]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/rbd.c
rbd: rearrange some code for consistency
[mirror_ubuntu-artful-kernel.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45
46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55 #define RBD_DRV_NAME "rbd"
56 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
57
58 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
59
60 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
61 #define RBD_MAX_SNAP_NAME_LEN \
62 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
63
64 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
65
66 #define RBD_SNAP_HEAD_NAME "-"
67
68 /* This allows a single page to hold an image name sent by OSD */
69 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
70 #define RBD_IMAGE_ID_LEN_MAX 64
71
72 #define RBD_OBJ_PREFIX_LEN_MAX 64
73
74 /* Feature bits */
75
76 #define RBD_FEATURE_LAYERING 1
77
78 /* Features supported by this (client software) implementation. */
79
80 #define RBD_FEATURES_ALL (0)
81
82 /*
83 * An RBD device name will be "rbd#", where the "rbd" comes from
84 * RBD_DRV_NAME above, and # is a unique integer identifier.
85 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
86 * enough to hold all possible device names.
87 */
88 #define DEV_NAME_LEN 32
89 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
90
91 /*
92 * block device image metadata (in-memory version)
93 */
94 struct rbd_image_header {
95 /* These four fields never change for a given rbd image */
96 char *object_prefix;
97 u64 features;
98 __u8 obj_order;
99 __u8 crypt_type;
100 __u8 comp_type;
101
102 /* The remaining fields need to be updated occasionally */
103 u64 image_size;
104 struct ceph_snap_context *snapc;
105 char *snap_names;
106 u64 *snap_sizes;
107
108 u64 obj_version;
109 };
110
111 /*
112 * An rbd image specification.
113 *
114 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
115 * identify an image. Each rbd_dev structure includes a pointer to
116 * an rbd_spec structure that encapsulates this identity.
117 *
118 * Each of the id's in an rbd_spec has an associated name. For a
119 * user-mapped image, the names are supplied and the id's associated
120 * with them are looked up. For a layered image, a parent image is
121 * defined by the tuple, and the names are looked up.
122 *
123 * An rbd_dev structure contains a parent_spec pointer which is
124 * non-null if the image it represents is a child in a layered
125 * image. This pointer will refer to the rbd_spec structure used
126 * by the parent rbd_dev for its own identity (i.e., the structure
127 * is shared between the parent and child).
128 *
129 * Since these structures are populated once, during the discovery
130 * phase of image construction, they are effectively immutable so
131 * we make no effort to synchronize access to them.
132 *
133 * Note that code herein does not assume the image name is known (it
134 * could be a null pointer).
135 */
136 struct rbd_spec {
137 u64 pool_id;
138 char *pool_name;
139
140 char *image_id;
141 char *image_name;
142
143 u64 snap_id;
144 char *snap_name;
145
146 struct kref kref;
147 };
148
149 /*
150 * an instance of the client. multiple devices may share an rbd client.
151 */
152 struct rbd_client {
153 struct ceph_client *client;
154 struct kref kref;
155 struct list_head node;
156 };
157
158 struct rbd_img_request;
159 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
160
161 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
162
163 struct rbd_obj_request;
164 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
165
166 enum obj_request_type {
167 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
168 };
169
170 struct rbd_obj_request {
171 const char *object_name;
172 u64 offset; /* object start byte */
173 u64 length; /* bytes from offset */
174
175 struct rbd_img_request *img_request;
176 struct list_head links; /* img_request->obj_requests */
177 u32 which; /* posn image request list */
178
179 enum obj_request_type type;
180 union {
181 struct bio *bio_list;
182 struct {
183 struct page **pages;
184 u32 page_count;
185 };
186 };
187
188 struct ceph_osd_request *osd_req;
189
190 u64 xferred; /* bytes transferred */
191 u64 version;
192 int result;
193 atomic_t done;
194
195 rbd_obj_callback_t callback;
196 struct completion completion;
197
198 struct kref kref;
199 };
200
201 struct rbd_img_request {
202 struct request *rq;
203 struct rbd_device *rbd_dev;
204 u64 offset; /* starting image byte offset */
205 u64 length; /* byte count from offset */
206 bool write_request; /* false for read */
207 union {
208 struct ceph_snap_context *snapc; /* for writes */
209 u64 snap_id; /* for reads */
210 };
211 spinlock_t completion_lock;/* protects next_completion */
212 u32 next_completion;
213 rbd_img_callback_t callback;
214
215 u32 obj_request_count;
216 struct list_head obj_requests; /* rbd_obj_request structs */
217
218 struct kref kref;
219 };
220
221 #define for_each_obj_request(ireq, oreq) \
222 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
223 #define for_each_obj_request_from(ireq, oreq) \
224 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
225 #define for_each_obj_request_safe(ireq, oreq, n) \
226 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
227
228 struct rbd_snap {
229 struct device dev;
230 const char *name;
231 u64 size;
232 struct list_head node;
233 u64 id;
234 u64 features;
235 };
236
237 struct rbd_mapping {
238 u64 size;
239 u64 features;
240 bool read_only;
241 };
242
243 /*
244 * a single device
245 */
246 struct rbd_device {
247 int dev_id; /* blkdev unique id */
248
249 int major; /* blkdev assigned major */
250 struct gendisk *disk; /* blkdev's gendisk and rq */
251
252 u32 image_format; /* Either 1 or 2 */
253 struct rbd_client *rbd_client;
254
255 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
256
257 spinlock_t lock; /* queue, flags, open_count */
258
259 struct rbd_image_header header;
260 unsigned long flags; /* possibly lock protected */
261 struct rbd_spec *spec;
262
263 char *header_name;
264
265 struct ceph_file_layout layout;
266
267 struct ceph_osd_event *watch_event;
268 struct rbd_obj_request *watch_request;
269
270 struct rbd_spec *parent_spec;
271 u64 parent_overlap;
272
273 /* protects updating the header */
274 struct rw_semaphore header_rwsem;
275
276 struct rbd_mapping mapping;
277
278 struct list_head node;
279
280 /* list of snapshots */
281 struct list_head snaps;
282
283 /* sysfs related */
284 struct device dev;
285 unsigned long open_count; /* protected by lock */
286 };
287
288 /*
289 * Flag bits for rbd_dev->flags. If atomicity is required,
290 * rbd_dev->lock is used to protect access.
291 *
292 * Currently, only the "removing" flag (which is coupled with the
293 * "open_count" field) requires atomic access.
294 */
295 enum rbd_dev_flags {
296 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
297 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
298 };
299
300 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
301
302 static LIST_HEAD(rbd_dev_list); /* devices */
303 static DEFINE_SPINLOCK(rbd_dev_list_lock);
304
305 static LIST_HEAD(rbd_client_list); /* clients */
306 static DEFINE_SPINLOCK(rbd_client_list_lock);
307
308 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
309 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
310
311 static void rbd_dev_release(struct device *dev);
312 static void rbd_remove_snap_dev(struct rbd_snap *snap);
313
314 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
315 size_t count);
316 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
317 size_t count);
318
319 static struct bus_attribute rbd_bus_attrs[] = {
320 __ATTR(add, S_IWUSR, NULL, rbd_add),
321 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
322 __ATTR_NULL
323 };
324
325 static struct bus_type rbd_bus_type = {
326 .name = "rbd",
327 .bus_attrs = rbd_bus_attrs,
328 };
329
330 static void rbd_root_dev_release(struct device *dev)
331 {
332 }
333
334 static struct device rbd_root_dev = {
335 .init_name = "rbd",
336 .release = rbd_root_dev_release,
337 };
338
339 static __printf(2, 3)
340 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
341 {
342 struct va_format vaf;
343 va_list args;
344
345 va_start(args, fmt);
346 vaf.fmt = fmt;
347 vaf.va = &args;
348
349 if (!rbd_dev)
350 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
351 else if (rbd_dev->disk)
352 printk(KERN_WARNING "%s: %s: %pV\n",
353 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
354 else if (rbd_dev->spec && rbd_dev->spec->image_name)
355 printk(KERN_WARNING "%s: image %s: %pV\n",
356 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
357 else if (rbd_dev->spec && rbd_dev->spec->image_id)
358 printk(KERN_WARNING "%s: id %s: %pV\n",
359 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
360 else /* punt */
361 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
362 RBD_DRV_NAME, rbd_dev, &vaf);
363 va_end(args);
364 }
365
366 #ifdef RBD_DEBUG
367 #define rbd_assert(expr) \
368 if (unlikely(!(expr))) { \
369 printk(KERN_ERR "\nAssertion failure in %s() " \
370 "at line %d:\n\n" \
371 "\trbd_assert(%s);\n\n", \
372 __func__, __LINE__, #expr); \
373 BUG(); \
374 }
375 #else /* !RBD_DEBUG */
376 # define rbd_assert(expr) ((void) 0)
377 #endif /* !RBD_DEBUG */
378
379 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
380 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
381
382 static int rbd_open(struct block_device *bdev, fmode_t mode)
383 {
384 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
385 bool removing = false;
386
387 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
388 return -EROFS;
389
390 spin_lock_irq(&rbd_dev->lock);
391 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
392 removing = true;
393 else
394 rbd_dev->open_count++;
395 spin_unlock_irq(&rbd_dev->lock);
396 if (removing)
397 return -ENOENT;
398
399 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
400 (void) get_device(&rbd_dev->dev);
401 set_device_ro(bdev, rbd_dev->mapping.read_only);
402 mutex_unlock(&ctl_mutex);
403
404 return 0;
405 }
406
407 static int rbd_release(struct gendisk *disk, fmode_t mode)
408 {
409 struct rbd_device *rbd_dev = disk->private_data;
410 unsigned long open_count_before;
411
412 spin_lock_irq(&rbd_dev->lock);
413 open_count_before = rbd_dev->open_count--;
414 spin_unlock_irq(&rbd_dev->lock);
415 rbd_assert(open_count_before > 0);
416
417 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
418 put_device(&rbd_dev->dev);
419 mutex_unlock(&ctl_mutex);
420
421 return 0;
422 }
423
424 static const struct block_device_operations rbd_bd_ops = {
425 .owner = THIS_MODULE,
426 .open = rbd_open,
427 .release = rbd_release,
428 };
429
430 /*
431 * Initialize an rbd client instance.
432 * We own *ceph_opts.
433 */
434 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
435 {
436 struct rbd_client *rbdc;
437 int ret = -ENOMEM;
438
439 dout("%s:\n", __func__);
440 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
441 if (!rbdc)
442 goto out_opt;
443
444 kref_init(&rbdc->kref);
445 INIT_LIST_HEAD(&rbdc->node);
446
447 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
448
449 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
450 if (IS_ERR(rbdc->client))
451 goto out_mutex;
452 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
453
454 ret = ceph_open_session(rbdc->client);
455 if (ret < 0)
456 goto out_err;
457
458 spin_lock(&rbd_client_list_lock);
459 list_add_tail(&rbdc->node, &rbd_client_list);
460 spin_unlock(&rbd_client_list_lock);
461
462 mutex_unlock(&ctl_mutex);
463 dout("%s: rbdc %p\n", __func__, rbdc);
464
465 return rbdc;
466
467 out_err:
468 ceph_destroy_client(rbdc->client);
469 out_mutex:
470 mutex_unlock(&ctl_mutex);
471 kfree(rbdc);
472 out_opt:
473 if (ceph_opts)
474 ceph_destroy_options(ceph_opts);
475 dout("%s: error %d\n", __func__, ret);
476
477 return ERR_PTR(ret);
478 }
479
480 /*
481 * Find a ceph client with specific addr and configuration. If
482 * found, bump its reference count.
483 */
484 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
485 {
486 struct rbd_client *client_node;
487 bool found = false;
488
489 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
490 return NULL;
491
492 spin_lock(&rbd_client_list_lock);
493 list_for_each_entry(client_node, &rbd_client_list, node) {
494 if (!ceph_compare_options(ceph_opts, client_node->client)) {
495 kref_get(&client_node->kref);
496 found = true;
497 break;
498 }
499 }
500 spin_unlock(&rbd_client_list_lock);
501
502 return found ? client_node : NULL;
503 }
504
505 /*
506 * mount options
507 */
508 enum {
509 Opt_last_int,
510 /* int args above */
511 Opt_last_string,
512 /* string args above */
513 Opt_read_only,
514 Opt_read_write,
515 /* Boolean args above */
516 Opt_last_bool,
517 };
518
519 static match_table_t rbd_opts_tokens = {
520 /* int args above */
521 /* string args above */
522 {Opt_read_only, "read_only"},
523 {Opt_read_only, "ro"}, /* Alternate spelling */
524 {Opt_read_write, "read_write"},
525 {Opt_read_write, "rw"}, /* Alternate spelling */
526 /* Boolean args above */
527 {-1, NULL}
528 };
529
530 struct rbd_options {
531 bool read_only;
532 };
533
534 #define RBD_READ_ONLY_DEFAULT false
535
536 static int parse_rbd_opts_token(char *c, void *private)
537 {
538 struct rbd_options *rbd_opts = private;
539 substring_t argstr[MAX_OPT_ARGS];
540 int token, intval, ret;
541
542 token = match_token(c, rbd_opts_tokens, argstr);
543 if (token < 0)
544 return -EINVAL;
545
546 if (token < Opt_last_int) {
547 ret = match_int(&argstr[0], &intval);
548 if (ret < 0) {
549 pr_err("bad mount option arg (not int) "
550 "at '%s'\n", c);
551 return ret;
552 }
553 dout("got int token %d val %d\n", token, intval);
554 } else if (token > Opt_last_int && token < Opt_last_string) {
555 dout("got string token %d val %s\n", token,
556 argstr[0].from);
557 } else if (token > Opt_last_string && token < Opt_last_bool) {
558 dout("got Boolean token %d\n", token);
559 } else {
560 dout("got token %d\n", token);
561 }
562
563 switch (token) {
564 case Opt_read_only:
565 rbd_opts->read_only = true;
566 break;
567 case Opt_read_write:
568 rbd_opts->read_only = false;
569 break;
570 default:
571 rbd_assert(false);
572 break;
573 }
574 return 0;
575 }
576
577 /*
578 * Get a ceph client with specific addr and configuration, if one does
579 * not exist create it.
580 */
581 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
582 {
583 struct rbd_client *rbdc;
584
585 rbdc = rbd_client_find(ceph_opts);
586 if (rbdc) /* using an existing client */
587 ceph_destroy_options(ceph_opts);
588 else
589 rbdc = rbd_client_create(ceph_opts);
590
591 return rbdc;
592 }
593
594 /*
595 * Destroy ceph client
596 *
597 * Caller must hold rbd_client_list_lock.
598 */
599 static void rbd_client_release(struct kref *kref)
600 {
601 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
602
603 dout("%s: rbdc %p\n", __func__, rbdc);
604 spin_lock(&rbd_client_list_lock);
605 list_del(&rbdc->node);
606 spin_unlock(&rbd_client_list_lock);
607
608 ceph_destroy_client(rbdc->client);
609 kfree(rbdc);
610 }
611
612 /*
613 * Drop reference to ceph client node. If it's not referenced anymore, release
614 * it.
615 */
616 static void rbd_put_client(struct rbd_client *rbdc)
617 {
618 if (rbdc)
619 kref_put(&rbdc->kref, rbd_client_release);
620 }
621
622 static bool rbd_image_format_valid(u32 image_format)
623 {
624 return image_format == 1 || image_format == 2;
625 }
626
627 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
628 {
629 size_t size;
630 u32 snap_count;
631
632 /* The header has to start with the magic rbd header text */
633 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
634 return false;
635
636 /* The bio layer requires at least sector-sized I/O */
637
638 if (ondisk->options.order < SECTOR_SHIFT)
639 return false;
640
641 /* If we use u64 in a few spots we may be able to loosen this */
642
643 if (ondisk->options.order > 8 * sizeof (int) - 1)
644 return false;
645
646 /*
647 * The size of a snapshot header has to fit in a size_t, and
648 * that limits the number of snapshots.
649 */
650 snap_count = le32_to_cpu(ondisk->snap_count);
651 size = SIZE_MAX - sizeof (struct ceph_snap_context);
652 if (snap_count > size / sizeof (__le64))
653 return false;
654
655 /*
656 * Not only that, but the size of the entire the snapshot
657 * header must also be representable in a size_t.
658 */
659 size -= snap_count * sizeof (__le64);
660 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
661 return false;
662
663 return true;
664 }
665
666 /*
667 * Create a new header structure, translate header format from the on-disk
668 * header.
669 */
670 static int rbd_header_from_disk(struct rbd_image_header *header,
671 struct rbd_image_header_ondisk *ondisk)
672 {
673 u32 snap_count;
674 size_t len;
675 size_t size;
676 u32 i;
677
678 memset(header, 0, sizeof (*header));
679
680 snap_count = le32_to_cpu(ondisk->snap_count);
681
682 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
683 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
684 if (!header->object_prefix)
685 return -ENOMEM;
686 memcpy(header->object_prefix, ondisk->object_prefix, len);
687 header->object_prefix[len] = '\0';
688
689 if (snap_count) {
690 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
691
692 /* Save a copy of the snapshot names */
693
694 if (snap_names_len > (u64) SIZE_MAX)
695 return -EIO;
696 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
697 if (!header->snap_names)
698 goto out_err;
699 /*
700 * Note that rbd_dev_v1_header_read() guarantees
701 * the ondisk buffer we're working with has
702 * snap_names_len bytes beyond the end of the
703 * snapshot id array, this memcpy() is safe.
704 */
705 memcpy(header->snap_names, &ondisk->snaps[snap_count],
706 snap_names_len);
707
708 /* Record each snapshot's size */
709
710 size = snap_count * sizeof (*header->snap_sizes);
711 header->snap_sizes = kmalloc(size, GFP_KERNEL);
712 if (!header->snap_sizes)
713 goto out_err;
714 for (i = 0; i < snap_count; i++)
715 header->snap_sizes[i] =
716 le64_to_cpu(ondisk->snaps[i].image_size);
717 } else {
718 WARN_ON(ondisk->snap_names_len);
719 header->snap_names = NULL;
720 header->snap_sizes = NULL;
721 }
722
723 header->features = 0; /* No features support in v1 images */
724 header->obj_order = ondisk->options.order;
725 header->crypt_type = ondisk->options.crypt_type;
726 header->comp_type = ondisk->options.comp_type;
727
728 /* Allocate and fill in the snapshot context */
729
730 header->image_size = le64_to_cpu(ondisk->image_size);
731 size = sizeof (struct ceph_snap_context);
732 size += snap_count * sizeof (header->snapc->snaps[0]);
733 header->snapc = kzalloc(size, GFP_KERNEL);
734 if (!header->snapc)
735 goto out_err;
736
737 atomic_set(&header->snapc->nref, 1);
738 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
739 header->snapc->num_snaps = snap_count;
740 for (i = 0; i < snap_count; i++)
741 header->snapc->snaps[i] =
742 le64_to_cpu(ondisk->snaps[i].id);
743
744 return 0;
745
746 out_err:
747 kfree(header->snap_sizes);
748 header->snap_sizes = NULL;
749 kfree(header->snap_names);
750 header->snap_names = NULL;
751 kfree(header->object_prefix);
752 header->object_prefix = NULL;
753
754 return -ENOMEM;
755 }
756
757 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
758 {
759 struct rbd_snap *snap;
760
761 if (snap_id == CEPH_NOSNAP)
762 return RBD_SNAP_HEAD_NAME;
763
764 list_for_each_entry(snap, &rbd_dev->snaps, node)
765 if (snap_id == snap->id)
766 return snap->name;
767
768 return NULL;
769 }
770
771 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
772 {
773
774 struct rbd_snap *snap;
775
776 list_for_each_entry(snap, &rbd_dev->snaps, node) {
777 if (!strcmp(snap_name, snap->name)) {
778 rbd_dev->spec->snap_id = snap->id;
779 rbd_dev->mapping.size = snap->size;
780 rbd_dev->mapping.features = snap->features;
781
782 return 0;
783 }
784 }
785
786 return -ENOENT;
787 }
788
789 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
790 {
791 int ret;
792
793 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
794 sizeof (RBD_SNAP_HEAD_NAME))) {
795 rbd_dev->spec->snap_id = CEPH_NOSNAP;
796 rbd_dev->mapping.size = rbd_dev->header.image_size;
797 rbd_dev->mapping.features = rbd_dev->header.features;
798 ret = 0;
799 } else {
800 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
801 if (ret < 0)
802 goto done;
803 rbd_dev->mapping.read_only = true;
804 }
805 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
806
807 done:
808 return ret;
809 }
810
811 static void rbd_header_free(struct rbd_image_header *header)
812 {
813 kfree(header->object_prefix);
814 header->object_prefix = NULL;
815 kfree(header->snap_sizes);
816 header->snap_sizes = NULL;
817 kfree(header->snap_names);
818 header->snap_names = NULL;
819 ceph_put_snap_context(header->snapc);
820 header->snapc = NULL;
821 }
822
823 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
824 {
825 char *name;
826 u64 segment;
827 int ret;
828
829 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
830 if (!name)
831 return NULL;
832 segment = offset >> rbd_dev->header.obj_order;
833 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
834 rbd_dev->header.object_prefix, segment);
835 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
836 pr_err("error formatting segment name for #%llu (%d)\n",
837 segment, ret);
838 kfree(name);
839 name = NULL;
840 }
841
842 return name;
843 }
844
845 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
846 {
847 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
848
849 return offset & (segment_size - 1);
850 }
851
852 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
853 u64 offset, u64 length)
854 {
855 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
856
857 offset &= segment_size - 1;
858
859 rbd_assert(length <= U64_MAX - offset);
860 if (offset + length > segment_size)
861 length = segment_size - offset;
862
863 return length;
864 }
865
866 /*
867 * returns the size of an object in the image
868 */
869 static u64 rbd_obj_bytes(struct rbd_image_header *header)
870 {
871 return 1 << header->obj_order;
872 }
873
874 /*
875 * bio helpers
876 */
877
878 static void bio_chain_put(struct bio *chain)
879 {
880 struct bio *tmp;
881
882 while (chain) {
883 tmp = chain;
884 chain = chain->bi_next;
885 bio_put(tmp);
886 }
887 }
888
889 /*
890 * zeros a bio chain, starting at specific offset
891 */
892 static void zero_bio_chain(struct bio *chain, int start_ofs)
893 {
894 struct bio_vec *bv;
895 unsigned long flags;
896 void *buf;
897 int i;
898 int pos = 0;
899
900 while (chain) {
901 bio_for_each_segment(bv, chain, i) {
902 if (pos + bv->bv_len > start_ofs) {
903 int remainder = max(start_ofs - pos, 0);
904 buf = bvec_kmap_irq(bv, &flags);
905 memset(buf + remainder, 0,
906 bv->bv_len - remainder);
907 bvec_kunmap_irq(buf, &flags);
908 }
909 pos += bv->bv_len;
910 }
911
912 chain = chain->bi_next;
913 }
914 }
915
916 /*
917 * Clone a portion of a bio, starting at the given byte offset
918 * and continuing for the number of bytes indicated.
919 */
920 static struct bio *bio_clone_range(struct bio *bio_src,
921 unsigned int offset,
922 unsigned int len,
923 gfp_t gfpmask)
924 {
925 struct bio_vec *bv;
926 unsigned int resid;
927 unsigned short idx;
928 unsigned int voff;
929 unsigned short end_idx;
930 unsigned short vcnt;
931 struct bio *bio;
932
933 /* Handle the easy case for the caller */
934
935 if (!offset && len == bio_src->bi_size)
936 return bio_clone(bio_src, gfpmask);
937
938 if (WARN_ON_ONCE(!len))
939 return NULL;
940 if (WARN_ON_ONCE(len > bio_src->bi_size))
941 return NULL;
942 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
943 return NULL;
944
945 /* Find first affected segment... */
946
947 resid = offset;
948 __bio_for_each_segment(bv, bio_src, idx, 0) {
949 if (resid < bv->bv_len)
950 break;
951 resid -= bv->bv_len;
952 }
953 voff = resid;
954
955 /* ...and the last affected segment */
956
957 resid += len;
958 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
959 if (resid <= bv->bv_len)
960 break;
961 resid -= bv->bv_len;
962 }
963 vcnt = end_idx - idx + 1;
964
965 /* Build the clone */
966
967 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
968 if (!bio)
969 return NULL; /* ENOMEM */
970
971 bio->bi_bdev = bio_src->bi_bdev;
972 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
973 bio->bi_rw = bio_src->bi_rw;
974 bio->bi_flags |= 1 << BIO_CLONED;
975
976 /*
977 * Copy over our part of the bio_vec, then update the first
978 * and last (or only) entries.
979 */
980 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
981 vcnt * sizeof (struct bio_vec));
982 bio->bi_io_vec[0].bv_offset += voff;
983 if (vcnt > 1) {
984 bio->bi_io_vec[0].bv_len -= voff;
985 bio->bi_io_vec[vcnt - 1].bv_len = resid;
986 } else {
987 bio->bi_io_vec[0].bv_len = len;
988 }
989
990 bio->bi_vcnt = vcnt;
991 bio->bi_size = len;
992 bio->bi_idx = 0;
993
994 return bio;
995 }
996
997 /*
998 * Clone a portion of a bio chain, starting at the given byte offset
999 * into the first bio in the source chain and continuing for the
1000 * number of bytes indicated. The result is another bio chain of
1001 * exactly the given length, or a null pointer on error.
1002 *
1003 * The bio_src and offset parameters are both in-out. On entry they
1004 * refer to the first source bio and the offset into that bio where
1005 * the start of data to be cloned is located.
1006 *
1007 * On return, bio_src is updated to refer to the bio in the source
1008 * chain that contains first un-cloned byte, and *offset will
1009 * contain the offset of that byte within that bio.
1010 */
1011 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1012 unsigned int *offset,
1013 unsigned int len,
1014 gfp_t gfpmask)
1015 {
1016 struct bio *bi = *bio_src;
1017 unsigned int off = *offset;
1018 struct bio *chain = NULL;
1019 struct bio **end;
1020
1021 /* Build up a chain of clone bios up to the limit */
1022
1023 if (!bi || off >= bi->bi_size || !len)
1024 return NULL; /* Nothing to clone */
1025
1026 end = &chain;
1027 while (len) {
1028 unsigned int bi_size;
1029 struct bio *bio;
1030
1031 if (!bi) {
1032 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1033 goto out_err; /* EINVAL; ran out of bio's */
1034 }
1035 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1036 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1037 if (!bio)
1038 goto out_err; /* ENOMEM */
1039
1040 *end = bio;
1041 end = &bio->bi_next;
1042
1043 off += bi_size;
1044 if (off == bi->bi_size) {
1045 bi = bi->bi_next;
1046 off = 0;
1047 }
1048 len -= bi_size;
1049 }
1050 *bio_src = bi;
1051 *offset = off;
1052
1053 return chain;
1054 out_err:
1055 bio_chain_put(chain);
1056
1057 return NULL;
1058 }
1059
1060 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1061 {
1062 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1063 atomic_read(&obj_request->kref.refcount));
1064 kref_get(&obj_request->kref);
1065 }
1066
1067 static void rbd_obj_request_destroy(struct kref *kref);
1068 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1069 {
1070 rbd_assert(obj_request != NULL);
1071 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1072 atomic_read(&obj_request->kref.refcount));
1073 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1074 }
1075
1076 static void rbd_img_request_get(struct rbd_img_request *img_request)
1077 {
1078 dout("%s: img %p (was %d)\n", __func__, img_request,
1079 atomic_read(&img_request->kref.refcount));
1080 kref_get(&img_request->kref);
1081 }
1082
1083 static void rbd_img_request_destroy(struct kref *kref);
1084 static void rbd_img_request_put(struct rbd_img_request *img_request)
1085 {
1086 rbd_assert(img_request != NULL);
1087 dout("%s: img %p (was %d)\n", __func__, img_request,
1088 atomic_read(&img_request->kref.refcount));
1089 kref_put(&img_request->kref, rbd_img_request_destroy);
1090 }
1091
1092 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1093 struct rbd_obj_request *obj_request)
1094 {
1095 rbd_assert(obj_request->img_request == NULL);
1096
1097 rbd_obj_request_get(obj_request);
1098 obj_request->img_request = img_request;
1099 obj_request->which = img_request->obj_request_count;
1100 rbd_assert(obj_request->which != BAD_WHICH);
1101 img_request->obj_request_count++;
1102 list_add_tail(&obj_request->links, &img_request->obj_requests);
1103 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1104 obj_request->which);
1105 }
1106
1107 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1108 struct rbd_obj_request *obj_request)
1109 {
1110 rbd_assert(obj_request->which != BAD_WHICH);
1111
1112 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1113 obj_request->which);
1114 list_del(&obj_request->links);
1115 rbd_assert(img_request->obj_request_count > 0);
1116 img_request->obj_request_count--;
1117 rbd_assert(obj_request->which == img_request->obj_request_count);
1118 obj_request->which = BAD_WHICH;
1119 rbd_assert(obj_request->img_request == img_request);
1120 obj_request->img_request = NULL;
1121 obj_request->callback = NULL;
1122 rbd_obj_request_put(obj_request);
1123 }
1124
1125 static bool obj_request_type_valid(enum obj_request_type type)
1126 {
1127 switch (type) {
1128 case OBJ_REQUEST_NODATA:
1129 case OBJ_REQUEST_BIO:
1130 case OBJ_REQUEST_PAGES:
1131 return true;
1132 default:
1133 return false;
1134 }
1135 }
1136
1137 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1138 struct rbd_obj_request *obj_request)
1139 {
1140 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1141
1142 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1143 }
1144
1145 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1146 {
1147 dout("%s: img %p\n", __func__, img_request);
1148 if (img_request->callback)
1149 img_request->callback(img_request);
1150 else
1151 rbd_img_request_put(img_request);
1152 }
1153
1154 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1155
1156 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1157 {
1158 dout("%s: obj %p\n", __func__, obj_request);
1159
1160 return wait_for_completion_interruptible(&obj_request->completion);
1161 }
1162
1163 static void obj_request_done_init(struct rbd_obj_request *obj_request)
1164 {
1165 atomic_set(&obj_request->done, 0);
1166 smp_wmb();
1167 }
1168
1169 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1170 {
1171 int done;
1172
1173 done = atomic_inc_return(&obj_request->done);
1174 if (done > 1) {
1175 struct rbd_img_request *img_request = obj_request->img_request;
1176 struct rbd_device *rbd_dev;
1177
1178 rbd_dev = img_request ? img_request->rbd_dev : NULL;
1179 rbd_warn(rbd_dev, "obj_request %p was already done\n",
1180 obj_request);
1181 }
1182 }
1183
1184 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1185 {
1186 smp_mb();
1187 return atomic_read(&obj_request->done) != 0;
1188 }
1189
1190 static void
1191 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1192 {
1193 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1194 obj_request, obj_request->img_request, obj_request->result,
1195 obj_request->xferred, obj_request->length);
1196 /*
1197 * ENOENT means a hole in the image. We zero-fill the
1198 * entire length of the request. A short read also implies
1199 * zero-fill to the end of the request. Either way we
1200 * update the xferred count to indicate the whole request
1201 * was satisfied.
1202 */
1203 BUG_ON(obj_request->type != OBJ_REQUEST_BIO);
1204 if (obj_request->result == -ENOENT) {
1205 zero_bio_chain(obj_request->bio_list, 0);
1206 obj_request->result = 0;
1207 obj_request->xferred = obj_request->length;
1208 } else if (obj_request->xferred < obj_request->length &&
1209 !obj_request->result) {
1210 zero_bio_chain(obj_request->bio_list, obj_request->xferred);
1211 obj_request->xferred = obj_request->length;
1212 }
1213 obj_request_done_set(obj_request);
1214 }
1215
1216 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1217 {
1218 dout("%s: obj %p cb %p\n", __func__, obj_request,
1219 obj_request->callback);
1220 if (obj_request->callback)
1221 obj_request->callback(obj_request);
1222 else
1223 complete_all(&obj_request->completion);
1224 }
1225
1226 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1227 {
1228 dout("%s: obj %p\n", __func__, obj_request);
1229 obj_request_done_set(obj_request);
1230 }
1231
1232 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1233 {
1234 dout("%s: obj %p result %d %llu/%llu\n", __func__, obj_request,
1235 obj_request->result, obj_request->xferred, obj_request->length);
1236 if (obj_request->img_request)
1237 rbd_img_obj_request_read_callback(obj_request);
1238 else
1239 obj_request_done_set(obj_request);
1240 }
1241
1242 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1243 {
1244 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1245 obj_request->result, obj_request->length);
1246 /*
1247 * There is no such thing as a successful short write.
1248 * Our xferred value is the number of bytes transferred
1249 * back. Set it to our originally-requested length.
1250 */
1251 obj_request->xferred = obj_request->length;
1252 obj_request_done_set(obj_request);
1253 }
1254
1255 /*
1256 * For a simple stat call there's nothing to do. We'll do more if
1257 * this is part of a write sequence for a layered image.
1258 */
1259 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1260 {
1261 dout("%s: obj %p\n", __func__, obj_request);
1262 obj_request_done_set(obj_request);
1263 }
1264
1265 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1266 struct ceph_msg *msg)
1267 {
1268 struct rbd_obj_request *obj_request = osd_req->r_priv;
1269 u16 opcode;
1270
1271 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1272 rbd_assert(osd_req == obj_request->osd_req);
1273 rbd_assert(!!obj_request->img_request ^
1274 (obj_request->which == BAD_WHICH));
1275
1276 if (osd_req->r_result < 0)
1277 obj_request->result = osd_req->r_result;
1278 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1279
1280 WARN_ON(osd_req->r_num_ops != 1); /* For now */
1281
1282 /*
1283 * We support a 64-bit length, but ultimately it has to be
1284 * passed to blk_end_request(), which takes an unsigned int.
1285 */
1286 obj_request->xferred = osd_req->r_reply_op_len[0];
1287 rbd_assert(obj_request->xferred < (u64) UINT_MAX);
1288 opcode = osd_req->r_ops[0].op;
1289 switch (opcode) {
1290 case CEPH_OSD_OP_READ:
1291 rbd_osd_read_callback(obj_request);
1292 break;
1293 case CEPH_OSD_OP_WRITE:
1294 rbd_osd_write_callback(obj_request);
1295 break;
1296 case CEPH_OSD_OP_STAT:
1297 rbd_osd_stat_callback(obj_request);
1298 break;
1299 case CEPH_OSD_OP_CALL:
1300 case CEPH_OSD_OP_NOTIFY_ACK:
1301 case CEPH_OSD_OP_WATCH:
1302 rbd_osd_trivial_callback(obj_request);
1303 break;
1304 default:
1305 rbd_warn(NULL, "%s: unsupported op %hu\n",
1306 obj_request->object_name, (unsigned short) opcode);
1307 break;
1308 }
1309
1310 if (obj_request_done_test(obj_request))
1311 rbd_obj_request_complete(obj_request);
1312 }
1313
1314 static void rbd_osd_req_format(struct rbd_obj_request *obj_request,
1315 bool write_request)
1316 {
1317 struct rbd_img_request *img_request = obj_request->img_request;
1318 struct ceph_osd_request *osd_req = obj_request->osd_req;
1319 struct ceph_snap_context *snapc = NULL;
1320 u64 snap_id = CEPH_NOSNAP;
1321 struct timespec *mtime = NULL;
1322 struct timespec now;
1323
1324 rbd_assert(osd_req != NULL);
1325
1326 if (write_request) {
1327 now = CURRENT_TIME;
1328 mtime = &now;
1329 if (img_request)
1330 snapc = img_request->snapc;
1331 } else if (img_request) {
1332 snap_id = img_request->snap_id;
1333 }
1334 ceph_osdc_build_request(osd_req, obj_request->offset,
1335 snapc, snap_id, mtime);
1336 }
1337
1338 static struct ceph_osd_request *rbd_osd_req_create(
1339 struct rbd_device *rbd_dev,
1340 bool write_request,
1341 struct rbd_obj_request *obj_request)
1342 {
1343 struct rbd_img_request *img_request = obj_request->img_request;
1344 struct ceph_snap_context *snapc = NULL;
1345 struct ceph_osd_client *osdc;
1346 struct ceph_osd_request *osd_req;
1347
1348 if (img_request) {
1349 rbd_assert(img_request->write_request == write_request);
1350 if (img_request->write_request)
1351 snapc = img_request->snapc;
1352 }
1353
1354 /* Allocate and initialize the request, for the single op */
1355
1356 osdc = &rbd_dev->rbd_client->client->osdc;
1357 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1358 if (!osd_req)
1359 return NULL; /* ENOMEM */
1360
1361 if (write_request)
1362 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1363 else
1364 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1365
1366 osd_req->r_callback = rbd_osd_req_callback;
1367 osd_req->r_priv = obj_request;
1368
1369 osd_req->r_oid_len = strlen(obj_request->object_name);
1370 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1371 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1372
1373 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1374
1375 return osd_req;
1376 }
1377
1378 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1379 {
1380 ceph_osdc_put_request(osd_req);
1381 }
1382
1383 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1384
1385 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1386 u64 offset, u64 length,
1387 enum obj_request_type type)
1388 {
1389 struct rbd_obj_request *obj_request;
1390 size_t size;
1391 char *name;
1392
1393 rbd_assert(obj_request_type_valid(type));
1394
1395 size = strlen(object_name) + 1;
1396 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1397 if (!obj_request)
1398 return NULL;
1399
1400 name = (char *)(obj_request + 1);
1401 obj_request->object_name = memcpy(name, object_name, size);
1402 obj_request->offset = offset;
1403 obj_request->length = length;
1404 obj_request->which = BAD_WHICH;
1405 obj_request->type = type;
1406 INIT_LIST_HEAD(&obj_request->links);
1407 obj_request_done_init(obj_request);
1408 init_completion(&obj_request->completion);
1409 kref_init(&obj_request->kref);
1410
1411 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1412 offset, length, (int)type, obj_request);
1413
1414 return obj_request;
1415 }
1416
1417 static void rbd_obj_request_destroy(struct kref *kref)
1418 {
1419 struct rbd_obj_request *obj_request;
1420
1421 obj_request = container_of(kref, struct rbd_obj_request, kref);
1422
1423 dout("%s: obj %p\n", __func__, obj_request);
1424
1425 rbd_assert(obj_request->img_request == NULL);
1426 rbd_assert(obj_request->which == BAD_WHICH);
1427
1428 if (obj_request->osd_req)
1429 rbd_osd_req_destroy(obj_request->osd_req);
1430
1431 rbd_assert(obj_request_type_valid(obj_request->type));
1432 switch (obj_request->type) {
1433 case OBJ_REQUEST_NODATA:
1434 break; /* Nothing to do */
1435 case OBJ_REQUEST_BIO:
1436 if (obj_request->bio_list)
1437 bio_chain_put(obj_request->bio_list);
1438 break;
1439 case OBJ_REQUEST_PAGES:
1440 if (obj_request->pages)
1441 ceph_release_page_vector(obj_request->pages,
1442 obj_request->page_count);
1443 break;
1444 }
1445
1446 kfree(obj_request);
1447 }
1448
1449 /*
1450 * Caller is responsible for filling in the list of object requests
1451 * that comprises the image request, and the Linux request pointer
1452 * (if there is one).
1453 */
1454 static struct rbd_img_request *rbd_img_request_create(
1455 struct rbd_device *rbd_dev,
1456 u64 offset, u64 length,
1457 bool write_request)
1458 {
1459 struct rbd_img_request *img_request;
1460 struct ceph_snap_context *snapc = NULL;
1461
1462 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1463 if (!img_request)
1464 return NULL;
1465
1466 if (write_request) {
1467 down_read(&rbd_dev->header_rwsem);
1468 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1469 up_read(&rbd_dev->header_rwsem);
1470 if (WARN_ON(!snapc)) {
1471 kfree(img_request);
1472 return NULL; /* Shouldn't happen */
1473 }
1474 }
1475
1476 img_request->rq = NULL;
1477 img_request->rbd_dev = rbd_dev;
1478 img_request->offset = offset;
1479 img_request->length = length;
1480 img_request->write_request = write_request;
1481 if (write_request)
1482 img_request->snapc = snapc;
1483 else
1484 img_request->snap_id = rbd_dev->spec->snap_id;
1485 spin_lock_init(&img_request->completion_lock);
1486 img_request->next_completion = 0;
1487 img_request->callback = NULL;
1488 img_request->obj_request_count = 0;
1489 INIT_LIST_HEAD(&img_request->obj_requests);
1490 kref_init(&img_request->kref);
1491
1492 rbd_img_request_get(img_request); /* Avoid a warning */
1493 rbd_img_request_put(img_request); /* TEMPORARY */
1494
1495 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1496 write_request ? "write" : "read", offset, length,
1497 img_request);
1498
1499 return img_request;
1500 }
1501
1502 static void rbd_img_request_destroy(struct kref *kref)
1503 {
1504 struct rbd_img_request *img_request;
1505 struct rbd_obj_request *obj_request;
1506 struct rbd_obj_request *next_obj_request;
1507
1508 img_request = container_of(kref, struct rbd_img_request, kref);
1509
1510 dout("%s: img %p\n", __func__, img_request);
1511
1512 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1513 rbd_img_obj_request_del(img_request, obj_request);
1514 rbd_assert(img_request->obj_request_count == 0);
1515
1516 if (img_request->write_request)
1517 ceph_put_snap_context(img_request->snapc);
1518
1519 kfree(img_request);
1520 }
1521
1522 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1523 {
1524 struct rbd_img_request *img_request;
1525 u32 which = obj_request->which;
1526 bool more = true;
1527
1528 img_request = obj_request->img_request;
1529
1530 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1531 rbd_assert(img_request != NULL);
1532 rbd_assert(img_request->rq != NULL);
1533 rbd_assert(img_request->obj_request_count > 0);
1534 rbd_assert(which != BAD_WHICH);
1535 rbd_assert(which < img_request->obj_request_count);
1536 rbd_assert(which >= img_request->next_completion);
1537
1538 spin_lock_irq(&img_request->completion_lock);
1539 if (which != img_request->next_completion)
1540 goto out;
1541
1542 for_each_obj_request_from(img_request, obj_request) {
1543 unsigned int xferred;
1544 int result;
1545
1546 rbd_assert(more);
1547 rbd_assert(which < img_request->obj_request_count);
1548
1549 if (!obj_request_done_test(obj_request))
1550 break;
1551
1552 rbd_assert(obj_request->xferred <= (u64) UINT_MAX);
1553 xferred = (unsigned int) obj_request->xferred;
1554 result = (int) obj_request->result;
1555 if (result)
1556 rbd_warn(NULL, "obj_request %s result %d xferred %u\n",
1557 img_request->write_request ? "write" : "read",
1558 result, xferred);
1559
1560 more = blk_end_request(img_request->rq, result, xferred);
1561 which++;
1562 }
1563
1564 rbd_assert(more ^ (which == img_request->obj_request_count));
1565 img_request->next_completion = which;
1566 out:
1567 spin_unlock_irq(&img_request->completion_lock);
1568
1569 if (!more)
1570 rbd_img_request_complete(img_request);
1571 }
1572
1573 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1574 struct bio *bio_list)
1575 {
1576 struct rbd_device *rbd_dev = img_request->rbd_dev;
1577 struct rbd_obj_request *obj_request = NULL;
1578 struct rbd_obj_request *next_obj_request;
1579 bool write_request = img_request->write_request;
1580 unsigned int bio_offset;
1581 u64 image_offset;
1582 u64 resid;
1583 u16 opcode;
1584
1585 dout("%s: img %p bio %p\n", __func__, img_request, bio_list);
1586
1587 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
1588 bio_offset = 0;
1589 image_offset = img_request->offset;
1590 rbd_assert(image_offset == bio_list->bi_sector << SECTOR_SHIFT);
1591 resid = img_request->length;
1592 rbd_assert(resid > 0);
1593 while (resid) {
1594 struct ceph_osd_request *osd_req;
1595 struct ceph_osd_data *osd_data;
1596 const char *object_name;
1597 unsigned int clone_size;
1598 u64 offset;
1599 u64 length;
1600
1601 object_name = rbd_segment_name(rbd_dev, image_offset);
1602 if (!object_name)
1603 goto out_unwind;
1604 offset = rbd_segment_offset(rbd_dev, image_offset);
1605 length = rbd_segment_length(rbd_dev, image_offset, resid);
1606 obj_request = rbd_obj_request_create(object_name,
1607 offset, length,
1608 OBJ_REQUEST_BIO);
1609 kfree(object_name); /* object request has its own copy */
1610 if (!obj_request)
1611 goto out_unwind;
1612
1613 rbd_assert(length <= (u64) UINT_MAX);
1614 clone_size = (unsigned int) length;
1615 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1616 &bio_offset, clone_size,
1617 GFP_ATOMIC);
1618 if (!obj_request->bio_list)
1619 goto out_partial;
1620
1621 osd_req = rbd_osd_req_create(rbd_dev, write_request,
1622 obj_request);
1623 if (!osd_req)
1624 goto out_partial;
1625 obj_request->osd_req = osd_req;
1626 obj_request->callback = rbd_img_obj_callback;
1627
1628 osd_data = write_request ? &osd_req->r_data_out
1629 : &osd_req->r_data_in;
1630 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
1631 0, 0);
1632 ceph_osd_data_bio_init(osd_data, obj_request->bio_list,
1633 obj_request->length);
1634 osd_req_op_extent_osd_data(osd_req, 0, osd_data);
1635 rbd_osd_req_format(obj_request, write_request);
1636
1637 rbd_img_obj_request_add(img_request, obj_request);
1638
1639 image_offset += length;
1640 resid -= length;
1641 }
1642
1643 return 0;
1644
1645 out_partial:
1646 rbd_obj_request_put(obj_request);
1647 out_unwind:
1648 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1649 rbd_obj_request_put(obj_request);
1650
1651 return -ENOMEM;
1652 }
1653
1654 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1655 {
1656 struct rbd_device *rbd_dev = img_request->rbd_dev;
1657 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1658 struct rbd_obj_request *obj_request;
1659 struct rbd_obj_request *next_obj_request;
1660
1661 dout("%s: img %p\n", __func__, img_request);
1662 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
1663 int ret;
1664
1665 ret = rbd_obj_request_submit(osdc, obj_request);
1666 if (ret)
1667 return ret;
1668 /*
1669 * The image request has its own reference to each
1670 * of its object requests, so we can safely drop the
1671 * initial one here.
1672 */
1673 rbd_obj_request_put(obj_request);
1674 }
1675
1676 return 0;
1677 }
1678
1679 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
1680 u64 ver, u64 notify_id)
1681 {
1682 struct rbd_obj_request *obj_request;
1683 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1684 int ret;
1685
1686 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1687 OBJ_REQUEST_NODATA);
1688 if (!obj_request)
1689 return -ENOMEM;
1690
1691 ret = -ENOMEM;
1692 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
1693 if (!obj_request->osd_req)
1694 goto out;
1695 obj_request->callback = rbd_obj_request_put;
1696
1697 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
1698 notify_id, ver, 0);
1699 rbd_osd_req_format(obj_request, false);
1700
1701 ret = rbd_obj_request_submit(osdc, obj_request);
1702 out:
1703 if (ret)
1704 rbd_obj_request_put(obj_request);
1705
1706 return ret;
1707 }
1708
1709 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1710 {
1711 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1712 u64 hver;
1713 int rc;
1714
1715 if (!rbd_dev)
1716 return;
1717
1718 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
1719 rbd_dev->header_name, (unsigned long long) notify_id,
1720 (unsigned int) opcode);
1721 rc = rbd_dev_refresh(rbd_dev, &hver);
1722 if (rc)
1723 rbd_warn(rbd_dev, "got notification but failed to "
1724 " update snaps: %d\n", rc);
1725
1726 rbd_obj_notify_ack(rbd_dev, hver, notify_id);
1727 }
1728
1729 /*
1730 * Request sync osd watch/unwatch. The value of "start" determines
1731 * whether a watch request is being initiated or torn down.
1732 */
1733 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
1734 {
1735 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1736 struct rbd_obj_request *obj_request;
1737 int ret;
1738
1739 rbd_assert(start ^ !!rbd_dev->watch_event);
1740 rbd_assert(start ^ !!rbd_dev->watch_request);
1741
1742 if (start) {
1743 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
1744 &rbd_dev->watch_event);
1745 if (ret < 0)
1746 return ret;
1747 rbd_assert(rbd_dev->watch_event != NULL);
1748 }
1749
1750 ret = -ENOMEM;
1751 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1752 OBJ_REQUEST_NODATA);
1753 if (!obj_request)
1754 goto out_cancel;
1755
1756 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
1757 if (!obj_request->osd_req)
1758 goto out_cancel;
1759
1760 if (start)
1761 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
1762 else
1763 ceph_osdc_unregister_linger_request(osdc,
1764 rbd_dev->watch_request->osd_req);
1765
1766 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
1767 rbd_dev->watch_event->cookie,
1768 rbd_dev->header.obj_version, start);
1769 rbd_osd_req_format(obj_request, true);
1770
1771 ret = rbd_obj_request_submit(osdc, obj_request);
1772 if (ret)
1773 goto out_cancel;
1774 ret = rbd_obj_request_wait(obj_request);
1775 if (ret)
1776 goto out_cancel;
1777 ret = obj_request->result;
1778 if (ret)
1779 goto out_cancel;
1780
1781 /*
1782 * A watch request is set to linger, so the underlying osd
1783 * request won't go away until we unregister it. We retain
1784 * a pointer to the object request during that time (in
1785 * rbd_dev->watch_request), so we'll keep a reference to
1786 * it. We'll drop that reference (below) after we've
1787 * unregistered it.
1788 */
1789 if (start) {
1790 rbd_dev->watch_request = obj_request;
1791
1792 return 0;
1793 }
1794
1795 /* We have successfully torn down the watch request */
1796
1797 rbd_obj_request_put(rbd_dev->watch_request);
1798 rbd_dev->watch_request = NULL;
1799 out_cancel:
1800 /* Cancel the event if we're tearing down, or on error */
1801 ceph_osdc_cancel_event(rbd_dev->watch_event);
1802 rbd_dev->watch_event = NULL;
1803 if (obj_request)
1804 rbd_obj_request_put(obj_request);
1805
1806 return ret;
1807 }
1808
1809 /*
1810 * Synchronous osd object method call
1811 */
1812 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
1813 const char *object_name,
1814 const char *class_name,
1815 const char *method_name,
1816 const char *outbound,
1817 size_t outbound_size,
1818 char *inbound,
1819 size_t inbound_size,
1820 u64 *version)
1821 {
1822 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1823 struct rbd_obj_request *obj_request;
1824 struct ceph_osd_data *osd_data;
1825 struct page **pages;
1826 u32 page_count;
1827 int ret;
1828
1829 /*
1830 * Method calls are ultimately read operations. The result
1831 * should placed into the inbound buffer provided. They
1832 * also supply outbound data--parameters for the object
1833 * method. Currently if this is present it will be a
1834 * snapshot id.
1835 */
1836 page_count = (u32) calc_pages_for(0, inbound_size);
1837 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1838 if (IS_ERR(pages))
1839 return PTR_ERR(pages);
1840
1841 ret = -ENOMEM;
1842 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
1843 OBJ_REQUEST_PAGES);
1844 if (!obj_request)
1845 goto out;
1846
1847 obj_request->pages = pages;
1848 obj_request->page_count = page_count;
1849
1850 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
1851 if (!obj_request->osd_req)
1852 goto out;
1853
1854 osd_data = &obj_request->osd_req->r_data_in;
1855 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
1856 class_name, method_name,
1857 outbound, outbound_size);
1858 ceph_osd_data_pages_init(osd_data, obj_request->pages, inbound_size,
1859 0, false, false);
1860 osd_req_op_cls_response_data(obj_request->osd_req, 0, osd_data);
1861 rbd_osd_req_format(obj_request, false);
1862
1863 ret = rbd_obj_request_submit(osdc, obj_request);
1864 if (ret)
1865 goto out;
1866 ret = rbd_obj_request_wait(obj_request);
1867 if (ret)
1868 goto out;
1869
1870 ret = obj_request->result;
1871 if (ret < 0)
1872 goto out;
1873 ret = 0;
1874 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
1875 if (version)
1876 *version = obj_request->version;
1877 out:
1878 if (obj_request)
1879 rbd_obj_request_put(obj_request);
1880 else
1881 ceph_release_page_vector(pages, page_count);
1882
1883 return ret;
1884 }
1885
1886 static void rbd_request_fn(struct request_queue *q)
1887 __releases(q->queue_lock) __acquires(q->queue_lock)
1888 {
1889 struct rbd_device *rbd_dev = q->queuedata;
1890 bool read_only = rbd_dev->mapping.read_only;
1891 struct request *rq;
1892 int result;
1893
1894 while ((rq = blk_fetch_request(q))) {
1895 bool write_request = rq_data_dir(rq) == WRITE;
1896 struct rbd_img_request *img_request;
1897 u64 offset;
1898 u64 length;
1899
1900 /* Ignore any non-FS requests that filter through. */
1901
1902 if (rq->cmd_type != REQ_TYPE_FS) {
1903 dout("%s: non-fs request type %d\n", __func__,
1904 (int) rq->cmd_type);
1905 __blk_end_request_all(rq, 0);
1906 continue;
1907 }
1908
1909 /* Ignore/skip any zero-length requests */
1910
1911 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
1912 length = (u64) blk_rq_bytes(rq);
1913
1914 if (!length) {
1915 dout("%s: zero-length request\n", __func__);
1916 __blk_end_request_all(rq, 0);
1917 continue;
1918 }
1919
1920 spin_unlock_irq(q->queue_lock);
1921
1922 /* Disallow writes to a read-only device */
1923
1924 if (write_request) {
1925 result = -EROFS;
1926 if (read_only)
1927 goto end_request;
1928 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
1929 }
1930
1931 /*
1932 * Quit early if the mapped snapshot no longer
1933 * exists. It's still possible the snapshot will
1934 * have disappeared by the time our request arrives
1935 * at the osd, but there's no sense in sending it if
1936 * we already know.
1937 */
1938 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
1939 dout("request for non-existent snapshot");
1940 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
1941 result = -ENXIO;
1942 goto end_request;
1943 }
1944
1945 result = -EINVAL;
1946 if (WARN_ON(offset && length > U64_MAX - offset + 1))
1947 goto end_request; /* Shouldn't happen */
1948
1949 result = -ENOMEM;
1950 img_request = rbd_img_request_create(rbd_dev, offset, length,
1951 write_request);
1952 if (!img_request)
1953 goto end_request;
1954
1955 img_request->rq = rq;
1956
1957 result = rbd_img_request_fill_bio(img_request, rq->bio);
1958 if (!result)
1959 result = rbd_img_request_submit(img_request);
1960 if (result)
1961 rbd_img_request_put(img_request);
1962 end_request:
1963 spin_lock_irq(q->queue_lock);
1964 if (result < 0) {
1965 rbd_warn(rbd_dev, "obj_request %s result %d\n",
1966 write_request ? "write" : "read", result);
1967 __blk_end_request_all(rq, result);
1968 }
1969 }
1970 }
1971
1972 /*
1973 * a queue callback. Makes sure that we don't create a bio that spans across
1974 * multiple osd objects. One exception would be with a single page bios,
1975 * which we handle later at bio_chain_clone_range()
1976 */
1977 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1978 struct bio_vec *bvec)
1979 {
1980 struct rbd_device *rbd_dev = q->queuedata;
1981 sector_t sector_offset;
1982 sector_t sectors_per_obj;
1983 sector_t obj_sector_offset;
1984 int ret;
1985
1986 /*
1987 * Find how far into its rbd object the partition-relative
1988 * bio start sector is to offset relative to the enclosing
1989 * device.
1990 */
1991 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
1992 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
1993 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
1994
1995 /*
1996 * Compute the number of bytes from that offset to the end
1997 * of the object. Account for what's already used by the bio.
1998 */
1999 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2000 if (ret > bmd->bi_size)
2001 ret -= bmd->bi_size;
2002 else
2003 ret = 0;
2004
2005 /*
2006 * Don't send back more than was asked for. And if the bio
2007 * was empty, let the whole thing through because: "Note
2008 * that a block device *must* allow a single page to be
2009 * added to an empty bio."
2010 */
2011 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2012 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2013 ret = (int) bvec->bv_len;
2014
2015 return ret;
2016 }
2017
2018 static void rbd_free_disk(struct rbd_device *rbd_dev)
2019 {
2020 struct gendisk *disk = rbd_dev->disk;
2021
2022 if (!disk)
2023 return;
2024
2025 if (disk->flags & GENHD_FL_UP)
2026 del_gendisk(disk);
2027 if (disk->queue)
2028 blk_cleanup_queue(disk->queue);
2029 put_disk(disk);
2030 }
2031
2032 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2033 const char *object_name,
2034 u64 offset, u64 length,
2035 char *buf, u64 *version)
2036
2037 {
2038 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2039 struct rbd_obj_request *obj_request;
2040 struct ceph_osd_data *osd_data;
2041 struct page **pages = NULL;
2042 u32 page_count;
2043 size_t size;
2044 int ret;
2045
2046 page_count = (u32) calc_pages_for(offset, length);
2047 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2048 if (IS_ERR(pages))
2049 ret = PTR_ERR(pages);
2050
2051 ret = -ENOMEM;
2052 obj_request = rbd_obj_request_create(object_name, offset, length,
2053 OBJ_REQUEST_PAGES);
2054 if (!obj_request)
2055 goto out;
2056
2057 obj_request->pages = pages;
2058 obj_request->page_count = page_count;
2059
2060 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2061 if (!obj_request->osd_req)
2062 goto out;
2063
2064 osd_data = &obj_request->osd_req->r_data_in;
2065 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2066 offset, length, 0, 0);
2067 ceph_osd_data_pages_init(osd_data, obj_request->pages,
2068 obj_request->length,
2069 obj_request->offset & ~PAGE_MASK,
2070 false, false);
2071 osd_req_op_extent_osd_data(obj_request->osd_req, 0, osd_data);
2072 rbd_osd_req_format(obj_request, false);
2073
2074 ret = rbd_obj_request_submit(osdc, obj_request);
2075 if (ret)
2076 goto out;
2077 ret = rbd_obj_request_wait(obj_request);
2078 if (ret)
2079 goto out;
2080
2081 ret = obj_request->result;
2082 if (ret < 0)
2083 goto out;
2084
2085 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2086 size = (size_t) obj_request->xferred;
2087 ceph_copy_from_page_vector(pages, buf, 0, size);
2088 rbd_assert(size <= (size_t) INT_MAX);
2089 ret = (int) size;
2090 if (version)
2091 *version = obj_request->version;
2092 out:
2093 if (obj_request)
2094 rbd_obj_request_put(obj_request);
2095 else
2096 ceph_release_page_vector(pages, page_count);
2097
2098 return ret;
2099 }
2100
2101 /*
2102 * Read the complete header for the given rbd device.
2103 *
2104 * Returns a pointer to a dynamically-allocated buffer containing
2105 * the complete and validated header. Caller can pass the address
2106 * of a variable that will be filled in with the version of the
2107 * header object at the time it was read.
2108 *
2109 * Returns a pointer-coded errno if a failure occurs.
2110 */
2111 static struct rbd_image_header_ondisk *
2112 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2113 {
2114 struct rbd_image_header_ondisk *ondisk = NULL;
2115 u32 snap_count = 0;
2116 u64 names_size = 0;
2117 u32 want_count;
2118 int ret;
2119
2120 /*
2121 * The complete header will include an array of its 64-bit
2122 * snapshot ids, followed by the names of those snapshots as
2123 * a contiguous block of NUL-terminated strings. Note that
2124 * the number of snapshots could change by the time we read
2125 * it in, in which case we re-read it.
2126 */
2127 do {
2128 size_t size;
2129
2130 kfree(ondisk);
2131
2132 size = sizeof (*ondisk);
2133 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2134 size += names_size;
2135 ondisk = kmalloc(size, GFP_KERNEL);
2136 if (!ondisk)
2137 return ERR_PTR(-ENOMEM);
2138
2139 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2140 0, size,
2141 (char *) ondisk, version);
2142 if (ret < 0)
2143 goto out_err;
2144 if (WARN_ON((size_t) ret < size)) {
2145 ret = -ENXIO;
2146 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2147 size, ret);
2148 goto out_err;
2149 }
2150 if (!rbd_dev_ondisk_valid(ondisk)) {
2151 ret = -ENXIO;
2152 rbd_warn(rbd_dev, "invalid header");
2153 goto out_err;
2154 }
2155
2156 names_size = le64_to_cpu(ondisk->snap_names_len);
2157 want_count = snap_count;
2158 snap_count = le32_to_cpu(ondisk->snap_count);
2159 } while (snap_count != want_count);
2160
2161 return ondisk;
2162
2163 out_err:
2164 kfree(ondisk);
2165
2166 return ERR_PTR(ret);
2167 }
2168
2169 /*
2170 * reload the ondisk the header
2171 */
2172 static int rbd_read_header(struct rbd_device *rbd_dev,
2173 struct rbd_image_header *header)
2174 {
2175 struct rbd_image_header_ondisk *ondisk;
2176 u64 ver = 0;
2177 int ret;
2178
2179 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2180 if (IS_ERR(ondisk))
2181 return PTR_ERR(ondisk);
2182 ret = rbd_header_from_disk(header, ondisk);
2183 if (ret >= 0)
2184 header->obj_version = ver;
2185 kfree(ondisk);
2186
2187 return ret;
2188 }
2189
2190 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2191 {
2192 struct rbd_snap *snap;
2193 struct rbd_snap *next;
2194
2195 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2196 rbd_remove_snap_dev(snap);
2197 }
2198
2199 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2200 {
2201 sector_t size;
2202
2203 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2204 return;
2205
2206 size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2207 dout("setting size to %llu sectors", (unsigned long long) size);
2208 rbd_dev->mapping.size = (u64) size;
2209 set_capacity(rbd_dev->disk, size);
2210 }
2211
2212 /*
2213 * only read the first part of the ondisk header, without the snaps info
2214 */
2215 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2216 {
2217 int ret;
2218 struct rbd_image_header h;
2219
2220 ret = rbd_read_header(rbd_dev, &h);
2221 if (ret < 0)
2222 return ret;
2223
2224 down_write(&rbd_dev->header_rwsem);
2225
2226 /* Update image size, and check for resize of mapped image */
2227 rbd_dev->header.image_size = h.image_size;
2228 rbd_update_mapping_size(rbd_dev);
2229
2230 /* rbd_dev->header.object_prefix shouldn't change */
2231 kfree(rbd_dev->header.snap_sizes);
2232 kfree(rbd_dev->header.snap_names);
2233 /* osd requests may still refer to snapc */
2234 ceph_put_snap_context(rbd_dev->header.snapc);
2235
2236 if (hver)
2237 *hver = h.obj_version;
2238 rbd_dev->header.obj_version = h.obj_version;
2239 rbd_dev->header.image_size = h.image_size;
2240 rbd_dev->header.snapc = h.snapc;
2241 rbd_dev->header.snap_names = h.snap_names;
2242 rbd_dev->header.snap_sizes = h.snap_sizes;
2243 /* Free the extra copy of the object prefix */
2244 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2245 kfree(h.object_prefix);
2246
2247 ret = rbd_dev_snaps_update(rbd_dev);
2248 if (!ret)
2249 ret = rbd_dev_snaps_register(rbd_dev);
2250
2251 up_write(&rbd_dev->header_rwsem);
2252
2253 return ret;
2254 }
2255
2256 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2257 {
2258 int ret;
2259
2260 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2261 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2262 if (rbd_dev->image_format == 1)
2263 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2264 else
2265 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2266 mutex_unlock(&ctl_mutex);
2267
2268 return ret;
2269 }
2270
2271 static int rbd_init_disk(struct rbd_device *rbd_dev)
2272 {
2273 struct gendisk *disk;
2274 struct request_queue *q;
2275 u64 segment_size;
2276
2277 /* create gendisk info */
2278 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2279 if (!disk)
2280 return -ENOMEM;
2281
2282 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2283 rbd_dev->dev_id);
2284 disk->major = rbd_dev->major;
2285 disk->first_minor = 0;
2286 disk->fops = &rbd_bd_ops;
2287 disk->private_data = rbd_dev;
2288
2289 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2290 if (!q)
2291 goto out_disk;
2292
2293 /* We use the default size, but let's be explicit about it. */
2294 blk_queue_physical_block_size(q, SECTOR_SIZE);
2295
2296 /* set io sizes to object size */
2297 segment_size = rbd_obj_bytes(&rbd_dev->header);
2298 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2299 blk_queue_max_segment_size(q, segment_size);
2300 blk_queue_io_min(q, segment_size);
2301 blk_queue_io_opt(q, segment_size);
2302
2303 blk_queue_merge_bvec(q, rbd_merge_bvec);
2304 disk->queue = q;
2305
2306 q->queuedata = rbd_dev;
2307
2308 rbd_dev->disk = disk;
2309
2310 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2311
2312 return 0;
2313 out_disk:
2314 put_disk(disk);
2315
2316 return -ENOMEM;
2317 }
2318
2319 /*
2320 sysfs
2321 */
2322
2323 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2324 {
2325 return container_of(dev, struct rbd_device, dev);
2326 }
2327
2328 static ssize_t rbd_size_show(struct device *dev,
2329 struct device_attribute *attr, char *buf)
2330 {
2331 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2332 sector_t size;
2333
2334 down_read(&rbd_dev->header_rwsem);
2335 size = get_capacity(rbd_dev->disk);
2336 up_read(&rbd_dev->header_rwsem);
2337
2338 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2339 }
2340
2341 /*
2342 * Note this shows the features for whatever's mapped, which is not
2343 * necessarily the base image.
2344 */
2345 static ssize_t rbd_features_show(struct device *dev,
2346 struct device_attribute *attr, char *buf)
2347 {
2348 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2349
2350 return sprintf(buf, "0x%016llx\n",
2351 (unsigned long long) rbd_dev->mapping.features);
2352 }
2353
2354 static ssize_t rbd_major_show(struct device *dev,
2355 struct device_attribute *attr, char *buf)
2356 {
2357 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2358
2359 return sprintf(buf, "%d\n", rbd_dev->major);
2360 }
2361
2362 static ssize_t rbd_client_id_show(struct device *dev,
2363 struct device_attribute *attr, char *buf)
2364 {
2365 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2366
2367 return sprintf(buf, "client%lld\n",
2368 ceph_client_id(rbd_dev->rbd_client->client));
2369 }
2370
2371 static ssize_t rbd_pool_show(struct device *dev,
2372 struct device_attribute *attr, char *buf)
2373 {
2374 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2375
2376 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2377 }
2378
2379 static ssize_t rbd_pool_id_show(struct device *dev,
2380 struct device_attribute *attr, char *buf)
2381 {
2382 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2383
2384 return sprintf(buf, "%llu\n",
2385 (unsigned long long) rbd_dev->spec->pool_id);
2386 }
2387
2388 static ssize_t rbd_name_show(struct device *dev,
2389 struct device_attribute *attr, char *buf)
2390 {
2391 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2392
2393 if (rbd_dev->spec->image_name)
2394 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2395
2396 return sprintf(buf, "(unknown)\n");
2397 }
2398
2399 static ssize_t rbd_image_id_show(struct device *dev,
2400 struct device_attribute *attr, char *buf)
2401 {
2402 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2403
2404 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2405 }
2406
2407 /*
2408 * Shows the name of the currently-mapped snapshot (or
2409 * RBD_SNAP_HEAD_NAME for the base image).
2410 */
2411 static ssize_t rbd_snap_show(struct device *dev,
2412 struct device_attribute *attr,
2413 char *buf)
2414 {
2415 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2416
2417 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2418 }
2419
2420 /*
2421 * For an rbd v2 image, shows the pool id, image id, and snapshot id
2422 * for the parent image. If there is no parent, simply shows
2423 * "(no parent image)".
2424 */
2425 static ssize_t rbd_parent_show(struct device *dev,
2426 struct device_attribute *attr,
2427 char *buf)
2428 {
2429 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2430 struct rbd_spec *spec = rbd_dev->parent_spec;
2431 int count;
2432 char *bufp = buf;
2433
2434 if (!spec)
2435 return sprintf(buf, "(no parent image)\n");
2436
2437 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2438 (unsigned long long) spec->pool_id, spec->pool_name);
2439 if (count < 0)
2440 return count;
2441 bufp += count;
2442
2443 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2444 spec->image_name ? spec->image_name : "(unknown)");
2445 if (count < 0)
2446 return count;
2447 bufp += count;
2448
2449 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2450 (unsigned long long) spec->snap_id, spec->snap_name);
2451 if (count < 0)
2452 return count;
2453 bufp += count;
2454
2455 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2456 if (count < 0)
2457 return count;
2458 bufp += count;
2459
2460 return (ssize_t) (bufp - buf);
2461 }
2462
2463 static ssize_t rbd_image_refresh(struct device *dev,
2464 struct device_attribute *attr,
2465 const char *buf,
2466 size_t size)
2467 {
2468 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2469 int ret;
2470
2471 ret = rbd_dev_refresh(rbd_dev, NULL);
2472
2473 return ret < 0 ? ret : size;
2474 }
2475
2476 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2477 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2478 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2479 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2480 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2481 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2482 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2483 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2484 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2485 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2486 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2487
2488 static struct attribute *rbd_attrs[] = {
2489 &dev_attr_size.attr,
2490 &dev_attr_features.attr,
2491 &dev_attr_major.attr,
2492 &dev_attr_client_id.attr,
2493 &dev_attr_pool.attr,
2494 &dev_attr_pool_id.attr,
2495 &dev_attr_name.attr,
2496 &dev_attr_image_id.attr,
2497 &dev_attr_current_snap.attr,
2498 &dev_attr_parent.attr,
2499 &dev_attr_refresh.attr,
2500 NULL
2501 };
2502
2503 static struct attribute_group rbd_attr_group = {
2504 .attrs = rbd_attrs,
2505 };
2506
2507 static const struct attribute_group *rbd_attr_groups[] = {
2508 &rbd_attr_group,
2509 NULL
2510 };
2511
2512 static void rbd_sysfs_dev_release(struct device *dev)
2513 {
2514 }
2515
2516 static struct device_type rbd_device_type = {
2517 .name = "rbd",
2518 .groups = rbd_attr_groups,
2519 .release = rbd_sysfs_dev_release,
2520 };
2521
2522
2523 /*
2524 sysfs - snapshots
2525 */
2526
2527 static ssize_t rbd_snap_size_show(struct device *dev,
2528 struct device_attribute *attr,
2529 char *buf)
2530 {
2531 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2532
2533 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2534 }
2535
2536 static ssize_t rbd_snap_id_show(struct device *dev,
2537 struct device_attribute *attr,
2538 char *buf)
2539 {
2540 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2541
2542 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2543 }
2544
2545 static ssize_t rbd_snap_features_show(struct device *dev,
2546 struct device_attribute *attr,
2547 char *buf)
2548 {
2549 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2550
2551 return sprintf(buf, "0x%016llx\n",
2552 (unsigned long long) snap->features);
2553 }
2554
2555 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2556 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2557 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2558
2559 static struct attribute *rbd_snap_attrs[] = {
2560 &dev_attr_snap_size.attr,
2561 &dev_attr_snap_id.attr,
2562 &dev_attr_snap_features.attr,
2563 NULL,
2564 };
2565
2566 static struct attribute_group rbd_snap_attr_group = {
2567 .attrs = rbd_snap_attrs,
2568 };
2569
2570 static void rbd_snap_dev_release(struct device *dev)
2571 {
2572 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2573 kfree(snap->name);
2574 kfree(snap);
2575 }
2576
2577 static const struct attribute_group *rbd_snap_attr_groups[] = {
2578 &rbd_snap_attr_group,
2579 NULL
2580 };
2581
2582 static struct device_type rbd_snap_device_type = {
2583 .groups = rbd_snap_attr_groups,
2584 .release = rbd_snap_dev_release,
2585 };
2586
2587 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2588 {
2589 kref_get(&spec->kref);
2590
2591 return spec;
2592 }
2593
2594 static void rbd_spec_free(struct kref *kref);
2595 static void rbd_spec_put(struct rbd_spec *spec)
2596 {
2597 if (spec)
2598 kref_put(&spec->kref, rbd_spec_free);
2599 }
2600
2601 static struct rbd_spec *rbd_spec_alloc(void)
2602 {
2603 struct rbd_spec *spec;
2604
2605 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2606 if (!spec)
2607 return NULL;
2608 kref_init(&spec->kref);
2609
2610 rbd_spec_put(rbd_spec_get(spec)); /* TEMPORARY */
2611
2612 return spec;
2613 }
2614
2615 static void rbd_spec_free(struct kref *kref)
2616 {
2617 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2618
2619 kfree(spec->pool_name);
2620 kfree(spec->image_id);
2621 kfree(spec->image_name);
2622 kfree(spec->snap_name);
2623 kfree(spec);
2624 }
2625
2626 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2627 struct rbd_spec *spec)
2628 {
2629 struct rbd_device *rbd_dev;
2630
2631 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2632 if (!rbd_dev)
2633 return NULL;
2634
2635 spin_lock_init(&rbd_dev->lock);
2636 rbd_dev->flags = 0;
2637 INIT_LIST_HEAD(&rbd_dev->node);
2638 INIT_LIST_HEAD(&rbd_dev->snaps);
2639 init_rwsem(&rbd_dev->header_rwsem);
2640
2641 rbd_dev->spec = spec;
2642 rbd_dev->rbd_client = rbdc;
2643
2644 /* Initialize the layout used for all rbd requests */
2645
2646 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2647 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
2648 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2649 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
2650
2651 return rbd_dev;
2652 }
2653
2654 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2655 {
2656 rbd_spec_put(rbd_dev->parent_spec);
2657 kfree(rbd_dev->header_name);
2658 rbd_put_client(rbd_dev->rbd_client);
2659 rbd_spec_put(rbd_dev->spec);
2660 kfree(rbd_dev);
2661 }
2662
2663 static bool rbd_snap_registered(struct rbd_snap *snap)
2664 {
2665 bool ret = snap->dev.type == &rbd_snap_device_type;
2666 bool reg = device_is_registered(&snap->dev);
2667
2668 rbd_assert(!ret ^ reg);
2669
2670 return ret;
2671 }
2672
2673 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2674 {
2675 list_del(&snap->node);
2676 if (device_is_registered(&snap->dev))
2677 device_unregister(&snap->dev);
2678 }
2679
2680 static int rbd_register_snap_dev(struct rbd_snap *snap,
2681 struct device *parent)
2682 {
2683 struct device *dev = &snap->dev;
2684 int ret;
2685
2686 dev->type = &rbd_snap_device_type;
2687 dev->parent = parent;
2688 dev->release = rbd_snap_dev_release;
2689 dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2690 dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2691
2692 ret = device_register(dev);
2693
2694 return ret;
2695 }
2696
2697 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2698 const char *snap_name,
2699 u64 snap_id, u64 snap_size,
2700 u64 snap_features)
2701 {
2702 struct rbd_snap *snap;
2703 int ret;
2704
2705 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2706 if (!snap)
2707 return ERR_PTR(-ENOMEM);
2708
2709 ret = -ENOMEM;
2710 snap->name = kstrdup(snap_name, GFP_KERNEL);
2711 if (!snap->name)
2712 goto err;
2713
2714 snap->id = snap_id;
2715 snap->size = snap_size;
2716 snap->features = snap_features;
2717
2718 return snap;
2719
2720 err:
2721 kfree(snap->name);
2722 kfree(snap);
2723
2724 return ERR_PTR(ret);
2725 }
2726
2727 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2728 u64 *snap_size, u64 *snap_features)
2729 {
2730 char *snap_name;
2731
2732 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2733
2734 *snap_size = rbd_dev->header.snap_sizes[which];
2735 *snap_features = 0; /* No features for v1 */
2736
2737 /* Skip over names until we find the one we are looking for */
2738
2739 snap_name = rbd_dev->header.snap_names;
2740 while (which--)
2741 snap_name += strlen(snap_name) + 1;
2742
2743 return snap_name;
2744 }
2745
2746 /*
2747 * Get the size and object order for an image snapshot, or if
2748 * snap_id is CEPH_NOSNAP, gets this information for the base
2749 * image.
2750 */
2751 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2752 u8 *order, u64 *snap_size)
2753 {
2754 __le64 snapid = cpu_to_le64(snap_id);
2755 int ret;
2756 struct {
2757 u8 order;
2758 __le64 size;
2759 } __attribute__ ((packed)) size_buf = { 0 };
2760
2761 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2762 "rbd", "get_size",
2763 (char *) &snapid, sizeof (snapid),
2764 (char *) &size_buf, sizeof (size_buf), NULL);
2765 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2766 if (ret < 0)
2767 return ret;
2768
2769 *order = size_buf.order;
2770 *snap_size = le64_to_cpu(size_buf.size);
2771
2772 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
2773 (unsigned long long) snap_id, (unsigned int) *order,
2774 (unsigned long long) *snap_size);
2775
2776 return 0;
2777 }
2778
2779 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2780 {
2781 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2782 &rbd_dev->header.obj_order,
2783 &rbd_dev->header.image_size);
2784 }
2785
2786 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2787 {
2788 void *reply_buf;
2789 int ret;
2790 void *p;
2791
2792 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2793 if (!reply_buf)
2794 return -ENOMEM;
2795
2796 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2797 "rbd", "get_object_prefix",
2798 NULL, 0,
2799 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
2800 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2801 if (ret < 0)
2802 goto out;
2803
2804 p = reply_buf;
2805 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2806 p + RBD_OBJ_PREFIX_LEN_MAX,
2807 NULL, GFP_NOIO);
2808
2809 if (IS_ERR(rbd_dev->header.object_prefix)) {
2810 ret = PTR_ERR(rbd_dev->header.object_prefix);
2811 rbd_dev->header.object_prefix = NULL;
2812 } else {
2813 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
2814 }
2815
2816 out:
2817 kfree(reply_buf);
2818
2819 return ret;
2820 }
2821
2822 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2823 u64 *snap_features)
2824 {
2825 __le64 snapid = cpu_to_le64(snap_id);
2826 struct {
2827 __le64 features;
2828 __le64 incompat;
2829 } features_buf = { 0 };
2830 u64 incompat;
2831 int ret;
2832
2833 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2834 "rbd", "get_features",
2835 (char *) &snapid, sizeof (snapid),
2836 (char *) &features_buf, sizeof (features_buf),
2837 NULL);
2838 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2839 if (ret < 0)
2840 return ret;
2841
2842 incompat = le64_to_cpu(features_buf.incompat);
2843 if (incompat & ~RBD_FEATURES_ALL)
2844 return -ENXIO;
2845
2846 *snap_features = le64_to_cpu(features_buf.features);
2847
2848 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2849 (unsigned long long) snap_id,
2850 (unsigned long long) *snap_features,
2851 (unsigned long long) le64_to_cpu(features_buf.incompat));
2852
2853 return 0;
2854 }
2855
2856 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2857 {
2858 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2859 &rbd_dev->header.features);
2860 }
2861
2862 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2863 {
2864 struct rbd_spec *parent_spec;
2865 size_t size;
2866 void *reply_buf = NULL;
2867 __le64 snapid;
2868 void *p;
2869 void *end;
2870 char *image_id;
2871 u64 overlap;
2872 int ret;
2873
2874 parent_spec = rbd_spec_alloc();
2875 if (!parent_spec)
2876 return -ENOMEM;
2877
2878 size = sizeof (__le64) + /* pool_id */
2879 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
2880 sizeof (__le64) + /* snap_id */
2881 sizeof (__le64); /* overlap */
2882 reply_buf = kmalloc(size, GFP_KERNEL);
2883 if (!reply_buf) {
2884 ret = -ENOMEM;
2885 goto out_err;
2886 }
2887
2888 snapid = cpu_to_le64(CEPH_NOSNAP);
2889 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2890 "rbd", "get_parent",
2891 (char *) &snapid, sizeof (snapid),
2892 (char *) reply_buf, size, NULL);
2893 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2894 if (ret < 0)
2895 goto out_err;
2896
2897 ret = -ERANGE;
2898 p = reply_buf;
2899 end = (char *) reply_buf + size;
2900 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2901 if (parent_spec->pool_id == CEPH_NOPOOL)
2902 goto out; /* No parent? No problem. */
2903
2904 /* The ceph file layout needs to fit pool id in 32 bits */
2905
2906 ret = -EIO;
2907 if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
2908 goto out;
2909
2910 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2911 if (IS_ERR(image_id)) {
2912 ret = PTR_ERR(image_id);
2913 goto out_err;
2914 }
2915 parent_spec->image_id = image_id;
2916 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
2917 ceph_decode_64_safe(&p, end, overlap, out_err);
2918
2919 rbd_dev->parent_overlap = overlap;
2920 rbd_dev->parent_spec = parent_spec;
2921 parent_spec = NULL; /* rbd_dev now owns this */
2922 out:
2923 ret = 0;
2924 out_err:
2925 kfree(reply_buf);
2926 rbd_spec_put(parent_spec);
2927
2928 return ret;
2929 }
2930
2931 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
2932 {
2933 size_t image_id_size;
2934 char *image_id;
2935 void *p;
2936 void *end;
2937 size_t size;
2938 void *reply_buf = NULL;
2939 size_t len = 0;
2940 char *image_name = NULL;
2941 int ret;
2942
2943 rbd_assert(!rbd_dev->spec->image_name);
2944
2945 len = strlen(rbd_dev->spec->image_id);
2946 image_id_size = sizeof (__le32) + len;
2947 image_id = kmalloc(image_id_size, GFP_KERNEL);
2948 if (!image_id)
2949 return NULL;
2950
2951 p = image_id;
2952 end = (char *) image_id + image_id_size;
2953 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
2954
2955 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
2956 reply_buf = kmalloc(size, GFP_KERNEL);
2957 if (!reply_buf)
2958 goto out;
2959
2960 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
2961 "rbd", "dir_get_name",
2962 image_id, image_id_size,
2963 (char *) reply_buf, size, NULL);
2964 if (ret < 0)
2965 goto out;
2966 p = reply_buf;
2967 end = (char *) reply_buf + size;
2968 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
2969 if (IS_ERR(image_name))
2970 image_name = NULL;
2971 else
2972 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
2973 out:
2974 kfree(reply_buf);
2975 kfree(image_id);
2976
2977 return image_name;
2978 }
2979
2980 /*
2981 * When a parent image gets probed, we only have the pool, image,
2982 * and snapshot ids but not the names of any of them. This call
2983 * is made later to fill in those names. It has to be done after
2984 * rbd_dev_snaps_update() has completed because some of the
2985 * information (in particular, snapshot name) is not available
2986 * until then.
2987 */
2988 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
2989 {
2990 struct ceph_osd_client *osdc;
2991 const char *name;
2992 void *reply_buf = NULL;
2993 int ret;
2994
2995 if (rbd_dev->spec->pool_name)
2996 return 0; /* Already have the names */
2997
2998 /* Look up the pool name */
2999
3000 osdc = &rbd_dev->rbd_client->client->osdc;
3001 name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3002 if (!name) {
3003 rbd_warn(rbd_dev, "there is no pool with id %llu",
3004 rbd_dev->spec->pool_id); /* Really a BUG() */
3005 return -EIO;
3006 }
3007
3008 rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3009 if (!rbd_dev->spec->pool_name)
3010 return -ENOMEM;
3011
3012 /* Fetch the image name; tolerate failure here */
3013
3014 name = rbd_dev_image_name(rbd_dev);
3015 if (name)
3016 rbd_dev->spec->image_name = (char *) name;
3017 else
3018 rbd_warn(rbd_dev, "unable to get image name");
3019
3020 /* Look up the snapshot name. */
3021
3022 name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3023 if (!name) {
3024 rbd_warn(rbd_dev, "no snapshot with id %llu",
3025 rbd_dev->spec->snap_id); /* Really a BUG() */
3026 ret = -EIO;
3027 goto out_err;
3028 }
3029 rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3030 if(!rbd_dev->spec->snap_name)
3031 goto out_err;
3032
3033 return 0;
3034 out_err:
3035 kfree(reply_buf);
3036 kfree(rbd_dev->spec->pool_name);
3037 rbd_dev->spec->pool_name = NULL;
3038
3039 return ret;
3040 }
3041
3042 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3043 {
3044 size_t size;
3045 int ret;
3046 void *reply_buf;
3047 void *p;
3048 void *end;
3049 u64 seq;
3050 u32 snap_count;
3051 struct ceph_snap_context *snapc;
3052 u32 i;
3053
3054 /*
3055 * We'll need room for the seq value (maximum snapshot id),
3056 * snapshot count, and array of that many snapshot ids.
3057 * For now we have a fixed upper limit on the number we're
3058 * prepared to receive.
3059 */
3060 size = sizeof (__le64) + sizeof (__le32) +
3061 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3062 reply_buf = kzalloc(size, GFP_KERNEL);
3063 if (!reply_buf)
3064 return -ENOMEM;
3065
3066 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3067 "rbd", "get_snapcontext",
3068 NULL, 0,
3069 reply_buf, size, ver);
3070 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3071 if (ret < 0)
3072 goto out;
3073
3074 ret = -ERANGE;
3075 p = reply_buf;
3076 end = (char *) reply_buf + size;
3077 ceph_decode_64_safe(&p, end, seq, out);
3078 ceph_decode_32_safe(&p, end, snap_count, out);
3079
3080 /*
3081 * Make sure the reported number of snapshot ids wouldn't go
3082 * beyond the end of our buffer. But before checking that,
3083 * make sure the computed size of the snapshot context we
3084 * allocate is representable in a size_t.
3085 */
3086 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3087 / sizeof (u64)) {
3088 ret = -EINVAL;
3089 goto out;
3090 }
3091 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3092 goto out;
3093
3094 size = sizeof (struct ceph_snap_context) +
3095 snap_count * sizeof (snapc->snaps[0]);
3096 snapc = kmalloc(size, GFP_KERNEL);
3097 if (!snapc) {
3098 ret = -ENOMEM;
3099 goto out;
3100 }
3101
3102 atomic_set(&snapc->nref, 1);
3103 snapc->seq = seq;
3104 snapc->num_snaps = snap_count;
3105 for (i = 0; i < snap_count; i++)
3106 snapc->snaps[i] = ceph_decode_64(&p);
3107
3108 rbd_dev->header.snapc = snapc;
3109
3110 dout(" snap context seq = %llu, snap_count = %u\n",
3111 (unsigned long long) seq, (unsigned int) snap_count);
3112
3113 out:
3114 kfree(reply_buf);
3115
3116 return 0;
3117 }
3118
3119 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3120 {
3121 size_t size;
3122 void *reply_buf;
3123 __le64 snap_id;
3124 int ret;
3125 void *p;
3126 void *end;
3127 char *snap_name;
3128
3129 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3130 reply_buf = kmalloc(size, GFP_KERNEL);
3131 if (!reply_buf)
3132 return ERR_PTR(-ENOMEM);
3133
3134 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3135 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3136 "rbd", "get_snapshot_name",
3137 (char *) &snap_id, sizeof (snap_id),
3138 reply_buf, size, NULL);
3139 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3140 if (ret < 0)
3141 goto out;
3142
3143 p = reply_buf;
3144 end = (char *) reply_buf + size;
3145 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3146 if (IS_ERR(snap_name)) {
3147 ret = PTR_ERR(snap_name);
3148 goto out;
3149 } else {
3150 dout(" snap_id 0x%016llx snap_name = %s\n",
3151 (unsigned long long) le64_to_cpu(snap_id), snap_name);
3152 }
3153 kfree(reply_buf);
3154
3155 return snap_name;
3156 out:
3157 kfree(reply_buf);
3158
3159 return ERR_PTR(ret);
3160 }
3161
3162 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3163 u64 *snap_size, u64 *snap_features)
3164 {
3165 u64 snap_id;
3166 u8 order;
3167 int ret;
3168
3169 snap_id = rbd_dev->header.snapc->snaps[which];
3170 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3171 if (ret)
3172 return ERR_PTR(ret);
3173 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3174 if (ret)
3175 return ERR_PTR(ret);
3176
3177 return rbd_dev_v2_snap_name(rbd_dev, which);
3178 }
3179
3180 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3181 u64 *snap_size, u64 *snap_features)
3182 {
3183 if (rbd_dev->image_format == 1)
3184 return rbd_dev_v1_snap_info(rbd_dev, which,
3185 snap_size, snap_features);
3186 if (rbd_dev->image_format == 2)
3187 return rbd_dev_v2_snap_info(rbd_dev, which,
3188 snap_size, snap_features);
3189 return ERR_PTR(-EINVAL);
3190 }
3191
3192 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3193 {
3194 int ret;
3195 __u8 obj_order;
3196
3197 down_write(&rbd_dev->header_rwsem);
3198
3199 /* Grab old order first, to see if it changes */
3200
3201 obj_order = rbd_dev->header.obj_order,
3202 ret = rbd_dev_v2_image_size(rbd_dev);
3203 if (ret)
3204 goto out;
3205 if (rbd_dev->header.obj_order != obj_order) {
3206 ret = -EIO;
3207 goto out;
3208 }
3209 rbd_update_mapping_size(rbd_dev);
3210
3211 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3212 dout("rbd_dev_v2_snap_context returned %d\n", ret);
3213 if (ret)
3214 goto out;
3215 ret = rbd_dev_snaps_update(rbd_dev);
3216 dout("rbd_dev_snaps_update returned %d\n", ret);
3217 if (ret)
3218 goto out;
3219 ret = rbd_dev_snaps_register(rbd_dev);
3220 dout("rbd_dev_snaps_register returned %d\n", ret);
3221 out:
3222 up_write(&rbd_dev->header_rwsem);
3223
3224 return ret;
3225 }
3226
3227 /*
3228 * Scan the rbd device's current snapshot list and compare it to the
3229 * newly-received snapshot context. Remove any existing snapshots
3230 * not present in the new snapshot context. Add a new snapshot for
3231 * any snaphots in the snapshot context not in the current list.
3232 * And verify there are no changes to snapshots we already know
3233 * about.
3234 *
3235 * Assumes the snapshots in the snapshot context are sorted by
3236 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
3237 * are also maintained in that order.)
3238 */
3239 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3240 {
3241 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3242 const u32 snap_count = snapc->num_snaps;
3243 struct list_head *head = &rbd_dev->snaps;
3244 struct list_head *links = head->next;
3245 u32 index = 0;
3246
3247 dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3248 while (index < snap_count || links != head) {
3249 u64 snap_id;
3250 struct rbd_snap *snap;
3251 char *snap_name;
3252 u64 snap_size = 0;
3253 u64 snap_features = 0;
3254
3255 snap_id = index < snap_count ? snapc->snaps[index]
3256 : CEPH_NOSNAP;
3257 snap = links != head ? list_entry(links, struct rbd_snap, node)
3258 : NULL;
3259 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3260
3261 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3262 struct list_head *next = links->next;
3263
3264 /*
3265 * A previously-existing snapshot is not in
3266 * the new snap context.
3267 *
3268 * If the now missing snapshot is the one the
3269 * image is mapped to, clear its exists flag
3270 * so we can avoid sending any more requests
3271 * to it.
3272 */
3273 if (rbd_dev->spec->snap_id == snap->id)
3274 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3275 rbd_remove_snap_dev(snap);
3276 dout("%ssnap id %llu has been removed\n",
3277 rbd_dev->spec->snap_id == snap->id ?
3278 "mapped " : "",
3279 (unsigned long long) snap->id);
3280
3281 /* Done with this list entry; advance */
3282
3283 links = next;
3284 continue;
3285 }
3286
3287 snap_name = rbd_dev_snap_info(rbd_dev, index,
3288 &snap_size, &snap_features);
3289 if (IS_ERR(snap_name))
3290 return PTR_ERR(snap_name);
3291
3292 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3293 (unsigned long long) snap_id);
3294 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3295 struct rbd_snap *new_snap;
3296
3297 /* We haven't seen this snapshot before */
3298
3299 new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3300 snap_id, snap_size, snap_features);
3301 if (IS_ERR(new_snap)) {
3302 int err = PTR_ERR(new_snap);
3303
3304 dout(" failed to add dev, error %d\n", err);
3305
3306 return err;
3307 }
3308
3309 /* New goes before existing, or at end of list */
3310
3311 dout(" added dev%s\n", snap ? "" : " at end\n");
3312 if (snap)
3313 list_add_tail(&new_snap->node, &snap->node);
3314 else
3315 list_add_tail(&new_snap->node, head);
3316 } else {
3317 /* Already have this one */
3318
3319 dout(" already present\n");
3320
3321 rbd_assert(snap->size == snap_size);
3322 rbd_assert(!strcmp(snap->name, snap_name));
3323 rbd_assert(snap->features == snap_features);
3324
3325 /* Done with this list entry; advance */
3326
3327 links = links->next;
3328 }
3329
3330 /* Advance to the next entry in the snapshot context */
3331
3332 index++;
3333 }
3334 dout("%s: done\n", __func__);
3335
3336 return 0;
3337 }
3338
3339 /*
3340 * Scan the list of snapshots and register the devices for any that
3341 * have not already been registered.
3342 */
3343 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3344 {
3345 struct rbd_snap *snap;
3346 int ret = 0;
3347
3348 dout("%s:\n", __func__);
3349 if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3350 return -EIO;
3351
3352 list_for_each_entry(snap, &rbd_dev->snaps, node) {
3353 if (!rbd_snap_registered(snap)) {
3354 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3355 if (ret < 0)
3356 break;
3357 }
3358 }
3359 dout("%s: returning %d\n", __func__, ret);
3360
3361 return ret;
3362 }
3363
3364 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3365 {
3366 struct device *dev;
3367 int ret;
3368
3369 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3370
3371 dev = &rbd_dev->dev;
3372 dev->bus = &rbd_bus_type;
3373 dev->type = &rbd_device_type;
3374 dev->parent = &rbd_root_dev;
3375 dev->release = rbd_dev_release;
3376 dev_set_name(dev, "%d", rbd_dev->dev_id);
3377 ret = device_register(dev);
3378
3379 mutex_unlock(&ctl_mutex);
3380
3381 return ret;
3382 }
3383
3384 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3385 {
3386 device_unregister(&rbd_dev->dev);
3387 }
3388
3389 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3390
3391 /*
3392 * Get a unique rbd identifier for the given new rbd_dev, and add
3393 * the rbd_dev to the global list. The minimum rbd id is 1.
3394 */
3395 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3396 {
3397 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3398
3399 spin_lock(&rbd_dev_list_lock);
3400 list_add_tail(&rbd_dev->node, &rbd_dev_list);
3401 spin_unlock(&rbd_dev_list_lock);
3402 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3403 (unsigned long long) rbd_dev->dev_id);
3404 }
3405
3406 /*
3407 * Remove an rbd_dev from the global list, and record that its
3408 * identifier is no longer in use.
3409 */
3410 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3411 {
3412 struct list_head *tmp;
3413 int rbd_id = rbd_dev->dev_id;
3414 int max_id;
3415
3416 rbd_assert(rbd_id > 0);
3417
3418 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3419 (unsigned long long) rbd_dev->dev_id);
3420 spin_lock(&rbd_dev_list_lock);
3421 list_del_init(&rbd_dev->node);
3422
3423 /*
3424 * If the id being "put" is not the current maximum, there
3425 * is nothing special we need to do.
3426 */
3427 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3428 spin_unlock(&rbd_dev_list_lock);
3429 return;
3430 }
3431
3432 /*
3433 * We need to update the current maximum id. Search the
3434 * list to find out what it is. We're more likely to find
3435 * the maximum at the end, so search the list backward.
3436 */
3437 max_id = 0;
3438 list_for_each_prev(tmp, &rbd_dev_list) {
3439 struct rbd_device *rbd_dev;
3440
3441 rbd_dev = list_entry(tmp, struct rbd_device, node);
3442 if (rbd_dev->dev_id > max_id)
3443 max_id = rbd_dev->dev_id;
3444 }
3445 spin_unlock(&rbd_dev_list_lock);
3446
3447 /*
3448 * The max id could have been updated by rbd_dev_id_get(), in
3449 * which case it now accurately reflects the new maximum.
3450 * Be careful not to overwrite the maximum value in that
3451 * case.
3452 */
3453 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3454 dout(" max dev id has been reset\n");
3455 }
3456
3457 /*
3458 * Skips over white space at *buf, and updates *buf to point to the
3459 * first found non-space character (if any). Returns the length of
3460 * the token (string of non-white space characters) found. Note
3461 * that *buf must be terminated with '\0'.
3462 */
3463 static inline size_t next_token(const char **buf)
3464 {
3465 /*
3466 * These are the characters that produce nonzero for
3467 * isspace() in the "C" and "POSIX" locales.
3468 */
3469 const char *spaces = " \f\n\r\t\v";
3470
3471 *buf += strspn(*buf, spaces); /* Find start of token */
3472
3473 return strcspn(*buf, spaces); /* Return token length */
3474 }
3475
3476 /*
3477 * Finds the next token in *buf, and if the provided token buffer is
3478 * big enough, copies the found token into it. The result, if
3479 * copied, is guaranteed to be terminated with '\0'. Note that *buf
3480 * must be terminated with '\0' on entry.
3481 *
3482 * Returns the length of the token found (not including the '\0').
3483 * Return value will be 0 if no token is found, and it will be >=
3484 * token_size if the token would not fit.
3485 *
3486 * The *buf pointer will be updated to point beyond the end of the
3487 * found token. Note that this occurs even if the token buffer is
3488 * too small to hold it.
3489 */
3490 static inline size_t copy_token(const char **buf,
3491 char *token,
3492 size_t token_size)
3493 {
3494 size_t len;
3495
3496 len = next_token(buf);
3497 if (len < token_size) {
3498 memcpy(token, *buf, len);
3499 *(token + len) = '\0';
3500 }
3501 *buf += len;
3502
3503 return len;
3504 }
3505
3506 /*
3507 * Finds the next token in *buf, dynamically allocates a buffer big
3508 * enough to hold a copy of it, and copies the token into the new
3509 * buffer. The copy is guaranteed to be terminated with '\0'. Note
3510 * that a duplicate buffer is created even for a zero-length token.
3511 *
3512 * Returns a pointer to the newly-allocated duplicate, or a null
3513 * pointer if memory for the duplicate was not available. If
3514 * the lenp argument is a non-null pointer, the length of the token
3515 * (not including the '\0') is returned in *lenp.
3516 *
3517 * If successful, the *buf pointer will be updated to point beyond
3518 * the end of the found token.
3519 *
3520 * Note: uses GFP_KERNEL for allocation.
3521 */
3522 static inline char *dup_token(const char **buf, size_t *lenp)
3523 {
3524 char *dup;
3525 size_t len;
3526
3527 len = next_token(buf);
3528 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3529 if (!dup)
3530 return NULL;
3531 *(dup + len) = '\0';
3532 *buf += len;
3533
3534 if (lenp)
3535 *lenp = len;
3536
3537 return dup;
3538 }
3539
3540 /*
3541 * Parse the options provided for an "rbd add" (i.e., rbd image
3542 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
3543 * and the data written is passed here via a NUL-terminated buffer.
3544 * Returns 0 if successful or an error code otherwise.
3545 *
3546 * The information extracted from these options is recorded in
3547 * the other parameters which return dynamically-allocated
3548 * structures:
3549 * ceph_opts
3550 * The address of a pointer that will refer to a ceph options
3551 * structure. Caller must release the returned pointer using
3552 * ceph_destroy_options() when it is no longer needed.
3553 * rbd_opts
3554 * Address of an rbd options pointer. Fully initialized by
3555 * this function; caller must release with kfree().
3556 * spec
3557 * Address of an rbd image specification pointer. Fully
3558 * initialized by this function based on parsed options.
3559 * Caller must release with rbd_spec_put().
3560 *
3561 * The options passed take this form:
3562 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3563 * where:
3564 * <mon_addrs>
3565 * A comma-separated list of one or more monitor addresses.
3566 * A monitor address is an ip address, optionally followed
3567 * by a port number (separated by a colon).
3568 * I.e.: ip1[:port1][,ip2[:port2]...]
3569 * <options>
3570 * A comma-separated list of ceph and/or rbd options.
3571 * <pool_name>
3572 * The name of the rados pool containing the rbd image.
3573 * <image_name>
3574 * The name of the image in that pool to map.
3575 * <snap_id>
3576 * An optional snapshot id. If provided, the mapping will
3577 * present data from the image at the time that snapshot was
3578 * created. The image head is used if no snapshot id is
3579 * provided. Snapshot mappings are always read-only.
3580 */
3581 static int rbd_add_parse_args(const char *buf,
3582 struct ceph_options **ceph_opts,
3583 struct rbd_options **opts,
3584 struct rbd_spec **rbd_spec)
3585 {
3586 size_t len;
3587 char *options;
3588 const char *mon_addrs;
3589 size_t mon_addrs_size;
3590 struct rbd_spec *spec = NULL;
3591 struct rbd_options *rbd_opts = NULL;
3592 struct ceph_options *copts;
3593 int ret;
3594
3595 /* The first four tokens are required */
3596
3597 len = next_token(&buf);
3598 if (!len) {
3599 rbd_warn(NULL, "no monitor address(es) provided");
3600 return -EINVAL;
3601 }
3602 mon_addrs = buf;
3603 mon_addrs_size = len + 1;
3604 buf += len;
3605
3606 ret = -EINVAL;
3607 options = dup_token(&buf, NULL);
3608 if (!options)
3609 return -ENOMEM;
3610 if (!*options) {
3611 rbd_warn(NULL, "no options provided");
3612 goto out_err;
3613 }
3614
3615 spec = rbd_spec_alloc();
3616 if (!spec)
3617 goto out_mem;
3618
3619 spec->pool_name = dup_token(&buf, NULL);
3620 if (!spec->pool_name)
3621 goto out_mem;
3622 if (!*spec->pool_name) {
3623 rbd_warn(NULL, "no pool name provided");
3624 goto out_err;
3625 }
3626
3627 spec->image_name = dup_token(&buf, NULL);
3628 if (!spec->image_name)
3629 goto out_mem;
3630 if (!*spec->image_name) {
3631 rbd_warn(NULL, "no image name provided");
3632 goto out_err;
3633 }
3634
3635 /*
3636 * Snapshot name is optional; default is to use "-"
3637 * (indicating the head/no snapshot).
3638 */
3639 len = next_token(&buf);
3640 if (!len) {
3641 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3642 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3643 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3644 ret = -ENAMETOOLONG;
3645 goto out_err;
3646 }
3647 spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3648 if (!spec->snap_name)
3649 goto out_mem;
3650 *(spec->snap_name + len) = '\0';
3651
3652 /* Initialize all rbd options to the defaults */
3653
3654 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3655 if (!rbd_opts)
3656 goto out_mem;
3657
3658 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3659
3660 copts = ceph_parse_options(options, mon_addrs,
3661 mon_addrs + mon_addrs_size - 1,
3662 parse_rbd_opts_token, rbd_opts);
3663 if (IS_ERR(copts)) {
3664 ret = PTR_ERR(copts);
3665 goto out_err;
3666 }
3667 kfree(options);
3668
3669 *ceph_opts = copts;
3670 *opts = rbd_opts;
3671 *rbd_spec = spec;
3672
3673 return 0;
3674 out_mem:
3675 ret = -ENOMEM;
3676 out_err:
3677 kfree(rbd_opts);
3678 rbd_spec_put(spec);
3679 kfree(options);
3680
3681 return ret;
3682 }
3683
3684 /*
3685 * An rbd format 2 image has a unique identifier, distinct from the
3686 * name given to it by the user. Internally, that identifier is
3687 * what's used to specify the names of objects related to the image.
3688 *
3689 * A special "rbd id" object is used to map an rbd image name to its
3690 * id. If that object doesn't exist, then there is no v2 rbd image
3691 * with the supplied name.
3692 *
3693 * This function will record the given rbd_dev's image_id field if
3694 * it can be determined, and in that case will return 0. If any
3695 * errors occur a negative errno will be returned and the rbd_dev's
3696 * image_id field will be unchanged (and should be NULL).
3697 */
3698 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3699 {
3700 int ret;
3701 size_t size;
3702 char *object_name;
3703 void *response;
3704 void *p;
3705
3706 /*
3707 * When probing a parent image, the image id is already
3708 * known (and the image name likely is not). There's no
3709 * need to fetch the image id again in this case.
3710 */
3711 if (rbd_dev->spec->image_id)
3712 return 0;
3713
3714 /*
3715 * First, see if the format 2 image id file exists, and if
3716 * so, get the image's persistent id from it.
3717 */
3718 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3719 object_name = kmalloc(size, GFP_NOIO);
3720 if (!object_name)
3721 return -ENOMEM;
3722 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3723 dout("rbd id object name is %s\n", object_name);
3724
3725 /* Response will be an encoded string, which includes a length */
3726
3727 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3728 response = kzalloc(size, GFP_NOIO);
3729 if (!response) {
3730 ret = -ENOMEM;
3731 goto out;
3732 }
3733
3734 ret = rbd_obj_method_sync(rbd_dev, object_name,
3735 "rbd", "get_id",
3736 NULL, 0,
3737 response, RBD_IMAGE_ID_LEN_MAX, NULL);
3738 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3739 if (ret < 0)
3740 goto out;
3741
3742 p = response;
3743 rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3744 p + RBD_IMAGE_ID_LEN_MAX,
3745 NULL, GFP_NOIO);
3746 if (IS_ERR(rbd_dev->spec->image_id)) {
3747 ret = PTR_ERR(rbd_dev->spec->image_id);
3748 rbd_dev->spec->image_id = NULL;
3749 } else {
3750 dout("image_id is %s\n", rbd_dev->spec->image_id);
3751 }
3752 out:
3753 kfree(response);
3754 kfree(object_name);
3755
3756 return ret;
3757 }
3758
3759 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3760 {
3761 int ret;
3762 size_t size;
3763
3764 /* Version 1 images have no id; empty string is used */
3765
3766 rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3767 if (!rbd_dev->spec->image_id)
3768 return -ENOMEM;
3769
3770 /* Record the header object name for this rbd image. */
3771
3772 size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3773 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3774 if (!rbd_dev->header_name) {
3775 ret = -ENOMEM;
3776 goto out_err;
3777 }
3778 sprintf(rbd_dev->header_name, "%s%s",
3779 rbd_dev->spec->image_name, RBD_SUFFIX);
3780
3781 /* Populate rbd image metadata */
3782
3783 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3784 if (ret < 0)
3785 goto out_err;
3786
3787 /* Version 1 images have no parent (no layering) */
3788
3789 rbd_dev->parent_spec = NULL;
3790 rbd_dev->parent_overlap = 0;
3791
3792 rbd_dev->image_format = 1;
3793
3794 dout("discovered version 1 image, header name is %s\n",
3795 rbd_dev->header_name);
3796
3797 return 0;
3798
3799 out_err:
3800 kfree(rbd_dev->header_name);
3801 rbd_dev->header_name = NULL;
3802 kfree(rbd_dev->spec->image_id);
3803 rbd_dev->spec->image_id = NULL;
3804
3805 return ret;
3806 }
3807
3808 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3809 {
3810 size_t size;
3811 int ret;
3812 u64 ver = 0;
3813
3814 /*
3815 * Image id was filled in by the caller. Record the header
3816 * object name for this rbd image.
3817 */
3818 size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3819 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3820 if (!rbd_dev->header_name)
3821 return -ENOMEM;
3822 sprintf(rbd_dev->header_name, "%s%s",
3823 RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3824
3825 /* Get the size and object order for the image */
3826
3827 ret = rbd_dev_v2_image_size(rbd_dev);
3828 if (ret < 0)
3829 goto out_err;
3830
3831 /* Get the object prefix (a.k.a. block_name) for the image */
3832
3833 ret = rbd_dev_v2_object_prefix(rbd_dev);
3834 if (ret < 0)
3835 goto out_err;
3836
3837 /* Get the and check features for the image */
3838
3839 ret = rbd_dev_v2_features(rbd_dev);
3840 if (ret < 0)
3841 goto out_err;
3842
3843 /* If the image supports layering, get the parent info */
3844
3845 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3846 ret = rbd_dev_v2_parent_info(rbd_dev);
3847 if (ret < 0)
3848 goto out_err;
3849 }
3850
3851 /* crypto and compression type aren't (yet) supported for v2 images */
3852
3853 rbd_dev->header.crypt_type = 0;
3854 rbd_dev->header.comp_type = 0;
3855
3856 /* Get the snapshot context, plus the header version */
3857
3858 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3859 if (ret)
3860 goto out_err;
3861 rbd_dev->header.obj_version = ver;
3862
3863 rbd_dev->image_format = 2;
3864
3865 dout("discovered version 2 image, header name is %s\n",
3866 rbd_dev->header_name);
3867
3868 return 0;
3869 out_err:
3870 rbd_dev->parent_overlap = 0;
3871 rbd_spec_put(rbd_dev->parent_spec);
3872 rbd_dev->parent_spec = NULL;
3873 kfree(rbd_dev->header_name);
3874 rbd_dev->header_name = NULL;
3875 kfree(rbd_dev->header.object_prefix);
3876 rbd_dev->header.object_prefix = NULL;
3877
3878 return ret;
3879 }
3880
3881 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3882 {
3883 int ret;
3884
3885 /* no need to lock here, as rbd_dev is not registered yet */
3886 ret = rbd_dev_snaps_update(rbd_dev);
3887 if (ret)
3888 return ret;
3889
3890 ret = rbd_dev_probe_update_spec(rbd_dev);
3891 if (ret)
3892 goto err_out_snaps;
3893
3894 ret = rbd_dev_set_mapping(rbd_dev);
3895 if (ret)
3896 goto err_out_snaps;
3897
3898 /* generate unique id: find highest unique id, add one */
3899 rbd_dev_id_get(rbd_dev);
3900
3901 /* Fill in the device name, now that we have its id. */
3902 BUILD_BUG_ON(DEV_NAME_LEN
3903 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3904 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3905
3906 /* Get our block major device number. */
3907
3908 ret = register_blkdev(0, rbd_dev->name);
3909 if (ret < 0)
3910 goto err_out_id;
3911 rbd_dev->major = ret;
3912
3913 /* Set up the blkdev mapping. */
3914
3915 ret = rbd_init_disk(rbd_dev);
3916 if (ret)
3917 goto err_out_blkdev;
3918
3919 ret = rbd_bus_add_dev(rbd_dev);
3920 if (ret)
3921 goto err_out_disk;
3922
3923 /*
3924 * At this point cleanup in the event of an error is the job
3925 * of the sysfs code (initiated by rbd_bus_del_dev()).
3926 */
3927 down_write(&rbd_dev->header_rwsem);
3928 ret = rbd_dev_snaps_register(rbd_dev);
3929 up_write(&rbd_dev->header_rwsem);
3930 if (ret)
3931 goto err_out_bus;
3932
3933 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
3934 if (ret)
3935 goto err_out_bus;
3936
3937 /* Everything's ready. Announce the disk to the world. */
3938
3939 add_disk(rbd_dev->disk);
3940
3941 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
3942 (unsigned long long) rbd_dev->mapping.size);
3943
3944 return ret;
3945 err_out_bus:
3946 /* this will also clean up rest of rbd_dev stuff */
3947
3948 rbd_bus_del_dev(rbd_dev);
3949
3950 return ret;
3951 err_out_disk:
3952 rbd_free_disk(rbd_dev);
3953 err_out_blkdev:
3954 unregister_blkdev(rbd_dev->major, rbd_dev->name);
3955 err_out_id:
3956 rbd_dev_id_put(rbd_dev);
3957 err_out_snaps:
3958 rbd_remove_all_snaps(rbd_dev);
3959
3960 return ret;
3961 }
3962
3963 /*
3964 * Probe for the existence of the header object for the given rbd
3965 * device. For format 2 images this includes determining the image
3966 * id.
3967 */
3968 static int rbd_dev_probe(struct rbd_device *rbd_dev)
3969 {
3970 int ret;
3971
3972 /*
3973 * Get the id from the image id object. If it's not a
3974 * format 2 image, we'll get ENOENT back, and we'll assume
3975 * it's a format 1 image.
3976 */
3977 ret = rbd_dev_image_id(rbd_dev);
3978 if (ret)
3979 ret = rbd_dev_v1_probe(rbd_dev);
3980 else
3981 ret = rbd_dev_v2_probe(rbd_dev);
3982 if (ret) {
3983 dout("probe failed, returning %d\n", ret);
3984
3985 return ret;
3986 }
3987
3988 ret = rbd_dev_probe_finish(rbd_dev);
3989 if (ret)
3990 rbd_header_free(&rbd_dev->header);
3991
3992 return ret;
3993 }
3994
3995 static ssize_t rbd_add(struct bus_type *bus,
3996 const char *buf,
3997 size_t count)
3998 {
3999 struct rbd_device *rbd_dev = NULL;
4000 struct ceph_options *ceph_opts = NULL;
4001 struct rbd_options *rbd_opts = NULL;
4002 struct rbd_spec *spec = NULL;
4003 struct rbd_client *rbdc;
4004 struct ceph_osd_client *osdc;
4005 int rc = -ENOMEM;
4006
4007 if (!try_module_get(THIS_MODULE))
4008 return -ENODEV;
4009
4010 /* parse add command */
4011 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4012 if (rc < 0)
4013 goto err_out_module;
4014
4015 rbdc = rbd_get_client(ceph_opts);
4016 if (IS_ERR(rbdc)) {
4017 rc = PTR_ERR(rbdc);
4018 goto err_out_args;
4019 }
4020 ceph_opts = NULL; /* rbd_dev client now owns this */
4021
4022 /* pick the pool */
4023 osdc = &rbdc->client->osdc;
4024 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4025 if (rc < 0)
4026 goto err_out_client;
4027 spec->pool_id = (u64) rc;
4028
4029 /* The ceph file layout needs to fit pool id in 32 bits */
4030
4031 if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4032 rc = -EIO;
4033 goto err_out_client;
4034 }
4035
4036 rbd_dev = rbd_dev_create(rbdc, spec);
4037 if (!rbd_dev)
4038 goto err_out_client;
4039 rbdc = NULL; /* rbd_dev now owns this */
4040 spec = NULL; /* rbd_dev now owns this */
4041
4042 rbd_dev->mapping.read_only = rbd_opts->read_only;
4043 kfree(rbd_opts);
4044 rbd_opts = NULL; /* done with this */
4045
4046 rc = rbd_dev_probe(rbd_dev);
4047 if (rc < 0)
4048 goto err_out_rbd_dev;
4049
4050 return count;
4051 err_out_rbd_dev:
4052 rbd_dev_destroy(rbd_dev);
4053 err_out_client:
4054 rbd_put_client(rbdc);
4055 err_out_args:
4056 if (ceph_opts)
4057 ceph_destroy_options(ceph_opts);
4058 kfree(rbd_opts);
4059 rbd_spec_put(spec);
4060 err_out_module:
4061 module_put(THIS_MODULE);
4062
4063 dout("Error adding device %s\n", buf);
4064
4065 return (ssize_t) rc;
4066 }
4067
4068 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4069 {
4070 struct list_head *tmp;
4071 struct rbd_device *rbd_dev;
4072
4073 spin_lock(&rbd_dev_list_lock);
4074 list_for_each(tmp, &rbd_dev_list) {
4075 rbd_dev = list_entry(tmp, struct rbd_device, node);
4076 if (rbd_dev->dev_id == dev_id) {
4077 spin_unlock(&rbd_dev_list_lock);
4078 return rbd_dev;
4079 }
4080 }
4081 spin_unlock(&rbd_dev_list_lock);
4082 return NULL;
4083 }
4084
4085 static void rbd_dev_release(struct device *dev)
4086 {
4087 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4088
4089 if (rbd_dev->watch_event)
4090 rbd_dev_header_watch_sync(rbd_dev, 0);
4091
4092 /* clean up and free blkdev */
4093 rbd_free_disk(rbd_dev);
4094 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4095
4096 /* release allocated disk header fields */
4097 rbd_header_free(&rbd_dev->header);
4098
4099 /* done with the id, and with the rbd_dev */
4100 rbd_dev_id_put(rbd_dev);
4101 rbd_assert(rbd_dev->rbd_client != NULL);
4102 rbd_dev_destroy(rbd_dev);
4103
4104 /* release module ref */
4105 module_put(THIS_MODULE);
4106 }
4107
4108 static ssize_t rbd_remove(struct bus_type *bus,
4109 const char *buf,
4110 size_t count)
4111 {
4112 struct rbd_device *rbd_dev = NULL;
4113 int target_id, rc;
4114 unsigned long ul;
4115 int ret = count;
4116
4117 rc = strict_strtoul(buf, 10, &ul);
4118 if (rc)
4119 return rc;
4120
4121 /* convert to int; abort if we lost anything in the conversion */
4122 target_id = (int) ul;
4123 if (target_id != ul)
4124 return -EINVAL;
4125
4126 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4127
4128 rbd_dev = __rbd_get_dev(target_id);
4129 if (!rbd_dev) {
4130 ret = -ENOENT;
4131 goto done;
4132 }
4133
4134 spin_lock_irq(&rbd_dev->lock);
4135 if (rbd_dev->open_count)
4136 ret = -EBUSY;
4137 else
4138 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4139 spin_unlock_irq(&rbd_dev->lock);
4140 if (ret < 0)
4141 goto done;
4142
4143 rbd_remove_all_snaps(rbd_dev);
4144 rbd_bus_del_dev(rbd_dev);
4145
4146 done:
4147 mutex_unlock(&ctl_mutex);
4148
4149 return ret;
4150 }
4151
4152 /*
4153 * create control files in sysfs
4154 * /sys/bus/rbd/...
4155 */
4156 static int rbd_sysfs_init(void)
4157 {
4158 int ret;
4159
4160 ret = device_register(&rbd_root_dev);
4161 if (ret < 0)
4162 return ret;
4163
4164 ret = bus_register(&rbd_bus_type);
4165 if (ret < 0)
4166 device_unregister(&rbd_root_dev);
4167
4168 return ret;
4169 }
4170
4171 static void rbd_sysfs_cleanup(void)
4172 {
4173 bus_unregister(&rbd_bus_type);
4174 device_unregister(&rbd_root_dev);
4175 }
4176
4177 static int __init rbd_init(void)
4178 {
4179 int rc;
4180
4181 if (!libceph_compatible(NULL)) {
4182 rbd_warn(NULL, "libceph incompatibility (quitting)");
4183
4184 return -EINVAL;
4185 }
4186 rc = rbd_sysfs_init();
4187 if (rc)
4188 return rc;
4189 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4190 return 0;
4191 }
4192
4193 static void __exit rbd_exit(void)
4194 {
4195 rbd_sysfs_cleanup();
4196 }
4197
4198 module_init(rbd_init);
4199 module_exit(rbd_exit);
4200
4201 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4202 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4203 MODULE_DESCRIPTION("rados block device");
4204
4205 /* following authorship retained from original osdblk.c */
4206 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4207
4208 MODULE_LICENSE("GPL");