]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/rbd.c
staging: board: Migrate away from __pm_genpd_name_add_device()
[mirror_ubuntu-zesty-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
51
52 /*
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
57 */
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60
61 /*
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
66 */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 unsigned int counter;
70
71 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 if (counter <= (unsigned int)INT_MAX)
73 return (int)counter;
74
75 atomic_dec(v);
76
77 return -EINVAL;
78 }
79
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 int counter;
84
85 counter = atomic_dec_return(v);
86 if (counter >= 0)
87 return counter;
88
89 atomic_inc(v);
90
91 return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98
99 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
100 #define RBD_MAX_SNAP_NAME_LEN \
101 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102
103 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
104
105 #define RBD_SNAP_HEAD_NAME "-"
106
107 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
108
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX 64
112
113 #define RBD_OBJ_PREFIX_LEN_MAX 64
114
115 /* Feature bits */
116
117 #define RBD_FEATURE_LAYERING (1<<0)
118 #define RBD_FEATURE_STRIPINGV2 (1<<1)
119 #define RBD_FEATURES_ALL \
120 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121
122 /* Features supported by this (client software) implementation. */
123
124 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
125
126 /*
127 * An RBD device name will be "rbd#", where the "rbd" comes from
128 * RBD_DRV_NAME above, and # is a unique integer identifier.
129 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130 * enough to hold all possible device names.
131 */
132 #define DEV_NAME_LEN 32
133 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
134
135 /*
136 * block device image metadata (in-memory version)
137 */
138 struct rbd_image_header {
139 /* These six fields never change for a given rbd image */
140 char *object_prefix;
141 __u8 obj_order;
142 __u8 crypt_type;
143 __u8 comp_type;
144 u64 stripe_unit;
145 u64 stripe_count;
146 u64 features; /* Might be changeable someday? */
147
148 /* The remaining fields need to be updated occasionally */
149 u64 image_size;
150 struct ceph_snap_context *snapc;
151 char *snap_names; /* format 1 only */
152 u64 *snap_sizes; /* format 1 only */
153 };
154
155 /*
156 * An rbd image specification.
157 *
158 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159 * identify an image. Each rbd_dev structure includes a pointer to
160 * an rbd_spec structure that encapsulates this identity.
161 *
162 * Each of the id's in an rbd_spec has an associated name. For a
163 * user-mapped image, the names are supplied and the id's associated
164 * with them are looked up. For a layered image, a parent image is
165 * defined by the tuple, and the names are looked up.
166 *
167 * An rbd_dev structure contains a parent_spec pointer which is
168 * non-null if the image it represents is a child in a layered
169 * image. This pointer will refer to the rbd_spec structure used
170 * by the parent rbd_dev for its own identity (i.e., the structure
171 * is shared between the parent and child).
172 *
173 * Since these structures are populated once, during the discovery
174 * phase of image construction, they are effectively immutable so
175 * we make no effort to synchronize access to them.
176 *
177 * Note that code herein does not assume the image name is known (it
178 * could be a null pointer).
179 */
180 struct rbd_spec {
181 u64 pool_id;
182 const char *pool_name;
183
184 const char *image_id;
185 const char *image_name;
186
187 u64 snap_id;
188 const char *snap_name;
189
190 struct kref kref;
191 };
192
193 /*
194 * an instance of the client. multiple devices may share an rbd client.
195 */
196 struct rbd_client {
197 struct ceph_client *client;
198 struct kref kref;
199 struct list_head node;
200 };
201
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204
205 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
206
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209
210 enum obj_request_type {
211 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213
214 enum obj_operation_type {
215 OBJ_OP_WRITE,
216 OBJ_OP_READ,
217 OBJ_OP_DISCARD,
218 };
219
220 enum obj_req_flags {
221 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
222 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
223 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
224 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
225 };
226
227 struct rbd_obj_request {
228 const char *object_name;
229 u64 offset; /* object start byte */
230 u64 length; /* bytes from offset */
231 unsigned long flags;
232
233 /*
234 * An object request associated with an image will have its
235 * img_data flag set; a standalone object request will not.
236 *
237 * A standalone object request will have which == BAD_WHICH
238 * and a null obj_request pointer.
239 *
240 * An object request initiated in support of a layered image
241 * object (to check for its existence before a write) will
242 * have which == BAD_WHICH and a non-null obj_request pointer.
243 *
244 * Finally, an object request for rbd image data will have
245 * which != BAD_WHICH, and will have a non-null img_request
246 * pointer. The value of which will be in the range
247 * 0..(img_request->obj_request_count-1).
248 */
249 union {
250 struct rbd_obj_request *obj_request; /* STAT op */
251 struct {
252 struct rbd_img_request *img_request;
253 u64 img_offset;
254 /* links for img_request->obj_requests list */
255 struct list_head links;
256 };
257 };
258 u32 which; /* posn image request list */
259
260 enum obj_request_type type;
261 union {
262 struct bio *bio_list;
263 struct {
264 struct page **pages;
265 u32 page_count;
266 };
267 };
268 struct page **copyup_pages;
269 u32 copyup_page_count;
270
271 struct ceph_osd_request *osd_req;
272
273 u64 xferred; /* bytes transferred */
274 int result;
275
276 rbd_obj_callback_t callback;
277 struct completion completion;
278
279 struct kref kref;
280 };
281
282 enum img_req_flags {
283 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
284 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
285 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
286 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
287 };
288
289 struct rbd_img_request {
290 struct rbd_device *rbd_dev;
291 u64 offset; /* starting image byte offset */
292 u64 length; /* byte count from offset */
293 unsigned long flags;
294 union {
295 u64 snap_id; /* for reads */
296 struct ceph_snap_context *snapc; /* for writes */
297 };
298 union {
299 struct request *rq; /* block request */
300 struct rbd_obj_request *obj_request; /* obj req initiator */
301 };
302 struct page **copyup_pages;
303 u32 copyup_page_count;
304 spinlock_t completion_lock;/* protects next_completion */
305 u32 next_completion;
306 rbd_img_callback_t callback;
307 u64 xferred;/* aggregate bytes transferred */
308 int result; /* first nonzero obj_request result */
309
310 u32 obj_request_count;
311 struct list_head obj_requests; /* rbd_obj_request structs */
312
313 struct kref kref;
314 };
315
316 #define for_each_obj_request(ireq, oreq) \
317 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322
323 struct rbd_mapping {
324 u64 size;
325 u64 features;
326 bool read_only;
327 };
328
329 /*
330 * a single device
331 */
332 struct rbd_device {
333 int dev_id; /* blkdev unique id */
334
335 int major; /* blkdev assigned major */
336 int minor;
337 struct gendisk *disk; /* blkdev's gendisk and rq */
338
339 u32 image_format; /* Either 1 or 2 */
340 struct rbd_client *rbd_client;
341
342 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343
344 spinlock_t lock; /* queue, flags, open_count */
345
346 struct rbd_image_header header;
347 unsigned long flags; /* possibly lock protected */
348 struct rbd_spec *spec;
349 struct rbd_options *opts;
350
351 char *header_name;
352
353 struct ceph_file_layout layout;
354
355 struct ceph_osd_event *watch_event;
356 struct rbd_obj_request *watch_request;
357
358 struct rbd_spec *parent_spec;
359 u64 parent_overlap;
360 atomic_t parent_ref;
361 struct rbd_device *parent;
362
363 /* Block layer tags. */
364 struct blk_mq_tag_set tag_set;
365
366 /* protects updating the header */
367 struct rw_semaphore header_rwsem;
368
369 struct rbd_mapping mapping;
370
371 struct list_head node;
372
373 /* sysfs related */
374 struct device dev;
375 unsigned long open_count; /* protected by lock */
376 };
377
378 /*
379 * Flag bits for rbd_dev->flags. If atomicity is required,
380 * rbd_dev->lock is used to protect access.
381 *
382 * Currently, only the "removing" flag (which is coupled with the
383 * "open_count" field) requires atomic access.
384 */
385 enum rbd_dev_flags {
386 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
387 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
388 };
389
390 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
391
392 static LIST_HEAD(rbd_dev_list); /* devices */
393 static DEFINE_SPINLOCK(rbd_dev_list_lock);
394
395 static LIST_HEAD(rbd_client_list); /* clients */
396 static DEFINE_SPINLOCK(rbd_client_list_lock);
397
398 /* Slab caches for frequently-allocated structures */
399
400 static struct kmem_cache *rbd_img_request_cache;
401 static struct kmem_cache *rbd_obj_request_cache;
402 static struct kmem_cache *rbd_segment_name_cache;
403
404 static int rbd_major;
405 static DEFINE_IDA(rbd_dev_id_ida);
406
407 static struct workqueue_struct *rbd_wq;
408
409 /*
410 * Default to false for now, as single-major requires >= 0.75 version of
411 * userspace rbd utility.
412 */
413 static bool single_major = false;
414 module_param(single_major, bool, S_IRUGO);
415 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
416
417 static int rbd_img_request_submit(struct rbd_img_request *img_request);
418
419 static void rbd_dev_device_release(struct device *dev);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448 &bus_attr_add.attr,
449 &bus_attr_remove.attr,
450 &bus_attr_add_single_major.attr,
451 &bus_attr_remove_single_major.attr,
452 NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 struct attribute *attr, int index)
457 {
458 if (!single_major &&
459 (attr == &bus_attr_add_single_major.attr ||
460 attr == &bus_attr_remove_single_major.attr))
461 return 0;
462
463 return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467 .attrs = rbd_bus_attrs,
468 .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473 .name = "rbd",
474 .bus_groups = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482 .init_name = "rbd",
483 .release = rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 struct va_format vaf;
490 va_list args;
491
492 va_start(args, fmt);
493 vaf.fmt = fmt;
494 vaf.va = &args;
495
496 if (!rbd_dev)
497 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 else if (rbd_dev->disk)
499 printk(KERN_WARNING "%s: %s: %pV\n",
500 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 printk(KERN_WARNING "%s: image %s: %pV\n",
503 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 printk(KERN_WARNING "%s: id %s: %pV\n",
506 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 else /* punt */
508 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 RBD_DRV_NAME, rbd_dev, &vaf);
510 va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr) \
515 if (unlikely(!(expr))) { \
516 printk(KERN_ERR "\nAssertion failure in %s() " \
517 "at line %d:\n\n" \
518 "\trbd_assert(%s);\n\n", \
519 __func__, __LINE__, #expr); \
520 BUG(); \
521 }
522 #else /* !RBD_DEBUG */
523 # define rbd_assert(expr) ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
527 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
528 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
529
530 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
531 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
532 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
533 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
534 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
535 u64 snap_id);
536 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
537 u8 *order, u64 *snap_size);
538 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
539 u64 *snap_features);
540 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
541
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545 bool removing = false;
546
547 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548 return -EROFS;
549
550 spin_lock_irq(&rbd_dev->lock);
551 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552 removing = true;
553 else
554 rbd_dev->open_count++;
555 spin_unlock_irq(&rbd_dev->lock);
556 if (removing)
557 return -ENOENT;
558
559 (void) get_device(&rbd_dev->dev);
560
561 return 0;
562 }
563
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566 struct rbd_device *rbd_dev = disk->private_data;
567 unsigned long open_count_before;
568
569 spin_lock_irq(&rbd_dev->lock);
570 open_count_before = rbd_dev->open_count--;
571 spin_unlock_irq(&rbd_dev->lock);
572 rbd_assert(open_count_before > 0);
573
574 put_device(&rbd_dev->dev);
575 }
576
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579 int ret = 0;
580 int val;
581 bool ro;
582 bool ro_changed = false;
583
584 /* get_user() may sleep, so call it before taking rbd_dev->lock */
585 if (get_user(val, (int __user *)(arg)))
586 return -EFAULT;
587
588 ro = val ? true : false;
589 /* Snapshot doesn't allow to write*/
590 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591 return -EROFS;
592
593 spin_lock_irq(&rbd_dev->lock);
594 /* prevent others open this device */
595 if (rbd_dev->open_count > 1) {
596 ret = -EBUSY;
597 goto out;
598 }
599
600 if (rbd_dev->mapping.read_only != ro) {
601 rbd_dev->mapping.read_only = ro;
602 ro_changed = true;
603 }
604
605 out:
606 spin_unlock_irq(&rbd_dev->lock);
607 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608 if (ret == 0 && ro_changed)
609 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610
611 return ret;
612 }
613
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615 unsigned int cmd, unsigned long arg)
616 {
617 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618 int ret = 0;
619
620 switch (cmd) {
621 case BLKROSET:
622 ret = rbd_ioctl_set_ro(rbd_dev, arg);
623 break;
624 default:
625 ret = -ENOTTY;
626 }
627
628 return ret;
629 }
630
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633 unsigned int cmd, unsigned long arg)
634 {
635 return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638
639 static const struct block_device_operations rbd_bd_ops = {
640 .owner = THIS_MODULE,
641 .open = rbd_open,
642 .release = rbd_release,
643 .ioctl = rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645 .compat_ioctl = rbd_compat_ioctl,
646 #endif
647 };
648
649 /*
650 * Initialize an rbd client instance. Success or not, this function
651 * consumes ceph_opts. Caller holds client_mutex.
652 */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655 struct rbd_client *rbdc;
656 int ret = -ENOMEM;
657
658 dout("%s:\n", __func__);
659 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660 if (!rbdc)
661 goto out_opt;
662
663 kref_init(&rbdc->kref);
664 INIT_LIST_HEAD(&rbdc->node);
665
666 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667 if (IS_ERR(rbdc->client))
668 goto out_rbdc;
669 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670
671 ret = ceph_open_session(rbdc->client);
672 if (ret < 0)
673 goto out_client;
674
675 spin_lock(&rbd_client_list_lock);
676 list_add_tail(&rbdc->node, &rbd_client_list);
677 spin_unlock(&rbd_client_list_lock);
678
679 dout("%s: rbdc %p\n", __func__, rbdc);
680
681 return rbdc;
682 out_client:
683 ceph_destroy_client(rbdc->client);
684 out_rbdc:
685 kfree(rbdc);
686 out_opt:
687 if (ceph_opts)
688 ceph_destroy_options(ceph_opts);
689 dout("%s: error %d\n", __func__, ret);
690
691 return ERR_PTR(ret);
692 }
693
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696 kref_get(&rbdc->kref);
697
698 return rbdc;
699 }
700
701 /*
702 * Find a ceph client with specific addr and configuration. If
703 * found, bump its reference count.
704 */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707 struct rbd_client *client_node;
708 bool found = false;
709
710 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711 return NULL;
712
713 spin_lock(&rbd_client_list_lock);
714 list_for_each_entry(client_node, &rbd_client_list, node) {
715 if (!ceph_compare_options(ceph_opts, client_node->client)) {
716 __rbd_get_client(client_node);
717
718 found = true;
719 break;
720 }
721 }
722 spin_unlock(&rbd_client_list_lock);
723
724 return found ? client_node : NULL;
725 }
726
727 /*
728 * (Per device) rbd map options
729 */
730 enum {
731 Opt_queue_depth,
732 Opt_last_int,
733 /* int args above */
734 Opt_last_string,
735 /* string args above */
736 Opt_read_only,
737 Opt_read_write,
738 Opt_err
739 };
740
741 static match_table_t rbd_opts_tokens = {
742 {Opt_queue_depth, "queue_depth=%d"},
743 /* int args above */
744 /* string args above */
745 {Opt_read_only, "read_only"},
746 {Opt_read_only, "ro"}, /* Alternate spelling */
747 {Opt_read_write, "read_write"},
748 {Opt_read_write, "rw"}, /* Alternate spelling */
749 {Opt_err, NULL}
750 };
751
752 struct rbd_options {
753 int queue_depth;
754 bool read_only;
755 };
756
757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT false
759
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762 struct rbd_options *rbd_opts = private;
763 substring_t argstr[MAX_OPT_ARGS];
764 int token, intval, ret;
765
766 token = match_token(c, rbd_opts_tokens, argstr);
767 if (token < Opt_last_int) {
768 ret = match_int(&argstr[0], &intval);
769 if (ret < 0) {
770 pr_err("bad mount option arg (not int) at '%s'\n", c);
771 return ret;
772 }
773 dout("got int token %d val %d\n", token, intval);
774 } else if (token > Opt_last_int && token < Opt_last_string) {
775 dout("got string token %d val %s\n", token, argstr[0].from);
776 } else {
777 dout("got token %d\n", token);
778 }
779
780 switch (token) {
781 case Opt_queue_depth:
782 if (intval < 1) {
783 pr_err("queue_depth out of range\n");
784 return -EINVAL;
785 }
786 rbd_opts->queue_depth = intval;
787 break;
788 case Opt_read_only:
789 rbd_opts->read_only = true;
790 break;
791 case Opt_read_write:
792 rbd_opts->read_only = false;
793 break;
794 default:
795 /* libceph prints "bad option" msg */
796 return -EINVAL;
797 }
798
799 return 0;
800 }
801
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804 switch (op_type) {
805 case OBJ_OP_READ:
806 return "read";
807 case OBJ_OP_WRITE:
808 return "write";
809 case OBJ_OP_DISCARD:
810 return "discard";
811 default:
812 return "???";
813 }
814 }
815
816 /*
817 * Get a ceph client with specific addr and configuration, if one does
818 * not exist create it. Either way, ceph_opts is consumed by this
819 * function.
820 */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823 struct rbd_client *rbdc;
824
825 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826 rbdc = rbd_client_find(ceph_opts);
827 if (rbdc) /* using an existing client */
828 ceph_destroy_options(ceph_opts);
829 else
830 rbdc = rbd_client_create(ceph_opts);
831 mutex_unlock(&client_mutex);
832
833 return rbdc;
834 }
835
836 /*
837 * Destroy ceph client
838 *
839 * Caller must hold rbd_client_list_lock.
840 */
841 static void rbd_client_release(struct kref *kref)
842 {
843 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844
845 dout("%s: rbdc %p\n", __func__, rbdc);
846 spin_lock(&rbd_client_list_lock);
847 list_del(&rbdc->node);
848 spin_unlock(&rbd_client_list_lock);
849
850 ceph_destroy_client(rbdc->client);
851 kfree(rbdc);
852 }
853
854 /*
855 * Drop reference to ceph client node. If it's not referenced anymore, release
856 * it.
857 */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860 if (rbdc)
861 kref_put(&rbdc->kref, rbd_client_release);
862 }
863
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866 return image_format == 1 || image_format == 2;
867 }
868
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871 size_t size;
872 u32 snap_count;
873
874 /* The header has to start with the magic rbd header text */
875 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876 return false;
877
878 /* The bio layer requires at least sector-sized I/O */
879
880 if (ondisk->options.order < SECTOR_SHIFT)
881 return false;
882
883 /* If we use u64 in a few spots we may be able to loosen this */
884
885 if (ondisk->options.order > 8 * sizeof (int) - 1)
886 return false;
887
888 /*
889 * The size of a snapshot header has to fit in a size_t, and
890 * that limits the number of snapshots.
891 */
892 snap_count = le32_to_cpu(ondisk->snap_count);
893 size = SIZE_MAX - sizeof (struct ceph_snap_context);
894 if (snap_count > size / sizeof (__le64))
895 return false;
896
897 /*
898 * Not only that, but the size of the entire the snapshot
899 * header must also be representable in a size_t.
900 */
901 size -= snap_count * sizeof (__le64);
902 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903 return false;
904
905 return true;
906 }
907
908 /*
909 * Fill an rbd image header with information from the given format 1
910 * on-disk header.
911 */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913 struct rbd_image_header_ondisk *ondisk)
914 {
915 struct rbd_image_header *header = &rbd_dev->header;
916 bool first_time = header->object_prefix == NULL;
917 struct ceph_snap_context *snapc;
918 char *object_prefix = NULL;
919 char *snap_names = NULL;
920 u64 *snap_sizes = NULL;
921 u32 snap_count;
922 size_t size;
923 int ret = -ENOMEM;
924 u32 i;
925
926 /* Allocate this now to avoid having to handle failure below */
927
928 if (first_time) {
929 size_t len;
930
931 len = strnlen(ondisk->object_prefix,
932 sizeof (ondisk->object_prefix));
933 object_prefix = kmalloc(len + 1, GFP_KERNEL);
934 if (!object_prefix)
935 return -ENOMEM;
936 memcpy(object_prefix, ondisk->object_prefix, len);
937 object_prefix[len] = '\0';
938 }
939
940 /* Allocate the snapshot context and fill it in */
941
942 snap_count = le32_to_cpu(ondisk->snap_count);
943 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944 if (!snapc)
945 goto out_err;
946 snapc->seq = le64_to_cpu(ondisk->snap_seq);
947 if (snap_count) {
948 struct rbd_image_snap_ondisk *snaps;
949 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950
951 /* We'll keep a copy of the snapshot names... */
952
953 if (snap_names_len > (u64)SIZE_MAX)
954 goto out_2big;
955 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956 if (!snap_names)
957 goto out_err;
958
959 /* ...as well as the array of their sizes. */
960
961 size = snap_count * sizeof (*header->snap_sizes);
962 snap_sizes = kmalloc(size, GFP_KERNEL);
963 if (!snap_sizes)
964 goto out_err;
965
966 /*
967 * Copy the names, and fill in each snapshot's id
968 * and size.
969 *
970 * Note that rbd_dev_v1_header_info() guarantees the
971 * ondisk buffer we're working with has
972 * snap_names_len bytes beyond the end of the
973 * snapshot id array, this memcpy() is safe.
974 */
975 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976 snaps = ondisk->snaps;
977 for (i = 0; i < snap_count; i++) {
978 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980 }
981 }
982
983 /* We won't fail any more, fill in the header */
984
985 if (first_time) {
986 header->object_prefix = object_prefix;
987 header->obj_order = ondisk->options.order;
988 header->crypt_type = ondisk->options.crypt_type;
989 header->comp_type = ondisk->options.comp_type;
990 /* The rest aren't used for format 1 images */
991 header->stripe_unit = 0;
992 header->stripe_count = 0;
993 header->features = 0;
994 } else {
995 ceph_put_snap_context(header->snapc);
996 kfree(header->snap_names);
997 kfree(header->snap_sizes);
998 }
999
1000 /* The remaining fields always get updated (when we refresh) */
1001
1002 header->image_size = le64_to_cpu(ondisk->image_size);
1003 header->snapc = snapc;
1004 header->snap_names = snap_names;
1005 header->snap_sizes = snap_sizes;
1006
1007 return 0;
1008 out_2big:
1009 ret = -EIO;
1010 out_err:
1011 kfree(snap_sizes);
1012 kfree(snap_names);
1013 ceph_put_snap_context(snapc);
1014 kfree(object_prefix);
1015
1016 return ret;
1017 }
1018
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021 const char *snap_name;
1022
1023 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024
1025 /* Skip over names until we find the one we are looking for */
1026
1027 snap_name = rbd_dev->header.snap_names;
1028 while (which--)
1029 snap_name += strlen(snap_name) + 1;
1030
1031 return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033
1034 /*
1035 * Snapshot id comparison function for use with qsort()/bsearch().
1036 * Note that result is for snapshots in *descending* order.
1037 */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040 u64 snap_id1 = *(u64 *)s1;
1041 u64 snap_id2 = *(u64 *)s2;
1042
1043 if (snap_id1 < snap_id2)
1044 return 1;
1045 return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047
1048 /*
1049 * Search a snapshot context to see if the given snapshot id is
1050 * present.
1051 *
1052 * Returns the position of the snapshot id in the array if it's found,
1053 * or BAD_SNAP_INDEX otherwise.
1054 *
1055 * Note: The snapshot array is in kept sorted (by the osd) in
1056 * reverse order, highest snapshot id first.
1057 */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061 u64 *found;
1062
1063 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064 sizeof (snap_id), snapid_compare_reverse);
1065
1066 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070 u64 snap_id)
1071 {
1072 u32 which;
1073 const char *snap_name;
1074
1075 which = rbd_dev_snap_index(rbd_dev, snap_id);
1076 if (which == BAD_SNAP_INDEX)
1077 return ERR_PTR(-ENOENT);
1078
1079 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085 if (snap_id == CEPH_NOSNAP)
1086 return RBD_SNAP_HEAD_NAME;
1087
1088 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089 if (rbd_dev->image_format == 1)
1090 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091
1092 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096 u64 *snap_size)
1097 {
1098 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099 if (snap_id == CEPH_NOSNAP) {
1100 *snap_size = rbd_dev->header.image_size;
1101 } else if (rbd_dev->image_format == 1) {
1102 u32 which;
1103
1104 which = rbd_dev_snap_index(rbd_dev, snap_id);
1105 if (which == BAD_SNAP_INDEX)
1106 return -ENOENT;
1107
1108 *snap_size = rbd_dev->header.snap_sizes[which];
1109 } else {
1110 u64 size = 0;
1111 int ret;
1112
1113 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114 if (ret)
1115 return ret;
1116
1117 *snap_size = size;
1118 }
1119 return 0;
1120 }
1121
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123 u64 *snap_features)
1124 {
1125 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126 if (snap_id == CEPH_NOSNAP) {
1127 *snap_features = rbd_dev->header.features;
1128 } else if (rbd_dev->image_format == 1) {
1129 *snap_features = 0; /* No features for format 1 */
1130 } else {
1131 u64 features = 0;
1132 int ret;
1133
1134 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135 if (ret)
1136 return ret;
1137
1138 *snap_features = features;
1139 }
1140 return 0;
1141 }
1142
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145 u64 snap_id = rbd_dev->spec->snap_id;
1146 u64 size = 0;
1147 u64 features = 0;
1148 int ret;
1149
1150 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151 if (ret)
1152 return ret;
1153 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154 if (ret)
1155 return ret;
1156
1157 rbd_dev->mapping.size = size;
1158 rbd_dev->mapping.features = features;
1159
1160 return 0;
1161 }
1162
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165 rbd_dev->mapping.size = 0;
1166 rbd_dev->mapping.features = 0;
1167 }
1168
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171 /* The explicit cast here is needed to drop the const qualifier */
1172
1173 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178 char *name;
1179 u64 segment;
1180 int ret;
1181 char *name_format;
1182
1183 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184 if (!name)
1185 return NULL;
1186 segment = offset >> rbd_dev->header.obj_order;
1187 name_format = "%s.%012llx";
1188 if (rbd_dev->image_format == 2)
1189 name_format = "%s.%016llx";
1190 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191 rbd_dev->header.object_prefix, segment);
1192 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193 pr_err("error formatting segment name for #%llu (%d)\n",
1194 segment, ret);
1195 rbd_segment_name_free(name);
1196 name = NULL;
1197 }
1198
1199 return name;
1200 }
1201
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205
1206 return offset & (segment_size - 1);
1207 }
1208
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210 u64 offset, u64 length)
1211 {
1212 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213
1214 offset &= segment_size - 1;
1215
1216 rbd_assert(length <= U64_MAX - offset);
1217 if (offset + length > segment_size)
1218 length = segment_size - offset;
1219
1220 return length;
1221 }
1222
1223 /*
1224 * returns the size of an object in the image
1225 */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228 return 1 << header->obj_order;
1229 }
1230
1231 /*
1232 * bio helpers
1233 */
1234
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237 struct bio *tmp;
1238
1239 while (chain) {
1240 tmp = chain;
1241 chain = chain->bi_next;
1242 bio_put(tmp);
1243 }
1244 }
1245
1246 /*
1247 * zeros a bio chain, starting at specific offset
1248 */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251 struct bio_vec bv;
1252 struct bvec_iter iter;
1253 unsigned long flags;
1254 void *buf;
1255 int pos = 0;
1256
1257 while (chain) {
1258 bio_for_each_segment(bv, chain, iter) {
1259 if (pos + bv.bv_len > start_ofs) {
1260 int remainder = max(start_ofs - pos, 0);
1261 buf = bvec_kmap_irq(&bv, &flags);
1262 memset(buf + remainder, 0,
1263 bv.bv_len - remainder);
1264 flush_dcache_page(bv.bv_page);
1265 bvec_kunmap_irq(buf, &flags);
1266 }
1267 pos += bv.bv_len;
1268 }
1269
1270 chain = chain->bi_next;
1271 }
1272 }
1273
1274 /*
1275 * similar to zero_bio_chain(), zeros data defined by a page array,
1276 * starting at the given byte offset from the start of the array and
1277 * continuing up to the given end offset. The pages array is
1278 * assumed to be big enough to hold all bytes up to the end.
1279 */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282 struct page **page = &pages[offset >> PAGE_SHIFT];
1283
1284 rbd_assert(end > offset);
1285 rbd_assert(end - offset <= (u64)SIZE_MAX);
1286 while (offset < end) {
1287 size_t page_offset;
1288 size_t length;
1289 unsigned long flags;
1290 void *kaddr;
1291
1292 page_offset = offset & ~PAGE_MASK;
1293 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294 local_irq_save(flags);
1295 kaddr = kmap_atomic(*page);
1296 memset(kaddr + page_offset, 0, length);
1297 flush_dcache_page(*page);
1298 kunmap_atomic(kaddr);
1299 local_irq_restore(flags);
1300
1301 offset += length;
1302 page++;
1303 }
1304 }
1305
1306 /*
1307 * Clone a portion of a bio, starting at the given byte offset
1308 * and continuing for the number of bytes indicated.
1309 */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311 unsigned int offset,
1312 unsigned int len,
1313 gfp_t gfpmask)
1314 {
1315 struct bio *bio;
1316
1317 bio = bio_clone(bio_src, gfpmask);
1318 if (!bio)
1319 return NULL; /* ENOMEM */
1320
1321 bio_advance(bio, offset);
1322 bio->bi_iter.bi_size = len;
1323
1324 return bio;
1325 }
1326
1327 /*
1328 * Clone a portion of a bio chain, starting at the given byte offset
1329 * into the first bio in the source chain and continuing for the
1330 * number of bytes indicated. The result is another bio chain of
1331 * exactly the given length, or a null pointer on error.
1332 *
1333 * The bio_src and offset parameters are both in-out. On entry they
1334 * refer to the first source bio and the offset into that bio where
1335 * the start of data to be cloned is located.
1336 *
1337 * On return, bio_src is updated to refer to the bio in the source
1338 * chain that contains first un-cloned byte, and *offset will
1339 * contain the offset of that byte within that bio.
1340 */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342 unsigned int *offset,
1343 unsigned int len,
1344 gfp_t gfpmask)
1345 {
1346 struct bio *bi = *bio_src;
1347 unsigned int off = *offset;
1348 struct bio *chain = NULL;
1349 struct bio **end;
1350
1351 /* Build up a chain of clone bios up to the limit */
1352
1353 if (!bi || off >= bi->bi_iter.bi_size || !len)
1354 return NULL; /* Nothing to clone */
1355
1356 end = &chain;
1357 while (len) {
1358 unsigned int bi_size;
1359 struct bio *bio;
1360
1361 if (!bi) {
1362 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363 goto out_err; /* EINVAL; ran out of bio's */
1364 }
1365 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367 if (!bio)
1368 goto out_err; /* ENOMEM */
1369
1370 *end = bio;
1371 end = &bio->bi_next;
1372
1373 off += bi_size;
1374 if (off == bi->bi_iter.bi_size) {
1375 bi = bi->bi_next;
1376 off = 0;
1377 }
1378 len -= bi_size;
1379 }
1380 *bio_src = bi;
1381 *offset = off;
1382
1383 return chain;
1384 out_err:
1385 bio_chain_put(chain);
1386
1387 return NULL;
1388 }
1389
1390 /*
1391 * The default/initial value for all object request flags is 0. For
1392 * each flag, once its value is set to 1 it is never reset to 0
1393 * again.
1394 */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398 struct rbd_device *rbd_dev;
1399
1400 rbd_dev = obj_request->img_request->rbd_dev;
1401 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402 obj_request);
1403 }
1404 }
1405
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408 smp_mb();
1409 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415 struct rbd_device *rbd_dev = NULL;
1416
1417 if (obj_request_img_data_test(obj_request))
1418 rbd_dev = obj_request->img_request->rbd_dev;
1419 rbd_warn(rbd_dev, "obj_request %p already marked done",
1420 obj_request);
1421 }
1422 }
1423
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426 smp_mb();
1427 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429
1430 /*
1431 * This sets the KNOWN flag after (possibly) setting the EXISTS
1432 * flag. The latter is set based on the "exists" value provided.
1433 *
1434 * Note that for our purposes once an object exists it never goes
1435 * away again. It's possible that the response from two existence
1436 * checks are separated by the creation of the target object, and
1437 * the first ("doesn't exist") response arrives *after* the second
1438 * ("does exist"). In that case we ignore the second one.
1439 */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441 bool exists)
1442 {
1443 if (exists)
1444 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446 smp_mb();
1447 }
1448
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451 smp_mb();
1452 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457 smp_mb();
1458 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464
1465 return obj_request->img_offset <
1466 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472 atomic_read(&obj_request->kref.refcount));
1473 kref_get(&obj_request->kref);
1474 }
1475
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479 rbd_assert(obj_request != NULL);
1480 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481 atomic_read(&obj_request->kref.refcount));
1482 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487 dout("%s: img %p (was %d)\n", __func__, img_request,
1488 atomic_read(&img_request->kref.refcount));
1489 kref_get(&img_request->kref);
1490 }
1491
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497 rbd_assert(img_request != NULL);
1498 dout("%s: img %p (was %d)\n", __func__, img_request,
1499 atomic_read(&img_request->kref.refcount));
1500 if (img_request_child_test(img_request))
1501 kref_put(&img_request->kref, rbd_parent_request_destroy);
1502 else
1503 kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507 struct rbd_obj_request *obj_request)
1508 {
1509 rbd_assert(obj_request->img_request == NULL);
1510
1511 /* Image request now owns object's original reference */
1512 obj_request->img_request = img_request;
1513 obj_request->which = img_request->obj_request_count;
1514 rbd_assert(!obj_request_img_data_test(obj_request));
1515 obj_request_img_data_set(obj_request);
1516 rbd_assert(obj_request->which != BAD_WHICH);
1517 img_request->obj_request_count++;
1518 list_add_tail(&obj_request->links, &img_request->obj_requests);
1519 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520 obj_request->which);
1521 }
1522
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524 struct rbd_obj_request *obj_request)
1525 {
1526 rbd_assert(obj_request->which != BAD_WHICH);
1527
1528 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529 obj_request->which);
1530 list_del(&obj_request->links);
1531 rbd_assert(img_request->obj_request_count > 0);
1532 img_request->obj_request_count--;
1533 rbd_assert(obj_request->which == img_request->obj_request_count);
1534 obj_request->which = BAD_WHICH;
1535 rbd_assert(obj_request_img_data_test(obj_request));
1536 rbd_assert(obj_request->img_request == img_request);
1537 obj_request->img_request = NULL;
1538 obj_request->callback = NULL;
1539 rbd_obj_request_put(obj_request);
1540 }
1541
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544 switch (type) {
1545 case OBJ_REQUEST_NODATA:
1546 case OBJ_REQUEST_BIO:
1547 case OBJ_REQUEST_PAGES:
1548 return true;
1549 default:
1550 return false;
1551 }
1552 }
1553
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555 struct rbd_obj_request *obj_request)
1556 {
1557 dout("%s %p\n", __func__, obj_request);
1558 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563 dout("%s %p\n", __func__, obj_request);
1564 ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566
1567 /*
1568 * Wait for an object request to complete. If interrupted, cancel the
1569 * underlying osd request.
1570 *
1571 * @timeout: in jiffies, 0 means "wait forever"
1572 */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574 unsigned long timeout)
1575 {
1576 long ret;
1577
1578 dout("%s %p\n", __func__, obj_request);
1579 ret = wait_for_completion_interruptible_timeout(
1580 &obj_request->completion,
1581 ceph_timeout_jiffies(timeout));
1582 if (ret <= 0) {
1583 if (ret == 0)
1584 ret = -ETIMEDOUT;
1585 rbd_obj_request_end(obj_request);
1586 } else {
1587 ret = 0;
1588 }
1589
1590 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591 return ret;
1592 }
1593
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596 return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598
1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1600 unsigned long timeout)
1601 {
1602 return __rbd_obj_request_wait(obj_request, timeout);
1603 }
1604
1605 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1606 {
1607
1608 dout("%s: img %p\n", __func__, img_request);
1609
1610 /*
1611 * If no error occurred, compute the aggregate transfer
1612 * count for the image request. We could instead use
1613 * atomic64_cmpxchg() to update it as each object request
1614 * completes; not clear which way is better off hand.
1615 */
1616 if (!img_request->result) {
1617 struct rbd_obj_request *obj_request;
1618 u64 xferred = 0;
1619
1620 for_each_obj_request(img_request, obj_request)
1621 xferred += obj_request->xferred;
1622 img_request->xferred = xferred;
1623 }
1624
1625 if (img_request->callback)
1626 img_request->callback(img_request);
1627 else
1628 rbd_img_request_put(img_request);
1629 }
1630
1631 /*
1632 * The default/initial value for all image request flags is 0. Each
1633 * is conditionally set to 1 at image request initialization time
1634 * and currently never change thereafter.
1635 */
1636 static void img_request_write_set(struct rbd_img_request *img_request)
1637 {
1638 set_bit(IMG_REQ_WRITE, &img_request->flags);
1639 smp_mb();
1640 }
1641
1642 static bool img_request_write_test(struct rbd_img_request *img_request)
1643 {
1644 smp_mb();
1645 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1646 }
1647
1648 /*
1649 * Set the discard flag when the img_request is an discard request
1650 */
1651 static void img_request_discard_set(struct rbd_img_request *img_request)
1652 {
1653 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1654 smp_mb();
1655 }
1656
1657 static bool img_request_discard_test(struct rbd_img_request *img_request)
1658 {
1659 smp_mb();
1660 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1661 }
1662
1663 static void img_request_child_set(struct rbd_img_request *img_request)
1664 {
1665 set_bit(IMG_REQ_CHILD, &img_request->flags);
1666 smp_mb();
1667 }
1668
1669 static void img_request_child_clear(struct rbd_img_request *img_request)
1670 {
1671 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1672 smp_mb();
1673 }
1674
1675 static bool img_request_child_test(struct rbd_img_request *img_request)
1676 {
1677 smp_mb();
1678 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1679 }
1680
1681 static void img_request_layered_set(struct rbd_img_request *img_request)
1682 {
1683 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1684 smp_mb();
1685 }
1686
1687 static void img_request_layered_clear(struct rbd_img_request *img_request)
1688 {
1689 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1690 smp_mb();
1691 }
1692
1693 static bool img_request_layered_test(struct rbd_img_request *img_request)
1694 {
1695 smp_mb();
1696 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1697 }
1698
1699 static enum obj_operation_type
1700 rbd_img_request_op_type(struct rbd_img_request *img_request)
1701 {
1702 if (img_request_write_test(img_request))
1703 return OBJ_OP_WRITE;
1704 else if (img_request_discard_test(img_request))
1705 return OBJ_OP_DISCARD;
1706 else
1707 return OBJ_OP_READ;
1708 }
1709
1710 static void
1711 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1712 {
1713 u64 xferred = obj_request->xferred;
1714 u64 length = obj_request->length;
1715
1716 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1717 obj_request, obj_request->img_request, obj_request->result,
1718 xferred, length);
1719 /*
1720 * ENOENT means a hole in the image. We zero-fill the entire
1721 * length of the request. A short read also implies zero-fill
1722 * to the end of the request. An error requires the whole
1723 * length of the request to be reported finished with an error
1724 * to the block layer. In each case we update the xferred
1725 * count to indicate the whole request was satisfied.
1726 */
1727 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1728 if (obj_request->result == -ENOENT) {
1729 if (obj_request->type == OBJ_REQUEST_BIO)
1730 zero_bio_chain(obj_request->bio_list, 0);
1731 else
1732 zero_pages(obj_request->pages, 0, length);
1733 obj_request->result = 0;
1734 } else if (xferred < length && !obj_request->result) {
1735 if (obj_request->type == OBJ_REQUEST_BIO)
1736 zero_bio_chain(obj_request->bio_list, xferred);
1737 else
1738 zero_pages(obj_request->pages, xferred, length);
1739 }
1740 obj_request->xferred = length;
1741 obj_request_done_set(obj_request);
1742 }
1743
1744 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1745 {
1746 dout("%s: obj %p cb %p\n", __func__, obj_request,
1747 obj_request->callback);
1748 if (obj_request->callback)
1749 obj_request->callback(obj_request);
1750 else
1751 complete_all(&obj_request->completion);
1752 }
1753
1754 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1755 {
1756 dout("%s: obj %p\n", __func__, obj_request);
1757 obj_request_done_set(obj_request);
1758 }
1759
1760 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1761 {
1762 struct rbd_img_request *img_request = NULL;
1763 struct rbd_device *rbd_dev = NULL;
1764 bool layered = false;
1765
1766 if (obj_request_img_data_test(obj_request)) {
1767 img_request = obj_request->img_request;
1768 layered = img_request && img_request_layered_test(img_request);
1769 rbd_dev = img_request->rbd_dev;
1770 }
1771
1772 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1773 obj_request, img_request, obj_request->result,
1774 obj_request->xferred, obj_request->length);
1775 if (layered && obj_request->result == -ENOENT &&
1776 obj_request->img_offset < rbd_dev->parent_overlap)
1777 rbd_img_parent_read(obj_request);
1778 else if (img_request)
1779 rbd_img_obj_request_read_callback(obj_request);
1780 else
1781 obj_request_done_set(obj_request);
1782 }
1783
1784 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1785 {
1786 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787 obj_request->result, obj_request->length);
1788 /*
1789 * There is no such thing as a successful short write. Set
1790 * it to our originally-requested length.
1791 */
1792 obj_request->xferred = obj_request->length;
1793 obj_request_done_set(obj_request);
1794 }
1795
1796 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1797 {
1798 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1799 obj_request->result, obj_request->length);
1800 /*
1801 * There is no such thing as a successful short discard. Set
1802 * it to our originally-requested length.
1803 */
1804 obj_request->xferred = obj_request->length;
1805 /* discarding a non-existent object is not a problem */
1806 if (obj_request->result == -ENOENT)
1807 obj_request->result = 0;
1808 obj_request_done_set(obj_request);
1809 }
1810
1811 /*
1812 * For a simple stat call there's nothing to do. We'll do more if
1813 * this is part of a write sequence for a layered image.
1814 */
1815 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1816 {
1817 dout("%s: obj %p\n", __func__, obj_request);
1818 obj_request_done_set(obj_request);
1819 }
1820
1821 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1822 struct ceph_msg *msg)
1823 {
1824 struct rbd_obj_request *obj_request = osd_req->r_priv;
1825 u16 opcode;
1826
1827 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1828 rbd_assert(osd_req == obj_request->osd_req);
1829 if (obj_request_img_data_test(obj_request)) {
1830 rbd_assert(obj_request->img_request);
1831 rbd_assert(obj_request->which != BAD_WHICH);
1832 } else {
1833 rbd_assert(obj_request->which == BAD_WHICH);
1834 }
1835
1836 if (osd_req->r_result < 0)
1837 obj_request->result = osd_req->r_result;
1838
1839 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1840
1841 /*
1842 * We support a 64-bit length, but ultimately it has to be
1843 * passed to the block layer, which just supports a 32-bit
1844 * length field.
1845 */
1846 obj_request->xferred = osd_req->r_reply_op_len[0];
1847 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1848
1849 opcode = osd_req->r_ops[0].op;
1850 switch (opcode) {
1851 case CEPH_OSD_OP_READ:
1852 rbd_osd_read_callback(obj_request);
1853 break;
1854 case CEPH_OSD_OP_SETALLOCHINT:
1855 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1856 /* fall through */
1857 case CEPH_OSD_OP_WRITE:
1858 rbd_osd_write_callback(obj_request);
1859 break;
1860 case CEPH_OSD_OP_STAT:
1861 rbd_osd_stat_callback(obj_request);
1862 break;
1863 case CEPH_OSD_OP_DELETE:
1864 case CEPH_OSD_OP_TRUNCATE:
1865 case CEPH_OSD_OP_ZERO:
1866 rbd_osd_discard_callback(obj_request);
1867 break;
1868 case CEPH_OSD_OP_CALL:
1869 case CEPH_OSD_OP_NOTIFY_ACK:
1870 case CEPH_OSD_OP_WATCH:
1871 rbd_osd_trivial_callback(obj_request);
1872 break;
1873 default:
1874 rbd_warn(NULL, "%s: unsupported op %hu",
1875 obj_request->object_name, (unsigned short) opcode);
1876 break;
1877 }
1878
1879 if (obj_request_done_test(obj_request))
1880 rbd_obj_request_complete(obj_request);
1881 }
1882
1883 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1884 {
1885 struct rbd_img_request *img_request = obj_request->img_request;
1886 struct ceph_osd_request *osd_req = obj_request->osd_req;
1887 u64 snap_id;
1888
1889 rbd_assert(osd_req != NULL);
1890
1891 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1892 ceph_osdc_build_request(osd_req, obj_request->offset,
1893 NULL, snap_id, NULL);
1894 }
1895
1896 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1897 {
1898 struct rbd_img_request *img_request = obj_request->img_request;
1899 struct ceph_osd_request *osd_req = obj_request->osd_req;
1900 struct ceph_snap_context *snapc;
1901 struct timespec mtime = CURRENT_TIME;
1902
1903 rbd_assert(osd_req != NULL);
1904
1905 snapc = img_request ? img_request->snapc : NULL;
1906 ceph_osdc_build_request(osd_req, obj_request->offset,
1907 snapc, CEPH_NOSNAP, &mtime);
1908 }
1909
1910 /*
1911 * Create an osd request. A read request has one osd op (read).
1912 * A write request has either one (watch) or two (hint+write) osd ops.
1913 * (All rbd data writes are prefixed with an allocation hint op, but
1914 * technically osd watch is a write request, hence this distinction.)
1915 */
1916 static struct ceph_osd_request *rbd_osd_req_create(
1917 struct rbd_device *rbd_dev,
1918 enum obj_operation_type op_type,
1919 unsigned int num_ops,
1920 struct rbd_obj_request *obj_request)
1921 {
1922 struct ceph_snap_context *snapc = NULL;
1923 struct ceph_osd_client *osdc;
1924 struct ceph_osd_request *osd_req;
1925
1926 if (obj_request_img_data_test(obj_request) &&
1927 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1928 struct rbd_img_request *img_request = obj_request->img_request;
1929 if (op_type == OBJ_OP_WRITE) {
1930 rbd_assert(img_request_write_test(img_request));
1931 } else {
1932 rbd_assert(img_request_discard_test(img_request));
1933 }
1934 snapc = img_request->snapc;
1935 }
1936
1937 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1938
1939 /* Allocate and initialize the request, for the num_ops ops */
1940
1941 osdc = &rbd_dev->rbd_client->client->osdc;
1942 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1943 GFP_ATOMIC);
1944 if (!osd_req)
1945 return NULL; /* ENOMEM */
1946
1947 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1948 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1949 else
1950 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1951
1952 osd_req->r_callback = rbd_osd_req_callback;
1953 osd_req->r_priv = obj_request;
1954
1955 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1956 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1957
1958 return osd_req;
1959 }
1960
1961 /*
1962 * Create a copyup osd request based on the information in the object
1963 * request supplied. A copyup request has two or three osd ops, a
1964 * copyup method call, potentially a hint op, and a write or truncate
1965 * or zero op.
1966 */
1967 static struct ceph_osd_request *
1968 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1969 {
1970 struct rbd_img_request *img_request;
1971 struct ceph_snap_context *snapc;
1972 struct rbd_device *rbd_dev;
1973 struct ceph_osd_client *osdc;
1974 struct ceph_osd_request *osd_req;
1975 int num_osd_ops = 3;
1976
1977 rbd_assert(obj_request_img_data_test(obj_request));
1978 img_request = obj_request->img_request;
1979 rbd_assert(img_request);
1980 rbd_assert(img_request_write_test(img_request) ||
1981 img_request_discard_test(img_request));
1982
1983 if (img_request_discard_test(img_request))
1984 num_osd_ops = 2;
1985
1986 /* Allocate and initialize the request, for all the ops */
1987
1988 snapc = img_request->snapc;
1989 rbd_dev = img_request->rbd_dev;
1990 osdc = &rbd_dev->rbd_client->client->osdc;
1991 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1992 false, GFP_ATOMIC);
1993 if (!osd_req)
1994 return NULL; /* ENOMEM */
1995
1996 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1997 osd_req->r_callback = rbd_osd_req_callback;
1998 osd_req->r_priv = obj_request;
1999
2000 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2001 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2002
2003 return osd_req;
2004 }
2005
2006
2007 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2008 {
2009 ceph_osdc_put_request(osd_req);
2010 }
2011
2012 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2013
2014 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2015 u64 offset, u64 length,
2016 enum obj_request_type type)
2017 {
2018 struct rbd_obj_request *obj_request;
2019 size_t size;
2020 char *name;
2021
2022 rbd_assert(obj_request_type_valid(type));
2023
2024 size = strlen(object_name) + 1;
2025 name = kmalloc(size, GFP_NOIO);
2026 if (!name)
2027 return NULL;
2028
2029 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2030 if (!obj_request) {
2031 kfree(name);
2032 return NULL;
2033 }
2034
2035 obj_request->object_name = memcpy(name, object_name, size);
2036 obj_request->offset = offset;
2037 obj_request->length = length;
2038 obj_request->flags = 0;
2039 obj_request->which = BAD_WHICH;
2040 obj_request->type = type;
2041 INIT_LIST_HEAD(&obj_request->links);
2042 init_completion(&obj_request->completion);
2043 kref_init(&obj_request->kref);
2044
2045 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2046 offset, length, (int)type, obj_request);
2047
2048 return obj_request;
2049 }
2050
2051 static void rbd_obj_request_destroy(struct kref *kref)
2052 {
2053 struct rbd_obj_request *obj_request;
2054
2055 obj_request = container_of(kref, struct rbd_obj_request, kref);
2056
2057 dout("%s: obj %p\n", __func__, obj_request);
2058
2059 rbd_assert(obj_request->img_request == NULL);
2060 rbd_assert(obj_request->which == BAD_WHICH);
2061
2062 if (obj_request->osd_req)
2063 rbd_osd_req_destroy(obj_request->osd_req);
2064
2065 rbd_assert(obj_request_type_valid(obj_request->type));
2066 switch (obj_request->type) {
2067 case OBJ_REQUEST_NODATA:
2068 break; /* Nothing to do */
2069 case OBJ_REQUEST_BIO:
2070 if (obj_request->bio_list)
2071 bio_chain_put(obj_request->bio_list);
2072 break;
2073 case OBJ_REQUEST_PAGES:
2074 if (obj_request->pages)
2075 ceph_release_page_vector(obj_request->pages,
2076 obj_request->page_count);
2077 break;
2078 }
2079
2080 kfree(obj_request->object_name);
2081 obj_request->object_name = NULL;
2082 kmem_cache_free(rbd_obj_request_cache, obj_request);
2083 }
2084
2085 /* It's OK to call this for a device with no parent */
2086
2087 static void rbd_spec_put(struct rbd_spec *spec);
2088 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2089 {
2090 rbd_dev_remove_parent(rbd_dev);
2091 rbd_spec_put(rbd_dev->parent_spec);
2092 rbd_dev->parent_spec = NULL;
2093 rbd_dev->parent_overlap = 0;
2094 }
2095
2096 /*
2097 * Parent image reference counting is used to determine when an
2098 * image's parent fields can be safely torn down--after there are no
2099 * more in-flight requests to the parent image. When the last
2100 * reference is dropped, cleaning them up is safe.
2101 */
2102 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2103 {
2104 int counter;
2105
2106 if (!rbd_dev->parent_spec)
2107 return;
2108
2109 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2110 if (counter > 0)
2111 return;
2112
2113 /* Last reference; clean up parent data structures */
2114
2115 if (!counter)
2116 rbd_dev_unparent(rbd_dev);
2117 else
2118 rbd_warn(rbd_dev, "parent reference underflow");
2119 }
2120
2121 /*
2122 * If an image has a non-zero parent overlap, get a reference to its
2123 * parent.
2124 *
2125 * Returns true if the rbd device has a parent with a non-zero
2126 * overlap and a reference for it was successfully taken, or
2127 * false otherwise.
2128 */
2129 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2130 {
2131 int counter = 0;
2132
2133 if (!rbd_dev->parent_spec)
2134 return false;
2135
2136 down_read(&rbd_dev->header_rwsem);
2137 if (rbd_dev->parent_overlap)
2138 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2139 up_read(&rbd_dev->header_rwsem);
2140
2141 if (counter < 0)
2142 rbd_warn(rbd_dev, "parent reference overflow");
2143
2144 return counter > 0;
2145 }
2146
2147 /*
2148 * Caller is responsible for filling in the list of object requests
2149 * that comprises the image request, and the Linux request pointer
2150 * (if there is one).
2151 */
2152 static struct rbd_img_request *rbd_img_request_create(
2153 struct rbd_device *rbd_dev,
2154 u64 offset, u64 length,
2155 enum obj_operation_type op_type,
2156 struct ceph_snap_context *snapc)
2157 {
2158 struct rbd_img_request *img_request;
2159
2160 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2161 if (!img_request)
2162 return NULL;
2163
2164 img_request->rq = NULL;
2165 img_request->rbd_dev = rbd_dev;
2166 img_request->offset = offset;
2167 img_request->length = length;
2168 img_request->flags = 0;
2169 if (op_type == OBJ_OP_DISCARD) {
2170 img_request_discard_set(img_request);
2171 img_request->snapc = snapc;
2172 } else if (op_type == OBJ_OP_WRITE) {
2173 img_request_write_set(img_request);
2174 img_request->snapc = snapc;
2175 } else {
2176 img_request->snap_id = rbd_dev->spec->snap_id;
2177 }
2178 if (rbd_dev_parent_get(rbd_dev))
2179 img_request_layered_set(img_request);
2180 spin_lock_init(&img_request->completion_lock);
2181 img_request->next_completion = 0;
2182 img_request->callback = NULL;
2183 img_request->result = 0;
2184 img_request->obj_request_count = 0;
2185 INIT_LIST_HEAD(&img_request->obj_requests);
2186 kref_init(&img_request->kref);
2187
2188 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2189 obj_op_name(op_type), offset, length, img_request);
2190
2191 return img_request;
2192 }
2193
2194 static void rbd_img_request_destroy(struct kref *kref)
2195 {
2196 struct rbd_img_request *img_request;
2197 struct rbd_obj_request *obj_request;
2198 struct rbd_obj_request *next_obj_request;
2199
2200 img_request = container_of(kref, struct rbd_img_request, kref);
2201
2202 dout("%s: img %p\n", __func__, img_request);
2203
2204 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2205 rbd_img_obj_request_del(img_request, obj_request);
2206 rbd_assert(img_request->obj_request_count == 0);
2207
2208 if (img_request_layered_test(img_request)) {
2209 img_request_layered_clear(img_request);
2210 rbd_dev_parent_put(img_request->rbd_dev);
2211 }
2212
2213 if (img_request_write_test(img_request) ||
2214 img_request_discard_test(img_request))
2215 ceph_put_snap_context(img_request->snapc);
2216
2217 kmem_cache_free(rbd_img_request_cache, img_request);
2218 }
2219
2220 static struct rbd_img_request *rbd_parent_request_create(
2221 struct rbd_obj_request *obj_request,
2222 u64 img_offset, u64 length)
2223 {
2224 struct rbd_img_request *parent_request;
2225 struct rbd_device *rbd_dev;
2226
2227 rbd_assert(obj_request->img_request);
2228 rbd_dev = obj_request->img_request->rbd_dev;
2229
2230 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2231 length, OBJ_OP_READ, NULL);
2232 if (!parent_request)
2233 return NULL;
2234
2235 img_request_child_set(parent_request);
2236 rbd_obj_request_get(obj_request);
2237 parent_request->obj_request = obj_request;
2238
2239 return parent_request;
2240 }
2241
2242 static void rbd_parent_request_destroy(struct kref *kref)
2243 {
2244 struct rbd_img_request *parent_request;
2245 struct rbd_obj_request *orig_request;
2246
2247 parent_request = container_of(kref, struct rbd_img_request, kref);
2248 orig_request = parent_request->obj_request;
2249
2250 parent_request->obj_request = NULL;
2251 rbd_obj_request_put(orig_request);
2252 img_request_child_clear(parent_request);
2253
2254 rbd_img_request_destroy(kref);
2255 }
2256
2257 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2258 {
2259 struct rbd_img_request *img_request;
2260 unsigned int xferred;
2261 int result;
2262 bool more;
2263
2264 rbd_assert(obj_request_img_data_test(obj_request));
2265 img_request = obj_request->img_request;
2266
2267 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2268 xferred = (unsigned int)obj_request->xferred;
2269 result = obj_request->result;
2270 if (result) {
2271 struct rbd_device *rbd_dev = img_request->rbd_dev;
2272 enum obj_operation_type op_type;
2273
2274 if (img_request_discard_test(img_request))
2275 op_type = OBJ_OP_DISCARD;
2276 else if (img_request_write_test(img_request))
2277 op_type = OBJ_OP_WRITE;
2278 else
2279 op_type = OBJ_OP_READ;
2280
2281 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2282 obj_op_name(op_type), obj_request->length,
2283 obj_request->img_offset, obj_request->offset);
2284 rbd_warn(rbd_dev, " result %d xferred %x",
2285 result, xferred);
2286 if (!img_request->result)
2287 img_request->result = result;
2288 /*
2289 * Need to end I/O on the entire obj_request worth of
2290 * bytes in case of error.
2291 */
2292 xferred = obj_request->length;
2293 }
2294
2295 /* Image object requests don't own their page array */
2296
2297 if (obj_request->type == OBJ_REQUEST_PAGES) {
2298 obj_request->pages = NULL;
2299 obj_request->page_count = 0;
2300 }
2301
2302 if (img_request_child_test(img_request)) {
2303 rbd_assert(img_request->obj_request != NULL);
2304 more = obj_request->which < img_request->obj_request_count - 1;
2305 } else {
2306 rbd_assert(img_request->rq != NULL);
2307
2308 more = blk_update_request(img_request->rq, result, xferred);
2309 if (!more)
2310 __blk_mq_end_request(img_request->rq, result);
2311 }
2312
2313 return more;
2314 }
2315
2316 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2317 {
2318 struct rbd_img_request *img_request;
2319 u32 which = obj_request->which;
2320 bool more = true;
2321
2322 rbd_assert(obj_request_img_data_test(obj_request));
2323 img_request = obj_request->img_request;
2324
2325 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2326 rbd_assert(img_request != NULL);
2327 rbd_assert(img_request->obj_request_count > 0);
2328 rbd_assert(which != BAD_WHICH);
2329 rbd_assert(which < img_request->obj_request_count);
2330
2331 spin_lock_irq(&img_request->completion_lock);
2332 if (which != img_request->next_completion)
2333 goto out;
2334
2335 for_each_obj_request_from(img_request, obj_request) {
2336 rbd_assert(more);
2337 rbd_assert(which < img_request->obj_request_count);
2338
2339 if (!obj_request_done_test(obj_request))
2340 break;
2341 more = rbd_img_obj_end_request(obj_request);
2342 which++;
2343 }
2344
2345 rbd_assert(more ^ (which == img_request->obj_request_count));
2346 img_request->next_completion = which;
2347 out:
2348 spin_unlock_irq(&img_request->completion_lock);
2349 rbd_img_request_put(img_request);
2350
2351 if (!more)
2352 rbd_img_request_complete(img_request);
2353 }
2354
2355 /*
2356 * Add individual osd ops to the given ceph_osd_request and prepare
2357 * them for submission. num_ops is the current number of
2358 * osd operations already to the object request.
2359 */
2360 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2361 struct ceph_osd_request *osd_request,
2362 enum obj_operation_type op_type,
2363 unsigned int num_ops)
2364 {
2365 struct rbd_img_request *img_request = obj_request->img_request;
2366 struct rbd_device *rbd_dev = img_request->rbd_dev;
2367 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2368 u64 offset = obj_request->offset;
2369 u64 length = obj_request->length;
2370 u64 img_end;
2371 u16 opcode;
2372
2373 if (op_type == OBJ_OP_DISCARD) {
2374 if (!offset && length == object_size &&
2375 (!img_request_layered_test(img_request) ||
2376 !obj_request_overlaps_parent(obj_request))) {
2377 opcode = CEPH_OSD_OP_DELETE;
2378 } else if ((offset + length == object_size)) {
2379 opcode = CEPH_OSD_OP_TRUNCATE;
2380 } else {
2381 down_read(&rbd_dev->header_rwsem);
2382 img_end = rbd_dev->header.image_size;
2383 up_read(&rbd_dev->header_rwsem);
2384
2385 if (obj_request->img_offset + length == img_end)
2386 opcode = CEPH_OSD_OP_TRUNCATE;
2387 else
2388 opcode = CEPH_OSD_OP_ZERO;
2389 }
2390 } else if (op_type == OBJ_OP_WRITE) {
2391 opcode = CEPH_OSD_OP_WRITE;
2392 osd_req_op_alloc_hint_init(osd_request, num_ops,
2393 object_size, object_size);
2394 num_ops++;
2395 } else {
2396 opcode = CEPH_OSD_OP_READ;
2397 }
2398
2399 if (opcode == CEPH_OSD_OP_DELETE)
2400 osd_req_op_init(osd_request, num_ops, opcode, 0);
2401 else
2402 osd_req_op_extent_init(osd_request, num_ops, opcode,
2403 offset, length, 0, 0);
2404
2405 if (obj_request->type == OBJ_REQUEST_BIO)
2406 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2407 obj_request->bio_list, length);
2408 else if (obj_request->type == OBJ_REQUEST_PAGES)
2409 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2410 obj_request->pages, length,
2411 offset & ~PAGE_MASK, false, false);
2412
2413 /* Discards are also writes */
2414 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2415 rbd_osd_req_format_write(obj_request);
2416 else
2417 rbd_osd_req_format_read(obj_request);
2418 }
2419
2420 /*
2421 * Split up an image request into one or more object requests, each
2422 * to a different object. The "type" parameter indicates whether
2423 * "data_desc" is the pointer to the head of a list of bio
2424 * structures, or the base of a page array. In either case this
2425 * function assumes data_desc describes memory sufficient to hold
2426 * all data described by the image request.
2427 */
2428 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2429 enum obj_request_type type,
2430 void *data_desc)
2431 {
2432 struct rbd_device *rbd_dev = img_request->rbd_dev;
2433 struct rbd_obj_request *obj_request = NULL;
2434 struct rbd_obj_request *next_obj_request;
2435 struct bio *bio_list = NULL;
2436 unsigned int bio_offset = 0;
2437 struct page **pages = NULL;
2438 enum obj_operation_type op_type;
2439 u64 img_offset;
2440 u64 resid;
2441
2442 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2443 (int)type, data_desc);
2444
2445 img_offset = img_request->offset;
2446 resid = img_request->length;
2447 rbd_assert(resid > 0);
2448 op_type = rbd_img_request_op_type(img_request);
2449
2450 if (type == OBJ_REQUEST_BIO) {
2451 bio_list = data_desc;
2452 rbd_assert(img_offset ==
2453 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2454 } else if (type == OBJ_REQUEST_PAGES) {
2455 pages = data_desc;
2456 }
2457
2458 while (resid) {
2459 struct ceph_osd_request *osd_req;
2460 const char *object_name;
2461 u64 offset;
2462 u64 length;
2463
2464 object_name = rbd_segment_name(rbd_dev, img_offset);
2465 if (!object_name)
2466 goto out_unwind;
2467 offset = rbd_segment_offset(rbd_dev, img_offset);
2468 length = rbd_segment_length(rbd_dev, img_offset, resid);
2469 obj_request = rbd_obj_request_create(object_name,
2470 offset, length, type);
2471 /* object request has its own copy of the object name */
2472 rbd_segment_name_free(object_name);
2473 if (!obj_request)
2474 goto out_unwind;
2475
2476 /*
2477 * set obj_request->img_request before creating the
2478 * osd_request so that it gets the right snapc
2479 */
2480 rbd_img_obj_request_add(img_request, obj_request);
2481
2482 if (type == OBJ_REQUEST_BIO) {
2483 unsigned int clone_size;
2484
2485 rbd_assert(length <= (u64)UINT_MAX);
2486 clone_size = (unsigned int)length;
2487 obj_request->bio_list =
2488 bio_chain_clone_range(&bio_list,
2489 &bio_offset,
2490 clone_size,
2491 GFP_ATOMIC);
2492 if (!obj_request->bio_list)
2493 goto out_unwind;
2494 } else if (type == OBJ_REQUEST_PAGES) {
2495 unsigned int page_count;
2496
2497 obj_request->pages = pages;
2498 page_count = (u32)calc_pages_for(offset, length);
2499 obj_request->page_count = page_count;
2500 if ((offset + length) & ~PAGE_MASK)
2501 page_count--; /* more on last page */
2502 pages += page_count;
2503 }
2504
2505 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2506 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2507 obj_request);
2508 if (!osd_req)
2509 goto out_unwind;
2510
2511 obj_request->osd_req = osd_req;
2512 obj_request->callback = rbd_img_obj_callback;
2513 obj_request->img_offset = img_offset;
2514
2515 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2516
2517 rbd_img_request_get(img_request);
2518
2519 img_offset += length;
2520 resid -= length;
2521 }
2522
2523 return 0;
2524
2525 out_unwind:
2526 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2527 rbd_img_obj_request_del(img_request, obj_request);
2528
2529 return -ENOMEM;
2530 }
2531
2532 static void
2533 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2534 {
2535 struct rbd_img_request *img_request;
2536 struct rbd_device *rbd_dev;
2537 struct page **pages;
2538 u32 page_count;
2539
2540 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2541 obj_request->type == OBJ_REQUEST_NODATA);
2542 rbd_assert(obj_request_img_data_test(obj_request));
2543 img_request = obj_request->img_request;
2544 rbd_assert(img_request);
2545
2546 rbd_dev = img_request->rbd_dev;
2547 rbd_assert(rbd_dev);
2548
2549 pages = obj_request->copyup_pages;
2550 rbd_assert(pages != NULL);
2551 obj_request->copyup_pages = NULL;
2552 page_count = obj_request->copyup_page_count;
2553 rbd_assert(page_count);
2554 obj_request->copyup_page_count = 0;
2555 ceph_release_page_vector(pages, page_count);
2556
2557 /*
2558 * We want the transfer count to reflect the size of the
2559 * original write request. There is no such thing as a
2560 * successful short write, so if the request was successful
2561 * we can just set it to the originally-requested length.
2562 */
2563 if (!obj_request->result)
2564 obj_request->xferred = obj_request->length;
2565
2566 /* Finish up with the normal image object callback */
2567
2568 rbd_img_obj_callback(obj_request);
2569 }
2570
2571 static void
2572 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2573 {
2574 struct rbd_obj_request *orig_request;
2575 struct ceph_osd_request *osd_req;
2576 struct ceph_osd_client *osdc;
2577 struct rbd_device *rbd_dev;
2578 struct page **pages;
2579 enum obj_operation_type op_type;
2580 u32 page_count;
2581 int img_result;
2582 u64 parent_length;
2583
2584 rbd_assert(img_request_child_test(img_request));
2585
2586 /* First get what we need from the image request */
2587
2588 pages = img_request->copyup_pages;
2589 rbd_assert(pages != NULL);
2590 img_request->copyup_pages = NULL;
2591 page_count = img_request->copyup_page_count;
2592 rbd_assert(page_count);
2593 img_request->copyup_page_count = 0;
2594
2595 orig_request = img_request->obj_request;
2596 rbd_assert(orig_request != NULL);
2597 rbd_assert(obj_request_type_valid(orig_request->type));
2598 img_result = img_request->result;
2599 parent_length = img_request->length;
2600 rbd_assert(parent_length == img_request->xferred);
2601 rbd_img_request_put(img_request);
2602
2603 rbd_assert(orig_request->img_request);
2604 rbd_dev = orig_request->img_request->rbd_dev;
2605 rbd_assert(rbd_dev);
2606
2607 /*
2608 * If the overlap has become 0 (most likely because the
2609 * image has been flattened) we need to free the pages
2610 * and re-submit the original write request.
2611 */
2612 if (!rbd_dev->parent_overlap) {
2613 struct ceph_osd_client *osdc;
2614
2615 ceph_release_page_vector(pages, page_count);
2616 osdc = &rbd_dev->rbd_client->client->osdc;
2617 img_result = rbd_obj_request_submit(osdc, orig_request);
2618 if (!img_result)
2619 return;
2620 }
2621
2622 if (img_result)
2623 goto out_err;
2624
2625 /*
2626 * The original osd request is of no use to use any more.
2627 * We need a new one that can hold the three ops in a copyup
2628 * request. Allocate the new copyup osd request for the
2629 * original request, and release the old one.
2630 */
2631 img_result = -ENOMEM;
2632 osd_req = rbd_osd_req_create_copyup(orig_request);
2633 if (!osd_req)
2634 goto out_err;
2635 rbd_osd_req_destroy(orig_request->osd_req);
2636 orig_request->osd_req = osd_req;
2637 orig_request->copyup_pages = pages;
2638 orig_request->copyup_page_count = page_count;
2639
2640 /* Initialize the copyup op */
2641
2642 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2643 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2644 false, false);
2645
2646 /* Add the other op(s) */
2647
2648 op_type = rbd_img_request_op_type(orig_request->img_request);
2649 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2650
2651 /* All set, send it off. */
2652
2653 orig_request->callback = rbd_img_obj_copyup_callback;
2654 osdc = &rbd_dev->rbd_client->client->osdc;
2655 img_result = rbd_obj_request_submit(osdc, orig_request);
2656 if (!img_result)
2657 return;
2658 out_err:
2659 /* Record the error code and complete the request */
2660
2661 orig_request->result = img_result;
2662 orig_request->xferred = 0;
2663 obj_request_done_set(orig_request);
2664 rbd_obj_request_complete(orig_request);
2665 }
2666
2667 /*
2668 * Read from the parent image the range of data that covers the
2669 * entire target of the given object request. This is used for
2670 * satisfying a layered image write request when the target of an
2671 * object request from the image request does not exist.
2672 *
2673 * A page array big enough to hold the returned data is allocated
2674 * and supplied to rbd_img_request_fill() as the "data descriptor."
2675 * When the read completes, this page array will be transferred to
2676 * the original object request for the copyup operation.
2677 *
2678 * If an error occurs, record it as the result of the original
2679 * object request and mark it done so it gets completed.
2680 */
2681 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2682 {
2683 struct rbd_img_request *img_request = NULL;
2684 struct rbd_img_request *parent_request = NULL;
2685 struct rbd_device *rbd_dev;
2686 u64 img_offset;
2687 u64 length;
2688 struct page **pages = NULL;
2689 u32 page_count;
2690 int result;
2691
2692 rbd_assert(obj_request_img_data_test(obj_request));
2693 rbd_assert(obj_request_type_valid(obj_request->type));
2694
2695 img_request = obj_request->img_request;
2696 rbd_assert(img_request != NULL);
2697 rbd_dev = img_request->rbd_dev;
2698 rbd_assert(rbd_dev->parent != NULL);
2699
2700 /*
2701 * Determine the byte range covered by the object in the
2702 * child image to which the original request was to be sent.
2703 */
2704 img_offset = obj_request->img_offset - obj_request->offset;
2705 length = (u64)1 << rbd_dev->header.obj_order;
2706
2707 /*
2708 * There is no defined parent data beyond the parent
2709 * overlap, so limit what we read at that boundary if
2710 * necessary.
2711 */
2712 if (img_offset + length > rbd_dev->parent_overlap) {
2713 rbd_assert(img_offset < rbd_dev->parent_overlap);
2714 length = rbd_dev->parent_overlap - img_offset;
2715 }
2716
2717 /*
2718 * Allocate a page array big enough to receive the data read
2719 * from the parent.
2720 */
2721 page_count = (u32)calc_pages_for(0, length);
2722 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2723 if (IS_ERR(pages)) {
2724 result = PTR_ERR(pages);
2725 pages = NULL;
2726 goto out_err;
2727 }
2728
2729 result = -ENOMEM;
2730 parent_request = rbd_parent_request_create(obj_request,
2731 img_offset, length);
2732 if (!parent_request)
2733 goto out_err;
2734
2735 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2736 if (result)
2737 goto out_err;
2738 parent_request->copyup_pages = pages;
2739 parent_request->copyup_page_count = page_count;
2740
2741 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2742 result = rbd_img_request_submit(parent_request);
2743 if (!result)
2744 return 0;
2745
2746 parent_request->copyup_pages = NULL;
2747 parent_request->copyup_page_count = 0;
2748 parent_request->obj_request = NULL;
2749 rbd_obj_request_put(obj_request);
2750 out_err:
2751 if (pages)
2752 ceph_release_page_vector(pages, page_count);
2753 if (parent_request)
2754 rbd_img_request_put(parent_request);
2755 obj_request->result = result;
2756 obj_request->xferred = 0;
2757 obj_request_done_set(obj_request);
2758
2759 return result;
2760 }
2761
2762 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2763 {
2764 struct rbd_obj_request *orig_request;
2765 struct rbd_device *rbd_dev;
2766 int result;
2767
2768 rbd_assert(!obj_request_img_data_test(obj_request));
2769
2770 /*
2771 * All we need from the object request is the original
2772 * request and the result of the STAT op. Grab those, then
2773 * we're done with the request.
2774 */
2775 orig_request = obj_request->obj_request;
2776 obj_request->obj_request = NULL;
2777 rbd_obj_request_put(orig_request);
2778 rbd_assert(orig_request);
2779 rbd_assert(orig_request->img_request);
2780
2781 result = obj_request->result;
2782 obj_request->result = 0;
2783
2784 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2785 obj_request, orig_request, result,
2786 obj_request->xferred, obj_request->length);
2787 rbd_obj_request_put(obj_request);
2788
2789 /*
2790 * If the overlap has become 0 (most likely because the
2791 * image has been flattened) we need to free the pages
2792 * and re-submit the original write request.
2793 */
2794 rbd_dev = orig_request->img_request->rbd_dev;
2795 if (!rbd_dev->parent_overlap) {
2796 struct ceph_osd_client *osdc;
2797
2798 osdc = &rbd_dev->rbd_client->client->osdc;
2799 result = rbd_obj_request_submit(osdc, orig_request);
2800 if (!result)
2801 return;
2802 }
2803
2804 /*
2805 * Our only purpose here is to determine whether the object
2806 * exists, and we don't want to treat the non-existence as
2807 * an error. If something else comes back, transfer the
2808 * error to the original request and complete it now.
2809 */
2810 if (!result) {
2811 obj_request_existence_set(orig_request, true);
2812 } else if (result == -ENOENT) {
2813 obj_request_existence_set(orig_request, false);
2814 } else if (result) {
2815 orig_request->result = result;
2816 goto out;
2817 }
2818
2819 /*
2820 * Resubmit the original request now that we have recorded
2821 * whether the target object exists.
2822 */
2823 orig_request->result = rbd_img_obj_request_submit(orig_request);
2824 out:
2825 if (orig_request->result)
2826 rbd_obj_request_complete(orig_request);
2827 }
2828
2829 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2830 {
2831 struct rbd_obj_request *stat_request;
2832 struct rbd_device *rbd_dev;
2833 struct ceph_osd_client *osdc;
2834 struct page **pages = NULL;
2835 u32 page_count;
2836 size_t size;
2837 int ret;
2838
2839 /*
2840 * The response data for a STAT call consists of:
2841 * le64 length;
2842 * struct {
2843 * le32 tv_sec;
2844 * le32 tv_nsec;
2845 * } mtime;
2846 */
2847 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2848 page_count = (u32)calc_pages_for(0, size);
2849 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2850 if (IS_ERR(pages))
2851 return PTR_ERR(pages);
2852
2853 ret = -ENOMEM;
2854 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2855 OBJ_REQUEST_PAGES);
2856 if (!stat_request)
2857 goto out;
2858
2859 rbd_obj_request_get(obj_request);
2860 stat_request->obj_request = obj_request;
2861 stat_request->pages = pages;
2862 stat_request->page_count = page_count;
2863
2864 rbd_assert(obj_request->img_request);
2865 rbd_dev = obj_request->img_request->rbd_dev;
2866 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2867 stat_request);
2868 if (!stat_request->osd_req)
2869 goto out;
2870 stat_request->callback = rbd_img_obj_exists_callback;
2871
2872 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2873 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2874 false, false);
2875 rbd_osd_req_format_read(stat_request);
2876
2877 osdc = &rbd_dev->rbd_client->client->osdc;
2878 ret = rbd_obj_request_submit(osdc, stat_request);
2879 out:
2880 if (ret)
2881 rbd_obj_request_put(obj_request);
2882
2883 return ret;
2884 }
2885
2886 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2887 {
2888 struct rbd_img_request *img_request;
2889 struct rbd_device *rbd_dev;
2890
2891 rbd_assert(obj_request_img_data_test(obj_request));
2892
2893 img_request = obj_request->img_request;
2894 rbd_assert(img_request);
2895 rbd_dev = img_request->rbd_dev;
2896
2897 /* Reads */
2898 if (!img_request_write_test(img_request) &&
2899 !img_request_discard_test(img_request))
2900 return true;
2901
2902 /* Non-layered writes */
2903 if (!img_request_layered_test(img_request))
2904 return true;
2905
2906 /*
2907 * Layered writes outside of the parent overlap range don't
2908 * share any data with the parent.
2909 */
2910 if (!obj_request_overlaps_parent(obj_request))
2911 return true;
2912
2913 /*
2914 * Entire-object layered writes - we will overwrite whatever
2915 * parent data there is anyway.
2916 */
2917 if (!obj_request->offset &&
2918 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2919 return true;
2920
2921 /*
2922 * If the object is known to already exist, its parent data has
2923 * already been copied.
2924 */
2925 if (obj_request_known_test(obj_request) &&
2926 obj_request_exists_test(obj_request))
2927 return true;
2928
2929 return false;
2930 }
2931
2932 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2933 {
2934 if (img_obj_request_simple(obj_request)) {
2935 struct rbd_device *rbd_dev;
2936 struct ceph_osd_client *osdc;
2937
2938 rbd_dev = obj_request->img_request->rbd_dev;
2939 osdc = &rbd_dev->rbd_client->client->osdc;
2940
2941 return rbd_obj_request_submit(osdc, obj_request);
2942 }
2943
2944 /*
2945 * It's a layered write. The target object might exist but
2946 * we may not know that yet. If we know it doesn't exist,
2947 * start by reading the data for the full target object from
2948 * the parent so we can use it for a copyup to the target.
2949 */
2950 if (obj_request_known_test(obj_request))
2951 return rbd_img_obj_parent_read_full(obj_request);
2952
2953 /* We don't know whether the target exists. Go find out. */
2954
2955 return rbd_img_obj_exists_submit(obj_request);
2956 }
2957
2958 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2959 {
2960 struct rbd_obj_request *obj_request;
2961 struct rbd_obj_request *next_obj_request;
2962
2963 dout("%s: img %p\n", __func__, img_request);
2964 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2965 int ret;
2966
2967 ret = rbd_img_obj_request_submit(obj_request);
2968 if (ret)
2969 return ret;
2970 }
2971
2972 return 0;
2973 }
2974
2975 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2976 {
2977 struct rbd_obj_request *obj_request;
2978 struct rbd_device *rbd_dev;
2979 u64 obj_end;
2980 u64 img_xferred;
2981 int img_result;
2982
2983 rbd_assert(img_request_child_test(img_request));
2984
2985 /* First get what we need from the image request and release it */
2986
2987 obj_request = img_request->obj_request;
2988 img_xferred = img_request->xferred;
2989 img_result = img_request->result;
2990 rbd_img_request_put(img_request);
2991
2992 /*
2993 * If the overlap has become 0 (most likely because the
2994 * image has been flattened) we need to re-submit the
2995 * original request.
2996 */
2997 rbd_assert(obj_request);
2998 rbd_assert(obj_request->img_request);
2999 rbd_dev = obj_request->img_request->rbd_dev;
3000 if (!rbd_dev->parent_overlap) {
3001 struct ceph_osd_client *osdc;
3002
3003 osdc = &rbd_dev->rbd_client->client->osdc;
3004 img_result = rbd_obj_request_submit(osdc, obj_request);
3005 if (!img_result)
3006 return;
3007 }
3008
3009 obj_request->result = img_result;
3010 if (obj_request->result)
3011 goto out;
3012
3013 /*
3014 * We need to zero anything beyond the parent overlap
3015 * boundary. Since rbd_img_obj_request_read_callback()
3016 * will zero anything beyond the end of a short read, an
3017 * easy way to do this is to pretend the data from the
3018 * parent came up short--ending at the overlap boundary.
3019 */
3020 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3021 obj_end = obj_request->img_offset + obj_request->length;
3022 if (obj_end > rbd_dev->parent_overlap) {
3023 u64 xferred = 0;
3024
3025 if (obj_request->img_offset < rbd_dev->parent_overlap)
3026 xferred = rbd_dev->parent_overlap -
3027 obj_request->img_offset;
3028
3029 obj_request->xferred = min(img_xferred, xferred);
3030 } else {
3031 obj_request->xferred = img_xferred;
3032 }
3033 out:
3034 rbd_img_obj_request_read_callback(obj_request);
3035 rbd_obj_request_complete(obj_request);
3036 }
3037
3038 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3039 {
3040 struct rbd_img_request *img_request;
3041 int result;
3042
3043 rbd_assert(obj_request_img_data_test(obj_request));
3044 rbd_assert(obj_request->img_request != NULL);
3045 rbd_assert(obj_request->result == (s32) -ENOENT);
3046 rbd_assert(obj_request_type_valid(obj_request->type));
3047
3048 /* rbd_read_finish(obj_request, obj_request->length); */
3049 img_request = rbd_parent_request_create(obj_request,
3050 obj_request->img_offset,
3051 obj_request->length);
3052 result = -ENOMEM;
3053 if (!img_request)
3054 goto out_err;
3055
3056 if (obj_request->type == OBJ_REQUEST_BIO)
3057 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3058 obj_request->bio_list);
3059 else
3060 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3061 obj_request->pages);
3062 if (result)
3063 goto out_err;
3064
3065 img_request->callback = rbd_img_parent_read_callback;
3066 result = rbd_img_request_submit(img_request);
3067 if (result)
3068 goto out_err;
3069
3070 return;
3071 out_err:
3072 if (img_request)
3073 rbd_img_request_put(img_request);
3074 obj_request->result = result;
3075 obj_request->xferred = 0;
3076 obj_request_done_set(obj_request);
3077 }
3078
3079 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3080 {
3081 struct rbd_obj_request *obj_request;
3082 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3083 int ret;
3084
3085 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3086 OBJ_REQUEST_NODATA);
3087 if (!obj_request)
3088 return -ENOMEM;
3089
3090 ret = -ENOMEM;
3091 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3092 obj_request);
3093 if (!obj_request->osd_req)
3094 goto out;
3095
3096 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3097 notify_id, 0, 0);
3098 rbd_osd_req_format_read(obj_request);
3099
3100 ret = rbd_obj_request_submit(osdc, obj_request);
3101 if (ret)
3102 goto out;
3103 ret = rbd_obj_request_wait(obj_request);
3104 out:
3105 rbd_obj_request_put(obj_request);
3106
3107 return ret;
3108 }
3109
3110 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3111 {
3112 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3113 int ret;
3114
3115 if (!rbd_dev)
3116 return;
3117
3118 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3119 rbd_dev->header_name, (unsigned long long)notify_id,
3120 (unsigned int)opcode);
3121
3122 /*
3123 * Until adequate refresh error handling is in place, there is
3124 * not much we can do here, except warn.
3125 *
3126 * See http://tracker.ceph.com/issues/5040
3127 */
3128 ret = rbd_dev_refresh(rbd_dev);
3129 if (ret)
3130 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3131
3132 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3133 if (ret)
3134 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3135 }
3136
3137 /*
3138 * Send a (un)watch request and wait for the ack. Return a request
3139 * with a ref held on success or error.
3140 */
3141 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3142 struct rbd_device *rbd_dev,
3143 bool watch)
3144 {
3145 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3146 struct ceph_options *opts = osdc->client->options;
3147 struct rbd_obj_request *obj_request;
3148 int ret;
3149
3150 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3151 OBJ_REQUEST_NODATA);
3152 if (!obj_request)
3153 return ERR_PTR(-ENOMEM);
3154
3155 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3156 obj_request);
3157 if (!obj_request->osd_req) {
3158 ret = -ENOMEM;
3159 goto out;
3160 }
3161
3162 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3163 rbd_dev->watch_event->cookie, 0, watch);
3164 rbd_osd_req_format_write(obj_request);
3165
3166 if (watch)
3167 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3168
3169 ret = rbd_obj_request_submit(osdc, obj_request);
3170 if (ret)
3171 goto out;
3172
3173 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3174 if (ret)
3175 goto out;
3176
3177 ret = obj_request->result;
3178 if (ret) {
3179 if (watch)
3180 rbd_obj_request_end(obj_request);
3181 goto out;
3182 }
3183
3184 return obj_request;
3185
3186 out:
3187 rbd_obj_request_put(obj_request);
3188 return ERR_PTR(ret);
3189 }
3190
3191 /*
3192 * Initiate a watch request, synchronously.
3193 */
3194 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3195 {
3196 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3197 struct rbd_obj_request *obj_request;
3198 int ret;
3199
3200 rbd_assert(!rbd_dev->watch_event);
3201 rbd_assert(!rbd_dev->watch_request);
3202
3203 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3204 &rbd_dev->watch_event);
3205 if (ret < 0)
3206 return ret;
3207
3208 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3209 if (IS_ERR(obj_request)) {
3210 ceph_osdc_cancel_event(rbd_dev->watch_event);
3211 rbd_dev->watch_event = NULL;
3212 return PTR_ERR(obj_request);
3213 }
3214
3215 /*
3216 * A watch request is set to linger, so the underlying osd
3217 * request won't go away until we unregister it. We retain
3218 * a pointer to the object request during that time (in
3219 * rbd_dev->watch_request), so we'll keep a reference to it.
3220 * We'll drop that reference after we've unregistered it in
3221 * rbd_dev_header_unwatch_sync().
3222 */
3223 rbd_dev->watch_request = obj_request;
3224
3225 return 0;
3226 }
3227
3228 /*
3229 * Tear down a watch request, synchronously.
3230 */
3231 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3232 {
3233 struct rbd_obj_request *obj_request;
3234
3235 rbd_assert(rbd_dev->watch_event);
3236 rbd_assert(rbd_dev->watch_request);
3237
3238 rbd_obj_request_end(rbd_dev->watch_request);
3239 rbd_obj_request_put(rbd_dev->watch_request);
3240 rbd_dev->watch_request = NULL;
3241
3242 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3243 if (!IS_ERR(obj_request))
3244 rbd_obj_request_put(obj_request);
3245 else
3246 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3247 PTR_ERR(obj_request));
3248
3249 ceph_osdc_cancel_event(rbd_dev->watch_event);
3250 rbd_dev->watch_event = NULL;
3251 }
3252
3253 /*
3254 * Synchronous osd object method call. Returns the number of bytes
3255 * returned in the outbound buffer, or a negative error code.
3256 */
3257 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3258 const char *object_name,
3259 const char *class_name,
3260 const char *method_name,
3261 const void *outbound,
3262 size_t outbound_size,
3263 void *inbound,
3264 size_t inbound_size)
3265 {
3266 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3267 struct rbd_obj_request *obj_request;
3268 struct page **pages;
3269 u32 page_count;
3270 int ret;
3271
3272 /*
3273 * Method calls are ultimately read operations. The result
3274 * should placed into the inbound buffer provided. They
3275 * also supply outbound data--parameters for the object
3276 * method. Currently if this is present it will be a
3277 * snapshot id.
3278 */
3279 page_count = (u32)calc_pages_for(0, inbound_size);
3280 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3281 if (IS_ERR(pages))
3282 return PTR_ERR(pages);
3283
3284 ret = -ENOMEM;
3285 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3286 OBJ_REQUEST_PAGES);
3287 if (!obj_request)
3288 goto out;
3289
3290 obj_request->pages = pages;
3291 obj_request->page_count = page_count;
3292
3293 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3294 obj_request);
3295 if (!obj_request->osd_req)
3296 goto out;
3297
3298 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3299 class_name, method_name);
3300 if (outbound_size) {
3301 struct ceph_pagelist *pagelist;
3302
3303 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3304 if (!pagelist)
3305 goto out;
3306
3307 ceph_pagelist_init(pagelist);
3308 ceph_pagelist_append(pagelist, outbound, outbound_size);
3309 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3310 pagelist);
3311 }
3312 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3313 obj_request->pages, inbound_size,
3314 0, false, false);
3315 rbd_osd_req_format_read(obj_request);
3316
3317 ret = rbd_obj_request_submit(osdc, obj_request);
3318 if (ret)
3319 goto out;
3320 ret = rbd_obj_request_wait(obj_request);
3321 if (ret)
3322 goto out;
3323
3324 ret = obj_request->result;
3325 if (ret < 0)
3326 goto out;
3327
3328 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3329 ret = (int)obj_request->xferred;
3330 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3331 out:
3332 if (obj_request)
3333 rbd_obj_request_put(obj_request);
3334 else
3335 ceph_release_page_vector(pages, page_count);
3336
3337 return ret;
3338 }
3339
3340 static void rbd_queue_workfn(struct work_struct *work)
3341 {
3342 struct request *rq = blk_mq_rq_from_pdu(work);
3343 struct rbd_device *rbd_dev = rq->q->queuedata;
3344 struct rbd_img_request *img_request;
3345 struct ceph_snap_context *snapc = NULL;
3346 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3347 u64 length = blk_rq_bytes(rq);
3348 enum obj_operation_type op_type;
3349 u64 mapping_size;
3350 int result;
3351
3352 if (rq->cmd_type != REQ_TYPE_FS) {
3353 dout("%s: non-fs request type %d\n", __func__,
3354 (int) rq->cmd_type);
3355 result = -EIO;
3356 goto err;
3357 }
3358
3359 if (rq->cmd_flags & REQ_DISCARD)
3360 op_type = OBJ_OP_DISCARD;
3361 else if (rq->cmd_flags & REQ_WRITE)
3362 op_type = OBJ_OP_WRITE;
3363 else
3364 op_type = OBJ_OP_READ;
3365
3366 /* Ignore/skip any zero-length requests */
3367
3368 if (!length) {
3369 dout("%s: zero-length request\n", __func__);
3370 result = 0;
3371 goto err_rq;
3372 }
3373
3374 /* Only reads are allowed to a read-only device */
3375
3376 if (op_type != OBJ_OP_READ) {
3377 if (rbd_dev->mapping.read_only) {
3378 result = -EROFS;
3379 goto err_rq;
3380 }
3381 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3382 }
3383
3384 /*
3385 * Quit early if the mapped snapshot no longer exists. It's
3386 * still possible the snapshot will have disappeared by the
3387 * time our request arrives at the osd, but there's no sense in
3388 * sending it if we already know.
3389 */
3390 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3391 dout("request for non-existent snapshot");
3392 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3393 result = -ENXIO;
3394 goto err_rq;
3395 }
3396
3397 if (offset && length > U64_MAX - offset + 1) {
3398 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3399 length);
3400 result = -EINVAL;
3401 goto err_rq; /* Shouldn't happen */
3402 }
3403
3404 blk_mq_start_request(rq);
3405
3406 down_read(&rbd_dev->header_rwsem);
3407 mapping_size = rbd_dev->mapping.size;
3408 if (op_type != OBJ_OP_READ) {
3409 snapc = rbd_dev->header.snapc;
3410 ceph_get_snap_context(snapc);
3411 }
3412 up_read(&rbd_dev->header_rwsem);
3413
3414 if (offset + length > mapping_size) {
3415 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3416 length, mapping_size);
3417 result = -EIO;
3418 goto err_rq;
3419 }
3420
3421 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3422 snapc);
3423 if (!img_request) {
3424 result = -ENOMEM;
3425 goto err_rq;
3426 }
3427 img_request->rq = rq;
3428
3429 if (op_type == OBJ_OP_DISCARD)
3430 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3431 NULL);
3432 else
3433 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3434 rq->bio);
3435 if (result)
3436 goto err_img_request;
3437
3438 result = rbd_img_request_submit(img_request);
3439 if (result)
3440 goto err_img_request;
3441
3442 return;
3443
3444 err_img_request:
3445 rbd_img_request_put(img_request);
3446 err_rq:
3447 if (result)
3448 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3449 obj_op_name(op_type), length, offset, result);
3450 ceph_put_snap_context(snapc);
3451 err:
3452 blk_mq_end_request(rq, result);
3453 }
3454
3455 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3456 const struct blk_mq_queue_data *bd)
3457 {
3458 struct request *rq = bd->rq;
3459 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3460
3461 queue_work(rbd_wq, work);
3462 return BLK_MQ_RQ_QUEUE_OK;
3463 }
3464
3465 /*
3466 * a queue callback. Makes sure that we don't create a bio that spans across
3467 * multiple osd objects. One exception would be with a single page bios,
3468 * which we handle later at bio_chain_clone_range()
3469 */
3470 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3471 struct bio_vec *bvec)
3472 {
3473 struct rbd_device *rbd_dev = q->queuedata;
3474 sector_t sector_offset;
3475 sector_t sectors_per_obj;
3476 sector_t obj_sector_offset;
3477 int ret;
3478
3479 /*
3480 * Find how far into its rbd object the partition-relative
3481 * bio start sector is to offset relative to the enclosing
3482 * device.
3483 */
3484 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3485 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3486 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3487
3488 /*
3489 * Compute the number of bytes from that offset to the end
3490 * of the object. Account for what's already used by the bio.
3491 */
3492 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3493 if (ret > bmd->bi_size)
3494 ret -= bmd->bi_size;
3495 else
3496 ret = 0;
3497
3498 /*
3499 * Don't send back more than was asked for. And if the bio
3500 * was empty, let the whole thing through because: "Note
3501 * that a block device *must* allow a single page to be
3502 * added to an empty bio."
3503 */
3504 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3505 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3506 ret = (int) bvec->bv_len;
3507
3508 return ret;
3509 }
3510
3511 static void rbd_free_disk(struct rbd_device *rbd_dev)
3512 {
3513 struct gendisk *disk = rbd_dev->disk;
3514
3515 if (!disk)
3516 return;
3517
3518 rbd_dev->disk = NULL;
3519 if (disk->flags & GENHD_FL_UP) {
3520 del_gendisk(disk);
3521 if (disk->queue)
3522 blk_cleanup_queue(disk->queue);
3523 blk_mq_free_tag_set(&rbd_dev->tag_set);
3524 }
3525 put_disk(disk);
3526 }
3527
3528 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3529 const char *object_name,
3530 u64 offset, u64 length, void *buf)
3531
3532 {
3533 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3534 struct rbd_obj_request *obj_request;
3535 struct page **pages = NULL;
3536 u32 page_count;
3537 size_t size;
3538 int ret;
3539
3540 page_count = (u32) calc_pages_for(offset, length);
3541 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3542 if (IS_ERR(pages))
3543 return PTR_ERR(pages);
3544
3545 ret = -ENOMEM;
3546 obj_request = rbd_obj_request_create(object_name, offset, length,
3547 OBJ_REQUEST_PAGES);
3548 if (!obj_request)
3549 goto out;
3550
3551 obj_request->pages = pages;
3552 obj_request->page_count = page_count;
3553
3554 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3555 obj_request);
3556 if (!obj_request->osd_req)
3557 goto out;
3558
3559 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3560 offset, length, 0, 0);
3561 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3562 obj_request->pages,
3563 obj_request->length,
3564 obj_request->offset & ~PAGE_MASK,
3565 false, false);
3566 rbd_osd_req_format_read(obj_request);
3567
3568 ret = rbd_obj_request_submit(osdc, obj_request);
3569 if (ret)
3570 goto out;
3571 ret = rbd_obj_request_wait(obj_request);
3572 if (ret)
3573 goto out;
3574
3575 ret = obj_request->result;
3576 if (ret < 0)
3577 goto out;
3578
3579 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3580 size = (size_t) obj_request->xferred;
3581 ceph_copy_from_page_vector(pages, buf, 0, size);
3582 rbd_assert(size <= (size_t)INT_MAX);
3583 ret = (int)size;
3584 out:
3585 if (obj_request)
3586 rbd_obj_request_put(obj_request);
3587 else
3588 ceph_release_page_vector(pages, page_count);
3589
3590 return ret;
3591 }
3592
3593 /*
3594 * Read the complete header for the given rbd device. On successful
3595 * return, the rbd_dev->header field will contain up-to-date
3596 * information about the image.
3597 */
3598 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3599 {
3600 struct rbd_image_header_ondisk *ondisk = NULL;
3601 u32 snap_count = 0;
3602 u64 names_size = 0;
3603 u32 want_count;
3604 int ret;
3605
3606 /*
3607 * The complete header will include an array of its 64-bit
3608 * snapshot ids, followed by the names of those snapshots as
3609 * a contiguous block of NUL-terminated strings. Note that
3610 * the number of snapshots could change by the time we read
3611 * it in, in which case we re-read it.
3612 */
3613 do {
3614 size_t size;
3615
3616 kfree(ondisk);
3617
3618 size = sizeof (*ondisk);
3619 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3620 size += names_size;
3621 ondisk = kmalloc(size, GFP_KERNEL);
3622 if (!ondisk)
3623 return -ENOMEM;
3624
3625 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3626 0, size, ondisk);
3627 if (ret < 0)
3628 goto out;
3629 if ((size_t)ret < size) {
3630 ret = -ENXIO;
3631 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3632 size, ret);
3633 goto out;
3634 }
3635 if (!rbd_dev_ondisk_valid(ondisk)) {
3636 ret = -ENXIO;
3637 rbd_warn(rbd_dev, "invalid header");
3638 goto out;
3639 }
3640
3641 names_size = le64_to_cpu(ondisk->snap_names_len);
3642 want_count = snap_count;
3643 snap_count = le32_to_cpu(ondisk->snap_count);
3644 } while (snap_count != want_count);
3645
3646 ret = rbd_header_from_disk(rbd_dev, ondisk);
3647 out:
3648 kfree(ondisk);
3649
3650 return ret;
3651 }
3652
3653 /*
3654 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3655 * has disappeared from the (just updated) snapshot context.
3656 */
3657 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3658 {
3659 u64 snap_id;
3660
3661 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3662 return;
3663
3664 snap_id = rbd_dev->spec->snap_id;
3665 if (snap_id == CEPH_NOSNAP)
3666 return;
3667
3668 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3669 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3670 }
3671
3672 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3673 {
3674 sector_t size;
3675 bool removing;
3676
3677 /*
3678 * Don't hold the lock while doing disk operations,
3679 * or lock ordering will conflict with the bdev mutex via:
3680 * rbd_add() -> blkdev_get() -> rbd_open()
3681 */
3682 spin_lock_irq(&rbd_dev->lock);
3683 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3684 spin_unlock_irq(&rbd_dev->lock);
3685 /*
3686 * If the device is being removed, rbd_dev->disk has
3687 * been destroyed, so don't try to update its size
3688 */
3689 if (!removing) {
3690 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3691 dout("setting size to %llu sectors", (unsigned long long)size);
3692 set_capacity(rbd_dev->disk, size);
3693 revalidate_disk(rbd_dev->disk);
3694 }
3695 }
3696
3697 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3698 {
3699 u64 mapping_size;
3700 int ret;
3701
3702 down_write(&rbd_dev->header_rwsem);
3703 mapping_size = rbd_dev->mapping.size;
3704
3705 ret = rbd_dev_header_info(rbd_dev);
3706 if (ret)
3707 goto out;
3708
3709 /*
3710 * If there is a parent, see if it has disappeared due to the
3711 * mapped image getting flattened.
3712 */
3713 if (rbd_dev->parent) {
3714 ret = rbd_dev_v2_parent_info(rbd_dev);
3715 if (ret)
3716 goto out;
3717 }
3718
3719 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3720 rbd_dev->mapping.size = rbd_dev->header.image_size;
3721 } else {
3722 /* validate mapped snapshot's EXISTS flag */
3723 rbd_exists_validate(rbd_dev);
3724 }
3725
3726 out:
3727 up_write(&rbd_dev->header_rwsem);
3728 if (!ret && mapping_size != rbd_dev->mapping.size)
3729 rbd_dev_update_size(rbd_dev);
3730
3731 return ret;
3732 }
3733
3734 static int rbd_init_request(void *data, struct request *rq,
3735 unsigned int hctx_idx, unsigned int request_idx,
3736 unsigned int numa_node)
3737 {
3738 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3739
3740 INIT_WORK(work, rbd_queue_workfn);
3741 return 0;
3742 }
3743
3744 static struct blk_mq_ops rbd_mq_ops = {
3745 .queue_rq = rbd_queue_rq,
3746 .map_queue = blk_mq_map_queue,
3747 .init_request = rbd_init_request,
3748 };
3749
3750 static int rbd_init_disk(struct rbd_device *rbd_dev)
3751 {
3752 struct gendisk *disk;
3753 struct request_queue *q;
3754 u64 segment_size;
3755 int err;
3756
3757 /* create gendisk info */
3758 disk = alloc_disk(single_major ?
3759 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3760 RBD_MINORS_PER_MAJOR);
3761 if (!disk)
3762 return -ENOMEM;
3763
3764 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3765 rbd_dev->dev_id);
3766 disk->major = rbd_dev->major;
3767 disk->first_minor = rbd_dev->minor;
3768 if (single_major)
3769 disk->flags |= GENHD_FL_EXT_DEVT;
3770 disk->fops = &rbd_bd_ops;
3771 disk->private_data = rbd_dev;
3772
3773 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3774 rbd_dev->tag_set.ops = &rbd_mq_ops;
3775 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3776 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3777 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3778 rbd_dev->tag_set.nr_hw_queues = 1;
3779 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3780
3781 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3782 if (err)
3783 goto out_disk;
3784
3785 q = blk_mq_init_queue(&rbd_dev->tag_set);
3786 if (IS_ERR(q)) {
3787 err = PTR_ERR(q);
3788 goto out_tag_set;
3789 }
3790
3791 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3792 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3793
3794 /* set io sizes to object size */
3795 segment_size = rbd_obj_bytes(&rbd_dev->header);
3796 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3797 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3798 blk_queue_max_segment_size(q, segment_size);
3799 blk_queue_io_min(q, segment_size);
3800 blk_queue_io_opt(q, segment_size);
3801
3802 /* enable the discard support */
3803 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3804 q->limits.discard_granularity = segment_size;
3805 q->limits.discard_alignment = segment_size;
3806 q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3807 q->limits.discard_zeroes_data = 1;
3808
3809 blk_queue_merge_bvec(q, rbd_merge_bvec);
3810 disk->queue = q;
3811
3812 q->queuedata = rbd_dev;
3813
3814 rbd_dev->disk = disk;
3815
3816 return 0;
3817 out_tag_set:
3818 blk_mq_free_tag_set(&rbd_dev->tag_set);
3819 out_disk:
3820 put_disk(disk);
3821 return err;
3822 }
3823
3824 /*
3825 sysfs
3826 */
3827
3828 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3829 {
3830 return container_of(dev, struct rbd_device, dev);
3831 }
3832
3833 static ssize_t rbd_size_show(struct device *dev,
3834 struct device_attribute *attr, char *buf)
3835 {
3836 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3837
3838 return sprintf(buf, "%llu\n",
3839 (unsigned long long)rbd_dev->mapping.size);
3840 }
3841
3842 /*
3843 * Note this shows the features for whatever's mapped, which is not
3844 * necessarily the base image.
3845 */
3846 static ssize_t rbd_features_show(struct device *dev,
3847 struct device_attribute *attr, char *buf)
3848 {
3849 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3850
3851 return sprintf(buf, "0x%016llx\n",
3852 (unsigned long long)rbd_dev->mapping.features);
3853 }
3854
3855 static ssize_t rbd_major_show(struct device *dev,
3856 struct device_attribute *attr, char *buf)
3857 {
3858 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3859
3860 if (rbd_dev->major)
3861 return sprintf(buf, "%d\n", rbd_dev->major);
3862
3863 return sprintf(buf, "(none)\n");
3864 }
3865
3866 static ssize_t rbd_minor_show(struct device *dev,
3867 struct device_attribute *attr, char *buf)
3868 {
3869 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3870
3871 return sprintf(buf, "%d\n", rbd_dev->minor);
3872 }
3873
3874 static ssize_t rbd_client_id_show(struct device *dev,
3875 struct device_attribute *attr, char *buf)
3876 {
3877 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3878
3879 return sprintf(buf, "client%lld\n",
3880 ceph_client_id(rbd_dev->rbd_client->client));
3881 }
3882
3883 static ssize_t rbd_pool_show(struct device *dev,
3884 struct device_attribute *attr, char *buf)
3885 {
3886 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3887
3888 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3889 }
3890
3891 static ssize_t rbd_pool_id_show(struct device *dev,
3892 struct device_attribute *attr, char *buf)
3893 {
3894 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3895
3896 return sprintf(buf, "%llu\n",
3897 (unsigned long long) rbd_dev->spec->pool_id);
3898 }
3899
3900 static ssize_t rbd_name_show(struct device *dev,
3901 struct device_attribute *attr, char *buf)
3902 {
3903 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3904
3905 if (rbd_dev->spec->image_name)
3906 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3907
3908 return sprintf(buf, "(unknown)\n");
3909 }
3910
3911 static ssize_t rbd_image_id_show(struct device *dev,
3912 struct device_attribute *attr, char *buf)
3913 {
3914 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3915
3916 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3917 }
3918
3919 /*
3920 * Shows the name of the currently-mapped snapshot (or
3921 * RBD_SNAP_HEAD_NAME for the base image).
3922 */
3923 static ssize_t rbd_snap_show(struct device *dev,
3924 struct device_attribute *attr,
3925 char *buf)
3926 {
3927 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3928
3929 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3930 }
3931
3932 /*
3933 * For a v2 image, shows the chain of parent images, separated by empty
3934 * lines. For v1 images or if there is no parent, shows "(no parent
3935 * image)".
3936 */
3937 static ssize_t rbd_parent_show(struct device *dev,
3938 struct device_attribute *attr,
3939 char *buf)
3940 {
3941 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3942 ssize_t count = 0;
3943
3944 if (!rbd_dev->parent)
3945 return sprintf(buf, "(no parent image)\n");
3946
3947 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3948 struct rbd_spec *spec = rbd_dev->parent_spec;
3949
3950 count += sprintf(&buf[count], "%s"
3951 "pool_id %llu\npool_name %s\n"
3952 "image_id %s\nimage_name %s\n"
3953 "snap_id %llu\nsnap_name %s\n"
3954 "overlap %llu\n",
3955 !count ? "" : "\n", /* first? */
3956 spec->pool_id, spec->pool_name,
3957 spec->image_id, spec->image_name ?: "(unknown)",
3958 spec->snap_id, spec->snap_name,
3959 rbd_dev->parent_overlap);
3960 }
3961
3962 return count;
3963 }
3964
3965 static ssize_t rbd_image_refresh(struct device *dev,
3966 struct device_attribute *attr,
3967 const char *buf,
3968 size_t size)
3969 {
3970 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3971 int ret;
3972
3973 ret = rbd_dev_refresh(rbd_dev);
3974 if (ret)
3975 return ret;
3976
3977 return size;
3978 }
3979
3980 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3981 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3982 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3983 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3984 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3985 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3986 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3987 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3988 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3989 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3990 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3991 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3992
3993 static struct attribute *rbd_attrs[] = {
3994 &dev_attr_size.attr,
3995 &dev_attr_features.attr,
3996 &dev_attr_major.attr,
3997 &dev_attr_minor.attr,
3998 &dev_attr_client_id.attr,
3999 &dev_attr_pool.attr,
4000 &dev_attr_pool_id.attr,
4001 &dev_attr_name.attr,
4002 &dev_attr_image_id.attr,
4003 &dev_attr_current_snap.attr,
4004 &dev_attr_parent.attr,
4005 &dev_attr_refresh.attr,
4006 NULL
4007 };
4008
4009 static struct attribute_group rbd_attr_group = {
4010 .attrs = rbd_attrs,
4011 };
4012
4013 static const struct attribute_group *rbd_attr_groups[] = {
4014 &rbd_attr_group,
4015 NULL
4016 };
4017
4018 static void rbd_sysfs_dev_release(struct device *dev)
4019 {
4020 }
4021
4022 static struct device_type rbd_device_type = {
4023 .name = "rbd",
4024 .groups = rbd_attr_groups,
4025 .release = rbd_sysfs_dev_release,
4026 };
4027
4028 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4029 {
4030 kref_get(&spec->kref);
4031
4032 return spec;
4033 }
4034
4035 static void rbd_spec_free(struct kref *kref);
4036 static void rbd_spec_put(struct rbd_spec *spec)
4037 {
4038 if (spec)
4039 kref_put(&spec->kref, rbd_spec_free);
4040 }
4041
4042 static struct rbd_spec *rbd_spec_alloc(void)
4043 {
4044 struct rbd_spec *spec;
4045
4046 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4047 if (!spec)
4048 return NULL;
4049
4050 spec->pool_id = CEPH_NOPOOL;
4051 spec->snap_id = CEPH_NOSNAP;
4052 kref_init(&spec->kref);
4053
4054 return spec;
4055 }
4056
4057 static void rbd_spec_free(struct kref *kref)
4058 {
4059 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4060
4061 kfree(spec->pool_name);
4062 kfree(spec->image_id);
4063 kfree(spec->image_name);
4064 kfree(spec->snap_name);
4065 kfree(spec);
4066 }
4067
4068 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4069 struct rbd_spec *spec,
4070 struct rbd_options *opts)
4071 {
4072 struct rbd_device *rbd_dev;
4073
4074 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4075 if (!rbd_dev)
4076 return NULL;
4077
4078 spin_lock_init(&rbd_dev->lock);
4079 rbd_dev->flags = 0;
4080 atomic_set(&rbd_dev->parent_ref, 0);
4081 INIT_LIST_HEAD(&rbd_dev->node);
4082 init_rwsem(&rbd_dev->header_rwsem);
4083
4084 rbd_dev->rbd_client = rbdc;
4085 rbd_dev->spec = spec;
4086 rbd_dev->opts = opts;
4087
4088 /* Initialize the layout used for all rbd requests */
4089
4090 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4091 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4092 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4093 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4094
4095 return rbd_dev;
4096 }
4097
4098 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4099 {
4100 rbd_put_client(rbd_dev->rbd_client);
4101 rbd_spec_put(rbd_dev->spec);
4102 kfree(rbd_dev->opts);
4103 kfree(rbd_dev);
4104 }
4105
4106 /*
4107 * Get the size and object order for an image snapshot, or if
4108 * snap_id is CEPH_NOSNAP, gets this information for the base
4109 * image.
4110 */
4111 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4112 u8 *order, u64 *snap_size)
4113 {
4114 __le64 snapid = cpu_to_le64(snap_id);
4115 int ret;
4116 struct {
4117 u8 order;
4118 __le64 size;
4119 } __attribute__ ((packed)) size_buf = { 0 };
4120
4121 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4122 "rbd", "get_size",
4123 &snapid, sizeof (snapid),
4124 &size_buf, sizeof (size_buf));
4125 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4126 if (ret < 0)
4127 return ret;
4128 if (ret < sizeof (size_buf))
4129 return -ERANGE;
4130
4131 if (order) {
4132 *order = size_buf.order;
4133 dout(" order %u", (unsigned int)*order);
4134 }
4135 *snap_size = le64_to_cpu(size_buf.size);
4136
4137 dout(" snap_id 0x%016llx snap_size = %llu\n",
4138 (unsigned long long)snap_id,
4139 (unsigned long long)*snap_size);
4140
4141 return 0;
4142 }
4143
4144 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4145 {
4146 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4147 &rbd_dev->header.obj_order,
4148 &rbd_dev->header.image_size);
4149 }
4150
4151 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4152 {
4153 void *reply_buf;
4154 int ret;
4155 void *p;
4156
4157 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4158 if (!reply_buf)
4159 return -ENOMEM;
4160
4161 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4162 "rbd", "get_object_prefix", NULL, 0,
4163 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4164 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4165 if (ret < 0)
4166 goto out;
4167
4168 p = reply_buf;
4169 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4170 p + ret, NULL, GFP_NOIO);
4171 ret = 0;
4172
4173 if (IS_ERR(rbd_dev->header.object_prefix)) {
4174 ret = PTR_ERR(rbd_dev->header.object_prefix);
4175 rbd_dev->header.object_prefix = NULL;
4176 } else {
4177 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4178 }
4179 out:
4180 kfree(reply_buf);
4181
4182 return ret;
4183 }
4184
4185 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4186 u64 *snap_features)
4187 {
4188 __le64 snapid = cpu_to_le64(snap_id);
4189 struct {
4190 __le64 features;
4191 __le64 incompat;
4192 } __attribute__ ((packed)) features_buf = { 0 };
4193 u64 incompat;
4194 int ret;
4195
4196 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4197 "rbd", "get_features",
4198 &snapid, sizeof (snapid),
4199 &features_buf, sizeof (features_buf));
4200 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4201 if (ret < 0)
4202 return ret;
4203 if (ret < sizeof (features_buf))
4204 return -ERANGE;
4205
4206 incompat = le64_to_cpu(features_buf.incompat);
4207 if (incompat & ~RBD_FEATURES_SUPPORTED)
4208 return -ENXIO;
4209
4210 *snap_features = le64_to_cpu(features_buf.features);
4211
4212 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4213 (unsigned long long)snap_id,
4214 (unsigned long long)*snap_features,
4215 (unsigned long long)le64_to_cpu(features_buf.incompat));
4216
4217 return 0;
4218 }
4219
4220 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4221 {
4222 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4223 &rbd_dev->header.features);
4224 }
4225
4226 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4227 {
4228 struct rbd_spec *parent_spec;
4229 size_t size;
4230 void *reply_buf = NULL;
4231 __le64 snapid;
4232 void *p;
4233 void *end;
4234 u64 pool_id;
4235 char *image_id;
4236 u64 snap_id;
4237 u64 overlap;
4238 int ret;
4239
4240 parent_spec = rbd_spec_alloc();
4241 if (!parent_spec)
4242 return -ENOMEM;
4243
4244 size = sizeof (__le64) + /* pool_id */
4245 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4246 sizeof (__le64) + /* snap_id */
4247 sizeof (__le64); /* overlap */
4248 reply_buf = kmalloc(size, GFP_KERNEL);
4249 if (!reply_buf) {
4250 ret = -ENOMEM;
4251 goto out_err;
4252 }
4253
4254 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4255 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4256 "rbd", "get_parent",
4257 &snapid, sizeof (snapid),
4258 reply_buf, size);
4259 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4260 if (ret < 0)
4261 goto out_err;
4262
4263 p = reply_buf;
4264 end = reply_buf + ret;
4265 ret = -ERANGE;
4266 ceph_decode_64_safe(&p, end, pool_id, out_err);
4267 if (pool_id == CEPH_NOPOOL) {
4268 /*
4269 * Either the parent never existed, or we have
4270 * record of it but the image got flattened so it no
4271 * longer has a parent. When the parent of a
4272 * layered image disappears we immediately set the
4273 * overlap to 0. The effect of this is that all new
4274 * requests will be treated as if the image had no
4275 * parent.
4276 */
4277 if (rbd_dev->parent_overlap) {
4278 rbd_dev->parent_overlap = 0;
4279 rbd_dev_parent_put(rbd_dev);
4280 pr_info("%s: clone image has been flattened\n",
4281 rbd_dev->disk->disk_name);
4282 }
4283
4284 goto out; /* No parent? No problem. */
4285 }
4286
4287 /* The ceph file layout needs to fit pool id in 32 bits */
4288
4289 ret = -EIO;
4290 if (pool_id > (u64)U32_MAX) {
4291 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4292 (unsigned long long)pool_id, U32_MAX);
4293 goto out_err;
4294 }
4295
4296 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4297 if (IS_ERR(image_id)) {
4298 ret = PTR_ERR(image_id);
4299 goto out_err;
4300 }
4301 ceph_decode_64_safe(&p, end, snap_id, out_err);
4302 ceph_decode_64_safe(&p, end, overlap, out_err);
4303
4304 /*
4305 * The parent won't change (except when the clone is
4306 * flattened, already handled that). So we only need to
4307 * record the parent spec we have not already done so.
4308 */
4309 if (!rbd_dev->parent_spec) {
4310 parent_spec->pool_id = pool_id;
4311 parent_spec->image_id = image_id;
4312 parent_spec->snap_id = snap_id;
4313 rbd_dev->parent_spec = parent_spec;
4314 parent_spec = NULL; /* rbd_dev now owns this */
4315 } else {
4316 kfree(image_id);
4317 }
4318
4319 /*
4320 * We always update the parent overlap. If it's zero we issue
4321 * a warning, as we will proceed as if there was no parent.
4322 */
4323 if (!overlap) {
4324 if (parent_spec) {
4325 /* refresh, careful to warn just once */
4326 if (rbd_dev->parent_overlap)
4327 rbd_warn(rbd_dev,
4328 "clone now standalone (overlap became 0)");
4329 } else {
4330 /* initial probe */
4331 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4332 }
4333 }
4334 rbd_dev->parent_overlap = overlap;
4335
4336 out:
4337 ret = 0;
4338 out_err:
4339 kfree(reply_buf);
4340 rbd_spec_put(parent_spec);
4341
4342 return ret;
4343 }
4344
4345 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4346 {
4347 struct {
4348 __le64 stripe_unit;
4349 __le64 stripe_count;
4350 } __attribute__ ((packed)) striping_info_buf = { 0 };
4351 size_t size = sizeof (striping_info_buf);
4352 void *p;
4353 u64 obj_size;
4354 u64 stripe_unit;
4355 u64 stripe_count;
4356 int ret;
4357
4358 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4359 "rbd", "get_stripe_unit_count", NULL, 0,
4360 (char *)&striping_info_buf, size);
4361 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4362 if (ret < 0)
4363 return ret;
4364 if (ret < size)
4365 return -ERANGE;
4366
4367 /*
4368 * We don't actually support the "fancy striping" feature
4369 * (STRIPINGV2) yet, but if the striping sizes are the
4370 * defaults the behavior is the same as before. So find
4371 * out, and only fail if the image has non-default values.
4372 */
4373 ret = -EINVAL;
4374 obj_size = (u64)1 << rbd_dev->header.obj_order;
4375 p = &striping_info_buf;
4376 stripe_unit = ceph_decode_64(&p);
4377 if (stripe_unit != obj_size) {
4378 rbd_warn(rbd_dev, "unsupported stripe unit "
4379 "(got %llu want %llu)",
4380 stripe_unit, obj_size);
4381 return -EINVAL;
4382 }
4383 stripe_count = ceph_decode_64(&p);
4384 if (stripe_count != 1) {
4385 rbd_warn(rbd_dev, "unsupported stripe count "
4386 "(got %llu want 1)", stripe_count);
4387 return -EINVAL;
4388 }
4389 rbd_dev->header.stripe_unit = stripe_unit;
4390 rbd_dev->header.stripe_count = stripe_count;
4391
4392 return 0;
4393 }
4394
4395 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4396 {
4397 size_t image_id_size;
4398 char *image_id;
4399 void *p;
4400 void *end;
4401 size_t size;
4402 void *reply_buf = NULL;
4403 size_t len = 0;
4404 char *image_name = NULL;
4405 int ret;
4406
4407 rbd_assert(!rbd_dev->spec->image_name);
4408
4409 len = strlen(rbd_dev->spec->image_id);
4410 image_id_size = sizeof (__le32) + len;
4411 image_id = kmalloc(image_id_size, GFP_KERNEL);
4412 if (!image_id)
4413 return NULL;
4414
4415 p = image_id;
4416 end = image_id + image_id_size;
4417 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4418
4419 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4420 reply_buf = kmalloc(size, GFP_KERNEL);
4421 if (!reply_buf)
4422 goto out;
4423
4424 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4425 "rbd", "dir_get_name",
4426 image_id, image_id_size,
4427 reply_buf, size);
4428 if (ret < 0)
4429 goto out;
4430 p = reply_buf;
4431 end = reply_buf + ret;
4432
4433 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4434 if (IS_ERR(image_name))
4435 image_name = NULL;
4436 else
4437 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4438 out:
4439 kfree(reply_buf);
4440 kfree(image_id);
4441
4442 return image_name;
4443 }
4444
4445 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4446 {
4447 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4448 const char *snap_name;
4449 u32 which = 0;
4450
4451 /* Skip over names until we find the one we are looking for */
4452
4453 snap_name = rbd_dev->header.snap_names;
4454 while (which < snapc->num_snaps) {
4455 if (!strcmp(name, snap_name))
4456 return snapc->snaps[which];
4457 snap_name += strlen(snap_name) + 1;
4458 which++;
4459 }
4460 return CEPH_NOSNAP;
4461 }
4462
4463 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4464 {
4465 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4466 u32 which;
4467 bool found = false;
4468 u64 snap_id;
4469
4470 for (which = 0; !found && which < snapc->num_snaps; which++) {
4471 const char *snap_name;
4472
4473 snap_id = snapc->snaps[which];
4474 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4475 if (IS_ERR(snap_name)) {
4476 /* ignore no-longer existing snapshots */
4477 if (PTR_ERR(snap_name) == -ENOENT)
4478 continue;
4479 else
4480 break;
4481 }
4482 found = !strcmp(name, snap_name);
4483 kfree(snap_name);
4484 }
4485 return found ? snap_id : CEPH_NOSNAP;
4486 }
4487
4488 /*
4489 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4490 * no snapshot by that name is found, or if an error occurs.
4491 */
4492 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4493 {
4494 if (rbd_dev->image_format == 1)
4495 return rbd_v1_snap_id_by_name(rbd_dev, name);
4496
4497 return rbd_v2_snap_id_by_name(rbd_dev, name);
4498 }
4499
4500 /*
4501 * An image being mapped will have everything but the snap id.
4502 */
4503 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4504 {
4505 struct rbd_spec *spec = rbd_dev->spec;
4506
4507 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4508 rbd_assert(spec->image_id && spec->image_name);
4509 rbd_assert(spec->snap_name);
4510
4511 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4512 u64 snap_id;
4513
4514 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4515 if (snap_id == CEPH_NOSNAP)
4516 return -ENOENT;
4517
4518 spec->snap_id = snap_id;
4519 } else {
4520 spec->snap_id = CEPH_NOSNAP;
4521 }
4522
4523 return 0;
4524 }
4525
4526 /*
4527 * A parent image will have all ids but none of the names.
4528 *
4529 * All names in an rbd spec are dynamically allocated. It's OK if we
4530 * can't figure out the name for an image id.
4531 */
4532 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4533 {
4534 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4535 struct rbd_spec *spec = rbd_dev->spec;
4536 const char *pool_name;
4537 const char *image_name;
4538 const char *snap_name;
4539 int ret;
4540
4541 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4542 rbd_assert(spec->image_id);
4543 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4544
4545 /* Get the pool name; we have to make our own copy of this */
4546
4547 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4548 if (!pool_name) {
4549 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4550 return -EIO;
4551 }
4552 pool_name = kstrdup(pool_name, GFP_KERNEL);
4553 if (!pool_name)
4554 return -ENOMEM;
4555
4556 /* Fetch the image name; tolerate failure here */
4557
4558 image_name = rbd_dev_image_name(rbd_dev);
4559 if (!image_name)
4560 rbd_warn(rbd_dev, "unable to get image name");
4561
4562 /* Fetch the snapshot name */
4563
4564 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4565 if (IS_ERR(snap_name)) {
4566 ret = PTR_ERR(snap_name);
4567 goto out_err;
4568 }
4569
4570 spec->pool_name = pool_name;
4571 spec->image_name = image_name;
4572 spec->snap_name = snap_name;
4573
4574 return 0;
4575
4576 out_err:
4577 kfree(image_name);
4578 kfree(pool_name);
4579 return ret;
4580 }
4581
4582 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4583 {
4584 size_t size;
4585 int ret;
4586 void *reply_buf;
4587 void *p;
4588 void *end;
4589 u64 seq;
4590 u32 snap_count;
4591 struct ceph_snap_context *snapc;
4592 u32 i;
4593
4594 /*
4595 * We'll need room for the seq value (maximum snapshot id),
4596 * snapshot count, and array of that many snapshot ids.
4597 * For now we have a fixed upper limit on the number we're
4598 * prepared to receive.
4599 */
4600 size = sizeof (__le64) + sizeof (__le32) +
4601 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4602 reply_buf = kzalloc(size, GFP_KERNEL);
4603 if (!reply_buf)
4604 return -ENOMEM;
4605
4606 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4607 "rbd", "get_snapcontext", NULL, 0,
4608 reply_buf, size);
4609 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4610 if (ret < 0)
4611 goto out;
4612
4613 p = reply_buf;
4614 end = reply_buf + ret;
4615 ret = -ERANGE;
4616 ceph_decode_64_safe(&p, end, seq, out);
4617 ceph_decode_32_safe(&p, end, snap_count, out);
4618
4619 /*
4620 * Make sure the reported number of snapshot ids wouldn't go
4621 * beyond the end of our buffer. But before checking that,
4622 * make sure the computed size of the snapshot context we
4623 * allocate is representable in a size_t.
4624 */
4625 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4626 / sizeof (u64)) {
4627 ret = -EINVAL;
4628 goto out;
4629 }
4630 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4631 goto out;
4632 ret = 0;
4633
4634 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4635 if (!snapc) {
4636 ret = -ENOMEM;
4637 goto out;
4638 }
4639 snapc->seq = seq;
4640 for (i = 0; i < snap_count; i++)
4641 snapc->snaps[i] = ceph_decode_64(&p);
4642
4643 ceph_put_snap_context(rbd_dev->header.snapc);
4644 rbd_dev->header.snapc = snapc;
4645
4646 dout(" snap context seq = %llu, snap_count = %u\n",
4647 (unsigned long long)seq, (unsigned int)snap_count);
4648 out:
4649 kfree(reply_buf);
4650
4651 return ret;
4652 }
4653
4654 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4655 u64 snap_id)
4656 {
4657 size_t size;
4658 void *reply_buf;
4659 __le64 snapid;
4660 int ret;
4661 void *p;
4662 void *end;
4663 char *snap_name;
4664
4665 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4666 reply_buf = kmalloc(size, GFP_KERNEL);
4667 if (!reply_buf)
4668 return ERR_PTR(-ENOMEM);
4669
4670 snapid = cpu_to_le64(snap_id);
4671 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4672 "rbd", "get_snapshot_name",
4673 &snapid, sizeof (snapid),
4674 reply_buf, size);
4675 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4676 if (ret < 0) {
4677 snap_name = ERR_PTR(ret);
4678 goto out;
4679 }
4680
4681 p = reply_buf;
4682 end = reply_buf + ret;
4683 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4684 if (IS_ERR(snap_name))
4685 goto out;
4686
4687 dout(" snap_id 0x%016llx snap_name = %s\n",
4688 (unsigned long long)snap_id, snap_name);
4689 out:
4690 kfree(reply_buf);
4691
4692 return snap_name;
4693 }
4694
4695 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4696 {
4697 bool first_time = rbd_dev->header.object_prefix == NULL;
4698 int ret;
4699
4700 ret = rbd_dev_v2_image_size(rbd_dev);
4701 if (ret)
4702 return ret;
4703
4704 if (first_time) {
4705 ret = rbd_dev_v2_header_onetime(rbd_dev);
4706 if (ret)
4707 return ret;
4708 }
4709
4710 ret = rbd_dev_v2_snap_context(rbd_dev);
4711 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4712
4713 return ret;
4714 }
4715
4716 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4717 {
4718 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4719
4720 if (rbd_dev->image_format == 1)
4721 return rbd_dev_v1_header_info(rbd_dev);
4722
4723 return rbd_dev_v2_header_info(rbd_dev);
4724 }
4725
4726 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4727 {
4728 struct device *dev;
4729 int ret;
4730
4731 dev = &rbd_dev->dev;
4732 dev->bus = &rbd_bus_type;
4733 dev->type = &rbd_device_type;
4734 dev->parent = &rbd_root_dev;
4735 dev->release = rbd_dev_device_release;
4736 dev_set_name(dev, "%d", rbd_dev->dev_id);
4737 ret = device_register(dev);
4738
4739 return ret;
4740 }
4741
4742 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4743 {
4744 device_unregister(&rbd_dev->dev);
4745 }
4746
4747 /*
4748 * Get a unique rbd identifier for the given new rbd_dev, and add
4749 * the rbd_dev to the global list.
4750 */
4751 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4752 {
4753 int new_dev_id;
4754
4755 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4756 0, minor_to_rbd_dev_id(1 << MINORBITS),
4757 GFP_KERNEL);
4758 if (new_dev_id < 0)
4759 return new_dev_id;
4760
4761 rbd_dev->dev_id = new_dev_id;
4762
4763 spin_lock(&rbd_dev_list_lock);
4764 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4765 spin_unlock(&rbd_dev_list_lock);
4766
4767 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4768
4769 return 0;
4770 }
4771
4772 /*
4773 * Remove an rbd_dev from the global list, and record that its
4774 * identifier is no longer in use.
4775 */
4776 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4777 {
4778 spin_lock(&rbd_dev_list_lock);
4779 list_del_init(&rbd_dev->node);
4780 spin_unlock(&rbd_dev_list_lock);
4781
4782 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4783
4784 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4785 }
4786
4787 /*
4788 * Skips over white space at *buf, and updates *buf to point to the
4789 * first found non-space character (if any). Returns the length of
4790 * the token (string of non-white space characters) found. Note
4791 * that *buf must be terminated with '\0'.
4792 */
4793 static inline size_t next_token(const char **buf)
4794 {
4795 /*
4796 * These are the characters that produce nonzero for
4797 * isspace() in the "C" and "POSIX" locales.
4798 */
4799 const char *spaces = " \f\n\r\t\v";
4800
4801 *buf += strspn(*buf, spaces); /* Find start of token */
4802
4803 return strcspn(*buf, spaces); /* Return token length */
4804 }
4805
4806 /*
4807 * Finds the next token in *buf, dynamically allocates a buffer big
4808 * enough to hold a copy of it, and copies the token into the new
4809 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4810 * that a duplicate buffer is created even for a zero-length token.
4811 *
4812 * Returns a pointer to the newly-allocated duplicate, or a null
4813 * pointer if memory for the duplicate was not available. If
4814 * the lenp argument is a non-null pointer, the length of the token
4815 * (not including the '\0') is returned in *lenp.
4816 *
4817 * If successful, the *buf pointer will be updated to point beyond
4818 * the end of the found token.
4819 *
4820 * Note: uses GFP_KERNEL for allocation.
4821 */
4822 static inline char *dup_token(const char **buf, size_t *lenp)
4823 {
4824 char *dup;
4825 size_t len;
4826
4827 len = next_token(buf);
4828 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4829 if (!dup)
4830 return NULL;
4831 *(dup + len) = '\0';
4832 *buf += len;
4833
4834 if (lenp)
4835 *lenp = len;
4836
4837 return dup;
4838 }
4839
4840 /*
4841 * Parse the options provided for an "rbd add" (i.e., rbd image
4842 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4843 * and the data written is passed here via a NUL-terminated buffer.
4844 * Returns 0 if successful or an error code otherwise.
4845 *
4846 * The information extracted from these options is recorded in
4847 * the other parameters which return dynamically-allocated
4848 * structures:
4849 * ceph_opts
4850 * The address of a pointer that will refer to a ceph options
4851 * structure. Caller must release the returned pointer using
4852 * ceph_destroy_options() when it is no longer needed.
4853 * rbd_opts
4854 * Address of an rbd options pointer. Fully initialized by
4855 * this function; caller must release with kfree().
4856 * spec
4857 * Address of an rbd image specification pointer. Fully
4858 * initialized by this function based on parsed options.
4859 * Caller must release with rbd_spec_put().
4860 *
4861 * The options passed take this form:
4862 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4863 * where:
4864 * <mon_addrs>
4865 * A comma-separated list of one or more monitor addresses.
4866 * A monitor address is an ip address, optionally followed
4867 * by a port number (separated by a colon).
4868 * I.e.: ip1[:port1][,ip2[:port2]...]
4869 * <options>
4870 * A comma-separated list of ceph and/or rbd options.
4871 * <pool_name>
4872 * The name of the rados pool containing the rbd image.
4873 * <image_name>
4874 * The name of the image in that pool to map.
4875 * <snap_id>
4876 * An optional snapshot id. If provided, the mapping will
4877 * present data from the image at the time that snapshot was
4878 * created. The image head is used if no snapshot id is
4879 * provided. Snapshot mappings are always read-only.
4880 */
4881 static int rbd_add_parse_args(const char *buf,
4882 struct ceph_options **ceph_opts,
4883 struct rbd_options **opts,
4884 struct rbd_spec **rbd_spec)
4885 {
4886 size_t len;
4887 char *options;
4888 const char *mon_addrs;
4889 char *snap_name;
4890 size_t mon_addrs_size;
4891 struct rbd_spec *spec = NULL;
4892 struct rbd_options *rbd_opts = NULL;
4893 struct ceph_options *copts;
4894 int ret;
4895
4896 /* The first four tokens are required */
4897
4898 len = next_token(&buf);
4899 if (!len) {
4900 rbd_warn(NULL, "no monitor address(es) provided");
4901 return -EINVAL;
4902 }
4903 mon_addrs = buf;
4904 mon_addrs_size = len + 1;
4905 buf += len;
4906
4907 ret = -EINVAL;
4908 options = dup_token(&buf, NULL);
4909 if (!options)
4910 return -ENOMEM;
4911 if (!*options) {
4912 rbd_warn(NULL, "no options provided");
4913 goto out_err;
4914 }
4915
4916 spec = rbd_spec_alloc();
4917 if (!spec)
4918 goto out_mem;
4919
4920 spec->pool_name = dup_token(&buf, NULL);
4921 if (!spec->pool_name)
4922 goto out_mem;
4923 if (!*spec->pool_name) {
4924 rbd_warn(NULL, "no pool name provided");
4925 goto out_err;
4926 }
4927
4928 spec->image_name = dup_token(&buf, NULL);
4929 if (!spec->image_name)
4930 goto out_mem;
4931 if (!*spec->image_name) {
4932 rbd_warn(NULL, "no image name provided");
4933 goto out_err;
4934 }
4935
4936 /*
4937 * Snapshot name is optional; default is to use "-"
4938 * (indicating the head/no snapshot).
4939 */
4940 len = next_token(&buf);
4941 if (!len) {
4942 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4943 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4944 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4945 ret = -ENAMETOOLONG;
4946 goto out_err;
4947 }
4948 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4949 if (!snap_name)
4950 goto out_mem;
4951 *(snap_name + len) = '\0';
4952 spec->snap_name = snap_name;
4953
4954 /* Initialize all rbd options to the defaults */
4955
4956 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4957 if (!rbd_opts)
4958 goto out_mem;
4959
4960 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4961 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4962
4963 copts = ceph_parse_options(options, mon_addrs,
4964 mon_addrs + mon_addrs_size - 1,
4965 parse_rbd_opts_token, rbd_opts);
4966 if (IS_ERR(copts)) {
4967 ret = PTR_ERR(copts);
4968 goto out_err;
4969 }
4970 kfree(options);
4971
4972 *ceph_opts = copts;
4973 *opts = rbd_opts;
4974 *rbd_spec = spec;
4975
4976 return 0;
4977 out_mem:
4978 ret = -ENOMEM;
4979 out_err:
4980 kfree(rbd_opts);
4981 rbd_spec_put(spec);
4982 kfree(options);
4983
4984 return ret;
4985 }
4986
4987 /*
4988 * Return pool id (>= 0) or a negative error code.
4989 */
4990 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4991 {
4992 struct ceph_options *opts = rbdc->client->options;
4993 u64 newest_epoch;
4994 int tries = 0;
4995 int ret;
4996
4997 again:
4998 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4999 if (ret == -ENOENT && tries++ < 1) {
5000 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5001 &newest_epoch);
5002 if (ret < 0)
5003 return ret;
5004
5005 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5006 ceph_monc_request_next_osdmap(&rbdc->client->monc);
5007 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5008 newest_epoch,
5009 opts->mount_timeout);
5010 goto again;
5011 } else {
5012 /* the osdmap we have is new enough */
5013 return -ENOENT;
5014 }
5015 }
5016
5017 return ret;
5018 }
5019
5020 /*
5021 * An rbd format 2 image has a unique identifier, distinct from the
5022 * name given to it by the user. Internally, that identifier is
5023 * what's used to specify the names of objects related to the image.
5024 *
5025 * A special "rbd id" object is used to map an rbd image name to its
5026 * id. If that object doesn't exist, then there is no v2 rbd image
5027 * with the supplied name.
5028 *
5029 * This function will record the given rbd_dev's image_id field if
5030 * it can be determined, and in that case will return 0. If any
5031 * errors occur a negative errno will be returned and the rbd_dev's
5032 * image_id field will be unchanged (and should be NULL).
5033 */
5034 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5035 {
5036 int ret;
5037 size_t size;
5038 char *object_name;
5039 void *response;
5040 char *image_id;
5041
5042 /*
5043 * When probing a parent image, the image id is already
5044 * known (and the image name likely is not). There's no
5045 * need to fetch the image id again in this case. We
5046 * do still need to set the image format though.
5047 */
5048 if (rbd_dev->spec->image_id) {
5049 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5050
5051 return 0;
5052 }
5053
5054 /*
5055 * First, see if the format 2 image id file exists, and if
5056 * so, get the image's persistent id from it.
5057 */
5058 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5059 object_name = kmalloc(size, GFP_NOIO);
5060 if (!object_name)
5061 return -ENOMEM;
5062 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5063 dout("rbd id object name is %s\n", object_name);
5064
5065 /* Response will be an encoded string, which includes a length */
5066
5067 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5068 response = kzalloc(size, GFP_NOIO);
5069 if (!response) {
5070 ret = -ENOMEM;
5071 goto out;
5072 }
5073
5074 /* If it doesn't exist we'll assume it's a format 1 image */
5075
5076 ret = rbd_obj_method_sync(rbd_dev, object_name,
5077 "rbd", "get_id", NULL, 0,
5078 response, RBD_IMAGE_ID_LEN_MAX);
5079 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5080 if (ret == -ENOENT) {
5081 image_id = kstrdup("", GFP_KERNEL);
5082 ret = image_id ? 0 : -ENOMEM;
5083 if (!ret)
5084 rbd_dev->image_format = 1;
5085 } else if (ret >= 0) {
5086 void *p = response;
5087
5088 image_id = ceph_extract_encoded_string(&p, p + ret,
5089 NULL, GFP_NOIO);
5090 ret = PTR_ERR_OR_ZERO(image_id);
5091 if (!ret)
5092 rbd_dev->image_format = 2;
5093 }
5094
5095 if (!ret) {
5096 rbd_dev->spec->image_id = image_id;
5097 dout("image_id is %s\n", image_id);
5098 }
5099 out:
5100 kfree(response);
5101 kfree(object_name);
5102
5103 return ret;
5104 }
5105
5106 /*
5107 * Undo whatever state changes are made by v1 or v2 header info
5108 * call.
5109 */
5110 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5111 {
5112 struct rbd_image_header *header;
5113
5114 rbd_dev_parent_put(rbd_dev);
5115
5116 /* Free dynamic fields from the header, then zero it out */
5117
5118 header = &rbd_dev->header;
5119 ceph_put_snap_context(header->snapc);
5120 kfree(header->snap_sizes);
5121 kfree(header->snap_names);
5122 kfree(header->object_prefix);
5123 memset(header, 0, sizeof (*header));
5124 }
5125
5126 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5127 {
5128 int ret;
5129
5130 ret = rbd_dev_v2_object_prefix(rbd_dev);
5131 if (ret)
5132 goto out_err;
5133
5134 /*
5135 * Get the and check features for the image. Currently the
5136 * features are assumed to never change.
5137 */
5138 ret = rbd_dev_v2_features(rbd_dev);
5139 if (ret)
5140 goto out_err;
5141
5142 /* If the image supports fancy striping, get its parameters */
5143
5144 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5145 ret = rbd_dev_v2_striping_info(rbd_dev);
5146 if (ret < 0)
5147 goto out_err;
5148 }
5149 /* No support for crypto and compression type format 2 images */
5150
5151 return 0;
5152 out_err:
5153 rbd_dev->header.features = 0;
5154 kfree(rbd_dev->header.object_prefix);
5155 rbd_dev->header.object_prefix = NULL;
5156
5157 return ret;
5158 }
5159
5160 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5161 {
5162 struct rbd_device *parent = NULL;
5163 struct rbd_spec *parent_spec;
5164 struct rbd_client *rbdc;
5165 int ret;
5166
5167 if (!rbd_dev->parent_spec)
5168 return 0;
5169 /*
5170 * We need to pass a reference to the client and the parent
5171 * spec when creating the parent rbd_dev. Images related by
5172 * parent/child relationships always share both.
5173 */
5174 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5175 rbdc = __rbd_get_client(rbd_dev->rbd_client);
5176
5177 ret = -ENOMEM;
5178 parent = rbd_dev_create(rbdc, parent_spec, NULL);
5179 if (!parent)
5180 goto out_err;
5181
5182 ret = rbd_dev_image_probe(parent, false);
5183 if (ret < 0)
5184 goto out_err;
5185 rbd_dev->parent = parent;
5186 atomic_set(&rbd_dev->parent_ref, 1);
5187
5188 return 0;
5189 out_err:
5190 if (parent) {
5191 rbd_dev_unparent(rbd_dev);
5192 kfree(rbd_dev->header_name);
5193 rbd_dev_destroy(parent);
5194 } else {
5195 rbd_put_client(rbdc);
5196 rbd_spec_put(parent_spec);
5197 }
5198
5199 return ret;
5200 }
5201
5202 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5203 {
5204 int ret;
5205
5206 /* Get an id and fill in device name. */
5207
5208 ret = rbd_dev_id_get(rbd_dev);
5209 if (ret)
5210 return ret;
5211
5212 BUILD_BUG_ON(DEV_NAME_LEN
5213 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5214 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5215
5216 /* Record our major and minor device numbers. */
5217
5218 if (!single_major) {
5219 ret = register_blkdev(0, rbd_dev->name);
5220 if (ret < 0)
5221 goto err_out_id;
5222
5223 rbd_dev->major = ret;
5224 rbd_dev->minor = 0;
5225 } else {
5226 rbd_dev->major = rbd_major;
5227 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5228 }
5229
5230 /* Set up the blkdev mapping. */
5231
5232 ret = rbd_init_disk(rbd_dev);
5233 if (ret)
5234 goto err_out_blkdev;
5235
5236 ret = rbd_dev_mapping_set(rbd_dev);
5237 if (ret)
5238 goto err_out_disk;
5239
5240 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5241 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5242
5243 ret = rbd_bus_add_dev(rbd_dev);
5244 if (ret)
5245 goto err_out_mapping;
5246
5247 /* Everything's ready. Announce the disk to the world. */
5248
5249 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5250 add_disk(rbd_dev->disk);
5251
5252 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5253 (unsigned long long) rbd_dev->mapping.size);
5254
5255 return ret;
5256
5257 err_out_mapping:
5258 rbd_dev_mapping_clear(rbd_dev);
5259 err_out_disk:
5260 rbd_free_disk(rbd_dev);
5261 err_out_blkdev:
5262 if (!single_major)
5263 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5264 err_out_id:
5265 rbd_dev_id_put(rbd_dev);
5266 rbd_dev_mapping_clear(rbd_dev);
5267
5268 return ret;
5269 }
5270
5271 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5272 {
5273 struct rbd_spec *spec = rbd_dev->spec;
5274 size_t size;
5275
5276 /* Record the header object name for this rbd image. */
5277
5278 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5279
5280 if (rbd_dev->image_format == 1)
5281 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5282 else
5283 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5284
5285 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5286 if (!rbd_dev->header_name)
5287 return -ENOMEM;
5288
5289 if (rbd_dev->image_format == 1)
5290 sprintf(rbd_dev->header_name, "%s%s",
5291 spec->image_name, RBD_SUFFIX);
5292 else
5293 sprintf(rbd_dev->header_name, "%s%s",
5294 RBD_HEADER_PREFIX, spec->image_id);
5295 return 0;
5296 }
5297
5298 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5299 {
5300 rbd_dev_unprobe(rbd_dev);
5301 kfree(rbd_dev->header_name);
5302 rbd_dev->header_name = NULL;
5303 rbd_dev->image_format = 0;
5304 kfree(rbd_dev->spec->image_id);
5305 rbd_dev->spec->image_id = NULL;
5306
5307 rbd_dev_destroy(rbd_dev);
5308 }
5309
5310 /*
5311 * Probe for the existence of the header object for the given rbd
5312 * device. If this image is the one being mapped (i.e., not a
5313 * parent), initiate a watch on its header object before using that
5314 * object to get detailed information about the rbd image.
5315 */
5316 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5317 {
5318 int ret;
5319
5320 /*
5321 * Get the id from the image id object. Unless there's an
5322 * error, rbd_dev->spec->image_id will be filled in with
5323 * a dynamically-allocated string, and rbd_dev->image_format
5324 * will be set to either 1 or 2.
5325 */
5326 ret = rbd_dev_image_id(rbd_dev);
5327 if (ret)
5328 return ret;
5329
5330 ret = rbd_dev_header_name(rbd_dev);
5331 if (ret)
5332 goto err_out_format;
5333
5334 if (mapping) {
5335 ret = rbd_dev_header_watch_sync(rbd_dev);
5336 if (ret) {
5337 if (ret == -ENOENT)
5338 pr_info("image %s/%s does not exist\n",
5339 rbd_dev->spec->pool_name,
5340 rbd_dev->spec->image_name);
5341 goto out_header_name;
5342 }
5343 }
5344
5345 ret = rbd_dev_header_info(rbd_dev);
5346 if (ret)
5347 goto err_out_watch;
5348
5349 /*
5350 * If this image is the one being mapped, we have pool name and
5351 * id, image name and id, and snap name - need to fill snap id.
5352 * Otherwise this is a parent image, identified by pool, image
5353 * and snap ids - need to fill in names for those ids.
5354 */
5355 if (mapping)
5356 ret = rbd_spec_fill_snap_id(rbd_dev);
5357 else
5358 ret = rbd_spec_fill_names(rbd_dev);
5359 if (ret) {
5360 if (ret == -ENOENT)
5361 pr_info("snap %s/%s@%s does not exist\n",
5362 rbd_dev->spec->pool_name,
5363 rbd_dev->spec->image_name,
5364 rbd_dev->spec->snap_name);
5365 goto err_out_probe;
5366 }
5367
5368 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5369 ret = rbd_dev_v2_parent_info(rbd_dev);
5370 if (ret)
5371 goto err_out_probe;
5372
5373 /*
5374 * Need to warn users if this image is the one being
5375 * mapped and has a parent.
5376 */
5377 if (mapping && rbd_dev->parent_spec)
5378 rbd_warn(rbd_dev,
5379 "WARNING: kernel layering is EXPERIMENTAL!");
5380 }
5381
5382 ret = rbd_dev_probe_parent(rbd_dev);
5383 if (ret)
5384 goto err_out_probe;
5385
5386 dout("discovered format %u image, header name is %s\n",
5387 rbd_dev->image_format, rbd_dev->header_name);
5388 return 0;
5389
5390 err_out_probe:
5391 rbd_dev_unprobe(rbd_dev);
5392 err_out_watch:
5393 if (mapping)
5394 rbd_dev_header_unwatch_sync(rbd_dev);
5395 out_header_name:
5396 kfree(rbd_dev->header_name);
5397 rbd_dev->header_name = NULL;
5398 err_out_format:
5399 rbd_dev->image_format = 0;
5400 kfree(rbd_dev->spec->image_id);
5401 rbd_dev->spec->image_id = NULL;
5402 return ret;
5403 }
5404
5405 static ssize_t do_rbd_add(struct bus_type *bus,
5406 const char *buf,
5407 size_t count)
5408 {
5409 struct rbd_device *rbd_dev = NULL;
5410 struct ceph_options *ceph_opts = NULL;
5411 struct rbd_options *rbd_opts = NULL;
5412 struct rbd_spec *spec = NULL;
5413 struct rbd_client *rbdc;
5414 bool read_only;
5415 int rc = -ENOMEM;
5416
5417 if (!try_module_get(THIS_MODULE))
5418 return -ENODEV;
5419
5420 /* parse add command */
5421 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5422 if (rc < 0)
5423 goto err_out_module;
5424
5425 rbdc = rbd_get_client(ceph_opts);
5426 if (IS_ERR(rbdc)) {
5427 rc = PTR_ERR(rbdc);
5428 goto err_out_args;
5429 }
5430
5431 /* pick the pool */
5432 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5433 if (rc < 0) {
5434 if (rc == -ENOENT)
5435 pr_info("pool %s does not exist\n", spec->pool_name);
5436 goto err_out_client;
5437 }
5438 spec->pool_id = (u64)rc;
5439
5440 /* The ceph file layout needs to fit pool id in 32 bits */
5441
5442 if (spec->pool_id > (u64)U32_MAX) {
5443 rbd_warn(NULL, "pool id too large (%llu > %u)",
5444 (unsigned long long)spec->pool_id, U32_MAX);
5445 rc = -EIO;
5446 goto err_out_client;
5447 }
5448
5449 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5450 if (!rbd_dev)
5451 goto err_out_client;
5452 rbdc = NULL; /* rbd_dev now owns this */
5453 spec = NULL; /* rbd_dev now owns this */
5454 rbd_opts = NULL; /* rbd_dev now owns this */
5455
5456 rc = rbd_dev_image_probe(rbd_dev, true);
5457 if (rc < 0)
5458 goto err_out_rbd_dev;
5459
5460 /* If we are mapping a snapshot it must be marked read-only */
5461
5462 read_only = rbd_dev->opts->read_only;
5463 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5464 read_only = true;
5465 rbd_dev->mapping.read_only = read_only;
5466
5467 rc = rbd_dev_device_setup(rbd_dev);
5468 if (rc) {
5469 /*
5470 * rbd_dev_header_unwatch_sync() can't be moved into
5471 * rbd_dev_image_release() without refactoring, see
5472 * commit 1f3ef78861ac.
5473 */
5474 rbd_dev_header_unwatch_sync(rbd_dev);
5475 rbd_dev_image_release(rbd_dev);
5476 goto err_out_module;
5477 }
5478
5479 return count;
5480
5481 err_out_rbd_dev:
5482 rbd_dev_destroy(rbd_dev);
5483 err_out_client:
5484 rbd_put_client(rbdc);
5485 err_out_args:
5486 rbd_spec_put(spec);
5487 kfree(rbd_opts);
5488 err_out_module:
5489 module_put(THIS_MODULE);
5490
5491 dout("Error adding device %s\n", buf);
5492
5493 return (ssize_t)rc;
5494 }
5495
5496 static ssize_t rbd_add(struct bus_type *bus,
5497 const char *buf,
5498 size_t count)
5499 {
5500 if (single_major)
5501 return -EINVAL;
5502
5503 return do_rbd_add(bus, buf, count);
5504 }
5505
5506 static ssize_t rbd_add_single_major(struct bus_type *bus,
5507 const char *buf,
5508 size_t count)
5509 {
5510 return do_rbd_add(bus, buf, count);
5511 }
5512
5513 static void rbd_dev_device_release(struct device *dev)
5514 {
5515 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5516
5517 rbd_free_disk(rbd_dev);
5518 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5519 rbd_dev_mapping_clear(rbd_dev);
5520 if (!single_major)
5521 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5522 rbd_dev_id_put(rbd_dev);
5523 rbd_dev_mapping_clear(rbd_dev);
5524 }
5525
5526 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5527 {
5528 while (rbd_dev->parent) {
5529 struct rbd_device *first = rbd_dev;
5530 struct rbd_device *second = first->parent;
5531 struct rbd_device *third;
5532
5533 /*
5534 * Follow to the parent with no grandparent and
5535 * remove it.
5536 */
5537 while (second && (third = second->parent)) {
5538 first = second;
5539 second = third;
5540 }
5541 rbd_assert(second);
5542 rbd_dev_image_release(second);
5543 first->parent = NULL;
5544 first->parent_overlap = 0;
5545
5546 rbd_assert(first->parent_spec);
5547 rbd_spec_put(first->parent_spec);
5548 first->parent_spec = NULL;
5549 }
5550 }
5551
5552 static ssize_t do_rbd_remove(struct bus_type *bus,
5553 const char *buf,
5554 size_t count)
5555 {
5556 struct rbd_device *rbd_dev = NULL;
5557 struct list_head *tmp;
5558 int dev_id;
5559 unsigned long ul;
5560 bool already = false;
5561 int ret;
5562
5563 ret = kstrtoul(buf, 10, &ul);
5564 if (ret)
5565 return ret;
5566
5567 /* convert to int; abort if we lost anything in the conversion */
5568 dev_id = (int)ul;
5569 if (dev_id != ul)
5570 return -EINVAL;
5571
5572 ret = -ENOENT;
5573 spin_lock(&rbd_dev_list_lock);
5574 list_for_each(tmp, &rbd_dev_list) {
5575 rbd_dev = list_entry(tmp, struct rbd_device, node);
5576 if (rbd_dev->dev_id == dev_id) {
5577 ret = 0;
5578 break;
5579 }
5580 }
5581 if (!ret) {
5582 spin_lock_irq(&rbd_dev->lock);
5583 if (rbd_dev->open_count)
5584 ret = -EBUSY;
5585 else
5586 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5587 &rbd_dev->flags);
5588 spin_unlock_irq(&rbd_dev->lock);
5589 }
5590 spin_unlock(&rbd_dev_list_lock);
5591 if (ret < 0 || already)
5592 return ret;
5593
5594 rbd_dev_header_unwatch_sync(rbd_dev);
5595 /*
5596 * flush remaining watch callbacks - these must be complete
5597 * before the osd_client is shutdown
5598 */
5599 dout("%s: flushing notifies", __func__);
5600 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5601
5602 /*
5603 * Don't free anything from rbd_dev->disk until after all
5604 * notifies are completely processed. Otherwise
5605 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5606 * in a potential use after free of rbd_dev->disk or rbd_dev.
5607 */
5608 rbd_bus_del_dev(rbd_dev);
5609 rbd_dev_image_release(rbd_dev);
5610 module_put(THIS_MODULE);
5611
5612 return count;
5613 }
5614
5615 static ssize_t rbd_remove(struct bus_type *bus,
5616 const char *buf,
5617 size_t count)
5618 {
5619 if (single_major)
5620 return -EINVAL;
5621
5622 return do_rbd_remove(bus, buf, count);
5623 }
5624
5625 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5626 const char *buf,
5627 size_t count)
5628 {
5629 return do_rbd_remove(bus, buf, count);
5630 }
5631
5632 /*
5633 * create control files in sysfs
5634 * /sys/bus/rbd/...
5635 */
5636 static int rbd_sysfs_init(void)
5637 {
5638 int ret;
5639
5640 ret = device_register(&rbd_root_dev);
5641 if (ret < 0)
5642 return ret;
5643
5644 ret = bus_register(&rbd_bus_type);
5645 if (ret < 0)
5646 device_unregister(&rbd_root_dev);
5647
5648 return ret;
5649 }
5650
5651 static void rbd_sysfs_cleanup(void)
5652 {
5653 bus_unregister(&rbd_bus_type);
5654 device_unregister(&rbd_root_dev);
5655 }
5656
5657 static int rbd_slab_init(void)
5658 {
5659 rbd_assert(!rbd_img_request_cache);
5660 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5661 sizeof (struct rbd_img_request),
5662 __alignof__(struct rbd_img_request),
5663 0, NULL);
5664 if (!rbd_img_request_cache)
5665 return -ENOMEM;
5666
5667 rbd_assert(!rbd_obj_request_cache);
5668 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5669 sizeof (struct rbd_obj_request),
5670 __alignof__(struct rbd_obj_request),
5671 0, NULL);
5672 if (!rbd_obj_request_cache)
5673 goto out_err;
5674
5675 rbd_assert(!rbd_segment_name_cache);
5676 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5677 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5678 if (rbd_segment_name_cache)
5679 return 0;
5680 out_err:
5681 if (rbd_obj_request_cache) {
5682 kmem_cache_destroy(rbd_obj_request_cache);
5683 rbd_obj_request_cache = NULL;
5684 }
5685
5686 kmem_cache_destroy(rbd_img_request_cache);
5687 rbd_img_request_cache = NULL;
5688
5689 return -ENOMEM;
5690 }
5691
5692 static void rbd_slab_exit(void)
5693 {
5694 rbd_assert(rbd_segment_name_cache);
5695 kmem_cache_destroy(rbd_segment_name_cache);
5696 rbd_segment_name_cache = NULL;
5697
5698 rbd_assert(rbd_obj_request_cache);
5699 kmem_cache_destroy(rbd_obj_request_cache);
5700 rbd_obj_request_cache = NULL;
5701
5702 rbd_assert(rbd_img_request_cache);
5703 kmem_cache_destroy(rbd_img_request_cache);
5704 rbd_img_request_cache = NULL;
5705 }
5706
5707 static int __init rbd_init(void)
5708 {
5709 int rc;
5710
5711 if (!libceph_compatible(NULL)) {
5712 rbd_warn(NULL, "libceph incompatibility (quitting)");
5713 return -EINVAL;
5714 }
5715
5716 rc = rbd_slab_init();
5717 if (rc)
5718 return rc;
5719
5720 /*
5721 * The number of active work items is limited by the number of
5722 * rbd devices * queue depth, so leave @max_active at default.
5723 */
5724 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5725 if (!rbd_wq) {
5726 rc = -ENOMEM;
5727 goto err_out_slab;
5728 }
5729
5730 if (single_major) {
5731 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5732 if (rbd_major < 0) {
5733 rc = rbd_major;
5734 goto err_out_wq;
5735 }
5736 }
5737
5738 rc = rbd_sysfs_init();
5739 if (rc)
5740 goto err_out_blkdev;
5741
5742 if (single_major)
5743 pr_info("loaded (major %d)\n", rbd_major);
5744 else
5745 pr_info("loaded\n");
5746
5747 return 0;
5748
5749 err_out_blkdev:
5750 if (single_major)
5751 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5752 err_out_wq:
5753 destroy_workqueue(rbd_wq);
5754 err_out_slab:
5755 rbd_slab_exit();
5756 return rc;
5757 }
5758
5759 static void __exit rbd_exit(void)
5760 {
5761 ida_destroy(&rbd_dev_id_ida);
5762 rbd_sysfs_cleanup();
5763 if (single_major)
5764 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5765 destroy_workqueue(rbd_wq);
5766 rbd_slab_exit();
5767 }
5768
5769 module_init(rbd_init);
5770 module_exit(rbd_exit);
5771
5772 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5773 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5774 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5775 /* following authorship retained from original osdblk.c */
5776 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5777
5778 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5779 MODULE_LICENSE("GPL");