]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/rbd.c
e6dab9f7dd7534cde6b8c239ee4e2deebe3855e7
[mirror_ubuntu-artful-kernel.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45
46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55 #define RBD_DRV_NAME "rbd"
56 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
57
58 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
59
60 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
61 #define RBD_MAX_SNAP_NAME_LEN \
62 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
63
64 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
65
66 #define RBD_SNAP_HEAD_NAME "-"
67
68 /* This allows a single page to hold an image name sent by OSD */
69 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
70 #define RBD_IMAGE_ID_LEN_MAX 64
71
72 #define RBD_OBJ_PREFIX_LEN_MAX 64
73
74 /* Feature bits */
75
76 #define RBD_FEATURE_LAYERING (1<<0)
77 #define RBD_FEATURE_STRIPINGV2 (1<<1)
78 #define RBD_FEATURES_ALL \
79 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
80
81 /* Features supported by this (client software) implementation. */
82
83 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
84
85 /*
86 * An RBD device name will be "rbd#", where the "rbd" comes from
87 * RBD_DRV_NAME above, and # is a unique integer identifier.
88 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
89 * enough to hold all possible device names.
90 */
91 #define DEV_NAME_LEN 32
92 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
93
94 /*
95 * block device image metadata (in-memory version)
96 */
97 struct rbd_image_header {
98 /* These four fields never change for a given rbd image */
99 char *object_prefix;
100 u64 features;
101 __u8 obj_order;
102 __u8 crypt_type;
103 __u8 comp_type;
104
105 /* The remaining fields need to be updated occasionally */
106 u64 image_size;
107 struct ceph_snap_context *snapc;
108 char *snap_names;
109 u64 *snap_sizes;
110
111 u64 stripe_unit;
112 u64 stripe_count;
113
114 u64 obj_version;
115 };
116
117 /*
118 * An rbd image specification.
119 *
120 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
121 * identify an image. Each rbd_dev structure includes a pointer to
122 * an rbd_spec structure that encapsulates this identity.
123 *
124 * Each of the id's in an rbd_spec has an associated name. For a
125 * user-mapped image, the names are supplied and the id's associated
126 * with them are looked up. For a layered image, a parent image is
127 * defined by the tuple, and the names are looked up.
128 *
129 * An rbd_dev structure contains a parent_spec pointer which is
130 * non-null if the image it represents is a child in a layered
131 * image. This pointer will refer to the rbd_spec structure used
132 * by the parent rbd_dev for its own identity (i.e., the structure
133 * is shared between the parent and child).
134 *
135 * Since these structures are populated once, during the discovery
136 * phase of image construction, they are effectively immutable so
137 * we make no effort to synchronize access to them.
138 *
139 * Note that code herein does not assume the image name is known (it
140 * could be a null pointer).
141 */
142 struct rbd_spec {
143 u64 pool_id;
144 const char *pool_name;
145
146 const char *image_id;
147 const char *image_name;
148
149 u64 snap_id;
150 const char *snap_name;
151
152 struct kref kref;
153 };
154
155 /*
156 * an instance of the client. multiple devices may share an rbd client.
157 */
158 struct rbd_client {
159 struct ceph_client *client;
160 struct kref kref;
161 struct list_head node;
162 };
163
164 struct rbd_img_request;
165 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
166
167 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
168
169 struct rbd_obj_request;
170 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
171
172 enum obj_request_type {
173 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
174 };
175
176 enum obj_req_flags {
177 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
178 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
179 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
180 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
181 };
182
183 struct rbd_obj_request {
184 const char *object_name;
185 u64 offset; /* object start byte */
186 u64 length; /* bytes from offset */
187 unsigned long flags;
188
189 /*
190 * An object request associated with an image will have its
191 * img_data flag set; a standalone object request will not.
192 *
193 * A standalone object request will have which == BAD_WHICH
194 * and a null obj_request pointer.
195 *
196 * An object request initiated in support of a layered image
197 * object (to check for its existence before a write) will
198 * have which == BAD_WHICH and a non-null obj_request pointer.
199 *
200 * Finally, an object request for rbd image data will have
201 * which != BAD_WHICH, and will have a non-null img_request
202 * pointer. The value of which will be in the range
203 * 0..(img_request->obj_request_count-1).
204 */
205 union {
206 struct rbd_obj_request *obj_request; /* STAT op */
207 struct {
208 struct rbd_img_request *img_request;
209 u64 img_offset;
210 /* links for img_request->obj_requests list */
211 struct list_head links;
212 };
213 };
214 u32 which; /* posn image request list */
215
216 enum obj_request_type type;
217 union {
218 struct bio *bio_list;
219 struct {
220 struct page **pages;
221 u32 page_count;
222 };
223 };
224 struct page **copyup_pages;
225
226 struct ceph_osd_request *osd_req;
227
228 u64 xferred; /* bytes transferred */
229 u64 version;
230 int result;
231
232 rbd_obj_callback_t callback;
233 struct completion completion;
234
235 struct kref kref;
236 };
237
238 enum img_req_flags {
239 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
240 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
241 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
242 };
243
244 struct rbd_img_request {
245 struct rbd_device *rbd_dev;
246 u64 offset; /* starting image byte offset */
247 u64 length; /* byte count from offset */
248 unsigned long flags;
249 union {
250 u64 snap_id; /* for reads */
251 struct ceph_snap_context *snapc; /* for writes */
252 };
253 union {
254 struct request *rq; /* block request */
255 struct rbd_obj_request *obj_request; /* obj req initiator */
256 };
257 struct page **copyup_pages;
258 spinlock_t completion_lock;/* protects next_completion */
259 u32 next_completion;
260 rbd_img_callback_t callback;
261 u64 xferred;/* aggregate bytes transferred */
262 int result; /* first nonzero obj_request result */
263
264 u32 obj_request_count;
265 struct list_head obj_requests; /* rbd_obj_request structs */
266
267 struct kref kref;
268 };
269
270 #define for_each_obj_request(ireq, oreq) \
271 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
272 #define for_each_obj_request_from(ireq, oreq) \
273 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_safe(ireq, oreq, n) \
275 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
276
277 struct rbd_snap {
278 const char *name;
279 u64 size;
280 struct list_head node;
281 u64 id;
282 u64 features;
283 };
284
285 struct rbd_mapping {
286 u64 size;
287 u64 features;
288 bool read_only;
289 };
290
291 /*
292 * a single device
293 */
294 struct rbd_device {
295 int dev_id; /* blkdev unique id */
296
297 int major; /* blkdev assigned major */
298 struct gendisk *disk; /* blkdev's gendisk and rq */
299
300 u32 image_format; /* Either 1 or 2 */
301 struct rbd_client *rbd_client;
302
303 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
304
305 spinlock_t lock; /* queue, flags, open_count */
306
307 struct rbd_image_header header;
308 unsigned long flags; /* possibly lock protected */
309 struct rbd_spec *spec;
310
311 char *header_name;
312
313 struct ceph_file_layout layout;
314
315 struct ceph_osd_event *watch_event;
316 struct rbd_obj_request *watch_request;
317
318 struct rbd_spec *parent_spec;
319 u64 parent_overlap;
320 struct rbd_device *parent;
321
322 /* protects updating the header */
323 struct rw_semaphore header_rwsem;
324
325 struct rbd_mapping mapping;
326
327 struct list_head node;
328
329 /* list of snapshots */
330 struct list_head snaps;
331
332 /* sysfs related */
333 struct device dev;
334 unsigned long open_count; /* protected by lock */
335 };
336
337 /*
338 * Flag bits for rbd_dev->flags. If atomicity is required,
339 * rbd_dev->lock is used to protect access.
340 *
341 * Currently, only the "removing" flag (which is coupled with the
342 * "open_count" field) requires atomic access.
343 */
344 enum rbd_dev_flags {
345 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
346 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
347 };
348
349 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
350
351 static LIST_HEAD(rbd_dev_list); /* devices */
352 static DEFINE_SPINLOCK(rbd_dev_list_lock);
353
354 static LIST_HEAD(rbd_client_list); /* clients */
355 static DEFINE_SPINLOCK(rbd_client_list_lock);
356
357 static int rbd_img_request_submit(struct rbd_img_request *img_request);
358
359 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
360
361 static void rbd_dev_release(struct device *dev);
362 static void rbd_snap_destroy(struct rbd_snap *snap);
363
364 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
365 size_t count);
366 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
367 size_t count);
368 static int rbd_dev_probe(struct rbd_device *rbd_dev);
369
370 static struct bus_attribute rbd_bus_attrs[] = {
371 __ATTR(add, S_IWUSR, NULL, rbd_add),
372 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
373 __ATTR_NULL
374 };
375
376 static struct bus_type rbd_bus_type = {
377 .name = "rbd",
378 .bus_attrs = rbd_bus_attrs,
379 };
380
381 static void rbd_root_dev_release(struct device *dev)
382 {
383 }
384
385 static struct device rbd_root_dev = {
386 .init_name = "rbd",
387 .release = rbd_root_dev_release,
388 };
389
390 static __printf(2, 3)
391 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
392 {
393 struct va_format vaf;
394 va_list args;
395
396 va_start(args, fmt);
397 vaf.fmt = fmt;
398 vaf.va = &args;
399
400 if (!rbd_dev)
401 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
402 else if (rbd_dev->disk)
403 printk(KERN_WARNING "%s: %s: %pV\n",
404 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
405 else if (rbd_dev->spec && rbd_dev->spec->image_name)
406 printk(KERN_WARNING "%s: image %s: %pV\n",
407 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
408 else if (rbd_dev->spec && rbd_dev->spec->image_id)
409 printk(KERN_WARNING "%s: id %s: %pV\n",
410 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
411 else /* punt */
412 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
413 RBD_DRV_NAME, rbd_dev, &vaf);
414 va_end(args);
415 }
416
417 #ifdef RBD_DEBUG
418 #define rbd_assert(expr) \
419 if (unlikely(!(expr))) { \
420 printk(KERN_ERR "\nAssertion failure in %s() " \
421 "at line %d:\n\n" \
422 "\trbd_assert(%s);\n\n", \
423 __func__, __LINE__, #expr); \
424 BUG(); \
425 }
426 #else /* !RBD_DEBUG */
427 # define rbd_assert(expr) ((void) 0)
428 #endif /* !RBD_DEBUG */
429
430 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
431 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
432
433 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
434 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
435
436 static int rbd_open(struct block_device *bdev, fmode_t mode)
437 {
438 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
439 bool removing = false;
440
441 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
442 return -EROFS;
443
444 spin_lock_irq(&rbd_dev->lock);
445 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
446 removing = true;
447 else
448 rbd_dev->open_count++;
449 spin_unlock_irq(&rbd_dev->lock);
450 if (removing)
451 return -ENOENT;
452
453 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
454 (void) get_device(&rbd_dev->dev);
455 set_device_ro(bdev, rbd_dev->mapping.read_only);
456 mutex_unlock(&ctl_mutex);
457
458 return 0;
459 }
460
461 static int rbd_release(struct gendisk *disk, fmode_t mode)
462 {
463 struct rbd_device *rbd_dev = disk->private_data;
464 unsigned long open_count_before;
465
466 spin_lock_irq(&rbd_dev->lock);
467 open_count_before = rbd_dev->open_count--;
468 spin_unlock_irq(&rbd_dev->lock);
469 rbd_assert(open_count_before > 0);
470
471 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
472 put_device(&rbd_dev->dev);
473 mutex_unlock(&ctl_mutex);
474
475 return 0;
476 }
477
478 static const struct block_device_operations rbd_bd_ops = {
479 .owner = THIS_MODULE,
480 .open = rbd_open,
481 .release = rbd_release,
482 };
483
484 /*
485 * Initialize an rbd client instance.
486 * We own *ceph_opts.
487 */
488 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
489 {
490 struct rbd_client *rbdc;
491 int ret = -ENOMEM;
492
493 dout("%s:\n", __func__);
494 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
495 if (!rbdc)
496 goto out_opt;
497
498 kref_init(&rbdc->kref);
499 INIT_LIST_HEAD(&rbdc->node);
500
501 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
502
503 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
504 if (IS_ERR(rbdc->client))
505 goto out_mutex;
506 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
507
508 ret = ceph_open_session(rbdc->client);
509 if (ret < 0)
510 goto out_err;
511
512 spin_lock(&rbd_client_list_lock);
513 list_add_tail(&rbdc->node, &rbd_client_list);
514 spin_unlock(&rbd_client_list_lock);
515
516 mutex_unlock(&ctl_mutex);
517 dout("%s: rbdc %p\n", __func__, rbdc);
518
519 return rbdc;
520
521 out_err:
522 ceph_destroy_client(rbdc->client);
523 out_mutex:
524 mutex_unlock(&ctl_mutex);
525 kfree(rbdc);
526 out_opt:
527 if (ceph_opts)
528 ceph_destroy_options(ceph_opts);
529 dout("%s: error %d\n", __func__, ret);
530
531 return ERR_PTR(ret);
532 }
533
534 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
535 {
536 kref_get(&rbdc->kref);
537
538 return rbdc;
539 }
540
541 /*
542 * Find a ceph client with specific addr and configuration. If
543 * found, bump its reference count.
544 */
545 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
546 {
547 struct rbd_client *client_node;
548 bool found = false;
549
550 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
551 return NULL;
552
553 spin_lock(&rbd_client_list_lock);
554 list_for_each_entry(client_node, &rbd_client_list, node) {
555 if (!ceph_compare_options(ceph_opts, client_node->client)) {
556 __rbd_get_client(client_node);
557
558 found = true;
559 break;
560 }
561 }
562 spin_unlock(&rbd_client_list_lock);
563
564 return found ? client_node : NULL;
565 }
566
567 /*
568 * mount options
569 */
570 enum {
571 Opt_last_int,
572 /* int args above */
573 Opt_last_string,
574 /* string args above */
575 Opt_read_only,
576 Opt_read_write,
577 /* Boolean args above */
578 Opt_last_bool,
579 };
580
581 static match_table_t rbd_opts_tokens = {
582 /* int args above */
583 /* string args above */
584 {Opt_read_only, "read_only"},
585 {Opt_read_only, "ro"}, /* Alternate spelling */
586 {Opt_read_write, "read_write"},
587 {Opt_read_write, "rw"}, /* Alternate spelling */
588 /* Boolean args above */
589 {-1, NULL}
590 };
591
592 struct rbd_options {
593 bool read_only;
594 };
595
596 #define RBD_READ_ONLY_DEFAULT false
597
598 static int parse_rbd_opts_token(char *c, void *private)
599 {
600 struct rbd_options *rbd_opts = private;
601 substring_t argstr[MAX_OPT_ARGS];
602 int token, intval, ret;
603
604 token = match_token(c, rbd_opts_tokens, argstr);
605 if (token < 0)
606 return -EINVAL;
607
608 if (token < Opt_last_int) {
609 ret = match_int(&argstr[0], &intval);
610 if (ret < 0) {
611 pr_err("bad mount option arg (not int) "
612 "at '%s'\n", c);
613 return ret;
614 }
615 dout("got int token %d val %d\n", token, intval);
616 } else if (token > Opt_last_int && token < Opt_last_string) {
617 dout("got string token %d val %s\n", token,
618 argstr[0].from);
619 } else if (token > Opt_last_string && token < Opt_last_bool) {
620 dout("got Boolean token %d\n", token);
621 } else {
622 dout("got token %d\n", token);
623 }
624
625 switch (token) {
626 case Opt_read_only:
627 rbd_opts->read_only = true;
628 break;
629 case Opt_read_write:
630 rbd_opts->read_only = false;
631 break;
632 default:
633 rbd_assert(false);
634 break;
635 }
636 return 0;
637 }
638
639 /*
640 * Get a ceph client with specific addr and configuration, if one does
641 * not exist create it.
642 */
643 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
644 {
645 struct rbd_client *rbdc;
646
647 rbdc = rbd_client_find(ceph_opts);
648 if (rbdc) /* using an existing client */
649 ceph_destroy_options(ceph_opts);
650 else
651 rbdc = rbd_client_create(ceph_opts);
652
653 return rbdc;
654 }
655
656 /*
657 * Destroy ceph client
658 *
659 * Caller must hold rbd_client_list_lock.
660 */
661 static void rbd_client_release(struct kref *kref)
662 {
663 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
664
665 dout("%s: rbdc %p\n", __func__, rbdc);
666 spin_lock(&rbd_client_list_lock);
667 list_del(&rbdc->node);
668 spin_unlock(&rbd_client_list_lock);
669
670 ceph_destroy_client(rbdc->client);
671 kfree(rbdc);
672 }
673
674 /* Caller has to fill in snapc->seq and snapc->snaps[0..snap_count-1] */
675
676 static struct ceph_snap_context *rbd_snap_context_create(u32 snap_count)
677 {
678 struct ceph_snap_context *snapc;
679 size_t size;
680
681 size = sizeof (struct ceph_snap_context);
682 size += snap_count * sizeof (snapc->snaps[0]);
683 snapc = kzalloc(size, GFP_KERNEL);
684 if (!snapc)
685 return NULL;
686
687 atomic_set(&snapc->nref, 1);
688 snapc->num_snaps = snap_count;
689
690 return snapc;
691 }
692
693 static inline void rbd_snap_context_get(struct ceph_snap_context *snapc)
694 {
695 (void)ceph_get_snap_context(snapc);
696 }
697
698 static inline void rbd_snap_context_put(struct ceph_snap_context *snapc)
699 {
700 ceph_put_snap_context(snapc);
701 }
702
703 /*
704 * Drop reference to ceph client node. If it's not referenced anymore, release
705 * it.
706 */
707 static void rbd_put_client(struct rbd_client *rbdc)
708 {
709 if (rbdc)
710 kref_put(&rbdc->kref, rbd_client_release);
711 }
712
713 static bool rbd_image_format_valid(u32 image_format)
714 {
715 return image_format == 1 || image_format == 2;
716 }
717
718 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
719 {
720 size_t size;
721 u32 snap_count;
722
723 /* The header has to start with the magic rbd header text */
724 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
725 return false;
726
727 /* The bio layer requires at least sector-sized I/O */
728
729 if (ondisk->options.order < SECTOR_SHIFT)
730 return false;
731
732 /* If we use u64 in a few spots we may be able to loosen this */
733
734 if (ondisk->options.order > 8 * sizeof (int) - 1)
735 return false;
736
737 /*
738 * The size of a snapshot header has to fit in a size_t, and
739 * that limits the number of snapshots.
740 */
741 snap_count = le32_to_cpu(ondisk->snap_count);
742 size = SIZE_MAX - sizeof (struct ceph_snap_context);
743 if (snap_count > size / sizeof (__le64))
744 return false;
745
746 /*
747 * Not only that, but the size of the entire the snapshot
748 * header must also be representable in a size_t.
749 */
750 size -= snap_count * sizeof (__le64);
751 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
752 return false;
753
754 return true;
755 }
756
757 /*
758 * Create a new header structure, translate header format from the on-disk
759 * header.
760 */
761 static int rbd_header_from_disk(struct rbd_image_header *header,
762 struct rbd_image_header_ondisk *ondisk)
763 {
764 u32 snap_count;
765 size_t len;
766 size_t size;
767 u32 i;
768
769 memset(header, 0, sizeof (*header));
770
771 snap_count = le32_to_cpu(ondisk->snap_count);
772
773 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
774 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
775 if (!header->object_prefix)
776 return -ENOMEM;
777 memcpy(header->object_prefix, ondisk->object_prefix, len);
778 header->object_prefix[len] = '\0';
779
780 if (snap_count) {
781 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
782
783 /* Save a copy of the snapshot names */
784
785 if (snap_names_len > (u64) SIZE_MAX)
786 return -EIO;
787 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
788 if (!header->snap_names)
789 goto out_err;
790 /*
791 * Note that rbd_dev_v1_header_read() guarantees
792 * the ondisk buffer we're working with has
793 * snap_names_len bytes beyond the end of the
794 * snapshot id array, this memcpy() is safe.
795 */
796 memcpy(header->snap_names, &ondisk->snaps[snap_count],
797 snap_names_len);
798
799 /* Record each snapshot's size */
800
801 size = snap_count * sizeof (*header->snap_sizes);
802 header->snap_sizes = kmalloc(size, GFP_KERNEL);
803 if (!header->snap_sizes)
804 goto out_err;
805 for (i = 0; i < snap_count; i++)
806 header->snap_sizes[i] =
807 le64_to_cpu(ondisk->snaps[i].image_size);
808 } else {
809 header->snap_names = NULL;
810 header->snap_sizes = NULL;
811 }
812
813 header->features = 0; /* No features support in v1 images */
814 header->obj_order = ondisk->options.order;
815 header->crypt_type = ondisk->options.crypt_type;
816 header->comp_type = ondisk->options.comp_type;
817
818 /* Allocate and fill in the snapshot context */
819
820 header->image_size = le64_to_cpu(ondisk->image_size);
821
822 header->snapc = rbd_snap_context_create(snap_count);
823 if (!header->snapc)
824 goto out_err;
825 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
826 for (i = 0; i < snap_count; i++)
827 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
828
829 return 0;
830
831 out_err:
832 kfree(header->snap_sizes);
833 header->snap_sizes = NULL;
834 kfree(header->snap_names);
835 header->snap_names = NULL;
836 kfree(header->object_prefix);
837 header->object_prefix = NULL;
838
839 return -ENOMEM;
840 }
841
842 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
843 {
844 struct rbd_snap *snap;
845
846 if (snap_id == CEPH_NOSNAP)
847 return RBD_SNAP_HEAD_NAME;
848
849 list_for_each_entry(snap, &rbd_dev->snaps, node)
850 if (snap_id == snap->id)
851 return snap->name;
852
853 return NULL;
854 }
855
856 static struct rbd_snap *snap_by_name(struct rbd_device *rbd_dev,
857 const char *snap_name)
858 {
859 struct rbd_snap *snap;
860
861 list_for_each_entry(snap, &rbd_dev->snaps, node)
862 if (!strcmp(snap_name, snap->name))
863 return snap;
864
865 return NULL;
866 }
867
868 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
869 {
870 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
871 sizeof (RBD_SNAP_HEAD_NAME))) {
872 rbd_dev->mapping.size = rbd_dev->header.image_size;
873 rbd_dev->mapping.features = rbd_dev->header.features;
874 } else {
875 struct rbd_snap *snap;
876
877 snap = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
878 if (!snap)
879 return -ENOENT;
880 rbd_dev->mapping.size = snap->size;
881 rbd_dev->mapping.features = snap->features;
882 rbd_dev->mapping.read_only = true;
883 }
884 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
885
886 return 0;
887 }
888
889 static void rbd_header_free(struct rbd_image_header *header)
890 {
891 kfree(header->object_prefix);
892 header->object_prefix = NULL;
893 kfree(header->snap_sizes);
894 header->snap_sizes = NULL;
895 kfree(header->snap_names);
896 header->snap_names = NULL;
897 rbd_snap_context_put(header->snapc);
898 header->snapc = NULL;
899 }
900
901 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
902 {
903 char *name;
904 u64 segment;
905 int ret;
906
907 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
908 if (!name)
909 return NULL;
910 segment = offset >> rbd_dev->header.obj_order;
911 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
912 rbd_dev->header.object_prefix, segment);
913 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
914 pr_err("error formatting segment name for #%llu (%d)\n",
915 segment, ret);
916 kfree(name);
917 name = NULL;
918 }
919
920 return name;
921 }
922
923 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
924 {
925 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
926
927 return offset & (segment_size - 1);
928 }
929
930 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
931 u64 offset, u64 length)
932 {
933 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
934
935 offset &= segment_size - 1;
936
937 rbd_assert(length <= U64_MAX - offset);
938 if (offset + length > segment_size)
939 length = segment_size - offset;
940
941 return length;
942 }
943
944 /*
945 * returns the size of an object in the image
946 */
947 static u64 rbd_obj_bytes(struct rbd_image_header *header)
948 {
949 return 1 << header->obj_order;
950 }
951
952 /*
953 * bio helpers
954 */
955
956 static void bio_chain_put(struct bio *chain)
957 {
958 struct bio *tmp;
959
960 while (chain) {
961 tmp = chain;
962 chain = chain->bi_next;
963 bio_put(tmp);
964 }
965 }
966
967 /*
968 * zeros a bio chain, starting at specific offset
969 */
970 static void zero_bio_chain(struct bio *chain, int start_ofs)
971 {
972 struct bio_vec *bv;
973 unsigned long flags;
974 void *buf;
975 int i;
976 int pos = 0;
977
978 while (chain) {
979 bio_for_each_segment(bv, chain, i) {
980 if (pos + bv->bv_len > start_ofs) {
981 int remainder = max(start_ofs - pos, 0);
982 buf = bvec_kmap_irq(bv, &flags);
983 memset(buf + remainder, 0,
984 bv->bv_len - remainder);
985 bvec_kunmap_irq(buf, &flags);
986 }
987 pos += bv->bv_len;
988 }
989
990 chain = chain->bi_next;
991 }
992 }
993
994 /*
995 * similar to zero_bio_chain(), zeros data defined by a page array,
996 * starting at the given byte offset from the start of the array and
997 * continuing up to the given end offset. The pages array is
998 * assumed to be big enough to hold all bytes up to the end.
999 */
1000 static void zero_pages(struct page **pages, u64 offset, u64 end)
1001 {
1002 struct page **page = &pages[offset >> PAGE_SHIFT];
1003
1004 rbd_assert(end > offset);
1005 rbd_assert(end - offset <= (u64)SIZE_MAX);
1006 while (offset < end) {
1007 size_t page_offset;
1008 size_t length;
1009 unsigned long flags;
1010 void *kaddr;
1011
1012 page_offset = (size_t)(offset & ~PAGE_MASK);
1013 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1014 local_irq_save(flags);
1015 kaddr = kmap_atomic(*page);
1016 memset(kaddr + page_offset, 0, length);
1017 kunmap_atomic(kaddr);
1018 local_irq_restore(flags);
1019
1020 offset += length;
1021 page++;
1022 }
1023 }
1024
1025 /*
1026 * Clone a portion of a bio, starting at the given byte offset
1027 * and continuing for the number of bytes indicated.
1028 */
1029 static struct bio *bio_clone_range(struct bio *bio_src,
1030 unsigned int offset,
1031 unsigned int len,
1032 gfp_t gfpmask)
1033 {
1034 struct bio_vec *bv;
1035 unsigned int resid;
1036 unsigned short idx;
1037 unsigned int voff;
1038 unsigned short end_idx;
1039 unsigned short vcnt;
1040 struct bio *bio;
1041
1042 /* Handle the easy case for the caller */
1043
1044 if (!offset && len == bio_src->bi_size)
1045 return bio_clone(bio_src, gfpmask);
1046
1047 if (WARN_ON_ONCE(!len))
1048 return NULL;
1049 if (WARN_ON_ONCE(len > bio_src->bi_size))
1050 return NULL;
1051 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1052 return NULL;
1053
1054 /* Find first affected segment... */
1055
1056 resid = offset;
1057 __bio_for_each_segment(bv, bio_src, idx, 0) {
1058 if (resid < bv->bv_len)
1059 break;
1060 resid -= bv->bv_len;
1061 }
1062 voff = resid;
1063
1064 /* ...and the last affected segment */
1065
1066 resid += len;
1067 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1068 if (resid <= bv->bv_len)
1069 break;
1070 resid -= bv->bv_len;
1071 }
1072 vcnt = end_idx - idx + 1;
1073
1074 /* Build the clone */
1075
1076 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1077 if (!bio)
1078 return NULL; /* ENOMEM */
1079
1080 bio->bi_bdev = bio_src->bi_bdev;
1081 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1082 bio->bi_rw = bio_src->bi_rw;
1083 bio->bi_flags |= 1 << BIO_CLONED;
1084
1085 /*
1086 * Copy over our part of the bio_vec, then update the first
1087 * and last (or only) entries.
1088 */
1089 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1090 vcnt * sizeof (struct bio_vec));
1091 bio->bi_io_vec[0].bv_offset += voff;
1092 if (vcnt > 1) {
1093 bio->bi_io_vec[0].bv_len -= voff;
1094 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1095 } else {
1096 bio->bi_io_vec[0].bv_len = len;
1097 }
1098
1099 bio->bi_vcnt = vcnt;
1100 bio->bi_size = len;
1101 bio->bi_idx = 0;
1102
1103 return bio;
1104 }
1105
1106 /*
1107 * Clone a portion of a bio chain, starting at the given byte offset
1108 * into the first bio in the source chain and continuing for the
1109 * number of bytes indicated. The result is another bio chain of
1110 * exactly the given length, or a null pointer on error.
1111 *
1112 * The bio_src and offset parameters are both in-out. On entry they
1113 * refer to the first source bio and the offset into that bio where
1114 * the start of data to be cloned is located.
1115 *
1116 * On return, bio_src is updated to refer to the bio in the source
1117 * chain that contains first un-cloned byte, and *offset will
1118 * contain the offset of that byte within that bio.
1119 */
1120 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1121 unsigned int *offset,
1122 unsigned int len,
1123 gfp_t gfpmask)
1124 {
1125 struct bio *bi = *bio_src;
1126 unsigned int off = *offset;
1127 struct bio *chain = NULL;
1128 struct bio **end;
1129
1130 /* Build up a chain of clone bios up to the limit */
1131
1132 if (!bi || off >= bi->bi_size || !len)
1133 return NULL; /* Nothing to clone */
1134
1135 end = &chain;
1136 while (len) {
1137 unsigned int bi_size;
1138 struct bio *bio;
1139
1140 if (!bi) {
1141 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1142 goto out_err; /* EINVAL; ran out of bio's */
1143 }
1144 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1145 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1146 if (!bio)
1147 goto out_err; /* ENOMEM */
1148
1149 *end = bio;
1150 end = &bio->bi_next;
1151
1152 off += bi_size;
1153 if (off == bi->bi_size) {
1154 bi = bi->bi_next;
1155 off = 0;
1156 }
1157 len -= bi_size;
1158 }
1159 *bio_src = bi;
1160 *offset = off;
1161
1162 return chain;
1163 out_err:
1164 bio_chain_put(chain);
1165
1166 return NULL;
1167 }
1168
1169 /*
1170 * The default/initial value for all object request flags is 0. For
1171 * each flag, once its value is set to 1 it is never reset to 0
1172 * again.
1173 */
1174 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1175 {
1176 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1177 struct rbd_device *rbd_dev;
1178
1179 rbd_dev = obj_request->img_request->rbd_dev;
1180 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1181 obj_request);
1182 }
1183 }
1184
1185 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1186 {
1187 smp_mb();
1188 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1189 }
1190
1191 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1192 {
1193 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1194 struct rbd_device *rbd_dev = NULL;
1195
1196 if (obj_request_img_data_test(obj_request))
1197 rbd_dev = obj_request->img_request->rbd_dev;
1198 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1199 obj_request);
1200 }
1201 }
1202
1203 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1204 {
1205 smp_mb();
1206 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1207 }
1208
1209 /*
1210 * This sets the KNOWN flag after (possibly) setting the EXISTS
1211 * flag. The latter is set based on the "exists" value provided.
1212 *
1213 * Note that for our purposes once an object exists it never goes
1214 * away again. It's possible that the response from two existence
1215 * checks are separated by the creation of the target object, and
1216 * the first ("doesn't exist") response arrives *after* the second
1217 * ("does exist"). In that case we ignore the second one.
1218 */
1219 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1220 bool exists)
1221 {
1222 if (exists)
1223 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1224 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1225 smp_mb();
1226 }
1227
1228 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1229 {
1230 smp_mb();
1231 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1232 }
1233
1234 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1235 {
1236 smp_mb();
1237 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1238 }
1239
1240 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1241 {
1242 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1243 atomic_read(&obj_request->kref.refcount));
1244 kref_get(&obj_request->kref);
1245 }
1246
1247 static void rbd_obj_request_destroy(struct kref *kref);
1248 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1249 {
1250 rbd_assert(obj_request != NULL);
1251 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1252 atomic_read(&obj_request->kref.refcount));
1253 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1254 }
1255
1256 static void rbd_img_request_get(struct rbd_img_request *img_request)
1257 {
1258 dout("%s: img %p (was %d)\n", __func__, img_request,
1259 atomic_read(&img_request->kref.refcount));
1260 kref_get(&img_request->kref);
1261 }
1262
1263 static void rbd_img_request_destroy(struct kref *kref);
1264 static void rbd_img_request_put(struct rbd_img_request *img_request)
1265 {
1266 rbd_assert(img_request != NULL);
1267 dout("%s: img %p (was %d)\n", __func__, img_request,
1268 atomic_read(&img_request->kref.refcount));
1269 kref_put(&img_request->kref, rbd_img_request_destroy);
1270 }
1271
1272 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1273 struct rbd_obj_request *obj_request)
1274 {
1275 rbd_assert(obj_request->img_request == NULL);
1276
1277 /* Image request now owns object's original reference */
1278 obj_request->img_request = img_request;
1279 obj_request->which = img_request->obj_request_count;
1280 rbd_assert(!obj_request_img_data_test(obj_request));
1281 obj_request_img_data_set(obj_request);
1282 rbd_assert(obj_request->which != BAD_WHICH);
1283 img_request->obj_request_count++;
1284 list_add_tail(&obj_request->links, &img_request->obj_requests);
1285 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1286 obj_request->which);
1287 }
1288
1289 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1290 struct rbd_obj_request *obj_request)
1291 {
1292 rbd_assert(obj_request->which != BAD_WHICH);
1293
1294 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1295 obj_request->which);
1296 list_del(&obj_request->links);
1297 rbd_assert(img_request->obj_request_count > 0);
1298 img_request->obj_request_count--;
1299 rbd_assert(obj_request->which == img_request->obj_request_count);
1300 obj_request->which = BAD_WHICH;
1301 rbd_assert(obj_request_img_data_test(obj_request));
1302 rbd_assert(obj_request->img_request == img_request);
1303 obj_request->img_request = NULL;
1304 obj_request->callback = NULL;
1305 rbd_obj_request_put(obj_request);
1306 }
1307
1308 static bool obj_request_type_valid(enum obj_request_type type)
1309 {
1310 switch (type) {
1311 case OBJ_REQUEST_NODATA:
1312 case OBJ_REQUEST_BIO:
1313 case OBJ_REQUEST_PAGES:
1314 return true;
1315 default:
1316 return false;
1317 }
1318 }
1319
1320 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1321 struct rbd_obj_request *obj_request)
1322 {
1323 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1324
1325 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1326 }
1327
1328 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1329 {
1330
1331 dout("%s: img %p\n", __func__, img_request);
1332
1333 /*
1334 * If no error occurred, compute the aggregate transfer
1335 * count for the image request. We could instead use
1336 * atomic64_cmpxchg() to update it as each object request
1337 * completes; not clear which way is better off hand.
1338 */
1339 if (!img_request->result) {
1340 struct rbd_obj_request *obj_request;
1341 u64 xferred = 0;
1342
1343 for_each_obj_request(img_request, obj_request)
1344 xferred += obj_request->xferred;
1345 img_request->xferred = xferred;
1346 }
1347
1348 if (img_request->callback)
1349 img_request->callback(img_request);
1350 else
1351 rbd_img_request_put(img_request);
1352 }
1353
1354 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1355
1356 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1357 {
1358 dout("%s: obj %p\n", __func__, obj_request);
1359
1360 return wait_for_completion_interruptible(&obj_request->completion);
1361 }
1362
1363 /*
1364 * The default/initial value for all image request flags is 0. Each
1365 * is conditionally set to 1 at image request initialization time
1366 * and currently never change thereafter.
1367 */
1368 static void img_request_write_set(struct rbd_img_request *img_request)
1369 {
1370 set_bit(IMG_REQ_WRITE, &img_request->flags);
1371 smp_mb();
1372 }
1373
1374 static bool img_request_write_test(struct rbd_img_request *img_request)
1375 {
1376 smp_mb();
1377 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1378 }
1379
1380 static void img_request_child_set(struct rbd_img_request *img_request)
1381 {
1382 set_bit(IMG_REQ_CHILD, &img_request->flags);
1383 smp_mb();
1384 }
1385
1386 static bool img_request_child_test(struct rbd_img_request *img_request)
1387 {
1388 smp_mb();
1389 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1390 }
1391
1392 static void img_request_layered_set(struct rbd_img_request *img_request)
1393 {
1394 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1395 smp_mb();
1396 }
1397
1398 static bool img_request_layered_test(struct rbd_img_request *img_request)
1399 {
1400 smp_mb();
1401 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1402 }
1403
1404 static void
1405 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1406 {
1407 u64 xferred = obj_request->xferred;
1408 u64 length = obj_request->length;
1409
1410 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1411 obj_request, obj_request->img_request, obj_request->result,
1412 xferred, length);
1413 /*
1414 * ENOENT means a hole in the image. We zero-fill the
1415 * entire length of the request. A short read also implies
1416 * zero-fill to the end of the request. Either way we
1417 * update the xferred count to indicate the whole request
1418 * was satisfied.
1419 */
1420 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1421 if (obj_request->result == -ENOENT) {
1422 if (obj_request->type == OBJ_REQUEST_BIO)
1423 zero_bio_chain(obj_request->bio_list, 0);
1424 else
1425 zero_pages(obj_request->pages, 0, length);
1426 obj_request->result = 0;
1427 obj_request->xferred = length;
1428 } else if (xferred < length && !obj_request->result) {
1429 if (obj_request->type == OBJ_REQUEST_BIO)
1430 zero_bio_chain(obj_request->bio_list, xferred);
1431 else
1432 zero_pages(obj_request->pages, xferred, length);
1433 obj_request->xferred = length;
1434 }
1435 obj_request_done_set(obj_request);
1436 }
1437
1438 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1439 {
1440 dout("%s: obj %p cb %p\n", __func__, obj_request,
1441 obj_request->callback);
1442 if (obj_request->callback)
1443 obj_request->callback(obj_request);
1444 else
1445 complete_all(&obj_request->completion);
1446 }
1447
1448 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1449 {
1450 dout("%s: obj %p\n", __func__, obj_request);
1451 obj_request_done_set(obj_request);
1452 }
1453
1454 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1455 {
1456 struct rbd_img_request *img_request = NULL;
1457 struct rbd_device *rbd_dev = NULL;
1458 bool layered = false;
1459
1460 if (obj_request_img_data_test(obj_request)) {
1461 img_request = obj_request->img_request;
1462 layered = img_request && img_request_layered_test(img_request);
1463 rbd_dev = img_request->rbd_dev;
1464 }
1465
1466 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1467 obj_request, img_request, obj_request->result,
1468 obj_request->xferred, obj_request->length);
1469 if (layered && obj_request->result == -ENOENT &&
1470 obj_request->img_offset < rbd_dev->parent_overlap)
1471 rbd_img_parent_read(obj_request);
1472 else if (img_request)
1473 rbd_img_obj_request_read_callback(obj_request);
1474 else
1475 obj_request_done_set(obj_request);
1476 }
1477
1478 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1479 {
1480 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1481 obj_request->result, obj_request->length);
1482 /*
1483 * There is no such thing as a successful short write. Set
1484 * it to our originally-requested length.
1485 */
1486 obj_request->xferred = obj_request->length;
1487 obj_request_done_set(obj_request);
1488 }
1489
1490 /*
1491 * For a simple stat call there's nothing to do. We'll do more if
1492 * this is part of a write sequence for a layered image.
1493 */
1494 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1495 {
1496 dout("%s: obj %p\n", __func__, obj_request);
1497 obj_request_done_set(obj_request);
1498 }
1499
1500 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1501 struct ceph_msg *msg)
1502 {
1503 struct rbd_obj_request *obj_request = osd_req->r_priv;
1504 u16 opcode;
1505
1506 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1507 rbd_assert(osd_req == obj_request->osd_req);
1508 if (obj_request_img_data_test(obj_request)) {
1509 rbd_assert(obj_request->img_request);
1510 rbd_assert(obj_request->which != BAD_WHICH);
1511 } else {
1512 rbd_assert(obj_request->which == BAD_WHICH);
1513 }
1514
1515 if (osd_req->r_result < 0)
1516 obj_request->result = osd_req->r_result;
1517 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1518
1519 BUG_ON(osd_req->r_num_ops > 2);
1520
1521 /*
1522 * We support a 64-bit length, but ultimately it has to be
1523 * passed to blk_end_request(), which takes an unsigned int.
1524 */
1525 obj_request->xferred = osd_req->r_reply_op_len[0];
1526 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1527 opcode = osd_req->r_ops[0].op;
1528 switch (opcode) {
1529 case CEPH_OSD_OP_READ:
1530 rbd_osd_read_callback(obj_request);
1531 break;
1532 case CEPH_OSD_OP_WRITE:
1533 rbd_osd_write_callback(obj_request);
1534 break;
1535 case CEPH_OSD_OP_STAT:
1536 rbd_osd_stat_callback(obj_request);
1537 break;
1538 case CEPH_OSD_OP_CALL:
1539 case CEPH_OSD_OP_NOTIFY_ACK:
1540 case CEPH_OSD_OP_WATCH:
1541 rbd_osd_trivial_callback(obj_request);
1542 break;
1543 default:
1544 rbd_warn(NULL, "%s: unsupported op %hu\n",
1545 obj_request->object_name, (unsigned short) opcode);
1546 break;
1547 }
1548
1549 if (obj_request_done_test(obj_request))
1550 rbd_obj_request_complete(obj_request);
1551 }
1552
1553 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1554 {
1555 struct rbd_img_request *img_request = obj_request->img_request;
1556 struct ceph_osd_request *osd_req = obj_request->osd_req;
1557 u64 snap_id;
1558
1559 rbd_assert(osd_req != NULL);
1560
1561 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1562 ceph_osdc_build_request(osd_req, obj_request->offset,
1563 NULL, snap_id, NULL);
1564 }
1565
1566 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1567 {
1568 struct rbd_img_request *img_request = obj_request->img_request;
1569 struct ceph_osd_request *osd_req = obj_request->osd_req;
1570 struct ceph_snap_context *snapc;
1571 struct timespec mtime = CURRENT_TIME;
1572
1573 rbd_assert(osd_req != NULL);
1574
1575 snapc = img_request ? img_request->snapc : NULL;
1576 ceph_osdc_build_request(osd_req, obj_request->offset,
1577 snapc, CEPH_NOSNAP, &mtime);
1578 }
1579
1580 static struct ceph_osd_request *rbd_osd_req_create(
1581 struct rbd_device *rbd_dev,
1582 bool write_request,
1583 struct rbd_obj_request *obj_request)
1584 {
1585 struct ceph_snap_context *snapc = NULL;
1586 struct ceph_osd_client *osdc;
1587 struct ceph_osd_request *osd_req;
1588
1589 if (obj_request_img_data_test(obj_request)) {
1590 struct rbd_img_request *img_request = obj_request->img_request;
1591
1592 rbd_assert(write_request ==
1593 img_request_write_test(img_request));
1594 if (write_request)
1595 snapc = img_request->snapc;
1596 }
1597
1598 /* Allocate and initialize the request, for the single op */
1599
1600 osdc = &rbd_dev->rbd_client->client->osdc;
1601 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1602 if (!osd_req)
1603 return NULL; /* ENOMEM */
1604
1605 if (write_request)
1606 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1607 else
1608 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1609
1610 osd_req->r_callback = rbd_osd_req_callback;
1611 osd_req->r_priv = obj_request;
1612
1613 osd_req->r_oid_len = strlen(obj_request->object_name);
1614 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1615 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1616
1617 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1618
1619 return osd_req;
1620 }
1621
1622 /*
1623 * Create a copyup osd request based on the information in the
1624 * object request supplied. A copyup request has two osd ops,
1625 * a copyup method call, and a "normal" write request.
1626 */
1627 static struct ceph_osd_request *
1628 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1629 {
1630 struct rbd_img_request *img_request;
1631 struct ceph_snap_context *snapc;
1632 struct rbd_device *rbd_dev;
1633 struct ceph_osd_client *osdc;
1634 struct ceph_osd_request *osd_req;
1635
1636 rbd_assert(obj_request_img_data_test(obj_request));
1637 img_request = obj_request->img_request;
1638 rbd_assert(img_request);
1639 rbd_assert(img_request_write_test(img_request));
1640
1641 /* Allocate and initialize the request, for the two ops */
1642
1643 snapc = img_request->snapc;
1644 rbd_dev = img_request->rbd_dev;
1645 osdc = &rbd_dev->rbd_client->client->osdc;
1646 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1647 if (!osd_req)
1648 return NULL; /* ENOMEM */
1649
1650 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1651 osd_req->r_callback = rbd_osd_req_callback;
1652 osd_req->r_priv = obj_request;
1653
1654 osd_req->r_oid_len = strlen(obj_request->object_name);
1655 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1656 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1657
1658 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1659
1660 return osd_req;
1661 }
1662
1663
1664 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1665 {
1666 ceph_osdc_put_request(osd_req);
1667 }
1668
1669 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1670
1671 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1672 u64 offset, u64 length,
1673 enum obj_request_type type)
1674 {
1675 struct rbd_obj_request *obj_request;
1676 size_t size;
1677 char *name;
1678
1679 rbd_assert(obj_request_type_valid(type));
1680
1681 size = strlen(object_name) + 1;
1682 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1683 if (!obj_request)
1684 return NULL;
1685
1686 name = (char *)(obj_request + 1);
1687 obj_request->object_name = memcpy(name, object_name, size);
1688 obj_request->offset = offset;
1689 obj_request->length = length;
1690 obj_request->flags = 0;
1691 obj_request->which = BAD_WHICH;
1692 obj_request->type = type;
1693 INIT_LIST_HEAD(&obj_request->links);
1694 init_completion(&obj_request->completion);
1695 kref_init(&obj_request->kref);
1696
1697 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1698 offset, length, (int)type, obj_request);
1699
1700 return obj_request;
1701 }
1702
1703 static void rbd_obj_request_destroy(struct kref *kref)
1704 {
1705 struct rbd_obj_request *obj_request;
1706
1707 obj_request = container_of(kref, struct rbd_obj_request, kref);
1708
1709 dout("%s: obj %p\n", __func__, obj_request);
1710
1711 rbd_assert(obj_request->img_request == NULL);
1712 rbd_assert(obj_request->which == BAD_WHICH);
1713
1714 if (obj_request->osd_req)
1715 rbd_osd_req_destroy(obj_request->osd_req);
1716
1717 rbd_assert(obj_request_type_valid(obj_request->type));
1718 switch (obj_request->type) {
1719 case OBJ_REQUEST_NODATA:
1720 break; /* Nothing to do */
1721 case OBJ_REQUEST_BIO:
1722 if (obj_request->bio_list)
1723 bio_chain_put(obj_request->bio_list);
1724 break;
1725 case OBJ_REQUEST_PAGES:
1726 if (obj_request->pages)
1727 ceph_release_page_vector(obj_request->pages,
1728 obj_request->page_count);
1729 break;
1730 }
1731
1732 kfree(obj_request);
1733 }
1734
1735 /*
1736 * Caller is responsible for filling in the list of object requests
1737 * that comprises the image request, and the Linux request pointer
1738 * (if there is one).
1739 */
1740 static struct rbd_img_request *rbd_img_request_create(
1741 struct rbd_device *rbd_dev,
1742 u64 offset, u64 length,
1743 bool write_request,
1744 bool child_request)
1745 {
1746 struct rbd_img_request *img_request;
1747
1748 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1749 if (!img_request)
1750 return NULL;
1751
1752 if (write_request) {
1753 down_read(&rbd_dev->header_rwsem);
1754 rbd_snap_context_get(rbd_dev->header.snapc);
1755 up_read(&rbd_dev->header_rwsem);
1756 }
1757
1758 img_request->rq = NULL;
1759 img_request->rbd_dev = rbd_dev;
1760 img_request->offset = offset;
1761 img_request->length = length;
1762 img_request->flags = 0;
1763 if (write_request) {
1764 img_request_write_set(img_request);
1765 img_request->snapc = rbd_dev->header.snapc;
1766 } else {
1767 img_request->snap_id = rbd_dev->spec->snap_id;
1768 }
1769 if (child_request)
1770 img_request_child_set(img_request);
1771 if (rbd_dev->parent_spec)
1772 img_request_layered_set(img_request);
1773 spin_lock_init(&img_request->completion_lock);
1774 img_request->next_completion = 0;
1775 img_request->callback = NULL;
1776 img_request->result = 0;
1777 img_request->obj_request_count = 0;
1778 INIT_LIST_HEAD(&img_request->obj_requests);
1779 kref_init(&img_request->kref);
1780
1781 rbd_img_request_get(img_request); /* Avoid a warning */
1782 rbd_img_request_put(img_request); /* TEMPORARY */
1783
1784 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1785 write_request ? "write" : "read", offset, length,
1786 img_request);
1787
1788 return img_request;
1789 }
1790
1791 static void rbd_img_request_destroy(struct kref *kref)
1792 {
1793 struct rbd_img_request *img_request;
1794 struct rbd_obj_request *obj_request;
1795 struct rbd_obj_request *next_obj_request;
1796
1797 img_request = container_of(kref, struct rbd_img_request, kref);
1798
1799 dout("%s: img %p\n", __func__, img_request);
1800
1801 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1802 rbd_img_obj_request_del(img_request, obj_request);
1803 rbd_assert(img_request->obj_request_count == 0);
1804
1805 if (img_request_write_test(img_request))
1806 rbd_snap_context_put(img_request->snapc);
1807
1808 if (img_request_child_test(img_request))
1809 rbd_obj_request_put(img_request->obj_request);
1810
1811 kfree(img_request);
1812 }
1813
1814 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1815 {
1816 struct rbd_img_request *img_request;
1817 unsigned int xferred;
1818 int result;
1819 bool more;
1820
1821 rbd_assert(obj_request_img_data_test(obj_request));
1822 img_request = obj_request->img_request;
1823
1824 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1825 xferred = (unsigned int)obj_request->xferred;
1826 result = obj_request->result;
1827 if (result) {
1828 struct rbd_device *rbd_dev = img_request->rbd_dev;
1829
1830 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1831 img_request_write_test(img_request) ? "write" : "read",
1832 obj_request->length, obj_request->img_offset,
1833 obj_request->offset);
1834 rbd_warn(rbd_dev, " result %d xferred %x\n",
1835 result, xferred);
1836 if (!img_request->result)
1837 img_request->result = result;
1838 }
1839
1840 /* Image object requests don't own their page array */
1841
1842 if (obj_request->type == OBJ_REQUEST_PAGES) {
1843 obj_request->pages = NULL;
1844 obj_request->page_count = 0;
1845 }
1846
1847 if (img_request_child_test(img_request)) {
1848 rbd_assert(img_request->obj_request != NULL);
1849 more = obj_request->which < img_request->obj_request_count - 1;
1850 } else {
1851 rbd_assert(img_request->rq != NULL);
1852 more = blk_end_request(img_request->rq, result, xferred);
1853 }
1854
1855 return more;
1856 }
1857
1858 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1859 {
1860 struct rbd_img_request *img_request;
1861 u32 which = obj_request->which;
1862 bool more = true;
1863
1864 rbd_assert(obj_request_img_data_test(obj_request));
1865 img_request = obj_request->img_request;
1866
1867 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1868 rbd_assert(img_request != NULL);
1869 rbd_assert(img_request->obj_request_count > 0);
1870 rbd_assert(which != BAD_WHICH);
1871 rbd_assert(which < img_request->obj_request_count);
1872 rbd_assert(which >= img_request->next_completion);
1873
1874 spin_lock_irq(&img_request->completion_lock);
1875 if (which != img_request->next_completion)
1876 goto out;
1877
1878 for_each_obj_request_from(img_request, obj_request) {
1879 rbd_assert(more);
1880 rbd_assert(which < img_request->obj_request_count);
1881
1882 if (!obj_request_done_test(obj_request))
1883 break;
1884 more = rbd_img_obj_end_request(obj_request);
1885 which++;
1886 }
1887
1888 rbd_assert(more ^ (which == img_request->obj_request_count));
1889 img_request->next_completion = which;
1890 out:
1891 spin_unlock_irq(&img_request->completion_lock);
1892
1893 if (!more)
1894 rbd_img_request_complete(img_request);
1895 }
1896
1897 /*
1898 * Split up an image request into one or more object requests, each
1899 * to a different object. The "type" parameter indicates whether
1900 * "data_desc" is the pointer to the head of a list of bio
1901 * structures, or the base of a page array. In either case this
1902 * function assumes data_desc describes memory sufficient to hold
1903 * all data described by the image request.
1904 */
1905 static int rbd_img_request_fill(struct rbd_img_request *img_request,
1906 enum obj_request_type type,
1907 void *data_desc)
1908 {
1909 struct rbd_device *rbd_dev = img_request->rbd_dev;
1910 struct rbd_obj_request *obj_request = NULL;
1911 struct rbd_obj_request *next_obj_request;
1912 bool write_request = img_request_write_test(img_request);
1913 struct bio *bio_list;
1914 unsigned int bio_offset = 0;
1915 struct page **pages;
1916 u64 img_offset;
1917 u64 resid;
1918 u16 opcode;
1919
1920 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
1921 (int)type, data_desc);
1922
1923 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
1924 img_offset = img_request->offset;
1925 resid = img_request->length;
1926 rbd_assert(resid > 0);
1927
1928 if (type == OBJ_REQUEST_BIO) {
1929 bio_list = data_desc;
1930 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
1931 } else {
1932 rbd_assert(type == OBJ_REQUEST_PAGES);
1933 pages = data_desc;
1934 }
1935
1936 while (resid) {
1937 struct ceph_osd_request *osd_req;
1938 const char *object_name;
1939 u64 offset;
1940 u64 length;
1941
1942 object_name = rbd_segment_name(rbd_dev, img_offset);
1943 if (!object_name)
1944 goto out_unwind;
1945 offset = rbd_segment_offset(rbd_dev, img_offset);
1946 length = rbd_segment_length(rbd_dev, img_offset, resid);
1947 obj_request = rbd_obj_request_create(object_name,
1948 offset, length, type);
1949 kfree(object_name); /* object request has its own copy */
1950 if (!obj_request)
1951 goto out_unwind;
1952
1953 if (type == OBJ_REQUEST_BIO) {
1954 unsigned int clone_size;
1955
1956 rbd_assert(length <= (u64)UINT_MAX);
1957 clone_size = (unsigned int)length;
1958 obj_request->bio_list =
1959 bio_chain_clone_range(&bio_list,
1960 &bio_offset,
1961 clone_size,
1962 GFP_ATOMIC);
1963 if (!obj_request->bio_list)
1964 goto out_partial;
1965 } else {
1966 unsigned int page_count;
1967
1968 obj_request->pages = pages;
1969 page_count = (u32)calc_pages_for(offset, length);
1970 obj_request->page_count = page_count;
1971 if ((offset + length) & ~PAGE_MASK)
1972 page_count--; /* more on last page */
1973 pages += page_count;
1974 }
1975
1976 osd_req = rbd_osd_req_create(rbd_dev, write_request,
1977 obj_request);
1978 if (!osd_req)
1979 goto out_partial;
1980 obj_request->osd_req = osd_req;
1981 obj_request->callback = rbd_img_obj_callback;
1982
1983 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
1984 0, 0);
1985 if (type == OBJ_REQUEST_BIO)
1986 osd_req_op_extent_osd_data_bio(osd_req, 0,
1987 obj_request->bio_list, length);
1988 else
1989 osd_req_op_extent_osd_data_pages(osd_req, 0,
1990 obj_request->pages, length,
1991 offset & ~PAGE_MASK, false, false);
1992
1993 if (write_request)
1994 rbd_osd_req_format_write(obj_request);
1995 else
1996 rbd_osd_req_format_read(obj_request);
1997
1998 obj_request->img_offset = img_offset;
1999 rbd_img_obj_request_add(img_request, obj_request);
2000
2001 img_offset += length;
2002 resid -= length;
2003 }
2004
2005 return 0;
2006
2007 out_partial:
2008 rbd_obj_request_put(obj_request);
2009 out_unwind:
2010 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2011 rbd_obj_request_put(obj_request);
2012
2013 return -ENOMEM;
2014 }
2015
2016 static void
2017 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2018 {
2019 struct rbd_img_request *img_request;
2020 struct rbd_device *rbd_dev;
2021 u64 length;
2022 u32 page_count;
2023
2024 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2025 rbd_assert(obj_request_img_data_test(obj_request));
2026 img_request = obj_request->img_request;
2027 rbd_assert(img_request);
2028
2029 rbd_dev = img_request->rbd_dev;
2030 rbd_assert(rbd_dev);
2031 length = (u64)1 << rbd_dev->header.obj_order;
2032 page_count = (u32)calc_pages_for(0, length);
2033
2034 rbd_assert(obj_request->copyup_pages);
2035 ceph_release_page_vector(obj_request->copyup_pages, page_count);
2036 obj_request->copyup_pages = NULL;
2037
2038 /*
2039 * We want the transfer count to reflect the size of the
2040 * original write request. There is no such thing as a
2041 * successful short write, so if the request was successful
2042 * we can just set it to the originally-requested length.
2043 */
2044 if (!obj_request->result)
2045 obj_request->xferred = obj_request->length;
2046
2047 /* Finish up with the normal image object callback */
2048
2049 rbd_img_obj_callback(obj_request);
2050 }
2051
2052 static void
2053 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2054 {
2055 struct rbd_obj_request *orig_request;
2056 struct ceph_osd_request *osd_req;
2057 struct ceph_osd_client *osdc;
2058 struct rbd_device *rbd_dev;
2059 struct page **pages;
2060 int result;
2061 u64 obj_size;
2062 u64 xferred;
2063
2064 rbd_assert(img_request_child_test(img_request));
2065
2066 /* First get what we need from the image request */
2067
2068 pages = img_request->copyup_pages;
2069 rbd_assert(pages != NULL);
2070 img_request->copyup_pages = NULL;
2071
2072 orig_request = img_request->obj_request;
2073 rbd_assert(orig_request != NULL);
2074 rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2075 result = img_request->result;
2076 obj_size = img_request->length;
2077 xferred = img_request->xferred;
2078
2079 rbd_dev = img_request->rbd_dev;
2080 rbd_assert(rbd_dev);
2081 rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2082
2083 rbd_img_request_put(img_request);
2084
2085 if (result)
2086 goto out_err;
2087
2088 /* Allocate the new copyup osd request for the original request */
2089
2090 result = -ENOMEM;
2091 rbd_assert(!orig_request->osd_req);
2092 osd_req = rbd_osd_req_create_copyup(orig_request);
2093 if (!osd_req)
2094 goto out_err;
2095 orig_request->osd_req = osd_req;
2096 orig_request->copyup_pages = pages;
2097
2098 /* Initialize the copyup op */
2099
2100 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2101 osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2102 false, false);
2103
2104 /* Then the original write request op */
2105
2106 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2107 orig_request->offset,
2108 orig_request->length, 0, 0);
2109 osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2110 orig_request->length);
2111
2112 rbd_osd_req_format_write(orig_request);
2113
2114 /* All set, send it off. */
2115
2116 orig_request->callback = rbd_img_obj_copyup_callback;
2117 osdc = &rbd_dev->rbd_client->client->osdc;
2118 result = rbd_obj_request_submit(osdc, orig_request);
2119 if (!result)
2120 return;
2121 out_err:
2122 /* Record the error code and complete the request */
2123
2124 orig_request->result = result;
2125 orig_request->xferred = 0;
2126 obj_request_done_set(orig_request);
2127 rbd_obj_request_complete(orig_request);
2128 }
2129
2130 /*
2131 * Read from the parent image the range of data that covers the
2132 * entire target of the given object request. This is used for
2133 * satisfying a layered image write request when the target of an
2134 * object request from the image request does not exist.
2135 *
2136 * A page array big enough to hold the returned data is allocated
2137 * and supplied to rbd_img_request_fill() as the "data descriptor."
2138 * When the read completes, this page array will be transferred to
2139 * the original object request for the copyup operation.
2140 *
2141 * If an error occurs, record it as the result of the original
2142 * object request and mark it done so it gets completed.
2143 */
2144 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2145 {
2146 struct rbd_img_request *img_request = NULL;
2147 struct rbd_img_request *parent_request = NULL;
2148 struct rbd_device *rbd_dev;
2149 u64 img_offset;
2150 u64 length;
2151 struct page **pages = NULL;
2152 u32 page_count;
2153 int result;
2154
2155 rbd_assert(obj_request_img_data_test(obj_request));
2156 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2157
2158 img_request = obj_request->img_request;
2159 rbd_assert(img_request != NULL);
2160 rbd_dev = img_request->rbd_dev;
2161 rbd_assert(rbd_dev->parent != NULL);
2162
2163 /*
2164 * First things first. The original osd request is of no
2165 * use to use any more, we'll need a new one that can hold
2166 * the two ops in a copyup request. We'll get that later,
2167 * but for now we can release the old one.
2168 */
2169 rbd_osd_req_destroy(obj_request->osd_req);
2170 obj_request->osd_req = NULL;
2171
2172 /*
2173 * Determine the byte range covered by the object in the
2174 * child image to which the original request was to be sent.
2175 */
2176 img_offset = obj_request->img_offset - obj_request->offset;
2177 length = (u64)1 << rbd_dev->header.obj_order;
2178
2179 /*
2180 * There is no defined parent data beyond the parent
2181 * overlap, so limit what we read at that boundary if
2182 * necessary.
2183 */
2184 if (img_offset + length > rbd_dev->parent_overlap) {
2185 rbd_assert(img_offset < rbd_dev->parent_overlap);
2186 length = rbd_dev->parent_overlap - img_offset;
2187 }
2188
2189 /*
2190 * Allocate a page array big enough to receive the data read
2191 * from the parent.
2192 */
2193 page_count = (u32)calc_pages_for(0, length);
2194 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2195 if (IS_ERR(pages)) {
2196 result = PTR_ERR(pages);
2197 pages = NULL;
2198 goto out_err;
2199 }
2200
2201 result = -ENOMEM;
2202 parent_request = rbd_img_request_create(rbd_dev->parent,
2203 img_offset, length,
2204 false, true);
2205 if (!parent_request)
2206 goto out_err;
2207 rbd_obj_request_get(obj_request);
2208 parent_request->obj_request = obj_request;
2209
2210 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2211 if (result)
2212 goto out_err;
2213 parent_request->copyup_pages = pages;
2214
2215 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2216 result = rbd_img_request_submit(parent_request);
2217 if (!result)
2218 return 0;
2219
2220 parent_request->copyup_pages = NULL;
2221 parent_request->obj_request = NULL;
2222 rbd_obj_request_put(obj_request);
2223 out_err:
2224 if (pages)
2225 ceph_release_page_vector(pages, page_count);
2226 if (parent_request)
2227 rbd_img_request_put(parent_request);
2228 obj_request->result = result;
2229 obj_request->xferred = 0;
2230 obj_request_done_set(obj_request);
2231
2232 return result;
2233 }
2234
2235 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2236 {
2237 struct rbd_obj_request *orig_request;
2238 int result;
2239
2240 rbd_assert(!obj_request_img_data_test(obj_request));
2241
2242 /*
2243 * All we need from the object request is the original
2244 * request and the result of the STAT op. Grab those, then
2245 * we're done with the request.
2246 */
2247 orig_request = obj_request->obj_request;
2248 obj_request->obj_request = NULL;
2249 rbd_assert(orig_request);
2250 rbd_assert(orig_request->img_request);
2251
2252 result = obj_request->result;
2253 obj_request->result = 0;
2254
2255 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2256 obj_request, orig_request, result,
2257 obj_request->xferred, obj_request->length);
2258 rbd_obj_request_put(obj_request);
2259
2260 rbd_assert(orig_request);
2261 rbd_assert(orig_request->img_request);
2262
2263 /*
2264 * Our only purpose here is to determine whether the object
2265 * exists, and we don't want to treat the non-existence as
2266 * an error. If something else comes back, transfer the
2267 * error to the original request and complete it now.
2268 */
2269 if (!result) {
2270 obj_request_existence_set(orig_request, true);
2271 } else if (result == -ENOENT) {
2272 obj_request_existence_set(orig_request, false);
2273 } else if (result) {
2274 orig_request->result = result;
2275 goto out;
2276 }
2277
2278 /*
2279 * Resubmit the original request now that we have recorded
2280 * whether the target object exists.
2281 */
2282 orig_request->result = rbd_img_obj_request_submit(orig_request);
2283 out:
2284 if (orig_request->result)
2285 rbd_obj_request_complete(orig_request);
2286 rbd_obj_request_put(orig_request);
2287 }
2288
2289 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2290 {
2291 struct rbd_obj_request *stat_request;
2292 struct rbd_device *rbd_dev;
2293 struct ceph_osd_client *osdc;
2294 struct page **pages = NULL;
2295 u32 page_count;
2296 size_t size;
2297 int ret;
2298
2299 /*
2300 * The response data for a STAT call consists of:
2301 * le64 length;
2302 * struct {
2303 * le32 tv_sec;
2304 * le32 tv_nsec;
2305 * } mtime;
2306 */
2307 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2308 page_count = (u32)calc_pages_for(0, size);
2309 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2310 if (IS_ERR(pages))
2311 return PTR_ERR(pages);
2312
2313 ret = -ENOMEM;
2314 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2315 OBJ_REQUEST_PAGES);
2316 if (!stat_request)
2317 goto out;
2318
2319 rbd_obj_request_get(obj_request);
2320 stat_request->obj_request = obj_request;
2321 stat_request->pages = pages;
2322 stat_request->page_count = page_count;
2323
2324 rbd_assert(obj_request->img_request);
2325 rbd_dev = obj_request->img_request->rbd_dev;
2326 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2327 stat_request);
2328 if (!stat_request->osd_req)
2329 goto out;
2330 stat_request->callback = rbd_img_obj_exists_callback;
2331
2332 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2333 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2334 false, false);
2335 rbd_osd_req_format_read(stat_request);
2336
2337 osdc = &rbd_dev->rbd_client->client->osdc;
2338 ret = rbd_obj_request_submit(osdc, stat_request);
2339 out:
2340 if (ret)
2341 rbd_obj_request_put(obj_request);
2342
2343 return ret;
2344 }
2345
2346 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2347 {
2348 struct rbd_img_request *img_request;
2349 struct rbd_device *rbd_dev;
2350 bool known;
2351
2352 rbd_assert(obj_request_img_data_test(obj_request));
2353
2354 img_request = obj_request->img_request;
2355 rbd_assert(img_request);
2356 rbd_dev = img_request->rbd_dev;
2357
2358 /*
2359 * Only writes to layered images need special handling.
2360 * Reads and non-layered writes are simple object requests.
2361 * Layered writes that start beyond the end of the overlap
2362 * with the parent have no parent data, so they too are
2363 * simple object requests. Finally, if the target object is
2364 * known to already exist, its parent data has already been
2365 * copied, so a write to the object can also be handled as a
2366 * simple object request.
2367 */
2368 if (!img_request_write_test(img_request) ||
2369 !img_request_layered_test(img_request) ||
2370 rbd_dev->parent_overlap <= obj_request->img_offset ||
2371 ((known = obj_request_known_test(obj_request)) &&
2372 obj_request_exists_test(obj_request))) {
2373
2374 struct rbd_device *rbd_dev;
2375 struct ceph_osd_client *osdc;
2376
2377 rbd_dev = obj_request->img_request->rbd_dev;
2378 osdc = &rbd_dev->rbd_client->client->osdc;
2379
2380 return rbd_obj_request_submit(osdc, obj_request);
2381 }
2382
2383 /*
2384 * It's a layered write. The target object might exist but
2385 * we may not know that yet. If we know it doesn't exist,
2386 * start by reading the data for the full target object from
2387 * the parent so we can use it for a copyup to the target.
2388 */
2389 if (known)
2390 return rbd_img_obj_parent_read_full(obj_request);
2391
2392 /* We don't know whether the target exists. Go find out. */
2393
2394 return rbd_img_obj_exists_submit(obj_request);
2395 }
2396
2397 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2398 {
2399 struct rbd_obj_request *obj_request;
2400 struct rbd_obj_request *next_obj_request;
2401
2402 dout("%s: img %p\n", __func__, img_request);
2403 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2404 int ret;
2405
2406 ret = rbd_img_obj_request_submit(obj_request);
2407 if (ret)
2408 return ret;
2409 }
2410
2411 return 0;
2412 }
2413
2414 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2415 {
2416 struct rbd_obj_request *obj_request;
2417 struct rbd_device *rbd_dev;
2418 u64 obj_end;
2419
2420 rbd_assert(img_request_child_test(img_request));
2421
2422 obj_request = img_request->obj_request;
2423 rbd_assert(obj_request);
2424 rbd_assert(obj_request->img_request);
2425
2426 obj_request->result = img_request->result;
2427 if (obj_request->result)
2428 goto out;
2429
2430 /*
2431 * We need to zero anything beyond the parent overlap
2432 * boundary. Since rbd_img_obj_request_read_callback()
2433 * will zero anything beyond the end of a short read, an
2434 * easy way to do this is to pretend the data from the
2435 * parent came up short--ending at the overlap boundary.
2436 */
2437 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2438 obj_end = obj_request->img_offset + obj_request->length;
2439 rbd_dev = obj_request->img_request->rbd_dev;
2440 if (obj_end > rbd_dev->parent_overlap) {
2441 u64 xferred = 0;
2442
2443 if (obj_request->img_offset < rbd_dev->parent_overlap)
2444 xferred = rbd_dev->parent_overlap -
2445 obj_request->img_offset;
2446
2447 obj_request->xferred = min(img_request->xferred, xferred);
2448 } else {
2449 obj_request->xferred = img_request->xferred;
2450 }
2451 out:
2452 rbd_img_obj_request_read_callback(obj_request);
2453 rbd_obj_request_complete(obj_request);
2454 }
2455
2456 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2457 {
2458 struct rbd_device *rbd_dev;
2459 struct rbd_img_request *img_request;
2460 int result;
2461
2462 rbd_assert(obj_request_img_data_test(obj_request));
2463 rbd_assert(obj_request->img_request != NULL);
2464 rbd_assert(obj_request->result == (s32) -ENOENT);
2465 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2466
2467 rbd_dev = obj_request->img_request->rbd_dev;
2468 rbd_assert(rbd_dev->parent != NULL);
2469 /* rbd_read_finish(obj_request, obj_request->length); */
2470 img_request = rbd_img_request_create(rbd_dev->parent,
2471 obj_request->img_offset,
2472 obj_request->length,
2473 false, true);
2474 result = -ENOMEM;
2475 if (!img_request)
2476 goto out_err;
2477
2478 rbd_obj_request_get(obj_request);
2479 img_request->obj_request = obj_request;
2480
2481 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2482 obj_request->bio_list);
2483 if (result)
2484 goto out_err;
2485
2486 img_request->callback = rbd_img_parent_read_callback;
2487 result = rbd_img_request_submit(img_request);
2488 if (result)
2489 goto out_err;
2490
2491 return;
2492 out_err:
2493 if (img_request)
2494 rbd_img_request_put(img_request);
2495 obj_request->result = result;
2496 obj_request->xferred = 0;
2497 obj_request_done_set(obj_request);
2498 }
2499
2500 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
2501 u64 ver, u64 notify_id)
2502 {
2503 struct rbd_obj_request *obj_request;
2504 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2505 int ret;
2506
2507 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2508 OBJ_REQUEST_NODATA);
2509 if (!obj_request)
2510 return -ENOMEM;
2511
2512 ret = -ENOMEM;
2513 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2514 if (!obj_request->osd_req)
2515 goto out;
2516 obj_request->callback = rbd_obj_request_put;
2517
2518 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2519 notify_id, ver, 0);
2520 rbd_osd_req_format_read(obj_request);
2521
2522 ret = rbd_obj_request_submit(osdc, obj_request);
2523 out:
2524 if (ret)
2525 rbd_obj_request_put(obj_request);
2526
2527 return ret;
2528 }
2529
2530 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2531 {
2532 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2533 u64 hver;
2534
2535 if (!rbd_dev)
2536 return;
2537
2538 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2539 rbd_dev->header_name, (unsigned long long) notify_id,
2540 (unsigned int) opcode);
2541 (void)rbd_dev_refresh(rbd_dev, &hver);
2542
2543 rbd_obj_notify_ack(rbd_dev, hver, notify_id);
2544 }
2545
2546 /*
2547 * Request sync osd watch/unwatch. The value of "start" determines
2548 * whether a watch request is being initiated or torn down.
2549 */
2550 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2551 {
2552 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2553 struct rbd_obj_request *obj_request;
2554 int ret;
2555
2556 rbd_assert(start ^ !!rbd_dev->watch_event);
2557 rbd_assert(start ^ !!rbd_dev->watch_request);
2558
2559 if (start) {
2560 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2561 &rbd_dev->watch_event);
2562 if (ret < 0)
2563 return ret;
2564 rbd_assert(rbd_dev->watch_event != NULL);
2565 }
2566
2567 ret = -ENOMEM;
2568 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2569 OBJ_REQUEST_NODATA);
2570 if (!obj_request)
2571 goto out_cancel;
2572
2573 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2574 if (!obj_request->osd_req)
2575 goto out_cancel;
2576
2577 if (start)
2578 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2579 else
2580 ceph_osdc_unregister_linger_request(osdc,
2581 rbd_dev->watch_request->osd_req);
2582
2583 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2584 rbd_dev->watch_event->cookie,
2585 rbd_dev->header.obj_version, start);
2586 rbd_osd_req_format_write(obj_request);
2587
2588 ret = rbd_obj_request_submit(osdc, obj_request);
2589 if (ret)
2590 goto out_cancel;
2591 ret = rbd_obj_request_wait(obj_request);
2592 if (ret)
2593 goto out_cancel;
2594 ret = obj_request->result;
2595 if (ret)
2596 goto out_cancel;
2597
2598 /*
2599 * A watch request is set to linger, so the underlying osd
2600 * request won't go away until we unregister it. We retain
2601 * a pointer to the object request during that time (in
2602 * rbd_dev->watch_request), so we'll keep a reference to
2603 * it. We'll drop that reference (below) after we've
2604 * unregistered it.
2605 */
2606 if (start) {
2607 rbd_dev->watch_request = obj_request;
2608
2609 return 0;
2610 }
2611
2612 /* We have successfully torn down the watch request */
2613
2614 rbd_obj_request_put(rbd_dev->watch_request);
2615 rbd_dev->watch_request = NULL;
2616 out_cancel:
2617 /* Cancel the event if we're tearing down, or on error */
2618 ceph_osdc_cancel_event(rbd_dev->watch_event);
2619 rbd_dev->watch_event = NULL;
2620 if (obj_request)
2621 rbd_obj_request_put(obj_request);
2622
2623 return ret;
2624 }
2625
2626 /*
2627 * Synchronous osd object method call. Returns the number of bytes
2628 * returned in the outbound buffer, or a negative error code.
2629 */
2630 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2631 const char *object_name,
2632 const char *class_name,
2633 const char *method_name,
2634 const void *outbound,
2635 size_t outbound_size,
2636 void *inbound,
2637 size_t inbound_size,
2638 u64 *version)
2639 {
2640 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2641 struct rbd_obj_request *obj_request;
2642 struct page **pages;
2643 u32 page_count;
2644 int ret;
2645
2646 /*
2647 * Method calls are ultimately read operations. The result
2648 * should placed into the inbound buffer provided. They
2649 * also supply outbound data--parameters for the object
2650 * method. Currently if this is present it will be a
2651 * snapshot id.
2652 */
2653 page_count = (u32)calc_pages_for(0, inbound_size);
2654 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2655 if (IS_ERR(pages))
2656 return PTR_ERR(pages);
2657
2658 ret = -ENOMEM;
2659 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2660 OBJ_REQUEST_PAGES);
2661 if (!obj_request)
2662 goto out;
2663
2664 obj_request->pages = pages;
2665 obj_request->page_count = page_count;
2666
2667 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2668 if (!obj_request->osd_req)
2669 goto out;
2670
2671 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2672 class_name, method_name);
2673 if (outbound_size) {
2674 struct ceph_pagelist *pagelist;
2675
2676 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2677 if (!pagelist)
2678 goto out;
2679
2680 ceph_pagelist_init(pagelist);
2681 ceph_pagelist_append(pagelist, outbound, outbound_size);
2682 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2683 pagelist);
2684 }
2685 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2686 obj_request->pages, inbound_size,
2687 0, false, false);
2688 rbd_osd_req_format_read(obj_request);
2689
2690 ret = rbd_obj_request_submit(osdc, obj_request);
2691 if (ret)
2692 goto out;
2693 ret = rbd_obj_request_wait(obj_request);
2694 if (ret)
2695 goto out;
2696
2697 ret = obj_request->result;
2698 if (ret < 0)
2699 goto out;
2700
2701 rbd_assert(obj_request->xferred < (u64)INT_MAX);
2702 ret = (int)obj_request->xferred;
2703 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2704 if (version)
2705 *version = obj_request->version;
2706 out:
2707 if (obj_request)
2708 rbd_obj_request_put(obj_request);
2709 else
2710 ceph_release_page_vector(pages, page_count);
2711
2712 return ret;
2713 }
2714
2715 static void rbd_request_fn(struct request_queue *q)
2716 __releases(q->queue_lock) __acquires(q->queue_lock)
2717 {
2718 struct rbd_device *rbd_dev = q->queuedata;
2719 bool read_only = rbd_dev->mapping.read_only;
2720 struct request *rq;
2721 int result;
2722
2723 while ((rq = blk_fetch_request(q))) {
2724 bool write_request = rq_data_dir(rq) == WRITE;
2725 struct rbd_img_request *img_request;
2726 u64 offset;
2727 u64 length;
2728
2729 /* Ignore any non-FS requests that filter through. */
2730
2731 if (rq->cmd_type != REQ_TYPE_FS) {
2732 dout("%s: non-fs request type %d\n", __func__,
2733 (int) rq->cmd_type);
2734 __blk_end_request_all(rq, 0);
2735 continue;
2736 }
2737
2738 /* Ignore/skip any zero-length requests */
2739
2740 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2741 length = (u64) blk_rq_bytes(rq);
2742
2743 if (!length) {
2744 dout("%s: zero-length request\n", __func__);
2745 __blk_end_request_all(rq, 0);
2746 continue;
2747 }
2748
2749 spin_unlock_irq(q->queue_lock);
2750
2751 /* Disallow writes to a read-only device */
2752
2753 if (write_request) {
2754 result = -EROFS;
2755 if (read_only)
2756 goto end_request;
2757 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2758 }
2759
2760 /*
2761 * Quit early if the mapped snapshot no longer
2762 * exists. It's still possible the snapshot will
2763 * have disappeared by the time our request arrives
2764 * at the osd, but there's no sense in sending it if
2765 * we already know.
2766 */
2767 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2768 dout("request for non-existent snapshot");
2769 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2770 result = -ENXIO;
2771 goto end_request;
2772 }
2773
2774 result = -EINVAL;
2775 if (offset && length > U64_MAX - offset + 1) {
2776 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2777 offset, length);
2778 goto end_request; /* Shouldn't happen */
2779 }
2780
2781 result = -ENOMEM;
2782 img_request = rbd_img_request_create(rbd_dev, offset, length,
2783 write_request, false);
2784 if (!img_request)
2785 goto end_request;
2786
2787 img_request->rq = rq;
2788
2789 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2790 rq->bio);
2791 if (!result)
2792 result = rbd_img_request_submit(img_request);
2793 if (result)
2794 rbd_img_request_put(img_request);
2795 end_request:
2796 spin_lock_irq(q->queue_lock);
2797 if (result < 0) {
2798 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2799 write_request ? "write" : "read",
2800 length, offset, result);
2801
2802 __blk_end_request_all(rq, result);
2803 }
2804 }
2805 }
2806
2807 /*
2808 * a queue callback. Makes sure that we don't create a bio that spans across
2809 * multiple osd objects. One exception would be with a single page bios,
2810 * which we handle later at bio_chain_clone_range()
2811 */
2812 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2813 struct bio_vec *bvec)
2814 {
2815 struct rbd_device *rbd_dev = q->queuedata;
2816 sector_t sector_offset;
2817 sector_t sectors_per_obj;
2818 sector_t obj_sector_offset;
2819 int ret;
2820
2821 /*
2822 * Find how far into its rbd object the partition-relative
2823 * bio start sector is to offset relative to the enclosing
2824 * device.
2825 */
2826 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2827 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2828 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2829
2830 /*
2831 * Compute the number of bytes from that offset to the end
2832 * of the object. Account for what's already used by the bio.
2833 */
2834 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2835 if (ret > bmd->bi_size)
2836 ret -= bmd->bi_size;
2837 else
2838 ret = 0;
2839
2840 /*
2841 * Don't send back more than was asked for. And if the bio
2842 * was empty, let the whole thing through because: "Note
2843 * that a block device *must* allow a single page to be
2844 * added to an empty bio."
2845 */
2846 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2847 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2848 ret = (int) bvec->bv_len;
2849
2850 return ret;
2851 }
2852
2853 static void rbd_free_disk(struct rbd_device *rbd_dev)
2854 {
2855 struct gendisk *disk = rbd_dev->disk;
2856
2857 if (!disk)
2858 return;
2859
2860 rbd_dev->disk = NULL;
2861 if (disk->flags & GENHD_FL_UP) {
2862 del_gendisk(disk);
2863 if (disk->queue)
2864 blk_cleanup_queue(disk->queue);
2865 }
2866 put_disk(disk);
2867 }
2868
2869 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2870 const char *object_name,
2871 u64 offset, u64 length,
2872 void *buf, u64 *version)
2873
2874 {
2875 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2876 struct rbd_obj_request *obj_request;
2877 struct page **pages = NULL;
2878 u32 page_count;
2879 size_t size;
2880 int ret;
2881
2882 page_count = (u32) calc_pages_for(offset, length);
2883 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2884 if (IS_ERR(pages))
2885 ret = PTR_ERR(pages);
2886
2887 ret = -ENOMEM;
2888 obj_request = rbd_obj_request_create(object_name, offset, length,
2889 OBJ_REQUEST_PAGES);
2890 if (!obj_request)
2891 goto out;
2892
2893 obj_request->pages = pages;
2894 obj_request->page_count = page_count;
2895
2896 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2897 if (!obj_request->osd_req)
2898 goto out;
2899
2900 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2901 offset, length, 0, 0);
2902 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2903 obj_request->pages,
2904 obj_request->length,
2905 obj_request->offset & ~PAGE_MASK,
2906 false, false);
2907 rbd_osd_req_format_read(obj_request);
2908
2909 ret = rbd_obj_request_submit(osdc, obj_request);
2910 if (ret)
2911 goto out;
2912 ret = rbd_obj_request_wait(obj_request);
2913 if (ret)
2914 goto out;
2915
2916 ret = obj_request->result;
2917 if (ret < 0)
2918 goto out;
2919
2920 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2921 size = (size_t) obj_request->xferred;
2922 ceph_copy_from_page_vector(pages, buf, 0, size);
2923 rbd_assert(size <= (size_t) INT_MAX);
2924 ret = (int) size;
2925 if (version)
2926 *version = obj_request->version;
2927 out:
2928 if (obj_request)
2929 rbd_obj_request_put(obj_request);
2930 else
2931 ceph_release_page_vector(pages, page_count);
2932
2933 return ret;
2934 }
2935
2936 /*
2937 * Read the complete header for the given rbd device.
2938 *
2939 * Returns a pointer to a dynamically-allocated buffer containing
2940 * the complete and validated header. Caller can pass the address
2941 * of a variable that will be filled in with the version of the
2942 * header object at the time it was read.
2943 *
2944 * Returns a pointer-coded errno if a failure occurs.
2945 */
2946 static struct rbd_image_header_ondisk *
2947 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2948 {
2949 struct rbd_image_header_ondisk *ondisk = NULL;
2950 u32 snap_count = 0;
2951 u64 names_size = 0;
2952 u32 want_count;
2953 int ret;
2954
2955 /*
2956 * The complete header will include an array of its 64-bit
2957 * snapshot ids, followed by the names of those snapshots as
2958 * a contiguous block of NUL-terminated strings. Note that
2959 * the number of snapshots could change by the time we read
2960 * it in, in which case we re-read it.
2961 */
2962 do {
2963 size_t size;
2964
2965 kfree(ondisk);
2966
2967 size = sizeof (*ondisk);
2968 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2969 size += names_size;
2970 ondisk = kmalloc(size, GFP_KERNEL);
2971 if (!ondisk)
2972 return ERR_PTR(-ENOMEM);
2973
2974 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2975 0, size, ondisk, version);
2976 if (ret < 0)
2977 goto out_err;
2978 if ((size_t)ret < size) {
2979 ret = -ENXIO;
2980 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2981 size, ret);
2982 goto out_err;
2983 }
2984 if (!rbd_dev_ondisk_valid(ondisk)) {
2985 ret = -ENXIO;
2986 rbd_warn(rbd_dev, "invalid header");
2987 goto out_err;
2988 }
2989
2990 names_size = le64_to_cpu(ondisk->snap_names_len);
2991 want_count = snap_count;
2992 snap_count = le32_to_cpu(ondisk->snap_count);
2993 } while (snap_count != want_count);
2994
2995 return ondisk;
2996
2997 out_err:
2998 kfree(ondisk);
2999
3000 return ERR_PTR(ret);
3001 }
3002
3003 /*
3004 * reload the ondisk the header
3005 */
3006 static int rbd_read_header(struct rbd_device *rbd_dev,
3007 struct rbd_image_header *header)
3008 {
3009 struct rbd_image_header_ondisk *ondisk;
3010 u64 ver = 0;
3011 int ret;
3012
3013 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
3014 if (IS_ERR(ondisk))
3015 return PTR_ERR(ondisk);
3016 ret = rbd_header_from_disk(header, ondisk);
3017 if (ret >= 0)
3018 header->obj_version = ver;
3019 kfree(ondisk);
3020
3021 return ret;
3022 }
3023
3024 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
3025 {
3026 struct rbd_snap *snap;
3027 struct rbd_snap *next;
3028
3029 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node) {
3030 list_del(&snap->node);
3031 rbd_snap_destroy(snap);
3032 }
3033 }
3034
3035 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
3036 {
3037 sector_t size;
3038
3039 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3040 return;
3041
3042 size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
3043 dout("setting size to %llu sectors", (unsigned long long) size);
3044 rbd_dev->mapping.size = (u64) size;
3045 set_capacity(rbd_dev->disk, size);
3046 }
3047
3048 /*
3049 * only read the first part of the ondisk header, without the snaps info
3050 */
3051 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
3052 {
3053 int ret;
3054 struct rbd_image_header h;
3055
3056 ret = rbd_read_header(rbd_dev, &h);
3057 if (ret < 0)
3058 return ret;
3059
3060 down_write(&rbd_dev->header_rwsem);
3061
3062 /* Update image size, and check for resize of mapped image */
3063 rbd_dev->header.image_size = h.image_size;
3064 rbd_update_mapping_size(rbd_dev);
3065
3066 /* rbd_dev->header.object_prefix shouldn't change */
3067 kfree(rbd_dev->header.snap_sizes);
3068 kfree(rbd_dev->header.snap_names);
3069 /* osd requests may still refer to snapc */
3070 rbd_snap_context_put(rbd_dev->header.snapc);
3071
3072 if (hver)
3073 *hver = h.obj_version;
3074 rbd_dev->header.obj_version = h.obj_version;
3075 rbd_dev->header.image_size = h.image_size;
3076 rbd_dev->header.snapc = h.snapc;
3077 rbd_dev->header.snap_names = h.snap_names;
3078 rbd_dev->header.snap_sizes = h.snap_sizes;
3079 /* Free the extra copy of the object prefix */
3080 if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3081 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3082 kfree(h.object_prefix);
3083
3084 ret = rbd_dev_snaps_update(rbd_dev);
3085
3086 up_write(&rbd_dev->header_rwsem);
3087
3088 return ret;
3089 }
3090
3091 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
3092 {
3093 int ret;
3094
3095 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3096 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3097 if (rbd_dev->image_format == 1)
3098 ret = rbd_dev_v1_refresh(rbd_dev, hver);
3099 else
3100 ret = rbd_dev_v2_refresh(rbd_dev, hver);
3101 mutex_unlock(&ctl_mutex);
3102 revalidate_disk(rbd_dev->disk);
3103 if (ret)
3104 rbd_warn(rbd_dev, "got notification but failed to "
3105 " update snaps: %d\n", ret);
3106
3107 return ret;
3108 }
3109
3110 static int rbd_init_disk(struct rbd_device *rbd_dev)
3111 {
3112 struct gendisk *disk;
3113 struct request_queue *q;
3114 u64 segment_size;
3115
3116 /* create gendisk info */
3117 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3118 if (!disk)
3119 return -ENOMEM;
3120
3121 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3122 rbd_dev->dev_id);
3123 disk->major = rbd_dev->major;
3124 disk->first_minor = 0;
3125 disk->fops = &rbd_bd_ops;
3126 disk->private_data = rbd_dev;
3127
3128 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3129 if (!q)
3130 goto out_disk;
3131
3132 /* We use the default size, but let's be explicit about it. */
3133 blk_queue_physical_block_size(q, SECTOR_SIZE);
3134
3135 /* set io sizes to object size */
3136 segment_size = rbd_obj_bytes(&rbd_dev->header);
3137 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3138 blk_queue_max_segment_size(q, segment_size);
3139 blk_queue_io_min(q, segment_size);
3140 blk_queue_io_opt(q, segment_size);
3141
3142 blk_queue_merge_bvec(q, rbd_merge_bvec);
3143 disk->queue = q;
3144
3145 q->queuedata = rbd_dev;
3146
3147 rbd_dev->disk = disk;
3148
3149 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
3150
3151 return 0;
3152 out_disk:
3153 put_disk(disk);
3154
3155 return -ENOMEM;
3156 }
3157
3158 /*
3159 sysfs
3160 */
3161
3162 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3163 {
3164 return container_of(dev, struct rbd_device, dev);
3165 }
3166
3167 static ssize_t rbd_size_show(struct device *dev,
3168 struct device_attribute *attr, char *buf)
3169 {
3170 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3171 sector_t size;
3172
3173 down_read(&rbd_dev->header_rwsem);
3174 size = get_capacity(rbd_dev->disk);
3175 up_read(&rbd_dev->header_rwsem);
3176
3177 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
3178 }
3179
3180 /*
3181 * Note this shows the features for whatever's mapped, which is not
3182 * necessarily the base image.
3183 */
3184 static ssize_t rbd_features_show(struct device *dev,
3185 struct device_attribute *attr, char *buf)
3186 {
3187 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3188
3189 return sprintf(buf, "0x%016llx\n",
3190 (unsigned long long) rbd_dev->mapping.features);
3191 }
3192
3193 static ssize_t rbd_major_show(struct device *dev,
3194 struct device_attribute *attr, char *buf)
3195 {
3196 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3197
3198 return sprintf(buf, "%d\n", rbd_dev->major);
3199 }
3200
3201 static ssize_t rbd_client_id_show(struct device *dev,
3202 struct device_attribute *attr, char *buf)
3203 {
3204 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3205
3206 return sprintf(buf, "client%lld\n",
3207 ceph_client_id(rbd_dev->rbd_client->client));
3208 }
3209
3210 static ssize_t rbd_pool_show(struct device *dev,
3211 struct device_attribute *attr, char *buf)
3212 {
3213 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3214
3215 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3216 }
3217
3218 static ssize_t rbd_pool_id_show(struct device *dev,
3219 struct device_attribute *attr, char *buf)
3220 {
3221 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3222
3223 return sprintf(buf, "%llu\n",
3224 (unsigned long long) rbd_dev->spec->pool_id);
3225 }
3226
3227 static ssize_t rbd_name_show(struct device *dev,
3228 struct device_attribute *attr, char *buf)
3229 {
3230 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3231
3232 if (rbd_dev->spec->image_name)
3233 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3234
3235 return sprintf(buf, "(unknown)\n");
3236 }
3237
3238 static ssize_t rbd_image_id_show(struct device *dev,
3239 struct device_attribute *attr, char *buf)
3240 {
3241 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3242
3243 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3244 }
3245
3246 /*
3247 * Shows the name of the currently-mapped snapshot (or
3248 * RBD_SNAP_HEAD_NAME for the base image).
3249 */
3250 static ssize_t rbd_snap_show(struct device *dev,
3251 struct device_attribute *attr,
3252 char *buf)
3253 {
3254 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3255
3256 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3257 }
3258
3259 /*
3260 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3261 * for the parent image. If there is no parent, simply shows
3262 * "(no parent image)".
3263 */
3264 static ssize_t rbd_parent_show(struct device *dev,
3265 struct device_attribute *attr,
3266 char *buf)
3267 {
3268 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3269 struct rbd_spec *spec = rbd_dev->parent_spec;
3270 int count;
3271 char *bufp = buf;
3272
3273 if (!spec)
3274 return sprintf(buf, "(no parent image)\n");
3275
3276 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3277 (unsigned long long) spec->pool_id, spec->pool_name);
3278 if (count < 0)
3279 return count;
3280 bufp += count;
3281
3282 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3283 spec->image_name ? spec->image_name : "(unknown)");
3284 if (count < 0)
3285 return count;
3286 bufp += count;
3287
3288 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3289 (unsigned long long) spec->snap_id, spec->snap_name);
3290 if (count < 0)
3291 return count;
3292 bufp += count;
3293
3294 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3295 if (count < 0)
3296 return count;
3297 bufp += count;
3298
3299 return (ssize_t) (bufp - buf);
3300 }
3301
3302 static ssize_t rbd_image_refresh(struct device *dev,
3303 struct device_attribute *attr,
3304 const char *buf,
3305 size_t size)
3306 {
3307 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3308 int ret;
3309
3310 ret = rbd_dev_refresh(rbd_dev, NULL);
3311
3312 return ret < 0 ? ret : size;
3313 }
3314
3315 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3316 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3317 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3318 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3319 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3320 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3321 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3322 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3323 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3324 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3325 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3326
3327 static struct attribute *rbd_attrs[] = {
3328 &dev_attr_size.attr,
3329 &dev_attr_features.attr,
3330 &dev_attr_major.attr,
3331 &dev_attr_client_id.attr,
3332 &dev_attr_pool.attr,
3333 &dev_attr_pool_id.attr,
3334 &dev_attr_name.attr,
3335 &dev_attr_image_id.attr,
3336 &dev_attr_current_snap.attr,
3337 &dev_attr_parent.attr,
3338 &dev_attr_refresh.attr,
3339 NULL
3340 };
3341
3342 static struct attribute_group rbd_attr_group = {
3343 .attrs = rbd_attrs,
3344 };
3345
3346 static const struct attribute_group *rbd_attr_groups[] = {
3347 &rbd_attr_group,
3348 NULL
3349 };
3350
3351 static void rbd_sysfs_dev_release(struct device *dev)
3352 {
3353 }
3354
3355 static struct device_type rbd_device_type = {
3356 .name = "rbd",
3357 .groups = rbd_attr_groups,
3358 .release = rbd_sysfs_dev_release,
3359 };
3360
3361 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3362 {
3363 kref_get(&spec->kref);
3364
3365 return spec;
3366 }
3367
3368 static void rbd_spec_free(struct kref *kref);
3369 static void rbd_spec_put(struct rbd_spec *spec)
3370 {
3371 if (spec)
3372 kref_put(&spec->kref, rbd_spec_free);
3373 }
3374
3375 static struct rbd_spec *rbd_spec_alloc(void)
3376 {
3377 struct rbd_spec *spec;
3378
3379 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3380 if (!spec)
3381 return NULL;
3382 kref_init(&spec->kref);
3383
3384 return spec;
3385 }
3386
3387 static void rbd_spec_free(struct kref *kref)
3388 {
3389 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3390
3391 kfree(spec->pool_name);
3392 kfree(spec->image_id);
3393 kfree(spec->image_name);
3394 kfree(spec->snap_name);
3395 kfree(spec);
3396 }
3397
3398 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3399 struct rbd_spec *spec)
3400 {
3401 struct rbd_device *rbd_dev;
3402
3403 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3404 if (!rbd_dev)
3405 return NULL;
3406
3407 spin_lock_init(&rbd_dev->lock);
3408 rbd_dev->flags = 0;
3409 INIT_LIST_HEAD(&rbd_dev->node);
3410 INIT_LIST_HEAD(&rbd_dev->snaps);
3411 init_rwsem(&rbd_dev->header_rwsem);
3412
3413 rbd_dev->spec = spec;
3414 rbd_dev->rbd_client = rbdc;
3415
3416 /* Initialize the layout used for all rbd requests */
3417
3418 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3419 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3420 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3421 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3422
3423 return rbd_dev;
3424 }
3425
3426 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3427 {
3428 rbd_put_client(rbd_dev->rbd_client);
3429 rbd_spec_put(rbd_dev->spec);
3430 kfree(rbd_dev);
3431 }
3432
3433 static void rbd_snap_destroy(struct rbd_snap *snap)
3434 {
3435 kfree(snap->name);
3436 kfree(snap);
3437 }
3438
3439 static struct rbd_snap *rbd_snap_create(struct rbd_device *rbd_dev,
3440 const char *snap_name,
3441 u64 snap_id, u64 snap_size,
3442 u64 snap_features)
3443 {
3444 struct rbd_snap *snap;
3445
3446 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
3447 if (!snap)
3448 return ERR_PTR(-ENOMEM);
3449
3450 snap->name = snap_name;
3451 snap->id = snap_id;
3452 snap->size = snap_size;
3453 snap->features = snap_features;
3454
3455 return snap;
3456 }
3457
3458 /*
3459 * Returns a dynamically-allocated snapshot name if successful, or a
3460 * pointer-coded error otherwise.
3461 */
3462 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
3463 u64 *snap_size, u64 *snap_features)
3464 {
3465 char *snap_name;
3466 int i;
3467
3468 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3469
3470 /* Skip over names until we find the one we are looking for */
3471
3472 snap_name = rbd_dev->header.snap_names;
3473 for (i = 0; i < which; i++)
3474 snap_name += strlen(snap_name) + 1;
3475
3476 snap_name = kstrdup(snap_name, GFP_KERNEL);
3477 if (!snap_name)
3478 return ERR_PTR(-ENOMEM);
3479
3480 *snap_size = rbd_dev->header.snap_sizes[which];
3481 *snap_features = 0; /* No features for v1 */
3482
3483 return snap_name;
3484 }
3485
3486 /*
3487 * Get the size and object order for an image snapshot, or if
3488 * snap_id is CEPH_NOSNAP, gets this information for the base
3489 * image.
3490 */
3491 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3492 u8 *order, u64 *snap_size)
3493 {
3494 __le64 snapid = cpu_to_le64(snap_id);
3495 int ret;
3496 struct {
3497 u8 order;
3498 __le64 size;
3499 } __attribute__ ((packed)) size_buf = { 0 };
3500
3501 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3502 "rbd", "get_size",
3503 &snapid, sizeof (snapid),
3504 &size_buf, sizeof (size_buf), NULL);
3505 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3506 if (ret < 0)
3507 return ret;
3508 if (ret < sizeof (size_buf))
3509 return -ERANGE;
3510
3511 if (order)
3512 *order = size_buf.order;
3513 *snap_size = le64_to_cpu(size_buf.size);
3514
3515 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3516 (unsigned long long)snap_id, (unsigned int)*order,
3517 (unsigned long long)*snap_size);
3518
3519 return 0;
3520 }
3521
3522 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3523 {
3524 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3525 &rbd_dev->header.obj_order,
3526 &rbd_dev->header.image_size);
3527 }
3528
3529 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3530 {
3531 void *reply_buf;
3532 int ret;
3533 void *p;
3534
3535 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3536 if (!reply_buf)
3537 return -ENOMEM;
3538
3539 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3540 "rbd", "get_object_prefix", NULL, 0,
3541 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
3542 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3543 if (ret < 0)
3544 goto out;
3545
3546 p = reply_buf;
3547 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3548 p + ret, NULL, GFP_NOIO);
3549 ret = 0;
3550
3551 if (IS_ERR(rbd_dev->header.object_prefix)) {
3552 ret = PTR_ERR(rbd_dev->header.object_prefix);
3553 rbd_dev->header.object_prefix = NULL;
3554 } else {
3555 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3556 }
3557 out:
3558 kfree(reply_buf);
3559
3560 return ret;
3561 }
3562
3563 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3564 u64 *snap_features)
3565 {
3566 __le64 snapid = cpu_to_le64(snap_id);
3567 struct {
3568 __le64 features;
3569 __le64 incompat;
3570 } __attribute__ ((packed)) features_buf = { 0 };
3571 u64 incompat;
3572 int ret;
3573
3574 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3575 "rbd", "get_features",
3576 &snapid, sizeof (snapid),
3577 &features_buf, sizeof (features_buf), NULL);
3578 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3579 if (ret < 0)
3580 return ret;
3581 if (ret < sizeof (features_buf))
3582 return -ERANGE;
3583
3584 incompat = le64_to_cpu(features_buf.incompat);
3585 if (incompat & ~RBD_FEATURES_SUPPORTED)
3586 return -ENXIO;
3587
3588 *snap_features = le64_to_cpu(features_buf.features);
3589
3590 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3591 (unsigned long long)snap_id,
3592 (unsigned long long)*snap_features,
3593 (unsigned long long)le64_to_cpu(features_buf.incompat));
3594
3595 return 0;
3596 }
3597
3598 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3599 {
3600 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3601 &rbd_dev->header.features);
3602 }
3603
3604 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3605 {
3606 struct rbd_spec *parent_spec;
3607 size_t size;
3608 void *reply_buf = NULL;
3609 __le64 snapid;
3610 void *p;
3611 void *end;
3612 char *image_id;
3613 u64 overlap;
3614 int ret;
3615
3616 parent_spec = rbd_spec_alloc();
3617 if (!parent_spec)
3618 return -ENOMEM;
3619
3620 size = sizeof (__le64) + /* pool_id */
3621 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3622 sizeof (__le64) + /* snap_id */
3623 sizeof (__le64); /* overlap */
3624 reply_buf = kmalloc(size, GFP_KERNEL);
3625 if (!reply_buf) {
3626 ret = -ENOMEM;
3627 goto out_err;
3628 }
3629
3630 snapid = cpu_to_le64(CEPH_NOSNAP);
3631 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3632 "rbd", "get_parent",
3633 &snapid, sizeof (snapid),
3634 reply_buf, size, NULL);
3635 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3636 if (ret < 0)
3637 goto out_err;
3638
3639 p = reply_buf;
3640 end = reply_buf + ret;
3641 ret = -ERANGE;
3642 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3643 if (parent_spec->pool_id == CEPH_NOPOOL)
3644 goto out; /* No parent? No problem. */
3645
3646 /* The ceph file layout needs to fit pool id in 32 bits */
3647
3648 ret = -EIO;
3649 if (parent_spec->pool_id > (u64)U32_MAX) {
3650 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3651 (unsigned long long)parent_spec->pool_id, U32_MAX);
3652 goto out_err;
3653 }
3654
3655 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3656 if (IS_ERR(image_id)) {
3657 ret = PTR_ERR(image_id);
3658 goto out_err;
3659 }
3660 parent_spec->image_id = image_id;
3661 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3662 ceph_decode_64_safe(&p, end, overlap, out_err);
3663
3664 rbd_dev->parent_overlap = overlap;
3665 rbd_dev->parent_spec = parent_spec;
3666 parent_spec = NULL; /* rbd_dev now owns this */
3667 out:
3668 ret = 0;
3669 out_err:
3670 kfree(reply_buf);
3671 rbd_spec_put(parent_spec);
3672
3673 return ret;
3674 }
3675
3676 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3677 {
3678 struct {
3679 __le64 stripe_unit;
3680 __le64 stripe_count;
3681 } __attribute__ ((packed)) striping_info_buf = { 0 };
3682 size_t size = sizeof (striping_info_buf);
3683 void *p;
3684 u64 obj_size;
3685 u64 stripe_unit;
3686 u64 stripe_count;
3687 int ret;
3688
3689 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3690 "rbd", "get_stripe_unit_count", NULL, 0,
3691 (char *)&striping_info_buf, size, NULL);
3692 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3693 if (ret < 0)
3694 return ret;
3695 if (ret < size)
3696 return -ERANGE;
3697
3698 /*
3699 * We don't actually support the "fancy striping" feature
3700 * (STRIPINGV2) yet, but if the striping sizes are the
3701 * defaults the behavior is the same as before. So find
3702 * out, and only fail if the image has non-default values.
3703 */
3704 ret = -EINVAL;
3705 obj_size = (u64)1 << rbd_dev->header.obj_order;
3706 p = &striping_info_buf;
3707 stripe_unit = ceph_decode_64(&p);
3708 if (stripe_unit != obj_size) {
3709 rbd_warn(rbd_dev, "unsupported stripe unit "
3710 "(got %llu want %llu)",
3711 stripe_unit, obj_size);
3712 return -EINVAL;
3713 }
3714 stripe_count = ceph_decode_64(&p);
3715 if (stripe_count != 1) {
3716 rbd_warn(rbd_dev, "unsupported stripe count "
3717 "(got %llu want 1)", stripe_count);
3718 return -EINVAL;
3719 }
3720 rbd_dev->header.stripe_unit = stripe_unit;
3721 rbd_dev->header.stripe_count = stripe_count;
3722
3723 return 0;
3724 }
3725
3726 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3727 {
3728 size_t image_id_size;
3729 char *image_id;
3730 void *p;
3731 void *end;
3732 size_t size;
3733 void *reply_buf = NULL;
3734 size_t len = 0;
3735 char *image_name = NULL;
3736 int ret;
3737
3738 rbd_assert(!rbd_dev->spec->image_name);
3739
3740 len = strlen(rbd_dev->spec->image_id);
3741 image_id_size = sizeof (__le32) + len;
3742 image_id = kmalloc(image_id_size, GFP_KERNEL);
3743 if (!image_id)
3744 return NULL;
3745
3746 p = image_id;
3747 end = image_id + image_id_size;
3748 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3749
3750 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3751 reply_buf = kmalloc(size, GFP_KERNEL);
3752 if (!reply_buf)
3753 goto out;
3754
3755 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3756 "rbd", "dir_get_name",
3757 image_id, image_id_size,
3758 reply_buf, size, NULL);
3759 if (ret < 0)
3760 goto out;
3761 p = reply_buf;
3762 end = reply_buf + ret;
3763
3764 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3765 if (IS_ERR(image_name))
3766 image_name = NULL;
3767 else
3768 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3769 out:
3770 kfree(reply_buf);
3771 kfree(image_id);
3772
3773 return image_name;
3774 }
3775
3776 /*
3777 * When a parent image gets probed, we only have the pool, image,
3778 * and snapshot ids but not the names of any of them. This call
3779 * is made later to fill in those names. It has to be done after
3780 * rbd_dev_snaps_update() has completed because some of the
3781 * information (in particular, snapshot name) is not available
3782 * until then.
3783 *
3784 * When an image being mapped (not a parent) is probed, we have the
3785 * pool name and pool id, image name and image id, and the snapshot
3786 * name. The only thing we're missing is the snapshot id.
3787 */
3788 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
3789 {
3790 struct ceph_osd_client *osdc;
3791 const char *name;
3792 void *reply_buf = NULL;
3793 int ret;
3794
3795 /*
3796 * An image being mapped will have the pool name (etc.), but
3797 * we need to look up the snapshot id.
3798 */
3799 if (rbd_dev->spec->pool_name) {
3800 if (strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3801 struct rbd_snap *snap;
3802
3803 snap = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
3804 if (!snap)
3805 return -ENOENT;
3806 rbd_dev->spec->snap_id = snap->id;
3807 } else {
3808 rbd_dev->spec->snap_id = CEPH_NOSNAP;
3809 }
3810
3811 return 0;
3812 }
3813
3814 /* Look up the pool name */
3815
3816 osdc = &rbd_dev->rbd_client->client->osdc;
3817 name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3818 if (!name) {
3819 rbd_warn(rbd_dev, "there is no pool with id %llu",
3820 rbd_dev->spec->pool_id); /* Really a BUG() */
3821 return -EIO;
3822 }
3823
3824 rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3825 if (!rbd_dev->spec->pool_name)
3826 return -ENOMEM;
3827
3828 /* Fetch the image name; tolerate failure here */
3829
3830 name = rbd_dev_image_name(rbd_dev);
3831 if (name)
3832 rbd_dev->spec->image_name = (char *)name;
3833 else
3834 rbd_warn(rbd_dev, "unable to get image name");
3835
3836 /* Look up the snapshot name. */
3837
3838 name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3839 if (!name) {
3840 rbd_warn(rbd_dev, "no snapshot with id %llu",
3841 rbd_dev->spec->snap_id); /* Really a BUG() */
3842 ret = -EIO;
3843 goto out_err;
3844 }
3845 rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3846 if(!rbd_dev->spec->snap_name)
3847 goto out_err;
3848
3849 return 0;
3850 out_err:
3851 kfree(reply_buf);
3852 kfree(rbd_dev->spec->pool_name);
3853 rbd_dev->spec->pool_name = NULL;
3854
3855 return ret;
3856 }
3857
3858 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3859 {
3860 size_t size;
3861 int ret;
3862 void *reply_buf;
3863 void *p;
3864 void *end;
3865 u64 seq;
3866 u32 snap_count;
3867 struct ceph_snap_context *snapc;
3868 u32 i;
3869
3870 /*
3871 * We'll need room for the seq value (maximum snapshot id),
3872 * snapshot count, and array of that many snapshot ids.
3873 * For now we have a fixed upper limit on the number we're
3874 * prepared to receive.
3875 */
3876 size = sizeof (__le64) + sizeof (__le32) +
3877 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3878 reply_buf = kzalloc(size, GFP_KERNEL);
3879 if (!reply_buf)
3880 return -ENOMEM;
3881
3882 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3883 "rbd", "get_snapcontext", NULL, 0,
3884 reply_buf, size, ver);
3885 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3886 if (ret < 0)
3887 goto out;
3888
3889 p = reply_buf;
3890 end = reply_buf + ret;
3891 ret = -ERANGE;
3892 ceph_decode_64_safe(&p, end, seq, out);
3893 ceph_decode_32_safe(&p, end, snap_count, out);
3894
3895 /*
3896 * Make sure the reported number of snapshot ids wouldn't go
3897 * beyond the end of our buffer. But before checking that,
3898 * make sure the computed size of the snapshot context we
3899 * allocate is representable in a size_t.
3900 */
3901 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3902 / sizeof (u64)) {
3903 ret = -EINVAL;
3904 goto out;
3905 }
3906 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3907 goto out;
3908 ret = 0;
3909
3910 snapc = rbd_snap_context_create(snap_count);
3911 if (!snapc) {
3912 ret = -ENOMEM;
3913 goto out;
3914 }
3915 snapc->seq = seq;
3916 for (i = 0; i < snap_count; i++)
3917 snapc->snaps[i] = ceph_decode_64(&p);
3918
3919 rbd_dev->header.snapc = snapc;
3920
3921 dout(" snap context seq = %llu, snap_count = %u\n",
3922 (unsigned long long)seq, (unsigned int)snap_count);
3923 out:
3924 kfree(reply_buf);
3925
3926 return ret;
3927 }
3928
3929 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3930 {
3931 size_t size;
3932 void *reply_buf;
3933 __le64 snap_id;
3934 int ret;
3935 void *p;
3936 void *end;
3937 char *snap_name;
3938
3939 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3940 reply_buf = kmalloc(size, GFP_KERNEL);
3941 if (!reply_buf)
3942 return ERR_PTR(-ENOMEM);
3943
3944 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3945 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3946 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3947 "rbd", "get_snapshot_name",
3948 &snap_id, sizeof (snap_id),
3949 reply_buf, size, NULL);
3950 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3951 if (ret < 0) {
3952 snap_name = ERR_PTR(ret);
3953 goto out;
3954 }
3955
3956 p = reply_buf;
3957 end = reply_buf + ret;
3958 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3959 if (IS_ERR(snap_name))
3960 goto out;
3961
3962 dout(" snap_id 0x%016llx snap_name = %s\n",
3963 (unsigned long long)le64_to_cpu(snap_id), snap_name);
3964 out:
3965 kfree(reply_buf);
3966
3967 return snap_name;
3968 }
3969
3970 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3971 u64 *snap_size, u64 *snap_features)
3972 {
3973 u64 snap_id;
3974 u64 size;
3975 u64 features;
3976 char *snap_name;
3977 int ret;
3978
3979 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3980 snap_id = rbd_dev->header.snapc->snaps[which];
3981 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
3982 if (ret)
3983 goto out_err;
3984
3985 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
3986 if (ret)
3987 goto out_err;
3988
3989 snap_name = rbd_dev_v2_snap_name(rbd_dev, which);
3990 if (!IS_ERR(snap_name)) {
3991 *snap_size = size;
3992 *snap_features = features;
3993 }
3994
3995 return snap_name;
3996 out_err:
3997 return ERR_PTR(ret);
3998 }
3999
4000 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
4001 u64 *snap_size, u64 *snap_features)
4002 {
4003 if (rbd_dev->image_format == 1)
4004 return rbd_dev_v1_snap_info(rbd_dev, which,
4005 snap_size, snap_features);
4006 if (rbd_dev->image_format == 2)
4007 return rbd_dev_v2_snap_info(rbd_dev, which,
4008 snap_size, snap_features);
4009 return ERR_PTR(-EINVAL);
4010 }
4011
4012 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
4013 {
4014 int ret;
4015 __u8 obj_order;
4016
4017 down_write(&rbd_dev->header_rwsem);
4018
4019 /* Grab old order first, to see if it changes */
4020
4021 obj_order = rbd_dev->header.obj_order,
4022 ret = rbd_dev_v2_image_size(rbd_dev);
4023 if (ret)
4024 goto out;
4025 if (rbd_dev->header.obj_order != obj_order) {
4026 ret = -EIO;
4027 goto out;
4028 }
4029 rbd_update_mapping_size(rbd_dev);
4030
4031 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
4032 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4033 if (ret)
4034 goto out;
4035 ret = rbd_dev_snaps_update(rbd_dev);
4036 dout("rbd_dev_snaps_update returned %d\n", ret);
4037 if (ret)
4038 goto out;
4039 out:
4040 up_write(&rbd_dev->header_rwsem);
4041
4042 return ret;
4043 }
4044
4045 /*
4046 * Scan the rbd device's current snapshot list and compare it to the
4047 * newly-received snapshot context. Remove any existing snapshots
4048 * not present in the new snapshot context. Add a new snapshot for
4049 * any snaphots in the snapshot context not in the current list.
4050 * And verify there are no changes to snapshots we already know
4051 * about.
4052 *
4053 * Assumes the snapshots in the snapshot context are sorted by
4054 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
4055 * are also maintained in that order.)
4056 *
4057 * Note that any error occurs while updating the snapshot list
4058 * aborts the update, and the entire list is cleared. The snapshot
4059 * list becomes inconsistent at that point anyway, so it might as
4060 * well be empty.
4061 */
4062 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
4063 {
4064 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4065 const u32 snap_count = snapc->num_snaps;
4066 struct list_head *head = &rbd_dev->snaps;
4067 struct list_head *links = head->next;
4068 u32 index = 0;
4069 int ret = 0;
4070
4071 dout("%s: snap count is %u\n", __func__, (unsigned int)snap_count);
4072 while (index < snap_count || links != head) {
4073 u64 snap_id;
4074 struct rbd_snap *snap;
4075 char *snap_name;
4076 u64 snap_size = 0;
4077 u64 snap_features = 0;
4078
4079 snap_id = index < snap_count ? snapc->snaps[index]
4080 : CEPH_NOSNAP;
4081 snap = links != head ? list_entry(links, struct rbd_snap, node)
4082 : NULL;
4083 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
4084
4085 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
4086 struct list_head *next = links->next;
4087
4088 /*
4089 * A previously-existing snapshot is not in
4090 * the new snap context.
4091 *
4092 * If the now-missing snapshot is the one
4093 * the image represents, clear its existence
4094 * flag so we can avoid sending any more
4095 * requests to it.
4096 */
4097 if (rbd_dev->spec->snap_id == snap->id)
4098 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4099 dout("removing %ssnap id %llu\n",
4100 rbd_dev->spec->snap_id == snap->id ?
4101 "mapped " : "",
4102 (unsigned long long)snap->id);
4103
4104 list_del(&snap->node);
4105 rbd_snap_destroy(snap);
4106
4107 /* Done with this list entry; advance */
4108
4109 links = next;
4110 continue;
4111 }
4112
4113 snap_name = rbd_dev_snap_info(rbd_dev, index,
4114 &snap_size, &snap_features);
4115 if (IS_ERR(snap_name)) {
4116 ret = PTR_ERR(snap_name);
4117 dout("failed to get snap info, error %d\n", ret);
4118 goto out_err;
4119 }
4120
4121 dout("entry %u: snap_id = %llu\n", (unsigned int)snap_count,
4122 (unsigned long long)snap_id);
4123 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
4124 struct rbd_snap *new_snap;
4125
4126 /* We haven't seen this snapshot before */
4127
4128 new_snap = rbd_snap_create(rbd_dev, snap_name,
4129 snap_id, snap_size, snap_features);
4130 if (IS_ERR(new_snap)) {
4131 ret = PTR_ERR(new_snap);
4132 dout(" failed to add dev, error %d\n", ret);
4133 goto out_err;
4134 }
4135
4136 /* New goes before existing, or at end of list */
4137
4138 dout(" added dev%s\n", snap ? "" : " at end\n");
4139 if (snap)
4140 list_add_tail(&new_snap->node, &snap->node);
4141 else
4142 list_add_tail(&new_snap->node, head);
4143 } else {
4144 /* Already have this one */
4145
4146 dout(" already present\n");
4147
4148 rbd_assert(snap->size == snap_size);
4149 rbd_assert(!strcmp(snap->name, snap_name));
4150 rbd_assert(snap->features == snap_features);
4151
4152 /* Done with this list entry; advance */
4153
4154 links = links->next;
4155 }
4156
4157 /* Advance to the next entry in the snapshot context */
4158
4159 index++;
4160 }
4161 dout("%s: done\n", __func__);
4162
4163 return 0;
4164 out_err:
4165 rbd_remove_all_snaps(rbd_dev);
4166
4167 return ret;
4168 }
4169
4170 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4171 {
4172 struct device *dev;
4173 int ret;
4174
4175 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4176
4177 dev = &rbd_dev->dev;
4178 dev->bus = &rbd_bus_type;
4179 dev->type = &rbd_device_type;
4180 dev->parent = &rbd_root_dev;
4181 dev->release = rbd_dev_release;
4182 dev_set_name(dev, "%d", rbd_dev->dev_id);
4183 ret = device_register(dev);
4184
4185 mutex_unlock(&ctl_mutex);
4186
4187 return ret;
4188 }
4189
4190 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4191 {
4192 device_unregister(&rbd_dev->dev);
4193 }
4194
4195 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4196
4197 /*
4198 * Get a unique rbd identifier for the given new rbd_dev, and add
4199 * the rbd_dev to the global list. The minimum rbd id is 1.
4200 */
4201 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4202 {
4203 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4204
4205 spin_lock(&rbd_dev_list_lock);
4206 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4207 spin_unlock(&rbd_dev_list_lock);
4208 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4209 (unsigned long long) rbd_dev->dev_id);
4210 }
4211
4212 /*
4213 * Remove an rbd_dev from the global list, and record that its
4214 * identifier is no longer in use.
4215 */
4216 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4217 {
4218 struct list_head *tmp;
4219 int rbd_id = rbd_dev->dev_id;
4220 int max_id;
4221
4222 rbd_assert(rbd_id > 0);
4223
4224 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4225 (unsigned long long) rbd_dev->dev_id);
4226 spin_lock(&rbd_dev_list_lock);
4227 list_del_init(&rbd_dev->node);
4228
4229 /*
4230 * If the id being "put" is not the current maximum, there
4231 * is nothing special we need to do.
4232 */
4233 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4234 spin_unlock(&rbd_dev_list_lock);
4235 return;
4236 }
4237
4238 /*
4239 * We need to update the current maximum id. Search the
4240 * list to find out what it is. We're more likely to find
4241 * the maximum at the end, so search the list backward.
4242 */
4243 max_id = 0;
4244 list_for_each_prev(tmp, &rbd_dev_list) {
4245 struct rbd_device *rbd_dev;
4246
4247 rbd_dev = list_entry(tmp, struct rbd_device, node);
4248 if (rbd_dev->dev_id > max_id)
4249 max_id = rbd_dev->dev_id;
4250 }
4251 spin_unlock(&rbd_dev_list_lock);
4252
4253 /*
4254 * The max id could have been updated by rbd_dev_id_get(), in
4255 * which case it now accurately reflects the new maximum.
4256 * Be careful not to overwrite the maximum value in that
4257 * case.
4258 */
4259 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4260 dout(" max dev id has been reset\n");
4261 }
4262
4263 /*
4264 * Skips over white space at *buf, and updates *buf to point to the
4265 * first found non-space character (if any). Returns the length of
4266 * the token (string of non-white space characters) found. Note
4267 * that *buf must be terminated with '\0'.
4268 */
4269 static inline size_t next_token(const char **buf)
4270 {
4271 /*
4272 * These are the characters that produce nonzero for
4273 * isspace() in the "C" and "POSIX" locales.
4274 */
4275 const char *spaces = " \f\n\r\t\v";
4276
4277 *buf += strspn(*buf, spaces); /* Find start of token */
4278
4279 return strcspn(*buf, spaces); /* Return token length */
4280 }
4281
4282 /*
4283 * Finds the next token in *buf, and if the provided token buffer is
4284 * big enough, copies the found token into it. The result, if
4285 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4286 * must be terminated with '\0' on entry.
4287 *
4288 * Returns the length of the token found (not including the '\0').
4289 * Return value will be 0 if no token is found, and it will be >=
4290 * token_size if the token would not fit.
4291 *
4292 * The *buf pointer will be updated to point beyond the end of the
4293 * found token. Note that this occurs even if the token buffer is
4294 * too small to hold it.
4295 */
4296 static inline size_t copy_token(const char **buf,
4297 char *token,
4298 size_t token_size)
4299 {
4300 size_t len;
4301
4302 len = next_token(buf);
4303 if (len < token_size) {
4304 memcpy(token, *buf, len);
4305 *(token + len) = '\0';
4306 }
4307 *buf += len;
4308
4309 return len;
4310 }
4311
4312 /*
4313 * Finds the next token in *buf, dynamically allocates a buffer big
4314 * enough to hold a copy of it, and copies the token into the new
4315 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4316 * that a duplicate buffer is created even for a zero-length token.
4317 *
4318 * Returns a pointer to the newly-allocated duplicate, or a null
4319 * pointer if memory for the duplicate was not available. If
4320 * the lenp argument is a non-null pointer, the length of the token
4321 * (not including the '\0') is returned in *lenp.
4322 *
4323 * If successful, the *buf pointer will be updated to point beyond
4324 * the end of the found token.
4325 *
4326 * Note: uses GFP_KERNEL for allocation.
4327 */
4328 static inline char *dup_token(const char **buf, size_t *lenp)
4329 {
4330 char *dup;
4331 size_t len;
4332
4333 len = next_token(buf);
4334 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4335 if (!dup)
4336 return NULL;
4337 *(dup + len) = '\0';
4338 *buf += len;
4339
4340 if (lenp)
4341 *lenp = len;
4342
4343 return dup;
4344 }
4345
4346 /*
4347 * Parse the options provided for an "rbd add" (i.e., rbd image
4348 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4349 * and the data written is passed here via a NUL-terminated buffer.
4350 * Returns 0 if successful or an error code otherwise.
4351 *
4352 * The information extracted from these options is recorded in
4353 * the other parameters which return dynamically-allocated
4354 * structures:
4355 * ceph_opts
4356 * The address of a pointer that will refer to a ceph options
4357 * structure. Caller must release the returned pointer using
4358 * ceph_destroy_options() when it is no longer needed.
4359 * rbd_opts
4360 * Address of an rbd options pointer. Fully initialized by
4361 * this function; caller must release with kfree().
4362 * spec
4363 * Address of an rbd image specification pointer. Fully
4364 * initialized by this function based on parsed options.
4365 * Caller must release with rbd_spec_put().
4366 *
4367 * The options passed take this form:
4368 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4369 * where:
4370 * <mon_addrs>
4371 * A comma-separated list of one or more monitor addresses.
4372 * A monitor address is an ip address, optionally followed
4373 * by a port number (separated by a colon).
4374 * I.e.: ip1[:port1][,ip2[:port2]...]
4375 * <options>
4376 * A comma-separated list of ceph and/or rbd options.
4377 * <pool_name>
4378 * The name of the rados pool containing the rbd image.
4379 * <image_name>
4380 * The name of the image in that pool to map.
4381 * <snap_id>
4382 * An optional snapshot id. If provided, the mapping will
4383 * present data from the image at the time that snapshot was
4384 * created. The image head is used if no snapshot id is
4385 * provided. Snapshot mappings are always read-only.
4386 */
4387 static int rbd_add_parse_args(const char *buf,
4388 struct ceph_options **ceph_opts,
4389 struct rbd_options **opts,
4390 struct rbd_spec **rbd_spec)
4391 {
4392 size_t len;
4393 char *options;
4394 const char *mon_addrs;
4395 char *snap_name;
4396 size_t mon_addrs_size;
4397 struct rbd_spec *spec = NULL;
4398 struct rbd_options *rbd_opts = NULL;
4399 struct ceph_options *copts;
4400 int ret;
4401
4402 /* The first four tokens are required */
4403
4404 len = next_token(&buf);
4405 if (!len) {
4406 rbd_warn(NULL, "no monitor address(es) provided");
4407 return -EINVAL;
4408 }
4409 mon_addrs = buf;
4410 mon_addrs_size = len + 1;
4411 buf += len;
4412
4413 ret = -EINVAL;
4414 options = dup_token(&buf, NULL);
4415 if (!options)
4416 return -ENOMEM;
4417 if (!*options) {
4418 rbd_warn(NULL, "no options provided");
4419 goto out_err;
4420 }
4421
4422 spec = rbd_spec_alloc();
4423 if (!spec)
4424 goto out_mem;
4425
4426 spec->pool_name = dup_token(&buf, NULL);
4427 if (!spec->pool_name)
4428 goto out_mem;
4429 if (!*spec->pool_name) {
4430 rbd_warn(NULL, "no pool name provided");
4431 goto out_err;
4432 }
4433
4434 spec->image_name = dup_token(&buf, NULL);
4435 if (!spec->image_name)
4436 goto out_mem;
4437 if (!*spec->image_name) {
4438 rbd_warn(NULL, "no image name provided");
4439 goto out_err;
4440 }
4441
4442 /*
4443 * Snapshot name is optional; default is to use "-"
4444 * (indicating the head/no snapshot).
4445 */
4446 len = next_token(&buf);
4447 if (!len) {
4448 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4449 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4450 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4451 ret = -ENAMETOOLONG;
4452 goto out_err;
4453 }
4454 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4455 if (!snap_name)
4456 goto out_mem;
4457 *(snap_name + len) = '\0';
4458 spec->snap_name = snap_name;
4459
4460 /* Initialize all rbd options to the defaults */
4461
4462 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4463 if (!rbd_opts)
4464 goto out_mem;
4465
4466 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4467
4468 copts = ceph_parse_options(options, mon_addrs,
4469 mon_addrs + mon_addrs_size - 1,
4470 parse_rbd_opts_token, rbd_opts);
4471 if (IS_ERR(copts)) {
4472 ret = PTR_ERR(copts);
4473 goto out_err;
4474 }
4475 kfree(options);
4476
4477 *ceph_opts = copts;
4478 *opts = rbd_opts;
4479 *rbd_spec = spec;
4480
4481 return 0;
4482 out_mem:
4483 ret = -ENOMEM;
4484 out_err:
4485 kfree(rbd_opts);
4486 rbd_spec_put(spec);
4487 kfree(options);
4488
4489 return ret;
4490 }
4491
4492 /*
4493 * An rbd format 2 image has a unique identifier, distinct from the
4494 * name given to it by the user. Internally, that identifier is
4495 * what's used to specify the names of objects related to the image.
4496 *
4497 * A special "rbd id" object is used to map an rbd image name to its
4498 * id. If that object doesn't exist, then there is no v2 rbd image
4499 * with the supplied name.
4500 *
4501 * This function will record the given rbd_dev's image_id field if
4502 * it can be determined, and in that case will return 0. If any
4503 * errors occur a negative errno will be returned and the rbd_dev's
4504 * image_id field will be unchanged (and should be NULL).
4505 */
4506 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4507 {
4508 int ret;
4509 size_t size;
4510 char *object_name;
4511 void *response;
4512 char *image_id;
4513
4514 /*
4515 * When probing a parent image, the image id is already
4516 * known (and the image name likely is not). There's no
4517 * need to fetch the image id again in this case. We
4518 * do still need to set the image format though.
4519 */
4520 if (rbd_dev->spec->image_id) {
4521 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4522
4523 return 0;
4524 }
4525
4526 /*
4527 * First, see if the format 2 image id file exists, and if
4528 * so, get the image's persistent id from it.
4529 */
4530 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4531 object_name = kmalloc(size, GFP_NOIO);
4532 if (!object_name)
4533 return -ENOMEM;
4534 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4535 dout("rbd id object name is %s\n", object_name);
4536
4537 /* Response will be an encoded string, which includes a length */
4538
4539 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4540 response = kzalloc(size, GFP_NOIO);
4541 if (!response) {
4542 ret = -ENOMEM;
4543 goto out;
4544 }
4545
4546 /* If it doesn't exist we'll assume it's a format 1 image */
4547
4548 ret = rbd_obj_method_sync(rbd_dev, object_name,
4549 "rbd", "get_id", NULL, 0,
4550 response, RBD_IMAGE_ID_LEN_MAX, NULL);
4551 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4552 if (ret == -ENOENT) {
4553 image_id = kstrdup("", GFP_KERNEL);
4554 ret = image_id ? 0 : -ENOMEM;
4555 if (!ret)
4556 rbd_dev->image_format = 1;
4557 } else if (ret > sizeof (__le32)) {
4558 void *p = response;
4559
4560 image_id = ceph_extract_encoded_string(&p, p + ret,
4561 NULL, GFP_NOIO);
4562 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4563 if (!ret)
4564 rbd_dev->image_format = 2;
4565 } else {
4566 ret = -EINVAL;
4567 }
4568
4569 if (!ret) {
4570 rbd_dev->spec->image_id = image_id;
4571 dout("image_id is %s\n", image_id);
4572 }
4573 out:
4574 kfree(response);
4575 kfree(object_name);
4576
4577 return ret;
4578 }
4579
4580 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4581 {
4582 int ret;
4583 size_t size;
4584
4585 /* Record the header object name for this rbd image. */
4586
4587 size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
4588 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4589 if (!rbd_dev->header_name) {
4590 ret = -ENOMEM;
4591 goto out_err;
4592 }
4593 sprintf(rbd_dev->header_name, "%s%s",
4594 rbd_dev->spec->image_name, RBD_SUFFIX);
4595
4596 /* Populate rbd image metadata */
4597
4598 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4599 if (ret < 0)
4600 goto out_err;
4601
4602 /* Version 1 images have no parent (no layering) */
4603
4604 rbd_dev->parent_spec = NULL;
4605 rbd_dev->parent_overlap = 0;
4606
4607 dout("discovered version 1 image, header name is %s\n",
4608 rbd_dev->header_name);
4609
4610 return 0;
4611
4612 out_err:
4613 kfree(rbd_dev->header_name);
4614 rbd_dev->header_name = NULL;
4615 kfree(rbd_dev->spec->image_id);
4616 rbd_dev->spec->image_id = NULL;
4617
4618 return ret;
4619 }
4620
4621 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4622 {
4623 size_t size;
4624 int ret;
4625 u64 ver = 0;
4626
4627 /*
4628 * Image id was filled in by the caller. Record the header
4629 * object name for this rbd image.
4630 */
4631 size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
4632 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4633 if (!rbd_dev->header_name)
4634 return -ENOMEM;
4635 sprintf(rbd_dev->header_name, "%s%s",
4636 RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
4637
4638 /* Get the size and object order for the image */
4639 ret = rbd_dev_v2_image_size(rbd_dev);
4640 if (ret)
4641 goto out_err;
4642
4643 /* Get the object prefix (a.k.a. block_name) for the image */
4644
4645 ret = rbd_dev_v2_object_prefix(rbd_dev);
4646 if (ret)
4647 goto out_err;
4648
4649 /* Get the and check features for the image */
4650
4651 ret = rbd_dev_v2_features(rbd_dev);
4652 if (ret)
4653 goto out_err;
4654
4655 /* If the image supports layering, get the parent info */
4656
4657 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4658 ret = rbd_dev_v2_parent_info(rbd_dev);
4659 if (ret)
4660 goto out_err;
4661 rbd_warn(rbd_dev, "WARNING: kernel support for "
4662 "layered rbd images is EXPERIMENTAL!");
4663 }
4664
4665 /* If the image supports fancy striping, get its parameters */
4666
4667 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4668 ret = rbd_dev_v2_striping_info(rbd_dev);
4669 if (ret < 0)
4670 goto out_err;
4671 }
4672
4673 /* crypto and compression type aren't (yet) supported for v2 images */
4674
4675 rbd_dev->header.crypt_type = 0;
4676 rbd_dev->header.comp_type = 0;
4677
4678 /* Get the snapshot context, plus the header version */
4679
4680 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
4681 if (ret)
4682 goto out_err;
4683 rbd_dev->header.obj_version = ver;
4684
4685 dout("discovered version 2 image, header name is %s\n",
4686 rbd_dev->header_name);
4687
4688 return 0;
4689 out_err:
4690 rbd_dev->parent_overlap = 0;
4691 rbd_spec_put(rbd_dev->parent_spec);
4692 rbd_dev->parent_spec = NULL;
4693 kfree(rbd_dev->header_name);
4694 rbd_dev->header_name = NULL;
4695 kfree(rbd_dev->header.object_prefix);
4696 rbd_dev->header.object_prefix = NULL;
4697
4698 return ret;
4699 }
4700
4701 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
4702 {
4703 struct rbd_device *parent = NULL;
4704 struct rbd_spec *parent_spec = NULL;
4705 struct rbd_client *rbdc = NULL;
4706 int ret;
4707
4708 /* no need to lock here, as rbd_dev is not registered yet */
4709 ret = rbd_dev_snaps_update(rbd_dev);
4710 if (ret)
4711 return ret;
4712
4713 ret = rbd_dev_probe_update_spec(rbd_dev);
4714 if (ret)
4715 goto err_out_snaps;
4716
4717 ret = rbd_dev_set_mapping(rbd_dev);
4718 if (ret)
4719 goto err_out_snaps;
4720
4721 /* generate unique id: find highest unique id, add one */
4722 rbd_dev_id_get(rbd_dev);
4723
4724 /* Fill in the device name, now that we have its id. */
4725 BUILD_BUG_ON(DEV_NAME_LEN
4726 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4727 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4728
4729 /* Get our block major device number. */
4730
4731 ret = register_blkdev(0, rbd_dev->name);
4732 if (ret < 0)
4733 goto err_out_id;
4734 rbd_dev->major = ret;
4735
4736 /* Set up the blkdev mapping. */
4737
4738 ret = rbd_init_disk(rbd_dev);
4739 if (ret)
4740 goto err_out_blkdev;
4741
4742 ret = rbd_bus_add_dev(rbd_dev);
4743 if (ret)
4744 goto err_out_disk;
4745
4746 /*
4747 * At this point cleanup in the event of an error is the job
4748 * of the sysfs code (initiated by rbd_bus_del_dev()).
4749 */
4750 /* Probe the parent if there is one */
4751
4752 if (rbd_dev->parent_spec) {
4753 /*
4754 * We need to pass a reference to the client and the
4755 * parent spec when creating the parent rbd_dev.
4756 * Images related by parent/child relationships
4757 * always share both.
4758 */
4759 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4760 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4761
4762 parent = rbd_dev_create(rbdc, parent_spec);
4763 if (!parent) {
4764 ret = -ENOMEM;
4765 goto err_out_spec;
4766 }
4767 rbdc = NULL; /* parent now owns reference */
4768 parent_spec = NULL; /* parent now owns reference */
4769 ret = rbd_dev_probe(parent);
4770 if (ret < 0)
4771 goto err_out_parent;
4772 rbd_dev->parent = parent;
4773 }
4774
4775 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4776 if (ret)
4777 goto err_out_bus;
4778
4779 /* Everything's ready. Announce the disk to the world. */
4780
4781 add_disk(rbd_dev->disk);
4782
4783 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4784 (unsigned long long) rbd_dev->mapping.size);
4785
4786 return ret;
4787
4788 err_out_parent:
4789 rbd_spec_put(rbd_dev->parent_spec);
4790 kfree(rbd_dev->header_name);
4791 rbd_dev_destroy(parent);
4792 err_out_spec:
4793 rbd_spec_put(parent_spec);
4794 rbd_put_client(rbdc);
4795 err_out_bus:
4796 /* this will also clean up rest of rbd_dev stuff */
4797
4798 rbd_bus_del_dev(rbd_dev);
4799
4800 return ret;
4801 err_out_disk:
4802 rbd_free_disk(rbd_dev);
4803 err_out_blkdev:
4804 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4805 err_out_id:
4806 rbd_dev_id_put(rbd_dev);
4807 err_out_snaps:
4808 rbd_remove_all_snaps(rbd_dev);
4809
4810 return ret;
4811 }
4812
4813 /*
4814 * Probe for the existence of the header object for the given rbd
4815 * device. For format 2 images this includes determining the image
4816 * id.
4817 */
4818 static int rbd_dev_probe(struct rbd_device *rbd_dev)
4819 {
4820 int ret;
4821
4822 /*
4823 * Get the id from the image id object. If it's not a
4824 * format 2 image, we'll get ENOENT back, and we'll assume
4825 * it's a format 1 image.
4826 */
4827 ret = rbd_dev_image_id(rbd_dev);
4828 if (ret)
4829 return ret;
4830 rbd_assert(rbd_dev->spec->image_id);
4831 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4832
4833 if (rbd_dev->image_format == 1)
4834 ret = rbd_dev_v1_probe(rbd_dev);
4835 else
4836 ret = rbd_dev_v2_probe(rbd_dev);
4837 if (ret)
4838 goto out_err;
4839
4840 ret = rbd_dev_probe_finish(rbd_dev);
4841 if (ret)
4842 rbd_header_free(&rbd_dev->header);
4843
4844 return ret;
4845 out_err:
4846 kfree(rbd_dev->spec->image_id);
4847 rbd_dev->spec->image_id = NULL;
4848
4849 dout("probe failed, returning %d\n", ret);
4850
4851 return ret;
4852 }
4853
4854 static ssize_t rbd_add(struct bus_type *bus,
4855 const char *buf,
4856 size_t count)
4857 {
4858 struct rbd_device *rbd_dev = NULL;
4859 struct ceph_options *ceph_opts = NULL;
4860 struct rbd_options *rbd_opts = NULL;
4861 struct rbd_spec *spec = NULL;
4862 struct rbd_client *rbdc;
4863 struct ceph_osd_client *osdc;
4864 int rc = -ENOMEM;
4865
4866 if (!try_module_get(THIS_MODULE))
4867 return -ENODEV;
4868
4869 /* parse add command */
4870 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4871 if (rc < 0)
4872 goto err_out_module;
4873
4874 rbdc = rbd_get_client(ceph_opts);
4875 if (IS_ERR(rbdc)) {
4876 rc = PTR_ERR(rbdc);
4877 goto err_out_args;
4878 }
4879 ceph_opts = NULL; /* rbd_dev client now owns this */
4880
4881 /* pick the pool */
4882 osdc = &rbdc->client->osdc;
4883 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4884 if (rc < 0)
4885 goto err_out_client;
4886 spec->pool_id = (u64)rc;
4887
4888 /* The ceph file layout needs to fit pool id in 32 bits */
4889
4890 if (spec->pool_id > (u64)U32_MAX) {
4891 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4892 (unsigned long long)spec->pool_id, U32_MAX);
4893 rc = -EIO;
4894 goto err_out_client;
4895 }
4896
4897 rbd_dev = rbd_dev_create(rbdc, spec);
4898 if (!rbd_dev)
4899 goto err_out_client;
4900 rbdc = NULL; /* rbd_dev now owns this */
4901 spec = NULL; /* rbd_dev now owns this */
4902
4903 rbd_dev->mapping.read_only = rbd_opts->read_only;
4904 kfree(rbd_opts);
4905 rbd_opts = NULL; /* done with this */
4906
4907 rc = rbd_dev_probe(rbd_dev);
4908 if (rc < 0)
4909 goto err_out_rbd_dev;
4910
4911 return count;
4912 err_out_rbd_dev:
4913 rbd_spec_put(rbd_dev->parent_spec);
4914 kfree(rbd_dev->header_name);
4915 rbd_dev_destroy(rbd_dev);
4916 err_out_client:
4917 rbd_put_client(rbdc);
4918 err_out_args:
4919 if (ceph_opts)
4920 ceph_destroy_options(ceph_opts);
4921 kfree(rbd_opts);
4922 rbd_spec_put(spec);
4923 err_out_module:
4924 module_put(THIS_MODULE);
4925
4926 dout("Error adding device %s\n", buf);
4927
4928 return (ssize_t)rc;
4929 }
4930
4931 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4932 {
4933 struct list_head *tmp;
4934 struct rbd_device *rbd_dev;
4935
4936 spin_lock(&rbd_dev_list_lock);
4937 list_for_each(tmp, &rbd_dev_list) {
4938 rbd_dev = list_entry(tmp, struct rbd_device, node);
4939 if (rbd_dev->dev_id == dev_id) {
4940 spin_unlock(&rbd_dev_list_lock);
4941 return rbd_dev;
4942 }
4943 }
4944 spin_unlock(&rbd_dev_list_lock);
4945 return NULL;
4946 }
4947
4948 static void rbd_dev_release(struct device *dev)
4949 {
4950 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4951
4952 if (rbd_dev->watch_event)
4953 rbd_dev_header_watch_sync(rbd_dev, 0);
4954
4955 /* clean up and free blkdev */
4956 rbd_free_disk(rbd_dev);
4957 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4958
4959 /* release allocated disk header fields */
4960 rbd_header_free(&rbd_dev->header);
4961
4962 /* done with the id, and with the rbd_dev */
4963 rbd_dev_id_put(rbd_dev);
4964 rbd_assert(rbd_dev->rbd_client != NULL);
4965 rbd_spec_put(rbd_dev->parent_spec);
4966 kfree(rbd_dev->header_name);
4967 rbd_dev_destroy(rbd_dev);
4968
4969 /* release module ref */
4970 module_put(THIS_MODULE);
4971 }
4972
4973 static void __rbd_remove(struct rbd_device *rbd_dev)
4974 {
4975 rbd_remove_all_snaps(rbd_dev);
4976 rbd_bus_del_dev(rbd_dev);
4977 }
4978
4979 static ssize_t rbd_remove(struct bus_type *bus,
4980 const char *buf,
4981 size_t count)
4982 {
4983 struct rbd_device *rbd_dev = NULL;
4984 int target_id, rc;
4985 unsigned long ul;
4986 int ret = count;
4987
4988 rc = strict_strtoul(buf, 10, &ul);
4989 if (rc)
4990 return rc;
4991
4992 /* convert to int; abort if we lost anything in the conversion */
4993 target_id = (int) ul;
4994 if (target_id != ul)
4995 return -EINVAL;
4996
4997 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4998
4999 rbd_dev = __rbd_get_dev(target_id);
5000 if (!rbd_dev) {
5001 ret = -ENOENT;
5002 goto done;
5003 }
5004
5005 spin_lock_irq(&rbd_dev->lock);
5006 if (rbd_dev->open_count)
5007 ret = -EBUSY;
5008 else
5009 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5010 spin_unlock_irq(&rbd_dev->lock);
5011 if (ret < 0)
5012 goto done;
5013
5014 while (rbd_dev->parent_spec) {
5015 struct rbd_device *first = rbd_dev;
5016 struct rbd_device *second = first->parent;
5017 struct rbd_device *third;
5018
5019 /*
5020 * Follow to the parent with no grandparent and
5021 * remove it.
5022 */
5023 while (second && (third = second->parent)) {
5024 first = second;
5025 second = third;
5026 }
5027 __rbd_remove(second);
5028 rbd_spec_put(first->parent_spec);
5029 first->parent_spec = NULL;
5030 first->parent_overlap = 0;
5031 first->parent = NULL;
5032 }
5033 __rbd_remove(rbd_dev);
5034
5035 done:
5036 mutex_unlock(&ctl_mutex);
5037
5038 return ret;
5039 }
5040
5041 /*
5042 * create control files in sysfs
5043 * /sys/bus/rbd/...
5044 */
5045 static int rbd_sysfs_init(void)
5046 {
5047 int ret;
5048
5049 ret = device_register(&rbd_root_dev);
5050 if (ret < 0)
5051 return ret;
5052
5053 ret = bus_register(&rbd_bus_type);
5054 if (ret < 0)
5055 device_unregister(&rbd_root_dev);
5056
5057 return ret;
5058 }
5059
5060 static void rbd_sysfs_cleanup(void)
5061 {
5062 bus_unregister(&rbd_bus_type);
5063 device_unregister(&rbd_root_dev);
5064 }
5065
5066 static int __init rbd_init(void)
5067 {
5068 int rc;
5069
5070 if (!libceph_compatible(NULL)) {
5071 rbd_warn(NULL, "libceph incompatibility (quitting)");
5072
5073 return -EINVAL;
5074 }
5075 rc = rbd_sysfs_init();
5076 if (rc)
5077 return rc;
5078 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5079 return 0;
5080 }
5081
5082 static void __exit rbd_exit(void)
5083 {
5084 rbd_sysfs_cleanup();
5085 }
5086
5087 module_init(rbd_init);
5088 module_exit(rbd_exit);
5089
5090 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5091 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5092 MODULE_DESCRIPTION("rados block device");
5093
5094 /* following authorship retained from original osdblk.c */
5095 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5096
5097 MODULE_LICENSE("GPL");