]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
bc88fbcb9715693612bbc2ae0eab10a83adce327
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
51
52 /*
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
57 */
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60
61 /*
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
66 */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 unsigned int counter;
70
71 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 if (counter <= (unsigned int)INT_MAX)
73 return (int)counter;
74
75 atomic_dec(v);
76
77 return -EINVAL;
78 }
79
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 int counter;
84
85 counter = atomic_dec_return(v);
86 if (counter >= 0)
87 return counter;
88
89 atomic_inc(v);
90
91 return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98
99 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
100 #define RBD_MAX_SNAP_NAME_LEN \
101 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102
103 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
104
105 #define RBD_SNAP_HEAD_NAME "-"
106
107 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
108
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX 64
112
113 #define RBD_OBJ_PREFIX_LEN_MAX 64
114
115 /* Feature bits */
116
117 #define RBD_FEATURE_LAYERING (1<<0)
118 #define RBD_FEATURE_STRIPINGV2 (1<<1)
119 #define RBD_FEATURES_ALL \
120 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121
122 /* Features supported by this (client software) implementation. */
123
124 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
125
126 /*
127 * An RBD device name will be "rbd#", where the "rbd" comes from
128 * RBD_DRV_NAME above, and # is a unique integer identifier.
129 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130 * enough to hold all possible device names.
131 */
132 #define DEV_NAME_LEN 32
133 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
134
135 /*
136 * block device image metadata (in-memory version)
137 */
138 struct rbd_image_header {
139 /* These six fields never change for a given rbd image */
140 char *object_prefix;
141 __u8 obj_order;
142 __u8 crypt_type;
143 __u8 comp_type;
144 u64 stripe_unit;
145 u64 stripe_count;
146 u64 features; /* Might be changeable someday? */
147
148 /* The remaining fields need to be updated occasionally */
149 u64 image_size;
150 struct ceph_snap_context *snapc;
151 char *snap_names; /* format 1 only */
152 u64 *snap_sizes; /* format 1 only */
153 };
154
155 /*
156 * An rbd image specification.
157 *
158 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159 * identify an image. Each rbd_dev structure includes a pointer to
160 * an rbd_spec structure that encapsulates this identity.
161 *
162 * Each of the id's in an rbd_spec has an associated name. For a
163 * user-mapped image, the names are supplied and the id's associated
164 * with them are looked up. For a layered image, a parent image is
165 * defined by the tuple, and the names are looked up.
166 *
167 * An rbd_dev structure contains a parent_spec pointer which is
168 * non-null if the image it represents is a child in a layered
169 * image. This pointer will refer to the rbd_spec structure used
170 * by the parent rbd_dev for its own identity (i.e., the structure
171 * is shared between the parent and child).
172 *
173 * Since these structures are populated once, during the discovery
174 * phase of image construction, they are effectively immutable so
175 * we make no effort to synchronize access to them.
176 *
177 * Note that code herein does not assume the image name is known (it
178 * could be a null pointer).
179 */
180 struct rbd_spec {
181 u64 pool_id;
182 const char *pool_name;
183
184 const char *image_id;
185 const char *image_name;
186
187 u64 snap_id;
188 const char *snap_name;
189
190 struct kref kref;
191 };
192
193 /*
194 * an instance of the client. multiple devices may share an rbd client.
195 */
196 struct rbd_client {
197 struct ceph_client *client;
198 struct kref kref;
199 struct list_head node;
200 };
201
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204
205 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
206
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209
210 enum obj_request_type {
211 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213
214 enum obj_operation_type {
215 OBJ_OP_WRITE,
216 OBJ_OP_READ,
217 OBJ_OP_DISCARD,
218 };
219
220 enum obj_req_flags {
221 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
222 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
223 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
224 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
225 };
226
227 struct rbd_obj_request {
228 const char *object_name;
229 u64 offset; /* object start byte */
230 u64 length; /* bytes from offset */
231 unsigned long flags;
232
233 /*
234 * An object request associated with an image will have its
235 * img_data flag set; a standalone object request will not.
236 *
237 * A standalone object request will have which == BAD_WHICH
238 * and a null obj_request pointer.
239 *
240 * An object request initiated in support of a layered image
241 * object (to check for its existence before a write) will
242 * have which == BAD_WHICH and a non-null obj_request pointer.
243 *
244 * Finally, an object request for rbd image data will have
245 * which != BAD_WHICH, and will have a non-null img_request
246 * pointer. The value of which will be in the range
247 * 0..(img_request->obj_request_count-1).
248 */
249 union {
250 struct rbd_obj_request *obj_request; /* STAT op */
251 struct {
252 struct rbd_img_request *img_request;
253 u64 img_offset;
254 /* links for img_request->obj_requests list */
255 struct list_head links;
256 };
257 };
258 u32 which; /* posn image request list */
259
260 enum obj_request_type type;
261 union {
262 struct bio *bio_list;
263 struct {
264 struct page **pages;
265 u32 page_count;
266 };
267 };
268 struct page **copyup_pages;
269 u32 copyup_page_count;
270
271 struct ceph_osd_request *osd_req;
272
273 u64 xferred; /* bytes transferred */
274 int result;
275
276 rbd_obj_callback_t callback;
277 struct completion completion;
278
279 struct kref kref;
280 };
281
282 enum img_req_flags {
283 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
284 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
285 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
286 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
287 };
288
289 struct rbd_img_request {
290 struct rbd_device *rbd_dev;
291 u64 offset; /* starting image byte offset */
292 u64 length; /* byte count from offset */
293 unsigned long flags;
294 union {
295 u64 snap_id; /* for reads */
296 struct ceph_snap_context *snapc; /* for writes */
297 };
298 union {
299 struct request *rq; /* block request */
300 struct rbd_obj_request *obj_request; /* obj req initiator */
301 };
302 struct page **copyup_pages;
303 u32 copyup_page_count;
304 spinlock_t completion_lock;/* protects next_completion */
305 u32 next_completion;
306 rbd_img_callback_t callback;
307 u64 xferred;/* aggregate bytes transferred */
308 int result; /* first nonzero obj_request result */
309
310 u32 obj_request_count;
311 struct list_head obj_requests; /* rbd_obj_request structs */
312
313 struct kref kref;
314 };
315
316 #define for_each_obj_request(ireq, oreq) \
317 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322
323 struct rbd_mapping {
324 u64 size;
325 u64 features;
326 bool read_only;
327 };
328
329 /*
330 * a single device
331 */
332 struct rbd_device {
333 int dev_id; /* blkdev unique id */
334
335 int major; /* blkdev assigned major */
336 int minor;
337 struct gendisk *disk; /* blkdev's gendisk and rq */
338
339 u32 image_format; /* Either 1 or 2 */
340 struct rbd_client *rbd_client;
341
342 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343
344 spinlock_t lock; /* queue, flags, open_count */
345
346 struct rbd_image_header header;
347 unsigned long flags; /* possibly lock protected */
348 struct rbd_spec *spec;
349
350 char *header_name;
351
352 struct ceph_file_layout layout;
353
354 struct ceph_osd_event *watch_event;
355 struct rbd_obj_request *watch_request;
356
357 struct rbd_spec *parent_spec;
358 u64 parent_overlap;
359 atomic_t parent_ref;
360 struct rbd_device *parent;
361
362 /* Block layer tags. */
363 struct blk_mq_tag_set tag_set;
364
365 /* protects updating the header */
366 struct rw_semaphore header_rwsem;
367
368 struct rbd_mapping mapping;
369
370 struct list_head node;
371
372 /* sysfs related */
373 struct device dev;
374 unsigned long open_count; /* protected by lock */
375 };
376
377 /*
378 * Flag bits for rbd_dev->flags. If atomicity is required,
379 * rbd_dev->lock is used to protect access.
380 *
381 * Currently, only the "removing" flag (which is coupled with the
382 * "open_count" field) requires atomic access.
383 */
384 enum rbd_dev_flags {
385 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
386 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
387 };
388
389 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
390
391 static LIST_HEAD(rbd_dev_list); /* devices */
392 static DEFINE_SPINLOCK(rbd_dev_list_lock);
393
394 static LIST_HEAD(rbd_client_list); /* clients */
395 static DEFINE_SPINLOCK(rbd_client_list_lock);
396
397 /* Slab caches for frequently-allocated structures */
398
399 static struct kmem_cache *rbd_img_request_cache;
400 static struct kmem_cache *rbd_obj_request_cache;
401 static struct kmem_cache *rbd_segment_name_cache;
402
403 static int rbd_major;
404 static DEFINE_IDA(rbd_dev_id_ida);
405
406 static struct workqueue_struct *rbd_wq;
407
408 /*
409 * Default to false for now, as single-major requires >= 0.75 version of
410 * userspace rbd utility.
411 */
412 static bool single_major = false;
413 module_param(single_major, bool, S_IRUGO);
414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
415
416 static int rbd_img_request_submit(struct rbd_img_request *img_request);
417
418 static void rbd_dev_device_release(struct device *dev);
419
420 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
421 size_t count);
422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
423 size_t count);
424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
425 size_t count);
426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
427 size_t count);
428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
429 static void rbd_spec_put(struct rbd_spec *spec);
430
431 static int rbd_dev_id_to_minor(int dev_id)
432 {
433 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
434 }
435
436 static int minor_to_rbd_dev_id(int minor)
437 {
438 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
439 }
440
441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
445
446 static struct attribute *rbd_bus_attrs[] = {
447 &bus_attr_add.attr,
448 &bus_attr_remove.attr,
449 &bus_attr_add_single_major.attr,
450 &bus_attr_remove_single_major.attr,
451 NULL,
452 };
453
454 static umode_t rbd_bus_is_visible(struct kobject *kobj,
455 struct attribute *attr, int index)
456 {
457 if (!single_major &&
458 (attr == &bus_attr_add_single_major.attr ||
459 attr == &bus_attr_remove_single_major.attr))
460 return 0;
461
462 return attr->mode;
463 }
464
465 static const struct attribute_group rbd_bus_group = {
466 .attrs = rbd_bus_attrs,
467 .is_visible = rbd_bus_is_visible,
468 };
469 __ATTRIBUTE_GROUPS(rbd_bus);
470
471 static struct bus_type rbd_bus_type = {
472 .name = "rbd",
473 .bus_groups = rbd_bus_groups,
474 };
475
476 static void rbd_root_dev_release(struct device *dev)
477 {
478 }
479
480 static struct device rbd_root_dev = {
481 .init_name = "rbd",
482 .release = rbd_root_dev_release,
483 };
484
485 static __printf(2, 3)
486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
487 {
488 struct va_format vaf;
489 va_list args;
490
491 va_start(args, fmt);
492 vaf.fmt = fmt;
493 vaf.va = &args;
494
495 if (!rbd_dev)
496 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
497 else if (rbd_dev->disk)
498 printk(KERN_WARNING "%s: %s: %pV\n",
499 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
500 else if (rbd_dev->spec && rbd_dev->spec->image_name)
501 printk(KERN_WARNING "%s: image %s: %pV\n",
502 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
503 else if (rbd_dev->spec && rbd_dev->spec->image_id)
504 printk(KERN_WARNING "%s: id %s: %pV\n",
505 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
506 else /* punt */
507 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
508 RBD_DRV_NAME, rbd_dev, &vaf);
509 va_end(args);
510 }
511
512 #ifdef RBD_DEBUG
513 #define rbd_assert(expr) \
514 if (unlikely(!(expr))) { \
515 printk(KERN_ERR "\nAssertion failure in %s() " \
516 "at line %d:\n\n" \
517 "\trbd_assert(%s);\n\n", \
518 __func__, __LINE__, #expr); \
519 BUG(); \
520 }
521 #else /* !RBD_DEBUG */
522 # define rbd_assert(expr) ((void) 0)
523 #endif /* !RBD_DEBUG */
524
525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
528
529 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
531 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
534 u64 snap_id);
535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
536 u8 *order, u64 *snap_size);
537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
538 u64 *snap_features);
539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
540
541 static int rbd_open(struct block_device *bdev, fmode_t mode)
542 {
543 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
544 bool removing = false;
545
546 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
547 return -EROFS;
548
549 spin_lock_irq(&rbd_dev->lock);
550 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
551 removing = true;
552 else
553 rbd_dev->open_count++;
554 spin_unlock_irq(&rbd_dev->lock);
555 if (removing)
556 return -ENOENT;
557
558 (void) get_device(&rbd_dev->dev);
559
560 return 0;
561 }
562
563 static void rbd_release(struct gendisk *disk, fmode_t mode)
564 {
565 struct rbd_device *rbd_dev = disk->private_data;
566 unsigned long open_count_before;
567
568 spin_lock_irq(&rbd_dev->lock);
569 open_count_before = rbd_dev->open_count--;
570 spin_unlock_irq(&rbd_dev->lock);
571 rbd_assert(open_count_before > 0);
572
573 put_device(&rbd_dev->dev);
574 }
575
576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
577 {
578 int ret = 0;
579 int val;
580 bool ro;
581 bool ro_changed = false;
582
583 /* get_user() may sleep, so call it before taking rbd_dev->lock */
584 if (get_user(val, (int __user *)(arg)))
585 return -EFAULT;
586
587 ro = val ? true : false;
588 /* Snapshot doesn't allow to write*/
589 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
590 return -EROFS;
591
592 spin_lock_irq(&rbd_dev->lock);
593 /* prevent others open this device */
594 if (rbd_dev->open_count > 1) {
595 ret = -EBUSY;
596 goto out;
597 }
598
599 if (rbd_dev->mapping.read_only != ro) {
600 rbd_dev->mapping.read_only = ro;
601 ro_changed = true;
602 }
603
604 out:
605 spin_unlock_irq(&rbd_dev->lock);
606 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
607 if (ret == 0 && ro_changed)
608 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
609
610 return ret;
611 }
612
613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
614 unsigned int cmd, unsigned long arg)
615 {
616 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
617 int ret = 0;
618
619 switch (cmd) {
620 case BLKROSET:
621 ret = rbd_ioctl_set_ro(rbd_dev, arg);
622 break;
623 default:
624 ret = -ENOTTY;
625 }
626
627 return ret;
628 }
629
630 #ifdef CONFIG_COMPAT
631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
632 unsigned int cmd, unsigned long arg)
633 {
634 return rbd_ioctl(bdev, mode, cmd, arg);
635 }
636 #endif /* CONFIG_COMPAT */
637
638 static const struct block_device_operations rbd_bd_ops = {
639 .owner = THIS_MODULE,
640 .open = rbd_open,
641 .release = rbd_release,
642 .ioctl = rbd_ioctl,
643 #ifdef CONFIG_COMPAT
644 .compat_ioctl = rbd_compat_ioctl,
645 #endif
646 };
647
648 /*
649 * Initialize an rbd client instance. Success or not, this function
650 * consumes ceph_opts. Caller holds client_mutex.
651 */
652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
653 {
654 struct rbd_client *rbdc;
655 int ret = -ENOMEM;
656
657 dout("%s:\n", __func__);
658 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
659 if (!rbdc)
660 goto out_opt;
661
662 kref_init(&rbdc->kref);
663 INIT_LIST_HEAD(&rbdc->node);
664
665 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
666 if (IS_ERR(rbdc->client))
667 goto out_rbdc;
668 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
669
670 ret = ceph_open_session(rbdc->client);
671 if (ret < 0)
672 goto out_client;
673
674 spin_lock(&rbd_client_list_lock);
675 list_add_tail(&rbdc->node, &rbd_client_list);
676 spin_unlock(&rbd_client_list_lock);
677
678 dout("%s: rbdc %p\n", __func__, rbdc);
679
680 return rbdc;
681 out_client:
682 ceph_destroy_client(rbdc->client);
683 out_rbdc:
684 kfree(rbdc);
685 out_opt:
686 if (ceph_opts)
687 ceph_destroy_options(ceph_opts);
688 dout("%s: error %d\n", __func__, ret);
689
690 return ERR_PTR(ret);
691 }
692
693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
694 {
695 kref_get(&rbdc->kref);
696
697 return rbdc;
698 }
699
700 /*
701 * Find a ceph client with specific addr and configuration. If
702 * found, bump its reference count.
703 */
704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
705 {
706 struct rbd_client *client_node;
707 bool found = false;
708
709 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
710 return NULL;
711
712 spin_lock(&rbd_client_list_lock);
713 list_for_each_entry(client_node, &rbd_client_list, node) {
714 if (!ceph_compare_options(ceph_opts, client_node->client)) {
715 __rbd_get_client(client_node);
716
717 found = true;
718 break;
719 }
720 }
721 spin_unlock(&rbd_client_list_lock);
722
723 return found ? client_node : NULL;
724 }
725
726 /*
727 * mount options
728 */
729 enum {
730 Opt_last_int,
731 /* int args above */
732 Opt_last_string,
733 /* string args above */
734 Opt_read_only,
735 Opt_read_write,
736 /* Boolean args above */
737 Opt_last_bool,
738 };
739
740 static match_table_t rbd_opts_tokens = {
741 /* int args above */
742 /* string args above */
743 {Opt_read_only, "read_only"},
744 {Opt_read_only, "ro"}, /* Alternate spelling */
745 {Opt_read_write, "read_write"},
746 {Opt_read_write, "rw"}, /* Alternate spelling */
747 /* Boolean args above */
748 {-1, NULL}
749 };
750
751 struct rbd_options {
752 bool read_only;
753 };
754
755 #define RBD_READ_ONLY_DEFAULT false
756
757 static int parse_rbd_opts_token(char *c, void *private)
758 {
759 struct rbd_options *rbd_opts = private;
760 substring_t argstr[MAX_OPT_ARGS];
761 int token, intval, ret;
762
763 token = match_token(c, rbd_opts_tokens, argstr);
764 if (token < 0)
765 return -EINVAL;
766
767 if (token < Opt_last_int) {
768 ret = match_int(&argstr[0], &intval);
769 if (ret < 0) {
770 pr_err("bad mount option arg (not int) "
771 "at '%s'\n", c);
772 return ret;
773 }
774 dout("got int token %d val %d\n", token, intval);
775 } else if (token > Opt_last_int && token < Opt_last_string) {
776 dout("got string token %d val %s\n", token,
777 argstr[0].from);
778 } else if (token > Opt_last_string && token < Opt_last_bool) {
779 dout("got Boolean token %d\n", token);
780 } else {
781 dout("got token %d\n", token);
782 }
783
784 switch (token) {
785 case Opt_read_only:
786 rbd_opts->read_only = true;
787 break;
788 case Opt_read_write:
789 rbd_opts->read_only = false;
790 break;
791 default:
792 rbd_assert(false);
793 break;
794 }
795 return 0;
796 }
797
798 static char* obj_op_name(enum obj_operation_type op_type)
799 {
800 switch (op_type) {
801 case OBJ_OP_READ:
802 return "read";
803 case OBJ_OP_WRITE:
804 return "write";
805 case OBJ_OP_DISCARD:
806 return "discard";
807 default:
808 return "???";
809 }
810 }
811
812 /*
813 * Get a ceph client with specific addr and configuration, if one does
814 * not exist create it. Either way, ceph_opts is consumed by this
815 * function.
816 */
817 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
818 {
819 struct rbd_client *rbdc;
820
821 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
822 rbdc = rbd_client_find(ceph_opts);
823 if (rbdc) /* using an existing client */
824 ceph_destroy_options(ceph_opts);
825 else
826 rbdc = rbd_client_create(ceph_opts);
827 mutex_unlock(&client_mutex);
828
829 return rbdc;
830 }
831
832 /*
833 * Destroy ceph client
834 *
835 * Caller must hold rbd_client_list_lock.
836 */
837 static void rbd_client_release(struct kref *kref)
838 {
839 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
840
841 dout("%s: rbdc %p\n", __func__, rbdc);
842 spin_lock(&rbd_client_list_lock);
843 list_del(&rbdc->node);
844 spin_unlock(&rbd_client_list_lock);
845
846 ceph_destroy_client(rbdc->client);
847 kfree(rbdc);
848 }
849
850 /*
851 * Drop reference to ceph client node. If it's not referenced anymore, release
852 * it.
853 */
854 static void rbd_put_client(struct rbd_client *rbdc)
855 {
856 if (rbdc)
857 kref_put(&rbdc->kref, rbd_client_release);
858 }
859
860 static bool rbd_image_format_valid(u32 image_format)
861 {
862 return image_format == 1 || image_format == 2;
863 }
864
865 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
866 {
867 size_t size;
868 u32 snap_count;
869
870 /* The header has to start with the magic rbd header text */
871 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
872 return false;
873
874 /* The bio layer requires at least sector-sized I/O */
875
876 if (ondisk->options.order < SECTOR_SHIFT)
877 return false;
878
879 /* If we use u64 in a few spots we may be able to loosen this */
880
881 if (ondisk->options.order > 8 * sizeof (int) - 1)
882 return false;
883
884 /*
885 * The size of a snapshot header has to fit in a size_t, and
886 * that limits the number of snapshots.
887 */
888 snap_count = le32_to_cpu(ondisk->snap_count);
889 size = SIZE_MAX - sizeof (struct ceph_snap_context);
890 if (snap_count > size / sizeof (__le64))
891 return false;
892
893 /*
894 * Not only that, but the size of the entire the snapshot
895 * header must also be representable in a size_t.
896 */
897 size -= snap_count * sizeof (__le64);
898 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
899 return false;
900
901 return true;
902 }
903
904 /*
905 * Fill an rbd image header with information from the given format 1
906 * on-disk header.
907 */
908 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
909 struct rbd_image_header_ondisk *ondisk)
910 {
911 struct rbd_image_header *header = &rbd_dev->header;
912 bool first_time = header->object_prefix == NULL;
913 struct ceph_snap_context *snapc;
914 char *object_prefix = NULL;
915 char *snap_names = NULL;
916 u64 *snap_sizes = NULL;
917 u32 snap_count;
918 size_t size;
919 int ret = -ENOMEM;
920 u32 i;
921
922 /* Allocate this now to avoid having to handle failure below */
923
924 if (first_time) {
925 size_t len;
926
927 len = strnlen(ondisk->object_prefix,
928 sizeof (ondisk->object_prefix));
929 object_prefix = kmalloc(len + 1, GFP_KERNEL);
930 if (!object_prefix)
931 return -ENOMEM;
932 memcpy(object_prefix, ondisk->object_prefix, len);
933 object_prefix[len] = '\0';
934 }
935
936 /* Allocate the snapshot context and fill it in */
937
938 snap_count = le32_to_cpu(ondisk->snap_count);
939 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
940 if (!snapc)
941 goto out_err;
942 snapc->seq = le64_to_cpu(ondisk->snap_seq);
943 if (snap_count) {
944 struct rbd_image_snap_ondisk *snaps;
945 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
946
947 /* We'll keep a copy of the snapshot names... */
948
949 if (snap_names_len > (u64)SIZE_MAX)
950 goto out_2big;
951 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
952 if (!snap_names)
953 goto out_err;
954
955 /* ...as well as the array of their sizes. */
956
957 size = snap_count * sizeof (*header->snap_sizes);
958 snap_sizes = kmalloc(size, GFP_KERNEL);
959 if (!snap_sizes)
960 goto out_err;
961
962 /*
963 * Copy the names, and fill in each snapshot's id
964 * and size.
965 *
966 * Note that rbd_dev_v1_header_info() guarantees the
967 * ondisk buffer we're working with has
968 * snap_names_len bytes beyond the end of the
969 * snapshot id array, this memcpy() is safe.
970 */
971 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
972 snaps = ondisk->snaps;
973 for (i = 0; i < snap_count; i++) {
974 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
975 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
976 }
977 }
978
979 /* We won't fail any more, fill in the header */
980
981 if (first_time) {
982 header->object_prefix = object_prefix;
983 header->obj_order = ondisk->options.order;
984 header->crypt_type = ondisk->options.crypt_type;
985 header->comp_type = ondisk->options.comp_type;
986 /* The rest aren't used for format 1 images */
987 header->stripe_unit = 0;
988 header->stripe_count = 0;
989 header->features = 0;
990 } else {
991 ceph_put_snap_context(header->snapc);
992 kfree(header->snap_names);
993 kfree(header->snap_sizes);
994 }
995
996 /* The remaining fields always get updated (when we refresh) */
997
998 header->image_size = le64_to_cpu(ondisk->image_size);
999 header->snapc = snapc;
1000 header->snap_names = snap_names;
1001 header->snap_sizes = snap_sizes;
1002
1003 return 0;
1004 out_2big:
1005 ret = -EIO;
1006 out_err:
1007 kfree(snap_sizes);
1008 kfree(snap_names);
1009 ceph_put_snap_context(snapc);
1010 kfree(object_prefix);
1011
1012 return ret;
1013 }
1014
1015 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1016 {
1017 const char *snap_name;
1018
1019 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1020
1021 /* Skip over names until we find the one we are looking for */
1022
1023 snap_name = rbd_dev->header.snap_names;
1024 while (which--)
1025 snap_name += strlen(snap_name) + 1;
1026
1027 return kstrdup(snap_name, GFP_KERNEL);
1028 }
1029
1030 /*
1031 * Snapshot id comparison function for use with qsort()/bsearch().
1032 * Note that result is for snapshots in *descending* order.
1033 */
1034 static int snapid_compare_reverse(const void *s1, const void *s2)
1035 {
1036 u64 snap_id1 = *(u64 *)s1;
1037 u64 snap_id2 = *(u64 *)s2;
1038
1039 if (snap_id1 < snap_id2)
1040 return 1;
1041 return snap_id1 == snap_id2 ? 0 : -1;
1042 }
1043
1044 /*
1045 * Search a snapshot context to see if the given snapshot id is
1046 * present.
1047 *
1048 * Returns the position of the snapshot id in the array if it's found,
1049 * or BAD_SNAP_INDEX otherwise.
1050 *
1051 * Note: The snapshot array is in kept sorted (by the osd) in
1052 * reverse order, highest snapshot id first.
1053 */
1054 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1055 {
1056 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1057 u64 *found;
1058
1059 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1060 sizeof (snap_id), snapid_compare_reverse);
1061
1062 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1063 }
1064
1065 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1066 u64 snap_id)
1067 {
1068 u32 which;
1069 const char *snap_name;
1070
1071 which = rbd_dev_snap_index(rbd_dev, snap_id);
1072 if (which == BAD_SNAP_INDEX)
1073 return ERR_PTR(-ENOENT);
1074
1075 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1076 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1077 }
1078
1079 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1080 {
1081 if (snap_id == CEPH_NOSNAP)
1082 return RBD_SNAP_HEAD_NAME;
1083
1084 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1085 if (rbd_dev->image_format == 1)
1086 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1087
1088 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1089 }
1090
1091 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1092 u64 *snap_size)
1093 {
1094 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1095 if (snap_id == CEPH_NOSNAP) {
1096 *snap_size = rbd_dev->header.image_size;
1097 } else if (rbd_dev->image_format == 1) {
1098 u32 which;
1099
1100 which = rbd_dev_snap_index(rbd_dev, snap_id);
1101 if (which == BAD_SNAP_INDEX)
1102 return -ENOENT;
1103
1104 *snap_size = rbd_dev->header.snap_sizes[which];
1105 } else {
1106 u64 size = 0;
1107 int ret;
1108
1109 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1110 if (ret)
1111 return ret;
1112
1113 *snap_size = size;
1114 }
1115 return 0;
1116 }
1117
1118 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1119 u64 *snap_features)
1120 {
1121 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1122 if (snap_id == CEPH_NOSNAP) {
1123 *snap_features = rbd_dev->header.features;
1124 } else if (rbd_dev->image_format == 1) {
1125 *snap_features = 0; /* No features for format 1 */
1126 } else {
1127 u64 features = 0;
1128 int ret;
1129
1130 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1131 if (ret)
1132 return ret;
1133
1134 *snap_features = features;
1135 }
1136 return 0;
1137 }
1138
1139 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1140 {
1141 u64 snap_id = rbd_dev->spec->snap_id;
1142 u64 size = 0;
1143 u64 features = 0;
1144 int ret;
1145
1146 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1147 if (ret)
1148 return ret;
1149 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1150 if (ret)
1151 return ret;
1152
1153 rbd_dev->mapping.size = size;
1154 rbd_dev->mapping.features = features;
1155
1156 return 0;
1157 }
1158
1159 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1160 {
1161 rbd_dev->mapping.size = 0;
1162 rbd_dev->mapping.features = 0;
1163 }
1164
1165 static void rbd_segment_name_free(const char *name)
1166 {
1167 /* The explicit cast here is needed to drop the const qualifier */
1168
1169 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1170 }
1171
1172 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1173 {
1174 char *name;
1175 u64 segment;
1176 int ret;
1177 char *name_format;
1178
1179 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1180 if (!name)
1181 return NULL;
1182 segment = offset >> rbd_dev->header.obj_order;
1183 name_format = "%s.%012llx";
1184 if (rbd_dev->image_format == 2)
1185 name_format = "%s.%016llx";
1186 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1187 rbd_dev->header.object_prefix, segment);
1188 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1189 pr_err("error formatting segment name for #%llu (%d)\n",
1190 segment, ret);
1191 rbd_segment_name_free(name);
1192 name = NULL;
1193 }
1194
1195 return name;
1196 }
1197
1198 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1199 {
1200 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1201
1202 return offset & (segment_size - 1);
1203 }
1204
1205 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1206 u64 offset, u64 length)
1207 {
1208 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1209
1210 offset &= segment_size - 1;
1211
1212 rbd_assert(length <= U64_MAX - offset);
1213 if (offset + length > segment_size)
1214 length = segment_size - offset;
1215
1216 return length;
1217 }
1218
1219 /*
1220 * returns the size of an object in the image
1221 */
1222 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1223 {
1224 return 1 << header->obj_order;
1225 }
1226
1227 /*
1228 * bio helpers
1229 */
1230
1231 static void bio_chain_put(struct bio *chain)
1232 {
1233 struct bio *tmp;
1234
1235 while (chain) {
1236 tmp = chain;
1237 chain = chain->bi_next;
1238 bio_put(tmp);
1239 }
1240 }
1241
1242 /*
1243 * zeros a bio chain, starting at specific offset
1244 */
1245 static void zero_bio_chain(struct bio *chain, int start_ofs)
1246 {
1247 struct bio_vec bv;
1248 struct bvec_iter iter;
1249 unsigned long flags;
1250 void *buf;
1251 int pos = 0;
1252
1253 while (chain) {
1254 bio_for_each_segment(bv, chain, iter) {
1255 if (pos + bv.bv_len > start_ofs) {
1256 int remainder = max(start_ofs - pos, 0);
1257 buf = bvec_kmap_irq(&bv, &flags);
1258 memset(buf + remainder, 0,
1259 bv.bv_len - remainder);
1260 flush_dcache_page(bv.bv_page);
1261 bvec_kunmap_irq(buf, &flags);
1262 }
1263 pos += bv.bv_len;
1264 }
1265
1266 chain = chain->bi_next;
1267 }
1268 }
1269
1270 /*
1271 * similar to zero_bio_chain(), zeros data defined by a page array,
1272 * starting at the given byte offset from the start of the array and
1273 * continuing up to the given end offset. The pages array is
1274 * assumed to be big enough to hold all bytes up to the end.
1275 */
1276 static void zero_pages(struct page **pages, u64 offset, u64 end)
1277 {
1278 struct page **page = &pages[offset >> PAGE_SHIFT];
1279
1280 rbd_assert(end > offset);
1281 rbd_assert(end - offset <= (u64)SIZE_MAX);
1282 while (offset < end) {
1283 size_t page_offset;
1284 size_t length;
1285 unsigned long flags;
1286 void *kaddr;
1287
1288 page_offset = offset & ~PAGE_MASK;
1289 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1290 local_irq_save(flags);
1291 kaddr = kmap_atomic(*page);
1292 memset(kaddr + page_offset, 0, length);
1293 flush_dcache_page(*page);
1294 kunmap_atomic(kaddr);
1295 local_irq_restore(flags);
1296
1297 offset += length;
1298 page++;
1299 }
1300 }
1301
1302 /*
1303 * Clone a portion of a bio, starting at the given byte offset
1304 * and continuing for the number of bytes indicated.
1305 */
1306 static struct bio *bio_clone_range(struct bio *bio_src,
1307 unsigned int offset,
1308 unsigned int len,
1309 gfp_t gfpmask)
1310 {
1311 struct bio *bio;
1312
1313 bio = bio_clone(bio_src, gfpmask);
1314 if (!bio)
1315 return NULL; /* ENOMEM */
1316
1317 bio_advance(bio, offset);
1318 bio->bi_iter.bi_size = len;
1319
1320 return bio;
1321 }
1322
1323 /*
1324 * Clone a portion of a bio chain, starting at the given byte offset
1325 * into the first bio in the source chain and continuing for the
1326 * number of bytes indicated. The result is another bio chain of
1327 * exactly the given length, or a null pointer on error.
1328 *
1329 * The bio_src and offset parameters are both in-out. On entry they
1330 * refer to the first source bio and the offset into that bio where
1331 * the start of data to be cloned is located.
1332 *
1333 * On return, bio_src is updated to refer to the bio in the source
1334 * chain that contains first un-cloned byte, and *offset will
1335 * contain the offset of that byte within that bio.
1336 */
1337 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1338 unsigned int *offset,
1339 unsigned int len,
1340 gfp_t gfpmask)
1341 {
1342 struct bio *bi = *bio_src;
1343 unsigned int off = *offset;
1344 struct bio *chain = NULL;
1345 struct bio **end;
1346
1347 /* Build up a chain of clone bios up to the limit */
1348
1349 if (!bi || off >= bi->bi_iter.bi_size || !len)
1350 return NULL; /* Nothing to clone */
1351
1352 end = &chain;
1353 while (len) {
1354 unsigned int bi_size;
1355 struct bio *bio;
1356
1357 if (!bi) {
1358 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1359 goto out_err; /* EINVAL; ran out of bio's */
1360 }
1361 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1362 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1363 if (!bio)
1364 goto out_err; /* ENOMEM */
1365
1366 *end = bio;
1367 end = &bio->bi_next;
1368
1369 off += bi_size;
1370 if (off == bi->bi_iter.bi_size) {
1371 bi = bi->bi_next;
1372 off = 0;
1373 }
1374 len -= bi_size;
1375 }
1376 *bio_src = bi;
1377 *offset = off;
1378
1379 return chain;
1380 out_err:
1381 bio_chain_put(chain);
1382
1383 return NULL;
1384 }
1385
1386 /*
1387 * The default/initial value for all object request flags is 0. For
1388 * each flag, once its value is set to 1 it is never reset to 0
1389 * again.
1390 */
1391 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1392 {
1393 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1394 struct rbd_device *rbd_dev;
1395
1396 rbd_dev = obj_request->img_request->rbd_dev;
1397 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1398 obj_request);
1399 }
1400 }
1401
1402 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1403 {
1404 smp_mb();
1405 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1406 }
1407
1408 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1409 {
1410 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1411 struct rbd_device *rbd_dev = NULL;
1412
1413 if (obj_request_img_data_test(obj_request))
1414 rbd_dev = obj_request->img_request->rbd_dev;
1415 rbd_warn(rbd_dev, "obj_request %p already marked done",
1416 obj_request);
1417 }
1418 }
1419
1420 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1421 {
1422 smp_mb();
1423 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1424 }
1425
1426 /*
1427 * This sets the KNOWN flag after (possibly) setting the EXISTS
1428 * flag. The latter is set based on the "exists" value provided.
1429 *
1430 * Note that for our purposes once an object exists it never goes
1431 * away again. It's possible that the response from two existence
1432 * checks are separated by the creation of the target object, and
1433 * the first ("doesn't exist") response arrives *after* the second
1434 * ("does exist"). In that case we ignore the second one.
1435 */
1436 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1437 bool exists)
1438 {
1439 if (exists)
1440 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1441 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1442 smp_mb();
1443 }
1444
1445 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1446 {
1447 smp_mb();
1448 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1449 }
1450
1451 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1452 {
1453 smp_mb();
1454 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1455 }
1456
1457 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1458 {
1459 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1460
1461 return obj_request->img_offset <
1462 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1463 }
1464
1465 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1466 {
1467 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1468 atomic_read(&obj_request->kref.refcount));
1469 kref_get(&obj_request->kref);
1470 }
1471
1472 static void rbd_obj_request_destroy(struct kref *kref);
1473 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1474 {
1475 rbd_assert(obj_request != NULL);
1476 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1477 atomic_read(&obj_request->kref.refcount));
1478 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1479 }
1480
1481 static void rbd_img_request_get(struct rbd_img_request *img_request)
1482 {
1483 dout("%s: img %p (was %d)\n", __func__, img_request,
1484 atomic_read(&img_request->kref.refcount));
1485 kref_get(&img_request->kref);
1486 }
1487
1488 static bool img_request_child_test(struct rbd_img_request *img_request);
1489 static void rbd_parent_request_destroy(struct kref *kref);
1490 static void rbd_img_request_destroy(struct kref *kref);
1491 static void rbd_img_request_put(struct rbd_img_request *img_request)
1492 {
1493 rbd_assert(img_request != NULL);
1494 dout("%s: img %p (was %d)\n", __func__, img_request,
1495 atomic_read(&img_request->kref.refcount));
1496 if (img_request_child_test(img_request))
1497 kref_put(&img_request->kref, rbd_parent_request_destroy);
1498 else
1499 kref_put(&img_request->kref, rbd_img_request_destroy);
1500 }
1501
1502 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1503 struct rbd_obj_request *obj_request)
1504 {
1505 rbd_assert(obj_request->img_request == NULL);
1506
1507 /* Image request now owns object's original reference */
1508 obj_request->img_request = img_request;
1509 obj_request->which = img_request->obj_request_count;
1510 rbd_assert(!obj_request_img_data_test(obj_request));
1511 obj_request_img_data_set(obj_request);
1512 rbd_assert(obj_request->which != BAD_WHICH);
1513 img_request->obj_request_count++;
1514 list_add_tail(&obj_request->links, &img_request->obj_requests);
1515 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1516 obj_request->which);
1517 }
1518
1519 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1520 struct rbd_obj_request *obj_request)
1521 {
1522 rbd_assert(obj_request->which != BAD_WHICH);
1523
1524 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1525 obj_request->which);
1526 list_del(&obj_request->links);
1527 rbd_assert(img_request->obj_request_count > 0);
1528 img_request->obj_request_count--;
1529 rbd_assert(obj_request->which == img_request->obj_request_count);
1530 obj_request->which = BAD_WHICH;
1531 rbd_assert(obj_request_img_data_test(obj_request));
1532 rbd_assert(obj_request->img_request == img_request);
1533 obj_request->img_request = NULL;
1534 obj_request->callback = NULL;
1535 rbd_obj_request_put(obj_request);
1536 }
1537
1538 static bool obj_request_type_valid(enum obj_request_type type)
1539 {
1540 switch (type) {
1541 case OBJ_REQUEST_NODATA:
1542 case OBJ_REQUEST_BIO:
1543 case OBJ_REQUEST_PAGES:
1544 return true;
1545 default:
1546 return false;
1547 }
1548 }
1549
1550 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1551 struct rbd_obj_request *obj_request)
1552 {
1553 dout("%s %p\n", __func__, obj_request);
1554 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1555 }
1556
1557 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1558 {
1559 dout("%s %p\n", __func__, obj_request);
1560 ceph_osdc_cancel_request(obj_request->osd_req);
1561 }
1562
1563 /*
1564 * Wait for an object request to complete. If interrupted, cancel the
1565 * underlying osd request.
1566 *
1567 * @timeout: in jiffies, 0 means "wait forever"
1568 */
1569 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1570 unsigned long timeout)
1571 {
1572 long ret;
1573
1574 dout("%s %p\n", __func__, obj_request);
1575 ret = wait_for_completion_interruptible_timeout(
1576 &obj_request->completion,
1577 ceph_timeout_jiffies(timeout));
1578 if (ret <= 0) {
1579 if (ret == 0)
1580 ret = -ETIMEDOUT;
1581 rbd_obj_request_end(obj_request);
1582 } else {
1583 ret = 0;
1584 }
1585
1586 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1587 return ret;
1588 }
1589
1590 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1591 {
1592 return __rbd_obj_request_wait(obj_request, 0);
1593 }
1594
1595 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1596 unsigned long timeout)
1597 {
1598 return __rbd_obj_request_wait(obj_request, timeout);
1599 }
1600
1601 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1602 {
1603
1604 dout("%s: img %p\n", __func__, img_request);
1605
1606 /*
1607 * If no error occurred, compute the aggregate transfer
1608 * count for the image request. We could instead use
1609 * atomic64_cmpxchg() to update it as each object request
1610 * completes; not clear which way is better off hand.
1611 */
1612 if (!img_request->result) {
1613 struct rbd_obj_request *obj_request;
1614 u64 xferred = 0;
1615
1616 for_each_obj_request(img_request, obj_request)
1617 xferred += obj_request->xferred;
1618 img_request->xferred = xferred;
1619 }
1620
1621 if (img_request->callback)
1622 img_request->callback(img_request);
1623 else
1624 rbd_img_request_put(img_request);
1625 }
1626
1627 /*
1628 * The default/initial value for all image request flags is 0. Each
1629 * is conditionally set to 1 at image request initialization time
1630 * and currently never change thereafter.
1631 */
1632 static void img_request_write_set(struct rbd_img_request *img_request)
1633 {
1634 set_bit(IMG_REQ_WRITE, &img_request->flags);
1635 smp_mb();
1636 }
1637
1638 static bool img_request_write_test(struct rbd_img_request *img_request)
1639 {
1640 smp_mb();
1641 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1642 }
1643
1644 /*
1645 * Set the discard flag when the img_request is an discard request
1646 */
1647 static void img_request_discard_set(struct rbd_img_request *img_request)
1648 {
1649 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1650 smp_mb();
1651 }
1652
1653 static bool img_request_discard_test(struct rbd_img_request *img_request)
1654 {
1655 smp_mb();
1656 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1657 }
1658
1659 static void img_request_child_set(struct rbd_img_request *img_request)
1660 {
1661 set_bit(IMG_REQ_CHILD, &img_request->flags);
1662 smp_mb();
1663 }
1664
1665 static void img_request_child_clear(struct rbd_img_request *img_request)
1666 {
1667 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1668 smp_mb();
1669 }
1670
1671 static bool img_request_child_test(struct rbd_img_request *img_request)
1672 {
1673 smp_mb();
1674 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1675 }
1676
1677 static void img_request_layered_set(struct rbd_img_request *img_request)
1678 {
1679 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1680 smp_mb();
1681 }
1682
1683 static void img_request_layered_clear(struct rbd_img_request *img_request)
1684 {
1685 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1686 smp_mb();
1687 }
1688
1689 static bool img_request_layered_test(struct rbd_img_request *img_request)
1690 {
1691 smp_mb();
1692 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1693 }
1694
1695 static enum obj_operation_type
1696 rbd_img_request_op_type(struct rbd_img_request *img_request)
1697 {
1698 if (img_request_write_test(img_request))
1699 return OBJ_OP_WRITE;
1700 else if (img_request_discard_test(img_request))
1701 return OBJ_OP_DISCARD;
1702 else
1703 return OBJ_OP_READ;
1704 }
1705
1706 static void
1707 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1708 {
1709 u64 xferred = obj_request->xferred;
1710 u64 length = obj_request->length;
1711
1712 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1713 obj_request, obj_request->img_request, obj_request->result,
1714 xferred, length);
1715 /*
1716 * ENOENT means a hole in the image. We zero-fill the entire
1717 * length of the request. A short read also implies zero-fill
1718 * to the end of the request. An error requires the whole
1719 * length of the request to be reported finished with an error
1720 * to the block layer. In each case we update the xferred
1721 * count to indicate the whole request was satisfied.
1722 */
1723 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1724 if (obj_request->result == -ENOENT) {
1725 if (obj_request->type == OBJ_REQUEST_BIO)
1726 zero_bio_chain(obj_request->bio_list, 0);
1727 else
1728 zero_pages(obj_request->pages, 0, length);
1729 obj_request->result = 0;
1730 } else if (xferred < length && !obj_request->result) {
1731 if (obj_request->type == OBJ_REQUEST_BIO)
1732 zero_bio_chain(obj_request->bio_list, xferred);
1733 else
1734 zero_pages(obj_request->pages, xferred, length);
1735 }
1736 obj_request->xferred = length;
1737 obj_request_done_set(obj_request);
1738 }
1739
1740 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1741 {
1742 dout("%s: obj %p cb %p\n", __func__, obj_request,
1743 obj_request->callback);
1744 if (obj_request->callback)
1745 obj_request->callback(obj_request);
1746 else
1747 complete_all(&obj_request->completion);
1748 }
1749
1750 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1751 {
1752 dout("%s: obj %p\n", __func__, obj_request);
1753 obj_request_done_set(obj_request);
1754 }
1755
1756 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1757 {
1758 struct rbd_img_request *img_request = NULL;
1759 struct rbd_device *rbd_dev = NULL;
1760 bool layered = false;
1761
1762 if (obj_request_img_data_test(obj_request)) {
1763 img_request = obj_request->img_request;
1764 layered = img_request && img_request_layered_test(img_request);
1765 rbd_dev = img_request->rbd_dev;
1766 }
1767
1768 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1769 obj_request, img_request, obj_request->result,
1770 obj_request->xferred, obj_request->length);
1771 if (layered && obj_request->result == -ENOENT &&
1772 obj_request->img_offset < rbd_dev->parent_overlap)
1773 rbd_img_parent_read(obj_request);
1774 else if (img_request)
1775 rbd_img_obj_request_read_callback(obj_request);
1776 else
1777 obj_request_done_set(obj_request);
1778 }
1779
1780 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1781 {
1782 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1783 obj_request->result, obj_request->length);
1784 /*
1785 * There is no such thing as a successful short write. Set
1786 * it to our originally-requested length.
1787 */
1788 obj_request->xferred = obj_request->length;
1789 obj_request_done_set(obj_request);
1790 }
1791
1792 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1793 {
1794 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1795 obj_request->result, obj_request->length);
1796 /*
1797 * There is no such thing as a successful short discard. Set
1798 * it to our originally-requested length.
1799 */
1800 obj_request->xferred = obj_request->length;
1801 /* discarding a non-existent object is not a problem */
1802 if (obj_request->result == -ENOENT)
1803 obj_request->result = 0;
1804 obj_request_done_set(obj_request);
1805 }
1806
1807 /*
1808 * For a simple stat call there's nothing to do. We'll do more if
1809 * this is part of a write sequence for a layered image.
1810 */
1811 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1812 {
1813 dout("%s: obj %p\n", __func__, obj_request);
1814 obj_request_done_set(obj_request);
1815 }
1816
1817 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1818 struct ceph_msg *msg)
1819 {
1820 struct rbd_obj_request *obj_request = osd_req->r_priv;
1821 u16 opcode;
1822
1823 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1824 rbd_assert(osd_req == obj_request->osd_req);
1825 if (obj_request_img_data_test(obj_request)) {
1826 rbd_assert(obj_request->img_request);
1827 rbd_assert(obj_request->which != BAD_WHICH);
1828 } else {
1829 rbd_assert(obj_request->which == BAD_WHICH);
1830 }
1831
1832 if (osd_req->r_result < 0)
1833 obj_request->result = osd_req->r_result;
1834
1835 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1836
1837 /*
1838 * We support a 64-bit length, but ultimately it has to be
1839 * passed to the block layer, which just supports a 32-bit
1840 * length field.
1841 */
1842 obj_request->xferred = osd_req->r_reply_op_len[0];
1843 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1844
1845 opcode = osd_req->r_ops[0].op;
1846 switch (opcode) {
1847 case CEPH_OSD_OP_READ:
1848 rbd_osd_read_callback(obj_request);
1849 break;
1850 case CEPH_OSD_OP_SETALLOCHINT:
1851 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1852 /* fall through */
1853 case CEPH_OSD_OP_WRITE:
1854 rbd_osd_write_callback(obj_request);
1855 break;
1856 case CEPH_OSD_OP_STAT:
1857 rbd_osd_stat_callback(obj_request);
1858 break;
1859 case CEPH_OSD_OP_DELETE:
1860 case CEPH_OSD_OP_TRUNCATE:
1861 case CEPH_OSD_OP_ZERO:
1862 rbd_osd_discard_callback(obj_request);
1863 break;
1864 case CEPH_OSD_OP_CALL:
1865 case CEPH_OSD_OP_NOTIFY_ACK:
1866 case CEPH_OSD_OP_WATCH:
1867 rbd_osd_trivial_callback(obj_request);
1868 break;
1869 default:
1870 rbd_warn(NULL, "%s: unsupported op %hu",
1871 obj_request->object_name, (unsigned short) opcode);
1872 break;
1873 }
1874
1875 if (obj_request_done_test(obj_request))
1876 rbd_obj_request_complete(obj_request);
1877 }
1878
1879 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1880 {
1881 struct rbd_img_request *img_request = obj_request->img_request;
1882 struct ceph_osd_request *osd_req = obj_request->osd_req;
1883 u64 snap_id;
1884
1885 rbd_assert(osd_req != NULL);
1886
1887 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1888 ceph_osdc_build_request(osd_req, obj_request->offset,
1889 NULL, snap_id, NULL);
1890 }
1891
1892 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1893 {
1894 struct rbd_img_request *img_request = obj_request->img_request;
1895 struct ceph_osd_request *osd_req = obj_request->osd_req;
1896 struct ceph_snap_context *snapc;
1897 struct timespec mtime = CURRENT_TIME;
1898
1899 rbd_assert(osd_req != NULL);
1900
1901 snapc = img_request ? img_request->snapc : NULL;
1902 ceph_osdc_build_request(osd_req, obj_request->offset,
1903 snapc, CEPH_NOSNAP, &mtime);
1904 }
1905
1906 /*
1907 * Create an osd request. A read request has one osd op (read).
1908 * A write request has either one (watch) or two (hint+write) osd ops.
1909 * (All rbd data writes are prefixed with an allocation hint op, but
1910 * technically osd watch is a write request, hence this distinction.)
1911 */
1912 static struct ceph_osd_request *rbd_osd_req_create(
1913 struct rbd_device *rbd_dev,
1914 enum obj_operation_type op_type,
1915 unsigned int num_ops,
1916 struct rbd_obj_request *obj_request)
1917 {
1918 struct ceph_snap_context *snapc = NULL;
1919 struct ceph_osd_client *osdc;
1920 struct ceph_osd_request *osd_req;
1921
1922 if (obj_request_img_data_test(obj_request) &&
1923 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1924 struct rbd_img_request *img_request = obj_request->img_request;
1925 if (op_type == OBJ_OP_WRITE) {
1926 rbd_assert(img_request_write_test(img_request));
1927 } else {
1928 rbd_assert(img_request_discard_test(img_request));
1929 }
1930 snapc = img_request->snapc;
1931 }
1932
1933 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1934
1935 /* Allocate and initialize the request, for the num_ops ops */
1936
1937 osdc = &rbd_dev->rbd_client->client->osdc;
1938 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1939 GFP_ATOMIC);
1940 if (!osd_req)
1941 return NULL; /* ENOMEM */
1942
1943 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1944 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1945 else
1946 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1947
1948 osd_req->r_callback = rbd_osd_req_callback;
1949 osd_req->r_priv = obj_request;
1950
1951 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1952 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1953
1954 return osd_req;
1955 }
1956
1957 /*
1958 * Create a copyup osd request based on the information in the object
1959 * request supplied. A copyup request has two or three osd ops, a
1960 * copyup method call, potentially a hint op, and a write or truncate
1961 * or zero op.
1962 */
1963 static struct ceph_osd_request *
1964 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1965 {
1966 struct rbd_img_request *img_request;
1967 struct ceph_snap_context *snapc;
1968 struct rbd_device *rbd_dev;
1969 struct ceph_osd_client *osdc;
1970 struct ceph_osd_request *osd_req;
1971 int num_osd_ops = 3;
1972
1973 rbd_assert(obj_request_img_data_test(obj_request));
1974 img_request = obj_request->img_request;
1975 rbd_assert(img_request);
1976 rbd_assert(img_request_write_test(img_request) ||
1977 img_request_discard_test(img_request));
1978
1979 if (img_request_discard_test(img_request))
1980 num_osd_ops = 2;
1981
1982 /* Allocate and initialize the request, for all the ops */
1983
1984 snapc = img_request->snapc;
1985 rbd_dev = img_request->rbd_dev;
1986 osdc = &rbd_dev->rbd_client->client->osdc;
1987 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1988 false, GFP_ATOMIC);
1989 if (!osd_req)
1990 return NULL; /* ENOMEM */
1991
1992 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1993 osd_req->r_callback = rbd_osd_req_callback;
1994 osd_req->r_priv = obj_request;
1995
1996 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1997 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1998
1999 return osd_req;
2000 }
2001
2002
2003 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2004 {
2005 ceph_osdc_put_request(osd_req);
2006 }
2007
2008 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2009
2010 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2011 u64 offset, u64 length,
2012 enum obj_request_type type)
2013 {
2014 struct rbd_obj_request *obj_request;
2015 size_t size;
2016 char *name;
2017
2018 rbd_assert(obj_request_type_valid(type));
2019
2020 size = strlen(object_name) + 1;
2021 name = kmalloc(size, GFP_KERNEL);
2022 if (!name)
2023 return NULL;
2024
2025 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2026 if (!obj_request) {
2027 kfree(name);
2028 return NULL;
2029 }
2030
2031 obj_request->object_name = memcpy(name, object_name, size);
2032 obj_request->offset = offset;
2033 obj_request->length = length;
2034 obj_request->flags = 0;
2035 obj_request->which = BAD_WHICH;
2036 obj_request->type = type;
2037 INIT_LIST_HEAD(&obj_request->links);
2038 init_completion(&obj_request->completion);
2039 kref_init(&obj_request->kref);
2040
2041 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2042 offset, length, (int)type, obj_request);
2043
2044 return obj_request;
2045 }
2046
2047 static void rbd_obj_request_destroy(struct kref *kref)
2048 {
2049 struct rbd_obj_request *obj_request;
2050
2051 obj_request = container_of(kref, struct rbd_obj_request, kref);
2052
2053 dout("%s: obj %p\n", __func__, obj_request);
2054
2055 rbd_assert(obj_request->img_request == NULL);
2056 rbd_assert(obj_request->which == BAD_WHICH);
2057
2058 if (obj_request->osd_req)
2059 rbd_osd_req_destroy(obj_request->osd_req);
2060
2061 rbd_assert(obj_request_type_valid(obj_request->type));
2062 switch (obj_request->type) {
2063 case OBJ_REQUEST_NODATA:
2064 break; /* Nothing to do */
2065 case OBJ_REQUEST_BIO:
2066 if (obj_request->bio_list)
2067 bio_chain_put(obj_request->bio_list);
2068 break;
2069 case OBJ_REQUEST_PAGES:
2070 if (obj_request->pages)
2071 ceph_release_page_vector(obj_request->pages,
2072 obj_request->page_count);
2073 break;
2074 }
2075
2076 kfree(obj_request->object_name);
2077 obj_request->object_name = NULL;
2078 kmem_cache_free(rbd_obj_request_cache, obj_request);
2079 }
2080
2081 /* It's OK to call this for a device with no parent */
2082
2083 static void rbd_spec_put(struct rbd_spec *spec);
2084 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2085 {
2086 rbd_dev_remove_parent(rbd_dev);
2087 rbd_spec_put(rbd_dev->parent_spec);
2088 rbd_dev->parent_spec = NULL;
2089 rbd_dev->parent_overlap = 0;
2090 }
2091
2092 /*
2093 * Parent image reference counting is used to determine when an
2094 * image's parent fields can be safely torn down--after there are no
2095 * more in-flight requests to the parent image. When the last
2096 * reference is dropped, cleaning them up is safe.
2097 */
2098 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2099 {
2100 int counter;
2101
2102 if (!rbd_dev->parent_spec)
2103 return;
2104
2105 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2106 if (counter > 0)
2107 return;
2108
2109 /* Last reference; clean up parent data structures */
2110
2111 if (!counter)
2112 rbd_dev_unparent(rbd_dev);
2113 else
2114 rbd_warn(rbd_dev, "parent reference underflow");
2115 }
2116
2117 /*
2118 * If an image has a non-zero parent overlap, get a reference to its
2119 * parent.
2120 *
2121 * Returns true if the rbd device has a parent with a non-zero
2122 * overlap and a reference for it was successfully taken, or
2123 * false otherwise.
2124 */
2125 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2126 {
2127 int counter = 0;
2128
2129 if (!rbd_dev->parent_spec)
2130 return false;
2131
2132 down_read(&rbd_dev->header_rwsem);
2133 if (rbd_dev->parent_overlap)
2134 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2135 up_read(&rbd_dev->header_rwsem);
2136
2137 if (counter < 0)
2138 rbd_warn(rbd_dev, "parent reference overflow");
2139
2140 return counter > 0;
2141 }
2142
2143 /*
2144 * Caller is responsible for filling in the list of object requests
2145 * that comprises the image request, and the Linux request pointer
2146 * (if there is one).
2147 */
2148 static struct rbd_img_request *rbd_img_request_create(
2149 struct rbd_device *rbd_dev,
2150 u64 offset, u64 length,
2151 enum obj_operation_type op_type,
2152 struct ceph_snap_context *snapc)
2153 {
2154 struct rbd_img_request *img_request;
2155
2156 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2157 if (!img_request)
2158 return NULL;
2159
2160 img_request->rq = NULL;
2161 img_request->rbd_dev = rbd_dev;
2162 img_request->offset = offset;
2163 img_request->length = length;
2164 img_request->flags = 0;
2165 if (op_type == OBJ_OP_DISCARD) {
2166 img_request_discard_set(img_request);
2167 img_request->snapc = snapc;
2168 } else if (op_type == OBJ_OP_WRITE) {
2169 img_request_write_set(img_request);
2170 img_request->snapc = snapc;
2171 } else {
2172 img_request->snap_id = rbd_dev->spec->snap_id;
2173 }
2174 if (rbd_dev_parent_get(rbd_dev))
2175 img_request_layered_set(img_request);
2176 spin_lock_init(&img_request->completion_lock);
2177 img_request->next_completion = 0;
2178 img_request->callback = NULL;
2179 img_request->result = 0;
2180 img_request->obj_request_count = 0;
2181 INIT_LIST_HEAD(&img_request->obj_requests);
2182 kref_init(&img_request->kref);
2183
2184 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2185 obj_op_name(op_type), offset, length, img_request);
2186
2187 return img_request;
2188 }
2189
2190 static void rbd_img_request_destroy(struct kref *kref)
2191 {
2192 struct rbd_img_request *img_request;
2193 struct rbd_obj_request *obj_request;
2194 struct rbd_obj_request *next_obj_request;
2195
2196 img_request = container_of(kref, struct rbd_img_request, kref);
2197
2198 dout("%s: img %p\n", __func__, img_request);
2199
2200 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2201 rbd_img_obj_request_del(img_request, obj_request);
2202 rbd_assert(img_request->obj_request_count == 0);
2203
2204 if (img_request_layered_test(img_request)) {
2205 img_request_layered_clear(img_request);
2206 rbd_dev_parent_put(img_request->rbd_dev);
2207 }
2208
2209 if (img_request_write_test(img_request) ||
2210 img_request_discard_test(img_request))
2211 ceph_put_snap_context(img_request->snapc);
2212
2213 kmem_cache_free(rbd_img_request_cache, img_request);
2214 }
2215
2216 static struct rbd_img_request *rbd_parent_request_create(
2217 struct rbd_obj_request *obj_request,
2218 u64 img_offset, u64 length)
2219 {
2220 struct rbd_img_request *parent_request;
2221 struct rbd_device *rbd_dev;
2222
2223 rbd_assert(obj_request->img_request);
2224 rbd_dev = obj_request->img_request->rbd_dev;
2225
2226 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2227 length, OBJ_OP_READ, NULL);
2228 if (!parent_request)
2229 return NULL;
2230
2231 img_request_child_set(parent_request);
2232 rbd_obj_request_get(obj_request);
2233 parent_request->obj_request = obj_request;
2234
2235 return parent_request;
2236 }
2237
2238 static void rbd_parent_request_destroy(struct kref *kref)
2239 {
2240 struct rbd_img_request *parent_request;
2241 struct rbd_obj_request *orig_request;
2242
2243 parent_request = container_of(kref, struct rbd_img_request, kref);
2244 orig_request = parent_request->obj_request;
2245
2246 parent_request->obj_request = NULL;
2247 rbd_obj_request_put(orig_request);
2248 img_request_child_clear(parent_request);
2249
2250 rbd_img_request_destroy(kref);
2251 }
2252
2253 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2254 {
2255 struct rbd_img_request *img_request;
2256 unsigned int xferred;
2257 int result;
2258 bool more;
2259
2260 rbd_assert(obj_request_img_data_test(obj_request));
2261 img_request = obj_request->img_request;
2262
2263 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2264 xferred = (unsigned int)obj_request->xferred;
2265 result = obj_request->result;
2266 if (result) {
2267 struct rbd_device *rbd_dev = img_request->rbd_dev;
2268 enum obj_operation_type op_type;
2269
2270 if (img_request_discard_test(img_request))
2271 op_type = OBJ_OP_DISCARD;
2272 else if (img_request_write_test(img_request))
2273 op_type = OBJ_OP_WRITE;
2274 else
2275 op_type = OBJ_OP_READ;
2276
2277 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2278 obj_op_name(op_type), obj_request->length,
2279 obj_request->img_offset, obj_request->offset);
2280 rbd_warn(rbd_dev, " result %d xferred %x",
2281 result, xferred);
2282 if (!img_request->result)
2283 img_request->result = result;
2284 /*
2285 * Need to end I/O on the entire obj_request worth of
2286 * bytes in case of error.
2287 */
2288 xferred = obj_request->length;
2289 }
2290
2291 /* Image object requests don't own their page array */
2292
2293 if (obj_request->type == OBJ_REQUEST_PAGES) {
2294 obj_request->pages = NULL;
2295 obj_request->page_count = 0;
2296 }
2297
2298 if (img_request_child_test(img_request)) {
2299 rbd_assert(img_request->obj_request != NULL);
2300 more = obj_request->which < img_request->obj_request_count - 1;
2301 } else {
2302 rbd_assert(img_request->rq != NULL);
2303
2304 more = blk_update_request(img_request->rq, result, xferred);
2305 if (!more)
2306 __blk_mq_end_request(img_request->rq, result);
2307 }
2308
2309 return more;
2310 }
2311
2312 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2313 {
2314 struct rbd_img_request *img_request;
2315 u32 which = obj_request->which;
2316 bool more = true;
2317
2318 rbd_assert(obj_request_img_data_test(obj_request));
2319 img_request = obj_request->img_request;
2320
2321 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2322 rbd_assert(img_request != NULL);
2323 rbd_assert(img_request->obj_request_count > 0);
2324 rbd_assert(which != BAD_WHICH);
2325 rbd_assert(which < img_request->obj_request_count);
2326
2327 spin_lock_irq(&img_request->completion_lock);
2328 if (which != img_request->next_completion)
2329 goto out;
2330
2331 for_each_obj_request_from(img_request, obj_request) {
2332 rbd_assert(more);
2333 rbd_assert(which < img_request->obj_request_count);
2334
2335 if (!obj_request_done_test(obj_request))
2336 break;
2337 more = rbd_img_obj_end_request(obj_request);
2338 which++;
2339 }
2340
2341 rbd_assert(more ^ (which == img_request->obj_request_count));
2342 img_request->next_completion = which;
2343 out:
2344 spin_unlock_irq(&img_request->completion_lock);
2345 rbd_img_request_put(img_request);
2346
2347 if (!more)
2348 rbd_img_request_complete(img_request);
2349 }
2350
2351 /*
2352 * Add individual osd ops to the given ceph_osd_request and prepare
2353 * them for submission. num_ops is the current number of
2354 * osd operations already to the object request.
2355 */
2356 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2357 struct ceph_osd_request *osd_request,
2358 enum obj_operation_type op_type,
2359 unsigned int num_ops)
2360 {
2361 struct rbd_img_request *img_request = obj_request->img_request;
2362 struct rbd_device *rbd_dev = img_request->rbd_dev;
2363 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2364 u64 offset = obj_request->offset;
2365 u64 length = obj_request->length;
2366 u64 img_end;
2367 u16 opcode;
2368
2369 if (op_type == OBJ_OP_DISCARD) {
2370 if (!offset && length == object_size &&
2371 (!img_request_layered_test(img_request) ||
2372 !obj_request_overlaps_parent(obj_request))) {
2373 opcode = CEPH_OSD_OP_DELETE;
2374 } else if ((offset + length == object_size)) {
2375 opcode = CEPH_OSD_OP_TRUNCATE;
2376 } else {
2377 down_read(&rbd_dev->header_rwsem);
2378 img_end = rbd_dev->header.image_size;
2379 up_read(&rbd_dev->header_rwsem);
2380
2381 if (obj_request->img_offset + length == img_end)
2382 opcode = CEPH_OSD_OP_TRUNCATE;
2383 else
2384 opcode = CEPH_OSD_OP_ZERO;
2385 }
2386 } else if (op_type == OBJ_OP_WRITE) {
2387 opcode = CEPH_OSD_OP_WRITE;
2388 osd_req_op_alloc_hint_init(osd_request, num_ops,
2389 object_size, object_size);
2390 num_ops++;
2391 } else {
2392 opcode = CEPH_OSD_OP_READ;
2393 }
2394
2395 if (opcode == CEPH_OSD_OP_DELETE)
2396 osd_req_op_init(osd_request, num_ops, opcode, 0);
2397 else
2398 osd_req_op_extent_init(osd_request, num_ops, opcode,
2399 offset, length, 0, 0);
2400
2401 if (obj_request->type == OBJ_REQUEST_BIO)
2402 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2403 obj_request->bio_list, length);
2404 else if (obj_request->type == OBJ_REQUEST_PAGES)
2405 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2406 obj_request->pages, length,
2407 offset & ~PAGE_MASK, false, false);
2408
2409 /* Discards are also writes */
2410 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2411 rbd_osd_req_format_write(obj_request);
2412 else
2413 rbd_osd_req_format_read(obj_request);
2414 }
2415
2416 /*
2417 * Split up an image request into one or more object requests, each
2418 * to a different object. The "type" parameter indicates whether
2419 * "data_desc" is the pointer to the head of a list of bio
2420 * structures, or the base of a page array. In either case this
2421 * function assumes data_desc describes memory sufficient to hold
2422 * all data described by the image request.
2423 */
2424 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2425 enum obj_request_type type,
2426 void *data_desc)
2427 {
2428 struct rbd_device *rbd_dev = img_request->rbd_dev;
2429 struct rbd_obj_request *obj_request = NULL;
2430 struct rbd_obj_request *next_obj_request;
2431 struct bio *bio_list = NULL;
2432 unsigned int bio_offset = 0;
2433 struct page **pages = NULL;
2434 enum obj_operation_type op_type;
2435 u64 img_offset;
2436 u64 resid;
2437
2438 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2439 (int)type, data_desc);
2440
2441 img_offset = img_request->offset;
2442 resid = img_request->length;
2443 rbd_assert(resid > 0);
2444 op_type = rbd_img_request_op_type(img_request);
2445
2446 if (type == OBJ_REQUEST_BIO) {
2447 bio_list = data_desc;
2448 rbd_assert(img_offset ==
2449 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2450 } else if (type == OBJ_REQUEST_PAGES) {
2451 pages = data_desc;
2452 }
2453
2454 while (resid) {
2455 struct ceph_osd_request *osd_req;
2456 const char *object_name;
2457 u64 offset;
2458 u64 length;
2459
2460 object_name = rbd_segment_name(rbd_dev, img_offset);
2461 if (!object_name)
2462 goto out_unwind;
2463 offset = rbd_segment_offset(rbd_dev, img_offset);
2464 length = rbd_segment_length(rbd_dev, img_offset, resid);
2465 obj_request = rbd_obj_request_create(object_name,
2466 offset, length, type);
2467 /* object request has its own copy of the object name */
2468 rbd_segment_name_free(object_name);
2469 if (!obj_request)
2470 goto out_unwind;
2471
2472 /*
2473 * set obj_request->img_request before creating the
2474 * osd_request so that it gets the right snapc
2475 */
2476 rbd_img_obj_request_add(img_request, obj_request);
2477
2478 if (type == OBJ_REQUEST_BIO) {
2479 unsigned int clone_size;
2480
2481 rbd_assert(length <= (u64)UINT_MAX);
2482 clone_size = (unsigned int)length;
2483 obj_request->bio_list =
2484 bio_chain_clone_range(&bio_list,
2485 &bio_offset,
2486 clone_size,
2487 GFP_ATOMIC);
2488 if (!obj_request->bio_list)
2489 goto out_unwind;
2490 } else if (type == OBJ_REQUEST_PAGES) {
2491 unsigned int page_count;
2492
2493 obj_request->pages = pages;
2494 page_count = (u32)calc_pages_for(offset, length);
2495 obj_request->page_count = page_count;
2496 if ((offset + length) & ~PAGE_MASK)
2497 page_count--; /* more on last page */
2498 pages += page_count;
2499 }
2500
2501 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2502 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2503 obj_request);
2504 if (!osd_req)
2505 goto out_unwind;
2506
2507 obj_request->osd_req = osd_req;
2508 obj_request->callback = rbd_img_obj_callback;
2509 obj_request->img_offset = img_offset;
2510
2511 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2512
2513 rbd_img_request_get(img_request);
2514
2515 img_offset += length;
2516 resid -= length;
2517 }
2518
2519 return 0;
2520
2521 out_unwind:
2522 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2523 rbd_img_obj_request_del(img_request, obj_request);
2524
2525 return -ENOMEM;
2526 }
2527
2528 static void
2529 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2530 {
2531 struct rbd_img_request *img_request;
2532 struct rbd_device *rbd_dev;
2533 struct page **pages;
2534 u32 page_count;
2535
2536 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2537 obj_request->type == OBJ_REQUEST_NODATA);
2538 rbd_assert(obj_request_img_data_test(obj_request));
2539 img_request = obj_request->img_request;
2540 rbd_assert(img_request);
2541
2542 rbd_dev = img_request->rbd_dev;
2543 rbd_assert(rbd_dev);
2544
2545 pages = obj_request->copyup_pages;
2546 rbd_assert(pages != NULL);
2547 obj_request->copyup_pages = NULL;
2548 page_count = obj_request->copyup_page_count;
2549 rbd_assert(page_count);
2550 obj_request->copyup_page_count = 0;
2551 ceph_release_page_vector(pages, page_count);
2552
2553 /*
2554 * We want the transfer count to reflect the size of the
2555 * original write request. There is no such thing as a
2556 * successful short write, so if the request was successful
2557 * we can just set it to the originally-requested length.
2558 */
2559 if (!obj_request->result)
2560 obj_request->xferred = obj_request->length;
2561
2562 /* Finish up with the normal image object callback */
2563
2564 rbd_img_obj_callback(obj_request);
2565 }
2566
2567 static void
2568 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2569 {
2570 struct rbd_obj_request *orig_request;
2571 struct ceph_osd_request *osd_req;
2572 struct ceph_osd_client *osdc;
2573 struct rbd_device *rbd_dev;
2574 struct page **pages;
2575 enum obj_operation_type op_type;
2576 u32 page_count;
2577 int img_result;
2578 u64 parent_length;
2579
2580 rbd_assert(img_request_child_test(img_request));
2581
2582 /* First get what we need from the image request */
2583
2584 pages = img_request->copyup_pages;
2585 rbd_assert(pages != NULL);
2586 img_request->copyup_pages = NULL;
2587 page_count = img_request->copyup_page_count;
2588 rbd_assert(page_count);
2589 img_request->copyup_page_count = 0;
2590
2591 orig_request = img_request->obj_request;
2592 rbd_assert(orig_request != NULL);
2593 rbd_assert(obj_request_type_valid(orig_request->type));
2594 img_result = img_request->result;
2595 parent_length = img_request->length;
2596 rbd_assert(parent_length == img_request->xferred);
2597 rbd_img_request_put(img_request);
2598
2599 rbd_assert(orig_request->img_request);
2600 rbd_dev = orig_request->img_request->rbd_dev;
2601 rbd_assert(rbd_dev);
2602
2603 /*
2604 * If the overlap has become 0 (most likely because the
2605 * image has been flattened) we need to free the pages
2606 * and re-submit the original write request.
2607 */
2608 if (!rbd_dev->parent_overlap) {
2609 struct ceph_osd_client *osdc;
2610
2611 ceph_release_page_vector(pages, page_count);
2612 osdc = &rbd_dev->rbd_client->client->osdc;
2613 img_result = rbd_obj_request_submit(osdc, orig_request);
2614 if (!img_result)
2615 return;
2616 }
2617
2618 if (img_result)
2619 goto out_err;
2620
2621 /*
2622 * The original osd request is of no use to use any more.
2623 * We need a new one that can hold the three ops in a copyup
2624 * request. Allocate the new copyup osd request for the
2625 * original request, and release the old one.
2626 */
2627 img_result = -ENOMEM;
2628 osd_req = rbd_osd_req_create_copyup(orig_request);
2629 if (!osd_req)
2630 goto out_err;
2631 rbd_osd_req_destroy(orig_request->osd_req);
2632 orig_request->osd_req = osd_req;
2633 orig_request->copyup_pages = pages;
2634 orig_request->copyup_page_count = page_count;
2635
2636 /* Initialize the copyup op */
2637
2638 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2639 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2640 false, false);
2641
2642 /* Add the other op(s) */
2643
2644 op_type = rbd_img_request_op_type(orig_request->img_request);
2645 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2646
2647 /* All set, send it off. */
2648
2649 orig_request->callback = rbd_img_obj_copyup_callback;
2650 osdc = &rbd_dev->rbd_client->client->osdc;
2651 img_result = rbd_obj_request_submit(osdc, orig_request);
2652 if (!img_result)
2653 return;
2654 out_err:
2655 /* Record the error code and complete the request */
2656
2657 orig_request->result = img_result;
2658 orig_request->xferred = 0;
2659 obj_request_done_set(orig_request);
2660 rbd_obj_request_complete(orig_request);
2661 }
2662
2663 /*
2664 * Read from the parent image the range of data that covers the
2665 * entire target of the given object request. This is used for
2666 * satisfying a layered image write request when the target of an
2667 * object request from the image request does not exist.
2668 *
2669 * A page array big enough to hold the returned data is allocated
2670 * and supplied to rbd_img_request_fill() as the "data descriptor."
2671 * When the read completes, this page array will be transferred to
2672 * the original object request for the copyup operation.
2673 *
2674 * If an error occurs, record it as the result of the original
2675 * object request and mark it done so it gets completed.
2676 */
2677 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2678 {
2679 struct rbd_img_request *img_request = NULL;
2680 struct rbd_img_request *parent_request = NULL;
2681 struct rbd_device *rbd_dev;
2682 u64 img_offset;
2683 u64 length;
2684 struct page **pages = NULL;
2685 u32 page_count;
2686 int result;
2687
2688 rbd_assert(obj_request_img_data_test(obj_request));
2689 rbd_assert(obj_request_type_valid(obj_request->type));
2690
2691 img_request = obj_request->img_request;
2692 rbd_assert(img_request != NULL);
2693 rbd_dev = img_request->rbd_dev;
2694 rbd_assert(rbd_dev->parent != NULL);
2695
2696 /*
2697 * Determine the byte range covered by the object in the
2698 * child image to which the original request was to be sent.
2699 */
2700 img_offset = obj_request->img_offset - obj_request->offset;
2701 length = (u64)1 << rbd_dev->header.obj_order;
2702
2703 /*
2704 * There is no defined parent data beyond the parent
2705 * overlap, so limit what we read at that boundary if
2706 * necessary.
2707 */
2708 if (img_offset + length > rbd_dev->parent_overlap) {
2709 rbd_assert(img_offset < rbd_dev->parent_overlap);
2710 length = rbd_dev->parent_overlap - img_offset;
2711 }
2712
2713 /*
2714 * Allocate a page array big enough to receive the data read
2715 * from the parent.
2716 */
2717 page_count = (u32)calc_pages_for(0, length);
2718 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2719 if (IS_ERR(pages)) {
2720 result = PTR_ERR(pages);
2721 pages = NULL;
2722 goto out_err;
2723 }
2724
2725 result = -ENOMEM;
2726 parent_request = rbd_parent_request_create(obj_request,
2727 img_offset, length);
2728 if (!parent_request)
2729 goto out_err;
2730
2731 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2732 if (result)
2733 goto out_err;
2734 parent_request->copyup_pages = pages;
2735 parent_request->copyup_page_count = page_count;
2736
2737 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2738 result = rbd_img_request_submit(parent_request);
2739 if (!result)
2740 return 0;
2741
2742 parent_request->copyup_pages = NULL;
2743 parent_request->copyup_page_count = 0;
2744 parent_request->obj_request = NULL;
2745 rbd_obj_request_put(obj_request);
2746 out_err:
2747 if (pages)
2748 ceph_release_page_vector(pages, page_count);
2749 if (parent_request)
2750 rbd_img_request_put(parent_request);
2751 obj_request->result = result;
2752 obj_request->xferred = 0;
2753 obj_request_done_set(obj_request);
2754
2755 return result;
2756 }
2757
2758 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2759 {
2760 struct rbd_obj_request *orig_request;
2761 struct rbd_device *rbd_dev;
2762 int result;
2763
2764 rbd_assert(!obj_request_img_data_test(obj_request));
2765
2766 /*
2767 * All we need from the object request is the original
2768 * request and the result of the STAT op. Grab those, then
2769 * we're done with the request.
2770 */
2771 orig_request = obj_request->obj_request;
2772 obj_request->obj_request = NULL;
2773 rbd_obj_request_put(orig_request);
2774 rbd_assert(orig_request);
2775 rbd_assert(orig_request->img_request);
2776
2777 result = obj_request->result;
2778 obj_request->result = 0;
2779
2780 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2781 obj_request, orig_request, result,
2782 obj_request->xferred, obj_request->length);
2783 rbd_obj_request_put(obj_request);
2784
2785 /*
2786 * If the overlap has become 0 (most likely because the
2787 * image has been flattened) we need to free the pages
2788 * and re-submit the original write request.
2789 */
2790 rbd_dev = orig_request->img_request->rbd_dev;
2791 if (!rbd_dev->parent_overlap) {
2792 struct ceph_osd_client *osdc;
2793
2794 osdc = &rbd_dev->rbd_client->client->osdc;
2795 result = rbd_obj_request_submit(osdc, orig_request);
2796 if (!result)
2797 return;
2798 }
2799
2800 /*
2801 * Our only purpose here is to determine whether the object
2802 * exists, and we don't want to treat the non-existence as
2803 * an error. If something else comes back, transfer the
2804 * error to the original request and complete it now.
2805 */
2806 if (!result) {
2807 obj_request_existence_set(orig_request, true);
2808 } else if (result == -ENOENT) {
2809 obj_request_existence_set(orig_request, false);
2810 } else if (result) {
2811 orig_request->result = result;
2812 goto out;
2813 }
2814
2815 /*
2816 * Resubmit the original request now that we have recorded
2817 * whether the target object exists.
2818 */
2819 orig_request->result = rbd_img_obj_request_submit(orig_request);
2820 out:
2821 if (orig_request->result)
2822 rbd_obj_request_complete(orig_request);
2823 }
2824
2825 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2826 {
2827 struct rbd_obj_request *stat_request;
2828 struct rbd_device *rbd_dev;
2829 struct ceph_osd_client *osdc;
2830 struct page **pages = NULL;
2831 u32 page_count;
2832 size_t size;
2833 int ret;
2834
2835 /*
2836 * The response data for a STAT call consists of:
2837 * le64 length;
2838 * struct {
2839 * le32 tv_sec;
2840 * le32 tv_nsec;
2841 * } mtime;
2842 */
2843 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2844 page_count = (u32)calc_pages_for(0, size);
2845 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2846 if (IS_ERR(pages))
2847 return PTR_ERR(pages);
2848
2849 ret = -ENOMEM;
2850 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2851 OBJ_REQUEST_PAGES);
2852 if (!stat_request)
2853 goto out;
2854
2855 rbd_obj_request_get(obj_request);
2856 stat_request->obj_request = obj_request;
2857 stat_request->pages = pages;
2858 stat_request->page_count = page_count;
2859
2860 rbd_assert(obj_request->img_request);
2861 rbd_dev = obj_request->img_request->rbd_dev;
2862 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2863 stat_request);
2864 if (!stat_request->osd_req)
2865 goto out;
2866 stat_request->callback = rbd_img_obj_exists_callback;
2867
2868 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2869 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2870 false, false);
2871 rbd_osd_req_format_read(stat_request);
2872
2873 osdc = &rbd_dev->rbd_client->client->osdc;
2874 ret = rbd_obj_request_submit(osdc, stat_request);
2875 out:
2876 if (ret)
2877 rbd_obj_request_put(obj_request);
2878
2879 return ret;
2880 }
2881
2882 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2883 {
2884 struct rbd_img_request *img_request;
2885 struct rbd_device *rbd_dev;
2886
2887 rbd_assert(obj_request_img_data_test(obj_request));
2888
2889 img_request = obj_request->img_request;
2890 rbd_assert(img_request);
2891 rbd_dev = img_request->rbd_dev;
2892
2893 /* Reads */
2894 if (!img_request_write_test(img_request) &&
2895 !img_request_discard_test(img_request))
2896 return true;
2897
2898 /* Non-layered writes */
2899 if (!img_request_layered_test(img_request))
2900 return true;
2901
2902 /*
2903 * Layered writes outside of the parent overlap range don't
2904 * share any data with the parent.
2905 */
2906 if (!obj_request_overlaps_parent(obj_request))
2907 return true;
2908
2909 /*
2910 * Entire-object layered writes - we will overwrite whatever
2911 * parent data there is anyway.
2912 */
2913 if (!obj_request->offset &&
2914 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2915 return true;
2916
2917 /*
2918 * If the object is known to already exist, its parent data has
2919 * already been copied.
2920 */
2921 if (obj_request_known_test(obj_request) &&
2922 obj_request_exists_test(obj_request))
2923 return true;
2924
2925 return false;
2926 }
2927
2928 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2929 {
2930 if (img_obj_request_simple(obj_request)) {
2931 struct rbd_device *rbd_dev;
2932 struct ceph_osd_client *osdc;
2933
2934 rbd_dev = obj_request->img_request->rbd_dev;
2935 osdc = &rbd_dev->rbd_client->client->osdc;
2936
2937 return rbd_obj_request_submit(osdc, obj_request);
2938 }
2939
2940 /*
2941 * It's a layered write. The target object might exist but
2942 * we may not know that yet. If we know it doesn't exist,
2943 * start by reading the data for the full target object from
2944 * the parent so we can use it for a copyup to the target.
2945 */
2946 if (obj_request_known_test(obj_request))
2947 return rbd_img_obj_parent_read_full(obj_request);
2948
2949 /* We don't know whether the target exists. Go find out. */
2950
2951 return rbd_img_obj_exists_submit(obj_request);
2952 }
2953
2954 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2955 {
2956 struct rbd_obj_request *obj_request;
2957 struct rbd_obj_request *next_obj_request;
2958
2959 dout("%s: img %p\n", __func__, img_request);
2960 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2961 int ret;
2962
2963 ret = rbd_img_obj_request_submit(obj_request);
2964 if (ret)
2965 return ret;
2966 }
2967
2968 return 0;
2969 }
2970
2971 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2972 {
2973 struct rbd_obj_request *obj_request;
2974 struct rbd_device *rbd_dev;
2975 u64 obj_end;
2976 u64 img_xferred;
2977 int img_result;
2978
2979 rbd_assert(img_request_child_test(img_request));
2980
2981 /* First get what we need from the image request and release it */
2982
2983 obj_request = img_request->obj_request;
2984 img_xferred = img_request->xferred;
2985 img_result = img_request->result;
2986 rbd_img_request_put(img_request);
2987
2988 /*
2989 * If the overlap has become 0 (most likely because the
2990 * image has been flattened) we need to re-submit the
2991 * original request.
2992 */
2993 rbd_assert(obj_request);
2994 rbd_assert(obj_request->img_request);
2995 rbd_dev = obj_request->img_request->rbd_dev;
2996 if (!rbd_dev->parent_overlap) {
2997 struct ceph_osd_client *osdc;
2998
2999 osdc = &rbd_dev->rbd_client->client->osdc;
3000 img_result = rbd_obj_request_submit(osdc, obj_request);
3001 if (!img_result)
3002 return;
3003 }
3004
3005 obj_request->result = img_result;
3006 if (obj_request->result)
3007 goto out;
3008
3009 /*
3010 * We need to zero anything beyond the parent overlap
3011 * boundary. Since rbd_img_obj_request_read_callback()
3012 * will zero anything beyond the end of a short read, an
3013 * easy way to do this is to pretend the data from the
3014 * parent came up short--ending at the overlap boundary.
3015 */
3016 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3017 obj_end = obj_request->img_offset + obj_request->length;
3018 if (obj_end > rbd_dev->parent_overlap) {
3019 u64 xferred = 0;
3020
3021 if (obj_request->img_offset < rbd_dev->parent_overlap)
3022 xferred = rbd_dev->parent_overlap -
3023 obj_request->img_offset;
3024
3025 obj_request->xferred = min(img_xferred, xferred);
3026 } else {
3027 obj_request->xferred = img_xferred;
3028 }
3029 out:
3030 rbd_img_obj_request_read_callback(obj_request);
3031 rbd_obj_request_complete(obj_request);
3032 }
3033
3034 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3035 {
3036 struct rbd_img_request *img_request;
3037 int result;
3038
3039 rbd_assert(obj_request_img_data_test(obj_request));
3040 rbd_assert(obj_request->img_request != NULL);
3041 rbd_assert(obj_request->result == (s32) -ENOENT);
3042 rbd_assert(obj_request_type_valid(obj_request->type));
3043
3044 /* rbd_read_finish(obj_request, obj_request->length); */
3045 img_request = rbd_parent_request_create(obj_request,
3046 obj_request->img_offset,
3047 obj_request->length);
3048 result = -ENOMEM;
3049 if (!img_request)
3050 goto out_err;
3051
3052 if (obj_request->type == OBJ_REQUEST_BIO)
3053 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3054 obj_request->bio_list);
3055 else
3056 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3057 obj_request->pages);
3058 if (result)
3059 goto out_err;
3060
3061 img_request->callback = rbd_img_parent_read_callback;
3062 result = rbd_img_request_submit(img_request);
3063 if (result)
3064 goto out_err;
3065
3066 return;
3067 out_err:
3068 if (img_request)
3069 rbd_img_request_put(img_request);
3070 obj_request->result = result;
3071 obj_request->xferred = 0;
3072 obj_request_done_set(obj_request);
3073 }
3074
3075 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3076 {
3077 struct rbd_obj_request *obj_request;
3078 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3079 int ret;
3080
3081 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3082 OBJ_REQUEST_NODATA);
3083 if (!obj_request)
3084 return -ENOMEM;
3085
3086 ret = -ENOMEM;
3087 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3088 obj_request);
3089 if (!obj_request->osd_req)
3090 goto out;
3091
3092 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3093 notify_id, 0, 0);
3094 rbd_osd_req_format_read(obj_request);
3095
3096 ret = rbd_obj_request_submit(osdc, obj_request);
3097 if (ret)
3098 goto out;
3099 ret = rbd_obj_request_wait(obj_request);
3100 out:
3101 rbd_obj_request_put(obj_request);
3102
3103 return ret;
3104 }
3105
3106 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3107 {
3108 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3109 int ret;
3110
3111 if (!rbd_dev)
3112 return;
3113
3114 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3115 rbd_dev->header_name, (unsigned long long)notify_id,
3116 (unsigned int)opcode);
3117
3118 /*
3119 * Until adequate refresh error handling is in place, there is
3120 * not much we can do here, except warn.
3121 *
3122 * See http://tracker.ceph.com/issues/5040
3123 */
3124 ret = rbd_dev_refresh(rbd_dev);
3125 if (ret)
3126 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3127
3128 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3129 if (ret)
3130 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3131 }
3132
3133 /*
3134 * Send a (un)watch request and wait for the ack. Return a request
3135 * with a ref held on success or error.
3136 */
3137 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3138 struct rbd_device *rbd_dev,
3139 bool watch)
3140 {
3141 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3142 struct ceph_options *opts = osdc->client->options;
3143 struct rbd_obj_request *obj_request;
3144 int ret;
3145
3146 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3147 OBJ_REQUEST_NODATA);
3148 if (!obj_request)
3149 return ERR_PTR(-ENOMEM);
3150
3151 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3152 obj_request);
3153 if (!obj_request->osd_req) {
3154 ret = -ENOMEM;
3155 goto out;
3156 }
3157
3158 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3159 rbd_dev->watch_event->cookie, 0, watch);
3160 rbd_osd_req_format_write(obj_request);
3161
3162 if (watch)
3163 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3164
3165 ret = rbd_obj_request_submit(osdc, obj_request);
3166 if (ret)
3167 goto out;
3168
3169 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3170 if (ret)
3171 goto out;
3172
3173 ret = obj_request->result;
3174 if (ret) {
3175 if (watch)
3176 rbd_obj_request_end(obj_request);
3177 goto out;
3178 }
3179
3180 return obj_request;
3181
3182 out:
3183 rbd_obj_request_put(obj_request);
3184 return ERR_PTR(ret);
3185 }
3186
3187 /*
3188 * Initiate a watch request, synchronously.
3189 */
3190 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3191 {
3192 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3193 struct rbd_obj_request *obj_request;
3194 int ret;
3195
3196 rbd_assert(!rbd_dev->watch_event);
3197 rbd_assert(!rbd_dev->watch_request);
3198
3199 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3200 &rbd_dev->watch_event);
3201 if (ret < 0)
3202 return ret;
3203
3204 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3205 if (IS_ERR(obj_request)) {
3206 ceph_osdc_cancel_event(rbd_dev->watch_event);
3207 rbd_dev->watch_event = NULL;
3208 return PTR_ERR(obj_request);
3209 }
3210
3211 /*
3212 * A watch request is set to linger, so the underlying osd
3213 * request won't go away until we unregister it. We retain
3214 * a pointer to the object request during that time (in
3215 * rbd_dev->watch_request), so we'll keep a reference to it.
3216 * We'll drop that reference after we've unregistered it in
3217 * rbd_dev_header_unwatch_sync().
3218 */
3219 rbd_dev->watch_request = obj_request;
3220
3221 return 0;
3222 }
3223
3224 /*
3225 * Tear down a watch request, synchronously.
3226 */
3227 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3228 {
3229 struct rbd_obj_request *obj_request;
3230
3231 rbd_assert(rbd_dev->watch_event);
3232 rbd_assert(rbd_dev->watch_request);
3233
3234 rbd_obj_request_end(rbd_dev->watch_request);
3235 rbd_obj_request_put(rbd_dev->watch_request);
3236 rbd_dev->watch_request = NULL;
3237
3238 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3239 if (!IS_ERR(obj_request))
3240 rbd_obj_request_put(obj_request);
3241 else
3242 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3243 PTR_ERR(obj_request));
3244
3245 ceph_osdc_cancel_event(rbd_dev->watch_event);
3246 rbd_dev->watch_event = NULL;
3247 }
3248
3249 /*
3250 * Synchronous osd object method call. Returns the number of bytes
3251 * returned in the outbound buffer, or a negative error code.
3252 */
3253 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3254 const char *object_name,
3255 const char *class_name,
3256 const char *method_name,
3257 const void *outbound,
3258 size_t outbound_size,
3259 void *inbound,
3260 size_t inbound_size)
3261 {
3262 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3263 struct rbd_obj_request *obj_request;
3264 struct page **pages;
3265 u32 page_count;
3266 int ret;
3267
3268 /*
3269 * Method calls are ultimately read operations. The result
3270 * should placed into the inbound buffer provided. They
3271 * also supply outbound data--parameters for the object
3272 * method. Currently if this is present it will be a
3273 * snapshot id.
3274 */
3275 page_count = (u32)calc_pages_for(0, inbound_size);
3276 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3277 if (IS_ERR(pages))
3278 return PTR_ERR(pages);
3279
3280 ret = -ENOMEM;
3281 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3282 OBJ_REQUEST_PAGES);
3283 if (!obj_request)
3284 goto out;
3285
3286 obj_request->pages = pages;
3287 obj_request->page_count = page_count;
3288
3289 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3290 obj_request);
3291 if (!obj_request->osd_req)
3292 goto out;
3293
3294 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3295 class_name, method_name);
3296 if (outbound_size) {
3297 struct ceph_pagelist *pagelist;
3298
3299 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3300 if (!pagelist)
3301 goto out;
3302
3303 ceph_pagelist_init(pagelist);
3304 ceph_pagelist_append(pagelist, outbound, outbound_size);
3305 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3306 pagelist);
3307 }
3308 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3309 obj_request->pages, inbound_size,
3310 0, false, false);
3311 rbd_osd_req_format_read(obj_request);
3312
3313 ret = rbd_obj_request_submit(osdc, obj_request);
3314 if (ret)
3315 goto out;
3316 ret = rbd_obj_request_wait(obj_request);
3317 if (ret)
3318 goto out;
3319
3320 ret = obj_request->result;
3321 if (ret < 0)
3322 goto out;
3323
3324 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3325 ret = (int)obj_request->xferred;
3326 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3327 out:
3328 if (obj_request)
3329 rbd_obj_request_put(obj_request);
3330 else
3331 ceph_release_page_vector(pages, page_count);
3332
3333 return ret;
3334 }
3335
3336 static void rbd_queue_workfn(struct work_struct *work)
3337 {
3338 struct request *rq = blk_mq_rq_from_pdu(work);
3339 struct rbd_device *rbd_dev = rq->q->queuedata;
3340 struct rbd_img_request *img_request;
3341 struct ceph_snap_context *snapc = NULL;
3342 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3343 u64 length = blk_rq_bytes(rq);
3344 enum obj_operation_type op_type;
3345 u64 mapping_size;
3346 int result;
3347
3348 if (rq->cmd_type != REQ_TYPE_FS) {
3349 dout("%s: non-fs request type %d\n", __func__,
3350 (int) rq->cmd_type);
3351 result = -EIO;
3352 goto err;
3353 }
3354
3355 if (rq->cmd_flags & REQ_DISCARD)
3356 op_type = OBJ_OP_DISCARD;
3357 else if (rq->cmd_flags & REQ_WRITE)
3358 op_type = OBJ_OP_WRITE;
3359 else
3360 op_type = OBJ_OP_READ;
3361
3362 /* Ignore/skip any zero-length requests */
3363
3364 if (!length) {
3365 dout("%s: zero-length request\n", __func__);
3366 result = 0;
3367 goto err_rq;
3368 }
3369
3370 /* Only reads are allowed to a read-only device */
3371
3372 if (op_type != OBJ_OP_READ) {
3373 if (rbd_dev->mapping.read_only) {
3374 result = -EROFS;
3375 goto err_rq;
3376 }
3377 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3378 }
3379
3380 /*
3381 * Quit early if the mapped snapshot no longer exists. It's
3382 * still possible the snapshot will have disappeared by the
3383 * time our request arrives at the osd, but there's no sense in
3384 * sending it if we already know.
3385 */
3386 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3387 dout("request for non-existent snapshot");
3388 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3389 result = -ENXIO;
3390 goto err_rq;
3391 }
3392
3393 if (offset && length > U64_MAX - offset + 1) {
3394 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3395 length);
3396 result = -EINVAL;
3397 goto err_rq; /* Shouldn't happen */
3398 }
3399
3400 blk_mq_start_request(rq);
3401
3402 down_read(&rbd_dev->header_rwsem);
3403 mapping_size = rbd_dev->mapping.size;
3404 if (op_type != OBJ_OP_READ) {
3405 snapc = rbd_dev->header.snapc;
3406 ceph_get_snap_context(snapc);
3407 }
3408 up_read(&rbd_dev->header_rwsem);
3409
3410 if (offset + length > mapping_size) {
3411 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3412 length, mapping_size);
3413 result = -EIO;
3414 goto err_rq;
3415 }
3416
3417 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3418 snapc);
3419 if (!img_request) {
3420 result = -ENOMEM;
3421 goto err_rq;
3422 }
3423 img_request->rq = rq;
3424
3425 if (op_type == OBJ_OP_DISCARD)
3426 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3427 NULL);
3428 else
3429 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3430 rq->bio);
3431 if (result)
3432 goto err_img_request;
3433
3434 result = rbd_img_request_submit(img_request);
3435 if (result)
3436 goto err_img_request;
3437
3438 return;
3439
3440 err_img_request:
3441 rbd_img_request_put(img_request);
3442 err_rq:
3443 if (result)
3444 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3445 obj_op_name(op_type), length, offset, result);
3446 ceph_put_snap_context(snapc);
3447 err:
3448 blk_mq_end_request(rq, result);
3449 }
3450
3451 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3452 const struct blk_mq_queue_data *bd)
3453 {
3454 struct request *rq = bd->rq;
3455 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3456
3457 queue_work(rbd_wq, work);
3458 return BLK_MQ_RQ_QUEUE_OK;
3459 }
3460
3461 /*
3462 * a queue callback. Makes sure that we don't create a bio that spans across
3463 * multiple osd objects. One exception would be with a single page bios,
3464 * which we handle later at bio_chain_clone_range()
3465 */
3466 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3467 struct bio_vec *bvec)
3468 {
3469 struct rbd_device *rbd_dev = q->queuedata;
3470 sector_t sector_offset;
3471 sector_t sectors_per_obj;
3472 sector_t obj_sector_offset;
3473 int ret;
3474
3475 /*
3476 * Find how far into its rbd object the partition-relative
3477 * bio start sector is to offset relative to the enclosing
3478 * device.
3479 */
3480 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3481 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3482 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3483
3484 /*
3485 * Compute the number of bytes from that offset to the end
3486 * of the object. Account for what's already used by the bio.
3487 */
3488 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3489 if (ret > bmd->bi_size)
3490 ret -= bmd->bi_size;
3491 else
3492 ret = 0;
3493
3494 /*
3495 * Don't send back more than was asked for. And if the bio
3496 * was empty, let the whole thing through because: "Note
3497 * that a block device *must* allow a single page to be
3498 * added to an empty bio."
3499 */
3500 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3501 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3502 ret = (int) bvec->bv_len;
3503
3504 return ret;
3505 }
3506
3507 static void rbd_free_disk(struct rbd_device *rbd_dev)
3508 {
3509 struct gendisk *disk = rbd_dev->disk;
3510
3511 if (!disk)
3512 return;
3513
3514 rbd_dev->disk = NULL;
3515 if (disk->flags & GENHD_FL_UP) {
3516 del_gendisk(disk);
3517 if (disk->queue)
3518 blk_cleanup_queue(disk->queue);
3519 blk_mq_free_tag_set(&rbd_dev->tag_set);
3520 }
3521 put_disk(disk);
3522 }
3523
3524 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3525 const char *object_name,
3526 u64 offset, u64 length, void *buf)
3527
3528 {
3529 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3530 struct rbd_obj_request *obj_request;
3531 struct page **pages = NULL;
3532 u32 page_count;
3533 size_t size;
3534 int ret;
3535
3536 page_count = (u32) calc_pages_for(offset, length);
3537 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3538 if (IS_ERR(pages))
3539 return PTR_ERR(pages);
3540
3541 ret = -ENOMEM;
3542 obj_request = rbd_obj_request_create(object_name, offset, length,
3543 OBJ_REQUEST_PAGES);
3544 if (!obj_request)
3545 goto out;
3546
3547 obj_request->pages = pages;
3548 obj_request->page_count = page_count;
3549
3550 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3551 obj_request);
3552 if (!obj_request->osd_req)
3553 goto out;
3554
3555 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3556 offset, length, 0, 0);
3557 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3558 obj_request->pages,
3559 obj_request->length,
3560 obj_request->offset & ~PAGE_MASK,
3561 false, false);
3562 rbd_osd_req_format_read(obj_request);
3563
3564 ret = rbd_obj_request_submit(osdc, obj_request);
3565 if (ret)
3566 goto out;
3567 ret = rbd_obj_request_wait(obj_request);
3568 if (ret)
3569 goto out;
3570
3571 ret = obj_request->result;
3572 if (ret < 0)
3573 goto out;
3574
3575 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3576 size = (size_t) obj_request->xferred;
3577 ceph_copy_from_page_vector(pages, buf, 0, size);
3578 rbd_assert(size <= (size_t)INT_MAX);
3579 ret = (int)size;
3580 out:
3581 if (obj_request)
3582 rbd_obj_request_put(obj_request);
3583 else
3584 ceph_release_page_vector(pages, page_count);
3585
3586 return ret;
3587 }
3588
3589 /*
3590 * Read the complete header for the given rbd device. On successful
3591 * return, the rbd_dev->header field will contain up-to-date
3592 * information about the image.
3593 */
3594 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3595 {
3596 struct rbd_image_header_ondisk *ondisk = NULL;
3597 u32 snap_count = 0;
3598 u64 names_size = 0;
3599 u32 want_count;
3600 int ret;
3601
3602 /*
3603 * The complete header will include an array of its 64-bit
3604 * snapshot ids, followed by the names of those snapshots as
3605 * a contiguous block of NUL-terminated strings. Note that
3606 * the number of snapshots could change by the time we read
3607 * it in, in which case we re-read it.
3608 */
3609 do {
3610 size_t size;
3611
3612 kfree(ondisk);
3613
3614 size = sizeof (*ondisk);
3615 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3616 size += names_size;
3617 ondisk = kmalloc(size, GFP_KERNEL);
3618 if (!ondisk)
3619 return -ENOMEM;
3620
3621 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3622 0, size, ondisk);
3623 if (ret < 0)
3624 goto out;
3625 if ((size_t)ret < size) {
3626 ret = -ENXIO;
3627 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3628 size, ret);
3629 goto out;
3630 }
3631 if (!rbd_dev_ondisk_valid(ondisk)) {
3632 ret = -ENXIO;
3633 rbd_warn(rbd_dev, "invalid header");
3634 goto out;
3635 }
3636
3637 names_size = le64_to_cpu(ondisk->snap_names_len);
3638 want_count = snap_count;
3639 snap_count = le32_to_cpu(ondisk->snap_count);
3640 } while (snap_count != want_count);
3641
3642 ret = rbd_header_from_disk(rbd_dev, ondisk);
3643 out:
3644 kfree(ondisk);
3645
3646 return ret;
3647 }
3648
3649 /*
3650 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3651 * has disappeared from the (just updated) snapshot context.
3652 */
3653 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3654 {
3655 u64 snap_id;
3656
3657 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3658 return;
3659
3660 snap_id = rbd_dev->spec->snap_id;
3661 if (snap_id == CEPH_NOSNAP)
3662 return;
3663
3664 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3665 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3666 }
3667
3668 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3669 {
3670 sector_t size;
3671 bool removing;
3672
3673 /*
3674 * Don't hold the lock while doing disk operations,
3675 * or lock ordering will conflict with the bdev mutex via:
3676 * rbd_add() -> blkdev_get() -> rbd_open()
3677 */
3678 spin_lock_irq(&rbd_dev->lock);
3679 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3680 spin_unlock_irq(&rbd_dev->lock);
3681 /*
3682 * If the device is being removed, rbd_dev->disk has
3683 * been destroyed, so don't try to update its size
3684 */
3685 if (!removing) {
3686 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3687 dout("setting size to %llu sectors", (unsigned long long)size);
3688 set_capacity(rbd_dev->disk, size);
3689 revalidate_disk(rbd_dev->disk);
3690 }
3691 }
3692
3693 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3694 {
3695 u64 mapping_size;
3696 int ret;
3697
3698 down_write(&rbd_dev->header_rwsem);
3699 mapping_size = rbd_dev->mapping.size;
3700
3701 ret = rbd_dev_header_info(rbd_dev);
3702 if (ret)
3703 goto out;
3704
3705 /*
3706 * If there is a parent, see if it has disappeared due to the
3707 * mapped image getting flattened.
3708 */
3709 if (rbd_dev->parent) {
3710 ret = rbd_dev_v2_parent_info(rbd_dev);
3711 if (ret)
3712 goto out;
3713 }
3714
3715 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3716 rbd_dev->mapping.size = rbd_dev->header.image_size;
3717 } else {
3718 /* validate mapped snapshot's EXISTS flag */
3719 rbd_exists_validate(rbd_dev);
3720 }
3721
3722 out:
3723 up_write(&rbd_dev->header_rwsem);
3724 if (!ret && mapping_size != rbd_dev->mapping.size)
3725 rbd_dev_update_size(rbd_dev);
3726
3727 return ret;
3728 }
3729
3730 static int rbd_init_request(void *data, struct request *rq,
3731 unsigned int hctx_idx, unsigned int request_idx,
3732 unsigned int numa_node)
3733 {
3734 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3735
3736 INIT_WORK(work, rbd_queue_workfn);
3737 return 0;
3738 }
3739
3740 static struct blk_mq_ops rbd_mq_ops = {
3741 .queue_rq = rbd_queue_rq,
3742 .map_queue = blk_mq_map_queue,
3743 .init_request = rbd_init_request,
3744 };
3745
3746 static int rbd_init_disk(struct rbd_device *rbd_dev)
3747 {
3748 struct gendisk *disk;
3749 struct request_queue *q;
3750 u64 segment_size;
3751 int err;
3752
3753 /* create gendisk info */
3754 disk = alloc_disk(single_major ?
3755 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3756 RBD_MINORS_PER_MAJOR);
3757 if (!disk)
3758 return -ENOMEM;
3759
3760 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3761 rbd_dev->dev_id);
3762 disk->major = rbd_dev->major;
3763 disk->first_minor = rbd_dev->minor;
3764 if (single_major)
3765 disk->flags |= GENHD_FL_EXT_DEVT;
3766 disk->fops = &rbd_bd_ops;
3767 disk->private_data = rbd_dev;
3768
3769 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3770 rbd_dev->tag_set.ops = &rbd_mq_ops;
3771 rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3772 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3773 rbd_dev->tag_set.flags =
3774 BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3775 rbd_dev->tag_set.nr_hw_queues = 1;
3776 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3777
3778 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3779 if (err)
3780 goto out_disk;
3781
3782 q = blk_mq_init_queue(&rbd_dev->tag_set);
3783 if (IS_ERR(q)) {
3784 err = PTR_ERR(q);
3785 goto out_tag_set;
3786 }
3787
3788 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3789 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3790
3791 /* set io sizes to object size */
3792 segment_size = rbd_obj_bytes(&rbd_dev->header);
3793 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3794 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3795 blk_queue_max_segment_size(q, segment_size);
3796 blk_queue_io_min(q, segment_size);
3797 blk_queue_io_opt(q, segment_size);
3798
3799 /* enable the discard support */
3800 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3801 q->limits.discard_granularity = segment_size;
3802 q->limits.discard_alignment = segment_size;
3803 q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3804 q->limits.discard_zeroes_data = 1;
3805
3806 blk_queue_merge_bvec(q, rbd_merge_bvec);
3807 disk->queue = q;
3808
3809 q->queuedata = rbd_dev;
3810
3811 rbd_dev->disk = disk;
3812
3813 return 0;
3814 out_tag_set:
3815 blk_mq_free_tag_set(&rbd_dev->tag_set);
3816 out_disk:
3817 put_disk(disk);
3818 return err;
3819 }
3820
3821 /*
3822 sysfs
3823 */
3824
3825 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3826 {
3827 return container_of(dev, struct rbd_device, dev);
3828 }
3829
3830 static ssize_t rbd_size_show(struct device *dev,
3831 struct device_attribute *attr, char *buf)
3832 {
3833 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3834
3835 return sprintf(buf, "%llu\n",
3836 (unsigned long long)rbd_dev->mapping.size);
3837 }
3838
3839 /*
3840 * Note this shows the features for whatever's mapped, which is not
3841 * necessarily the base image.
3842 */
3843 static ssize_t rbd_features_show(struct device *dev,
3844 struct device_attribute *attr, char *buf)
3845 {
3846 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3847
3848 return sprintf(buf, "0x%016llx\n",
3849 (unsigned long long)rbd_dev->mapping.features);
3850 }
3851
3852 static ssize_t rbd_major_show(struct device *dev,
3853 struct device_attribute *attr, char *buf)
3854 {
3855 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3856
3857 if (rbd_dev->major)
3858 return sprintf(buf, "%d\n", rbd_dev->major);
3859
3860 return sprintf(buf, "(none)\n");
3861 }
3862
3863 static ssize_t rbd_minor_show(struct device *dev,
3864 struct device_attribute *attr, char *buf)
3865 {
3866 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3867
3868 return sprintf(buf, "%d\n", rbd_dev->minor);
3869 }
3870
3871 static ssize_t rbd_client_id_show(struct device *dev,
3872 struct device_attribute *attr, char *buf)
3873 {
3874 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3875
3876 return sprintf(buf, "client%lld\n",
3877 ceph_client_id(rbd_dev->rbd_client->client));
3878 }
3879
3880 static ssize_t rbd_pool_show(struct device *dev,
3881 struct device_attribute *attr, char *buf)
3882 {
3883 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3884
3885 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3886 }
3887
3888 static ssize_t rbd_pool_id_show(struct device *dev,
3889 struct device_attribute *attr, char *buf)
3890 {
3891 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3892
3893 return sprintf(buf, "%llu\n",
3894 (unsigned long long) rbd_dev->spec->pool_id);
3895 }
3896
3897 static ssize_t rbd_name_show(struct device *dev,
3898 struct device_attribute *attr, char *buf)
3899 {
3900 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3901
3902 if (rbd_dev->spec->image_name)
3903 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3904
3905 return sprintf(buf, "(unknown)\n");
3906 }
3907
3908 static ssize_t rbd_image_id_show(struct device *dev,
3909 struct device_attribute *attr, char *buf)
3910 {
3911 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3912
3913 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3914 }
3915
3916 /*
3917 * Shows the name of the currently-mapped snapshot (or
3918 * RBD_SNAP_HEAD_NAME for the base image).
3919 */
3920 static ssize_t rbd_snap_show(struct device *dev,
3921 struct device_attribute *attr,
3922 char *buf)
3923 {
3924 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3925
3926 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3927 }
3928
3929 /*
3930 * For a v2 image, shows the chain of parent images, separated by empty
3931 * lines. For v1 images or if there is no parent, shows "(no parent
3932 * image)".
3933 */
3934 static ssize_t rbd_parent_show(struct device *dev,
3935 struct device_attribute *attr,
3936 char *buf)
3937 {
3938 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3939 ssize_t count = 0;
3940
3941 if (!rbd_dev->parent)
3942 return sprintf(buf, "(no parent image)\n");
3943
3944 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3945 struct rbd_spec *spec = rbd_dev->parent_spec;
3946
3947 count += sprintf(&buf[count], "%s"
3948 "pool_id %llu\npool_name %s\n"
3949 "image_id %s\nimage_name %s\n"
3950 "snap_id %llu\nsnap_name %s\n"
3951 "overlap %llu\n",
3952 !count ? "" : "\n", /* first? */
3953 spec->pool_id, spec->pool_name,
3954 spec->image_id, spec->image_name ?: "(unknown)",
3955 spec->snap_id, spec->snap_name,
3956 rbd_dev->parent_overlap);
3957 }
3958
3959 return count;
3960 }
3961
3962 static ssize_t rbd_image_refresh(struct device *dev,
3963 struct device_attribute *attr,
3964 const char *buf,
3965 size_t size)
3966 {
3967 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3968 int ret;
3969
3970 ret = rbd_dev_refresh(rbd_dev);
3971 if (ret)
3972 return ret;
3973
3974 return size;
3975 }
3976
3977 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3978 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3979 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3980 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3981 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3982 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3983 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3984 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3985 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3986 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3987 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3988 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3989
3990 static struct attribute *rbd_attrs[] = {
3991 &dev_attr_size.attr,
3992 &dev_attr_features.attr,
3993 &dev_attr_major.attr,
3994 &dev_attr_minor.attr,
3995 &dev_attr_client_id.attr,
3996 &dev_attr_pool.attr,
3997 &dev_attr_pool_id.attr,
3998 &dev_attr_name.attr,
3999 &dev_attr_image_id.attr,
4000 &dev_attr_current_snap.attr,
4001 &dev_attr_parent.attr,
4002 &dev_attr_refresh.attr,
4003 NULL
4004 };
4005
4006 static struct attribute_group rbd_attr_group = {
4007 .attrs = rbd_attrs,
4008 };
4009
4010 static const struct attribute_group *rbd_attr_groups[] = {
4011 &rbd_attr_group,
4012 NULL
4013 };
4014
4015 static void rbd_sysfs_dev_release(struct device *dev)
4016 {
4017 }
4018
4019 static struct device_type rbd_device_type = {
4020 .name = "rbd",
4021 .groups = rbd_attr_groups,
4022 .release = rbd_sysfs_dev_release,
4023 };
4024
4025 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4026 {
4027 kref_get(&spec->kref);
4028
4029 return spec;
4030 }
4031
4032 static void rbd_spec_free(struct kref *kref);
4033 static void rbd_spec_put(struct rbd_spec *spec)
4034 {
4035 if (spec)
4036 kref_put(&spec->kref, rbd_spec_free);
4037 }
4038
4039 static struct rbd_spec *rbd_spec_alloc(void)
4040 {
4041 struct rbd_spec *spec;
4042
4043 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4044 if (!spec)
4045 return NULL;
4046
4047 spec->pool_id = CEPH_NOPOOL;
4048 spec->snap_id = CEPH_NOSNAP;
4049 kref_init(&spec->kref);
4050
4051 return spec;
4052 }
4053
4054 static void rbd_spec_free(struct kref *kref)
4055 {
4056 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4057
4058 kfree(spec->pool_name);
4059 kfree(spec->image_id);
4060 kfree(spec->image_name);
4061 kfree(spec->snap_name);
4062 kfree(spec);
4063 }
4064
4065 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4066 struct rbd_spec *spec)
4067 {
4068 struct rbd_device *rbd_dev;
4069
4070 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4071 if (!rbd_dev)
4072 return NULL;
4073
4074 spin_lock_init(&rbd_dev->lock);
4075 rbd_dev->flags = 0;
4076 atomic_set(&rbd_dev->parent_ref, 0);
4077 INIT_LIST_HEAD(&rbd_dev->node);
4078 init_rwsem(&rbd_dev->header_rwsem);
4079
4080 rbd_dev->spec = spec;
4081 rbd_dev->rbd_client = rbdc;
4082
4083 /* Initialize the layout used for all rbd requests */
4084
4085 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4086 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4087 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4088 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4089
4090 return rbd_dev;
4091 }
4092
4093 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4094 {
4095 rbd_put_client(rbd_dev->rbd_client);
4096 rbd_spec_put(rbd_dev->spec);
4097 kfree(rbd_dev);
4098 }
4099
4100 /*
4101 * Get the size and object order for an image snapshot, or if
4102 * snap_id is CEPH_NOSNAP, gets this information for the base
4103 * image.
4104 */
4105 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4106 u8 *order, u64 *snap_size)
4107 {
4108 __le64 snapid = cpu_to_le64(snap_id);
4109 int ret;
4110 struct {
4111 u8 order;
4112 __le64 size;
4113 } __attribute__ ((packed)) size_buf = { 0 };
4114
4115 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4116 "rbd", "get_size",
4117 &snapid, sizeof (snapid),
4118 &size_buf, sizeof (size_buf));
4119 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4120 if (ret < 0)
4121 return ret;
4122 if (ret < sizeof (size_buf))
4123 return -ERANGE;
4124
4125 if (order) {
4126 *order = size_buf.order;
4127 dout(" order %u", (unsigned int)*order);
4128 }
4129 *snap_size = le64_to_cpu(size_buf.size);
4130
4131 dout(" snap_id 0x%016llx snap_size = %llu\n",
4132 (unsigned long long)snap_id,
4133 (unsigned long long)*snap_size);
4134
4135 return 0;
4136 }
4137
4138 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4139 {
4140 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4141 &rbd_dev->header.obj_order,
4142 &rbd_dev->header.image_size);
4143 }
4144
4145 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4146 {
4147 void *reply_buf;
4148 int ret;
4149 void *p;
4150
4151 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4152 if (!reply_buf)
4153 return -ENOMEM;
4154
4155 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4156 "rbd", "get_object_prefix", NULL, 0,
4157 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4158 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4159 if (ret < 0)
4160 goto out;
4161
4162 p = reply_buf;
4163 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4164 p + ret, NULL, GFP_NOIO);
4165 ret = 0;
4166
4167 if (IS_ERR(rbd_dev->header.object_prefix)) {
4168 ret = PTR_ERR(rbd_dev->header.object_prefix);
4169 rbd_dev->header.object_prefix = NULL;
4170 } else {
4171 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4172 }
4173 out:
4174 kfree(reply_buf);
4175
4176 return ret;
4177 }
4178
4179 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4180 u64 *snap_features)
4181 {
4182 __le64 snapid = cpu_to_le64(snap_id);
4183 struct {
4184 __le64 features;
4185 __le64 incompat;
4186 } __attribute__ ((packed)) features_buf = { 0 };
4187 u64 incompat;
4188 int ret;
4189
4190 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4191 "rbd", "get_features",
4192 &snapid, sizeof (snapid),
4193 &features_buf, sizeof (features_buf));
4194 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4195 if (ret < 0)
4196 return ret;
4197 if (ret < sizeof (features_buf))
4198 return -ERANGE;
4199
4200 incompat = le64_to_cpu(features_buf.incompat);
4201 if (incompat & ~RBD_FEATURES_SUPPORTED)
4202 return -ENXIO;
4203
4204 *snap_features = le64_to_cpu(features_buf.features);
4205
4206 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4207 (unsigned long long)snap_id,
4208 (unsigned long long)*snap_features,
4209 (unsigned long long)le64_to_cpu(features_buf.incompat));
4210
4211 return 0;
4212 }
4213
4214 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4215 {
4216 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4217 &rbd_dev->header.features);
4218 }
4219
4220 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4221 {
4222 struct rbd_spec *parent_spec;
4223 size_t size;
4224 void *reply_buf = NULL;
4225 __le64 snapid;
4226 void *p;
4227 void *end;
4228 u64 pool_id;
4229 char *image_id;
4230 u64 snap_id;
4231 u64 overlap;
4232 int ret;
4233
4234 parent_spec = rbd_spec_alloc();
4235 if (!parent_spec)
4236 return -ENOMEM;
4237
4238 size = sizeof (__le64) + /* pool_id */
4239 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4240 sizeof (__le64) + /* snap_id */
4241 sizeof (__le64); /* overlap */
4242 reply_buf = kmalloc(size, GFP_KERNEL);
4243 if (!reply_buf) {
4244 ret = -ENOMEM;
4245 goto out_err;
4246 }
4247
4248 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4249 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4250 "rbd", "get_parent",
4251 &snapid, sizeof (snapid),
4252 reply_buf, size);
4253 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4254 if (ret < 0)
4255 goto out_err;
4256
4257 p = reply_buf;
4258 end = reply_buf + ret;
4259 ret = -ERANGE;
4260 ceph_decode_64_safe(&p, end, pool_id, out_err);
4261 if (pool_id == CEPH_NOPOOL) {
4262 /*
4263 * Either the parent never existed, or we have
4264 * record of it but the image got flattened so it no
4265 * longer has a parent. When the parent of a
4266 * layered image disappears we immediately set the
4267 * overlap to 0. The effect of this is that all new
4268 * requests will be treated as if the image had no
4269 * parent.
4270 */
4271 if (rbd_dev->parent_overlap) {
4272 rbd_dev->parent_overlap = 0;
4273 rbd_dev_parent_put(rbd_dev);
4274 pr_info("%s: clone image has been flattened\n",
4275 rbd_dev->disk->disk_name);
4276 }
4277
4278 goto out; /* No parent? No problem. */
4279 }
4280
4281 /* The ceph file layout needs to fit pool id in 32 bits */
4282
4283 ret = -EIO;
4284 if (pool_id > (u64)U32_MAX) {
4285 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4286 (unsigned long long)pool_id, U32_MAX);
4287 goto out_err;
4288 }
4289
4290 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4291 if (IS_ERR(image_id)) {
4292 ret = PTR_ERR(image_id);
4293 goto out_err;
4294 }
4295 ceph_decode_64_safe(&p, end, snap_id, out_err);
4296 ceph_decode_64_safe(&p, end, overlap, out_err);
4297
4298 /*
4299 * The parent won't change (except when the clone is
4300 * flattened, already handled that). So we only need to
4301 * record the parent spec we have not already done so.
4302 */
4303 if (!rbd_dev->parent_spec) {
4304 parent_spec->pool_id = pool_id;
4305 parent_spec->image_id = image_id;
4306 parent_spec->snap_id = snap_id;
4307 rbd_dev->parent_spec = parent_spec;
4308 parent_spec = NULL; /* rbd_dev now owns this */
4309 } else {
4310 kfree(image_id);
4311 }
4312
4313 /*
4314 * We always update the parent overlap. If it's zero we issue
4315 * a warning, as we will proceed as if there was no parent.
4316 */
4317 if (!overlap) {
4318 if (parent_spec) {
4319 /* refresh, careful to warn just once */
4320 if (rbd_dev->parent_overlap)
4321 rbd_warn(rbd_dev,
4322 "clone now standalone (overlap became 0)");
4323 } else {
4324 /* initial probe */
4325 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4326 }
4327 }
4328 rbd_dev->parent_overlap = overlap;
4329
4330 out:
4331 ret = 0;
4332 out_err:
4333 kfree(reply_buf);
4334 rbd_spec_put(parent_spec);
4335
4336 return ret;
4337 }
4338
4339 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4340 {
4341 struct {
4342 __le64 stripe_unit;
4343 __le64 stripe_count;
4344 } __attribute__ ((packed)) striping_info_buf = { 0 };
4345 size_t size = sizeof (striping_info_buf);
4346 void *p;
4347 u64 obj_size;
4348 u64 stripe_unit;
4349 u64 stripe_count;
4350 int ret;
4351
4352 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4353 "rbd", "get_stripe_unit_count", NULL, 0,
4354 (char *)&striping_info_buf, size);
4355 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4356 if (ret < 0)
4357 return ret;
4358 if (ret < size)
4359 return -ERANGE;
4360
4361 /*
4362 * We don't actually support the "fancy striping" feature
4363 * (STRIPINGV2) yet, but if the striping sizes are the
4364 * defaults the behavior is the same as before. So find
4365 * out, and only fail if the image has non-default values.
4366 */
4367 ret = -EINVAL;
4368 obj_size = (u64)1 << rbd_dev->header.obj_order;
4369 p = &striping_info_buf;
4370 stripe_unit = ceph_decode_64(&p);
4371 if (stripe_unit != obj_size) {
4372 rbd_warn(rbd_dev, "unsupported stripe unit "
4373 "(got %llu want %llu)",
4374 stripe_unit, obj_size);
4375 return -EINVAL;
4376 }
4377 stripe_count = ceph_decode_64(&p);
4378 if (stripe_count != 1) {
4379 rbd_warn(rbd_dev, "unsupported stripe count "
4380 "(got %llu want 1)", stripe_count);
4381 return -EINVAL;
4382 }
4383 rbd_dev->header.stripe_unit = stripe_unit;
4384 rbd_dev->header.stripe_count = stripe_count;
4385
4386 return 0;
4387 }
4388
4389 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4390 {
4391 size_t image_id_size;
4392 char *image_id;
4393 void *p;
4394 void *end;
4395 size_t size;
4396 void *reply_buf = NULL;
4397 size_t len = 0;
4398 char *image_name = NULL;
4399 int ret;
4400
4401 rbd_assert(!rbd_dev->spec->image_name);
4402
4403 len = strlen(rbd_dev->spec->image_id);
4404 image_id_size = sizeof (__le32) + len;
4405 image_id = kmalloc(image_id_size, GFP_KERNEL);
4406 if (!image_id)
4407 return NULL;
4408
4409 p = image_id;
4410 end = image_id + image_id_size;
4411 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4412
4413 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4414 reply_buf = kmalloc(size, GFP_KERNEL);
4415 if (!reply_buf)
4416 goto out;
4417
4418 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4419 "rbd", "dir_get_name",
4420 image_id, image_id_size,
4421 reply_buf, size);
4422 if (ret < 0)
4423 goto out;
4424 p = reply_buf;
4425 end = reply_buf + ret;
4426
4427 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4428 if (IS_ERR(image_name))
4429 image_name = NULL;
4430 else
4431 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4432 out:
4433 kfree(reply_buf);
4434 kfree(image_id);
4435
4436 return image_name;
4437 }
4438
4439 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4440 {
4441 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4442 const char *snap_name;
4443 u32 which = 0;
4444
4445 /* Skip over names until we find the one we are looking for */
4446
4447 snap_name = rbd_dev->header.snap_names;
4448 while (which < snapc->num_snaps) {
4449 if (!strcmp(name, snap_name))
4450 return snapc->snaps[which];
4451 snap_name += strlen(snap_name) + 1;
4452 which++;
4453 }
4454 return CEPH_NOSNAP;
4455 }
4456
4457 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4458 {
4459 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4460 u32 which;
4461 bool found = false;
4462 u64 snap_id;
4463
4464 for (which = 0; !found && which < snapc->num_snaps; which++) {
4465 const char *snap_name;
4466
4467 snap_id = snapc->snaps[which];
4468 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4469 if (IS_ERR(snap_name)) {
4470 /* ignore no-longer existing snapshots */
4471 if (PTR_ERR(snap_name) == -ENOENT)
4472 continue;
4473 else
4474 break;
4475 }
4476 found = !strcmp(name, snap_name);
4477 kfree(snap_name);
4478 }
4479 return found ? snap_id : CEPH_NOSNAP;
4480 }
4481
4482 /*
4483 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4484 * no snapshot by that name is found, or if an error occurs.
4485 */
4486 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4487 {
4488 if (rbd_dev->image_format == 1)
4489 return rbd_v1_snap_id_by_name(rbd_dev, name);
4490
4491 return rbd_v2_snap_id_by_name(rbd_dev, name);
4492 }
4493
4494 /*
4495 * An image being mapped will have everything but the snap id.
4496 */
4497 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4498 {
4499 struct rbd_spec *spec = rbd_dev->spec;
4500
4501 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4502 rbd_assert(spec->image_id && spec->image_name);
4503 rbd_assert(spec->snap_name);
4504
4505 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4506 u64 snap_id;
4507
4508 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4509 if (snap_id == CEPH_NOSNAP)
4510 return -ENOENT;
4511
4512 spec->snap_id = snap_id;
4513 } else {
4514 spec->snap_id = CEPH_NOSNAP;
4515 }
4516
4517 return 0;
4518 }
4519
4520 /*
4521 * A parent image will have all ids but none of the names.
4522 *
4523 * All names in an rbd spec are dynamically allocated. It's OK if we
4524 * can't figure out the name for an image id.
4525 */
4526 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4527 {
4528 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4529 struct rbd_spec *spec = rbd_dev->spec;
4530 const char *pool_name;
4531 const char *image_name;
4532 const char *snap_name;
4533 int ret;
4534
4535 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4536 rbd_assert(spec->image_id);
4537 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4538
4539 /* Get the pool name; we have to make our own copy of this */
4540
4541 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4542 if (!pool_name) {
4543 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4544 return -EIO;
4545 }
4546 pool_name = kstrdup(pool_name, GFP_KERNEL);
4547 if (!pool_name)
4548 return -ENOMEM;
4549
4550 /* Fetch the image name; tolerate failure here */
4551
4552 image_name = rbd_dev_image_name(rbd_dev);
4553 if (!image_name)
4554 rbd_warn(rbd_dev, "unable to get image name");
4555
4556 /* Fetch the snapshot name */
4557
4558 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4559 if (IS_ERR(snap_name)) {
4560 ret = PTR_ERR(snap_name);
4561 goto out_err;
4562 }
4563
4564 spec->pool_name = pool_name;
4565 spec->image_name = image_name;
4566 spec->snap_name = snap_name;
4567
4568 return 0;
4569
4570 out_err:
4571 kfree(image_name);
4572 kfree(pool_name);
4573 return ret;
4574 }
4575
4576 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4577 {
4578 size_t size;
4579 int ret;
4580 void *reply_buf;
4581 void *p;
4582 void *end;
4583 u64 seq;
4584 u32 snap_count;
4585 struct ceph_snap_context *snapc;
4586 u32 i;
4587
4588 /*
4589 * We'll need room for the seq value (maximum snapshot id),
4590 * snapshot count, and array of that many snapshot ids.
4591 * For now we have a fixed upper limit on the number we're
4592 * prepared to receive.
4593 */
4594 size = sizeof (__le64) + sizeof (__le32) +
4595 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4596 reply_buf = kzalloc(size, GFP_KERNEL);
4597 if (!reply_buf)
4598 return -ENOMEM;
4599
4600 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4601 "rbd", "get_snapcontext", NULL, 0,
4602 reply_buf, size);
4603 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4604 if (ret < 0)
4605 goto out;
4606
4607 p = reply_buf;
4608 end = reply_buf + ret;
4609 ret = -ERANGE;
4610 ceph_decode_64_safe(&p, end, seq, out);
4611 ceph_decode_32_safe(&p, end, snap_count, out);
4612
4613 /*
4614 * Make sure the reported number of snapshot ids wouldn't go
4615 * beyond the end of our buffer. But before checking that,
4616 * make sure the computed size of the snapshot context we
4617 * allocate is representable in a size_t.
4618 */
4619 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4620 / sizeof (u64)) {
4621 ret = -EINVAL;
4622 goto out;
4623 }
4624 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4625 goto out;
4626 ret = 0;
4627
4628 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4629 if (!snapc) {
4630 ret = -ENOMEM;
4631 goto out;
4632 }
4633 snapc->seq = seq;
4634 for (i = 0; i < snap_count; i++)
4635 snapc->snaps[i] = ceph_decode_64(&p);
4636
4637 ceph_put_snap_context(rbd_dev->header.snapc);
4638 rbd_dev->header.snapc = snapc;
4639
4640 dout(" snap context seq = %llu, snap_count = %u\n",
4641 (unsigned long long)seq, (unsigned int)snap_count);
4642 out:
4643 kfree(reply_buf);
4644
4645 return ret;
4646 }
4647
4648 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4649 u64 snap_id)
4650 {
4651 size_t size;
4652 void *reply_buf;
4653 __le64 snapid;
4654 int ret;
4655 void *p;
4656 void *end;
4657 char *snap_name;
4658
4659 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4660 reply_buf = kmalloc(size, GFP_KERNEL);
4661 if (!reply_buf)
4662 return ERR_PTR(-ENOMEM);
4663
4664 snapid = cpu_to_le64(snap_id);
4665 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4666 "rbd", "get_snapshot_name",
4667 &snapid, sizeof (snapid),
4668 reply_buf, size);
4669 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4670 if (ret < 0) {
4671 snap_name = ERR_PTR(ret);
4672 goto out;
4673 }
4674
4675 p = reply_buf;
4676 end = reply_buf + ret;
4677 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4678 if (IS_ERR(snap_name))
4679 goto out;
4680
4681 dout(" snap_id 0x%016llx snap_name = %s\n",
4682 (unsigned long long)snap_id, snap_name);
4683 out:
4684 kfree(reply_buf);
4685
4686 return snap_name;
4687 }
4688
4689 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4690 {
4691 bool first_time = rbd_dev->header.object_prefix == NULL;
4692 int ret;
4693
4694 ret = rbd_dev_v2_image_size(rbd_dev);
4695 if (ret)
4696 return ret;
4697
4698 if (first_time) {
4699 ret = rbd_dev_v2_header_onetime(rbd_dev);
4700 if (ret)
4701 return ret;
4702 }
4703
4704 ret = rbd_dev_v2_snap_context(rbd_dev);
4705 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4706
4707 return ret;
4708 }
4709
4710 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4711 {
4712 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4713
4714 if (rbd_dev->image_format == 1)
4715 return rbd_dev_v1_header_info(rbd_dev);
4716
4717 return rbd_dev_v2_header_info(rbd_dev);
4718 }
4719
4720 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4721 {
4722 struct device *dev;
4723 int ret;
4724
4725 dev = &rbd_dev->dev;
4726 dev->bus = &rbd_bus_type;
4727 dev->type = &rbd_device_type;
4728 dev->parent = &rbd_root_dev;
4729 dev->release = rbd_dev_device_release;
4730 dev_set_name(dev, "%d", rbd_dev->dev_id);
4731 ret = device_register(dev);
4732
4733 return ret;
4734 }
4735
4736 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4737 {
4738 device_unregister(&rbd_dev->dev);
4739 }
4740
4741 /*
4742 * Get a unique rbd identifier for the given new rbd_dev, and add
4743 * the rbd_dev to the global list.
4744 */
4745 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4746 {
4747 int new_dev_id;
4748
4749 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4750 0, minor_to_rbd_dev_id(1 << MINORBITS),
4751 GFP_KERNEL);
4752 if (new_dev_id < 0)
4753 return new_dev_id;
4754
4755 rbd_dev->dev_id = new_dev_id;
4756
4757 spin_lock(&rbd_dev_list_lock);
4758 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4759 spin_unlock(&rbd_dev_list_lock);
4760
4761 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4762
4763 return 0;
4764 }
4765
4766 /*
4767 * Remove an rbd_dev from the global list, and record that its
4768 * identifier is no longer in use.
4769 */
4770 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4771 {
4772 spin_lock(&rbd_dev_list_lock);
4773 list_del_init(&rbd_dev->node);
4774 spin_unlock(&rbd_dev_list_lock);
4775
4776 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4777
4778 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4779 }
4780
4781 /*
4782 * Skips over white space at *buf, and updates *buf to point to the
4783 * first found non-space character (if any). Returns the length of
4784 * the token (string of non-white space characters) found. Note
4785 * that *buf must be terminated with '\0'.
4786 */
4787 static inline size_t next_token(const char **buf)
4788 {
4789 /*
4790 * These are the characters that produce nonzero for
4791 * isspace() in the "C" and "POSIX" locales.
4792 */
4793 const char *spaces = " \f\n\r\t\v";
4794
4795 *buf += strspn(*buf, spaces); /* Find start of token */
4796
4797 return strcspn(*buf, spaces); /* Return token length */
4798 }
4799
4800 /*
4801 * Finds the next token in *buf, dynamically allocates a buffer big
4802 * enough to hold a copy of it, and copies the token into the new
4803 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4804 * that a duplicate buffer is created even for a zero-length token.
4805 *
4806 * Returns a pointer to the newly-allocated duplicate, or a null
4807 * pointer if memory for the duplicate was not available. If
4808 * the lenp argument is a non-null pointer, the length of the token
4809 * (not including the '\0') is returned in *lenp.
4810 *
4811 * If successful, the *buf pointer will be updated to point beyond
4812 * the end of the found token.
4813 *
4814 * Note: uses GFP_KERNEL for allocation.
4815 */
4816 static inline char *dup_token(const char **buf, size_t *lenp)
4817 {
4818 char *dup;
4819 size_t len;
4820
4821 len = next_token(buf);
4822 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4823 if (!dup)
4824 return NULL;
4825 *(dup + len) = '\0';
4826 *buf += len;
4827
4828 if (lenp)
4829 *lenp = len;
4830
4831 return dup;
4832 }
4833
4834 /*
4835 * Parse the options provided for an "rbd add" (i.e., rbd image
4836 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4837 * and the data written is passed here via a NUL-terminated buffer.
4838 * Returns 0 if successful or an error code otherwise.
4839 *
4840 * The information extracted from these options is recorded in
4841 * the other parameters which return dynamically-allocated
4842 * structures:
4843 * ceph_opts
4844 * The address of a pointer that will refer to a ceph options
4845 * structure. Caller must release the returned pointer using
4846 * ceph_destroy_options() when it is no longer needed.
4847 * rbd_opts
4848 * Address of an rbd options pointer. Fully initialized by
4849 * this function; caller must release with kfree().
4850 * spec
4851 * Address of an rbd image specification pointer. Fully
4852 * initialized by this function based on parsed options.
4853 * Caller must release with rbd_spec_put().
4854 *
4855 * The options passed take this form:
4856 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4857 * where:
4858 * <mon_addrs>
4859 * A comma-separated list of one or more monitor addresses.
4860 * A monitor address is an ip address, optionally followed
4861 * by a port number (separated by a colon).
4862 * I.e.: ip1[:port1][,ip2[:port2]...]
4863 * <options>
4864 * A comma-separated list of ceph and/or rbd options.
4865 * <pool_name>
4866 * The name of the rados pool containing the rbd image.
4867 * <image_name>
4868 * The name of the image in that pool to map.
4869 * <snap_id>
4870 * An optional snapshot id. If provided, the mapping will
4871 * present data from the image at the time that snapshot was
4872 * created. The image head is used if no snapshot id is
4873 * provided. Snapshot mappings are always read-only.
4874 */
4875 static int rbd_add_parse_args(const char *buf,
4876 struct ceph_options **ceph_opts,
4877 struct rbd_options **opts,
4878 struct rbd_spec **rbd_spec)
4879 {
4880 size_t len;
4881 char *options;
4882 const char *mon_addrs;
4883 char *snap_name;
4884 size_t mon_addrs_size;
4885 struct rbd_spec *spec = NULL;
4886 struct rbd_options *rbd_opts = NULL;
4887 struct ceph_options *copts;
4888 int ret;
4889
4890 /* The first four tokens are required */
4891
4892 len = next_token(&buf);
4893 if (!len) {
4894 rbd_warn(NULL, "no monitor address(es) provided");
4895 return -EINVAL;
4896 }
4897 mon_addrs = buf;
4898 mon_addrs_size = len + 1;
4899 buf += len;
4900
4901 ret = -EINVAL;
4902 options = dup_token(&buf, NULL);
4903 if (!options)
4904 return -ENOMEM;
4905 if (!*options) {
4906 rbd_warn(NULL, "no options provided");
4907 goto out_err;
4908 }
4909
4910 spec = rbd_spec_alloc();
4911 if (!spec)
4912 goto out_mem;
4913
4914 spec->pool_name = dup_token(&buf, NULL);
4915 if (!spec->pool_name)
4916 goto out_mem;
4917 if (!*spec->pool_name) {
4918 rbd_warn(NULL, "no pool name provided");
4919 goto out_err;
4920 }
4921
4922 spec->image_name = dup_token(&buf, NULL);
4923 if (!spec->image_name)
4924 goto out_mem;
4925 if (!*spec->image_name) {
4926 rbd_warn(NULL, "no image name provided");
4927 goto out_err;
4928 }
4929
4930 /*
4931 * Snapshot name is optional; default is to use "-"
4932 * (indicating the head/no snapshot).
4933 */
4934 len = next_token(&buf);
4935 if (!len) {
4936 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4937 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4938 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4939 ret = -ENAMETOOLONG;
4940 goto out_err;
4941 }
4942 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4943 if (!snap_name)
4944 goto out_mem;
4945 *(snap_name + len) = '\0';
4946 spec->snap_name = snap_name;
4947
4948 /* Initialize all rbd options to the defaults */
4949
4950 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4951 if (!rbd_opts)
4952 goto out_mem;
4953
4954 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4955
4956 copts = ceph_parse_options(options, mon_addrs,
4957 mon_addrs + mon_addrs_size - 1,
4958 parse_rbd_opts_token, rbd_opts);
4959 if (IS_ERR(copts)) {
4960 ret = PTR_ERR(copts);
4961 goto out_err;
4962 }
4963 kfree(options);
4964
4965 *ceph_opts = copts;
4966 *opts = rbd_opts;
4967 *rbd_spec = spec;
4968
4969 return 0;
4970 out_mem:
4971 ret = -ENOMEM;
4972 out_err:
4973 kfree(rbd_opts);
4974 rbd_spec_put(spec);
4975 kfree(options);
4976
4977 return ret;
4978 }
4979
4980 /*
4981 * Return pool id (>= 0) or a negative error code.
4982 */
4983 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4984 {
4985 struct ceph_options *opts = rbdc->client->options;
4986 u64 newest_epoch;
4987 int tries = 0;
4988 int ret;
4989
4990 again:
4991 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4992 if (ret == -ENOENT && tries++ < 1) {
4993 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4994 &newest_epoch);
4995 if (ret < 0)
4996 return ret;
4997
4998 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4999 ceph_monc_request_next_osdmap(&rbdc->client->monc);
5000 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5001 newest_epoch,
5002 opts->mount_timeout);
5003 goto again;
5004 } else {
5005 /* the osdmap we have is new enough */
5006 return -ENOENT;
5007 }
5008 }
5009
5010 return ret;
5011 }
5012
5013 /*
5014 * An rbd format 2 image has a unique identifier, distinct from the
5015 * name given to it by the user. Internally, that identifier is
5016 * what's used to specify the names of objects related to the image.
5017 *
5018 * A special "rbd id" object is used to map an rbd image name to its
5019 * id. If that object doesn't exist, then there is no v2 rbd image
5020 * with the supplied name.
5021 *
5022 * This function will record the given rbd_dev's image_id field if
5023 * it can be determined, and in that case will return 0. If any
5024 * errors occur a negative errno will be returned and the rbd_dev's
5025 * image_id field will be unchanged (and should be NULL).
5026 */
5027 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5028 {
5029 int ret;
5030 size_t size;
5031 char *object_name;
5032 void *response;
5033 char *image_id;
5034
5035 /*
5036 * When probing a parent image, the image id is already
5037 * known (and the image name likely is not). There's no
5038 * need to fetch the image id again in this case. We
5039 * do still need to set the image format though.
5040 */
5041 if (rbd_dev->spec->image_id) {
5042 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5043
5044 return 0;
5045 }
5046
5047 /*
5048 * First, see if the format 2 image id file exists, and if
5049 * so, get the image's persistent id from it.
5050 */
5051 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5052 object_name = kmalloc(size, GFP_NOIO);
5053 if (!object_name)
5054 return -ENOMEM;
5055 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5056 dout("rbd id object name is %s\n", object_name);
5057
5058 /* Response will be an encoded string, which includes a length */
5059
5060 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5061 response = kzalloc(size, GFP_NOIO);
5062 if (!response) {
5063 ret = -ENOMEM;
5064 goto out;
5065 }
5066
5067 /* If it doesn't exist we'll assume it's a format 1 image */
5068
5069 ret = rbd_obj_method_sync(rbd_dev, object_name,
5070 "rbd", "get_id", NULL, 0,
5071 response, RBD_IMAGE_ID_LEN_MAX);
5072 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5073 if (ret == -ENOENT) {
5074 image_id = kstrdup("", GFP_KERNEL);
5075 ret = image_id ? 0 : -ENOMEM;
5076 if (!ret)
5077 rbd_dev->image_format = 1;
5078 } else if (ret >= 0) {
5079 void *p = response;
5080
5081 image_id = ceph_extract_encoded_string(&p, p + ret,
5082 NULL, GFP_NOIO);
5083 ret = PTR_ERR_OR_ZERO(image_id);
5084 if (!ret)
5085 rbd_dev->image_format = 2;
5086 }
5087
5088 if (!ret) {
5089 rbd_dev->spec->image_id = image_id;
5090 dout("image_id is %s\n", image_id);
5091 }
5092 out:
5093 kfree(response);
5094 kfree(object_name);
5095
5096 return ret;
5097 }
5098
5099 /*
5100 * Undo whatever state changes are made by v1 or v2 header info
5101 * call.
5102 */
5103 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5104 {
5105 struct rbd_image_header *header;
5106
5107 rbd_dev_parent_put(rbd_dev);
5108
5109 /* Free dynamic fields from the header, then zero it out */
5110
5111 header = &rbd_dev->header;
5112 ceph_put_snap_context(header->snapc);
5113 kfree(header->snap_sizes);
5114 kfree(header->snap_names);
5115 kfree(header->object_prefix);
5116 memset(header, 0, sizeof (*header));
5117 }
5118
5119 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5120 {
5121 int ret;
5122
5123 ret = rbd_dev_v2_object_prefix(rbd_dev);
5124 if (ret)
5125 goto out_err;
5126
5127 /*
5128 * Get the and check features for the image. Currently the
5129 * features are assumed to never change.
5130 */
5131 ret = rbd_dev_v2_features(rbd_dev);
5132 if (ret)
5133 goto out_err;
5134
5135 /* If the image supports fancy striping, get its parameters */
5136
5137 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5138 ret = rbd_dev_v2_striping_info(rbd_dev);
5139 if (ret < 0)
5140 goto out_err;
5141 }
5142 /* No support for crypto and compression type format 2 images */
5143
5144 return 0;
5145 out_err:
5146 rbd_dev->header.features = 0;
5147 kfree(rbd_dev->header.object_prefix);
5148 rbd_dev->header.object_prefix = NULL;
5149
5150 return ret;
5151 }
5152
5153 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5154 {
5155 struct rbd_device *parent = NULL;
5156 struct rbd_spec *parent_spec;
5157 struct rbd_client *rbdc;
5158 int ret;
5159
5160 if (!rbd_dev->parent_spec)
5161 return 0;
5162 /*
5163 * We need to pass a reference to the client and the parent
5164 * spec when creating the parent rbd_dev. Images related by
5165 * parent/child relationships always share both.
5166 */
5167 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5168 rbdc = __rbd_get_client(rbd_dev->rbd_client);
5169
5170 ret = -ENOMEM;
5171 parent = rbd_dev_create(rbdc, parent_spec);
5172 if (!parent)
5173 goto out_err;
5174
5175 ret = rbd_dev_image_probe(parent, false);
5176 if (ret < 0)
5177 goto out_err;
5178 rbd_dev->parent = parent;
5179 atomic_set(&rbd_dev->parent_ref, 1);
5180
5181 return 0;
5182 out_err:
5183 if (parent) {
5184 rbd_dev_unparent(rbd_dev);
5185 kfree(rbd_dev->header_name);
5186 rbd_dev_destroy(parent);
5187 } else {
5188 rbd_put_client(rbdc);
5189 rbd_spec_put(parent_spec);
5190 }
5191
5192 return ret;
5193 }
5194
5195 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5196 {
5197 int ret;
5198
5199 /* Get an id and fill in device name. */
5200
5201 ret = rbd_dev_id_get(rbd_dev);
5202 if (ret)
5203 return ret;
5204
5205 BUILD_BUG_ON(DEV_NAME_LEN
5206 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5207 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5208
5209 /* Record our major and minor device numbers. */
5210
5211 if (!single_major) {
5212 ret = register_blkdev(0, rbd_dev->name);
5213 if (ret < 0)
5214 goto err_out_id;
5215
5216 rbd_dev->major = ret;
5217 rbd_dev->minor = 0;
5218 } else {
5219 rbd_dev->major = rbd_major;
5220 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5221 }
5222
5223 /* Set up the blkdev mapping. */
5224
5225 ret = rbd_init_disk(rbd_dev);
5226 if (ret)
5227 goto err_out_blkdev;
5228
5229 ret = rbd_dev_mapping_set(rbd_dev);
5230 if (ret)
5231 goto err_out_disk;
5232
5233 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5234 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5235
5236 ret = rbd_bus_add_dev(rbd_dev);
5237 if (ret)
5238 goto err_out_mapping;
5239
5240 /* Everything's ready. Announce the disk to the world. */
5241
5242 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5243 add_disk(rbd_dev->disk);
5244
5245 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5246 (unsigned long long) rbd_dev->mapping.size);
5247
5248 return ret;
5249
5250 err_out_mapping:
5251 rbd_dev_mapping_clear(rbd_dev);
5252 err_out_disk:
5253 rbd_free_disk(rbd_dev);
5254 err_out_blkdev:
5255 if (!single_major)
5256 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5257 err_out_id:
5258 rbd_dev_id_put(rbd_dev);
5259 rbd_dev_mapping_clear(rbd_dev);
5260
5261 return ret;
5262 }
5263
5264 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5265 {
5266 struct rbd_spec *spec = rbd_dev->spec;
5267 size_t size;
5268
5269 /* Record the header object name for this rbd image. */
5270
5271 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5272
5273 if (rbd_dev->image_format == 1)
5274 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5275 else
5276 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5277
5278 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5279 if (!rbd_dev->header_name)
5280 return -ENOMEM;
5281
5282 if (rbd_dev->image_format == 1)
5283 sprintf(rbd_dev->header_name, "%s%s",
5284 spec->image_name, RBD_SUFFIX);
5285 else
5286 sprintf(rbd_dev->header_name, "%s%s",
5287 RBD_HEADER_PREFIX, spec->image_id);
5288 return 0;
5289 }
5290
5291 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5292 {
5293 rbd_dev_unprobe(rbd_dev);
5294 kfree(rbd_dev->header_name);
5295 rbd_dev->header_name = NULL;
5296 rbd_dev->image_format = 0;
5297 kfree(rbd_dev->spec->image_id);
5298 rbd_dev->spec->image_id = NULL;
5299
5300 rbd_dev_destroy(rbd_dev);
5301 }
5302
5303 /*
5304 * Probe for the existence of the header object for the given rbd
5305 * device. If this image is the one being mapped (i.e., not a
5306 * parent), initiate a watch on its header object before using that
5307 * object to get detailed information about the rbd image.
5308 */
5309 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5310 {
5311 int ret;
5312
5313 /*
5314 * Get the id from the image id object. Unless there's an
5315 * error, rbd_dev->spec->image_id will be filled in with
5316 * a dynamically-allocated string, and rbd_dev->image_format
5317 * will be set to either 1 or 2.
5318 */
5319 ret = rbd_dev_image_id(rbd_dev);
5320 if (ret)
5321 return ret;
5322
5323 ret = rbd_dev_header_name(rbd_dev);
5324 if (ret)
5325 goto err_out_format;
5326
5327 if (mapping) {
5328 ret = rbd_dev_header_watch_sync(rbd_dev);
5329 if (ret) {
5330 if (ret == -ENOENT)
5331 pr_info("image %s/%s does not exist\n",
5332 rbd_dev->spec->pool_name,
5333 rbd_dev->spec->image_name);
5334 goto out_header_name;
5335 }
5336 }
5337
5338 ret = rbd_dev_header_info(rbd_dev);
5339 if (ret)
5340 goto err_out_watch;
5341
5342 /*
5343 * If this image is the one being mapped, we have pool name and
5344 * id, image name and id, and snap name - need to fill snap id.
5345 * Otherwise this is a parent image, identified by pool, image
5346 * and snap ids - need to fill in names for those ids.
5347 */
5348 if (mapping)
5349 ret = rbd_spec_fill_snap_id(rbd_dev);
5350 else
5351 ret = rbd_spec_fill_names(rbd_dev);
5352 if (ret) {
5353 if (ret == -ENOENT)
5354 pr_info("snap %s/%s@%s does not exist\n",
5355 rbd_dev->spec->pool_name,
5356 rbd_dev->spec->image_name,
5357 rbd_dev->spec->snap_name);
5358 goto err_out_probe;
5359 }
5360
5361 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5362 ret = rbd_dev_v2_parent_info(rbd_dev);
5363 if (ret)
5364 goto err_out_probe;
5365
5366 /*
5367 * Need to warn users if this image is the one being
5368 * mapped and has a parent.
5369 */
5370 if (mapping && rbd_dev->parent_spec)
5371 rbd_warn(rbd_dev,
5372 "WARNING: kernel layering is EXPERIMENTAL!");
5373 }
5374
5375 ret = rbd_dev_probe_parent(rbd_dev);
5376 if (ret)
5377 goto err_out_probe;
5378
5379 dout("discovered format %u image, header name is %s\n",
5380 rbd_dev->image_format, rbd_dev->header_name);
5381 return 0;
5382
5383 err_out_probe:
5384 rbd_dev_unprobe(rbd_dev);
5385 err_out_watch:
5386 if (mapping)
5387 rbd_dev_header_unwatch_sync(rbd_dev);
5388 out_header_name:
5389 kfree(rbd_dev->header_name);
5390 rbd_dev->header_name = NULL;
5391 err_out_format:
5392 rbd_dev->image_format = 0;
5393 kfree(rbd_dev->spec->image_id);
5394 rbd_dev->spec->image_id = NULL;
5395 return ret;
5396 }
5397
5398 static ssize_t do_rbd_add(struct bus_type *bus,
5399 const char *buf,
5400 size_t count)
5401 {
5402 struct rbd_device *rbd_dev = NULL;
5403 struct ceph_options *ceph_opts = NULL;
5404 struct rbd_options *rbd_opts = NULL;
5405 struct rbd_spec *spec = NULL;
5406 struct rbd_client *rbdc;
5407 bool read_only;
5408 int rc = -ENOMEM;
5409
5410 if (!try_module_get(THIS_MODULE))
5411 return -ENODEV;
5412
5413 /* parse add command */
5414 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5415 if (rc < 0)
5416 goto err_out_module;
5417 read_only = rbd_opts->read_only;
5418 kfree(rbd_opts);
5419 rbd_opts = NULL; /* done with this */
5420
5421 rbdc = rbd_get_client(ceph_opts);
5422 if (IS_ERR(rbdc)) {
5423 rc = PTR_ERR(rbdc);
5424 goto err_out_args;
5425 }
5426
5427 /* pick the pool */
5428 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5429 if (rc < 0) {
5430 if (rc == -ENOENT)
5431 pr_info("pool %s does not exist\n", spec->pool_name);
5432 goto err_out_client;
5433 }
5434 spec->pool_id = (u64)rc;
5435
5436 /* The ceph file layout needs to fit pool id in 32 bits */
5437
5438 if (spec->pool_id > (u64)U32_MAX) {
5439 rbd_warn(NULL, "pool id too large (%llu > %u)",
5440 (unsigned long long)spec->pool_id, U32_MAX);
5441 rc = -EIO;
5442 goto err_out_client;
5443 }
5444
5445 rbd_dev = rbd_dev_create(rbdc, spec);
5446 if (!rbd_dev)
5447 goto err_out_client;
5448 rbdc = NULL; /* rbd_dev now owns this */
5449 spec = NULL; /* rbd_dev now owns this */
5450
5451 rc = rbd_dev_image_probe(rbd_dev, true);
5452 if (rc < 0)
5453 goto err_out_rbd_dev;
5454
5455 /* If we are mapping a snapshot it must be marked read-only */
5456
5457 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5458 read_only = true;
5459 rbd_dev->mapping.read_only = read_only;
5460
5461 rc = rbd_dev_device_setup(rbd_dev);
5462 if (rc) {
5463 /*
5464 * rbd_dev_header_unwatch_sync() can't be moved into
5465 * rbd_dev_image_release() without refactoring, see
5466 * commit 1f3ef78861ac.
5467 */
5468 rbd_dev_header_unwatch_sync(rbd_dev);
5469 rbd_dev_image_release(rbd_dev);
5470 goto err_out_module;
5471 }
5472
5473 return count;
5474
5475 err_out_rbd_dev:
5476 rbd_dev_destroy(rbd_dev);
5477 err_out_client:
5478 rbd_put_client(rbdc);
5479 err_out_args:
5480 rbd_spec_put(spec);
5481 err_out_module:
5482 module_put(THIS_MODULE);
5483
5484 dout("Error adding device %s\n", buf);
5485
5486 return (ssize_t)rc;
5487 }
5488
5489 static ssize_t rbd_add(struct bus_type *bus,
5490 const char *buf,
5491 size_t count)
5492 {
5493 if (single_major)
5494 return -EINVAL;
5495
5496 return do_rbd_add(bus, buf, count);
5497 }
5498
5499 static ssize_t rbd_add_single_major(struct bus_type *bus,
5500 const char *buf,
5501 size_t count)
5502 {
5503 return do_rbd_add(bus, buf, count);
5504 }
5505
5506 static void rbd_dev_device_release(struct device *dev)
5507 {
5508 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5509
5510 rbd_free_disk(rbd_dev);
5511 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5512 rbd_dev_mapping_clear(rbd_dev);
5513 if (!single_major)
5514 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5515 rbd_dev_id_put(rbd_dev);
5516 rbd_dev_mapping_clear(rbd_dev);
5517 }
5518
5519 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5520 {
5521 while (rbd_dev->parent) {
5522 struct rbd_device *first = rbd_dev;
5523 struct rbd_device *second = first->parent;
5524 struct rbd_device *third;
5525
5526 /*
5527 * Follow to the parent with no grandparent and
5528 * remove it.
5529 */
5530 while (second && (third = second->parent)) {
5531 first = second;
5532 second = third;
5533 }
5534 rbd_assert(second);
5535 rbd_dev_image_release(second);
5536 first->parent = NULL;
5537 first->parent_overlap = 0;
5538
5539 rbd_assert(first->parent_spec);
5540 rbd_spec_put(first->parent_spec);
5541 first->parent_spec = NULL;
5542 }
5543 }
5544
5545 static ssize_t do_rbd_remove(struct bus_type *bus,
5546 const char *buf,
5547 size_t count)
5548 {
5549 struct rbd_device *rbd_dev = NULL;
5550 struct list_head *tmp;
5551 int dev_id;
5552 unsigned long ul;
5553 bool already = false;
5554 int ret;
5555
5556 ret = kstrtoul(buf, 10, &ul);
5557 if (ret)
5558 return ret;
5559
5560 /* convert to int; abort if we lost anything in the conversion */
5561 dev_id = (int)ul;
5562 if (dev_id != ul)
5563 return -EINVAL;
5564
5565 ret = -ENOENT;
5566 spin_lock(&rbd_dev_list_lock);
5567 list_for_each(tmp, &rbd_dev_list) {
5568 rbd_dev = list_entry(tmp, struct rbd_device, node);
5569 if (rbd_dev->dev_id == dev_id) {
5570 ret = 0;
5571 break;
5572 }
5573 }
5574 if (!ret) {
5575 spin_lock_irq(&rbd_dev->lock);
5576 if (rbd_dev->open_count)
5577 ret = -EBUSY;
5578 else
5579 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5580 &rbd_dev->flags);
5581 spin_unlock_irq(&rbd_dev->lock);
5582 }
5583 spin_unlock(&rbd_dev_list_lock);
5584 if (ret < 0 || already)
5585 return ret;
5586
5587 rbd_dev_header_unwatch_sync(rbd_dev);
5588 /*
5589 * flush remaining watch callbacks - these must be complete
5590 * before the osd_client is shutdown
5591 */
5592 dout("%s: flushing notifies", __func__);
5593 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5594
5595 /*
5596 * Don't free anything from rbd_dev->disk until after all
5597 * notifies are completely processed. Otherwise
5598 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5599 * in a potential use after free of rbd_dev->disk or rbd_dev.
5600 */
5601 rbd_bus_del_dev(rbd_dev);
5602 rbd_dev_image_release(rbd_dev);
5603 module_put(THIS_MODULE);
5604
5605 return count;
5606 }
5607
5608 static ssize_t rbd_remove(struct bus_type *bus,
5609 const char *buf,
5610 size_t count)
5611 {
5612 if (single_major)
5613 return -EINVAL;
5614
5615 return do_rbd_remove(bus, buf, count);
5616 }
5617
5618 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5619 const char *buf,
5620 size_t count)
5621 {
5622 return do_rbd_remove(bus, buf, count);
5623 }
5624
5625 /*
5626 * create control files in sysfs
5627 * /sys/bus/rbd/...
5628 */
5629 static int rbd_sysfs_init(void)
5630 {
5631 int ret;
5632
5633 ret = device_register(&rbd_root_dev);
5634 if (ret < 0)
5635 return ret;
5636
5637 ret = bus_register(&rbd_bus_type);
5638 if (ret < 0)
5639 device_unregister(&rbd_root_dev);
5640
5641 return ret;
5642 }
5643
5644 static void rbd_sysfs_cleanup(void)
5645 {
5646 bus_unregister(&rbd_bus_type);
5647 device_unregister(&rbd_root_dev);
5648 }
5649
5650 static int rbd_slab_init(void)
5651 {
5652 rbd_assert(!rbd_img_request_cache);
5653 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5654 sizeof (struct rbd_img_request),
5655 __alignof__(struct rbd_img_request),
5656 0, NULL);
5657 if (!rbd_img_request_cache)
5658 return -ENOMEM;
5659
5660 rbd_assert(!rbd_obj_request_cache);
5661 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5662 sizeof (struct rbd_obj_request),
5663 __alignof__(struct rbd_obj_request),
5664 0, NULL);
5665 if (!rbd_obj_request_cache)
5666 goto out_err;
5667
5668 rbd_assert(!rbd_segment_name_cache);
5669 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5670 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5671 if (rbd_segment_name_cache)
5672 return 0;
5673 out_err:
5674 if (rbd_obj_request_cache) {
5675 kmem_cache_destroy(rbd_obj_request_cache);
5676 rbd_obj_request_cache = NULL;
5677 }
5678
5679 kmem_cache_destroy(rbd_img_request_cache);
5680 rbd_img_request_cache = NULL;
5681
5682 return -ENOMEM;
5683 }
5684
5685 static void rbd_slab_exit(void)
5686 {
5687 rbd_assert(rbd_segment_name_cache);
5688 kmem_cache_destroy(rbd_segment_name_cache);
5689 rbd_segment_name_cache = NULL;
5690
5691 rbd_assert(rbd_obj_request_cache);
5692 kmem_cache_destroy(rbd_obj_request_cache);
5693 rbd_obj_request_cache = NULL;
5694
5695 rbd_assert(rbd_img_request_cache);
5696 kmem_cache_destroy(rbd_img_request_cache);
5697 rbd_img_request_cache = NULL;
5698 }
5699
5700 static int __init rbd_init(void)
5701 {
5702 int rc;
5703
5704 if (!libceph_compatible(NULL)) {
5705 rbd_warn(NULL, "libceph incompatibility (quitting)");
5706 return -EINVAL;
5707 }
5708
5709 rc = rbd_slab_init();
5710 if (rc)
5711 return rc;
5712
5713 /*
5714 * The number of active work items is limited by the number of
5715 * rbd devices * queue depth, so leave @max_active at default.
5716 */
5717 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5718 if (!rbd_wq) {
5719 rc = -ENOMEM;
5720 goto err_out_slab;
5721 }
5722
5723 if (single_major) {
5724 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5725 if (rbd_major < 0) {
5726 rc = rbd_major;
5727 goto err_out_wq;
5728 }
5729 }
5730
5731 rc = rbd_sysfs_init();
5732 if (rc)
5733 goto err_out_blkdev;
5734
5735 if (single_major)
5736 pr_info("loaded (major %d)\n", rbd_major);
5737 else
5738 pr_info("loaded\n");
5739
5740 return 0;
5741
5742 err_out_blkdev:
5743 if (single_major)
5744 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5745 err_out_wq:
5746 destroy_workqueue(rbd_wq);
5747 err_out_slab:
5748 rbd_slab_exit();
5749 return rc;
5750 }
5751
5752 static void __exit rbd_exit(void)
5753 {
5754 ida_destroy(&rbd_dev_id_ida);
5755 rbd_sysfs_cleanup();
5756 if (single_major)
5757 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5758 destroy_workqueue(rbd_wq);
5759 rbd_slab_exit();
5760 }
5761
5762 module_init(rbd_init);
5763 module_exit(rbd_exit);
5764
5765 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5766 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5767 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5768 /* following authorship retained from original osdblk.c */
5769 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5770
5771 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5772 MODULE_LICENSE("GPL");