
3967 wake_requests(rbd_dev, true);
3968 return;
3969
3970 fail_unlock:
3971 mutex_unlock(&rbd_dev->watch_mutex);
3972 up_write(&rbd_dev->lock_rwsem);
3973 }
3974
3975 /*
3976 * Synchronous osd object method call. Returns the number of bytes
3977 * returned in the outbound buffer, or a negative error code.
3978 */
3979 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3980 const char *object_name,
3981 const char *class_name,
3982 const char *method_name,
3983 const void *outbound,
3984 size_t outbound_size,
3985 void *inbound,
3986 size_t inbound_size)
3987 {
3988 struct rbd_obj_request *obj_request;
3989 struct page **pages;
3990 u32 page_count;
3991 int ret;
3992
3993 /*
3994 * Method calls are ultimately read operations. The result
3995 * should placed into the inbound buffer provided. They
3996 * also supply outbound data--parameters for the object
3997 * method. Currently if this is present it will be a
3998 * snapshot id.
3999 */
4000 page_count = (u32)calc_pages_for(0, inbound_size);
4001 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4002 if (IS_ERR(pages))
4003 return PTR_ERR(pages);
4004
4005 ret = -ENOMEM;
4006 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
4007 OBJ_REQUEST_PAGES);
4008 if (!obj_request)
4009 goto out;
4010
4011 obj_request->pages = pages;
4012 obj_request->page_count = page_count;
4013
4014 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4015 obj_request);
4016 if (!obj_request->osd_req)
4017 goto out;
4018
4019 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
4020 class_name, method_name);
4021 if (outbound_size) {
4022 struct ceph_pagelist *pagelist;
4023
4024 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
4025 if (!pagelist)
4026 goto out;
4027
4028 ceph_pagelist_init(pagelist);
4029 ceph_pagelist_append(pagelist, outbound, outbound_size);
4030 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
4031 pagelist);
4032 }
4033 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
4034 obj_request->pages, inbound_size,
4035 0, false, false);
4036
4037 rbd_obj_request_submit(obj_request);
4038 ret = rbd_obj_request_wait(obj_request);
4039 if (ret)
4040 goto out;
4041
4042 ret = obj_request->result;
4043 if (ret < 0)
4044 goto out;
4045
4046 rbd_assert(obj_request->xferred < (u64)INT_MAX);
4047 ret = (int)obj_request->xferred;
4048 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
4049 out:
4050 if (obj_request)
4051 rbd_obj_request_put(obj_request);
4052 else
4053 ceph_release_page_vector(pages, page_count);
4054
4055 return ret;
4056 }
4057
4058 /*
4059 * lock_rwsem must be held for read
4060 */
4061 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
4062 {
4063 DEFINE_WAIT(wait);
4064
4065 do {
4066 /*
4067 * Note the use of mod_delayed_work() in rbd_acquire_lock()
4068 * and cancel_delayed_work() in wake_requests().
4069 */
4070 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
4071 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4072 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
4073 TASK_UNINTERRUPTIBLE);
4074 up_read(&rbd_dev->lock_rwsem);
4075 schedule();
4076 down_read(&rbd_dev->lock_rwsem);
4077 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
4078 finish_wait(&rbd_dev->lock_waitq, &wait);
4079 }
4080
4081 static void rbd_queue_workfn(struct work_struct *work)
4082 {
4083 struct request *rq = blk_mq_rq_from_pdu(work);
4084 struct rbd_device *rbd_dev = rq->q->queuedata;
4085 struct rbd_img_request *img_request;
4086 struct ceph_snap_context *snapc = NULL;
4087 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4088 u64 length = blk_rq_bytes(rq);
4089 enum obj_operation_type op_type;
4090 u64 mapping_size;
4091 bool must_be_locked;
4092 int result;
4093
4094 if (rq->cmd_type != REQ_TYPE_FS) {
4095 dout("%s: non-fs request type %d\n", __func__,
4096 (int) rq->cmd_type);
4097 result = -EIO;
4098 goto err;
4099 }
4100
4101 if (req_op(rq) == REQ_OP_DISCARD)
4102 op_type = OBJ_OP_DISCARD;
4103 else if (req_op(rq) == REQ_OP_WRITE)
4104 op_type = OBJ_OP_WRITE;
4105 else
4106 op_type = OBJ_OP_READ;
4107
4108 /* Ignore/skip any zero-length requests */
4109
4110 if (!length) {
4111 dout("%s: zero-length request\n", __func__);
4112 result = 0;
4113 goto err_rq;
4114 }
4115
4116 /* Only reads are allowed to a read-only device */
4117
4118 if (op_type != OBJ_OP_READ) {
4119 if (rbd_dev->mapping.read_only) {
4120 result = -EROFS;
4121 goto err_rq;
4122 }
4123 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4124 }
4125
4126 /*
4127 * Quit early if the mapped snapshot no longer exists. It's
4128 * still possible the snapshot will have disappeared by the
4129 * time our request arrives at the osd, but there's no sense in
4130 * sending it if we already know.
4131 */
4132 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4133 dout("request for non-existent snapshot");
4134 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4135 result = -ENXIO;
4136 goto err_rq;
4137 }
4138
4139 if (offset && length > U64_MAX - offset + 1) {
4140 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4141 length);
4142 result = -EINVAL;
4143 goto err_rq; /* Shouldn't happen */
4144 }
4145
4146 blk_mq_start_request(rq);
4147
4148 down_read(&rbd_dev->header_rwsem);
4149 mapping_size = rbd_dev->mapping.size;
4150 if (op_type != OBJ_OP_READ) {
4151 snapc = rbd_dev->header.snapc;
4152 ceph_get_snap_context(snapc);
4153 must_be_locked = rbd_is_lock_supported(rbd_dev);
4154 } else {
4155 must_be_locked = rbd_dev->opts->lock_on_read &&
4156 rbd_is_lock_supported(rbd_dev);
4157 }
4158 up_read(&rbd_dev->header_rwsem);
4159
4160 if (offset + length > mapping_size) {
4161 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4162 length, mapping_size);
4163 result = -EIO;
4164 goto err_rq;
4165 }
4166
4167 if (must_be_locked) {
4168 down_read(&rbd_dev->lock_rwsem);
4169 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4170 rbd_wait_state_locked(rbd_dev);
4171 }
4172
4173 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4174 snapc);
4175 if (!img_request) {
4176 result = -ENOMEM;
4177 goto err_unlock;
4178 }
4179 img_request->rq = rq;
4180 snapc = NULL; /* img_request consumes a ref */
4181
4182 if (op_type == OBJ_OP_DISCARD)
4183 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4184 NULL);
4185 else
4186 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4187 rq->bio);
4188 if (result)
4189 goto err_img_request;
4190
4191 result = rbd_img_request_submit(img_request);
4192 if (result)
4193 goto err_img_request;
4194
4195 if (must_be_locked)
4196 up_read(&rbd_dev->lock_rwsem);
4197 return;
4198
4199 err_img_request:
4200 rbd_img_request_put(img_request);
4201 err_unlock:
4202 if (must_be_locked)
4203 up_read(&rbd_dev->lock_rwsem);
4204 err_rq:
4205 if (result)
4206 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4207 obj_op_name(op_type), length, offset, result);
4208 ceph_put_snap_context(snapc);
4209 err:
4210 blk_mq_end_request(rq, result);
4211 }
4212
4213 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4214 const struct blk_mq_queue_data *bd)
4215 {
4216 struct request *rq = bd->rq;
4217 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4218
4219 queue_work(rbd_wq, work);
4220 return BLK_MQ_RQ_QUEUE_OK;
4221 }
4222
4223 static void rbd_free_disk(struct rbd_device *rbd_dev)
4224 {
4225 struct gendisk *disk = rbd_dev->disk;
4226
4227 if (!disk)
4228 return;
4229
4230 rbd_dev->disk = NULL;
4231 if (disk->flags & GENHD_FL_UP) {
4232 del_gendisk(disk);
4233 if (disk->queue)
4234 blk_cleanup_queue(disk->queue);
4235 blk_mq_free_tag_set(&rbd_dev->tag_set);
4236 }
4237 put_disk(disk);
4238 }
4239
4240 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4241 const char *object_name,
4242 u64 offset, u64 length, void *buf)
4243
4244 {
4245 struct rbd_obj_request *obj_request;
4246 struct page **pages = NULL;
4247 u32 page_count;
4248 size_t size;
4249 int ret;
4250
4251 page_count = (u32) calc_pages_for(offset, length);
4252 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4253 if (IS_ERR(pages))
4254 return PTR_ERR(pages);
4255
4256 ret = -ENOMEM;
4257 obj_request = rbd_obj_request_create(object_name, offset, length,
4258 OBJ_REQUEST_PAGES);
4259 if (!obj_request)
4260 goto out;
4261
4262 obj_request->pages = pages;
4263 obj_request->page_count = page_count;
4264
4265 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4266 obj_request);
4267 if (!obj_request->osd_req)
4268 goto out;
4269
4270 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
4271 offset, length, 0, 0);
4272 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
4273 obj_request->pages,
4274 obj_request->length,
4275 obj_request->offset & ~PAGE_MASK,
4276 false, false);
4277
4278 rbd_obj_request_submit(obj_request);
4279 ret = rbd_obj_request_wait(obj_request);
4280 if (ret)
4281 goto out;
4282
4283 ret = obj_request->result;
4284 if (ret < 0)
4285 goto out;
4286
4287 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
4288 size = (size_t) obj_request->xferred;
4289 ceph_copy_from_page_vector(pages, buf, 0, size);
4290 rbd_assert(size <= (size_t)INT_MAX);
4291 ret = (int)size;
4292 out:
4293 if (obj_request)
4294 rbd_obj_request_put(obj_request);
4295 else
4296 ceph_release_page_vector(pages, page_count);
4297
4298 return ret;
4299 }
4300
4301 /*
4302 * Read the complete header for the given rbd device. On successful
4303 * return, the rbd_dev->header field will contain up-to-date
4304 * information about the image.
4305 */
4306 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4307 {
4308 struct rbd_image_header_ondisk *ondisk = NULL;
4309 u32 snap_count = 0;
4310 u64 names_size = 0;
4311 u32 want_count;
4312 int ret;
4313
4314 /*
4315 * The complete header will include an array of its 64-bit
4316 * snapshot ids, followed by the names of those snapshots as
4317 * a contiguous block of NUL-terminated strings. Note that
4318 * the number of snapshots could change by the time we read
4319 * it in, in which case we re-read it.
4320 */
4321 do {
4322 size_t size;
4323
4324 kfree(ondisk);
4325
4326 size = sizeof (*ondisk);
4327 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4328 size += names_size;
4329 ondisk = kmalloc(size, GFP_KERNEL);
4330 if (!ondisk)
4331 return -ENOMEM;
4332
4333 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
4334 0, size, ondisk);
4335 if (ret < 0)
4336 goto out;
4337 if ((size_t)ret < size) {
4338 ret = -ENXIO;
4339 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4340 size, ret);
4341 goto out;
4342 }
4343 if (!rbd_dev_ondisk_valid(ondisk)) {
4344 ret = -ENXIO;
4345 rbd_warn(rbd_dev, "invalid header");
4346 goto out;
4347 }
4348
4349 names_size = le64_to_cpu(ondisk->snap_names_len);
4350 want_count = snap_count;
4351 snap_count = le32_to_cpu(ondisk->snap_count);
4352 } while (snap_count != want_count);
4353
4354 ret = rbd_header_from_disk(rbd_dev, ondisk);
4355 out:
4356 kfree(ondisk);
4357
4358 return ret;
4359 }
4360
4361 /*
4362 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4363 * has disappeared from the (just updated) snapshot context.
4364 */
4365 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4366 {
4367 u64 snap_id;
4368
4369 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4370 return;
4371
4372 snap_id = rbd_dev->spec->snap_id;
4373 if (snap_id == CEPH_NOSNAP)
4374 return;
4375
4376 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4377 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4378 }
4379
4380 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4381 {
4382 sector_t size;
4383
4384 /*
4385 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4386 * try to update its size. If REMOVING is set, updating size
4387 * is just useless work since the device can't be opened.
4388 */
4389 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4390 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4391 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4392 dout("setting size to %llu sectors", (unsigned long long)size);
4393 set_capacity(rbd_dev->disk, size);
4394 revalidate_disk(rbd_dev->disk);
4395 }
4396 }
4397
4398 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4399 {
4400 u64 mapping_size;
4401 int ret;
4402
4403 down_write(&rbd_dev->header_rwsem);
4404 mapping_size = rbd_dev->mapping.size;
4405
4406 ret = rbd_dev_header_info(rbd_dev);
4407 if (ret)
4408 goto out;
4409
4410 /*
4411 * If there is a parent, see if it has disappeared due to the
4412 * mapped image getting flattened.
4413 */
4414 if (rbd_dev->parent) {
4415 ret = rbd_dev_v2_parent_info(rbd_dev);
4416 if (ret)
4417 goto out;
4418 }
4419
4420 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4421 rbd_dev->mapping.size = rbd_dev->header.image_size;
4422 } else {
4423 /* validate mapped snapshot's EXISTS flag */
4424 rbd_exists_validate(rbd_dev);
4425 }
4426
4427 out:
4428 up_write(&rbd_dev->header_rwsem);
4429 if (!ret && mapping_size != rbd_dev->mapping.size)
4430 rbd_dev_update_size(rbd_dev);
4431
4432 return ret;
4433 }
4434
4435 static int rbd_init_request(void *data, struct request *rq,
4436 unsigned int hctx_idx, unsigned int request_idx,
4437 unsigned int numa_node)
4438 {
4439 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4440
4441 INIT_WORK(work, rbd_queue_workfn);
4442 return 0;
4443 }
4444
4445 static struct blk_mq_ops rbd_mq_ops = {
4446 .queue_rq = rbd_queue_rq,
4447 .init_request = rbd_init_request,
4448 };
4449
4450 static int rbd_init_disk(struct rbd_device *rbd_dev)
4451 {
4452 struct gendisk *disk;
4453 struct request_queue *q;
4454 u64 segment_size;
4455 int err;
4456
4457 /* create gendisk info */
4458 disk = alloc_disk(single_major ?
4459 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4460 RBD_MINORS_PER_MAJOR);
4461 if (!disk)
4462 return -ENOMEM;
4463
4464 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4465 rbd_dev->dev_id);
4466 disk->major = rbd_dev->major;
4467 disk->first_minor = rbd_dev->minor;
4468 if (single_major)
4469 disk->flags |= GENHD_FL_EXT_DEVT;
4470 disk->fops = &rbd_bd_ops;
4471 disk->private_data = rbd_dev;
4472
4473 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4474 rbd_dev->tag_set.ops = &rbd_mq_ops;
4475 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4476 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4477 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4478 rbd_dev->tag_set.nr_hw_queues = 1;
4479 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4480
4481 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4482 if (err)
4483 goto out_disk;
4484
4485 q = blk_mq_init_queue(&rbd_dev->tag_set);
4486 if (IS_ERR(q)) {
4487 err = PTR_ERR(q);
4488 goto out_tag_set;
4489 }
4490
4491 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4492 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4493
4494 /* set io sizes to object size */
4495 segment_size = rbd_obj_bytes(&rbd_dev->header);
4496 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4497 q->limits.max_sectors = queue_max_hw_sectors(q);
4498 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4499 blk_queue_max_segment_size(q, segment_size);
4500 blk_queue_io_min(q, segment_size);
4501 blk_queue_io_opt(q, segment_size);
4502
4503 /* enable the discard support */
4504 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4505 q->limits.discard_granularity = segment_size;
4506 q->limits.discard_alignment = segment_size;
4507 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4508 q->limits.discard_zeroes_data = 1;
4509
4510 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4511 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
4512
4513 disk->queue = q;
4514
4515 q->queuedata = rbd_dev;
4516
4517 rbd_dev->disk = disk;
4518
4519 return 0;
4520 out_tag_set:
4521 blk_mq_free_tag_set(&rbd_dev->tag_set);
4522 out_disk:
4523 put_disk(disk);
4524 return err;
4525 }
4526
4527 /*
4528 sysfs
4529 */
4530
4531 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4532 {
4533 return container_of(dev, struct rbd_device, dev);
4534 }
4535
4536 static ssize_t rbd_size_show(struct device *dev,
4537 struct device_attribute *attr, char *buf)
4538 {
4539 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4540
4541 return sprintf(buf, "%llu\n",
4542 (unsigned long long)rbd_dev->mapping.size);
4543 }
4544
4545 /*
4546 * Note this shows the features for whatever's mapped, which is not
4547 * necessarily the base image.
4548 */
4549 static ssize_t rbd_features_show(struct device *dev,
4550 struct device_attribute *attr, char *buf)
4551 {
4552 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4553
4554 return sprintf(buf, "0x%016llx\n",
4555 (unsigned long long)rbd_dev->mapping.features);
4556 }
4557
4558 static ssize_t rbd_major_show(struct device *dev,
4559 struct device_attribute *attr, char *buf)
4560 {
4561 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4562
4563 if (rbd_dev->major)
4564 return sprintf(buf, "%d\n", rbd_dev->major);
4565
4566 return sprintf(buf, "(none)\n");
4567 }
4568
4569 static ssize_t rbd_minor_show(struct device *dev,
4570 struct device_attribute *attr, char *buf)
4571 {
4572 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4573
4574 return sprintf(buf, "%d\n", rbd_dev->minor);
4575 }
4576
4577 static ssize_t rbd_client_addr_show(struct device *dev,
4578 struct device_attribute *attr, char *buf)
4579 {
4580 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4581 struct ceph_entity_addr *client_addr =
4582 ceph_client_addr(rbd_dev->rbd_client->client);
4583
4584 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4585 le32_to_cpu(client_addr->nonce));
4586 }
4587
4588 static ssize_t rbd_client_id_show(struct device *dev,
4589 struct device_attribute *attr, char *buf)
4590 {
4591 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4592
4593 return sprintf(buf, "client%lld\n",
4594 ceph_client_gid(rbd_dev->rbd_client->client));
4595 }
4596
4597 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4598 struct device_attribute *attr, char *buf)
4599 {
4600 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4601
4602 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4603 }
4604
4605 static ssize_t rbd_config_info_show(struct device *dev,
4606 struct device_attribute *attr, char *buf)
4607 {
4608 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4609
4610 return sprintf(buf, "%s\n", rbd_dev->config_info);
4611 }
4612
4613 static ssize_t rbd_pool_show(struct device *dev,
4614 struct device_attribute *attr, char *buf)
4615 {
4616 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4617
4618 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4619 }
4620
4621 static ssize_t rbd_pool_id_show(struct device *dev,
4622 struct device_attribute *attr, char *buf)
4623 {
4624 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4625
4626 return sprintf(buf, "%llu\n",
4627 (unsigned long long) rbd_dev->spec->pool_id);
4628 }
4629
4630 static ssize_t rbd_name_show(struct device *dev,
4631 struct device_attribute *attr, char *buf)
4632 {
4633 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4634
4635 if (rbd_dev->spec->image_name)
4636 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4637
4638 return sprintf(buf, "(unknown)\n");
4639 }
4640
4641 static ssize_t rbd_image_id_show(struct device *dev,
4642 struct device_attribute *attr, char *buf)
4643 {
4644 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4645
4646 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4647 }
4648
4649 /*
4650 * Shows the name of the currently-mapped snapshot (or
4651 * RBD_SNAP_HEAD_NAME for the base image).
4652 */
4653 static ssize_t rbd_snap_show(struct device *dev,
4654 struct device_attribute *attr,
4655 char *buf)
4656 {
4657 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4658
4659 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4660 }
4661
4662 static ssize_t rbd_snap_id_show(struct device *dev,
4663 struct device_attribute *attr, char *buf)
4664 {
4665 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4666
4667 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4668 }
4669
4670 /*
4671 * For a v2 image, shows the chain of parent images, separated by empty
4672 * lines. For v1 images or if there is no parent, shows "(no parent
4673 * image)".
4674 */
4675 static ssize_t rbd_parent_show(struct device *dev,
4676 struct device_attribute *attr,
4677 char *buf)
4678 {
4679 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4680 ssize_t count = 0;
4681
4682 if (!rbd_dev->parent)
4683 return sprintf(buf, "(no parent image)\n");
4684
4685 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4686 struct rbd_spec *spec = rbd_dev->parent_spec;
4687
4688 count += sprintf(&buf[count], "%s"
4689 "pool_id %llu\npool_name %s\n"
4690 "image_id %s\nimage_name %s\n"
4691 "snap_id %llu\nsnap_name %s\n"
4692 "overlap %llu\n",
4693 !count ? "" : "\n", /* first? */
4694 spec->pool_id, spec->pool_name,
4695 spec->image_id, spec->image_name ?: "(unknown)",
4696 spec->snap_id, spec->snap_name,
4697 rbd_dev->parent_overlap);
4698 }
4699
4700 return count;
4701 }
4702
4703 static ssize_t rbd_image_refresh(struct device *dev,
4704 struct device_attribute *attr,
4705 const char *buf,
4706 size_t size)
4707 {
4708 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4709 int ret;
4710
4711 ret = rbd_dev_refresh(rbd_dev);
4712 if (ret)
4713 return ret;
4714
4715 return size;
4716 }
4717
4718 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4719 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4720 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4721 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4722 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4723 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4724 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4725 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4726 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4727 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4728 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4729 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4730 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4731 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4732 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4733 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4734
4735 static struct attribute *rbd_attrs[] = {
4736 &dev_attr_size.attr,
4737 &dev_attr_features.attr,
4738 &dev_attr_major.attr,
4739 &dev_attr_minor.attr,
4740 &dev_attr_client_addr.attr,
4741 &dev_attr_client_id.attr,
4742 &dev_attr_cluster_fsid.attr,
4743 &dev_attr_config_info.attr,
4744 &dev_attr_pool.attr,
4745 &dev_attr_pool_id.attr,
4746 &dev_attr_name.attr,
4747 &dev_attr_image_id.attr,
4748 &dev_attr_current_snap.attr,
4749 &dev_attr_snap_id.attr,
4750 &dev_attr_parent.attr,
4751 &dev_attr_refresh.attr,
4752 NULL
4753 };
4754
4755 static struct attribute_group rbd_attr_group = {
4756 .attrs = rbd_attrs,
4757 };
4758
4759 static const struct attribute_group *rbd_attr_groups[] = {
4760 &rbd_attr_group,
4761 NULL
4762 };
4763
4764 static void rbd_dev_release(struct device *dev);
4765
4766 static struct device_type rbd_device_type = {
4767 .name = "rbd",
4768 .groups = rbd_attr_groups,
4769 .release = rbd_dev_release,
4770 };
4771
4772 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4773 {
4774 kref_get(&spec->kref);
4775
4776 return spec;
4777 }
4778
4779 static void rbd_spec_free(struct kref *kref);
4780 static void rbd_spec_put(struct rbd_spec *spec)
4781 {
4782 if (spec)
4783 kref_put(&spec->kref, rbd_spec_free);
4784 }
4785
4786 static struct rbd_spec *rbd_spec_alloc(void)
4787 {
4788 struct rbd_spec *spec;
4789
4790 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4791 if (!spec)
4792 return NULL;
4793
4794 spec->pool_id = CEPH_NOPOOL;
4795 spec->snap_id = CEPH_NOSNAP;
4796 kref_init(&spec->kref);
4797
4798 return spec;
4799 }
4800
4801 static void rbd_spec_free(struct kref *kref)
4802 {
4803 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4804
4805 kfree(spec->pool_name);
4806 kfree(spec->image_id);
4807 kfree(spec->image_name);
4808 kfree(spec->snap_name);
4809 kfree(spec);
4810 }
4811
4812 static void rbd_dev_free(struct rbd_device *rbd_dev)
4813 {
4814 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4815 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4816
4817 ceph_oid_destroy(&rbd_dev->header_oid);
4818 ceph_oloc_destroy(&rbd_dev->header_oloc);
4819 kfree(rbd_dev->config_info);
4820
4821 rbd_put_client(rbd_dev->rbd_client);
4822 rbd_spec_put(rbd_dev->spec);
4823 kfree(rbd_dev->opts);
4824 kfree(rbd_dev);
4825 }
4826
4827 static void rbd_dev_release(struct device *dev)
4828 {
4829 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4830 bool need_put = !!rbd_dev->opts;
4831
4832 if (need_put) {
4833 destroy_workqueue(rbd_dev->task_wq);
4834 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4835 }
4836
4837 rbd_dev_free(rbd_dev);
4838
4839 /*
4840 * This is racy, but way better than putting module outside of
4841 * the release callback. The race window is pretty small, so
4842 * doing something similar to dm (dm-builtin.c) is overkill.
4843 */
4844 if (need_put)
4845 module_put(THIS_MODULE);
4846 }
4847
4848 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4849 struct rbd_spec *spec)
4850 {
4851 struct rbd_device *rbd_dev;
4852
4853 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4854 if (!rbd_dev)
4855 return NULL;
4856
4857 spin_lock_init(&rbd_dev->lock);
4858 INIT_LIST_HEAD(&rbd_dev->node);
4859 init_rwsem(&rbd_dev->header_rwsem);
4860
4861 ceph_oid_init(&rbd_dev->header_oid);
4862 ceph_oloc_init(&rbd_dev->header_oloc);
4863
4864 mutex_init(&rbd_dev->watch_mutex);
4865 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4866 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4867
4868 init_rwsem(&rbd_dev->lock_rwsem);
4869 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4870 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4871 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4872 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4873 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4874 init_waitqueue_head(&rbd_dev->lock_waitq);
4875
4876 rbd_dev->dev.bus = &rbd_bus_type;
4877 rbd_dev->dev.type = &rbd_device_type;
4878 rbd_dev->dev.parent = &rbd_root_dev;
4879 device_initialize(&rbd_dev->dev);
4880
4881 rbd_dev->rbd_client = rbdc;
4882 rbd_dev->spec = spec;
4883
4884 rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER;
4885 rbd_dev->layout.stripe_count = 1;
4886 rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER;
4887 rbd_dev->layout.pool_id = spec->pool_id;
4888 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
4889
4890 return rbd_dev;
4891 }
4892
4893 /*
4894 * Create a mapping rbd_dev.
4895 */
4896 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4897 struct rbd_spec *spec,
4898 struct rbd_options *opts)
4899 {
4900 struct rbd_device *rbd_dev;
4901
4902 rbd_dev = __rbd_dev_create(rbdc, spec);
4903 if (!rbd_dev)
4904 return NULL;
4905
4906 rbd_dev->opts = opts;
4907
4908 /* get an id and fill in device name */
4909 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4910 minor_to_rbd_dev_id(1 << MINORBITS),
4911 GFP_KERNEL);
4912 if (rbd_dev->dev_id < 0)
4913 goto fail_rbd_dev;
4914
4915 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4916 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4917 rbd_dev->name);
4918 if (!rbd_dev->task_wq)
4919 goto fail_dev_id;
4920
4921 /* we have a ref from do_rbd_add() */
4922 __module_get(THIS_MODULE);
4923
4924 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4925 return rbd_dev;
4926
4927 fail_dev_id:
4928 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4929 fail_rbd_dev:
4930 rbd_dev_free(rbd_dev);
4931 return NULL;
4932 }
4933
4934 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4935 {
4936 if (rbd_dev)
4937 put_device(&rbd_dev->dev);
4938 }
4939
4940 /*
4941 * Get the size and object order for an image snapshot, or if
4942 * snap_id is CEPH_NOSNAP, gets this information for the base
4943 * image.
4944 */
4945 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4946 u8 *order, u64 *snap_size)
4947 {
4948 __le64 snapid = cpu_to_le64(snap_id);
4949 int ret;
4950 struct {
4951 u8 order;
4952 __le64 size;
4953 } __attribute__ ((packed)) size_buf = { 0 };
4954
4955 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4956 "rbd", "get_size",
4957 &snapid, sizeof (snapid),
4958 &size_buf, sizeof (size_buf));
4959 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4960 if (ret < 0)
4961 return ret;
4962 if (ret < sizeof (size_buf))
4963 return -ERANGE;
4964
4965 if (order) {
4966 *order = size_buf.order;
4967 dout(" order %u", (unsigned int)*order);
4968 }
4969 *snap_size = le64_to_cpu(size_buf.size);
4970
4971 dout(" snap_id 0x%016llx snap_size = %llu\n",
4972 (unsigned long long)snap_id,
4973 (unsigned long long)*snap_size);
4974
4975 return 0;
4976 }
4977
4978 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4979 {
4980 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4981 &rbd_dev->header.obj_order,
4982 &rbd_dev->header.image_size);
4983 }
4984
4985 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4986 {
4987 void *reply_buf;
4988 int ret;
4989 void *p;
4990
4991 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4992 if (!reply_buf)
4993 return -ENOMEM;
4994
4995 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4996 "rbd", "get_object_prefix", NULL, 0,
4997 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4998 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4999 if (ret < 0)
5000 goto out;
5001
5002 p = reply_buf;
5003 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5004 p + ret, NULL, GFP_NOIO);
5005 ret = 0;
5006
5007 if (IS_ERR(rbd_dev->header.object_prefix)) {
5008 ret = PTR_ERR(rbd_dev->header.object_prefix);
5009 rbd_dev->header.object_prefix = NULL;
5010 } else {
5011 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
5012 }
5013 out:
5014 kfree(reply_buf);
5015
5016 return ret;
5017 }
5018
5019 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5020 u64 *snap_features)
5021 {
5022 __le64 snapid = cpu_to_le64(snap_id);
5023 struct {
5024 __le64 features;
5025 __le64 incompat;
5026 } __attribute__ ((packed)) features_buf = { 0 };
5027 u64 unsup;
5028 int ret;
5029
5030 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5031 "rbd", "get_features",
5032 &snapid, sizeof (snapid),
5033 &features_buf, sizeof (features_buf));
5034 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5035 if (ret < 0)
5036 return ret;
5037 if (ret < sizeof (features_buf))
5038 return -ERANGE;
5039
5040 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5041 if (unsup) {
5042 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5043 unsup);
5044 return -ENXIO;
5045 }
5046
5047 *snap_features = le64_to_cpu(features_buf.features);
5048
5049 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5050 (unsigned long long)snap_id,
5051 (unsigned long long)*snap_features,
5052 (unsigned long long)le64_to_cpu(features_buf.incompat));
5053
5054 return 0;
5055 }
5056
5057 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5058 {
5059 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5060 &rbd_dev->header.features);
5061 }
5062
5063 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5064 {
5065 struct rbd_spec *parent_spec;
5066 size_t size;
5067 void *reply_buf = NULL;
5068 __le64 snapid;
5069 void *p;
5070 void *end;
5071 u64 pool_id;
5072 char *image_id;
5073 u64 snap_id;
5074 u64 overlap;
5075 int ret;
5076
5077 parent_spec = rbd_spec_alloc();
5078 if (!parent_spec)
5079 return -ENOMEM;
5080
5081 size = sizeof (__le64) + /* pool_id */
5082 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
5083 sizeof (__le64) + /* snap_id */
5084 sizeof (__le64); /* overlap */
5085 reply_buf = kmalloc(size, GFP_KERNEL);
5086 if (!reply_buf) {
5087 ret = -ENOMEM;
5088 goto out_err;
5089 }
5090
5091 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5092 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5093 "rbd", "get_parent",
5094 &snapid, sizeof (snapid),
5095 reply_buf, size);
5096 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5097 if (ret < 0)
5098 goto out_err;
5099
5100 p = reply_buf;
5101 end = reply_buf + ret;
5102 ret = -ERANGE;
5103 ceph_decode_64_safe(&p, end, pool_id, out_err);
5104 if (pool_id == CEPH_NOPOOL) {
5105 /*
5106 * Either the parent never existed, or we have
5107 * record of it but the image got flattened so it no
5108 * longer has a parent. When the parent of a
5109 * layered image disappears we immediately set the
5110 * overlap to 0. The effect of this is that all new
5111 * requests will be treated as if the image had no
5112 * parent.
5113 */
5114 if (rbd_dev->parent_overlap) {
5115 rbd_dev->parent_overlap = 0;
5116 rbd_dev_parent_put(rbd_dev);
5117 pr_info("%s: clone image has been flattened\n",
5118 rbd_dev->disk->disk_name);
5119 }
5120
5121 goto out; /* No parent? No problem. */
5122 }
5123
5124 /* The ceph file layout needs to fit pool id in 32 bits */
5125
5126 ret = -EIO;
5127 if (pool_id > (u64)U32_MAX) {
5128 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5129 (unsigned long long)pool_id, U32_MAX);
5130 goto out_err;
5131 }
5132
5133 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5134 if (IS_ERR(image_id)) {
5135 ret = PTR_ERR(image_id);
5136 goto out_err;
5137 }
5138 ceph_decode_64_safe(&p, end, snap_id, out_err);
5139 ceph_decode_64_safe(&p, end, overlap, out_err);
5140
5141 /*
5142 * The parent won't change (except when the clone is
5143 * flattened, already handled that). So we only need to
5144 * record the parent spec we have not already done so.
5145 */
5146 if (!rbd_dev->parent_spec) {
5147 parent_spec->pool_id = pool_id;
5148 parent_spec->image_id = image_id;
5149 parent_spec->snap_id = snap_id;
5150 rbd_dev->parent_spec = parent_spec;
5151 parent_spec = NULL; /* rbd_dev now owns this */
5152 } else {
5153 kfree(image_id);
5154 }
5155
5156 /*
5157 * We always update the parent overlap. If it's zero we issue
5158 * a warning, as we will proceed as if there was no parent.
5159 */
5160 if (!overlap) {
5161 if (parent_spec) {
5162 /* refresh, careful to warn just once */
5163 if (rbd_dev->parent_overlap)
5164 rbd_warn(rbd_dev,
5165 "clone now standalone (overlap became 0)");
5166 } else {
5167 /* initial probe */
5168 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5169 }
5170 }
5171 rbd_dev->parent_overlap = overlap;
5172
5173 out:
5174 ret = 0;
5175 out_err:
5176 kfree(reply_buf);
5177 rbd_spec_put(parent_spec);
5178
5179 return ret;
5180 }
5181
5182 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5183 {
5184 struct {
5185 __le64 stripe_unit;
5186 __le64 stripe_count;
5187 } __attribute__ ((packed)) striping_info_buf = { 0 };
5188 size_t size = sizeof (striping_info_buf);
5189 void *p;
5190 u64 obj_size;
5191 u64 stripe_unit;
5192 u64 stripe_count;
5193 int ret;
5194
5195 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5196 "rbd", "get_stripe_unit_count", NULL, 0,
5197 (char *)&striping_info_buf, size);
5198 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5199 if (ret < 0)
5200 return ret;
5201 if (ret < size)
5202 return -ERANGE;
5203
5204 /*
5205 * We don't actually support the "fancy striping" feature
5206 * (STRIPINGV2) yet, but if the striping sizes are the
5207 * defaults the behavior is the same as before. So find
5208 * out, and only fail if the image has non-default values.
5209 */
5210 ret = -EINVAL;
5211 obj_size = (u64)1 << rbd_dev->header.obj_order;
5212 p = &striping_info_buf;
5213 stripe_unit = ceph_decode_64(&p);
5214 if (stripe_unit != obj_size) {
5215 rbd_warn(rbd_dev, "unsupported stripe unit "
5216 "(got %llu want %llu)",
5217 stripe_unit, obj_size);
5218 return -EINVAL;
5219 }
5220 stripe_count = ceph_decode_64(&p);
5221 if (stripe_count != 1) {
5222 rbd_warn(rbd_dev, "unsupported stripe count "
5223 "(got %llu want 1)", stripe_count);
5224 return -EINVAL;
5225 }
5226 rbd_dev->header.stripe_unit = stripe_unit;
5227 rbd_dev->header.stripe_count = stripe_count;
5228
5229 return 0;
5230 }
5231
5232 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5233 {
5234 size_t image_id_size;
5235 char *image_id;
5236 void *p;
5237 void *end;
5238 size_t size;
5239 void *reply_buf = NULL;
5240 size_t len = 0;
5241 char *image_name = NULL;
5242 int ret;
5243
5244 rbd_assert(!rbd_dev->spec->image_name);
5245
5246 len = strlen(rbd_dev->spec->image_id);
5247 image_id_size = sizeof (__le32) + len;
5248 image_id = kmalloc(image_id_size, GFP_KERNEL);
5249 if (!image_id)
5250 return NULL;
5251
5252 p = image_id;
5253 end = image_id + image_id_size;
5254 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5255
5256 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5257 reply_buf = kmalloc(size, GFP_KERNEL);
5258 if (!reply_buf)
5259 goto out;
5260
5261 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
5262 "rbd", "dir_get_name",
5263 image_id, image_id_size,
5264 reply_buf, size);
5265 if (ret < 0)
5266 goto out;
5267 p = reply_buf;
5268 end = reply_buf + ret;
5269
5270 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5271 if (IS_ERR(image_name))
5272 image_name = NULL;
5273 else
5274 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5275 out:
5276 kfree(reply_buf);
5277 kfree(image_id);
5278
5279 return image_name;
5280 }
5281
5282 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5283 {
5284 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5285 const char *snap_name;
5286 u32 which = 0;
5287
5288 /* Skip over names until we find the one we are looking for */
5289
5290 snap_name = rbd_dev->header.snap_names;
5291 while (which < snapc->num_snaps) {
5292 if (!strcmp(name, snap_name))
5293 return snapc->snaps[which];
5294 snap_name += strlen(snap_name) + 1;
5295 which++;
5296 }
5297 return CEPH_NOSNAP;
5298 }
5299
5300 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5301 {
5302 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5303 u32 which;
5304 bool found = false;
5305 u64 snap_id;
5306
5307 for (which = 0; !found && which < snapc->num_snaps; which++) {
5308 const char *snap_name;
5309
5310 snap_id = snapc->snaps[which];
5311 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5312 if (IS_ERR(snap_name)) {
5313 /* ignore no-longer existing snapshots */
5314 if (PTR_ERR(snap_name) == -ENOENT)
5315 continue;
5316 else
5317 break;
5318 }
5319 found = !strcmp(name, snap_name);
5320 kfree(snap_name);
5321 }
5322 return found ? snap_id : CEPH_NOSNAP;
5323 }
5324
5325 /*
5326 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5327 * no snapshot by that name is found, or if an error occurs.
5328 */
5329 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5330 {
5331 if (rbd_dev->image_format == 1)
5332 return rbd_v1_snap_id_by_name(rbd_dev, name);
5333
5334 return rbd_v2_snap_id_by_name(rbd_dev, name);
5335 }
5336
5337 /*
5338 * An image being mapped will have everything but the snap id.
5339 */
5340 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5341 {
5342 struct rbd_spec *spec = rbd_dev->spec;
5343
5344 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5345 rbd_assert(spec->image_id && spec->image_name);
5346 rbd_assert(spec->snap_name);
5347
5348 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5349 u64 snap_id;
5350
5351 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5352 if (snap_id == CEPH_NOSNAP)
5353 return -ENOENT;
5354
5355 spec->snap_id = snap_id;
5356 } else {
5357 spec->snap_id = CEPH_NOSNAP;
5358 }
5359
5360 return 0;
5361 }
5362
5363 /*
5364 * A parent image will have all ids but none of the names.
5365 *
5366 * All names in an rbd spec are dynamically allocated. It's OK if we
5367 * can't figure out the name for an image id.
5368 */
5369 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5370 {
5371 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5372 struct rbd_spec *spec = rbd_dev->spec;
5373 const char *pool_name;
5374 const char *image_name;
5375 const char *snap_name;
5376 int ret;
5377
5378 rbd_assert(spec->pool_id != CEPH_NOPOOL);
5379 rbd_assert(spec->image_id);
5380 rbd_assert(spec->snap_id != CEPH_NOSNAP);
5381
5382 /* Get the pool name; we have to make our own copy of this */
5383
5384 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5385 if (!pool_name) {
5386 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5387 return -EIO;
5388 }
5389 pool_name = kstrdup(pool_name, GFP_KERNEL);
5390 if (!pool_name)
5391 return -ENOMEM;
5392
5393 /* Fetch the image name; tolerate failure here */
5394
5395 image_name = rbd_dev_image_name(rbd_dev);
5396 if (!image_name)
5397 rbd_warn(rbd_dev, "unable to get image name");
5398
5399 /* Fetch the snapshot name */
5400
5401 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5402 if (IS_ERR(snap_name)) {
5403 ret = PTR_ERR(snap_name);
5404 goto out_err;
5405 }
5406
5407 spec->pool_name = pool_name;
5408 spec->image_name = image_name;
5409 spec->snap_name = snap_name;
5410
5411 return 0;
5412
5413 out_err:
5414 kfree(image_name);
5415 kfree(pool_name);
5416 return ret;
5417 }
5418
5419 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5420 {
5421 size_t size;
5422 int ret;
5423 void *reply_buf;
5424 void *p;
5425 void *end;
5426 u64 seq;
5427 u32 snap_count;
5428 struct ceph_snap_context *snapc;
5429 u32 i;
5430
5431 /*
5432 * We'll need room for the seq value (maximum snapshot id),
5433 * snapshot count, and array of that many snapshot ids.
5434 * For now we have a fixed upper limit on the number we're
5435 * prepared to receive.
5436 */
5437 size = sizeof (__le64) + sizeof (__le32) +
5438 RBD_MAX_SNAP_COUNT * sizeof (__le64);
5439 reply_buf = kzalloc(size, GFP_KERNEL);
5440 if (!reply_buf)
5441 return -ENOMEM;
5442
5443 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5444 "rbd", "get_snapcontext", NULL, 0,
5445 reply_buf, size);
5446 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5447 if (ret < 0)
5448 goto out;
5449
5450 p = reply_buf;
5451 end = reply_buf + ret;
5452 ret = -ERANGE;
5453 ceph_decode_64_safe(&p, end, seq, out);
5454 ceph_decode_32_safe(&p, end, snap_count, out);
5455
5456 /*
5457 * Make sure the reported number of snapshot ids wouldn't go
5458 * beyond the end of our buffer. But before checking that,
5459 * make sure the computed size of the snapshot context we
5460 * allocate is representable in a size_t.
5461 */
5462 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5463 / sizeof (u64)) {
5464 ret = -EINVAL;
5465 goto out;
5466 }
5467 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5468 goto out;
5469 ret = 0;
5470
5471 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5472 if (!snapc) {
5473 ret = -ENOMEM;
5474 goto out;
5475 }
5476 snapc->seq = seq;
5477 for (i = 0; i < snap_count; i++)
5478 snapc->snaps[i] = ceph_decode_64(&p);
5479
5480 ceph_put_snap_context(rbd_dev->header.snapc);
5481 rbd_dev->header.snapc = snapc;
5482
5483 dout(" snap context seq = %llu, snap_count = %u\n",
5484 (unsigned long long)seq, (unsigned int)snap_count);
5485 out:
5486 kfree(reply_buf);
5487
5488 return ret;
5489 }
5490
5491 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5492 u64 snap_id)
5493 {
5494 size_t size;
5495 void *reply_buf;
5496 __le64 snapid;
5497 int ret;
5498 void *p;
5499 void *end;
5500 char *snap_name;
5501
5502 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5503 reply_buf = kmalloc(size, GFP_KERNEL);
5504 if (!reply_buf)
5505 return ERR_PTR(-ENOMEM);
5506
5507 snapid = cpu_to_le64(snap_id);
5508 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5509 "rbd", "get_snapshot_name",
5510 &snapid, sizeof (snapid),
5511 reply_buf, size);
5512 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5513 if (ret < 0) {
5514 snap_name = ERR_PTR(ret);
5515 goto out;
5516 }
5517
5518 p = reply_buf;
5519 end = reply_buf + ret;
5520 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5521 if (IS_ERR(snap_name))
5522 goto out;
5523
5524 dout(" snap_id 0x%016llx snap_name = %s\n",
5525 (unsigned long long)snap_id, snap_name);
5526 out:
5527 kfree(reply_buf);
5528
5529 return snap_name;
5530 }
5531
5532 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5533 {
5534 bool first_time = rbd_dev->header.object_prefix == NULL;
5535 int ret;
5536
5537 ret = rbd_dev_v2_image_size(rbd_dev);
5538 if (ret)
5539 return ret;
5540
5541 if (first_time) {
5542 ret = rbd_dev_v2_header_onetime(rbd_dev);
5543 if (ret)
5544 return ret;
5545 }
5546
5547 ret = rbd_dev_v2_snap_context(rbd_dev);
5548 if (ret && first_time) {
5549 kfree(rbd_dev->header.object_prefix);
5550 rbd_dev->header.object_prefix = NULL;
5551 }
5552
5553 return ret;
5554 }
5555
5556 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5557 {
5558 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5559
5560 if (rbd_dev->image_format == 1)
5561 return rbd_dev_v1_header_info(rbd_dev);
5562
5563 return rbd_dev_v2_header_info(rbd_dev);
5564 }
5565
5566 /*
5567 * Skips over white space at *buf, and updates *buf to point to the
5568 * first found non-space character (if any). Returns the length of
5569 * the token (string of non-white space characters) found. Note
5570 * that *buf must be terminated with '\0'.
5571 */
5572 static inline size_t next_token(const char **buf)
5573 {
5574 /*
5575 * These are the characters that produce nonzero for
5576 * isspace() in the "C" and "POSIX" locales.
5577 */
5578 const char *spaces = " \f\n\r\t\v";
5579
5580 *buf += strspn(*buf, spaces); /* Find start of token */
5581
5582 return strcspn(*buf, spaces); /* Return token length */
5583 }
5584
5585 /*
5586 * Finds the next token in *buf, dynamically allocates a buffer big
5587 * enough to hold a copy of it, and copies the token into the new
5588 * buffer. The copy is guaranteed to be terminated with '\0'. Note
5589 * that a duplicate buffer is created even for a zero-length token.
5590 *
5591 * Returns a pointer to the newly-allocated duplicate, or a null
5592 * pointer if memory for the duplicate was not available. If
5593 * the lenp argument is a non-null pointer, the length of the token
5594 * (not including the '\0') is returned in *lenp.
5595 *
5596 * If successful, the *buf pointer will be updated to point beyond
5597 * the end of the found token.
5598 *
5599 * Note: uses GFP_KERNEL for allocation.
5600 */
5601 static inline char *dup_token(const char **buf, size_t *lenp)
5602 {
5603 char *dup;
5604 size_t len;
5605
5606 len = next_token(buf);
5607 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5608 if (!dup)
5609 return NULL;
5610 *(dup + len) = '\0';
5611 *buf += len;
5612
5613 if (lenp)
5614 *lenp = len;
5615
5616 return dup;
5617 }
5618
5619 /*
5620 * Parse the options provided for an "rbd add" (i.e., rbd image
5621 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
5622 * and the data written is passed here via a NUL-terminated buffer.
5623 * Returns 0 if successful or an error code otherwise.
5624 *
5625 * The information extracted from these options is recorded in
5626 * the other parameters which return dynamically-allocated
5627 * structures:
5628 * ceph_opts
5629 * The address of a pointer that will refer to a ceph options
5630 * structure. Caller must release the returned pointer using
5631 * ceph_destroy_options() when it is no longer needed.
5632 * rbd_opts
5633 * Address of an rbd options pointer. Fully initialized by
5634 * this function; caller must release with kfree().
5635 * spec
5636 * Address of an rbd image specification pointer. Fully
5637 * initialized by this function based on parsed options.
5638 * Caller must release with rbd_spec_put().
5639 *
5640 * The options passed take this form:
5641 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5642 * where:
5643 * <mon_addrs>
5644 * A comma-separated list of one or more monitor addresses.
5645 * A monitor address is an ip address, optionally followed
5646 * by a port number (separated by a colon).
5647 * I.e.: ip1[:port1][,ip2[:port2]...]
5648 * <options>
5649 * A comma-separated list of ceph and/or rbd options.
5650 * <pool_name>
5651 * The name of the rados pool containing the rbd image.
5652 * <image_name>
5653 * The name of the image in that pool to map.
5654 * <snap_id>
5655 * An optional snapshot id. If provided, the mapping will
5656 * present data from the image at the time that snapshot was
5657 * created. The image head is used if no snapshot id is
5658 * provided. Snapshot mappings are always read-only.
5659 */
5660 static int rbd_add_parse_args(const char *buf,
5661 struct ceph_options **ceph_opts,
5662 struct rbd_options **opts,
5663 struct rbd_spec **rbd_spec)
5664 {
5665 size_t len;
5666 char *options;
5667 const char *mon_addrs;
5668 char *snap_name;
5669 size_t mon_addrs_size;
5670 struct rbd_spec *spec = NULL;
5671 struct rbd_options *rbd_opts = NULL;
5672 struct ceph_options *copts;
5673 int ret;
5674
5675 /* The first four tokens are required */
5676
5677 len = next_token(&buf);
5678 if (!len) {
5679 rbd_warn(NULL, "no monitor address(es) provided");
5680 return -EINVAL;
5681 }
5682 mon_addrs = buf;
5683 mon_addrs_size = len + 1;
5684 buf += len;
5685
5686 ret = -EINVAL;
5687 options = dup_token(&buf, NULL);
5688 if (!options)
5689 return -ENOMEM;
5690 if (!*options) {
5691 rbd_warn(NULL, "no options provided");
5692 goto out_err;
5693 }
5694
5695 spec = rbd_spec_alloc();
5696 if (!spec)
5697 goto out_mem;
5698
5699 spec->pool_name = dup_token(&buf, NULL);
5700 if (!spec->pool_name)
5701 goto out_mem;
5702 if (!*spec->pool_name) {
5703 rbd_warn(NULL, "no pool name provided");
5704 goto out_err;
5705 }
5706
5707 spec->image_name = dup_token(&buf, NULL);
5708 if (!spec->image_name)
5709 goto out_mem;
5710 if (!*spec->image_name) {
5711 rbd_warn(NULL, "no image name provided");
5712 goto out_err;
5713 }
5714
5715 /*
5716 * Snapshot name is optional; default is to use "-"
5717 * (indicating the head/no snapshot).
5718 */
5719 len = next_token(&buf);
5720 if (!len) {
5721 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5722 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5723 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5724 ret = -ENAMETOOLONG;
5725 goto out_err;
5726 }
5727 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5728 if (!snap_name)
5729 goto out_mem;
5730 *(snap_name + len) = '\0';
5731 spec->snap_name = snap_name;
5732
5733 /* Initialize all rbd options to the defaults */
5734
5735 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5736 if (!rbd_opts)
5737 goto out_mem;
5738
5739 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5740 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5741 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5742
5743 copts = ceph_parse_options(options, mon_addrs,
5744 mon_addrs + mon_addrs_size - 1,
5745 parse_rbd_opts_token, rbd_opts);
5746 if (IS_ERR(copts)) {
5747 ret = PTR_ERR(copts);
5748 goto out_err;
5749 }
5750 kfree(options);
5751
5752 *ceph_opts = copts;
5753 *opts = rbd_opts;
5754 *rbd_spec = spec;
5755
5756 return 0;
5757 out_mem:
5758 ret = -ENOMEM;
5759 out_err:
5760 kfree(rbd_opts);
5761 rbd_spec_put(spec);
5762 kfree(options);
5763
5764 return ret;
5765 }
5766
5767 /*
5768 * Return pool id (>= 0) or a negative error code.
5769 */
5770 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5771 {
5772 struct ceph_options *opts = rbdc->client->options;
5773 u64 newest_epoch;
5774 int tries = 0;
5775 int ret;
5776
5777 again:
5778 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5779 if (ret == -ENOENT && tries++ < 1) {
5780 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5781 &newest_epoch);
5782 if (ret < 0)
5783 return ret;
5784
5785 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5786 ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5787 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5788 newest_epoch,
5789 opts->mount_timeout);
5790 goto again;
5791 } else {
5792 /* the osdmap we have is new enough */
5793 return -ENOENT;
5794 }
5795 }
5796
5797 return ret;
5798 }
5799
5800 /*
5801 * An rbd format 2 image has a unique identifier, distinct from the
5802 * name given to it by the user. Internally, that identifier is
5803 * what's used to specify the names of objects related to the image.
5804 *
5805 * A special "rbd id" object is used to map an rbd image name to its
5806 * id. If that object doesn't exist, then there is no v2 rbd image
5807 * with the supplied name.
5808 *
5809 * This function will record the given rbd_dev's image_id field if
5810 * it can be determined, and in that case will return 0. If any
5811 * errors occur a negative errno will be returned and the rbd_dev's
5812 * image_id field will be unchanged (and should be NULL).
5813 */
5814 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5815 {
5816 int ret;
5817 size_t size;
5818 char *object_name;
5819 void *response;
5820 char *image_id;
5821
5822 /*
5823 * When probing a parent image, the image id is already
5824 * known (and the image name likely is not). There's no
5825 * need to fetch the image id again in this case. We
5826 * do still need to set the image format though.
5827 */
5828 if (rbd_dev->spec->image_id) {
5829 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5830
5831 return 0;
5832 }
5833
5834 /*
5835 * First, see if the format 2 image id file exists, and if
5836 * so, get the image's persistent id from it.
5837 */
5838 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5839 object_name = kmalloc(size, GFP_NOIO);
5840 if (!object_name)
5841 return -ENOMEM;
5842 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5843 dout("rbd id object name is %s\n", object_name);
5844
5845 /* Response will be an encoded string, which includes a length */
5846
5847 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5848 response = kzalloc(size, GFP_NOIO);
5849 if (!response) {
5850 ret = -ENOMEM;
5851 goto out;
5852 }
5853
5854 /* If it doesn't exist we'll assume it's a format 1 image */
5855
5856 ret = rbd_obj_method_sync(rbd_dev, object_name,
5857 "rbd", "get_id", NULL, 0,
5858 response, RBD_IMAGE_ID_LEN_MAX);
5859 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5860 if (ret == -ENOENT) {
5861 image_id = kstrdup("", GFP_KERNEL);
5862 ret = image_id ? 0 : -ENOMEM;
5863 if (!ret)
5864 rbd_dev->image_format = 1;
5865 } else if (ret >= 0) {
5866 void *p = response;
5867
5868 image_id = ceph_extract_encoded_string(&p, p + ret,
5869 NULL, GFP_NOIO);
5870 ret = PTR_ERR_OR_ZERO(image_id);
5871 if (!ret)
5872 rbd_dev->image_format = 2;
5873 }
5874
5875 if (!ret) {
5876 rbd_dev->spec->image_id = image_id;
5877 dout("image_id is %s\n", image_id);
5878 }
5879 out:
5880 kfree(response);
5881 kfree(object_name);
5882
5883 return ret;
5884 }
5885
5886 /*
5887 * Undo whatever state changes are made by v1 or v2 header info
5888 * call.
5889 */
5890 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5891 {
5892 struct rbd_image_header *header;
5893
5894 rbd_dev_parent_put(rbd_dev);
5895
5896 /* Free dynamic fields from the header, then zero it out */
5897
5898 header = &rbd_dev->header;
5899 ceph_put_snap_context(header->snapc);
5900 kfree(header->snap_sizes);
5901 kfree(header->snap_names);
5902 kfree(header->object_prefix);
5903 memset(header, 0, sizeof (*header));
5904 }
5905
5906 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5907 {
5908 int ret;
5909
5910 ret = rbd_dev_v2_object_prefix(rbd_dev);
5911 if (ret)
5912 goto out_err;
5913
5914 /*
5915 * Get the and check features for the image. Currently the
5916 * features are assumed to never change.
5917 */
5918 ret = rbd_dev_v2_features(rbd_dev);
5919 if (ret)
5920 goto out_err;
5921
5922 /* If the image supports fancy striping, get its parameters */
5923
5924 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5925 ret = rbd_dev_v2_striping_info(rbd_dev);
5926 if (ret < 0)
5927 goto out_err;
5928 }
5929 /* No support for crypto and compression type format 2 images */
5930
5931 return 0;
5932 out_err:
5933 rbd_dev->header.features = 0;
5934 kfree(rbd_dev->header.object_prefix);
5935 rbd_dev->header.object_prefix = NULL;
5936
5937 return ret;
5938 }
5939
5940 /*
5941 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5942 * rbd_dev_image_probe() recursion depth, which means it's also the
5943 * length of the already discovered part of the parent chain.
5944 */
5945 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5946 {
5947 struct rbd_device *parent = NULL;
5948 int ret;
5949
5950 if (!rbd_dev->parent_spec)
5951 return 0;
5952
5953 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5954 pr_info("parent chain is too long (%d)\n", depth);
5955 ret = -EINVAL;
5956 goto out_err;
5957 }
5958
5959 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5960 if (!parent) {
5961 ret = -ENOMEM;
5962 goto out_err;
5963 }
5964
5965 /*
5966 * Images related by parent/child relationships always share
5967 * rbd_client and spec/parent_spec, so bump their refcounts.
5968 */
5969 __rbd_get_client(rbd_dev->rbd_client);
5970 rbd_spec_get(rbd_dev->parent_spec);
5971
5972 ret = rbd_dev_image_probe(parent, depth);
5973 if (ret < 0)
5974 goto out_err;
5975
5976 rbd_dev->parent = parent;
5977 atomic_set(&rbd_dev->parent_ref, 1);
5978 return 0;
5979
5980 out_err:
5981 rbd_dev_unparent(rbd_dev);
5982 rbd_dev_destroy(parent);
5983 return ret;
5984 }
5985
5986 /*
5987 * rbd_dev->header_rwsem must be locked for write and will be unlocked
5988 * upon return.
5989 */
5990 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5991 {
5992 int ret;
5993
5994 /* Record our major and minor device numbers. */
5995
5996 if (!single_major) {
5997 ret = register_blkdev(0, rbd_dev->name);
5998 if (ret < 0)
5999 goto err_out_unlock;
6000
6001 rbd_dev->major = ret;
6002 rbd_dev->minor = 0;
6003 } else {
6004 rbd_dev->major = rbd_major;
6005 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6006 }
6007
6008 /* Set up the blkdev mapping. */
6009
6010 ret = rbd_init_disk(rbd_dev);
6011 if (ret)
6012 goto err_out_blkdev;
6013
6014 ret = rbd_dev_mapping_set(rbd_dev);
6015 if (ret)
6016 goto err_out_disk;
6017
6018 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6019 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
6020
6021 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6022 ret = device_add(&rbd_dev->dev);
6023 if (ret)
6024 goto err_out_mapping;
6025
6026 /* Everything's ready. Announce the disk to the world. */
6027
6028 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6029 up_write(&rbd_dev->header_rwsem);
6030
6031 spin_lock(&rbd_dev_list_lock);
6032 list_add_tail(&rbd_dev->node, &rbd_dev_list);
6033 spin_unlock(&rbd_dev_list_lock);
6034
6035 add_disk(rbd_dev->disk);
6036 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6037 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6038 rbd_dev->header.features);
6039
6040 return ret;
6041
6042 err_out_mapping:
6043 rbd_dev_mapping_clear(rbd_dev);
6044 err_out_disk:
6045 rbd_free_disk(rbd_dev);
6046 err_out_blkdev:
6047 if (!single_major)
6048 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6049 err_out_unlock:
6050 up_write(&rbd_dev->header_rwsem);
6051 return ret;
6052 }
6053
6054 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6055 {
6056 struct rbd_spec *spec = rbd_dev->spec;
6057 int ret;
6058
6059 /* Record the header object name for this rbd image. */
6060
6061 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6062
6063 rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id;
6064 if (rbd_dev->image_format == 1)
6065 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6066 spec->image_name, RBD_SUFFIX);
6067 else
6068 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6069 RBD_HEADER_PREFIX, spec->image_id);
6070
6071 return ret;
6072 }
6073
6074 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6075 {
6076 rbd_dev_unprobe(rbd_dev);
6077 rbd_dev->image_format = 0;
6078 kfree(rbd_dev->spec->image_id);
6079 rbd_dev->spec->image_id = NULL;
6080
6081 rbd_dev_destroy(rbd_dev);
6082 }
6083
6084 /*
6085 * Probe for the existence of the header object for the given rbd
6086 * device. If this image is the one being mapped (i.e., not a
6087 * parent), initiate a watch on its header object before using that
6088 * object to get detailed information about the rbd image.
6089 */
6090 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6091 {
6092 int ret;
6093
6094 /*
6095 * Get the id from the image id object. Unless there's an
6096 * error, rbd_dev->spec->image_id will be filled in with
6097 * a dynamically-allocated string, and rbd_dev->image_format
6098 * will be set to either 1 or 2.
6099 */
6100 ret = rbd_dev_image_id(rbd_dev);
6101 if (ret)
6102 return ret;
6103
6104 ret = rbd_dev_header_name(rbd_dev);
6105 if (ret)
6106 goto err_out_format;
6107
6108 if (!depth) {
6109 ret = rbd_register_watch(rbd_dev);
6110 if (ret) {
6111 if (ret == -ENOENT)
6112 pr_info("image %s/%s does not exist\n",
6113 rbd_dev->spec->pool_name,
6114 rbd_dev->spec->image_name);
6115 goto err_out_format;
6116 }
6117 }
6118
6119 ret = rbd_dev_header_info(rbd_dev);
6120 if (ret)
6121 goto err_out_watch;
6122
6123 /*
6124 * If this image is the one being mapped, we have pool name and
6125 * id, image name and id, and snap name - need to fill snap id.
6126 * Otherwise this is a parent image, identified by pool, image
6127 * and snap ids - need to fill in names for those ids.
6128 */
6129 if (!depth)
6130 ret = rbd_spec_fill_snap_id(rbd_dev);
6131 else
6132 ret = rbd_spec_fill_names(rbd_dev);
6133 if (ret) {
6134 if (ret == -ENOENT)
6135 pr_info("snap %s/%s@%s does not exist\n",
6136 rbd_dev->spec->pool_name,
6137 rbd_dev->spec->image_name,
6138 rbd_dev->spec->snap_name);
6139 goto err_out_probe;
6140 }
6141
6142 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6143 ret = rbd_dev_v2_parent_info(rbd_dev);
6144 if (ret)
6145 goto err_out_probe;
6146
6147 /*
6148 * Need to warn users if this image is the one being
6149 * mapped and has a parent.
6150 */
6151 if (!depth && rbd_dev->parent_spec)
6152 rbd_warn(rbd_dev,
6153 "WARNING: kernel layering is EXPERIMENTAL!");
6154 }
6155
6156 ret = rbd_dev_probe_parent(rbd_dev, depth);
6157 if (ret)
6158 goto err_out_probe;
6159
6160 dout("discovered format %u image, header name is %s\n",
6161 rbd_dev->image_format, rbd_dev->header_oid.name);
6162 return 0;
6163
6164 err_out_probe:
6165 rbd_dev_unprobe(rbd_dev);
6166 err_out_watch:
6167 if (!depth)
6168 rbd_unregister_watch(rbd_dev);
6169 err_out_format:
6170 rbd_dev->image_format = 0;
6171 kfree(rbd_dev->spec->image_id);
6172 rbd_dev->spec->image_id = NULL;
6173 return ret;
6174 }
6175
6176 static ssize_t do_rbd_add(struct bus_type *bus,
6177 const char *buf,
6178 size_t count)
6179 {
6180 struct rbd_device *rbd_dev = NULL;
6181 struct ceph_options *ceph_opts = NULL;
6182 struct rbd_options *rbd_opts = NULL;
6183 struct rbd_spec *spec = NULL;
6184 struct rbd_client *rbdc;
6185 bool read_only;
6186 int rc;
6187
6188 if (!try_module_get(THIS_MODULE))
6189 return -ENODEV;
6190
6191 /* parse add command */
6192 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6193 if (rc < 0)
6194 goto out;
6195
6196 rbdc = rbd_get_client(ceph_opts);
6197 if (IS_ERR(rbdc)) {
6198 rc = PTR_ERR(rbdc);
6199 goto err_out_args;
6200 }
6201
6202 /* pick the pool */
6203 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6204 if (rc < 0) {
6205 if (rc == -ENOENT)
6206 pr_info("pool %s does not exist\n", spec->pool_name);
6207 goto err_out_client;
6208 }
6209 spec->pool_id = (u64)rc;
6210
6211 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6212 if (!rbd_dev) {
6213 rc = -ENOMEM;
6214 goto err_out_client;
6215 }
6216 rbdc = NULL; /* rbd_dev now owns this */
6217 spec = NULL; /* rbd_dev now owns this */
6218 rbd_opts = NULL; /* rbd_dev now owns this */
6219
6220 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6221 if (!rbd_dev->config_info) {
6222 rc = -ENOMEM;
6223 goto err_out_rbd_dev;
6224 }
6225
6226 down_write(&rbd_dev->header_rwsem);
6227 rc = rbd_dev_image_probe(rbd_dev, 0);
6228 if (rc < 0) {
6229 up_write(&rbd_dev->header_rwsem);
6230 goto err_out_rbd_dev;
6231 }
6232
6233 /* If we are mapping a snapshot it must be marked read-only */
6234
6235 read_only = rbd_dev->opts->read_only;
6236 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6237 read_only = true;
6238 rbd_dev->mapping.read_only = read_only;
6239
6240 rc = rbd_dev_device_setup(rbd_dev);
6241 if (rc) {
6242 /*
6243 * rbd_unregister_watch() can't be moved into
6244 * rbd_dev_image_release() without refactoring, see
6245 * commit 1f3ef78861ac.
6246 */
6247 rbd_unregister_watch(rbd_dev);
6248 rbd_dev_image_release(rbd_dev);
6249 goto out;
6250 }
6251
6252 rc = count;
6253 out:
6254 module_put(THIS_MODULE);
6255 return rc;
6256
6257 err_out_rbd_dev:
6258 rbd_dev_destroy(rbd_dev);
6259 err_out_client:
6260 rbd_put_client(rbdc);
6261 err_out_args:
6262 rbd_spec_put(spec);
6263 kfree(rbd_opts);
6264 goto out;
6265 }
6266
6267 static ssize_t rbd_add(struct bus_type *bus,
6268 const char *buf,
6269 size_t count)
6270 {
6271 if (single_major)
6272 return -EINVAL;
6273
6274 return do_rbd_add(bus, buf, count);
6275 }
6276
6277 static ssize_t rbd_add_single_major(struct bus_type *bus,
6278 const char *buf,
6279 size_t count)
6280 {
6281 return do_rbd_add(bus, buf, count);
6282 }
6283
6284 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6285 {
6286 rbd_free_disk(rbd_dev);
6287
6288 spin_lock(&rbd_dev_list_lock);
6289 list_del_init(&rbd_dev->node);
6290 spin_unlock(&rbd_dev_list_lock);
6291
6292 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6293 device_del(&rbd_dev->dev);
6294 rbd_dev_mapping_clear(rbd_dev);
6295 if (!single_major)
6296 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6297 }
6298
6299 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6300 {
6301 while (rbd_dev->parent) {
6302 struct rbd_device *first = rbd_dev;
6303 struct rbd_device *second = first->parent;
6304 struct rbd_device *third;
6305
6306 /*
6307 * Follow to the parent with no grandparent and
6308 * remove it.
6309 */
6310 while (second && (third = second->parent)) {
6311 first = second;
6312 second = third;
6313 }
6314 rbd_assert(second);
6315 rbd_dev_image_release(second);
6316 first->parent = NULL;
6317 first->parent_overlap = 0;
6318
6319 rbd_assert(first->parent_spec);
6320 rbd_spec_put(first->parent_spec);
6321 first->parent_spec = NULL;
6322 }
6323 }
6324
6325 static ssize_t do_rbd_remove(struct bus_type *bus,
6326 const char *buf,
6327 size_t count)
6328 {
6329 struct rbd_device *rbd_dev = NULL;
6330 struct list_head *tmp;
6331 int dev_id;
6332 char opt_buf[6];
6333 bool already = false;
6334 bool force = false;
6335 int ret;
6336
6337 dev_id = -1;
6338 opt_buf[0] = '\0';
6339 sscanf(buf, "%d %5s", &dev_id, opt_buf);
6340 if (dev_id < 0) {
6341 pr_err("dev_id out of range\n");
6342 return -EINVAL;
6343 }
6344 if (opt_buf[0] != '\0') {
6345 if (!strcmp(opt_buf, "force")) {
6346 force = true;
6347 } else {
6348 pr_err("bad remove option at '%s'\n", opt_buf);
6349 return -EINVAL;
6350 }
6351 }
6352
6353 ret = -ENOENT;
6354 spin_lock(&rbd_dev_list_lock);
6355 list_for_each(tmp, &rbd_dev_list) {
6356 rbd_dev = list_entry(tmp, struct rbd_device, node);
6357 if (rbd_dev->dev_id == dev_id) {
6358 ret = 0;
6359 break;
6360 }
6361 }
6362 if (!ret) {
6363 spin_lock_irq(&rbd_dev->lock);
6364 if (rbd_dev->open_count && !force)
6365 ret = -EBUSY;
6366 else
6367 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6368 &rbd_dev->flags);
6369 spin_unlock_irq(&rbd_dev->lock);
6370 }
6371 spin_unlock(&rbd_dev_list_lock);
6372 if (ret < 0 || already)
6373 return ret;
6374
6375 if (force) {
6376 /*
6377 * Prevent new IO from being queued and wait for existing
6378 * IO to complete/fail.
6379 */
6380 blk_mq_freeze_queue(rbd_dev->disk->queue);
6381 blk_set_queue_dying(rbd_dev->disk->queue);
6382 }
6383
6384 down_write(&rbd_dev->lock_rwsem);
6385 if (__rbd_is_lock_owner(rbd_dev))
6386 rbd_unlock(rbd_dev);
6387 up_write(&rbd_dev->lock_rwsem);
6388 rbd_unregister_watch(rbd_dev);
6389
6390 /*
6391 * Don't free anything from rbd_dev->disk until after all
6392 * notifies are completely processed. Otherwise
6393 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
6394 * in a potential use after free of rbd_dev->disk or rbd_dev.
6395 */
6396 rbd_dev_device_release(rbd_dev);
6397 rbd_dev_image_release(rbd_dev);
6398
6399 return count;
6400 }
6401
6402 static ssize_t rbd_remove(struct bus_type *bus,
6403 const char *buf,
6404 size_t count)
6405 {
6406 if (single_major)
6407 return -EINVAL;
6408
6409 return do_rbd_remove(bus, buf, count);
6410 }
6411
6412 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6413 const char *buf,
6414 size_t count)
6415 {
6416 return do_rbd_remove(bus, buf, count);
6417 }
6418
6419 /*
6420 * create control files in sysfs
6421 * /sys/bus/rbd/...
6422 */
6423 static int rbd_sysfs_init(void)
6424 {
6425 int ret;
6426
6427 ret = device_register(&rbd_root_dev);
6428 if (ret < 0)
6429 return ret;
6430
6431 ret = bus_register(&rbd_bus_type);
6432 if (ret < 0)
6433 device_unregister(&rbd_root_dev);
6434
6435 return ret;
6436 }
6437
6438 static void rbd_sysfs_cleanup(void)
6439 {
6440 bus_unregister(&rbd_bus_type);
6441 device_unregister(&rbd_root_dev);
6442 }
6443
6444 static int rbd_slab_init(void)
6445 {
6446 rbd_assert(!rbd_img_request_cache);
6447 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6448 if (!rbd_img_request_cache)
6449 return -ENOMEM;
6450
6451 rbd_assert(!rbd_obj_request_cache);
6452 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6453 if (!rbd_obj_request_cache)
6454 goto out_err;
6455
6456 rbd_assert(!rbd_segment_name_cache);
6457 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
6458 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
6459 if (rbd_segment_name_cache)
6460 return 0;
6461 out_err:
6462 kmem_cache_destroy(rbd_obj_request_cache);
6463 rbd_obj_request_cache = NULL;
6464
6465 kmem_cache_destroy(rbd_img_request_cache);
6466 rbd_img_request_cache = NULL;
6467
6468 return -ENOMEM;
6469 }
6470
6471 static void rbd_slab_exit(void)
6472 {
6473 rbd_assert(rbd_segment_name_cache);
6474 kmem_cache_destroy(rbd_segment_name_cache);
6475 rbd_segment_name_cache = NULL;
6476
6477 rbd_assert(rbd_obj_request_cache);
6478 kmem_cache_destroy(rbd_obj_request_cache);
6479 rbd_obj_request_cache = NULL;
6480
6481 rbd_assert(rbd_img_request_cache);
6482 kmem_cache_destroy(rbd_img_request_cache);
6483 rbd_img_request_cache = NULL;
6484 }
6485
6486 static int __init rbd_init(void)
6487 {
6488 int rc;
6489
6490 if (!libceph_compatible(NULL)) {
6491 rbd_warn(NULL, "libceph incompatibility (quitting)");
6492 return -EINVAL;
6493 }
6494
6495 rc = rbd_slab_init();
6496 if (rc)
6497 return rc;
6498
6499 /*
6500 * The number of active work items is limited by the number of
6501 * rbd devices * queue depth, so leave @max_active at default.
6502 */
6503 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6504 if (!rbd_wq) {
6505 rc = -ENOMEM;
6506 goto err_out_slab;
6507 }
6508
6509 if (single_major) {
6510 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6511 if (rbd_major < 0) {
6512 rc = rbd_major;
6513 goto err_out_wq;
6514 }
6515 }
6516
6517 rc = rbd_sysfs_init();
6518 if (rc)
6519 goto err_out_blkdev;
6520
6521 if (single_major)
6522 pr_info("loaded (major %d)\n", rbd_major);
6523 else
6524 pr_info("loaded\n");
6525
6526 return 0;
6527
6528 err_out_blkdev:
6529 if (single_major)
6530 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6531 err_out_wq:
6532 destroy_workqueue(rbd_wq);
6533 err_out_slab:
6534 rbd_slab_exit();
6535 return rc;
6536 }
6537
6538 static void __exit rbd_exit(void)
6539 {
6540 ida_destroy(&rbd_dev_id_ida);
6541 rbd_sysfs_cleanup();
6542 if (single_major)
6543 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6544 destroy_workqueue(rbd_wq);
6545 rbd_slab_exit();
6546 }
6547
6548 module_init(rbd_init);
6549 module_exit(rbd_exit);
6550
6551 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6552 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6553 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6554 /* following authorship retained from original osdblk.c */
6555 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6556
6557 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6558 MODULE_LICENSE("GPL");