]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/rbd.c
rbd: set up devices only for mapped images
[mirror_ubuntu-artful-kernel.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45
46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55 #define RBD_DRV_NAME "rbd"
56 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
57
58 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
59
60 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
61 #define RBD_MAX_SNAP_NAME_LEN \
62 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
63
64 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
65
66 #define RBD_SNAP_HEAD_NAME "-"
67
68 /* This allows a single page to hold an image name sent by OSD */
69 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
70 #define RBD_IMAGE_ID_LEN_MAX 64
71
72 #define RBD_OBJ_PREFIX_LEN_MAX 64
73
74 /* Feature bits */
75
76 #define RBD_FEATURE_LAYERING (1<<0)
77 #define RBD_FEATURE_STRIPINGV2 (1<<1)
78 #define RBD_FEATURES_ALL \
79 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
80
81 /* Features supported by this (client software) implementation. */
82
83 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
84
85 /*
86 * An RBD device name will be "rbd#", where the "rbd" comes from
87 * RBD_DRV_NAME above, and # is a unique integer identifier.
88 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
89 * enough to hold all possible device names.
90 */
91 #define DEV_NAME_LEN 32
92 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
93
94 /*
95 * block device image metadata (in-memory version)
96 */
97 struct rbd_image_header {
98 /* These four fields never change for a given rbd image */
99 char *object_prefix;
100 u64 features;
101 __u8 obj_order;
102 __u8 crypt_type;
103 __u8 comp_type;
104
105 /* The remaining fields need to be updated occasionally */
106 u64 image_size;
107 struct ceph_snap_context *snapc;
108 char *snap_names;
109 u64 *snap_sizes;
110
111 u64 stripe_unit;
112 u64 stripe_count;
113
114 u64 obj_version;
115 };
116
117 /*
118 * An rbd image specification.
119 *
120 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
121 * identify an image. Each rbd_dev structure includes a pointer to
122 * an rbd_spec structure that encapsulates this identity.
123 *
124 * Each of the id's in an rbd_spec has an associated name. For a
125 * user-mapped image, the names are supplied and the id's associated
126 * with them are looked up. For a layered image, a parent image is
127 * defined by the tuple, and the names are looked up.
128 *
129 * An rbd_dev structure contains a parent_spec pointer which is
130 * non-null if the image it represents is a child in a layered
131 * image. This pointer will refer to the rbd_spec structure used
132 * by the parent rbd_dev for its own identity (i.e., the structure
133 * is shared between the parent and child).
134 *
135 * Since these structures are populated once, during the discovery
136 * phase of image construction, they are effectively immutable so
137 * we make no effort to synchronize access to them.
138 *
139 * Note that code herein does not assume the image name is known (it
140 * could be a null pointer).
141 */
142 struct rbd_spec {
143 u64 pool_id;
144 const char *pool_name;
145
146 const char *image_id;
147 const char *image_name;
148
149 u64 snap_id;
150 const char *snap_name;
151
152 struct kref kref;
153 };
154
155 /*
156 * an instance of the client. multiple devices may share an rbd client.
157 */
158 struct rbd_client {
159 struct ceph_client *client;
160 struct kref kref;
161 struct list_head node;
162 };
163
164 struct rbd_img_request;
165 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
166
167 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
168
169 struct rbd_obj_request;
170 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
171
172 enum obj_request_type {
173 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
174 };
175
176 enum obj_req_flags {
177 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
178 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
179 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
180 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
181 };
182
183 struct rbd_obj_request {
184 const char *object_name;
185 u64 offset; /* object start byte */
186 u64 length; /* bytes from offset */
187 unsigned long flags;
188
189 /*
190 * An object request associated with an image will have its
191 * img_data flag set; a standalone object request will not.
192 *
193 * A standalone object request will have which == BAD_WHICH
194 * and a null obj_request pointer.
195 *
196 * An object request initiated in support of a layered image
197 * object (to check for its existence before a write) will
198 * have which == BAD_WHICH and a non-null obj_request pointer.
199 *
200 * Finally, an object request for rbd image data will have
201 * which != BAD_WHICH, and will have a non-null img_request
202 * pointer. The value of which will be in the range
203 * 0..(img_request->obj_request_count-1).
204 */
205 union {
206 struct rbd_obj_request *obj_request; /* STAT op */
207 struct {
208 struct rbd_img_request *img_request;
209 u64 img_offset;
210 /* links for img_request->obj_requests list */
211 struct list_head links;
212 };
213 };
214 u32 which; /* posn image request list */
215
216 enum obj_request_type type;
217 union {
218 struct bio *bio_list;
219 struct {
220 struct page **pages;
221 u32 page_count;
222 };
223 };
224 struct page **copyup_pages;
225
226 struct ceph_osd_request *osd_req;
227
228 u64 xferred; /* bytes transferred */
229 u64 version;
230 int result;
231
232 rbd_obj_callback_t callback;
233 struct completion completion;
234
235 struct kref kref;
236 };
237
238 enum img_req_flags {
239 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
240 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
241 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
242 };
243
244 struct rbd_img_request {
245 struct rbd_device *rbd_dev;
246 u64 offset; /* starting image byte offset */
247 u64 length; /* byte count from offset */
248 unsigned long flags;
249 union {
250 u64 snap_id; /* for reads */
251 struct ceph_snap_context *snapc; /* for writes */
252 };
253 union {
254 struct request *rq; /* block request */
255 struct rbd_obj_request *obj_request; /* obj req initiator */
256 };
257 struct page **copyup_pages;
258 spinlock_t completion_lock;/* protects next_completion */
259 u32 next_completion;
260 rbd_img_callback_t callback;
261 u64 xferred;/* aggregate bytes transferred */
262 int result; /* first nonzero obj_request result */
263
264 u32 obj_request_count;
265 struct list_head obj_requests; /* rbd_obj_request structs */
266
267 struct kref kref;
268 };
269
270 #define for_each_obj_request(ireq, oreq) \
271 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
272 #define for_each_obj_request_from(ireq, oreq) \
273 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_safe(ireq, oreq, n) \
275 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
276
277 struct rbd_snap {
278 const char *name;
279 u64 size;
280 struct list_head node;
281 u64 id;
282 u64 features;
283 };
284
285 struct rbd_mapping {
286 u64 size;
287 u64 features;
288 bool read_only;
289 };
290
291 /*
292 * a single device
293 */
294 struct rbd_device {
295 int dev_id; /* blkdev unique id */
296
297 int major; /* blkdev assigned major */
298 struct gendisk *disk; /* blkdev's gendisk and rq */
299
300 u32 image_format; /* Either 1 or 2 */
301 struct rbd_client *rbd_client;
302
303 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
304
305 spinlock_t lock; /* queue, flags, open_count */
306
307 struct rbd_image_header header;
308 unsigned long flags; /* possibly lock protected */
309 struct rbd_spec *spec;
310
311 char *header_name;
312
313 struct ceph_file_layout layout;
314
315 struct ceph_osd_event *watch_event;
316 struct rbd_obj_request *watch_request;
317
318 struct rbd_spec *parent_spec;
319 u64 parent_overlap;
320 struct rbd_device *parent;
321
322 /* protects updating the header */
323 struct rw_semaphore header_rwsem;
324
325 struct rbd_mapping mapping;
326
327 struct list_head node;
328
329 /* list of snapshots */
330 struct list_head snaps;
331
332 /* sysfs related */
333 struct device dev;
334 unsigned long open_count; /* protected by lock */
335 };
336
337 /*
338 * Flag bits for rbd_dev->flags. If atomicity is required,
339 * rbd_dev->lock is used to protect access.
340 *
341 * Currently, only the "removing" flag (which is coupled with the
342 * "open_count" field) requires atomic access.
343 */
344 enum rbd_dev_flags {
345 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
346 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
347 };
348
349 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
350
351 static LIST_HEAD(rbd_dev_list); /* devices */
352 static DEFINE_SPINLOCK(rbd_dev_list_lock);
353
354 static LIST_HEAD(rbd_client_list); /* clients */
355 static DEFINE_SPINLOCK(rbd_client_list_lock);
356
357 static int rbd_img_request_submit(struct rbd_img_request *img_request);
358
359 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
360
361 static void rbd_dev_device_release(struct device *dev);
362 static void rbd_snap_destroy(struct rbd_snap *snap);
363
364 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
365 size_t count);
366 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
367 size_t count);
368 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
369
370 static struct bus_attribute rbd_bus_attrs[] = {
371 __ATTR(add, S_IWUSR, NULL, rbd_add),
372 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
373 __ATTR_NULL
374 };
375
376 static struct bus_type rbd_bus_type = {
377 .name = "rbd",
378 .bus_attrs = rbd_bus_attrs,
379 };
380
381 static void rbd_root_dev_release(struct device *dev)
382 {
383 }
384
385 static struct device rbd_root_dev = {
386 .init_name = "rbd",
387 .release = rbd_root_dev_release,
388 };
389
390 static __printf(2, 3)
391 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
392 {
393 struct va_format vaf;
394 va_list args;
395
396 va_start(args, fmt);
397 vaf.fmt = fmt;
398 vaf.va = &args;
399
400 if (!rbd_dev)
401 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
402 else if (rbd_dev->disk)
403 printk(KERN_WARNING "%s: %s: %pV\n",
404 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
405 else if (rbd_dev->spec && rbd_dev->spec->image_name)
406 printk(KERN_WARNING "%s: image %s: %pV\n",
407 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
408 else if (rbd_dev->spec && rbd_dev->spec->image_id)
409 printk(KERN_WARNING "%s: id %s: %pV\n",
410 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
411 else /* punt */
412 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
413 RBD_DRV_NAME, rbd_dev, &vaf);
414 va_end(args);
415 }
416
417 #ifdef RBD_DEBUG
418 #define rbd_assert(expr) \
419 if (unlikely(!(expr))) { \
420 printk(KERN_ERR "\nAssertion failure in %s() " \
421 "at line %d:\n\n" \
422 "\trbd_assert(%s);\n\n", \
423 __func__, __LINE__, #expr); \
424 BUG(); \
425 }
426 #else /* !RBD_DEBUG */
427 # define rbd_assert(expr) ((void) 0)
428 #endif /* !RBD_DEBUG */
429
430 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
431 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
432 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
433
434 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
435 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
436
437 static int rbd_open(struct block_device *bdev, fmode_t mode)
438 {
439 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
440 bool removing = false;
441
442 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
443 return -EROFS;
444
445 spin_lock_irq(&rbd_dev->lock);
446 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
447 removing = true;
448 else
449 rbd_dev->open_count++;
450 spin_unlock_irq(&rbd_dev->lock);
451 if (removing)
452 return -ENOENT;
453
454 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
455 (void) get_device(&rbd_dev->dev);
456 set_device_ro(bdev, rbd_dev->mapping.read_only);
457 mutex_unlock(&ctl_mutex);
458
459 return 0;
460 }
461
462 static int rbd_release(struct gendisk *disk, fmode_t mode)
463 {
464 struct rbd_device *rbd_dev = disk->private_data;
465 unsigned long open_count_before;
466
467 spin_lock_irq(&rbd_dev->lock);
468 open_count_before = rbd_dev->open_count--;
469 spin_unlock_irq(&rbd_dev->lock);
470 rbd_assert(open_count_before > 0);
471
472 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
473 put_device(&rbd_dev->dev);
474 mutex_unlock(&ctl_mutex);
475
476 return 0;
477 }
478
479 static const struct block_device_operations rbd_bd_ops = {
480 .owner = THIS_MODULE,
481 .open = rbd_open,
482 .release = rbd_release,
483 };
484
485 /*
486 * Initialize an rbd client instance.
487 * We own *ceph_opts.
488 */
489 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
490 {
491 struct rbd_client *rbdc;
492 int ret = -ENOMEM;
493
494 dout("%s:\n", __func__);
495 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
496 if (!rbdc)
497 goto out_opt;
498
499 kref_init(&rbdc->kref);
500 INIT_LIST_HEAD(&rbdc->node);
501
502 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
503
504 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
505 if (IS_ERR(rbdc->client))
506 goto out_mutex;
507 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
508
509 ret = ceph_open_session(rbdc->client);
510 if (ret < 0)
511 goto out_err;
512
513 spin_lock(&rbd_client_list_lock);
514 list_add_tail(&rbdc->node, &rbd_client_list);
515 spin_unlock(&rbd_client_list_lock);
516
517 mutex_unlock(&ctl_mutex);
518 dout("%s: rbdc %p\n", __func__, rbdc);
519
520 return rbdc;
521
522 out_err:
523 ceph_destroy_client(rbdc->client);
524 out_mutex:
525 mutex_unlock(&ctl_mutex);
526 kfree(rbdc);
527 out_opt:
528 if (ceph_opts)
529 ceph_destroy_options(ceph_opts);
530 dout("%s: error %d\n", __func__, ret);
531
532 return ERR_PTR(ret);
533 }
534
535 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
536 {
537 kref_get(&rbdc->kref);
538
539 return rbdc;
540 }
541
542 /*
543 * Find a ceph client with specific addr and configuration. If
544 * found, bump its reference count.
545 */
546 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
547 {
548 struct rbd_client *client_node;
549 bool found = false;
550
551 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
552 return NULL;
553
554 spin_lock(&rbd_client_list_lock);
555 list_for_each_entry(client_node, &rbd_client_list, node) {
556 if (!ceph_compare_options(ceph_opts, client_node->client)) {
557 __rbd_get_client(client_node);
558
559 found = true;
560 break;
561 }
562 }
563 spin_unlock(&rbd_client_list_lock);
564
565 return found ? client_node : NULL;
566 }
567
568 /*
569 * mount options
570 */
571 enum {
572 Opt_last_int,
573 /* int args above */
574 Opt_last_string,
575 /* string args above */
576 Opt_read_only,
577 Opt_read_write,
578 /* Boolean args above */
579 Opt_last_bool,
580 };
581
582 static match_table_t rbd_opts_tokens = {
583 /* int args above */
584 /* string args above */
585 {Opt_read_only, "read_only"},
586 {Opt_read_only, "ro"}, /* Alternate spelling */
587 {Opt_read_write, "read_write"},
588 {Opt_read_write, "rw"}, /* Alternate spelling */
589 /* Boolean args above */
590 {-1, NULL}
591 };
592
593 struct rbd_options {
594 bool read_only;
595 };
596
597 #define RBD_READ_ONLY_DEFAULT false
598
599 static int parse_rbd_opts_token(char *c, void *private)
600 {
601 struct rbd_options *rbd_opts = private;
602 substring_t argstr[MAX_OPT_ARGS];
603 int token, intval, ret;
604
605 token = match_token(c, rbd_opts_tokens, argstr);
606 if (token < 0)
607 return -EINVAL;
608
609 if (token < Opt_last_int) {
610 ret = match_int(&argstr[0], &intval);
611 if (ret < 0) {
612 pr_err("bad mount option arg (not int) "
613 "at '%s'\n", c);
614 return ret;
615 }
616 dout("got int token %d val %d\n", token, intval);
617 } else if (token > Opt_last_int && token < Opt_last_string) {
618 dout("got string token %d val %s\n", token,
619 argstr[0].from);
620 } else if (token > Opt_last_string && token < Opt_last_bool) {
621 dout("got Boolean token %d\n", token);
622 } else {
623 dout("got token %d\n", token);
624 }
625
626 switch (token) {
627 case Opt_read_only:
628 rbd_opts->read_only = true;
629 break;
630 case Opt_read_write:
631 rbd_opts->read_only = false;
632 break;
633 default:
634 rbd_assert(false);
635 break;
636 }
637 return 0;
638 }
639
640 /*
641 * Get a ceph client with specific addr and configuration, if one does
642 * not exist create it.
643 */
644 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
645 {
646 struct rbd_client *rbdc;
647
648 rbdc = rbd_client_find(ceph_opts);
649 if (rbdc) /* using an existing client */
650 ceph_destroy_options(ceph_opts);
651 else
652 rbdc = rbd_client_create(ceph_opts);
653
654 return rbdc;
655 }
656
657 /*
658 * Destroy ceph client
659 *
660 * Caller must hold rbd_client_list_lock.
661 */
662 static void rbd_client_release(struct kref *kref)
663 {
664 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
665
666 dout("%s: rbdc %p\n", __func__, rbdc);
667 spin_lock(&rbd_client_list_lock);
668 list_del(&rbdc->node);
669 spin_unlock(&rbd_client_list_lock);
670
671 ceph_destroy_client(rbdc->client);
672 kfree(rbdc);
673 }
674
675 /* Caller has to fill in snapc->seq and snapc->snaps[0..snap_count-1] */
676
677 static struct ceph_snap_context *rbd_snap_context_create(u32 snap_count)
678 {
679 struct ceph_snap_context *snapc;
680 size_t size;
681
682 size = sizeof (struct ceph_snap_context);
683 size += snap_count * sizeof (snapc->snaps[0]);
684 snapc = kzalloc(size, GFP_KERNEL);
685 if (!snapc)
686 return NULL;
687
688 atomic_set(&snapc->nref, 1);
689 snapc->num_snaps = snap_count;
690
691 return snapc;
692 }
693
694 static inline void rbd_snap_context_get(struct ceph_snap_context *snapc)
695 {
696 (void)ceph_get_snap_context(snapc);
697 }
698
699 static inline void rbd_snap_context_put(struct ceph_snap_context *snapc)
700 {
701 ceph_put_snap_context(snapc);
702 }
703
704 /*
705 * Drop reference to ceph client node. If it's not referenced anymore, release
706 * it.
707 */
708 static void rbd_put_client(struct rbd_client *rbdc)
709 {
710 if (rbdc)
711 kref_put(&rbdc->kref, rbd_client_release);
712 }
713
714 static bool rbd_image_format_valid(u32 image_format)
715 {
716 return image_format == 1 || image_format == 2;
717 }
718
719 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
720 {
721 size_t size;
722 u32 snap_count;
723
724 /* The header has to start with the magic rbd header text */
725 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
726 return false;
727
728 /* The bio layer requires at least sector-sized I/O */
729
730 if (ondisk->options.order < SECTOR_SHIFT)
731 return false;
732
733 /* If we use u64 in a few spots we may be able to loosen this */
734
735 if (ondisk->options.order > 8 * sizeof (int) - 1)
736 return false;
737
738 /*
739 * The size of a snapshot header has to fit in a size_t, and
740 * that limits the number of snapshots.
741 */
742 snap_count = le32_to_cpu(ondisk->snap_count);
743 size = SIZE_MAX - sizeof (struct ceph_snap_context);
744 if (snap_count > size / sizeof (__le64))
745 return false;
746
747 /*
748 * Not only that, but the size of the entire the snapshot
749 * header must also be representable in a size_t.
750 */
751 size -= snap_count * sizeof (__le64);
752 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
753 return false;
754
755 return true;
756 }
757
758 /*
759 * Create a new header structure, translate header format from the on-disk
760 * header.
761 */
762 static int rbd_header_from_disk(struct rbd_image_header *header,
763 struct rbd_image_header_ondisk *ondisk)
764 {
765 u32 snap_count;
766 size_t len;
767 size_t size;
768 u32 i;
769
770 memset(header, 0, sizeof (*header));
771
772 snap_count = le32_to_cpu(ondisk->snap_count);
773
774 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
775 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
776 if (!header->object_prefix)
777 return -ENOMEM;
778 memcpy(header->object_prefix, ondisk->object_prefix, len);
779 header->object_prefix[len] = '\0';
780
781 if (snap_count) {
782 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
783
784 /* Save a copy of the snapshot names */
785
786 if (snap_names_len > (u64) SIZE_MAX)
787 return -EIO;
788 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
789 if (!header->snap_names)
790 goto out_err;
791 /*
792 * Note that rbd_dev_v1_header_read() guarantees
793 * the ondisk buffer we're working with has
794 * snap_names_len bytes beyond the end of the
795 * snapshot id array, this memcpy() is safe.
796 */
797 memcpy(header->snap_names, &ondisk->snaps[snap_count],
798 snap_names_len);
799
800 /* Record each snapshot's size */
801
802 size = snap_count * sizeof (*header->snap_sizes);
803 header->snap_sizes = kmalloc(size, GFP_KERNEL);
804 if (!header->snap_sizes)
805 goto out_err;
806 for (i = 0; i < snap_count; i++)
807 header->snap_sizes[i] =
808 le64_to_cpu(ondisk->snaps[i].image_size);
809 } else {
810 header->snap_names = NULL;
811 header->snap_sizes = NULL;
812 }
813
814 header->features = 0; /* No features support in v1 images */
815 header->obj_order = ondisk->options.order;
816 header->crypt_type = ondisk->options.crypt_type;
817 header->comp_type = ondisk->options.comp_type;
818
819 /* Allocate and fill in the snapshot context */
820
821 header->image_size = le64_to_cpu(ondisk->image_size);
822
823 header->snapc = rbd_snap_context_create(snap_count);
824 if (!header->snapc)
825 goto out_err;
826 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
827 for (i = 0; i < snap_count; i++)
828 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
829
830 return 0;
831
832 out_err:
833 kfree(header->snap_sizes);
834 header->snap_sizes = NULL;
835 kfree(header->snap_names);
836 header->snap_names = NULL;
837 kfree(header->object_prefix);
838 header->object_prefix = NULL;
839
840 return -ENOMEM;
841 }
842
843 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
844 {
845 struct rbd_snap *snap;
846
847 if (snap_id == CEPH_NOSNAP)
848 return RBD_SNAP_HEAD_NAME;
849
850 list_for_each_entry(snap, &rbd_dev->snaps, node)
851 if (snap_id == snap->id)
852 return snap->name;
853
854 return NULL;
855 }
856
857 static struct rbd_snap *snap_by_name(struct rbd_device *rbd_dev,
858 const char *snap_name)
859 {
860 struct rbd_snap *snap;
861
862 list_for_each_entry(snap, &rbd_dev->snaps, node)
863 if (!strcmp(snap_name, snap->name))
864 return snap;
865
866 return NULL;
867 }
868
869 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
870 {
871 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
872 sizeof (RBD_SNAP_HEAD_NAME))) {
873 rbd_dev->mapping.size = rbd_dev->header.image_size;
874 rbd_dev->mapping.features = rbd_dev->header.features;
875 } else {
876 struct rbd_snap *snap;
877
878 snap = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
879 if (!snap)
880 return -ENOENT;
881 rbd_dev->mapping.size = snap->size;
882 rbd_dev->mapping.features = snap->features;
883 rbd_dev->mapping.read_only = true;
884 }
885
886 return 0;
887 }
888
889 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
890 {
891 rbd_dev->mapping.size = 0;
892 rbd_dev->mapping.features = 0;
893 rbd_dev->mapping.read_only = true;
894 }
895
896 static void rbd_dev_clear_mapping(struct rbd_device *rbd_dev)
897 {
898 rbd_dev->mapping.size = 0;
899 rbd_dev->mapping.features = 0;
900 rbd_dev->mapping.read_only = true;
901 }
902
903 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
904 {
905 char *name;
906 u64 segment;
907 int ret;
908
909 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
910 if (!name)
911 return NULL;
912 segment = offset >> rbd_dev->header.obj_order;
913 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
914 rbd_dev->header.object_prefix, segment);
915 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
916 pr_err("error formatting segment name for #%llu (%d)\n",
917 segment, ret);
918 kfree(name);
919 name = NULL;
920 }
921
922 return name;
923 }
924
925 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
926 {
927 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
928
929 return offset & (segment_size - 1);
930 }
931
932 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
933 u64 offset, u64 length)
934 {
935 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
936
937 offset &= segment_size - 1;
938
939 rbd_assert(length <= U64_MAX - offset);
940 if (offset + length > segment_size)
941 length = segment_size - offset;
942
943 return length;
944 }
945
946 /*
947 * returns the size of an object in the image
948 */
949 static u64 rbd_obj_bytes(struct rbd_image_header *header)
950 {
951 return 1 << header->obj_order;
952 }
953
954 /*
955 * bio helpers
956 */
957
958 static void bio_chain_put(struct bio *chain)
959 {
960 struct bio *tmp;
961
962 while (chain) {
963 tmp = chain;
964 chain = chain->bi_next;
965 bio_put(tmp);
966 }
967 }
968
969 /*
970 * zeros a bio chain, starting at specific offset
971 */
972 static void zero_bio_chain(struct bio *chain, int start_ofs)
973 {
974 struct bio_vec *bv;
975 unsigned long flags;
976 void *buf;
977 int i;
978 int pos = 0;
979
980 while (chain) {
981 bio_for_each_segment(bv, chain, i) {
982 if (pos + bv->bv_len > start_ofs) {
983 int remainder = max(start_ofs - pos, 0);
984 buf = bvec_kmap_irq(bv, &flags);
985 memset(buf + remainder, 0,
986 bv->bv_len - remainder);
987 bvec_kunmap_irq(buf, &flags);
988 }
989 pos += bv->bv_len;
990 }
991
992 chain = chain->bi_next;
993 }
994 }
995
996 /*
997 * similar to zero_bio_chain(), zeros data defined by a page array,
998 * starting at the given byte offset from the start of the array and
999 * continuing up to the given end offset. The pages array is
1000 * assumed to be big enough to hold all bytes up to the end.
1001 */
1002 static void zero_pages(struct page **pages, u64 offset, u64 end)
1003 {
1004 struct page **page = &pages[offset >> PAGE_SHIFT];
1005
1006 rbd_assert(end > offset);
1007 rbd_assert(end - offset <= (u64)SIZE_MAX);
1008 while (offset < end) {
1009 size_t page_offset;
1010 size_t length;
1011 unsigned long flags;
1012 void *kaddr;
1013
1014 page_offset = (size_t)(offset & ~PAGE_MASK);
1015 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1016 local_irq_save(flags);
1017 kaddr = kmap_atomic(*page);
1018 memset(kaddr + page_offset, 0, length);
1019 kunmap_atomic(kaddr);
1020 local_irq_restore(flags);
1021
1022 offset += length;
1023 page++;
1024 }
1025 }
1026
1027 /*
1028 * Clone a portion of a bio, starting at the given byte offset
1029 * and continuing for the number of bytes indicated.
1030 */
1031 static struct bio *bio_clone_range(struct bio *bio_src,
1032 unsigned int offset,
1033 unsigned int len,
1034 gfp_t gfpmask)
1035 {
1036 struct bio_vec *bv;
1037 unsigned int resid;
1038 unsigned short idx;
1039 unsigned int voff;
1040 unsigned short end_idx;
1041 unsigned short vcnt;
1042 struct bio *bio;
1043
1044 /* Handle the easy case for the caller */
1045
1046 if (!offset && len == bio_src->bi_size)
1047 return bio_clone(bio_src, gfpmask);
1048
1049 if (WARN_ON_ONCE(!len))
1050 return NULL;
1051 if (WARN_ON_ONCE(len > bio_src->bi_size))
1052 return NULL;
1053 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1054 return NULL;
1055
1056 /* Find first affected segment... */
1057
1058 resid = offset;
1059 __bio_for_each_segment(bv, bio_src, idx, 0) {
1060 if (resid < bv->bv_len)
1061 break;
1062 resid -= bv->bv_len;
1063 }
1064 voff = resid;
1065
1066 /* ...and the last affected segment */
1067
1068 resid += len;
1069 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1070 if (resid <= bv->bv_len)
1071 break;
1072 resid -= bv->bv_len;
1073 }
1074 vcnt = end_idx - idx + 1;
1075
1076 /* Build the clone */
1077
1078 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1079 if (!bio)
1080 return NULL; /* ENOMEM */
1081
1082 bio->bi_bdev = bio_src->bi_bdev;
1083 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1084 bio->bi_rw = bio_src->bi_rw;
1085 bio->bi_flags |= 1 << BIO_CLONED;
1086
1087 /*
1088 * Copy over our part of the bio_vec, then update the first
1089 * and last (or only) entries.
1090 */
1091 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1092 vcnt * sizeof (struct bio_vec));
1093 bio->bi_io_vec[0].bv_offset += voff;
1094 if (vcnt > 1) {
1095 bio->bi_io_vec[0].bv_len -= voff;
1096 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1097 } else {
1098 bio->bi_io_vec[0].bv_len = len;
1099 }
1100
1101 bio->bi_vcnt = vcnt;
1102 bio->bi_size = len;
1103 bio->bi_idx = 0;
1104
1105 return bio;
1106 }
1107
1108 /*
1109 * Clone a portion of a bio chain, starting at the given byte offset
1110 * into the first bio in the source chain and continuing for the
1111 * number of bytes indicated. The result is another bio chain of
1112 * exactly the given length, or a null pointer on error.
1113 *
1114 * The bio_src and offset parameters are both in-out. On entry they
1115 * refer to the first source bio and the offset into that bio where
1116 * the start of data to be cloned is located.
1117 *
1118 * On return, bio_src is updated to refer to the bio in the source
1119 * chain that contains first un-cloned byte, and *offset will
1120 * contain the offset of that byte within that bio.
1121 */
1122 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1123 unsigned int *offset,
1124 unsigned int len,
1125 gfp_t gfpmask)
1126 {
1127 struct bio *bi = *bio_src;
1128 unsigned int off = *offset;
1129 struct bio *chain = NULL;
1130 struct bio **end;
1131
1132 /* Build up a chain of clone bios up to the limit */
1133
1134 if (!bi || off >= bi->bi_size || !len)
1135 return NULL; /* Nothing to clone */
1136
1137 end = &chain;
1138 while (len) {
1139 unsigned int bi_size;
1140 struct bio *bio;
1141
1142 if (!bi) {
1143 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1144 goto out_err; /* EINVAL; ran out of bio's */
1145 }
1146 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1147 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1148 if (!bio)
1149 goto out_err; /* ENOMEM */
1150
1151 *end = bio;
1152 end = &bio->bi_next;
1153
1154 off += bi_size;
1155 if (off == bi->bi_size) {
1156 bi = bi->bi_next;
1157 off = 0;
1158 }
1159 len -= bi_size;
1160 }
1161 *bio_src = bi;
1162 *offset = off;
1163
1164 return chain;
1165 out_err:
1166 bio_chain_put(chain);
1167
1168 return NULL;
1169 }
1170
1171 /*
1172 * The default/initial value for all object request flags is 0. For
1173 * each flag, once its value is set to 1 it is never reset to 0
1174 * again.
1175 */
1176 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1177 {
1178 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1179 struct rbd_device *rbd_dev;
1180
1181 rbd_dev = obj_request->img_request->rbd_dev;
1182 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1183 obj_request);
1184 }
1185 }
1186
1187 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1188 {
1189 smp_mb();
1190 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1191 }
1192
1193 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1194 {
1195 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1196 struct rbd_device *rbd_dev = NULL;
1197
1198 if (obj_request_img_data_test(obj_request))
1199 rbd_dev = obj_request->img_request->rbd_dev;
1200 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1201 obj_request);
1202 }
1203 }
1204
1205 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1206 {
1207 smp_mb();
1208 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1209 }
1210
1211 /*
1212 * This sets the KNOWN flag after (possibly) setting the EXISTS
1213 * flag. The latter is set based on the "exists" value provided.
1214 *
1215 * Note that for our purposes once an object exists it never goes
1216 * away again. It's possible that the response from two existence
1217 * checks are separated by the creation of the target object, and
1218 * the first ("doesn't exist") response arrives *after* the second
1219 * ("does exist"). In that case we ignore the second one.
1220 */
1221 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1222 bool exists)
1223 {
1224 if (exists)
1225 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1226 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1227 smp_mb();
1228 }
1229
1230 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1231 {
1232 smp_mb();
1233 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1234 }
1235
1236 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1237 {
1238 smp_mb();
1239 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1240 }
1241
1242 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1243 {
1244 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1245 atomic_read(&obj_request->kref.refcount));
1246 kref_get(&obj_request->kref);
1247 }
1248
1249 static void rbd_obj_request_destroy(struct kref *kref);
1250 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1251 {
1252 rbd_assert(obj_request != NULL);
1253 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1254 atomic_read(&obj_request->kref.refcount));
1255 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1256 }
1257
1258 static void rbd_img_request_get(struct rbd_img_request *img_request)
1259 {
1260 dout("%s: img %p (was %d)\n", __func__, img_request,
1261 atomic_read(&img_request->kref.refcount));
1262 kref_get(&img_request->kref);
1263 }
1264
1265 static void rbd_img_request_destroy(struct kref *kref);
1266 static void rbd_img_request_put(struct rbd_img_request *img_request)
1267 {
1268 rbd_assert(img_request != NULL);
1269 dout("%s: img %p (was %d)\n", __func__, img_request,
1270 atomic_read(&img_request->kref.refcount));
1271 kref_put(&img_request->kref, rbd_img_request_destroy);
1272 }
1273
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275 struct rbd_obj_request *obj_request)
1276 {
1277 rbd_assert(obj_request->img_request == NULL);
1278
1279 /* Image request now owns object's original reference */
1280 obj_request->img_request = img_request;
1281 obj_request->which = img_request->obj_request_count;
1282 rbd_assert(!obj_request_img_data_test(obj_request));
1283 obj_request_img_data_set(obj_request);
1284 rbd_assert(obj_request->which != BAD_WHICH);
1285 img_request->obj_request_count++;
1286 list_add_tail(&obj_request->links, &img_request->obj_requests);
1287 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1288 obj_request->which);
1289 }
1290
1291 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1292 struct rbd_obj_request *obj_request)
1293 {
1294 rbd_assert(obj_request->which != BAD_WHICH);
1295
1296 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1297 obj_request->which);
1298 list_del(&obj_request->links);
1299 rbd_assert(img_request->obj_request_count > 0);
1300 img_request->obj_request_count--;
1301 rbd_assert(obj_request->which == img_request->obj_request_count);
1302 obj_request->which = BAD_WHICH;
1303 rbd_assert(obj_request_img_data_test(obj_request));
1304 rbd_assert(obj_request->img_request == img_request);
1305 obj_request->img_request = NULL;
1306 obj_request->callback = NULL;
1307 rbd_obj_request_put(obj_request);
1308 }
1309
1310 static bool obj_request_type_valid(enum obj_request_type type)
1311 {
1312 switch (type) {
1313 case OBJ_REQUEST_NODATA:
1314 case OBJ_REQUEST_BIO:
1315 case OBJ_REQUEST_PAGES:
1316 return true;
1317 default:
1318 return false;
1319 }
1320 }
1321
1322 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1323 struct rbd_obj_request *obj_request)
1324 {
1325 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1326
1327 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1328 }
1329
1330 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1331 {
1332
1333 dout("%s: img %p\n", __func__, img_request);
1334
1335 /*
1336 * If no error occurred, compute the aggregate transfer
1337 * count for the image request. We could instead use
1338 * atomic64_cmpxchg() to update it as each object request
1339 * completes; not clear which way is better off hand.
1340 */
1341 if (!img_request->result) {
1342 struct rbd_obj_request *obj_request;
1343 u64 xferred = 0;
1344
1345 for_each_obj_request(img_request, obj_request)
1346 xferred += obj_request->xferred;
1347 img_request->xferred = xferred;
1348 }
1349
1350 if (img_request->callback)
1351 img_request->callback(img_request);
1352 else
1353 rbd_img_request_put(img_request);
1354 }
1355
1356 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1357
1358 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1359 {
1360 dout("%s: obj %p\n", __func__, obj_request);
1361
1362 return wait_for_completion_interruptible(&obj_request->completion);
1363 }
1364
1365 /*
1366 * The default/initial value for all image request flags is 0. Each
1367 * is conditionally set to 1 at image request initialization time
1368 * and currently never change thereafter.
1369 */
1370 static void img_request_write_set(struct rbd_img_request *img_request)
1371 {
1372 set_bit(IMG_REQ_WRITE, &img_request->flags);
1373 smp_mb();
1374 }
1375
1376 static bool img_request_write_test(struct rbd_img_request *img_request)
1377 {
1378 smp_mb();
1379 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1380 }
1381
1382 static void img_request_child_set(struct rbd_img_request *img_request)
1383 {
1384 set_bit(IMG_REQ_CHILD, &img_request->flags);
1385 smp_mb();
1386 }
1387
1388 static bool img_request_child_test(struct rbd_img_request *img_request)
1389 {
1390 smp_mb();
1391 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1392 }
1393
1394 static void img_request_layered_set(struct rbd_img_request *img_request)
1395 {
1396 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1397 smp_mb();
1398 }
1399
1400 static bool img_request_layered_test(struct rbd_img_request *img_request)
1401 {
1402 smp_mb();
1403 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1404 }
1405
1406 static void
1407 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1408 {
1409 u64 xferred = obj_request->xferred;
1410 u64 length = obj_request->length;
1411
1412 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1413 obj_request, obj_request->img_request, obj_request->result,
1414 xferred, length);
1415 /*
1416 * ENOENT means a hole in the image. We zero-fill the
1417 * entire length of the request. A short read also implies
1418 * zero-fill to the end of the request. Either way we
1419 * update the xferred count to indicate the whole request
1420 * was satisfied.
1421 */
1422 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1423 if (obj_request->result == -ENOENT) {
1424 if (obj_request->type == OBJ_REQUEST_BIO)
1425 zero_bio_chain(obj_request->bio_list, 0);
1426 else
1427 zero_pages(obj_request->pages, 0, length);
1428 obj_request->result = 0;
1429 obj_request->xferred = length;
1430 } else if (xferred < length && !obj_request->result) {
1431 if (obj_request->type == OBJ_REQUEST_BIO)
1432 zero_bio_chain(obj_request->bio_list, xferred);
1433 else
1434 zero_pages(obj_request->pages, xferred, length);
1435 obj_request->xferred = length;
1436 }
1437 obj_request_done_set(obj_request);
1438 }
1439
1440 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1441 {
1442 dout("%s: obj %p cb %p\n", __func__, obj_request,
1443 obj_request->callback);
1444 if (obj_request->callback)
1445 obj_request->callback(obj_request);
1446 else
1447 complete_all(&obj_request->completion);
1448 }
1449
1450 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1451 {
1452 dout("%s: obj %p\n", __func__, obj_request);
1453 obj_request_done_set(obj_request);
1454 }
1455
1456 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1457 {
1458 struct rbd_img_request *img_request = NULL;
1459 struct rbd_device *rbd_dev = NULL;
1460 bool layered = false;
1461
1462 if (obj_request_img_data_test(obj_request)) {
1463 img_request = obj_request->img_request;
1464 layered = img_request && img_request_layered_test(img_request);
1465 rbd_dev = img_request->rbd_dev;
1466 }
1467
1468 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1469 obj_request, img_request, obj_request->result,
1470 obj_request->xferred, obj_request->length);
1471 if (layered && obj_request->result == -ENOENT &&
1472 obj_request->img_offset < rbd_dev->parent_overlap)
1473 rbd_img_parent_read(obj_request);
1474 else if (img_request)
1475 rbd_img_obj_request_read_callback(obj_request);
1476 else
1477 obj_request_done_set(obj_request);
1478 }
1479
1480 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1481 {
1482 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1483 obj_request->result, obj_request->length);
1484 /*
1485 * There is no such thing as a successful short write. Set
1486 * it to our originally-requested length.
1487 */
1488 obj_request->xferred = obj_request->length;
1489 obj_request_done_set(obj_request);
1490 }
1491
1492 /*
1493 * For a simple stat call there's nothing to do. We'll do more if
1494 * this is part of a write sequence for a layered image.
1495 */
1496 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1497 {
1498 dout("%s: obj %p\n", __func__, obj_request);
1499 obj_request_done_set(obj_request);
1500 }
1501
1502 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1503 struct ceph_msg *msg)
1504 {
1505 struct rbd_obj_request *obj_request = osd_req->r_priv;
1506 u16 opcode;
1507
1508 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1509 rbd_assert(osd_req == obj_request->osd_req);
1510 if (obj_request_img_data_test(obj_request)) {
1511 rbd_assert(obj_request->img_request);
1512 rbd_assert(obj_request->which != BAD_WHICH);
1513 } else {
1514 rbd_assert(obj_request->which == BAD_WHICH);
1515 }
1516
1517 if (osd_req->r_result < 0)
1518 obj_request->result = osd_req->r_result;
1519 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1520
1521 BUG_ON(osd_req->r_num_ops > 2);
1522
1523 /*
1524 * We support a 64-bit length, but ultimately it has to be
1525 * passed to blk_end_request(), which takes an unsigned int.
1526 */
1527 obj_request->xferred = osd_req->r_reply_op_len[0];
1528 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1529 opcode = osd_req->r_ops[0].op;
1530 switch (opcode) {
1531 case CEPH_OSD_OP_READ:
1532 rbd_osd_read_callback(obj_request);
1533 break;
1534 case CEPH_OSD_OP_WRITE:
1535 rbd_osd_write_callback(obj_request);
1536 break;
1537 case CEPH_OSD_OP_STAT:
1538 rbd_osd_stat_callback(obj_request);
1539 break;
1540 case CEPH_OSD_OP_CALL:
1541 case CEPH_OSD_OP_NOTIFY_ACK:
1542 case CEPH_OSD_OP_WATCH:
1543 rbd_osd_trivial_callback(obj_request);
1544 break;
1545 default:
1546 rbd_warn(NULL, "%s: unsupported op %hu\n",
1547 obj_request->object_name, (unsigned short) opcode);
1548 break;
1549 }
1550
1551 if (obj_request_done_test(obj_request))
1552 rbd_obj_request_complete(obj_request);
1553 }
1554
1555 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1556 {
1557 struct rbd_img_request *img_request = obj_request->img_request;
1558 struct ceph_osd_request *osd_req = obj_request->osd_req;
1559 u64 snap_id;
1560
1561 rbd_assert(osd_req != NULL);
1562
1563 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1564 ceph_osdc_build_request(osd_req, obj_request->offset,
1565 NULL, snap_id, NULL);
1566 }
1567
1568 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1569 {
1570 struct rbd_img_request *img_request = obj_request->img_request;
1571 struct ceph_osd_request *osd_req = obj_request->osd_req;
1572 struct ceph_snap_context *snapc;
1573 struct timespec mtime = CURRENT_TIME;
1574
1575 rbd_assert(osd_req != NULL);
1576
1577 snapc = img_request ? img_request->snapc : NULL;
1578 ceph_osdc_build_request(osd_req, obj_request->offset,
1579 snapc, CEPH_NOSNAP, &mtime);
1580 }
1581
1582 static struct ceph_osd_request *rbd_osd_req_create(
1583 struct rbd_device *rbd_dev,
1584 bool write_request,
1585 struct rbd_obj_request *obj_request)
1586 {
1587 struct ceph_snap_context *snapc = NULL;
1588 struct ceph_osd_client *osdc;
1589 struct ceph_osd_request *osd_req;
1590
1591 if (obj_request_img_data_test(obj_request)) {
1592 struct rbd_img_request *img_request = obj_request->img_request;
1593
1594 rbd_assert(write_request ==
1595 img_request_write_test(img_request));
1596 if (write_request)
1597 snapc = img_request->snapc;
1598 }
1599
1600 /* Allocate and initialize the request, for the single op */
1601
1602 osdc = &rbd_dev->rbd_client->client->osdc;
1603 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1604 if (!osd_req)
1605 return NULL; /* ENOMEM */
1606
1607 if (write_request)
1608 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1609 else
1610 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1611
1612 osd_req->r_callback = rbd_osd_req_callback;
1613 osd_req->r_priv = obj_request;
1614
1615 osd_req->r_oid_len = strlen(obj_request->object_name);
1616 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1617 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1618
1619 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1620
1621 return osd_req;
1622 }
1623
1624 /*
1625 * Create a copyup osd request based on the information in the
1626 * object request supplied. A copyup request has two osd ops,
1627 * a copyup method call, and a "normal" write request.
1628 */
1629 static struct ceph_osd_request *
1630 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1631 {
1632 struct rbd_img_request *img_request;
1633 struct ceph_snap_context *snapc;
1634 struct rbd_device *rbd_dev;
1635 struct ceph_osd_client *osdc;
1636 struct ceph_osd_request *osd_req;
1637
1638 rbd_assert(obj_request_img_data_test(obj_request));
1639 img_request = obj_request->img_request;
1640 rbd_assert(img_request);
1641 rbd_assert(img_request_write_test(img_request));
1642
1643 /* Allocate and initialize the request, for the two ops */
1644
1645 snapc = img_request->snapc;
1646 rbd_dev = img_request->rbd_dev;
1647 osdc = &rbd_dev->rbd_client->client->osdc;
1648 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1649 if (!osd_req)
1650 return NULL; /* ENOMEM */
1651
1652 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1653 osd_req->r_callback = rbd_osd_req_callback;
1654 osd_req->r_priv = obj_request;
1655
1656 osd_req->r_oid_len = strlen(obj_request->object_name);
1657 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1658 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1659
1660 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1661
1662 return osd_req;
1663 }
1664
1665
1666 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1667 {
1668 ceph_osdc_put_request(osd_req);
1669 }
1670
1671 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1672
1673 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1674 u64 offset, u64 length,
1675 enum obj_request_type type)
1676 {
1677 struct rbd_obj_request *obj_request;
1678 size_t size;
1679 char *name;
1680
1681 rbd_assert(obj_request_type_valid(type));
1682
1683 size = strlen(object_name) + 1;
1684 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1685 if (!obj_request)
1686 return NULL;
1687
1688 name = (char *)(obj_request + 1);
1689 obj_request->object_name = memcpy(name, object_name, size);
1690 obj_request->offset = offset;
1691 obj_request->length = length;
1692 obj_request->flags = 0;
1693 obj_request->which = BAD_WHICH;
1694 obj_request->type = type;
1695 INIT_LIST_HEAD(&obj_request->links);
1696 init_completion(&obj_request->completion);
1697 kref_init(&obj_request->kref);
1698
1699 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1700 offset, length, (int)type, obj_request);
1701
1702 return obj_request;
1703 }
1704
1705 static void rbd_obj_request_destroy(struct kref *kref)
1706 {
1707 struct rbd_obj_request *obj_request;
1708
1709 obj_request = container_of(kref, struct rbd_obj_request, kref);
1710
1711 dout("%s: obj %p\n", __func__, obj_request);
1712
1713 rbd_assert(obj_request->img_request == NULL);
1714 rbd_assert(obj_request->which == BAD_WHICH);
1715
1716 if (obj_request->osd_req)
1717 rbd_osd_req_destroy(obj_request->osd_req);
1718
1719 rbd_assert(obj_request_type_valid(obj_request->type));
1720 switch (obj_request->type) {
1721 case OBJ_REQUEST_NODATA:
1722 break; /* Nothing to do */
1723 case OBJ_REQUEST_BIO:
1724 if (obj_request->bio_list)
1725 bio_chain_put(obj_request->bio_list);
1726 break;
1727 case OBJ_REQUEST_PAGES:
1728 if (obj_request->pages)
1729 ceph_release_page_vector(obj_request->pages,
1730 obj_request->page_count);
1731 break;
1732 }
1733
1734 kfree(obj_request);
1735 }
1736
1737 /*
1738 * Caller is responsible for filling in the list of object requests
1739 * that comprises the image request, and the Linux request pointer
1740 * (if there is one).
1741 */
1742 static struct rbd_img_request *rbd_img_request_create(
1743 struct rbd_device *rbd_dev,
1744 u64 offset, u64 length,
1745 bool write_request,
1746 bool child_request)
1747 {
1748 struct rbd_img_request *img_request;
1749
1750 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1751 if (!img_request)
1752 return NULL;
1753
1754 if (write_request) {
1755 down_read(&rbd_dev->header_rwsem);
1756 rbd_snap_context_get(rbd_dev->header.snapc);
1757 up_read(&rbd_dev->header_rwsem);
1758 }
1759
1760 img_request->rq = NULL;
1761 img_request->rbd_dev = rbd_dev;
1762 img_request->offset = offset;
1763 img_request->length = length;
1764 img_request->flags = 0;
1765 if (write_request) {
1766 img_request_write_set(img_request);
1767 img_request->snapc = rbd_dev->header.snapc;
1768 } else {
1769 img_request->snap_id = rbd_dev->spec->snap_id;
1770 }
1771 if (child_request)
1772 img_request_child_set(img_request);
1773 if (rbd_dev->parent_spec)
1774 img_request_layered_set(img_request);
1775 spin_lock_init(&img_request->completion_lock);
1776 img_request->next_completion = 0;
1777 img_request->callback = NULL;
1778 img_request->result = 0;
1779 img_request->obj_request_count = 0;
1780 INIT_LIST_HEAD(&img_request->obj_requests);
1781 kref_init(&img_request->kref);
1782
1783 rbd_img_request_get(img_request); /* Avoid a warning */
1784 rbd_img_request_put(img_request); /* TEMPORARY */
1785
1786 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1787 write_request ? "write" : "read", offset, length,
1788 img_request);
1789
1790 return img_request;
1791 }
1792
1793 static void rbd_img_request_destroy(struct kref *kref)
1794 {
1795 struct rbd_img_request *img_request;
1796 struct rbd_obj_request *obj_request;
1797 struct rbd_obj_request *next_obj_request;
1798
1799 img_request = container_of(kref, struct rbd_img_request, kref);
1800
1801 dout("%s: img %p\n", __func__, img_request);
1802
1803 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1804 rbd_img_obj_request_del(img_request, obj_request);
1805 rbd_assert(img_request->obj_request_count == 0);
1806
1807 if (img_request_write_test(img_request))
1808 rbd_snap_context_put(img_request->snapc);
1809
1810 if (img_request_child_test(img_request))
1811 rbd_obj_request_put(img_request->obj_request);
1812
1813 kfree(img_request);
1814 }
1815
1816 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1817 {
1818 struct rbd_img_request *img_request;
1819 unsigned int xferred;
1820 int result;
1821 bool more;
1822
1823 rbd_assert(obj_request_img_data_test(obj_request));
1824 img_request = obj_request->img_request;
1825
1826 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1827 xferred = (unsigned int)obj_request->xferred;
1828 result = obj_request->result;
1829 if (result) {
1830 struct rbd_device *rbd_dev = img_request->rbd_dev;
1831
1832 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1833 img_request_write_test(img_request) ? "write" : "read",
1834 obj_request->length, obj_request->img_offset,
1835 obj_request->offset);
1836 rbd_warn(rbd_dev, " result %d xferred %x\n",
1837 result, xferred);
1838 if (!img_request->result)
1839 img_request->result = result;
1840 }
1841
1842 /* Image object requests don't own their page array */
1843
1844 if (obj_request->type == OBJ_REQUEST_PAGES) {
1845 obj_request->pages = NULL;
1846 obj_request->page_count = 0;
1847 }
1848
1849 if (img_request_child_test(img_request)) {
1850 rbd_assert(img_request->obj_request != NULL);
1851 more = obj_request->which < img_request->obj_request_count - 1;
1852 } else {
1853 rbd_assert(img_request->rq != NULL);
1854 more = blk_end_request(img_request->rq, result, xferred);
1855 }
1856
1857 return more;
1858 }
1859
1860 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1861 {
1862 struct rbd_img_request *img_request;
1863 u32 which = obj_request->which;
1864 bool more = true;
1865
1866 rbd_assert(obj_request_img_data_test(obj_request));
1867 img_request = obj_request->img_request;
1868
1869 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1870 rbd_assert(img_request != NULL);
1871 rbd_assert(img_request->obj_request_count > 0);
1872 rbd_assert(which != BAD_WHICH);
1873 rbd_assert(which < img_request->obj_request_count);
1874 rbd_assert(which >= img_request->next_completion);
1875
1876 spin_lock_irq(&img_request->completion_lock);
1877 if (which != img_request->next_completion)
1878 goto out;
1879
1880 for_each_obj_request_from(img_request, obj_request) {
1881 rbd_assert(more);
1882 rbd_assert(which < img_request->obj_request_count);
1883
1884 if (!obj_request_done_test(obj_request))
1885 break;
1886 more = rbd_img_obj_end_request(obj_request);
1887 which++;
1888 }
1889
1890 rbd_assert(more ^ (which == img_request->obj_request_count));
1891 img_request->next_completion = which;
1892 out:
1893 spin_unlock_irq(&img_request->completion_lock);
1894
1895 if (!more)
1896 rbd_img_request_complete(img_request);
1897 }
1898
1899 /*
1900 * Split up an image request into one or more object requests, each
1901 * to a different object. The "type" parameter indicates whether
1902 * "data_desc" is the pointer to the head of a list of bio
1903 * structures, or the base of a page array. In either case this
1904 * function assumes data_desc describes memory sufficient to hold
1905 * all data described by the image request.
1906 */
1907 static int rbd_img_request_fill(struct rbd_img_request *img_request,
1908 enum obj_request_type type,
1909 void *data_desc)
1910 {
1911 struct rbd_device *rbd_dev = img_request->rbd_dev;
1912 struct rbd_obj_request *obj_request = NULL;
1913 struct rbd_obj_request *next_obj_request;
1914 bool write_request = img_request_write_test(img_request);
1915 struct bio *bio_list;
1916 unsigned int bio_offset = 0;
1917 struct page **pages;
1918 u64 img_offset;
1919 u64 resid;
1920 u16 opcode;
1921
1922 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
1923 (int)type, data_desc);
1924
1925 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
1926 img_offset = img_request->offset;
1927 resid = img_request->length;
1928 rbd_assert(resid > 0);
1929
1930 if (type == OBJ_REQUEST_BIO) {
1931 bio_list = data_desc;
1932 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
1933 } else {
1934 rbd_assert(type == OBJ_REQUEST_PAGES);
1935 pages = data_desc;
1936 }
1937
1938 while (resid) {
1939 struct ceph_osd_request *osd_req;
1940 const char *object_name;
1941 u64 offset;
1942 u64 length;
1943
1944 object_name = rbd_segment_name(rbd_dev, img_offset);
1945 if (!object_name)
1946 goto out_unwind;
1947 offset = rbd_segment_offset(rbd_dev, img_offset);
1948 length = rbd_segment_length(rbd_dev, img_offset, resid);
1949 obj_request = rbd_obj_request_create(object_name,
1950 offset, length, type);
1951 kfree(object_name); /* object request has its own copy */
1952 if (!obj_request)
1953 goto out_unwind;
1954
1955 if (type == OBJ_REQUEST_BIO) {
1956 unsigned int clone_size;
1957
1958 rbd_assert(length <= (u64)UINT_MAX);
1959 clone_size = (unsigned int)length;
1960 obj_request->bio_list =
1961 bio_chain_clone_range(&bio_list,
1962 &bio_offset,
1963 clone_size,
1964 GFP_ATOMIC);
1965 if (!obj_request->bio_list)
1966 goto out_partial;
1967 } else {
1968 unsigned int page_count;
1969
1970 obj_request->pages = pages;
1971 page_count = (u32)calc_pages_for(offset, length);
1972 obj_request->page_count = page_count;
1973 if ((offset + length) & ~PAGE_MASK)
1974 page_count--; /* more on last page */
1975 pages += page_count;
1976 }
1977
1978 osd_req = rbd_osd_req_create(rbd_dev, write_request,
1979 obj_request);
1980 if (!osd_req)
1981 goto out_partial;
1982 obj_request->osd_req = osd_req;
1983 obj_request->callback = rbd_img_obj_callback;
1984
1985 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
1986 0, 0);
1987 if (type == OBJ_REQUEST_BIO)
1988 osd_req_op_extent_osd_data_bio(osd_req, 0,
1989 obj_request->bio_list, length);
1990 else
1991 osd_req_op_extent_osd_data_pages(osd_req, 0,
1992 obj_request->pages, length,
1993 offset & ~PAGE_MASK, false, false);
1994
1995 if (write_request)
1996 rbd_osd_req_format_write(obj_request);
1997 else
1998 rbd_osd_req_format_read(obj_request);
1999
2000 obj_request->img_offset = img_offset;
2001 rbd_img_obj_request_add(img_request, obj_request);
2002
2003 img_offset += length;
2004 resid -= length;
2005 }
2006
2007 return 0;
2008
2009 out_partial:
2010 rbd_obj_request_put(obj_request);
2011 out_unwind:
2012 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2013 rbd_obj_request_put(obj_request);
2014
2015 return -ENOMEM;
2016 }
2017
2018 static void
2019 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2020 {
2021 struct rbd_img_request *img_request;
2022 struct rbd_device *rbd_dev;
2023 u64 length;
2024 u32 page_count;
2025
2026 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2027 rbd_assert(obj_request_img_data_test(obj_request));
2028 img_request = obj_request->img_request;
2029 rbd_assert(img_request);
2030
2031 rbd_dev = img_request->rbd_dev;
2032 rbd_assert(rbd_dev);
2033 length = (u64)1 << rbd_dev->header.obj_order;
2034 page_count = (u32)calc_pages_for(0, length);
2035
2036 rbd_assert(obj_request->copyup_pages);
2037 ceph_release_page_vector(obj_request->copyup_pages, page_count);
2038 obj_request->copyup_pages = NULL;
2039
2040 /*
2041 * We want the transfer count to reflect the size of the
2042 * original write request. There is no such thing as a
2043 * successful short write, so if the request was successful
2044 * we can just set it to the originally-requested length.
2045 */
2046 if (!obj_request->result)
2047 obj_request->xferred = obj_request->length;
2048
2049 /* Finish up with the normal image object callback */
2050
2051 rbd_img_obj_callback(obj_request);
2052 }
2053
2054 static void
2055 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2056 {
2057 struct rbd_obj_request *orig_request;
2058 struct ceph_osd_request *osd_req;
2059 struct ceph_osd_client *osdc;
2060 struct rbd_device *rbd_dev;
2061 struct page **pages;
2062 int result;
2063 u64 obj_size;
2064 u64 xferred;
2065
2066 rbd_assert(img_request_child_test(img_request));
2067
2068 /* First get what we need from the image request */
2069
2070 pages = img_request->copyup_pages;
2071 rbd_assert(pages != NULL);
2072 img_request->copyup_pages = NULL;
2073
2074 orig_request = img_request->obj_request;
2075 rbd_assert(orig_request != NULL);
2076 rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2077 result = img_request->result;
2078 obj_size = img_request->length;
2079 xferred = img_request->xferred;
2080
2081 rbd_dev = img_request->rbd_dev;
2082 rbd_assert(rbd_dev);
2083 rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2084
2085 rbd_img_request_put(img_request);
2086
2087 if (result)
2088 goto out_err;
2089
2090 /* Allocate the new copyup osd request for the original request */
2091
2092 result = -ENOMEM;
2093 rbd_assert(!orig_request->osd_req);
2094 osd_req = rbd_osd_req_create_copyup(orig_request);
2095 if (!osd_req)
2096 goto out_err;
2097 orig_request->osd_req = osd_req;
2098 orig_request->copyup_pages = pages;
2099
2100 /* Initialize the copyup op */
2101
2102 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2103 osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2104 false, false);
2105
2106 /* Then the original write request op */
2107
2108 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2109 orig_request->offset,
2110 orig_request->length, 0, 0);
2111 osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2112 orig_request->length);
2113
2114 rbd_osd_req_format_write(orig_request);
2115
2116 /* All set, send it off. */
2117
2118 orig_request->callback = rbd_img_obj_copyup_callback;
2119 osdc = &rbd_dev->rbd_client->client->osdc;
2120 result = rbd_obj_request_submit(osdc, orig_request);
2121 if (!result)
2122 return;
2123 out_err:
2124 /* Record the error code and complete the request */
2125
2126 orig_request->result = result;
2127 orig_request->xferred = 0;
2128 obj_request_done_set(orig_request);
2129 rbd_obj_request_complete(orig_request);
2130 }
2131
2132 /*
2133 * Read from the parent image the range of data that covers the
2134 * entire target of the given object request. This is used for
2135 * satisfying a layered image write request when the target of an
2136 * object request from the image request does not exist.
2137 *
2138 * A page array big enough to hold the returned data is allocated
2139 * and supplied to rbd_img_request_fill() as the "data descriptor."
2140 * When the read completes, this page array will be transferred to
2141 * the original object request for the copyup operation.
2142 *
2143 * If an error occurs, record it as the result of the original
2144 * object request and mark it done so it gets completed.
2145 */
2146 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2147 {
2148 struct rbd_img_request *img_request = NULL;
2149 struct rbd_img_request *parent_request = NULL;
2150 struct rbd_device *rbd_dev;
2151 u64 img_offset;
2152 u64 length;
2153 struct page **pages = NULL;
2154 u32 page_count;
2155 int result;
2156
2157 rbd_assert(obj_request_img_data_test(obj_request));
2158 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2159
2160 img_request = obj_request->img_request;
2161 rbd_assert(img_request != NULL);
2162 rbd_dev = img_request->rbd_dev;
2163 rbd_assert(rbd_dev->parent != NULL);
2164
2165 /*
2166 * First things first. The original osd request is of no
2167 * use to use any more, we'll need a new one that can hold
2168 * the two ops in a copyup request. We'll get that later,
2169 * but for now we can release the old one.
2170 */
2171 rbd_osd_req_destroy(obj_request->osd_req);
2172 obj_request->osd_req = NULL;
2173
2174 /*
2175 * Determine the byte range covered by the object in the
2176 * child image to which the original request was to be sent.
2177 */
2178 img_offset = obj_request->img_offset - obj_request->offset;
2179 length = (u64)1 << rbd_dev->header.obj_order;
2180
2181 /*
2182 * There is no defined parent data beyond the parent
2183 * overlap, so limit what we read at that boundary if
2184 * necessary.
2185 */
2186 if (img_offset + length > rbd_dev->parent_overlap) {
2187 rbd_assert(img_offset < rbd_dev->parent_overlap);
2188 length = rbd_dev->parent_overlap - img_offset;
2189 }
2190
2191 /*
2192 * Allocate a page array big enough to receive the data read
2193 * from the parent.
2194 */
2195 page_count = (u32)calc_pages_for(0, length);
2196 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2197 if (IS_ERR(pages)) {
2198 result = PTR_ERR(pages);
2199 pages = NULL;
2200 goto out_err;
2201 }
2202
2203 result = -ENOMEM;
2204 parent_request = rbd_img_request_create(rbd_dev->parent,
2205 img_offset, length,
2206 false, true);
2207 if (!parent_request)
2208 goto out_err;
2209 rbd_obj_request_get(obj_request);
2210 parent_request->obj_request = obj_request;
2211
2212 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2213 if (result)
2214 goto out_err;
2215 parent_request->copyup_pages = pages;
2216
2217 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2218 result = rbd_img_request_submit(parent_request);
2219 if (!result)
2220 return 0;
2221
2222 parent_request->copyup_pages = NULL;
2223 parent_request->obj_request = NULL;
2224 rbd_obj_request_put(obj_request);
2225 out_err:
2226 if (pages)
2227 ceph_release_page_vector(pages, page_count);
2228 if (parent_request)
2229 rbd_img_request_put(parent_request);
2230 obj_request->result = result;
2231 obj_request->xferred = 0;
2232 obj_request_done_set(obj_request);
2233
2234 return result;
2235 }
2236
2237 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2238 {
2239 struct rbd_obj_request *orig_request;
2240 int result;
2241
2242 rbd_assert(!obj_request_img_data_test(obj_request));
2243
2244 /*
2245 * All we need from the object request is the original
2246 * request and the result of the STAT op. Grab those, then
2247 * we're done with the request.
2248 */
2249 orig_request = obj_request->obj_request;
2250 obj_request->obj_request = NULL;
2251 rbd_assert(orig_request);
2252 rbd_assert(orig_request->img_request);
2253
2254 result = obj_request->result;
2255 obj_request->result = 0;
2256
2257 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2258 obj_request, orig_request, result,
2259 obj_request->xferred, obj_request->length);
2260 rbd_obj_request_put(obj_request);
2261
2262 rbd_assert(orig_request);
2263 rbd_assert(orig_request->img_request);
2264
2265 /*
2266 * Our only purpose here is to determine whether the object
2267 * exists, and we don't want to treat the non-existence as
2268 * an error. If something else comes back, transfer the
2269 * error to the original request and complete it now.
2270 */
2271 if (!result) {
2272 obj_request_existence_set(orig_request, true);
2273 } else if (result == -ENOENT) {
2274 obj_request_existence_set(orig_request, false);
2275 } else if (result) {
2276 orig_request->result = result;
2277 goto out;
2278 }
2279
2280 /*
2281 * Resubmit the original request now that we have recorded
2282 * whether the target object exists.
2283 */
2284 orig_request->result = rbd_img_obj_request_submit(orig_request);
2285 out:
2286 if (orig_request->result)
2287 rbd_obj_request_complete(orig_request);
2288 rbd_obj_request_put(orig_request);
2289 }
2290
2291 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2292 {
2293 struct rbd_obj_request *stat_request;
2294 struct rbd_device *rbd_dev;
2295 struct ceph_osd_client *osdc;
2296 struct page **pages = NULL;
2297 u32 page_count;
2298 size_t size;
2299 int ret;
2300
2301 /*
2302 * The response data for a STAT call consists of:
2303 * le64 length;
2304 * struct {
2305 * le32 tv_sec;
2306 * le32 tv_nsec;
2307 * } mtime;
2308 */
2309 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2310 page_count = (u32)calc_pages_for(0, size);
2311 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2312 if (IS_ERR(pages))
2313 return PTR_ERR(pages);
2314
2315 ret = -ENOMEM;
2316 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2317 OBJ_REQUEST_PAGES);
2318 if (!stat_request)
2319 goto out;
2320
2321 rbd_obj_request_get(obj_request);
2322 stat_request->obj_request = obj_request;
2323 stat_request->pages = pages;
2324 stat_request->page_count = page_count;
2325
2326 rbd_assert(obj_request->img_request);
2327 rbd_dev = obj_request->img_request->rbd_dev;
2328 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2329 stat_request);
2330 if (!stat_request->osd_req)
2331 goto out;
2332 stat_request->callback = rbd_img_obj_exists_callback;
2333
2334 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2335 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2336 false, false);
2337 rbd_osd_req_format_read(stat_request);
2338
2339 osdc = &rbd_dev->rbd_client->client->osdc;
2340 ret = rbd_obj_request_submit(osdc, stat_request);
2341 out:
2342 if (ret)
2343 rbd_obj_request_put(obj_request);
2344
2345 return ret;
2346 }
2347
2348 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2349 {
2350 struct rbd_img_request *img_request;
2351 struct rbd_device *rbd_dev;
2352 bool known;
2353
2354 rbd_assert(obj_request_img_data_test(obj_request));
2355
2356 img_request = obj_request->img_request;
2357 rbd_assert(img_request);
2358 rbd_dev = img_request->rbd_dev;
2359
2360 /*
2361 * Only writes to layered images need special handling.
2362 * Reads and non-layered writes are simple object requests.
2363 * Layered writes that start beyond the end of the overlap
2364 * with the parent have no parent data, so they too are
2365 * simple object requests. Finally, if the target object is
2366 * known to already exist, its parent data has already been
2367 * copied, so a write to the object can also be handled as a
2368 * simple object request.
2369 */
2370 if (!img_request_write_test(img_request) ||
2371 !img_request_layered_test(img_request) ||
2372 rbd_dev->parent_overlap <= obj_request->img_offset ||
2373 ((known = obj_request_known_test(obj_request)) &&
2374 obj_request_exists_test(obj_request))) {
2375
2376 struct rbd_device *rbd_dev;
2377 struct ceph_osd_client *osdc;
2378
2379 rbd_dev = obj_request->img_request->rbd_dev;
2380 osdc = &rbd_dev->rbd_client->client->osdc;
2381
2382 return rbd_obj_request_submit(osdc, obj_request);
2383 }
2384
2385 /*
2386 * It's a layered write. The target object might exist but
2387 * we may not know that yet. If we know it doesn't exist,
2388 * start by reading the data for the full target object from
2389 * the parent so we can use it for a copyup to the target.
2390 */
2391 if (known)
2392 return rbd_img_obj_parent_read_full(obj_request);
2393
2394 /* We don't know whether the target exists. Go find out. */
2395
2396 return rbd_img_obj_exists_submit(obj_request);
2397 }
2398
2399 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2400 {
2401 struct rbd_obj_request *obj_request;
2402 struct rbd_obj_request *next_obj_request;
2403
2404 dout("%s: img %p\n", __func__, img_request);
2405 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2406 int ret;
2407
2408 ret = rbd_img_obj_request_submit(obj_request);
2409 if (ret)
2410 return ret;
2411 }
2412
2413 return 0;
2414 }
2415
2416 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2417 {
2418 struct rbd_obj_request *obj_request;
2419 struct rbd_device *rbd_dev;
2420 u64 obj_end;
2421
2422 rbd_assert(img_request_child_test(img_request));
2423
2424 obj_request = img_request->obj_request;
2425 rbd_assert(obj_request);
2426 rbd_assert(obj_request->img_request);
2427
2428 obj_request->result = img_request->result;
2429 if (obj_request->result)
2430 goto out;
2431
2432 /*
2433 * We need to zero anything beyond the parent overlap
2434 * boundary. Since rbd_img_obj_request_read_callback()
2435 * will zero anything beyond the end of a short read, an
2436 * easy way to do this is to pretend the data from the
2437 * parent came up short--ending at the overlap boundary.
2438 */
2439 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2440 obj_end = obj_request->img_offset + obj_request->length;
2441 rbd_dev = obj_request->img_request->rbd_dev;
2442 if (obj_end > rbd_dev->parent_overlap) {
2443 u64 xferred = 0;
2444
2445 if (obj_request->img_offset < rbd_dev->parent_overlap)
2446 xferred = rbd_dev->parent_overlap -
2447 obj_request->img_offset;
2448
2449 obj_request->xferred = min(img_request->xferred, xferred);
2450 } else {
2451 obj_request->xferred = img_request->xferred;
2452 }
2453 out:
2454 rbd_img_obj_request_read_callback(obj_request);
2455 rbd_obj_request_complete(obj_request);
2456 }
2457
2458 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2459 {
2460 struct rbd_device *rbd_dev;
2461 struct rbd_img_request *img_request;
2462 int result;
2463
2464 rbd_assert(obj_request_img_data_test(obj_request));
2465 rbd_assert(obj_request->img_request != NULL);
2466 rbd_assert(obj_request->result == (s32) -ENOENT);
2467 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2468
2469 rbd_dev = obj_request->img_request->rbd_dev;
2470 rbd_assert(rbd_dev->parent != NULL);
2471 /* rbd_read_finish(obj_request, obj_request->length); */
2472 img_request = rbd_img_request_create(rbd_dev->parent,
2473 obj_request->img_offset,
2474 obj_request->length,
2475 false, true);
2476 result = -ENOMEM;
2477 if (!img_request)
2478 goto out_err;
2479
2480 rbd_obj_request_get(obj_request);
2481 img_request->obj_request = obj_request;
2482
2483 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2484 obj_request->bio_list);
2485 if (result)
2486 goto out_err;
2487
2488 img_request->callback = rbd_img_parent_read_callback;
2489 result = rbd_img_request_submit(img_request);
2490 if (result)
2491 goto out_err;
2492
2493 return;
2494 out_err:
2495 if (img_request)
2496 rbd_img_request_put(img_request);
2497 obj_request->result = result;
2498 obj_request->xferred = 0;
2499 obj_request_done_set(obj_request);
2500 }
2501
2502 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
2503 u64 ver, u64 notify_id)
2504 {
2505 struct rbd_obj_request *obj_request;
2506 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2507 int ret;
2508
2509 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2510 OBJ_REQUEST_NODATA);
2511 if (!obj_request)
2512 return -ENOMEM;
2513
2514 ret = -ENOMEM;
2515 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2516 if (!obj_request->osd_req)
2517 goto out;
2518 obj_request->callback = rbd_obj_request_put;
2519
2520 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2521 notify_id, ver, 0);
2522 rbd_osd_req_format_read(obj_request);
2523
2524 ret = rbd_obj_request_submit(osdc, obj_request);
2525 out:
2526 if (ret)
2527 rbd_obj_request_put(obj_request);
2528
2529 return ret;
2530 }
2531
2532 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2533 {
2534 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2535 u64 hver;
2536
2537 if (!rbd_dev)
2538 return;
2539
2540 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2541 rbd_dev->header_name, (unsigned long long) notify_id,
2542 (unsigned int) opcode);
2543 (void)rbd_dev_refresh(rbd_dev, &hver);
2544
2545 rbd_obj_notify_ack(rbd_dev, hver, notify_id);
2546 }
2547
2548 /*
2549 * Request sync osd watch/unwatch. The value of "start" determines
2550 * whether a watch request is being initiated or torn down.
2551 */
2552 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2553 {
2554 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2555 struct rbd_obj_request *obj_request;
2556 int ret;
2557
2558 rbd_assert(start ^ !!rbd_dev->watch_event);
2559 rbd_assert(start ^ !!rbd_dev->watch_request);
2560
2561 if (start) {
2562 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2563 &rbd_dev->watch_event);
2564 if (ret < 0)
2565 return ret;
2566 rbd_assert(rbd_dev->watch_event != NULL);
2567 }
2568
2569 ret = -ENOMEM;
2570 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2571 OBJ_REQUEST_NODATA);
2572 if (!obj_request)
2573 goto out_cancel;
2574
2575 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2576 if (!obj_request->osd_req)
2577 goto out_cancel;
2578
2579 if (start)
2580 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2581 else
2582 ceph_osdc_unregister_linger_request(osdc,
2583 rbd_dev->watch_request->osd_req);
2584
2585 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2586 rbd_dev->watch_event->cookie,
2587 rbd_dev->header.obj_version, start);
2588 rbd_osd_req_format_write(obj_request);
2589
2590 ret = rbd_obj_request_submit(osdc, obj_request);
2591 if (ret)
2592 goto out_cancel;
2593 ret = rbd_obj_request_wait(obj_request);
2594 if (ret)
2595 goto out_cancel;
2596 ret = obj_request->result;
2597 if (ret)
2598 goto out_cancel;
2599
2600 /*
2601 * A watch request is set to linger, so the underlying osd
2602 * request won't go away until we unregister it. We retain
2603 * a pointer to the object request during that time (in
2604 * rbd_dev->watch_request), so we'll keep a reference to
2605 * it. We'll drop that reference (below) after we've
2606 * unregistered it.
2607 */
2608 if (start) {
2609 rbd_dev->watch_request = obj_request;
2610
2611 return 0;
2612 }
2613
2614 /* We have successfully torn down the watch request */
2615
2616 rbd_obj_request_put(rbd_dev->watch_request);
2617 rbd_dev->watch_request = NULL;
2618 out_cancel:
2619 /* Cancel the event if we're tearing down, or on error */
2620 ceph_osdc_cancel_event(rbd_dev->watch_event);
2621 rbd_dev->watch_event = NULL;
2622 if (obj_request)
2623 rbd_obj_request_put(obj_request);
2624
2625 return ret;
2626 }
2627
2628 /*
2629 * Synchronous osd object method call. Returns the number of bytes
2630 * returned in the outbound buffer, or a negative error code.
2631 */
2632 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2633 const char *object_name,
2634 const char *class_name,
2635 const char *method_name,
2636 const void *outbound,
2637 size_t outbound_size,
2638 void *inbound,
2639 size_t inbound_size,
2640 u64 *version)
2641 {
2642 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2643 struct rbd_obj_request *obj_request;
2644 struct page **pages;
2645 u32 page_count;
2646 int ret;
2647
2648 /*
2649 * Method calls are ultimately read operations. The result
2650 * should placed into the inbound buffer provided. They
2651 * also supply outbound data--parameters for the object
2652 * method. Currently if this is present it will be a
2653 * snapshot id.
2654 */
2655 page_count = (u32)calc_pages_for(0, inbound_size);
2656 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2657 if (IS_ERR(pages))
2658 return PTR_ERR(pages);
2659
2660 ret = -ENOMEM;
2661 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2662 OBJ_REQUEST_PAGES);
2663 if (!obj_request)
2664 goto out;
2665
2666 obj_request->pages = pages;
2667 obj_request->page_count = page_count;
2668
2669 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2670 if (!obj_request->osd_req)
2671 goto out;
2672
2673 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2674 class_name, method_name);
2675 if (outbound_size) {
2676 struct ceph_pagelist *pagelist;
2677
2678 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2679 if (!pagelist)
2680 goto out;
2681
2682 ceph_pagelist_init(pagelist);
2683 ceph_pagelist_append(pagelist, outbound, outbound_size);
2684 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2685 pagelist);
2686 }
2687 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2688 obj_request->pages, inbound_size,
2689 0, false, false);
2690 rbd_osd_req_format_read(obj_request);
2691
2692 ret = rbd_obj_request_submit(osdc, obj_request);
2693 if (ret)
2694 goto out;
2695 ret = rbd_obj_request_wait(obj_request);
2696 if (ret)
2697 goto out;
2698
2699 ret = obj_request->result;
2700 if (ret < 0)
2701 goto out;
2702
2703 rbd_assert(obj_request->xferred < (u64)INT_MAX);
2704 ret = (int)obj_request->xferred;
2705 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2706 if (version)
2707 *version = obj_request->version;
2708 out:
2709 if (obj_request)
2710 rbd_obj_request_put(obj_request);
2711 else
2712 ceph_release_page_vector(pages, page_count);
2713
2714 return ret;
2715 }
2716
2717 static void rbd_request_fn(struct request_queue *q)
2718 __releases(q->queue_lock) __acquires(q->queue_lock)
2719 {
2720 struct rbd_device *rbd_dev = q->queuedata;
2721 bool read_only = rbd_dev->mapping.read_only;
2722 struct request *rq;
2723 int result;
2724
2725 while ((rq = blk_fetch_request(q))) {
2726 bool write_request = rq_data_dir(rq) == WRITE;
2727 struct rbd_img_request *img_request;
2728 u64 offset;
2729 u64 length;
2730
2731 /* Ignore any non-FS requests that filter through. */
2732
2733 if (rq->cmd_type != REQ_TYPE_FS) {
2734 dout("%s: non-fs request type %d\n", __func__,
2735 (int) rq->cmd_type);
2736 __blk_end_request_all(rq, 0);
2737 continue;
2738 }
2739
2740 /* Ignore/skip any zero-length requests */
2741
2742 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2743 length = (u64) blk_rq_bytes(rq);
2744
2745 if (!length) {
2746 dout("%s: zero-length request\n", __func__);
2747 __blk_end_request_all(rq, 0);
2748 continue;
2749 }
2750
2751 spin_unlock_irq(q->queue_lock);
2752
2753 /* Disallow writes to a read-only device */
2754
2755 if (write_request) {
2756 result = -EROFS;
2757 if (read_only)
2758 goto end_request;
2759 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2760 }
2761
2762 /*
2763 * Quit early if the mapped snapshot no longer
2764 * exists. It's still possible the snapshot will
2765 * have disappeared by the time our request arrives
2766 * at the osd, but there's no sense in sending it if
2767 * we already know.
2768 */
2769 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2770 dout("request for non-existent snapshot");
2771 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2772 result = -ENXIO;
2773 goto end_request;
2774 }
2775
2776 result = -EINVAL;
2777 if (offset && length > U64_MAX - offset + 1) {
2778 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2779 offset, length);
2780 goto end_request; /* Shouldn't happen */
2781 }
2782
2783 result = -ENOMEM;
2784 img_request = rbd_img_request_create(rbd_dev, offset, length,
2785 write_request, false);
2786 if (!img_request)
2787 goto end_request;
2788
2789 img_request->rq = rq;
2790
2791 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2792 rq->bio);
2793 if (!result)
2794 result = rbd_img_request_submit(img_request);
2795 if (result)
2796 rbd_img_request_put(img_request);
2797 end_request:
2798 spin_lock_irq(q->queue_lock);
2799 if (result < 0) {
2800 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2801 write_request ? "write" : "read",
2802 length, offset, result);
2803
2804 __blk_end_request_all(rq, result);
2805 }
2806 }
2807 }
2808
2809 /*
2810 * a queue callback. Makes sure that we don't create a bio that spans across
2811 * multiple osd objects. One exception would be with a single page bios,
2812 * which we handle later at bio_chain_clone_range()
2813 */
2814 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2815 struct bio_vec *bvec)
2816 {
2817 struct rbd_device *rbd_dev = q->queuedata;
2818 sector_t sector_offset;
2819 sector_t sectors_per_obj;
2820 sector_t obj_sector_offset;
2821 int ret;
2822
2823 /*
2824 * Find how far into its rbd object the partition-relative
2825 * bio start sector is to offset relative to the enclosing
2826 * device.
2827 */
2828 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2829 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2830 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2831
2832 /*
2833 * Compute the number of bytes from that offset to the end
2834 * of the object. Account for what's already used by the bio.
2835 */
2836 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2837 if (ret > bmd->bi_size)
2838 ret -= bmd->bi_size;
2839 else
2840 ret = 0;
2841
2842 /*
2843 * Don't send back more than was asked for. And if the bio
2844 * was empty, let the whole thing through because: "Note
2845 * that a block device *must* allow a single page to be
2846 * added to an empty bio."
2847 */
2848 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2849 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2850 ret = (int) bvec->bv_len;
2851
2852 return ret;
2853 }
2854
2855 static void rbd_free_disk(struct rbd_device *rbd_dev)
2856 {
2857 struct gendisk *disk = rbd_dev->disk;
2858
2859 if (!disk)
2860 return;
2861
2862 rbd_dev->disk = NULL;
2863 if (disk->flags & GENHD_FL_UP) {
2864 del_gendisk(disk);
2865 if (disk->queue)
2866 blk_cleanup_queue(disk->queue);
2867 }
2868 put_disk(disk);
2869 }
2870
2871 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2872 const char *object_name,
2873 u64 offset, u64 length,
2874 void *buf, u64 *version)
2875
2876 {
2877 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2878 struct rbd_obj_request *obj_request;
2879 struct page **pages = NULL;
2880 u32 page_count;
2881 size_t size;
2882 int ret;
2883
2884 page_count = (u32) calc_pages_for(offset, length);
2885 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2886 if (IS_ERR(pages))
2887 ret = PTR_ERR(pages);
2888
2889 ret = -ENOMEM;
2890 obj_request = rbd_obj_request_create(object_name, offset, length,
2891 OBJ_REQUEST_PAGES);
2892 if (!obj_request)
2893 goto out;
2894
2895 obj_request->pages = pages;
2896 obj_request->page_count = page_count;
2897
2898 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2899 if (!obj_request->osd_req)
2900 goto out;
2901
2902 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2903 offset, length, 0, 0);
2904 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2905 obj_request->pages,
2906 obj_request->length,
2907 obj_request->offset & ~PAGE_MASK,
2908 false, false);
2909 rbd_osd_req_format_read(obj_request);
2910
2911 ret = rbd_obj_request_submit(osdc, obj_request);
2912 if (ret)
2913 goto out;
2914 ret = rbd_obj_request_wait(obj_request);
2915 if (ret)
2916 goto out;
2917
2918 ret = obj_request->result;
2919 if (ret < 0)
2920 goto out;
2921
2922 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2923 size = (size_t) obj_request->xferred;
2924 ceph_copy_from_page_vector(pages, buf, 0, size);
2925 rbd_assert(size <= (size_t) INT_MAX);
2926 ret = (int) size;
2927 if (version)
2928 *version = obj_request->version;
2929 out:
2930 if (obj_request)
2931 rbd_obj_request_put(obj_request);
2932 else
2933 ceph_release_page_vector(pages, page_count);
2934
2935 return ret;
2936 }
2937
2938 /*
2939 * Read the complete header for the given rbd device.
2940 *
2941 * Returns a pointer to a dynamically-allocated buffer containing
2942 * the complete and validated header. Caller can pass the address
2943 * of a variable that will be filled in with the version of the
2944 * header object at the time it was read.
2945 *
2946 * Returns a pointer-coded errno if a failure occurs.
2947 */
2948 static struct rbd_image_header_ondisk *
2949 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2950 {
2951 struct rbd_image_header_ondisk *ondisk = NULL;
2952 u32 snap_count = 0;
2953 u64 names_size = 0;
2954 u32 want_count;
2955 int ret;
2956
2957 /*
2958 * The complete header will include an array of its 64-bit
2959 * snapshot ids, followed by the names of those snapshots as
2960 * a contiguous block of NUL-terminated strings. Note that
2961 * the number of snapshots could change by the time we read
2962 * it in, in which case we re-read it.
2963 */
2964 do {
2965 size_t size;
2966
2967 kfree(ondisk);
2968
2969 size = sizeof (*ondisk);
2970 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2971 size += names_size;
2972 ondisk = kmalloc(size, GFP_KERNEL);
2973 if (!ondisk)
2974 return ERR_PTR(-ENOMEM);
2975
2976 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2977 0, size, ondisk, version);
2978 if (ret < 0)
2979 goto out_err;
2980 if ((size_t)ret < size) {
2981 ret = -ENXIO;
2982 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2983 size, ret);
2984 goto out_err;
2985 }
2986 if (!rbd_dev_ondisk_valid(ondisk)) {
2987 ret = -ENXIO;
2988 rbd_warn(rbd_dev, "invalid header");
2989 goto out_err;
2990 }
2991
2992 names_size = le64_to_cpu(ondisk->snap_names_len);
2993 want_count = snap_count;
2994 snap_count = le32_to_cpu(ondisk->snap_count);
2995 } while (snap_count != want_count);
2996
2997 return ondisk;
2998
2999 out_err:
3000 kfree(ondisk);
3001
3002 return ERR_PTR(ret);
3003 }
3004
3005 /*
3006 * reload the ondisk the header
3007 */
3008 static int rbd_read_header(struct rbd_device *rbd_dev,
3009 struct rbd_image_header *header)
3010 {
3011 struct rbd_image_header_ondisk *ondisk;
3012 u64 ver = 0;
3013 int ret;
3014
3015 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
3016 if (IS_ERR(ondisk))
3017 return PTR_ERR(ondisk);
3018 ret = rbd_header_from_disk(header, ondisk);
3019 if (ret >= 0)
3020 header->obj_version = ver;
3021 kfree(ondisk);
3022
3023 return ret;
3024 }
3025
3026 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
3027 {
3028 struct rbd_snap *snap;
3029 struct rbd_snap *next;
3030
3031 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node) {
3032 list_del(&snap->node);
3033 rbd_snap_destroy(snap);
3034 }
3035 }
3036
3037 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
3038 {
3039 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3040 return;
3041
3042 if (rbd_dev->mapping.size != rbd_dev->header.image_size) {
3043 sector_t size;
3044
3045 rbd_dev->mapping.size = rbd_dev->header.image_size;
3046 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3047 dout("setting size to %llu sectors", (unsigned long long)size);
3048 set_capacity(rbd_dev->disk, size);
3049 }
3050 }
3051
3052 /*
3053 * only read the first part of the ondisk header, without the snaps info
3054 */
3055 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
3056 {
3057 int ret;
3058 struct rbd_image_header h;
3059
3060 ret = rbd_read_header(rbd_dev, &h);
3061 if (ret < 0)
3062 return ret;
3063
3064 down_write(&rbd_dev->header_rwsem);
3065
3066 /* Update image size, and check for resize of mapped image */
3067 rbd_dev->header.image_size = h.image_size;
3068 rbd_update_mapping_size(rbd_dev);
3069
3070 /* rbd_dev->header.object_prefix shouldn't change */
3071 kfree(rbd_dev->header.snap_sizes);
3072 kfree(rbd_dev->header.snap_names);
3073 /* osd requests may still refer to snapc */
3074 rbd_snap_context_put(rbd_dev->header.snapc);
3075
3076 if (hver)
3077 *hver = h.obj_version;
3078 rbd_dev->header.obj_version = h.obj_version;
3079 rbd_dev->header.image_size = h.image_size;
3080 rbd_dev->header.snapc = h.snapc;
3081 rbd_dev->header.snap_names = h.snap_names;
3082 rbd_dev->header.snap_sizes = h.snap_sizes;
3083 /* Free the extra copy of the object prefix */
3084 if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3085 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3086 kfree(h.object_prefix);
3087
3088 ret = rbd_dev_snaps_update(rbd_dev);
3089
3090 up_write(&rbd_dev->header_rwsem);
3091
3092 return ret;
3093 }
3094
3095 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
3096 {
3097 int ret;
3098
3099 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3100 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3101 if (rbd_dev->image_format == 1)
3102 ret = rbd_dev_v1_refresh(rbd_dev, hver);
3103 else
3104 ret = rbd_dev_v2_refresh(rbd_dev, hver);
3105 mutex_unlock(&ctl_mutex);
3106 revalidate_disk(rbd_dev->disk);
3107 if (ret)
3108 rbd_warn(rbd_dev, "got notification but failed to "
3109 " update snaps: %d\n", ret);
3110
3111 return ret;
3112 }
3113
3114 static int rbd_init_disk(struct rbd_device *rbd_dev)
3115 {
3116 struct gendisk *disk;
3117 struct request_queue *q;
3118 u64 segment_size;
3119
3120 /* create gendisk info */
3121 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3122 if (!disk)
3123 return -ENOMEM;
3124
3125 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3126 rbd_dev->dev_id);
3127 disk->major = rbd_dev->major;
3128 disk->first_minor = 0;
3129 disk->fops = &rbd_bd_ops;
3130 disk->private_data = rbd_dev;
3131
3132 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3133 if (!q)
3134 goto out_disk;
3135
3136 /* We use the default size, but let's be explicit about it. */
3137 blk_queue_physical_block_size(q, SECTOR_SIZE);
3138
3139 /* set io sizes to object size */
3140 segment_size = rbd_obj_bytes(&rbd_dev->header);
3141 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3142 blk_queue_max_segment_size(q, segment_size);
3143 blk_queue_io_min(q, segment_size);
3144 blk_queue_io_opt(q, segment_size);
3145
3146 blk_queue_merge_bvec(q, rbd_merge_bvec);
3147 disk->queue = q;
3148
3149 q->queuedata = rbd_dev;
3150
3151 rbd_dev->disk = disk;
3152
3153 return 0;
3154 out_disk:
3155 put_disk(disk);
3156
3157 return -ENOMEM;
3158 }
3159
3160 /*
3161 sysfs
3162 */
3163
3164 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3165 {
3166 return container_of(dev, struct rbd_device, dev);
3167 }
3168
3169 static ssize_t rbd_size_show(struct device *dev,
3170 struct device_attribute *attr, char *buf)
3171 {
3172 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3173
3174 return sprintf(buf, "%llu\n",
3175 (unsigned long long)rbd_dev->mapping.size);
3176 }
3177
3178 /*
3179 * Note this shows the features for whatever's mapped, which is not
3180 * necessarily the base image.
3181 */
3182 static ssize_t rbd_features_show(struct device *dev,
3183 struct device_attribute *attr, char *buf)
3184 {
3185 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3186
3187 return sprintf(buf, "0x%016llx\n",
3188 (unsigned long long)rbd_dev->mapping.features);
3189 }
3190
3191 static ssize_t rbd_major_show(struct device *dev,
3192 struct device_attribute *attr, char *buf)
3193 {
3194 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3195
3196 if (rbd_dev->major)
3197 return sprintf(buf, "%d\n", rbd_dev->major);
3198
3199 return sprintf(buf, "(none)\n");
3200
3201 }
3202
3203 static ssize_t rbd_client_id_show(struct device *dev,
3204 struct device_attribute *attr, char *buf)
3205 {
3206 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3207
3208 return sprintf(buf, "client%lld\n",
3209 ceph_client_id(rbd_dev->rbd_client->client));
3210 }
3211
3212 static ssize_t rbd_pool_show(struct device *dev,
3213 struct device_attribute *attr, char *buf)
3214 {
3215 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3216
3217 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3218 }
3219
3220 static ssize_t rbd_pool_id_show(struct device *dev,
3221 struct device_attribute *attr, char *buf)
3222 {
3223 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3224
3225 return sprintf(buf, "%llu\n",
3226 (unsigned long long) rbd_dev->spec->pool_id);
3227 }
3228
3229 static ssize_t rbd_name_show(struct device *dev,
3230 struct device_attribute *attr, char *buf)
3231 {
3232 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3233
3234 if (rbd_dev->spec->image_name)
3235 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3236
3237 return sprintf(buf, "(unknown)\n");
3238 }
3239
3240 static ssize_t rbd_image_id_show(struct device *dev,
3241 struct device_attribute *attr, char *buf)
3242 {
3243 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3244
3245 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3246 }
3247
3248 /*
3249 * Shows the name of the currently-mapped snapshot (or
3250 * RBD_SNAP_HEAD_NAME for the base image).
3251 */
3252 static ssize_t rbd_snap_show(struct device *dev,
3253 struct device_attribute *attr,
3254 char *buf)
3255 {
3256 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3257
3258 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3259 }
3260
3261 /*
3262 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3263 * for the parent image. If there is no parent, simply shows
3264 * "(no parent image)".
3265 */
3266 static ssize_t rbd_parent_show(struct device *dev,
3267 struct device_attribute *attr,
3268 char *buf)
3269 {
3270 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3271 struct rbd_spec *spec = rbd_dev->parent_spec;
3272 int count;
3273 char *bufp = buf;
3274
3275 if (!spec)
3276 return sprintf(buf, "(no parent image)\n");
3277
3278 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3279 (unsigned long long) spec->pool_id, spec->pool_name);
3280 if (count < 0)
3281 return count;
3282 bufp += count;
3283
3284 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3285 spec->image_name ? spec->image_name : "(unknown)");
3286 if (count < 0)
3287 return count;
3288 bufp += count;
3289
3290 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3291 (unsigned long long) spec->snap_id, spec->snap_name);
3292 if (count < 0)
3293 return count;
3294 bufp += count;
3295
3296 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3297 if (count < 0)
3298 return count;
3299 bufp += count;
3300
3301 return (ssize_t) (bufp - buf);
3302 }
3303
3304 static ssize_t rbd_image_refresh(struct device *dev,
3305 struct device_attribute *attr,
3306 const char *buf,
3307 size_t size)
3308 {
3309 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3310 int ret;
3311
3312 ret = rbd_dev_refresh(rbd_dev, NULL);
3313
3314 return ret < 0 ? ret : size;
3315 }
3316
3317 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3318 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3319 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3320 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3321 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3322 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3323 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3324 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3325 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3326 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3327 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3328
3329 static struct attribute *rbd_attrs[] = {
3330 &dev_attr_size.attr,
3331 &dev_attr_features.attr,
3332 &dev_attr_major.attr,
3333 &dev_attr_client_id.attr,
3334 &dev_attr_pool.attr,
3335 &dev_attr_pool_id.attr,
3336 &dev_attr_name.attr,
3337 &dev_attr_image_id.attr,
3338 &dev_attr_current_snap.attr,
3339 &dev_attr_parent.attr,
3340 &dev_attr_refresh.attr,
3341 NULL
3342 };
3343
3344 static struct attribute_group rbd_attr_group = {
3345 .attrs = rbd_attrs,
3346 };
3347
3348 static const struct attribute_group *rbd_attr_groups[] = {
3349 &rbd_attr_group,
3350 NULL
3351 };
3352
3353 static void rbd_sysfs_dev_release(struct device *dev)
3354 {
3355 }
3356
3357 static struct device_type rbd_device_type = {
3358 .name = "rbd",
3359 .groups = rbd_attr_groups,
3360 .release = rbd_sysfs_dev_release,
3361 };
3362
3363 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3364 {
3365 kref_get(&spec->kref);
3366
3367 return spec;
3368 }
3369
3370 static void rbd_spec_free(struct kref *kref);
3371 static void rbd_spec_put(struct rbd_spec *spec)
3372 {
3373 if (spec)
3374 kref_put(&spec->kref, rbd_spec_free);
3375 }
3376
3377 static struct rbd_spec *rbd_spec_alloc(void)
3378 {
3379 struct rbd_spec *spec;
3380
3381 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3382 if (!spec)
3383 return NULL;
3384 kref_init(&spec->kref);
3385
3386 return spec;
3387 }
3388
3389 static void rbd_spec_free(struct kref *kref)
3390 {
3391 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3392
3393 kfree(spec->pool_name);
3394 kfree(spec->image_id);
3395 kfree(spec->image_name);
3396 kfree(spec->snap_name);
3397 kfree(spec);
3398 }
3399
3400 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3401 struct rbd_spec *spec)
3402 {
3403 struct rbd_device *rbd_dev;
3404
3405 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3406 if (!rbd_dev)
3407 return NULL;
3408
3409 spin_lock_init(&rbd_dev->lock);
3410 rbd_dev->flags = 0;
3411 INIT_LIST_HEAD(&rbd_dev->node);
3412 INIT_LIST_HEAD(&rbd_dev->snaps);
3413 init_rwsem(&rbd_dev->header_rwsem);
3414
3415 rbd_dev->spec = spec;
3416 rbd_dev->rbd_client = rbdc;
3417
3418 /* Initialize the layout used for all rbd requests */
3419
3420 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3421 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3422 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3423 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3424
3425 return rbd_dev;
3426 }
3427
3428 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3429 {
3430 rbd_put_client(rbd_dev->rbd_client);
3431 rbd_spec_put(rbd_dev->spec);
3432 kfree(rbd_dev);
3433 }
3434
3435 static void rbd_snap_destroy(struct rbd_snap *snap)
3436 {
3437 kfree(snap->name);
3438 kfree(snap);
3439 }
3440
3441 static struct rbd_snap *rbd_snap_create(struct rbd_device *rbd_dev,
3442 const char *snap_name,
3443 u64 snap_id, u64 snap_size,
3444 u64 snap_features)
3445 {
3446 struct rbd_snap *snap;
3447
3448 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
3449 if (!snap)
3450 return ERR_PTR(-ENOMEM);
3451
3452 snap->name = snap_name;
3453 snap->id = snap_id;
3454 snap->size = snap_size;
3455 snap->features = snap_features;
3456
3457 return snap;
3458 }
3459
3460 /*
3461 * Returns a dynamically-allocated snapshot name if successful, or a
3462 * pointer-coded error otherwise.
3463 */
3464 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
3465 u64 *snap_size, u64 *snap_features)
3466 {
3467 char *snap_name;
3468 int i;
3469
3470 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3471
3472 /* Skip over names until we find the one we are looking for */
3473
3474 snap_name = rbd_dev->header.snap_names;
3475 for (i = 0; i < which; i++)
3476 snap_name += strlen(snap_name) + 1;
3477
3478 snap_name = kstrdup(snap_name, GFP_KERNEL);
3479 if (!snap_name)
3480 return ERR_PTR(-ENOMEM);
3481
3482 *snap_size = rbd_dev->header.snap_sizes[which];
3483 *snap_features = 0; /* No features for v1 */
3484
3485 return snap_name;
3486 }
3487
3488 /*
3489 * Get the size and object order for an image snapshot, or if
3490 * snap_id is CEPH_NOSNAP, gets this information for the base
3491 * image.
3492 */
3493 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3494 u8 *order, u64 *snap_size)
3495 {
3496 __le64 snapid = cpu_to_le64(snap_id);
3497 int ret;
3498 struct {
3499 u8 order;
3500 __le64 size;
3501 } __attribute__ ((packed)) size_buf = { 0 };
3502
3503 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3504 "rbd", "get_size",
3505 &snapid, sizeof (snapid),
3506 &size_buf, sizeof (size_buf), NULL);
3507 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3508 if (ret < 0)
3509 return ret;
3510 if (ret < sizeof (size_buf))
3511 return -ERANGE;
3512
3513 if (order)
3514 *order = size_buf.order;
3515 *snap_size = le64_to_cpu(size_buf.size);
3516
3517 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3518 (unsigned long long)snap_id, (unsigned int)*order,
3519 (unsigned long long)*snap_size);
3520
3521 return 0;
3522 }
3523
3524 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3525 {
3526 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3527 &rbd_dev->header.obj_order,
3528 &rbd_dev->header.image_size);
3529 }
3530
3531 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3532 {
3533 void *reply_buf;
3534 int ret;
3535 void *p;
3536
3537 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3538 if (!reply_buf)
3539 return -ENOMEM;
3540
3541 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3542 "rbd", "get_object_prefix", NULL, 0,
3543 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
3544 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3545 if (ret < 0)
3546 goto out;
3547
3548 p = reply_buf;
3549 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3550 p + ret, NULL, GFP_NOIO);
3551 ret = 0;
3552
3553 if (IS_ERR(rbd_dev->header.object_prefix)) {
3554 ret = PTR_ERR(rbd_dev->header.object_prefix);
3555 rbd_dev->header.object_prefix = NULL;
3556 } else {
3557 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3558 }
3559 out:
3560 kfree(reply_buf);
3561
3562 return ret;
3563 }
3564
3565 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3566 u64 *snap_features)
3567 {
3568 __le64 snapid = cpu_to_le64(snap_id);
3569 struct {
3570 __le64 features;
3571 __le64 incompat;
3572 } __attribute__ ((packed)) features_buf = { 0 };
3573 u64 incompat;
3574 int ret;
3575
3576 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3577 "rbd", "get_features",
3578 &snapid, sizeof (snapid),
3579 &features_buf, sizeof (features_buf), NULL);
3580 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3581 if (ret < 0)
3582 return ret;
3583 if (ret < sizeof (features_buf))
3584 return -ERANGE;
3585
3586 incompat = le64_to_cpu(features_buf.incompat);
3587 if (incompat & ~RBD_FEATURES_SUPPORTED)
3588 return -ENXIO;
3589
3590 *snap_features = le64_to_cpu(features_buf.features);
3591
3592 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3593 (unsigned long long)snap_id,
3594 (unsigned long long)*snap_features,
3595 (unsigned long long)le64_to_cpu(features_buf.incompat));
3596
3597 return 0;
3598 }
3599
3600 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3601 {
3602 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3603 &rbd_dev->header.features);
3604 }
3605
3606 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3607 {
3608 struct rbd_spec *parent_spec;
3609 size_t size;
3610 void *reply_buf = NULL;
3611 __le64 snapid;
3612 void *p;
3613 void *end;
3614 char *image_id;
3615 u64 overlap;
3616 int ret;
3617
3618 parent_spec = rbd_spec_alloc();
3619 if (!parent_spec)
3620 return -ENOMEM;
3621
3622 size = sizeof (__le64) + /* pool_id */
3623 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3624 sizeof (__le64) + /* snap_id */
3625 sizeof (__le64); /* overlap */
3626 reply_buf = kmalloc(size, GFP_KERNEL);
3627 if (!reply_buf) {
3628 ret = -ENOMEM;
3629 goto out_err;
3630 }
3631
3632 snapid = cpu_to_le64(CEPH_NOSNAP);
3633 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3634 "rbd", "get_parent",
3635 &snapid, sizeof (snapid),
3636 reply_buf, size, NULL);
3637 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3638 if (ret < 0)
3639 goto out_err;
3640
3641 p = reply_buf;
3642 end = reply_buf + ret;
3643 ret = -ERANGE;
3644 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3645 if (parent_spec->pool_id == CEPH_NOPOOL)
3646 goto out; /* No parent? No problem. */
3647
3648 /* The ceph file layout needs to fit pool id in 32 bits */
3649
3650 ret = -EIO;
3651 if (parent_spec->pool_id > (u64)U32_MAX) {
3652 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3653 (unsigned long long)parent_spec->pool_id, U32_MAX);
3654 goto out_err;
3655 }
3656
3657 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3658 if (IS_ERR(image_id)) {
3659 ret = PTR_ERR(image_id);
3660 goto out_err;
3661 }
3662 parent_spec->image_id = image_id;
3663 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3664 ceph_decode_64_safe(&p, end, overlap, out_err);
3665
3666 rbd_dev->parent_overlap = overlap;
3667 rbd_dev->parent_spec = parent_spec;
3668 parent_spec = NULL; /* rbd_dev now owns this */
3669 out:
3670 ret = 0;
3671 out_err:
3672 kfree(reply_buf);
3673 rbd_spec_put(parent_spec);
3674
3675 return ret;
3676 }
3677
3678 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3679 {
3680 struct {
3681 __le64 stripe_unit;
3682 __le64 stripe_count;
3683 } __attribute__ ((packed)) striping_info_buf = { 0 };
3684 size_t size = sizeof (striping_info_buf);
3685 void *p;
3686 u64 obj_size;
3687 u64 stripe_unit;
3688 u64 stripe_count;
3689 int ret;
3690
3691 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3692 "rbd", "get_stripe_unit_count", NULL, 0,
3693 (char *)&striping_info_buf, size, NULL);
3694 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3695 if (ret < 0)
3696 return ret;
3697 if (ret < size)
3698 return -ERANGE;
3699
3700 /*
3701 * We don't actually support the "fancy striping" feature
3702 * (STRIPINGV2) yet, but if the striping sizes are the
3703 * defaults the behavior is the same as before. So find
3704 * out, and only fail if the image has non-default values.
3705 */
3706 ret = -EINVAL;
3707 obj_size = (u64)1 << rbd_dev->header.obj_order;
3708 p = &striping_info_buf;
3709 stripe_unit = ceph_decode_64(&p);
3710 if (stripe_unit != obj_size) {
3711 rbd_warn(rbd_dev, "unsupported stripe unit "
3712 "(got %llu want %llu)",
3713 stripe_unit, obj_size);
3714 return -EINVAL;
3715 }
3716 stripe_count = ceph_decode_64(&p);
3717 if (stripe_count != 1) {
3718 rbd_warn(rbd_dev, "unsupported stripe count "
3719 "(got %llu want 1)", stripe_count);
3720 return -EINVAL;
3721 }
3722 rbd_dev->header.stripe_unit = stripe_unit;
3723 rbd_dev->header.stripe_count = stripe_count;
3724
3725 return 0;
3726 }
3727
3728 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3729 {
3730 size_t image_id_size;
3731 char *image_id;
3732 void *p;
3733 void *end;
3734 size_t size;
3735 void *reply_buf = NULL;
3736 size_t len = 0;
3737 char *image_name = NULL;
3738 int ret;
3739
3740 rbd_assert(!rbd_dev->spec->image_name);
3741
3742 len = strlen(rbd_dev->spec->image_id);
3743 image_id_size = sizeof (__le32) + len;
3744 image_id = kmalloc(image_id_size, GFP_KERNEL);
3745 if (!image_id)
3746 return NULL;
3747
3748 p = image_id;
3749 end = image_id + image_id_size;
3750 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3751
3752 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3753 reply_buf = kmalloc(size, GFP_KERNEL);
3754 if (!reply_buf)
3755 goto out;
3756
3757 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3758 "rbd", "dir_get_name",
3759 image_id, image_id_size,
3760 reply_buf, size, NULL);
3761 if (ret < 0)
3762 goto out;
3763 p = reply_buf;
3764 end = reply_buf + ret;
3765
3766 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3767 if (IS_ERR(image_name))
3768 image_name = NULL;
3769 else
3770 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3771 out:
3772 kfree(reply_buf);
3773 kfree(image_id);
3774
3775 return image_name;
3776 }
3777
3778 /*
3779 * When an rbd image has a parent image, it is identified by the
3780 * pool, image, and snapshot ids (not names). This function fills
3781 * in the names for those ids. (It's OK if we can't figure out the
3782 * name for an image id, but the pool and snapshot ids should always
3783 * exist and have names.) All names in an rbd spec are dynamically
3784 * allocated.
3785 *
3786 * When an image being mapped (not a parent) is probed, we have the
3787 * pool name and pool id, image name and image id, and the snapshot
3788 * name. The only thing we're missing is the snapshot id.
3789 *
3790 * The set of snapshots for an image is not known until they have
3791 * been read by rbd_dev_snaps_update(), so we can't completely fill
3792 * in this information until after that has been called.
3793 */
3794 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3795 {
3796 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3797 struct rbd_spec *spec = rbd_dev->spec;
3798 const char *pool_name;
3799 const char *image_name;
3800 const char *snap_name;
3801 int ret;
3802
3803 /*
3804 * An image being mapped will have the pool name (etc.), but
3805 * we need to look up the snapshot id.
3806 */
3807 if (spec->pool_name) {
3808 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3809 struct rbd_snap *snap;
3810
3811 snap = snap_by_name(rbd_dev, spec->snap_name);
3812 if (!snap)
3813 return -ENOENT;
3814 spec->snap_id = snap->id;
3815 } else {
3816 spec->snap_id = CEPH_NOSNAP;
3817 }
3818
3819 return 0;
3820 }
3821
3822 /* Get the pool name; we have to make our own copy of this */
3823
3824 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3825 if (!pool_name) {
3826 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3827 return -EIO;
3828 }
3829 pool_name = kstrdup(pool_name, GFP_KERNEL);
3830 if (!pool_name)
3831 return -ENOMEM;
3832
3833 /* Fetch the image name; tolerate failure here */
3834
3835 image_name = rbd_dev_image_name(rbd_dev);
3836 if (!image_name)
3837 rbd_warn(rbd_dev, "unable to get image name");
3838
3839 /* Look up the snapshot name, and make a copy */
3840
3841 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3842 if (!snap_name) {
3843 rbd_warn(rbd_dev, "no snapshot with id %llu", spec->snap_id);
3844 ret = -EIO;
3845 goto out_err;
3846 }
3847 snap_name = kstrdup(snap_name, GFP_KERNEL);
3848 if (!snap_name) {
3849 ret = -ENOMEM;
3850 goto out_err;
3851 }
3852
3853 spec->pool_name = pool_name;
3854 spec->image_name = image_name;
3855 spec->snap_name = snap_name;
3856
3857 return 0;
3858 out_err:
3859 kfree(image_name);
3860 kfree(pool_name);
3861
3862 return ret;
3863 }
3864
3865 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3866 {
3867 size_t size;
3868 int ret;
3869 void *reply_buf;
3870 void *p;
3871 void *end;
3872 u64 seq;
3873 u32 snap_count;
3874 struct ceph_snap_context *snapc;
3875 u32 i;
3876
3877 /*
3878 * We'll need room for the seq value (maximum snapshot id),
3879 * snapshot count, and array of that many snapshot ids.
3880 * For now we have a fixed upper limit on the number we're
3881 * prepared to receive.
3882 */
3883 size = sizeof (__le64) + sizeof (__le32) +
3884 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3885 reply_buf = kzalloc(size, GFP_KERNEL);
3886 if (!reply_buf)
3887 return -ENOMEM;
3888
3889 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3890 "rbd", "get_snapcontext", NULL, 0,
3891 reply_buf, size, ver);
3892 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3893 if (ret < 0)
3894 goto out;
3895
3896 p = reply_buf;
3897 end = reply_buf + ret;
3898 ret = -ERANGE;
3899 ceph_decode_64_safe(&p, end, seq, out);
3900 ceph_decode_32_safe(&p, end, snap_count, out);
3901
3902 /*
3903 * Make sure the reported number of snapshot ids wouldn't go
3904 * beyond the end of our buffer. But before checking that,
3905 * make sure the computed size of the snapshot context we
3906 * allocate is representable in a size_t.
3907 */
3908 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3909 / sizeof (u64)) {
3910 ret = -EINVAL;
3911 goto out;
3912 }
3913 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3914 goto out;
3915 ret = 0;
3916
3917 snapc = rbd_snap_context_create(snap_count);
3918 if (!snapc) {
3919 ret = -ENOMEM;
3920 goto out;
3921 }
3922 snapc->seq = seq;
3923 for (i = 0; i < snap_count; i++)
3924 snapc->snaps[i] = ceph_decode_64(&p);
3925
3926 rbd_dev->header.snapc = snapc;
3927
3928 dout(" snap context seq = %llu, snap_count = %u\n",
3929 (unsigned long long)seq, (unsigned int)snap_count);
3930 out:
3931 kfree(reply_buf);
3932
3933 return ret;
3934 }
3935
3936 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3937 {
3938 size_t size;
3939 void *reply_buf;
3940 __le64 snap_id;
3941 int ret;
3942 void *p;
3943 void *end;
3944 char *snap_name;
3945
3946 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3947 reply_buf = kmalloc(size, GFP_KERNEL);
3948 if (!reply_buf)
3949 return ERR_PTR(-ENOMEM);
3950
3951 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3952 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3953 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3954 "rbd", "get_snapshot_name",
3955 &snap_id, sizeof (snap_id),
3956 reply_buf, size, NULL);
3957 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3958 if (ret < 0) {
3959 snap_name = ERR_PTR(ret);
3960 goto out;
3961 }
3962
3963 p = reply_buf;
3964 end = reply_buf + ret;
3965 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3966 if (IS_ERR(snap_name))
3967 goto out;
3968
3969 dout(" snap_id 0x%016llx snap_name = %s\n",
3970 (unsigned long long)le64_to_cpu(snap_id), snap_name);
3971 out:
3972 kfree(reply_buf);
3973
3974 return snap_name;
3975 }
3976
3977 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3978 u64 *snap_size, u64 *snap_features)
3979 {
3980 u64 snap_id;
3981 u64 size;
3982 u64 features;
3983 char *snap_name;
3984 int ret;
3985
3986 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3987 snap_id = rbd_dev->header.snapc->snaps[which];
3988 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
3989 if (ret)
3990 goto out_err;
3991
3992 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
3993 if (ret)
3994 goto out_err;
3995
3996 snap_name = rbd_dev_v2_snap_name(rbd_dev, which);
3997 if (!IS_ERR(snap_name)) {
3998 *snap_size = size;
3999 *snap_features = features;
4000 }
4001
4002 return snap_name;
4003 out_err:
4004 return ERR_PTR(ret);
4005 }
4006
4007 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
4008 u64 *snap_size, u64 *snap_features)
4009 {
4010 if (rbd_dev->image_format == 1)
4011 return rbd_dev_v1_snap_info(rbd_dev, which,
4012 snap_size, snap_features);
4013 if (rbd_dev->image_format == 2)
4014 return rbd_dev_v2_snap_info(rbd_dev, which,
4015 snap_size, snap_features);
4016 return ERR_PTR(-EINVAL);
4017 }
4018
4019 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
4020 {
4021 int ret;
4022
4023 down_write(&rbd_dev->header_rwsem);
4024
4025 ret = rbd_dev_v2_image_size(rbd_dev);
4026 if (ret)
4027 goto out;
4028 rbd_update_mapping_size(rbd_dev);
4029
4030 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
4031 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4032 if (ret)
4033 goto out;
4034 ret = rbd_dev_snaps_update(rbd_dev);
4035 dout("rbd_dev_snaps_update returned %d\n", ret);
4036 if (ret)
4037 goto out;
4038 out:
4039 up_write(&rbd_dev->header_rwsem);
4040
4041 return ret;
4042 }
4043
4044 /*
4045 * Scan the rbd device's current snapshot list and compare it to the
4046 * newly-received snapshot context. Remove any existing snapshots
4047 * not present in the new snapshot context. Add a new snapshot for
4048 * any snaphots in the snapshot context not in the current list.
4049 * And verify there are no changes to snapshots we already know
4050 * about.
4051 *
4052 * Assumes the snapshots in the snapshot context are sorted by
4053 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
4054 * are also maintained in that order.)
4055 *
4056 * Note that any error occurs while updating the snapshot list
4057 * aborts the update, and the entire list is cleared. The snapshot
4058 * list becomes inconsistent at that point anyway, so it might as
4059 * well be empty.
4060 */
4061 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
4062 {
4063 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4064 const u32 snap_count = snapc->num_snaps;
4065 struct list_head *head = &rbd_dev->snaps;
4066 struct list_head *links = head->next;
4067 u32 index = 0;
4068 int ret = 0;
4069
4070 dout("%s: snap count is %u\n", __func__, (unsigned int)snap_count);
4071 while (index < snap_count || links != head) {
4072 u64 snap_id;
4073 struct rbd_snap *snap;
4074 char *snap_name;
4075 u64 snap_size = 0;
4076 u64 snap_features = 0;
4077
4078 snap_id = index < snap_count ? snapc->snaps[index]
4079 : CEPH_NOSNAP;
4080 snap = links != head ? list_entry(links, struct rbd_snap, node)
4081 : NULL;
4082 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
4083
4084 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
4085 struct list_head *next = links->next;
4086
4087 /*
4088 * A previously-existing snapshot is not in
4089 * the new snap context.
4090 *
4091 * If the now-missing snapshot is the one
4092 * the image represents, clear its existence
4093 * flag so we can avoid sending any more
4094 * requests to it.
4095 */
4096 if (rbd_dev->spec->snap_id == snap->id)
4097 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4098 dout("removing %ssnap id %llu\n",
4099 rbd_dev->spec->snap_id == snap->id ?
4100 "mapped " : "",
4101 (unsigned long long)snap->id);
4102
4103 list_del(&snap->node);
4104 rbd_snap_destroy(snap);
4105
4106 /* Done with this list entry; advance */
4107
4108 links = next;
4109 continue;
4110 }
4111
4112 snap_name = rbd_dev_snap_info(rbd_dev, index,
4113 &snap_size, &snap_features);
4114 if (IS_ERR(snap_name)) {
4115 ret = PTR_ERR(snap_name);
4116 dout("failed to get snap info, error %d\n", ret);
4117 goto out_err;
4118 }
4119
4120 dout("entry %u: snap_id = %llu\n", (unsigned int)snap_count,
4121 (unsigned long long)snap_id);
4122 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
4123 struct rbd_snap *new_snap;
4124
4125 /* We haven't seen this snapshot before */
4126
4127 new_snap = rbd_snap_create(rbd_dev, snap_name,
4128 snap_id, snap_size, snap_features);
4129 if (IS_ERR(new_snap)) {
4130 ret = PTR_ERR(new_snap);
4131 dout(" failed to add dev, error %d\n", ret);
4132 goto out_err;
4133 }
4134
4135 /* New goes before existing, or at end of list */
4136
4137 dout(" added dev%s\n", snap ? "" : " at end\n");
4138 if (snap)
4139 list_add_tail(&new_snap->node, &snap->node);
4140 else
4141 list_add_tail(&new_snap->node, head);
4142 } else {
4143 /* Already have this one */
4144
4145 dout(" already present\n");
4146
4147 rbd_assert(snap->size == snap_size);
4148 rbd_assert(!strcmp(snap->name, snap_name));
4149 rbd_assert(snap->features == snap_features);
4150
4151 /* Done with this list entry; advance */
4152
4153 links = links->next;
4154 }
4155
4156 /* Advance to the next entry in the snapshot context */
4157
4158 index++;
4159 }
4160 dout("%s: done\n", __func__);
4161
4162 return 0;
4163 out_err:
4164 rbd_remove_all_snaps(rbd_dev);
4165
4166 return ret;
4167 }
4168
4169 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4170 {
4171 struct device *dev;
4172 int ret;
4173
4174 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4175
4176 dev = &rbd_dev->dev;
4177 dev->bus = &rbd_bus_type;
4178 dev->type = &rbd_device_type;
4179 dev->parent = &rbd_root_dev;
4180 dev->release = rbd_dev_device_release;
4181 dev_set_name(dev, "%d", rbd_dev->dev_id);
4182 ret = device_register(dev);
4183
4184 mutex_unlock(&ctl_mutex);
4185
4186 return ret;
4187 }
4188
4189 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4190 {
4191 device_unregister(&rbd_dev->dev);
4192 }
4193
4194 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4195
4196 /*
4197 * Get a unique rbd identifier for the given new rbd_dev, and add
4198 * the rbd_dev to the global list. The minimum rbd id is 1.
4199 */
4200 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4201 {
4202 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4203
4204 spin_lock(&rbd_dev_list_lock);
4205 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4206 spin_unlock(&rbd_dev_list_lock);
4207 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4208 (unsigned long long) rbd_dev->dev_id);
4209 }
4210
4211 /*
4212 * Remove an rbd_dev from the global list, and record that its
4213 * identifier is no longer in use.
4214 */
4215 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4216 {
4217 struct list_head *tmp;
4218 int rbd_id = rbd_dev->dev_id;
4219 int max_id;
4220
4221 rbd_assert(rbd_id > 0);
4222
4223 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4224 (unsigned long long) rbd_dev->dev_id);
4225 spin_lock(&rbd_dev_list_lock);
4226 list_del_init(&rbd_dev->node);
4227
4228 /*
4229 * If the id being "put" is not the current maximum, there
4230 * is nothing special we need to do.
4231 */
4232 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4233 spin_unlock(&rbd_dev_list_lock);
4234 return;
4235 }
4236
4237 /*
4238 * We need to update the current maximum id. Search the
4239 * list to find out what it is. We're more likely to find
4240 * the maximum at the end, so search the list backward.
4241 */
4242 max_id = 0;
4243 list_for_each_prev(tmp, &rbd_dev_list) {
4244 struct rbd_device *rbd_dev;
4245
4246 rbd_dev = list_entry(tmp, struct rbd_device, node);
4247 if (rbd_dev->dev_id > max_id)
4248 max_id = rbd_dev->dev_id;
4249 }
4250 spin_unlock(&rbd_dev_list_lock);
4251
4252 /*
4253 * The max id could have been updated by rbd_dev_id_get(), in
4254 * which case it now accurately reflects the new maximum.
4255 * Be careful not to overwrite the maximum value in that
4256 * case.
4257 */
4258 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4259 dout(" max dev id has been reset\n");
4260 }
4261
4262 /*
4263 * Skips over white space at *buf, and updates *buf to point to the
4264 * first found non-space character (if any). Returns the length of
4265 * the token (string of non-white space characters) found. Note
4266 * that *buf must be terminated with '\0'.
4267 */
4268 static inline size_t next_token(const char **buf)
4269 {
4270 /*
4271 * These are the characters that produce nonzero for
4272 * isspace() in the "C" and "POSIX" locales.
4273 */
4274 const char *spaces = " \f\n\r\t\v";
4275
4276 *buf += strspn(*buf, spaces); /* Find start of token */
4277
4278 return strcspn(*buf, spaces); /* Return token length */
4279 }
4280
4281 /*
4282 * Finds the next token in *buf, and if the provided token buffer is
4283 * big enough, copies the found token into it. The result, if
4284 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4285 * must be terminated with '\0' on entry.
4286 *
4287 * Returns the length of the token found (not including the '\0').
4288 * Return value will be 0 if no token is found, and it will be >=
4289 * token_size if the token would not fit.
4290 *
4291 * The *buf pointer will be updated to point beyond the end of the
4292 * found token. Note that this occurs even if the token buffer is
4293 * too small to hold it.
4294 */
4295 static inline size_t copy_token(const char **buf,
4296 char *token,
4297 size_t token_size)
4298 {
4299 size_t len;
4300
4301 len = next_token(buf);
4302 if (len < token_size) {
4303 memcpy(token, *buf, len);
4304 *(token + len) = '\0';
4305 }
4306 *buf += len;
4307
4308 return len;
4309 }
4310
4311 /*
4312 * Finds the next token in *buf, dynamically allocates a buffer big
4313 * enough to hold a copy of it, and copies the token into the new
4314 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4315 * that a duplicate buffer is created even for a zero-length token.
4316 *
4317 * Returns a pointer to the newly-allocated duplicate, or a null
4318 * pointer if memory for the duplicate was not available. If
4319 * the lenp argument is a non-null pointer, the length of the token
4320 * (not including the '\0') is returned in *lenp.
4321 *
4322 * If successful, the *buf pointer will be updated to point beyond
4323 * the end of the found token.
4324 *
4325 * Note: uses GFP_KERNEL for allocation.
4326 */
4327 static inline char *dup_token(const char **buf, size_t *lenp)
4328 {
4329 char *dup;
4330 size_t len;
4331
4332 len = next_token(buf);
4333 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4334 if (!dup)
4335 return NULL;
4336 *(dup + len) = '\0';
4337 *buf += len;
4338
4339 if (lenp)
4340 *lenp = len;
4341
4342 return dup;
4343 }
4344
4345 /*
4346 * Parse the options provided for an "rbd add" (i.e., rbd image
4347 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4348 * and the data written is passed here via a NUL-terminated buffer.
4349 * Returns 0 if successful or an error code otherwise.
4350 *
4351 * The information extracted from these options is recorded in
4352 * the other parameters which return dynamically-allocated
4353 * structures:
4354 * ceph_opts
4355 * The address of a pointer that will refer to a ceph options
4356 * structure. Caller must release the returned pointer using
4357 * ceph_destroy_options() when it is no longer needed.
4358 * rbd_opts
4359 * Address of an rbd options pointer. Fully initialized by
4360 * this function; caller must release with kfree().
4361 * spec
4362 * Address of an rbd image specification pointer. Fully
4363 * initialized by this function based on parsed options.
4364 * Caller must release with rbd_spec_put().
4365 *
4366 * The options passed take this form:
4367 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4368 * where:
4369 * <mon_addrs>
4370 * A comma-separated list of one or more monitor addresses.
4371 * A monitor address is an ip address, optionally followed
4372 * by a port number (separated by a colon).
4373 * I.e.: ip1[:port1][,ip2[:port2]...]
4374 * <options>
4375 * A comma-separated list of ceph and/or rbd options.
4376 * <pool_name>
4377 * The name of the rados pool containing the rbd image.
4378 * <image_name>
4379 * The name of the image in that pool to map.
4380 * <snap_id>
4381 * An optional snapshot id. If provided, the mapping will
4382 * present data from the image at the time that snapshot was
4383 * created. The image head is used if no snapshot id is
4384 * provided. Snapshot mappings are always read-only.
4385 */
4386 static int rbd_add_parse_args(const char *buf,
4387 struct ceph_options **ceph_opts,
4388 struct rbd_options **opts,
4389 struct rbd_spec **rbd_spec)
4390 {
4391 size_t len;
4392 char *options;
4393 const char *mon_addrs;
4394 char *snap_name;
4395 size_t mon_addrs_size;
4396 struct rbd_spec *spec = NULL;
4397 struct rbd_options *rbd_opts = NULL;
4398 struct ceph_options *copts;
4399 int ret;
4400
4401 /* The first four tokens are required */
4402
4403 len = next_token(&buf);
4404 if (!len) {
4405 rbd_warn(NULL, "no monitor address(es) provided");
4406 return -EINVAL;
4407 }
4408 mon_addrs = buf;
4409 mon_addrs_size = len + 1;
4410 buf += len;
4411
4412 ret = -EINVAL;
4413 options = dup_token(&buf, NULL);
4414 if (!options)
4415 return -ENOMEM;
4416 if (!*options) {
4417 rbd_warn(NULL, "no options provided");
4418 goto out_err;
4419 }
4420
4421 spec = rbd_spec_alloc();
4422 if (!spec)
4423 goto out_mem;
4424
4425 spec->pool_name = dup_token(&buf, NULL);
4426 if (!spec->pool_name)
4427 goto out_mem;
4428 if (!*spec->pool_name) {
4429 rbd_warn(NULL, "no pool name provided");
4430 goto out_err;
4431 }
4432
4433 spec->image_name = dup_token(&buf, NULL);
4434 if (!spec->image_name)
4435 goto out_mem;
4436 if (!*spec->image_name) {
4437 rbd_warn(NULL, "no image name provided");
4438 goto out_err;
4439 }
4440
4441 /*
4442 * Snapshot name is optional; default is to use "-"
4443 * (indicating the head/no snapshot).
4444 */
4445 len = next_token(&buf);
4446 if (!len) {
4447 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4448 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4449 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4450 ret = -ENAMETOOLONG;
4451 goto out_err;
4452 }
4453 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4454 if (!snap_name)
4455 goto out_mem;
4456 *(snap_name + len) = '\0';
4457 spec->snap_name = snap_name;
4458
4459 /* Initialize all rbd options to the defaults */
4460
4461 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4462 if (!rbd_opts)
4463 goto out_mem;
4464
4465 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4466
4467 copts = ceph_parse_options(options, mon_addrs,
4468 mon_addrs + mon_addrs_size - 1,
4469 parse_rbd_opts_token, rbd_opts);
4470 if (IS_ERR(copts)) {
4471 ret = PTR_ERR(copts);
4472 goto out_err;
4473 }
4474 kfree(options);
4475
4476 *ceph_opts = copts;
4477 *opts = rbd_opts;
4478 *rbd_spec = spec;
4479
4480 return 0;
4481 out_mem:
4482 ret = -ENOMEM;
4483 out_err:
4484 kfree(rbd_opts);
4485 rbd_spec_put(spec);
4486 kfree(options);
4487
4488 return ret;
4489 }
4490
4491 /*
4492 * An rbd format 2 image has a unique identifier, distinct from the
4493 * name given to it by the user. Internally, that identifier is
4494 * what's used to specify the names of objects related to the image.
4495 *
4496 * A special "rbd id" object is used to map an rbd image name to its
4497 * id. If that object doesn't exist, then there is no v2 rbd image
4498 * with the supplied name.
4499 *
4500 * This function will record the given rbd_dev's image_id field if
4501 * it can be determined, and in that case will return 0. If any
4502 * errors occur a negative errno will be returned and the rbd_dev's
4503 * image_id field will be unchanged (and should be NULL).
4504 */
4505 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4506 {
4507 int ret;
4508 size_t size;
4509 char *object_name;
4510 void *response;
4511 char *image_id;
4512
4513 /*
4514 * When probing a parent image, the image id is already
4515 * known (and the image name likely is not). There's no
4516 * need to fetch the image id again in this case. We
4517 * do still need to set the image format though.
4518 */
4519 if (rbd_dev->spec->image_id) {
4520 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4521
4522 return 0;
4523 }
4524
4525 /*
4526 * First, see if the format 2 image id file exists, and if
4527 * so, get the image's persistent id from it.
4528 */
4529 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4530 object_name = kmalloc(size, GFP_NOIO);
4531 if (!object_name)
4532 return -ENOMEM;
4533 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4534 dout("rbd id object name is %s\n", object_name);
4535
4536 /* Response will be an encoded string, which includes a length */
4537
4538 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4539 response = kzalloc(size, GFP_NOIO);
4540 if (!response) {
4541 ret = -ENOMEM;
4542 goto out;
4543 }
4544
4545 /* If it doesn't exist we'll assume it's a format 1 image */
4546
4547 ret = rbd_obj_method_sync(rbd_dev, object_name,
4548 "rbd", "get_id", NULL, 0,
4549 response, RBD_IMAGE_ID_LEN_MAX, NULL);
4550 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4551 if (ret == -ENOENT) {
4552 image_id = kstrdup("", GFP_KERNEL);
4553 ret = image_id ? 0 : -ENOMEM;
4554 if (!ret)
4555 rbd_dev->image_format = 1;
4556 } else if (ret > sizeof (__le32)) {
4557 void *p = response;
4558
4559 image_id = ceph_extract_encoded_string(&p, p + ret,
4560 NULL, GFP_NOIO);
4561 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4562 if (!ret)
4563 rbd_dev->image_format = 2;
4564 } else {
4565 ret = -EINVAL;
4566 }
4567
4568 if (!ret) {
4569 rbd_dev->spec->image_id = image_id;
4570 dout("image_id is %s\n", image_id);
4571 }
4572 out:
4573 kfree(response);
4574 kfree(object_name);
4575
4576 return ret;
4577 }
4578
4579 /* Undo whatever state changes are made by v1 or v2 image probe */
4580
4581 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4582 {
4583 struct rbd_image_header *header;
4584
4585 rbd_dev_remove_parent(rbd_dev);
4586 rbd_spec_put(rbd_dev->parent_spec);
4587 rbd_dev->parent_spec = NULL;
4588 rbd_dev->parent_overlap = 0;
4589
4590 /* Free dynamic fields from the header, then zero it out */
4591
4592 header = &rbd_dev->header;
4593 rbd_snap_context_put(header->snapc);
4594 kfree(header->snap_sizes);
4595 kfree(header->snap_names);
4596 kfree(header->object_prefix);
4597 memset(header, 0, sizeof (*header));
4598 }
4599
4600 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4601 {
4602 int ret;
4603
4604 /* Populate rbd image metadata */
4605
4606 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4607 if (ret < 0)
4608 goto out_err;
4609
4610 /* Version 1 images have no parent (no layering) */
4611
4612 rbd_dev->parent_spec = NULL;
4613 rbd_dev->parent_overlap = 0;
4614
4615 dout("discovered version 1 image, header name is %s\n",
4616 rbd_dev->header_name);
4617
4618 return 0;
4619
4620 out_err:
4621 kfree(rbd_dev->header_name);
4622 rbd_dev->header_name = NULL;
4623 kfree(rbd_dev->spec->image_id);
4624 rbd_dev->spec->image_id = NULL;
4625
4626 return ret;
4627 }
4628
4629 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4630 {
4631 int ret;
4632 u64 ver = 0;
4633
4634 ret = rbd_dev_v2_image_size(rbd_dev);
4635 if (ret)
4636 goto out_err;
4637
4638 /* Get the object prefix (a.k.a. block_name) for the image */
4639
4640 ret = rbd_dev_v2_object_prefix(rbd_dev);
4641 if (ret)
4642 goto out_err;
4643
4644 /* Get the and check features for the image */
4645
4646 ret = rbd_dev_v2_features(rbd_dev);
4647 if (ret)
4648 goto out_err;
4649
4650 /* If the image supports layering, get the parent info */
4651
4652 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4653 ret = rbd_dev_v2_parent_info(rbd_dev);
4654 if (ret)
4655 goto out_err;
4656 rbd_warn(rbd_dev, "WARNING: kernel support for "
4657 "layered rbd images is EXPERIMENTAL!");
4658 }
4659
4660 /* If the image supports fancy striping, get its parameters */
4661
4662 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4663 ret = rbd_dev_v2_striping_info(rbd_dev);
4664 if (ret < 0)
4665 goto out_err;
4666 }
4667
4668 /* crypto and compression type aren't (yet) supported for v2 images */
4669
4670 rbd_dev->header.crypt_type = 0;
4671 rbd_dev->header.comp_type = 0;
4672
4673 /* Get the snapshot context, plus the header version */
4674
4675 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
4676 if (ret)
4677 goto out_err;
4678 rbd_dev->header.obj_version = ver;
4679
4680 dout("discovered version 2 image, header name is %s\n",
4681 rbd_dev->header_name);
4682
4683 return 0;
4684 out_err:
4685 rbd_dev->parent_overlap = 0;
4686 rbd_spec_put(rbd_dev->parent_spec);
4687 rbd_dev->parent_spec = NULL;
4688 kfree(rbd_dev->header_name);
4689 rbd_dev->header_name = NULL;
4690 kfree(rbd_dev->header.object_prefix);
4691 rbd_dev->header.object_prefix = NULL;
4692
4693 return ret;
4694 }
4695
4696 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4697 {
4698 struct rbd_device *parent = NULL;
4699 struct rbd_spec *parent_spec;
4700 struct rbd_client *rbdc;
4701 int ret;
4702
4703 if (!rbd_dev->parent_spec)
4704 return 0;
4705 /*
4706 * We need to pass a reference to the client and the parent
4707 * spec when creating the parent rbd_dev. Images related by
4708 * parent/child relationships always share both.
4709 */
4710 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4711 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4712
4713 ret = -ENOMEM;
4714 parent = rbd_dev_create(rbdc, parent_spec);
4715 if (!parent)
4716 goto out_err;
4717
4718 ret = rbd_dev_image_probe(parent);
4719 if (ret < 0)
4720 goto out_err;
4721 rbd_dev->parent = parent;
4722
4723 return 0;
4724 out_err:
4725 if (parent) {
4726 rbd_spec_put(rbd_dev->parent_spec);
4727 kfree(rbd_dev->header_name);
4728 rbd_dev_destroy(parent);
4729 } else {
4730 rbd_put_client(rbdc);
4731 rbd_spec_put(parent_spec);
4732 }
4733
4734 return ret;
4735 }
4736
4737 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4738 {
4739 int ret;
4740
4741 ret = rbd_dev_mapping_set(rbd_dev);
4742 if (ret)
4743 return ret;
4744
4745 /* generate unique id: find highest unique id, add one */
4746 rbd_dev_id_get(rbd_dev);
4747
4748 /* Fill in the device name, now that we have its id. */
4749 BUILD_BUG_ON(DEV_NAME_LEN
4750 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4751 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4752
4753 /* Get our block major device number. */
4754
4755 ret = register_blkdev(0, rbd_dev->name);
4756 if (ret < 0)
4757 goto err_out_id;
4758 rbd_dev->major = ret;
4759
4760 /* Set up the blkdev mapping. */
4761
4762 ret = rbd_init_disk(rbd_dev);
4763 if (ret)
4764 goto err_out_blkdev;
4765
4766 ret = rbd_bus_add_dev(rbd_dev);
4767 if (ret)
4768 goto err_out_disk;
4769
4770 /* Everything's ready. Announce the disk to the world. */
4771
4772 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4773 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4774 add_disk(rbd_dev->disk);
4775
4776 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4777 (unsigned long long) rbd_dev->mapping.size);
4778
4779 return ret;
4780
4781 err_out_disk:
4782 rbd_free_disk(rbd_dev);
4783 err_out_blkdev:
4784 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4785 err_out_id:
4786 rbd_dev_id_put(rbd_dev);
4787 rbd_dev_mapping_clear(rbd_dev);
4788
4789 return ret;
4790 }
4791
4792 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4793 {
4794 struct rbd_spec *spec = rbd_dev->spec;
4795 size_t size;
4796
4797 /* Record the header object name for this rbd image. */
4798
4799 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4800
4801 if (rbd_dev->image_format == 1)
4802 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4803 else
4804 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4805
4806 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4807 if (!rbd_dev->header_name)
4808 return -ENOMEM;
4809
4810 if (rbd_dev->image_format == 1)
4811 sprintf(rbd_dev->header_name, "%s%s",
4812 spec->image_name, RBD_SUFFIX);
4813 else
4814 sprintf(rbd_dev->header_name, "%s%s",
4815 RBD_HEADER_PREFIX, spec->image_id);
4816 return 0;
4817 }
4818
4819 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4820 {
4821 int ret;
4822
4823 rbd_remove_all_snaps(rbd_dev);
4824 rbd_dev_unprobe(rbd_dev);
4825 ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4826 if (ret)
4827 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4828 kfree(rbd_dev->header_name);
4829 rbd_dev->header_name = NULL;
4830 rbd_dev->image_format = 0;
4831 kfree(rbd_dev->spec->image_id);
4832 rbd_dev->spec->image_id = NULL;
4833
4834 rbd_dev_destroy(rbd_dev);
4835 }
4836
4837 /*
4838 * Probe for the existence of the header object for the given rbd
4839 * device. For format 2 images this includes determining the image
4840 * id.
4841 */
4842 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4843 {
4844 int ret;
4845 int tmp;
4846
4847 /*
4848 * Get the id from the image id object. If it's not a
4849 * format 2 image, we'll get ENOENT back, and we'll assume
4850 * it's a format 1 image.
4851 */
4852 ret = rbd_dev_image_id(rbd_dev);
4853 if (ret)
4854 return ret;
4855 rbd_assert(rbd_dev->spec->image_id);
4856 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4857
4858 ret = rbd_dev_header_name(rbd_dev);
4859 if (ret)
4860 goto err_out_format;
4861
4862 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4863 if (ret)
4864 goto out_header_name;
4865
4866 if (rbd_dev->image_format == 1)
4867 ret = rbd_dev_v1_probe(rbd_dev);
4868 else
4869 ret = rbd_dev_v2_probe(rbd_dev);
4870 if (ret)
4871 goto err_out_watch;
4872
4873 ret = rbd_dev_snaps_update(rbd_dev);
4874 if (ret)
4875 goto err_out_probe;
4876
4877 ret = rbd_dev_spec_update(rbd_dev);
4878 if (ret)
4879 goto err_out_snaps;
4880
4881 ret = rbd_dev_probe_parent(rbd_dev);
4882 if (!ret)
4883 return 0;
4884
4885 err_out_snaps:
4886 rbd_remove_all_snaps(rbd_dev);
4887 err_out_probe:
4888 rbd_dev_unprobe(rbd_dev);
4889 err_out_watch:
4890 tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4891 if (tmp)
4892 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4893 out_header_name:
4894 kfree(rbd_dev->header_name);
4895 rbd_dev->header_name = NULL;
4896 err_out_format:
4897 rbd_dev->image_format = 0;
4898 kfree(rbd_dev->spec->image_id);
4899 rbd_dev->spec->image_id = NULL;
4900
4901 dout("probe failed, returning %d\n", ret);
4902
4903 return ret;
4904 }
4905
4906 static ssize_t rbd_add(struct bus_type *bus,
4907 const char *buf,
4908 size_t count)
4909 {
4910 struct rbd_device *rbd_dev = NULL;
4911 struct ceph_options *ceph_opts = NULL;
4912 struct rbd_options *rbd_opts = NULL;
4913 struct rbd_spec *spec = NULL;
4914 struct rbd_client *rbdc;
4915 struct ceph_osd_client *osdc;
4916 int rc = -ENOMEM;
4917
4918 if (!try_module_get(THIS_MODULE))
4919 return -ENODEV;
4920
4921 /* parse add command */
4922 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4923 if (rc < 0)
4924 goto err_out_module;
4925
4926 rbdc = rbd_get_client(ceph_opts);
4927 if (IS_ERR(rbdc)) {
4928 rc = PTR_ERR(rbdc);
4929 goto err_out_args;
4930 }
4931 ceph_opts = NULL; /* rbd_dev client now owns this */
4932
4933 /* pick the pool */
4934 osdc = &rbdc->client->osdc;
4935 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4936 if (rc < 0)
4937 goto err_out_client;
4938 spec->pool_id = (u64)rc;
4939
4940 /* The ceph file layout needs to fit pool id in 32 bits */
4941
4942 if (spec->pool_id > (u64)U32_MAX) {
4943 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4944 (unsigned long long)spec->pool_id, U32_MAX);
4945 rc = -EIO;
4946 goto err_out_client;
4947 }
4948
4949 rbd_dev = rbd_dev_create(rbdc, spec);
4950 if (!rbd_dev)
4951 goto err_out_client;
4952 rbdc = NULL; /* rbd_dev now owns this */
4953 spec = NULL; /* rbd_dev now owns this */
4954
4955 rbd_dev->mapping.read_only = rbd_opts->read_only;
4956 kfree(rbd_opts);
4957 rbd_opts = NULL; /* done with this */
4958
4959 rc = rbd_dev_image_probe(rbd_dev);
4960 if (rc < 0)
4961 goto err_out_rbd_dev;
4962
4963 rc = rbd_dev_device_setup(rbd_dev);
4964 if (!rc)
4965 return count;
4966
4967 rbd_dev_image_release(rbd_dev);
4968 err_out_rbd_dev:
4969 rbd_dev_destroy(rbd_dev);
4970 err_out_client:
4971 rbd_put_client(rbdc);
4972 err_out_args:
4973 if (ceph_opts)
4974 ceph_destroy_options(ceph_opts);
4975 kfree(rbd_opts);
4976 rbd_spec_put(spec);
4977 err_out_module:
4978 module_put(THIS_MODULE);
4979
4980 dout("Error adding device %s\n", buf);
4981
4982 return (ssize_t)rc;
4983 }
4984
4985 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4986 {
4987 struct list_head *tmp;
4988 struct rbd_device *rbd_dev;
4989
4990 spin_lock(&rbd_dev_list_lock);
4991 list_for_each(tmp, &rbd_dev_list) {
4992 rbd_dev = list_entry(tmp, struct rbd_device, node);
4993 if (rbd_dev->dev_id == dev_id) {
4994 spin_unlock(&rbd_dev_list_lock);
4995 return rbd_dev;
4996 }
4997 }
4998 spin_unlock(&rbd_dev_list_lock);
4999 return NULL;
5000 }
5001
5002 static void rbd_dev_device_release(struct device *dev)
5003 {
5004 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5005
5006 rbd_free_disk(rbd_dev);
5007 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5008 rbd_dev_clear_mapping(rbd_dev);
5009 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5010 rbd_dev->major = 0;
5011 rbd_dev_id_put(rbd_dev);
5012 rbd_dev_mapping_clear(rbd_dev);
5013 }
5014
5015 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5016 {
5017 while (rbd_dev->parent) {
5018 struct rbd_device *first = rbd_dev;
5019 struct rbd_device *second = first->parent;
5020 struct rbd_device *third;
5021
5022 /*
5023 * Follow to the parent with no grandparent and
5024 * remove it.
5025 */
5026 while (second && (third = second->parent)) {
5027 first = second;
5028 second = third;
5029 }
5030 rbd_assert(second);
5031 rbd_dev_image_release(second);
5032 first->parent = NULL;
5033 first->parent_overlap = 0;
5034
5035 rbd_assert(first->parent_spec);
5036 rbd_spec_put(first->parent_spec);
5037 first->parent_spec = NULL;
5038 }
5039 }
5040
5041 static ssize_t rbd_remove(struct bus_type *bus,
5042 const char *buf,
5043 size_t count)
5044 {
5045 struct rbd_device *rbd_dev = NULL;
5046 int target_id;
5047 unsigned long ul;
5048 int ret;
5049
5050 ret = strict_strtoul(buf, 10, &ul);
5051 if (ret)
5052 return ret;
5053
5054 /* convert to int; abort if we lost anything in the conversion */
5055 target_id = (int) ul;
5056 if (target_id != ul)
5057 return -EINVAL;
5058
5059 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5060
5061 rbd_dev = __rbd_get_dev(target_id);
5062 if (!rbd_dev) {
5063 ret = -ENOENT;
5064 goto done;
5065 }
5066
5067 spin_lock_irq(&rbd_dev->lock);
5068 if (rbd_dev->open_count)
5069 ret = -EBUSY;
5070 else
5071 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5072 spin_unlock_irq(&rbd_dev->lock);
5073 if (ret < 0)
5074 goto done;
5075 ret = count;
5076 rbd_bus_del_dev(rbd_dev);
5077 rbd_dev_image_release(rbd_dev);
5078 module_put(THIS_MODULE);
5079 done:
5080 mutex_unlock(&ctl_mutex);
5081
5082 return ret;
5083 }
5084
5085 /*
5086 * create control files in sysfs
5087 * /sys/bus/rbd/...
5088 */
5089 static int rbd_sysfs_init(void)
5090 {
5091 int ret;
5092
5093 ret = device_register(&rbd_root_dev);
5094 if (ret < 0)
5095 return ret;
5096
5097 ret = bus_register(&rbd_bus_type);
5098 if (ret < 0)
5099 device_unregister(&rbd_root_dev);
5100
5101 return ret;
5102 }
5103
5104 static void rbd_sysfs_cleanup(void)
5105 {
5106 bus_unregister(&rbd_bus_type);
5107 device_unregister(&rbd_root_dev);
5108 }
5109
5110 static int __init rbd_init(void)
5111 {
5112 int rc;
5113
5114 if (!libceph_compatible(NULL)) {
5115 rbd_warn(NULL, "libceph incompatibility (quitting)");
5116
5117 return -EINVAL;
5118 }
5119 rc = rbd_sysfs_init();
5120 if (rc)
5121 return rc;
5122 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5123 return 0;
5124 }
5125
5126 static void __exit rbd_exit(void)
5127 {
5128 rbd_sysfs_cleanup();
5129 }
5130
5131 module_init(rbd_init);
5132 module_exit(rbd_exit);
5133
5134 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5135 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5136 MODULE_DESCRIPTION("rados block device");
5137
5138 /* following authorship retained from original osdblk.c */
5139 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5140
5141 MODULE_LICENSE("GPL");