]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
Merge tag 'pinctrl-v4.1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
51
52 /*
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
57 */
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60
61 /*
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
66 */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 unsigned int counter;
70
71 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 if (counter <= (unsigned int)INT_MAX)
73 return (int)counter;
74
75 atomic_dec(v);
76
77 return -EINVAL;
78 }
79
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 int counter;
84
85 counter = atomic_dec_return(v);
86 if (counter >= 0)
87 return counter;
88
89 atomic_inc(v);
90
91 return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98
99 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
100 #define RBD_MAX_SNAP_NAME_LEN \
101 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102
103 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
104
105 #define RBD_SNAP_HEAD_NAME "-"
106
107 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
108
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX 64
112
113 #define RBD_OBJ_PREFIX_LEN_MAX 64
114
115 /* Feature bits */
116
117 #define RBD_FEATURE_LAYERING (1<<0)
118 #define RBD_FEATURE_STRIPINGV2 (1<<1)
119 #define RBD_FEATURES_ALL \
120 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121
122 /* Features supported by this (client software) implementation. */
123
124 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
125
126 /*
127 * An RBD device name will be "rbd#", where the "rbd" comes from
128 * RBD_DRV_NAME above, and # is a unique integer identifier.
129 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130 * enough to hold all possible device names.
131 */
132 #define DEV_NAME_LEN 32
133 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
134
135 /*
136 * block device image metadata (in-memory version)
137 */
138 struct rbd_image_header {
139 /* These six fields never change for a given rbd image */
140 char *object_prefix;
141 __u8 obj_order;
142 __u8 crypt_type;
143 __u8 comp_type;
144 u64 stripe_unit;
145 u64 stripe_count;
146 u64 features; /* Might be changeable someday? */
147
148 /* The remaining fields need to be updated occasionally */
149 u64 image_size;
150 struct ceph_snap_context *snapc;
151 char *snap_names; /* format 1 only */
152 u64 *snap_sizes; /* format 1 only */
153 };
154
155 /*
156 * An rbd image specification.
157 *
158 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159 * identify an image. Each rbd_dev structure includes a pointer to
160 * an rbd_spec structure that encapsulates this identity.
161 *
162 * Each of the id's in an rbd_spec has an associated name. For a
163 * user-mapped image, the names are supplied and the id's associated
164 * with them are looked up. For a layered image, a parent image is
165 * defined by the tuple, and the names are looked up.
166 *
167 * An rbd_dev structure contains a parent_spec pointer which is
168 * non-null if the image it represents is a child in a layered
169 * image. This pointer will refer to the rbd_spec structure used
170 * by the parent rbd_dev for its own identity (i.e., the structure
171 * is shared between the parent and child).
172 *
173 * Since these structures are populated once, during the discovery
174 * phase of image construction, they are effectively immutable so
175 * we make no effort to synchronize access to them.
176 *
177 * Note that code herein does not assume the image name is known (it
178 * could be a null pointer).
179 */
180 struct rbd_spec {
181 u64 pool_id;
182 const char *pool_name;
183
184 const char *image_id;
185 const char *image_name;
186
187 u64 snap_id;
188 const char *snap_name;
189
190 struct kref kref;
191 };
192
193 /*
194 * an instance of the client. multiple devices may share an rbd client.
195 */
196 struct rbd_client {
197 struct ceph_client *client;
198 struct kref kref;
199 struct list_head node;
200 };
201
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204
205 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
206
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209
210 enum obj_request_type {
211 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213
214 enum obj_operation_type {
215 OBJ_OP_WRITE,
216 OBJ_OP_READ,
217 OBJ_OP_DISCARD,
218 };
219
220 enum obj_req_flags {
221 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
222 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
223 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
224 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
225 };
226
227 struct rbd_obj_request {
228 const char *object_name;
229 u64 offset; /* object start byte */
230 u64 length; /* bytes from offset */
231 unsigned long flags;
232
233 /*
234 * An object request associated with an image will have its
235 * img_data flag set; a standalone object request will not.
236 *
237 * A standalone object request will have which == BAD_WHICH
238 * and a null obj_request pointer.
239 *
240 * An object request initiated in support of a layered image
241 * object (to check for its existence before a write) will
242 * have which == BAD_WHICH and a non-null obj_request pointer.
243 *
244 * Finally, an object request for rbd image data will have
245 * which != BAD_WHICH, and will have a non-null img_request
246 * pointer. The value of which will be in the range
247 * 0..(img_request->obj_request_count-1).
248 */
249 union {
250 struct rbd_obj_request *obj_request; /* STAT op */
251 struct {
252 struct rbd_img_request *img_request;
253 u64 img_offset;
254 /* links for img_request->obj_requests list */
255 struct list_head links;
256 };
257 };
258 u32 which; /* posn image request list */
259
260 enum obj_request_type type;
261 union {
262 struct bio *bio_list;
263 struct {
264 struct page **pages;
265 u32 page_count;
266 };
267 };
268 struct page **copyup_pages;
269 u32 copyup_page_count;
270
271 struct ceph_osd_request *osd_req;
272
273 u64 xferred; /* bytes transferred */
274 int result;
275
276 rbd_obj_callback_t callback;
277 struct completion completion;
278
279 struct kref kref;
280 };
281
282 enum img_req_flags {
283 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
284 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
285 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
286 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
287 };
288
289 struct rbd_img_request {
290 struct rbd_device *rbd_dev;
291 u64 offset; /* starting image byte offset */
292 u64 length; /* byte count from offset */
293 unsigned long flags;
294 union {
295 u64 snap_id; /* for reads */
296 struct ceph_snap_context *snapc; /* for writes */
297 };
298 union {
299 struct request *rq; /* block request */
300 struct rbd_obj_request *obj_request; /* obj req initiator */
301 };
302 struct page **copyup_pages;
303 u32 copyup_page_count;
304 spinlock_t completion_lock;/* protects next_completion */
305 u32 next_completion;
306 rbd_img_callback_t callback;
307 u64 xferred;/* aggregate bytes transferred */
308 int result; /* first nonzero obj_request result */
309
310 u32 obj_request_count;
311 struct list_head obj_requests; /* rbd_obj_request structs */
312
313 struct kref kref;
314 };
315
316 #define for_each_obj_request(ireq, oreq) \
317 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322
323 struct rbd_mapping {
324 u64 size;
325 u64 features;
326 bool read_only;
327 };
328
329 /*
330 * a single device
331 */
332 struct rbd_device {
333 int dev_id; /* blkdev unique id */
334
335 int major; /* blkdev assigned major */
336 int minor;
337 struct gendisk *disk; /* blkdev's gendisk and rq */
338
339 u32 image_format; /* Either 1 or 2 */
340 struct rbd_client *rbd_client;
341
342 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343
344 spinlock_t lock; /* queue, flags, open_count */
345
346 struct rbd_image_header header;
347 unsigned long flags; /* possibly lock protected */
348 struct rbd_spec *spec;
349
350 char *header_name;
351
352 struct ceph_file_layout layout;
353
354 struct ceph_osd_event *watch_event;
355 struct rbd_obj_request *watch_request;
356
357 struct rbd_spec *parent_spec;
358 u64 parent_overlap;
359 atomic_t parent_ref;
360 struct rbd_device *parent;
361
362 /* Block layer tags. */
363 struct blk_mq_tag_set tag_set;
364
365 /* protects updating the header */
366 struct rw_semaphore header_rwsem;
367
368 struct rbd_mapping mapping;
369
370 struct list_head node;
371
372 /* sysfs related */
373 struct device dev;
374 unsigned long open_count; /* protected by lock */
375 };
376
377 /*
378 * Flag bits for rbd_dev->flags. If atomicity is required,
379 * rbd_dev->lock is used to protect access.
380 *
381 * Currently, only the "removing" flag (which is coupled with the
382 * "open_count" field) requires atomic access.
383 */
384 enum rbd_dev_flags {
385 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
386 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
387 };
388
389 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
390
391 static LIST_HEAD(rbd_dev_list); /* devices */
392 static DEFINE_SPINLOCK(rbd_dev_list_lock);
393
394 static LIST_HEAD(rbd_client_list); /* clients */
395 static DEFINE_SPINLOCK(rbd_client_list_lock);
396
397 /* Slab caches for frequently-allocated structures */
398
399 static struct kmem_cache *rbd_img_request_cache;
400 static struct kmem_cache *rbd_obj_request_cache;
401 static struct kmem_cache *rbd_segment_name_cache;
402
403 static int rbd_major;
404 static DEFINE_IDA(rbd_dev_id_ida);
405
406 static struct workqueue_struct *rbd_wq;
407
408 /*
409 * Default to false for now, as single-major requires >= 0.75 version of
410 * userspace rbd utility.
411 */
412 static bool single_major = false;
413 module_param(single_major, bool, S_IRUGO);
414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
415
416 static int rbd_img_request_submit(struct rbd_img_request *img_request);
417
418 static void rbd_dev_device_release(struct device *dev);
419
420 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
421 size_t count);
422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
423 size_t count);
424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
425 size_t count);
426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
427 size_t count);
428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
429 static void rbd_spec_put(struct rbd_spec *spec);
430
431 static int rbd_dev_id_to_minor(int dev_id)
432 {
433 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
434 }
435
436 static int minor_to_rbd_dev_id(int minor)
437 {
438 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
439 }
440
441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
445
446 static struct attribute *rbd_bus_attrs[] = {
447 &bus_attr_add.attr,
448 &bus_attr_remove.attr,
449 &bus_attr_add_single_major.attr,
450 &bus_attr_remove_single_major.attr,
451 NULL,
452 };
453
454 static umode_t rbd_bus_is_visible(struct kobject *kobj,
455 struct attribute *attr, int index)
456 {
457 if (!single_major &&
458 (attr == &bus_attr_add_single_major.attr ||
459 attr == &bus_attr_remove_single_major.attr))
460 return 0;
461
462 return attr->mode;
463 }
464
465 static const struct attribute_group rbd_bus_group = {
466 .attrs = rbd_bus_attrs,
467 .is_visible = rbd_bus_is_visible,
468 };
469 __ATTRIBUTE_GROUPS(rbd_bus);
470
471 static struct bus_type rbd_bus_type = {
472 .name = "rbd",
473 .bus_groups = rbd_bus_groups,
474 };
475
476 static void rbd_root_dev_release(struct device *dev)
477 {
478 }
479
480 static struct device rbd_root_dev = {
481 .init_name = "rbd",
482 .release = rbd_root_dev_release,
483 };
484
485 static __printf(2, 3)
486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
487 {
488 struct va_format vaf;
489 va_list args;
490
491 va_start(args, fmt);
492 vaf.fmt = fmt;
493 vaf.va = &args;
494
495 if (!rbd_dev)
496 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
497 else if (rbd_dev->disk)
498 printk(KERN_WARNING "%s: %s: %pV\n",
499 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
500 else if (rbd_dev->spec && rbd_dev->spec->image_name)
501 printk(KERN_WARNING "%s: image %s: %pV\n",
502 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
503 else if (rbd_dev->spec && rbd_dev->spec->image_id)
504 printk(KERN_WARNING "%s: id %s: %pV\n",
505 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
506 else /* punt */
507 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
508 RBD_DRV_NAME, rbd_dev, &vaf);
509 va_end(args);
510 }
511
512 #ifdef RBD_DEBUG
513 #define rbd_assert(expr) \
514 if (unlikely(!(expr))) { \
515 printk(KERN_ERR "\nAssertion failure in %s() " \
516 "at line %d:\n\n" \
517 "\trbd_assert(%s);\n\n", \
518 __func__, __LINE__, #expr); \
519 BUG(); \
520 }
521 #else /* !RBD_DEBUG */
522 # define rbd_assert(expr) ((void) 0)
523 #endif /* !RBD_DEBUG */
524
525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
528
529 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
531 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
534 u64 snap_id);
535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
536 u8 *order, u64 *snap_size);
537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
538 u64 *snap_features);
539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
540
541 static int rbd_open(struct block_device *bdev, fmode_t mode)
542 {
543 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
544 bool removing = false;
545
546 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
547 return -EROFS;
548
549 spin_lock_irq(&rbd_dev->lock);
550 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
551 removing = true;
552 else
553 rbd_dev->open_count++;
554 spin_unlock_irq(&rbd_dev->lock);
555 if (removing)
556 return -ENOENT;
557
558 (void) get_device(&rbd_dev->dev);
559
560 return 0;
561 }
562
563 static void rbd_release(struct gendisk *disk, fmode_t mode)
564 {
565 struct rbd_device *rbd_dev = disk->private_data;
566 unsigned long open_count_before;
567
568 spin_lock_irq(&rbd_dev->lock);
569 open_count_before = rbd_dev->open_count--;
570 spin_unlock_irq(&rbd_dev->lock);
571 rbd_assert(open_count_before > 0);
572
573 put_device(&rbd_dev->dev);
574 }
575
576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
577 {
578 int ret = 0;
579 int val;
580 bool ro;
581 bool ro_changed = false;
582
583 /* get_user() may sleep, so call it before taking rbd_dev->lock */
584 if (get_user(val, (int __user *)(arg)))
585 return -EFAULT;
586
587 ro = val ? true : false;
588 /* Snapshot doesn't allow to write*/
589 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
590 return -EROFS;
591
592 spin_lock_irq(&rbd_dev->lock);
593 /* prevent others open this device */
594 if (rbd_dev->open_count > 1) {
595 ret = -EBUSY;
596 goto out;
597 }
598
599 if (rbd_dev->mapping.read_only != ro) {
600 rbd_dev->mapping.read_only = ro;
601 ro_changed = true;
602 }
603
604 out:
605 spin_unlock_irq(&rbd_dev->lock);
606 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
607 if (ret == 0 && ro_changed)
608 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
609
610 return ret;
611 }
612
613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
614 unsigned int cmd, unsigned long arg)
615 {
616 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
617 int ret = 0;
618
619 switch (cmd) {
620 case BLKROSET:
621 ret = rbd_ioctl_set_ro(rbd_dev, arg);
622 break;
623 default:
624 ret = -ENOTTY;
625 }
626
627 return ret;
628 }
629
630 #ifdef CONFIG_COMPAT
631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
632 unsigned int cmd, unsigned long arg)
633 {
634 return rbd_ioctl(bdev, mode, cmd, arg);
635 }
636 #endif /* CONFIG_COMPAT */
637
638 static const struct block_device_operations rbd_bd_ops = {
639 .owner = THIS_MODULE,
640 .open = rbd_open,
641 .release = rbd_release,
642 .ioctl = rbd_ioctl,
643 #ifdef CONFIG_COMPAT
644 .compat_ioctl = rbd_compat_ioctl,
645 #endif
646 };
647
648 /*
649 * Initialize an rbd client instance. Success or not, this function
650 * consumes ceph_opts. Caller holds client_mutex.
651 */
652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
653 {
654 struct rbd_client *rbdc;
655 int ret = -ENOMEM;
656
657 dout("%s:\n", __func__);
658 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
659 if (!rbdc)
660 goto out_opt;
661
662 kref_init(&rbdc->kref);
663 INIT_LIST_HEAD(&rbdc->node);
664
665 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
666 if (IS_ERR(rbdc->client))
667 goto out_rbdc;
668 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
669
670 ret = ceph_open_session(rbdc->client);
671 if (ret < 0)
672 goto out_client;
673
674 spin_lock(&rbd_client_list_lock);
675 list_add_tail(&rbdc->node, &rbd_client_list);
676 spin_unlock(&rbd_client_list_lock);
677
678 dout("%s: rbdc %p\n", __func__, rbdc);
679
680 return rbdc;
681 out_client:
682 ceph_destroy_client(rbdc->client);
683 out_rbdc:
684 kfree(rbdc);
685 out_opt:
686 if (ceph_opts)
687 ceph_destroy_options(ceph_opts);
688 dout("%s: error %d\n", __func__, ret);
689
690 return ERR_PTR(ret);
691 }
692
693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
694 {
695 kref_get(&rbdc->kref);
696
697 return rbdc;
698 }
699
700 /*
701 * Find a ceph client with specific addr and configuration. If
702 * found, bump its reference count.
703 */
704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
705 {
706 struct rbd_client *client_node;
707 bool found = false;
708
709 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
710 return NULL;
711
712 spin_lock(&rbd_client_list_lock);
713 list_for_each_entry(client_node, &rbd_client_list, node) {
714 if (!ceph_compare_options(ceph_opts, client_node->client)) {
715 __rbd_get_client(client_node);
716
717 found = true;
718 break;
719 }
720 }
721 spin_unlock(&rbd_client_list_lock);
722
723 return found ? client_node : NULL;
724 }
725
726 /*
727 * mount options
728 */
729 enum {
730 Opt_last_int,
731 /* int args above */
732 Opt_last_string,
733 /* string args above */
734 Opt_read_only,
735 Opt_read_write,
736 /* Boolean args above */
737 Opt_last_bool,
738 };
739
740 static match_table_t rbd_opts_tokens = {
741 /* int args above */
742 /* string args above */
743 {Opt_read_only, "read_only"},
744 {Opt_read_only, "ro"}, /* Alternate spelling */
745 {Opt_read_write, "read_write"},
746 {Opt_read_write, "rw"}, /* Alternate spelling */
747 /* Boolean args above */
748 {-1, NULL}
749 };
750
751 struct rbd_options {
752 bool read_only;
753 };
754
755 #define RBD_READ_ONLY_DEFAULT false
756
757 static int parse_rbd_opts_token(char *c, void *private)
758 {
759 struct rbd_options *rbd_opts = private;
760 substring_t argstr[MAX_OPT_ARGS];
761 int token, intval, ret;
762
763 token = match_token(c, rbd_opts_tokens, argstr);
764 if (token < 0)
765 return -EINVAL;
766
767 if (token < Opt_last_int) {
768 ret = match_int(&argstr[0], &intval);
769 if (ret < 0) {
770 pr_err("bad mount option arg (not int) "
771 "at '%s'\n", c);
772 return ret;
773 }
774 dout("got int token %d val %d\n", token, intval);
775 } else if (token > Opt_last_int && token < Opt_last_string) {
776 dout("got string token %d val %s\n", token,
777 argstr[0].from);
778 } else if (token > Opt_last_string && token < Opt_last_bool) {
779 dout("got Boolean token %d\n", token);
780 } else {
781 dout("got token %d\n", token);
782 }
783
784 switch (token) {
785 case Opt_read_only:
786 rbd_opts->read_only = true;
787 break;
788 case Opt_read_write:
789 rbd_opts->read_only = false;
790 break;
791 default:
792 rbd_assert(false);
793 break;
794 }
795 return 0;
796 }
797
798 static char* obj_op_name(enum obj_operation_type op_type)
799 {
800 switch (op_type) {
801 case OBJ_OP_READ:
802 return "read";
803 case OBJ_OP_WRITE:
804 return "write";
805 case OBJ_OP_DISCARD:
806 return "discard";
807 default:
808 return "???";
809 }
810 }
811
812 /*
813 * Get a ceph client with specific addr and configuration, if one does
814 * not exist create it. Either way, ceph_opts is consumed by this
815 * function.
816 */
817 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
818 {
819 struct rbd_client *rbdc;
820
821 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
822 rbdc = rbd_client_find(ceph_opts);
823 if (rbdc) /* using an existing client */
824 ceph_destroy_options(ceph_opts);
825 else
826 rbdc = rbd_client_create(ceph_opts);
827 mutex_unlock(&client_mutex);
828
829 return rbdc;
830 }
831
832 /*
833 * Destroy ceph client
834 *
835 * Caller must hold rbd_client_list_lock.
836 */
837 static void rbd_client_release(struct kref *kref)
838 {
839 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
840
841 dout("%s: rbdc %p\n", __func__, rbdc);
842 spin_lock(&rbd_client_list_lock);
843 list_del(&rbdc->node);
844 spin_unlock(&rbd_client_list_lock);
845
846 ceph_destroy_client(rbdc->client);
847 kfree(rbdc);
848 }
849
850 /*
851 * Drop reference to ceph client node. If it's not referenced anymore, release
852 * it.
853 */
854 static void rbd_put_client(struct rbd_client *rbdc)
855 {
856 if (rbdc)
857 kref_put(&rbdc->kref, rbd_client_release);
858 }
859
860 static bool rbd_image_format_valid(u32 image_format)
861 {
862 return image_format == 1 || image_format == 2;
863 }
864
865 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
866 {
867 size_t size;
868 u32 snap_count;
869
870 /* The header has to start with the magic rbd header text */
871 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
872 return false;
873
874 /* The bio layer requires at least sector-sized I/O */
875
876 if (ondisk->options.order < SECTOR_SHIFT)
877 return false;
878
879 /* If we use u64 in a few spots we may be able to loosen this */
880
881 if (ondisk->options.order > 8 * sizeof (int) - 1)
882 return false;
883
884 /*
885 * The size of a snapshot header has to fit in a size_t, and
886 * that limits the number of snapshots.
887 */
888 snap_count = le32_to_cpu(ondisk->snap_count);
889 size = SIZE_MAX - sizeof (struct ceph_snap_context);
890 if (snap_count > size / sizeof (__le64))
891 return false;
892
893 /*
894 * Not only that, but the size of the entire the snapshot
895 * header must also be representable in a size_t.
896 */
897 size -= snap_count * sizeof (__le64);
898 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
899 return false;
900
901 return true;
902 }
903
904 /*
905 * Fill an rbd image header with information from the given format 1
906 * on-disk header.
907 */
908 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
909 struct rbd_image_header_ondisk *ondisk)
910 {
911 struct rbd_image_header *header = &rbd_dev->header;
912 bool first_time = header->object_prefix == NULL;
913 struct ceph_snap_context *snapc;
914 char *object_prefix = NULL;
915 char *snap_names = NULL;
916 u64 *snap_sizes = NULL;
917 u32 snap_count;
918 size_t size;
919 int ret = -ENOMEM;
920 u32 i;
921
922 /* Allocate this now to avoid having to handle failure below */
923
924 if (first_time) {
925 size_t len;
926
927 len = strnlen(ondisk->object_prefix,
928 sizeof (ondisk->object_prefix));
929 object_prefix = kmalloc(len + 1, GFP_KERNEL);
930 if (!object_prefix)
931 return -ENOMEM;
932 memcpy(object_prefix, ondisk->object_prefix, len);
933 object_prefix[len] = '\0';
934 }
935
936 /* Allocate the snapshot context and fill it in */
937
938 snap_count = le32_to_cpu(ondisk->snap_count);
939 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
940 if (!snapc)
941 goto out_err;
942 snapc->seq = le64_to_cpu(ondisk->snap_seq);
943 if (snap_count) {
944 struct rbd_image_snap_ondisk *snaps;
945 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
946
947 /* We'll keep a copy of the snapshot names... */
948
949 if (snap_names_len > (u64)SIZE_MAX)
950 goto out_2big;
951 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
952 if (!snap_names)
953 goto out_err;
954
955 /* ...as well as the array of their sizes. */
956
957 size = snap_count * sizeof (*header->snap_sizes);
958 snap_sizes = kmalloc(size, GFP_KERNEL);
959 if (!snap_sizes)
960 goto out_err;
961
962 /*
963 * Copy the names, and fill in each snapshot's id
964 * and size.
965 *
966 * Note that rbd_dev_v1_header_info() guarantees the
967 * ondisk buffer we're working with has
968 * snap_names_len bytes beyond the end of the
969 * snapshot id array, this memcpy() is safe.
970 */
971 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
972 snaps = ondisk->snaps;
973 for (i = 0; i < snap_count; i++) {
974 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
975 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
976 }
977 }
978
979 /* We won't fail any more, fill in the header */
980
981 if (first_time) {
982 header->object_prefix = object_prefix;
983 header->obj_order = ondisk->options.order;
984 header->crypt_type = ondisk->options.crypt_type;
985 header->comp_type = ondisk->options.comp_type;
986 /* The rest aren't used for format 1 images */
987 header->stripe_unit = 0;
988 header->stripe_count = 0;
989 header->features = 0;
990 } else {
991 ceph_put_snap_context(header->snapc);
992 kfree(header->snap_names);
993 kfree(header->snap_sizes);
994 }
995
996 /* The remaining fields always get updated (when we refresh) */
997
998 header->image_size = le64_to_cpu(ondisk->image_size);
999 header->snapc = snapc;
1000 header->snap_names = snap_names;
1001 header->snap_sizes = snap_sizes;
1002
1003 return 0;
1004 out_2big:
1005 ret = -EIO;
1006 out_err:
1007 kfree(snap_sizes);
1008 kfree(snap_names);
1009 ceph_put_snap_context(snapc);
1010 kfree(object_prefix);
1011
1012 return ret;
1013 }
1014
1015 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1016 {
1017 const char *snap_name;
1018
1019 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1020
1021 /* Skip over names until we find the one we are looking for */
1022
1023 snap_name = rbd_dev->header.snap_names;
1024 while (which--)
1025 snap_name += strlen(snap_name) + 1;
1026
1027 return kstrdup(snap_name, GFP_KERNEL);
1028 }
1029
1030 /*
1031 * Snapshot id comparison function for use with qsort()/bsearch().
1032 * Note that result is for snapshots in *descending* order.
1033 */
1034 static int snapid_compare_reverse(const void *s1, const void *s2)
1035 {
1036 u64 snap_id1 = *(u64 *)s1;
1037 u64 snap_id2 = *(u64 *)s2;
1038
1039 if (snap_id1 < snap_id2)
1040 return 1;
1041 return snap_id1 == snap_id2 ? 0 : -1;
1042 }
1043
1044 /*
1045 * Search a snapshot context to see if the given snapshot id is
1046 * present.
1047 *
1048 * Returns the position of the snapshot id in the array if it's found,
1049 * or BAD_SNAP_INDEX otherwise.
1050 *
1051 * Note: The snapshot array is in kept sorted (by the osd) in
1052 * reverse order, highest snapshot id first.
1053 */
1054 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1055 {
1056 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1057 u64 *found;
1058
1059 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1060 sizeof (snap_id), snapid_compare_reverse);
1061
1062 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1063 }
1064
1065 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1066 u64 snap_id)
1067 {
1068 u32 which;
1069 const char *snap_name;
1070
1071 which = rbd_dev_snap_index(rbd_dev, snap_id);
1072 if (which == BAD_SNAP_INDEX)
1073 return ERR_PTR(-ENOENT);
1074
1075 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1076 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1077 }
1078
1079 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1080 {
1081 if (snap_id == CEPH_NOSNAP)
1082 return RBD_SNAP_HEAD_NAME;
1083
1084 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1085 if (rbd_dev->image_format == 1)
1086 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1087
1088 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1089 }
1090
1091 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1092 u64 *snap_size)
1093 {
1094 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1095 if (snap_id == CEPH_NOSNAP) {
1096 *snap_size = rbd_dev->header.image_size;
1097 } else if (rbd_dev->image_format == 1) {
1098 u32 which;
1099
1100 which = rbd_dev_snap_index(rbd_dev, snap_id);
1101 if (which == BAD_SNAP_INDEX)
1102 return -ENOENT;
1103
1104 *snap_size = rbd_dev->header.snap_sizes[which];
1105 } else {
1106 u64 size = 0;
1107 int ret;
1108
1109 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1110 if (ret)
1111 return ret;
1112
1113 *snap_size = size;
1114 }
1115 return 0;
1116 }
1117
1118 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1119 u64 *snap_features)
1120 {
1121 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1122 if (snap_id == CEPH_NOSNAP) {
1123 *snap_features = rbd_dev->header.features;
1124 } else if (rbd_dev->image_format == 1) {
1125 *snap_features = 0; /* No features for format 1 */
1126 } else {
1127 u64 features = 0;
1128 int ret;
1129
1130 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1131 if (ret)
1132 return ret;
1133
1134 *snap_features = features;
1135 }
1136 return 0;
1137 }
1138
1139 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1140 {
1141 u64 snap_id = rbd_dev->spec->snap_id;
1142 u64 size = 0;
1143 u64 features = 0;
1144 int ret;
1145
1146 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1147 if (ret)
1148 return ret;
1149 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1150 if (ret)
1151 return ret;
1152
1153 rbd_dev->mapping.size = size;
1154 rbd_dev->mapping.features = features;
1155
1156 return 0;
1157 }
1158
1159 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1160 {
1161 rbd_dev->mapping.size = 0;
1162 rbd_dev->mapping.features = 0;
1163 }
1164
1165 static void rbd_segment_name_free(const char *name)
1166 {
1167 /* The explicit cast here is needed to drop the const qualifier */
1168
1169 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1170 }
1171
1172 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1173 {
1174 char *name;
1175 u64 segment;
1176 int ret;
1177 char *name_format;
1178
1179 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1180 if (!name)
1181 return NULL;
1182 segment = offset >> rbd_dev->header.obj_order;
1183 name_format = "%s.%012llx";
1184 if (rbd_dev->image_format == 2)
1185 name_format = "%s.%016llx";
1186 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1187 rbd_dev->header.object_prefix, segment);
1188 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1189 pr_err("error formatting segment name for #%llu (%d)\n",
1190 segment, ret);
1191 rbd_segment_name_free(name);
1192 name = NULL;
1193 }
1194
1195 return name;
1196 }
1197
1198 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1199 {
1200 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1201
1202 return offset & (segment_size - 1);
1203 }
1204
1205 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1206 u64 offset, u64 length)
1207 {
1208 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1209
1210 offset &= segment_size - 1;
1211
1212 rbd_assert(length <= U64_MAX - offset);
1213 if (offset + length > segment_size)
1214 length = segment_size - offset;
1215
1216 return length;
1217 }
1218
1219 /*
1220 * returns the size of an object in the image
1221 */
1222 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1223 {
1224 return 1 << header->obj_order;
1225 }
1226
1227 /*
1228 * bio helpers
1229 */
1230
1231 static void bio_chain_put(struct bio *chain)
1232 {
1233 struct bio *tmp;
1234
1235 while (chain) {
1236 tmp = chain;
1237 chain = chain->bi_next;
1238 bio_put(tmp);
1239 }
1240 }
1241
1242 /*
1243 * zeros a bio chain, starting at specific offset
1244 */
1245 static void zero_bio_chain(struct bio *chain, int start_ofs)
1246 {
1247 struct bio_vec bv;
1248 struct bvec_iter iter;
1249 unsigned long flags;
1250 void *buf;
1251 int pos = 0;
1252
1253 while (chain) {
1254 bio_for_each_segment(bv, chain, iter) {
1255 if (pos + bv.bv_len > start_ofs) {
1256 int remainder = max(start_ofs - pos, 0);
1257 buf = bvec_kmap_irq(&bv, &flags);
1258 memset(buf + remainder, 0,
1259 bv.bv_len - remainder);
1260 flush_dcache_page(bv.bv_page);
1261 bvec_kunmap_irq(buf, &flags);
1262 }
1263 pos += bv.bv_len;
1264 }
1265
1266 chain = chain->bi_next;
1267 }
1268 }
1269
1270 /*
1271 * similar to zero_bio_chain(), zeros data defined by a page array,
1272 * starting at the given byte offset from the start of the array and
1273 * continuing up to the given end offset. The pages array is
1274 * assumed to be big enough to hold all bytes up to the end.
1275 */
1276 static void zero_pages(struct page **pages, u64 offset, u64 end)
1277 {
1278 struct page **page = &pages[offset >> PAGE_SHIFT];
1279
1280 rbd_assert(end > offset);
1281 rbd_assert(end - offset <= (u64)SIZE_MAX);
1282 while (offset < end) {
1283 size_t page_offset;
1284 size_t length;
1285 unsigned long flags;
1286 void *kaddr;
1287
1288 page_offset = offset & ~PAGE_MASK;
1289 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1290 local_irq_save(flags);
1291 kaddr = kmap_atomic(*page);
1292 memset(kaddr + page_offset, 0, length);
1293 flush_dcache_page(*page);
1294 kunmap_atomic(kaddr);
1295 local_irq_restore(flags);
1296
1297 offset += length;
1298 page++;
1299 }
1300 }
1301
1302 /*
1303 * Clone a portion of a bio, starting at the given byte offset
1304 * and continuing for the number of bytes indicated.
1305 */
1306 static struct bio *bio_clone_range(struct bio *bio_src,
1307 unsigned int offset,
1308 unsigned int len,
1309 gfp_t gfpmask)
1310 {
1311 struct bio *bio;
1312
1313 bio = bio_clone(bio_src, gfpmask);
1314 if (!bio)
1315 return NULL; /* ENOMEM */
1316
1317 bio_advance(bio, offset);
1318 bio->bi_iter.bi_size = len;
1319
1320 return bio;
1321 }
1322
1323 /*
1324 * Clone a portion of a bio chain, starting at the given byte offset
1325 * into the first bio in the source chain and continuing for the
1326 * number of bytes indicated. The result is another bio chain of
1327 * exactly the given length, or a null pointer on error.
1328 *
1329 * The bio_src and offset parameters are both in-out. On entry they
1330 * refer to the first source bio and the offset into that bio where
1331 * the start of data to be cloned is located.
1332 *
1333 * On return, bio_src is updated to refer to the bio in the source
1334 * chain that contains first un-cloned byte, and *offset will
1335 * contain the offset of that byte within that bio.
1336 */
1337 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1338 unsigned int *offset,
1339 unsigned int len,
1340 gfp_t gfpmask)
1341 {
1342 struct bio *bi = *bio_src;
1343 unsigned int off = *offset;
1344 struct bio *chain = NULL;
1345 struct bio **end;
1346
1347 /* Build up a chain of clone bios up to the limit */
1348
1349 if (!bi || off >= bi->bi_iter.bi_size || !len)
1350 return NULL; /* Nothing to clone */
1351
1352 end = &chain;
1353 while (len) {
1354 unsigned int bi_size;
1355 struct bio *bio;
1356
1357 if (!bi) {
1358 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1359 goto out_err; /* EINVAL; ran out of bio's */
1360 }
1361 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1362 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1363 if (!bio)
1364 goto out_err; /* ENOMEM */
1365
1366 *end = bio;
1367 end = &bio->bi_next;
1368
1369 off += bi_size;
1370 if (off == bi->bi_iter.bi_size) {
1371 bi = bi->bi_next;
1372 off = 0;
1373 }
1374 len -= bi_size;
1375 }
1376 *bio_src = bi;
1377 *offset = off;
1378
1379 return chain;
1380 out_err:
1381 bio_chain_put(chain);
1382
1383 return NULL;
1384 }
1385
1386 /*
1387 * The default/initial value for all object request flags is 0. For
1388 * each flag, once its value is set to 1 it is never reset to 0
1389 * again.
1390 */
1391 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1392 {
1393 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1394 struct rbd_device *rbd_dev;
1395
1396 rbd_dev = obj_request->img_request->rbd_dev;
1397 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1398 obj_request);
1399 }
1400 }
1401
1402 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1403 {
1404 smp_mb();
1405 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1406 }
1407
1408 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1409 {
1410 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1411 struct rbd_device *rbd_dev = NULL;
1412
1413 if (obj_request_img_data_test(obj_request))
1414 rbd_dev = obj_request->img_request->rbd_dev;
1415 rbd_warn(rbd_dev, "obj_request %p already marked done",
1416 obj_request);
1417 }
1418 }
1419
1420 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1421 {
1422 smp_mb();
1423 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1424 }
1425
1426 /*
1427 * This sets the KNOWN flag after (possibly) setting the EXISTS
1428 * flag. The latter is set based on the "exists" value provided.
1429 *
1430 * Note that for our purposes once an object exists it never goes
1431 * away again. It's possible that the response from two existence
1432 * checks are separated by the creation of the target object, and
1433 * the first ("doesn't exist") response arrives *after* the second
1434 * ("does exist"). In that case we ignore the second one.
1435 */
1436 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1437 bool exists)
1438 {
1439 if (exists)
1440 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1441 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1442 smp_mb();
1443 }
1444
1445 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1446 {
1447 smp_mb();
1448 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1449 }
1450
1451 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1452 {
1453 smp_mb();
1454 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1455 }
1456
1457 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1458 {
1459 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1460
1461 return obj_request->img_offset <
1462 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1463 }
1464
1465 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1466 {
1467 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1468 atomic_read(&obj_request->kref.refcount));
1469 kref_get(&obj_request->kref);
1470 }
1471
1472 static void rbd_obj_request_destroy(struct kref *kref);
1473 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1474 {
1475 rbd_assert(obj_request != NULL);
1476 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1477 atomic_read(&obj_request->kref.refcount));
1478 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1479 }
1480
1481 static void rbd_img_request_get(struct rbd_img_request *img_request)
1482 {
1483 dout("%s: img %p (was %d)\n", __func__, img_request,
1484 atomic_read(&img_request->kref.refcount));
1485 kref_get(&img_request->kref);
1486 }
1487
1488 static bool img_request_child_test(struct rbd_img_request *img_request);
1489 static void rbd_parent_request_destroy(struct kref *kref);
1490 static void rbd_img_request_destroy(struct kref *kref);
1491 static void rbd_img_request_put(struct rbd_img_request *img_request)
1492 {
1493 rbd_assert(img_request != NULL);
1494 dout("%s: img %p (was %d)\n", __func__, img_request,
1495 atomic_read(&img_request->kref.refcount));
1496 if (img_request_child_test(img_request))
1497 kref_put(&img_request->kref, rbd_parent_request_destroy);
1498 else
1499 kref_put(&img_request->kref, rbd_img_request_destroy);
1500 }
1501
1502 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1503 struct rbd_obj_request *obj_request)
1504 {
1505 rbd_assert(obj_request->img_request == NULL);
1506
1507 /* Image request now owns object's original reference */
1508 obj_request->img_request = img_request;
1509 obj_request->which = img_request->obj_request_count;
1510 rbd_assert(!obj_request_img_data_test(obj_request));
1511 obj_request_img_data_set(obj_request);
1512 rbd_assert(obj_request->which != BAD_WHICH);
1513 img_request->obj_request_count++;
1514 list_add_tail(&obj_request->links, &img_request->obj_requests);
1515 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1516 obj_request->which);
1517 }
1518
1519 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1520 struct rbd_obj_request *obj_request)
1521 {
1522 rbd_assert(obj_request->which != BAD_WHICH);
1523
1524 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1525 obj_request->which);
1526 list_del(&obj_request->links);
1527 rbd_assert(img_request->obj_request_count > 0);
1528 img_request->obj_request_count--;
1529 rbd_assert(obj_request->which == img_request->obj_request_count);
1530 obj_request->which = BAD_WHICH;
1531 rbd_assert(obj_request_img_data_test(obj_request));
1532 rbd_assert(obj_request->img_request == img_request);
1533 obj_request->img_request = NULL;
1534 obj_request->callback = NULL;
1535 rbd_obj_request_put(obj_request);
1536 }
1537
1538 static bool obj_request_type_valid(enum obj_request_type type)
1539 {
1540 switch (type) {
1541 case OBJ_REQUEST_NODATA:
1542 case OBJ_REQUEST_BIO:
1543 case OBJ_REQUEST_PAGES:
1544 return true;
1545 default:
1546 return false;
1547 }
1548 }
1549
1550 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1551 struct rbd_obj_request *obj_request)
1552 {
1553 dout("%s %p\n", __func__, obj_request);
1554 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1555 }
1556
1557 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1558 {
1559 dout("%s %p\n", __func__, obj_request);
1560 ceph_osdc_cancel_request(obj_request->osd_req);
1561 }
1562
1563 /*
1564 * Wait for an object request to complete. If interrupted, cancel the
1565 * underlying osd request.
1566 */
1567 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1568 {
1569 int ret;
1570
1571 dout("%s %p\n", __func__, obj_request);
1572
1573 ret = wait_for_completion_interruptible(&obj_request->completion);
1574 if (ret < 0) {
1575 dout("%s %p interrupted\n", __func__, obj_request);
1576 rbd_obj_request_end(obj_request);
1577 return ret;
1578 }
1579
1580 dout("%s %p done\n", __func__, obj_request);
1581 return 0;
1582 }
1583
1584 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1585 {
1586
1587 dout("%s: img %p\n", __func__, img_request);
1588
1589 /*
1590 * If no error occurred, compute the aggregate transfer
1591 * count for the image request. We could instead use
1592 * atomic64_cmpxchg() to update it as each object request
1593 * completes; not clear which way is better off hand.
1594 */
1595 if (!img_request->result) {
1596 struct rbd_obj_request *obj_request;
1597 u64 xferred = 0;
1598
1599 for_each_obj_request(img_request, obj_request)
1600 xferred += obj_request->xferred;
1601 img_request->xferred = xferred;
1602 }
1603
1604 if (img_request->callback)
1605 img_request->callback(img_request);
1606 else
1607 rbd_img_request_put(img_request);
1608 }
1609
1610 /*
1611 * The default/initial value for all image request flags is 0. Each
1612 * is conditionally set to 1 at image request initialization time
1613 * and currently never change thereafter.
1614 */
1615 static void img_request_write_set(struct rbd_img_request *img_request)
1616 {
1617 set_bit(IMG_REQ_WRITE, &img_request->flags);
1618 smp_mb();
1619 }
1620
1621 static bool img_request_write_test(struct rbd_img_request *img_request)
1622 {
1623 smp_mb();
1624 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1625 }
1626
1627 /*
1628 * Set the discard flag when the img_request is an discard request
1629 */
1630 static void img_request_discard_set(struct rbd_img_request *img_request)
1631 {
1632 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1633 smp_mb();
1634 }
1635
1636 static bool img_request_discard_test(struct rbd_img_request *img_request)
1637 {
1638 smp_mb();
1639 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1640 }
1641
1642 static void img_request_child_set(struct rbd_img_request *img_request)
1643 {
1644 set_bit(IMG_REQ_CHILD, &img_request->flags);
1645 smp_mb();
1646 }
1647
1648 static void img_request_child_clear(struct rbd_img_request *img_request)
1649 {
1650 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1651 smp_mb();
1652 }
1653
1654 static bool img_request_child_test(struct rbd_img_request *img_request)
1655 {
1656 smp_mb();
1657 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1658 }
1659
1660 static void img_request_layered_set(struct rbd_img_request *img_request)
1661 {
1662 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1663 smp_mb();
1664 }
1665
1666 static void img_request_layered_clear(struct rbd_img_request *img_request)
1667 {
1668 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1669 smp_mb();
1670 }
1671
1672 static bool img_request_layered_test(struct rbd_img_request *img_request)
1673 {
1674 smp_mb();
1675 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1676 }
1677
1678 static enum obj_operation_type
1679 rbd_img_request_op_type(struct rbd_img_request *img_request)
1680 {
1681 if (img_request_write_test(img_request))
1682 return OBJ_OP_WRITE;
1683 else if (img_request_discard_test(img_request))
1684 return OBJ_OP_DISCARD;
1685 else
1686 return OBJ_OP_READ;
1687 }
1688
1689 static void
1690 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692 u64 xferred = obj_request->xferred;
1693 u64 length = obj_request->length;
1694
1695 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1696 obj_request, obj_request->img_request, obj_request->result,
1697 xferred, length);
1698 /*
1699 * ENOENT means a hole in the image. We zero-fill the entire
1700 * length of the request. A short read also implies zero-fill
1701 * to the end of the request. An error requires the whole
1702 * length of the request to be reported finished with an error
1703 * to the block layer. In each case we update the xferred
1704 * count to indicate the whole request was satisfied.
1705 */
1706 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1707 if (obj_request->result == -ENOENT) {
1708 if (obj_request->type == OBJ_REQUEST_BIO)
1709 zero_bio_chain(obj_request->bio_list, 0);
1710 else
1711 zero_pages(obj_request->pages, 0, length);
1712 obj_request->result = 0;
1713 } else if (xferred < length && !obj_request->result) {
1714 if (obj_request->type == OBJ_REQUEST_BIO)
1715 zero_bio_chain(obj_request->bio_list, xferred);
1716 else
1717 zero_pages(obj_request->pages, xferred, length);
1718 }
1719 obj_request->xferred = length;
1720 obj_request_done_set(obj_request);
1721 }
1722
1723 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1724 {
1725 dout("%s: obj %p cb %p\n", __func__, obj_request,
1726 obj_request->callback);
1727 if (obj_request->callback)
1728 obj_request->callback(obj_request);
1729 else
1730 complete_all(&obj_request->completion);
1731 }
1732
1733 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1734 {
1735 dout("%s: obj %p\n", __func__, obj_request);
1736 obj_request_done_set(obj_request);
1737 }
1738
1739 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1740 {
1741 struct rbd_img_request *img_request = NULL;
1742 struct rbd_device *rbd_dev = NULL;
1743 bool layered = false;
1744
1745 if (obj_request_img_data_test(obj_request)) {
1746 img_request = obj_request->img_request;
1747 layered = img_request && img_request_layered_test(img_request);
1748 rbd_dev = img_request->rbd_dev;
1749 }
1750
1751 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1752 obj_request, img_request, obj_request->result,
1753 obj_request->xferred, obj_request->length);
1754 if (layered && obj_request->result == -ENOENT &&
1755 obj_request->img_offset < rbd_dev->parent_overlap)
1756 rbd_img_parent_read(obj_request);
1757 else if (img_request)
1758 rbd_img_obj_request_read_callback(obj_request);
1759 else
1760 obj_request_done_set(obj_request);
1761 }
1762
1763 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1764 {
1765 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1766 obj_request->result, obj_request->length);
1767 /*
1768 * There is no such thing as a successful short write. Set
1769 * it to our originally-requested length.
1770 */
1771 obj_request->xferred = obj_request->length;
1772 obj_request_done_set(obj_request);
1773 }
1774
1775 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1776 {
1777 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1778 obj_request->result, obj_request->length);
1779 /*
1780 * There is no such thing as a successful short discard. Set
1781 * it to our originally-requested length.
1782 */
1783 obj_request->xferred = obj_request->length;
1784 /* discarding a non-existent object is not a problem */
1785 if (obj_request->result == -ENOENT)
1786 obj_request->result = 0;
1787 obj_request_done_set(obj_request);
1788 }
1789
1790 /*
1791 * For a simple stat call there's nothing to do. We'll do more if
1792 * this is part of a write sequence for a layered image.
1793 */
1794 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1795 {
1796 dout("%s: obj %p\n", __func__, obj_request);
1797 obj_request_done_set(obj_request);
1798 }
1799
1800 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1801 struct ceph_msg *msg)
1802 {
1803 struct rbd_obj_request *obj_request = osd_req->r_priv;
1804 u16 opcode;
1805
1806 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1807 rbd_assert(osd_req == obj_request->osd_req);
1808 if (obj_request_img_data_test(obj_request)) {
1809 rbd_assert(obj_request->img_request);
1810 rbd_assert(obj_request->which != BAD_WHICH);
1811 } else {
1812 rbd_assert(obj_request->which == BAD_WHICH);
1813 }
1814
1815 if (osd_req->r_result < 0)
1816 obj_request->result = osd_req->r_result;
1817
1818 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1819
1820 /*
1821 * We support a 64-bit length, but ultimately it has to be
1822 * passed to the block layer, which just supports a 32-bit
1823 * length field.
1824 */
1825 obj_request->xferred = osd_req->r_reply_op_len[0];
1826 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1827
1828 opcode = osd_req->r_ops[0].op;
1829 switch (opcode) {
1830 case CEPH_OSD_OP_READ:
1831 rbd_osd_read_callback(obj_request);
1832 break;
1833 case CEPH_OSD_OP_SETALLOCHINT:
1834 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1835 /* fall through */
1836 case CEPH_OSD_OP_WRITE:
1837 rbd_osd_write_callback(obj_request);
1838 break;
1839 case CEPH_OSD_OP_STAT:
1840 rbd_osd_stat_callback(obj_request);
1841 break;
1842 case CEPH_OSD_OP_DELETE:
1843 case CEPH_OSD_OP_TRUNCATE:
1844 case CEPH_OSD_OP_ZERO:
1845 rbd_osd_discard_callback(obj_request);
1846 break;
1847 case CEPH_OSD_OP_CALL:
1848 case CEPH_OSD_OP_NOTIFY_ACK:
1849 case CEPH_OSD_OP_WATCH:
1850 rbd_osd_trivial_callback(obj_request);
1851 break;
1852 default:
1853 rbd_warn(NULL, "%s: unsupported op %hu",
1854 obj_request->object_name, (unsigned short) opcode);
1855 break;
1856 }
1857
1858 if (obj_request_done_test(obj_request))
1859 rbd_obj_request_complete(obj_request);
1860 }
1861
1862 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1863 {
1864 struct rbd_img_request *img_request = obj_request->img_request;
1865 struct ceph_osd_request *osd_req = obj_request->osd_req;
1866 u64 snap_id;
1867
1868 rbd_assert(osd_req != NULL);
1869
1870 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1871 ceph_osdc_build_request(osd_req, obj_request->offset,
1872 NULL, snap_id, NULL);
1873 }
1874
1875 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1876 {
1877 struct rbd_img_request *img_request = obj_request->img_request;
1878 struct ceph_osd_request *osd_req = obj_request->osd_req;
1879 struct ceph_snap_context *snapc;
1880 struct timespec mtime = CURRENT_TIME;
1881
1882 rbd_assert(osd_req != NULL);
1883
1884 snapc = img_request ? img_request->snapc : NULL;
1885 ceph_osdc_build_request(osd_req, obj_request->offset,
1886 snapc, CEPH_NOSNAP, &mtime);
1887 }
1888
1889 /*
1890 * Create an osd request. A read request has one osd op (read).
1891 * A write request has either one (watch) or two (hint+write) osd ops.
1892 * (All rbd data writes are prefixed with an allocation hint op, but
1893 * technically osd watch is a write request, hence this distinction.)
1894 */
1895 static struct ceph_osd_request *rbd_osd_req_create(
1896 struct rbd_device *rbd_dev,
1897 enum obj_operation_type op_type,
1898 unsigned int num_ops,
1899 struct rbd_obj_request *obj_request)
1900 {
1901 struct ceph_snap_context *snapc = NULL;
1902 struct ceph_osd_client *osdc;
1903 struct ceph_osd_request *osd_req;
1904
1905 if (obj_request_img_data_test(obj_request) &&
1906 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1907 struct rbd_img_request *img_request = obj_request->img_request;
1908 if (op_type == OBJ_OP_WRITE) {
1909 rbd_assert(img_request_write_test(img_request));
1910 } else {
1911 rbd_assert(img_request_discard_test(img_request));
1912 }
1913 snapc = img_request->snapc;
1914 }
1915
1916 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1917
1918 /* Allocate and initialize the request, for the num_ops ops */
1919
1920 osdc = &rbd_dev->rbd_client->client->osdc;
1921 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1922 GFP_ATOMIC);
1923 if (!osd_req)
1924 return NULL; /* ENOMEM */
1925
1926 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1927 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1928 else
1929 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1930
1931 osd_req->r_callback = rbd_osd_req_callback;
1932 osd_req->r_priv = obj_request;
1933
1934 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1935 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1936
1937 return osd_req;
1938 }
1939
1940 /*
1941 * Create a copyup osd request based on the information in the object
1942 * request supplied. A copyup request has two or three osd ops, a
1943 * copyup method call, potentially a hint op, and a write or truncate
1944 * or zero op.
1945 */
1946 static struct ceph_osd_request *
1947 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1948 {
1949 struct rbd_img_request *img_request;
1950 struct ceph_snap_context *snapc;
1951 struct rbd_device *rbd_dev;
1952 struct ceph_osd_client *osdc;
1953 struct ceph_osd_request *osd_req;
1954 int num_osd_ops = 3;
1955
1956 rbd_assert(obj_request_img_data_test(obj_request));
1957 img_request = obj_request->img_request;
1958 rbd_assert(img_request);
1959 rbd_assert(img_request_write_test(img_request) ||
1960 img_request_discard_test(img_request));
1961
1962 if (img_request_discard_test(img_request))
1963 num_osd_ops = 2;
1964
1965 /* Allocate and initialize the request, for all the ops */
1966
1967 snapc = img_request->snapc;
1968 rbd_dev = img_request->rbd_dev;
1969 osdc = &rbd_dev->rbd_client->client->osdc;
1970 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1971 false, GFP_ATOMIC);
1972 if (!osd_req)
1973 return NULL; /* ENOMEM */
1974
1975 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1976 osd_req->r_callback = rbd_osd_req_callback;
1977 osd_req->r_priv = obj_request;
1978
1979 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1980 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1981
1982 return osd_req;
1983 }
1984
1985
1986 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1987 {
1988 ceph_osdc_put_request(osd_req);
1989 }
1990
1991 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1992
1993 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1994 u64 offset, u64 length,
1995 enum obj_request_type type)
1996 {
1997 struct rbd_obj_request *obj_request;
1998 size_t size;
1999 char *name;
2000
2001 rbd_assert(obj_request_type_valid(type));
2002
2003 size = strlen(object_name) + 1;
2004 name = kmalloc(size, GFP_KERNEL);
2005 if (!name)
2006 return NULL;
2007
2008 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2009 if (!obj_request) {
2010 kfree(name);
2011 return NULL;
2012 }
2013
2014 obj_request->object_name = memcpy(name, object_name, size);
2015 obj_request->offset = offset;
2016 obj_request->length = length;
2017 obj_request->flags = 0;
2018 obj_request->which = BAD_WHICH;
2019 obj_request->type = type;
2020 INIT_LIST_HEAD(&obj_request->links);
2021 init_completion(&obj_request->completion);
2022 kref_init(&obj_request->kref);
2023
2024 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2025 offset, length, (int)type, obj_request);
2026
2027 return obj_request;
2028 }
2029
2030 static void rbd_obj_request_destroy(struct kref *kref)
2031 {
2032 struct rbd_obj_request *obj_request;
2033
2034 obj_request = container_of(kref, struct rbd_obj_request, kref);
2035
2036 dout("%s: obj %p\n", __func__, obj_request);
2037
2038 rbd_assert(obj_request->img_request == NULL);
2039 rbd_assert(obj_request->which == BAD_WHICH);
2040
2041 if (obj_request->osd_req)
2042 rbd_osd_req_destroy(obj_request->osd_req);
2043
2044 rbd_assert(obj_request_type_valid(obj_request->type));
2045 switch (obj_request->type) {
2046 case OBJ_REQUEST_NODATA:
2047 break; /* Nothing to do */
2048 case OBJ_REQUEST_BIO:
2049 if (obj_request->bio_list)
2050 bio_chain_put(obj_request->bio_list);
2051 break;
2052 case OBJ_REQUEST_PAGES:
2053 if (obj_request->pages)
2054 ceph_release_page_vector(obj_request->pages,
2055 obj_request->page_count);
2056 break;
2057 }
2058
2059 kfree(obj_request->object_name);
2060 obj_request->object_name = NULL;
2061 kmem_cache_free(rbd_obj_request_cache, obj_request);
2062 }
2063
2064 /* It's OK to call this for a device with no parent */
2065
2066 static void rbd_spec_put(struct rbd_spec *spec);
2067 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2068 {
2069 rbd_dev_remove_parent(rbd_dev);
2070 rbd_spec_put(rbd_dev->parent_spec);
2071 rbd_dev->parent_spec = NULL;
2072 rbd_dev->parent_overlap = 0;
2073 }
2074
2075 /*
2076 * Parent image reference counting is used to determine when an
2077 * image's parent fields can be safely torn down--after there are no
2078 * more in-flight requests to the parent image. When the last
2079 * reference is dropped, cleaning them up is safe.
2080 */
2081 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2082 {
2083 int counter;
2084
2085 if (!rbd_dev->parent_spec)
2086 return;
2087
2088 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2089 if (counter > 0)
2090 return;
2091
2092 /* Last reference; clean up parent data structures */
2093
2094 if (!counter)
2095 rbd_dev_unparent(rbd_dev);
2096 else
2097 rbd_warn(rbd_dev, "parent reference underflow");
2098 }
2099
2100 /*
2101 * If an image has a non-zero parent overlap, get a reference to its
2102 * parent.
2103 *
2104 * Returns true if the rbd device has a parent with a non-zero
2105 * overlap and a reference for it was successfully taken, or
2106 * false otherwise.
2107 */
2108 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2109 {
2110 int counter = 0;
2111
2112 if (!rbd_dev->parent_spec)
2113 return false;
2114
2115 down_read(&rbd_dev->header_rwsem);
2116 if (rbd_dev->parent_overlap)
2117 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118 up_read(&rbd_dev->header_rwsem);
2119
2120 if (counter < 0)
2121 rbd_warn(rbd_dev, "parent reference overflow");
2122
2123 return counter > 0;
2124 }
2125
2126 /*
2127 * Caller is responsible for filling in the list of object requests
2128 * that comprises the image request, and the Linux request pointer
2129 * (if there is one).
2130 */
2131 static struct rbd_img_request *rbd_img_request_create(
2132 struct rbd_device *rbd_dev,
2133 u64 offset, u64 length,
2134 enum obj_operation_type op_type,
2135 struct ceph_snap_context *snapc)
2136 {
2137 struct rbd_img_request *img_request;
2138
2139 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2140 if (!img_request)
2141 return NULL;
2142
2143 img_request->rq = NULL;
2144 img_request->rbd_dev = rbd_dev;
2145 img_request->offset = offset;
2146 img_request->length = length;
2147 img_request->flags = 0;
2148 if (op_type == OBJ_OP_DISCARD) {
2149 img_request_discard_set(img_request);
2150 img_request->snapc = snapc;
2151 } else if (op_type == OBJ_OP_WRITE) {
2152 img_request_write_set(img_request);
2153 img_request->snapc = snapc;
2154 } else {
2155 img_request->snap_id = rbd_dev->spec->snap_id;
2156 }
2157 if (rbd_dev_parent_get(rbd_dev))
2158 img_request_layered_set(img_request);
2159 spin_lock_init(&img_request->completion_lock);
2160 img_request->next_completion = 0;
2161 img_request->callback = NULL;
2162 img_request->result = 0;
2163 img_request->obj_request_count = 0;
2164 INIT_LIST_HEAD(&img_request->obj_requests);
2165 kref_init(&img_request->kref);
2166
2167 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2168 obj_op_name(op_type), offset, length, img_request);
2169
2170 return img_request;
2171 }
2172
2173 static void rbd_img_request_destroy(struct kref *kref)
2174 {
2175 struct rbd_img_request *img_request;
2176 struct rbd_obj_request *obj_request;
2177 struct rbd_obj_request *next_obj_request;
2178
2179 img_request = container_of(kref, struct rbd_img_request, kref);
2180
2181 dout("%s: img %p\n", __func__, img_request);
2182
2183 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2184 rbd_img_obj_request_del(img_request, obj_request);
2185 rbd_assert(img_request->obj_request_count == 0);
2186
2187 if (img_request_layered_test(img_request)) {
2188 img_request_layered_clear(img_request);
2189 rbd_dev_parent_put(img_request->rbd_dev);
2190 }
2191
2192 if (img_request_write_test(img_request) ||
2193 img_request_discard_test(img_request))
2194 ceph_put_snap_context(img_request->snapc);
2195
2196 kmem_cache_free(rbd_img_request_cache, img_request);
2197 }
2198
2199 static struct rbd_img_request *rbd_parent_request_create(
2200 struct rbd_obj_request *obj_request,
2201 u64 img_offset, u64 length)
2202 {
2203 struct rbd_img_request *parent_request;
2204 struct rbd_device *rbd_dev;
2205
2206 rbd_assert(obj_request->img_request);
2207 rbd_dev = obj_request->img_request->rbd_dev;
2208
2209 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2210 length, OBJ_OP_READ, NULL);
2211 if (!parent_request)
2212 return NULL;
2213
2214 img_request_child_set(parent_request);
2215 rbd_obj_request_get(obj_request);
2216 parent_request->obj_request = obj_request;
2217
2218 return parent_request;
2219 }
2220
2221 static void rbd_parent_request_destroy(struct kref *kref)
2222 {
2223 struct rbd_img_request *parent_request;
2224 struct rbd_obj_request *orig_request;
2225
2226 parent_request = container_of(kref, struct rbd_img_request, kref);
2227 orig_request = parent_request->obj_request;
2228
2229 parent_request->obj_request = NULL;
2230 rbd_obj_request_put(orig_request);
2231 img_request_child_clear(parent_request);
2232
2233 rbd_img_request_destroy(kref);
2234 }
2235
2236 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2237 {
2238 struct rbd_img_request *img_request;
2239 unsigned int xferred;
2240 int result;
2241 bool more;
2242
2243 rbd_assert(obj_request_img_data_test(obj_request));
2244 img_request = obj_request->img_request;
2245
2246 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2247 xferred = (unsigned int)obj_request->xferred;
2248 result = obj_request->result;
2249 if (result) {
2250 struct rbd_device *rbd_dev = img_request->rbd_dev;
2251 enum obj_operation_type op_type;
2252
2253 if (img_request_discard_test(img_request))
2254 op_type = OBJ_OP_DISCARD;
2255 else if (img_request_write_test(img_request))
2256 op_type = OBJ_OP_WRITE;
2257 else
2258 op_type = OBJ_OP_READ;
2259
2260 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2261 obj_op_name(op_type), obj_request->length,
2262 obj_request->img_offset, obj_request->offset);
2263 rbd_warn(rbd_dev, " result %d xferred %x",
2264 result, xferred);
2265 if (!img_request->result)
2266 img_request->result = result;
2267 /*
2268 * Need to end I/O on the entire obj_request worth of
2269 * bytes in case of error.
2270 */
2271 xferred = obj_request->length;
2272 }
2273
2274 /* Image object requests don't own their page array */
2275
2276 if (obj_request->type == OBJ_REQUEST_PAGES) {
2277 obj_request->pages = NULL;
2278 obj_request->page_count = 0;
2279 }
2280
2281 if (img_request_child_test(img_request)) {
2282 rbd_assert(img_request->obj_request != NULL);
2283 more = obj_request->which < img_request->obj_request_count - 1;
2284 } else {
2285 rbd_assert(img_request->rq != NULL);
2286
2287 more = blk_update_request(img_request->rq, result, xferred);
2288 if (!more)
2289 __blk_mq_end_request(img_request->rq, result);
2290 }
2291
2292 return more;
2293 }
2294
2295 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2296 {
2297 struct rbd_img_request *img_request;
2298 u32 which = obj_request->which;
2299 bool more = true;
2300
2301 rbd_assert(obj_request_img_data_test(obj_request));
2302 img_request = obj_request->img_request;
2303
2304 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2305 rbd_assert(img_request != NULL);
2306 rbd_assert(img_request->obj_request_count > 0);
2307 rbd_assert(which != BAD_WHICH);
2308 rbd_assert(which < img_request->obj_request_count);
2309
2310 spin_lock_irq(&img_request->completion_lock);
2311 if (which != img_request->next_completion)
2312 goto out;
2313
2314 for_each_obj_request_from(img_request, obj_request) {
2315 rbd_assert(more);
2316 rbd_assert(which < img_request->obj_request_count);
2317
2318 if (!obj_request_done_test(obj_request))
2319 break;
2320 more = rbd_img_obj_end_request(obj_request);
2321 which++;
2322 }
2323
2324 rbd_assert(more ^ (which == img_request->obj_request_count));
2325 img_request->next_completion = which;
2326 out:
2327 spin_unlock_irq(&img_request->completion_lock);
2328 rbd_img_request_put(img_request);
2329
2330 if (!more)
2331 rbd_img_request_complete(img_request);
2332 }
2333
2334 /*
2335 * Add individual osd ops to the given ceph_osd_request and prepare
2336 * them for submission. num_ops is the current number of
2337 * osd operations already to the object request.
2338 */
2339 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2340 struct ceph_osd_request *osd_request,
2341 enum obj_operation_type op_type,
2342 unsigned int num_ops)
2343 {
2344 struct rbd_img_request *img_request = obj_request->img_request;
2345 struct rbd_device *rbd_dev = img_request->rbd_dev;
2346 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2347 u64 offset = obj_request->offset;
2348 u64 length = obj_request->length;
2349 u64 img_end;
2350 u16 opcode;
2351
2352 if (op_type == OBJ_OP_DISCARD) {
2353 if (!offset && length == object_size &&
2354 (!img_request_layered_test(img_request) ||
2355 !obj_request_overlaps_parent(obj_request))) {
2356 opcode = CEPH_OSD_OP_DELETE;
2357 } else if ((offset + length == object_size)) {
2358 opcode = CEPH_OSD_OP_TRUNCATE;
2359 } else {
2360 down_read(&rbd_dev->header_rwsem);
2361 img_end = rbd_dev->header.image_size;
2362 up_read(&rbd_dev->header_rwsem);
2363
2364 if (obj_request->img_offset + length == img_end)
2365 opcode = CEPH_OSD_OP_TRUNCATE;
2366 else
2367 opcode = CEPH_OSD_OP_ZERO;
2368 }
2369 } else if (op_type == OBJ_OP_WRITE) {
2370 opcode = CEPH_OSD_OP_WRITE;
2371 osd_req_op_alloc_hint_init(osd_request, num_ops,
2372 object_size, object_size);
2373 num_ops++;
2374 } else {
2375 opcode = CEPH_OSD_OP_READ;
2376 }
2377
2378 if (opcode == CEPH_OSD_OP_DELETE)
2379 osd_req_op_init(osd_request, num_ops, opcode);
2380 else
2381 osd_req_op_extent_init(osd_request, num_ops, opcode,
2382 offset, length, 0, 0);
2383
2384 if (obj_request->type == OBJ_REQUEST_BIO)
2385 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2386 obj_request->bio_list, length);
2387 else if (obj_request->type == OBJ_REQUEST_PAGES)
2388 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2389 obj_request->pages, length,
2390 offset & ~PAGE_MASK, false, false);
2391
2392 /* Discards are also writes */
2393 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2394 rbd_osd_req_format_write(obj_request);
2395 else
2396 rbd_osd_req_format_read(obj_request);
2397 }
2398
2399 /*
2400 * Split up an image request into one or more object requests, each
2401 * to a different object. The "type" parameter indicates whether
2402 * "data_desc" is the pointer to the head of a list of bio
2403 * structures, or the base of a page array. In either case this
2404 * function assumes data_desc describes memory sufficient to hold
2405 * all data described by the image request.
2406 */
2407 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2408 enum obj_request_type type,
2409 void *data_desc)
2410 {
2411 struct rbd_device *rbd_dev = img_request->rbd_dev;
2412 struct rbd_obj_request *obj_request = NULL;
2413 struct rbd_obj_request *next_obj_request;
2414 struct bio *bio_list = NULL;
2415 unsigned int bio_offset = 0;
2416 struct page **pages = NULL;
2417 enum obj_operation_type op_type;
2418 u64 img_offset;
2419 u64 resid;
2420
2421 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2422 (int)type, data_desc);
2423
2424 img_offset = img_request->offset;
2425 resid = img_request->length;
2426 rbd_assert(resid > 0);
2427 op_type = rbd_img_request_op_type(img_request);
2428
2429 if (type == OBJ_REQUEST_BIO) {
2430 bio_list = data_desc;
2431 rbd_assert(img_offset ==
2432 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2433 } else if (type == OBJ_REQUEST_PAGES) {
2434 pages = data_desc;
2435 }
2436
2437 while (resid) {
2438 struct ceph_osd_request *osd_req;
2439 const char *object_name;
2440 u64 offset;
2441 u64 length;
2442
2443 object_name = rbd_segment_name(rbd_dev, img_offset);
2444 if (!object_name)
2445 goto out_unwind;
2446 offset = rbd_segment_offset(rbd_dev, img_offset);
2447 length = rbd_segment_length(rbd_dev, img_offset, resid);
2448 obj_request = rbd_obj_request_create(object_name,
2449 offset, length, type);
2450 /* object request has its own copy of the object name */
2451 rbd_segment_name_free(object_name);
2452 if (!obj_request)
2453 goto out_unwind;
2454
2455 /*
2456 * set obj_request->img_request before creating the
2457 * osd_request so that it gets the right snapc
2458 */
2459 rbd_img_obj_request_add(img_request, obj_request);
2460
2461 if (type == OBJ_REQUEST_BIO) {
2462 unsigned int clone_size;
2463
2464 rbd_assert(length <= (u64)UINT_MAX);
2465 clone_size = (unsigned int)length;
2466 obj_request->bio_list =
2467 bio_chain_clone_range(&bio_list,
2468 &bio_offset,
2469 clone_size,
2470 GFP_ATOMIC);
2471 if (!obj_request->bio_list)
2472 goto out_unwind;
2473 } else if (type == OBJ_REQUEST_PAGES) {
2474 unsigned int page_count;
2475
2476 obj_request->pages = pages;
2477 page_count = (u32)calc_pages_for(offset, length);
2478 obj_request->page_count = page_count;
2479 if ((offset + length) & ~PAGE_MASK)
2480 page_count--; /* more on last page */
2481 pages += page_count;
2482 }
2483
2484 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2485 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2486 obj_request);
2487 if (!osd_req)
2488 goto out_unwind;
2489
2490 obj_request->osd_req = osd_req;
2491 obj_request->callback = rbd_img_obj_callback;
2492 obj_request->img_offset = img_offset;
2493
2494 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2495
2496 rbd_img_request_get(img_request);
2497
2498 img_offset += length;
2499 resid -= length;
2500 }
2501
2502 return 0;
2503
2504 out_unwind:
2505 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2506 rbd_img_obj_request_del(img_request, obj_request);
2507
2508 return -ENOMEM;
2509 }
2510
2511 static void
2512 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2513 {
2514 struct rbd_img_request *img_request;
2515 struct rbd_device *rbd_dev;
2516 struct page **pages;
2517 u32 page_count;
2518
2519 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2520 obj_request->type == OBJ_REQUEST_NODATA);
2521 rbd_assert(obj_request_img_data_test(obj_request));
2522 img_request = obj_request->img_request;
2523 rbd_assert(img_request);
2524
2525 rbd_dev = img_request->rbd_dev;
2526 rbd_assert(rbd_dev);
2527
2528 pages = obj_request->copyup_pages;
2529 rbd_assert(pages != NULL);
2530 obj_request->copyup_pages = NULL;
2531 page_count = obj_request->copyup_page_count;
2532 rbd_assert(page_count);
2533 obj_request->copyup_page_count = 0;
2534 ceph_release_page_vector(pages, page_count);
2535
2536 /*
2537 * We want the transfer count to reflect the size of the
2538 * original write request. There is no such thing as a
2539 * successful short write, so if the request was successful
2540 * we can just set it to the originally-requested length.
2541 */
2542 if (!obj_request->result)
2543 obj_request->xferred = obj_request->length;
2544
2545 /* Finish up with the normal image object callback */
2546
2547 rbd_img_obj_callback(obj_request);
2548 }
2549
2550 static void
2551 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2552 {
2553 struct rbd_obj_request *orig_request;
2554 struct ceph_osd_request *osd_req;
2555 struct ceph_osd_client *osdc;
2556 struct rbd_device *rbd_dev;
2557 struct page **pages;
2558 enum obj_operation_type op_type;
2559 u32 page_count;
2560 int img_result;
2561 u64 parent_length;
2562
2563 rbd_assert(img_request_child_test(img_request));
2564
2565 /* First get what we need from the image request */
2566
2567 pages = img_request->copyup_pages;
2568 rbd_assert(pages != NULL);
2569 img_request->copyup_pages = NULL;
2570 page_count = img_request->copyup_page_count;
2571 rbd_assert(page_count);
2572 img_request->copyup_page_count = 0;
2573
2574 orig_request = img_request->obj_request;
2575 rbd_assert(orig_request != NULL);
2576 rbd_assert(obj_request_type_valid(orig_request->type));
2577 img_result = img_request->result;
2578 parent_length = img_request->length;
2579 rbd_assert(parent_length == img_request->xferred);
2580 rbd_img_request_put(img_request);
2581
2582 rbd_assert(orig_request->img_request);
2583 rbd_dev = orig_request->img_request->rbd_dev;
2584 rbd_assert(rbd_dev);
2585
2586 /*
2587 * If the overlap has become 0 (most likely because the
2588 * image has been flattened) we need to free the pages
2589 * and re-submit the original write request.
2590 */
2591 if (!rbd_dev->parent_overlap) {
2592 struct ceph_osd_client *osdc;
2593
2594 ceph_release_page_vector(pages, page_count);
2595 osdc = &rbd_dev->rbd_client->client->osdc;
2596 img_result = rbd_obj_request_submit(osdc, orig_request);
2597 if (!img_result)
2598 return;
2599 }
2600
2601 if (img_result)
2602 goto out_err;
2603
2604 /*
2605 * The original osd request is of no use to use any more.
2606 * We need a new one that can hold the three ops in a copyup
2607 * request. Allocate the new copyup osd request for the
2608 * original request, and release the old one.
2609 */
2610 img_result = -ENOMEM;
2611 osd_req = rbd_osd_req_create_copyup(orig_request);
2612 if (!osd_req)
2613 goto out_err;
2614 rbd_osd_req_destroy(orig_request->osd_req);
2615 orig_request->osd_req = osd_req;
2616 orig_request->copyup_pages = pages;
2617 orig_request->copyup_page_count = page_count;
2618
2619 /* Initialize the copyup op */
2620
2621 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2622 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2623 false, false);
2624
2625 /* Add the other op(s) */
2626
2627 op_type = rbd_img_request_op_type(orig_request->img_request);
2628 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2629
2630 /* All set, send it off. */
2631
2632 orig_request->callback = rbd_img_obj_copyup_callback;
2633 osdc = &rbd_dev->rbd_client->client->osdc;
2634 img_result = rbd_obj_request_submit(osdc, orig_request);
2635 if (!img_result)
2636 return;
2637 out_err:
2638 /* Record the error code and complete the request */
2639
2640 orig_request->result = img_result;
2641 orig_request->xferred = 0;
2642 obj_request_done_set(orig_request);
2643 rbd_obj_request_complete(orig_request);
2644 }
2645
2646 /*
2647 * Read from the parent image the range of data that covers the
2648 * entire target of the given object request. This is used for
2649 * satisfying a layered image write request when the target of an
2650 * object request from the image request does not exist.
2651 *
2652 * A page array big enough to hold the returned data is allocated
2653 * and supplied to rbd_img_request_fill() as the "data descriptor."
2654 * When the read completes, this page array will be transferred to
2655 * the original object request for the copyup operation.
2656 *
2657 * If an error occurs, record it as the result of the original
2658 * object request and mark it done so it gets completed.
2659 */
2660 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2661 {
2662 struct rbd_img_request *img_request = NULL;
2663 struct rbd_img_request *parent_request = NULL;
2664 struct rbd_device *rbd_dev;
2665 u64 img_offset;
2666 u64 length;
2667 struct page **pages = NULL;
2668 u32 page_count;
2669 int result;
2670
2671 rbd_assert(obj_request_img_data_test(obj_request));
2672 rbd_assert(obj_request_type_valid(obj_request->type));
2673
2674 img_request = obj_request->img_request;
2675 rbd_assert(img_request != NULL);
2676 rbd_dev = img_request->rbd_dev;
2677 rbd_assert(rbd_dev->parent != NULL);
2678
2679 /*
2680 * Determine the byte range covered by the object in the
2681 * child image to which the original request was to be sent.
2682 */
2683 img_offset = obj_request->img_offset - obj_request->offset;
2684 length = (u64)1 << rbd_dev->header.obj_order;
2685
2686 /*
2687 * There is no defined parent data beyond the parent
2688 * overlap, so limit what we read at that boundary if
2689 * necessary.
2690 */
2691 if (img_offset + length > rbd_dev->parent_overlap) {
2692 rbd_assert(img_offset < rbd_dev->parent_overlap);
2693 length = rbd_dev->parent_overlap - img_offset;
2694 }
2695
2696 /*
2697 * Allocate a page array big enough to receive the data read
2698 * from the parent.
2699 */
2700 page_count = (u32)calc_pages_for(0, length);
2701 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2702 if (IS_ERR(pages)) {
2703 result = PTR_ERR(pages);
2704 pages = NULL;
2705 goto out_err;
2706 }
2707
2708 result = -ENOMEM;
2709 parent_request = rbd_parent_request_create(obj_request,
2710 img_offset, length);
2711 if (!parent_request)
2712 goto out_err;
2713
2714 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2715 if (result)
2716 goto out_err;
2717 parent_request->copyup_pages = pages;
2718 parent_request->copyup_page_count = page_count;
2719
2720 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2721 result = rbd_img_request_submit(parent_request);
2722 if (!result)
2723 return 0;
2724
2725 parent_request->copyup_pages = NULL;
2726 parent_request->copyup_page_count = 0;
2727 parent_request->obj_request = NULL;
2728 rbd_obj_request_put(obj_request);
2729 out_err:
2730 if (pages)
2731 ceph_release_page_vector(pages, page_count);
2732 if (parent_request)
2733 rbd_img_request_put(parent_request);
2734 obj_request->result = result;
2735 obj_request->xferred = 0;
2736 obj_request_done_set(obj_request);
2737
2738 return result;
2739 }
2740
2741 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2742 {
2743 struct rbd_obj_request *orig_request;
2744 struct rbd_device *rbd_dev;
2745 int result;
2746
2747 rbd_assert(!obj_request_img_data_test(obj_request));
2748
2749 /*
2750 * All we need from the object request is the original
2751 * request and the result of the STAT op. Grab those, then
2752 * we're done with the request.
2753 */
2754 orig_request = obj_request->obj_request;
2755 obj_request->obj_request = NULL;
2756 rbd_obj_request_put(orig_request);
2757 rbd_assert(orig_request);
2758 rbd_assert(orig_request->img_request);
2759
2760 result = obj_request->result;
2761 obj_request->result = 0;
2762
2763 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2764 obj_request, orig_request, result,
2765 obj_request->xferred, obj_request->length);
2766 rbd_obj_request_put(obj_request);
2767
2768 /*
2769 * If the overlap has become 0 (most likely because the
2770 * image has been flattened) we need to free the pages
2771 * and re-submit the original write request.
2772 */
2773 rbd_dev = orig_request->img_request->rbd_dev;
2774 if (!rbd_dev->parent_overlap) {
2775 struct ceph_osd_client *osdc;
2776
2777 osdc = &rbd_dev->rbd_client->client->osdc;
2778 result = rbd_obj_request_submit(osdc, orig_request);
2779 if (!result)
2780 return;
2781 }
2782
2783 /*
2784 * Our only purpose here is to determine whether the object
2785 * exists, and we don't want to treat the non-existence as
2786 * an error. If something else comes back, transfer the
2787 * error to the original request and complete it now.
2788 */
2789 if (!result) {
2790 obj_request_existence_set(orig_request, true);
2791 } else if (result == -ENOENT) {
2792 obj_request_existence_set(orig_request, false);
2793 } else if (result) {
2794 orig_request->result = result;
2795 goto out;
2796 }
2797
2798 /*
2799 * Resubmit the original request now that we have recorded
2800 * whether the target object exists.
2801 */
2802 orig_request->result = rbd_img_obj_request_submit(orig_request);
2803 out:
2804 if (orig_request->result)
2805 rbd_obj_request_complete(orig_request);
2806 }
2807
2808 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2809 {
2810 struct rbd_obj_request *stat_request;
2811 struct rbd_device *rbd_dev;
2812 struct ceph_osd_client *osdc;
2813 struct page **pages = NULL;
2814 u32 page_count;
2815 size_t size;
2816 int ret;
2817
2818 /*
2819 * The response data for a STAT call consists of:
2820 * le64 length;
2821 * struct {
2822 * le32 tv_sec;
2823 * le32 tv_nsec;
2824 * } mtime;
2825 */
2826 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2827 page_count = (u32)calc_pages_for(0, size);
2828 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2829 if (IS_ERR(pages))
2830 return PTR_ERR(pages);
2831
2832 ret = -ENOMEM;
2833 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2834 OBJ_REQUEST_PAGES);
2835 if (!stat_request)
2836 goto out;
2837
2838 rbd_obj_request_get(obj_request);
2839 stat_request->obj_request = obj_request;
2840 stat_request->pages = pages;
2841 stat_request->page_count = page_count;
2842
2843 rbd_assert(obj_request->img_request);
2844 rbd_dev = obj_request->img_request->rbd_dev;
2845 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2846 stat_request);
2847 if (!stat_request->osd_req)
2848 goto out;
2849 stat_request->callback = rbd_img_obj_exists_callback;
2850
2851 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2852 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2853 false, false);
2854 rbd_osd_req_format_read(stat_request);
2855
2856 osdc = &rbd_dev->rbd_client->client->osdc;
2857 ret = rbd_obj_request_submit(osdc, stat_request);
2858 out:
2859 if (ret)
2860 rbd_obj_request_put(obj_request);
2861
2862 return ret;
2863 }
2864
2865 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2866 {
2867 struct rbd_img_request *img_request;
2868 struct rbd_device *rbd_dev;
2869
2870 rbd_assert(obj_request_img_data_test(obj_request));
2871
2872 img_request = obj_request->img_request;
2873 rbd_assert(img_request);
2874 rbd_dev = img_request->rbd_dev;
2875
2876 /* Reads */
2877 if (!img_request_write_test(img_request) &&
2878 !img_request_discard_test(img_request))
2879 return true;
2880
2881 /* Non-layered writes */
2882 if (!img_request_layered_test(img_request))
2883 return true;
2884
2885 /*
2886 * Layered writes outside of the parent overlap range don't
2887 * share any data with the parent.
2888 */
2889 if (!obj_request_overlaps_parent(obj_request))
2890 return true;
2891
2892 /*
2893 * Entire-object layered writes - we will overwrite whatever
2894 * parent data there is anyway.
2895 */
2896 if (!obj_request->offset &&
2897 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2898 return true;
2899
2900 /*
2901 * If the object is known to already exist, its parent data has
2902 * already been copied.
2903 */
2904 if (obj_request_known_test(obj_request) &&
2905 obj_request_exists_test(obj_request))
2906 return true;
2907
2908 return false;
2909 }
2910
2911 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2912 {
2913 if (img_obj_request_simple(obj_request)) {
2914 struct rbd_device *rbd_dev;
2915 struct ceph_osd_client *osdc;
2916
2917 rbd_dev = obj_request->img_request->rbd_dev;
2918 osdc = &rbd_dev->rbd_client->client->osdc;
2919
2920 return rbd_obj_request_submit(osdc, obj_request);
2921 }
2922
2923 /*
2924 * It's a layered write. The target object might exist but
2925 * we may not know that yet. If we know it doesn't exist,
2926 * start by reading the data for the full target object from
2927 * the parent so we can use it for a copyup to the target.
2928 */
2929 if (obj_request_known_test(obj_request))
2930 return rbd_img_obj_parent_read_full(obj_request);
2931
2932 /* We don't know whether the target exists. Go find out. */
2933
2934 return rbd_img_obj_exists_submit(obj_request);
2935 }
2936
2937 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2938 {
2939 struct rbd_obj_request *obj_request;
2940 struct rbd_obj_request *next_obj_request;
2941
2942 dout("%s: img %p\n", __func__, img_request);
2943 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2944 int ret;
2945
2946 ret = rbd_img_obj_request_submit(obj_request);
2947 if (ret)
2948 return ret;
2949 }
2950
2951 return 0;
2952 }
2953
2954 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2955 {
2956 struct rbd_obj_request *obj_request;
2957 struct rbd_device *rbd_dev;
2958 u64 obj_end;
2959 u64 img_xferred;
2960 int img_result;
2961
2962 rbd_assert(img_request_child_test(img_request));
2963
2964 /* First get what we need from the image request and release it */
2965
2966 obj_request = img_request->obj_request;
2967 img_xferred = img_request->xferred;
2968 img_result = img_request->result;
2969 rbd_img_request_put(img_request);
2970
2971 /*
2972 * If the overlap has become 0 (most likely because the
2973 * image has been flattened) we need to re-submit the
2974 * original request.
2975 */
2976 rbd_assert(obj_request);
2977 rbd_assert(obj_request->img_request);
2978 rbd_dev = obj_request->img_request->rbd_dev;
2979 if (!rbd_dev->parent_overlap) {
2980 struct ceph_osd_client *osdc;
2981
2982 osdc = &rbd_dev->rbd_client->client->osdc;
2983 img_result = rbd_obj_request_submit(osdc, obj_request);
2984 if (!img_result)
2985 return;
2986 }
2987
2988 obj_request->result = img_result;
2989 if (obj_request->result)
2990 goto out;
2991
2992 /*
2993 * We need to zero anything beyond the parent overlap
2994 * boundary. Since rbd_img_obj_request_read_callback()
2995 * will zero anything beyond the end of a short read, an
2996 * easy way to do this is to pretend the data from the
2997 * parent came up short--ending at the overlap boundary.
2998 */
2999 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3000 obj_end = obj_request->img_offset + obj_request->length;
3001 if (obj_end > rbd_dev->parent_overlap) {
3002 u64 xferred = 0;
3003
3004 if (obj_request->img_offset < rbd_dev->parent_overlap)
3005 xferred = rbd_dev->parent_overlap -
3006 obj_request->img_offset;
3007
3008 obj_request->xferred = min(img_xferred, xferred);
3009 } else {
3010 obj_request->xferred = img_xferred;
3011 }
3012 out:
3013 rbd_img_obj_request_read_callback(obj_request);
3014 rbd_obj_request_complete(obj_request);
3015 }
3016
3017 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3018 {
3019 struct rbd_img_request *img_request;
3020 int result;
3021
3022 rbd_assert(obj_request_img_data_test(obj_request));
3023 rbd_assert(obj_request->img_request != NULL);
3024 rbd_assert(obj_request->result == (s32) -ENOENT);
3025 rbd_assert(obj_request_type_valid(obj_request->type));
3026
3027 /* rbd_read_finish(obj_request, obj_request->length); */
3028 img_request = rbd_parent_request_create(obj_request,
3029 obj_request->img_offset,
3030 obj_request->length);
3031 result = -ENOMEM;
3032 if (!img_request)
3033 goto out_err;
3034
3035 if (obj_request->type == OBJ_REQUEST_BIO)
3036 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3037 obj_request->bio_list);
3038 else
3039 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3040 obj_request->pages);
3041 if (result)
3042 goto out_err;
3043
3044 img_request->callback = rbd_img_parent_read_callback;
3045 result = rbd_img_request_submit(img_request);
3046 if (result)
3047 goto out_err;
3048
3049 return;
3050 out_err:
3051 if (img_request)
3052 rbd_img_request_put(img_request);
3053 obj_request->result = result;
3054 obj_request->xferred = 0;
3055 obj_request_done_set(obj_request);
3056 }
3057
3058 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3059 {
3060 struct rbd_obj_request *obj_request;
3061 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3062 int ret;
3063
3064 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3065 OBJ_REQUEST_NODATA);
3066 if (!obj_request)
3067 return -ENOMEM;
3068
3069 ret = -ENOMEM;
3070 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3071 obj_request);
3072 if (!obj_request->osd_req)
3073 goto out;
3074
3075 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3076 notify_id, 0, 0);
3077 rbd_osd_req_format_read(obj_request);
3078
3079 ret = rbd_obj_request_submit(osdc, obj_request);
3080 if (ret)
3081 goto out;
3082 ret = rbd_obj_request_wait(obj_request);
3083 out:
3084 rbd_obj_request_put(obj_request);
3085
3086 return ret;
3087 }
3088
3089 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3090 {
3091 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3092 int ret;
3093
3094 if (!rbd_dev)
3095 return;
3096
3097 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3098 rbd_dev->header_name, (unsigned long long)notify_id,
3099 (unsigned int)opcode);
3100
3101 /*
3102 * Until adequate refresh error handling is in place, there is
3103 * not much we can do here, except warn.
3104 *
3105 * See http://tracker.ceph.com/issues/5040
3106 */
3107 ret = rbd_dev_refresh(rbd_dev);
3108 if (ret)
3109 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3110
3111 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3112 if (ret)
3113 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3114 }
3115
3116 /*
3117 * Send a (un)watch request and wait for the ack. Return a request
3118 * with a ref held on success or error.
3119 */
3120 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3121 struct rbd_device *rbd_dev,
3122 bool watch)
3123 {
3124 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3125 struct rbd_obj_request *obj_request;
3126 int ret;
3127
3128 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3129 OBJ_REQUEST_NODATA);
3130 if (!obj_request)
3131 return ERR_PTR(-ENOMEM);
3132
3133 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3134 obj_request);
3135 if (!obj_request->osd_req) {
3136 ret = -ENOMEM;
3137 goto out;
3138 }
3139
3140 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3141 rbd_dev->watch_event->cookie, 0, watch);
3142 rbd_osd_req_format_write(obj_request);
3143
3144 if (watch)
3145 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3146
3147 ret = rbd_obj_request_submit(osdc, obj_request);
3148 if (ret)
3149 goto out;
3150
3151 ret = rbd_obj_request_wait(obj_request);
3152 if (ret)
3153 goto out;
3154
3155 ret = obj_request->result;
3156 if (ret) {
3157 if (watch)
3158 rbd_obj_request_end(obj_request);
3159 goto out;
3160 }
3161
3162 return obj_request;
3163
3164 out:
3165 rbd_obj_request_put(obj_request);
3166 return ERR_PTR(ret);
3167 }
3168
3169 /*
3170 * Initiate a watch request, synchronously.
3171 */
3172 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3173 {
3174 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3175 struct rbd_obj_request *obj_request;
3176 int ret;
3177
3178 rbd_assert(!rbd_dev->watch_event);
3179 rbd_assert(!rbd_dev->watch_request);
3180
3181 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3182 &rbd_dev->watch_event);
3183 if (ret < 0)
3184 return ret;
3185
3186 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3187 if (IS_ERR(obj_request)) {
3188 ceph_osdc_cancel_event(rbd_dev->watch_event);
3189 rbd_dev->watch_event = NULL;
3190 return PTR_ERR(obj_request);
3191 }
3192
3193 /*
3194 * A watch request is set to linger, so the underlying osd
3195 * request won't go away until we unregister it. We retain
3196 * a pointer to the object request during that time (in
3197 * rbd_dev->watch_request), so we'll keep a reference to it.
3198 * We'll drop that reference after we've unregistered it in
3199 * rbd_dev_header_unwatch_sync().
3200 */
3201 rbd_dev->watch_request = obj_request;
3202
3203 return 0;
3204 }
3205
3206 /*
3207 * Tear down a watch request, synchronously.
3208 */
3209 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3210 {
3211 struct rbd_obj_request *obj_request;
3212
3213 rbd_assert(rbd_dev->watch_event);
3214 rbd_assert(rbd_dev->watch_request);
3215
3216 rbd_obj_request_end(rbd_dev->watch_request);
3217 rbd_obj_request_put(rbd_dev->watch_request);
3218 rbd_dev->watch_request = NULL;
3219
3220 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3221 if (!IS_ERR(obj_request))
3222 rbd_obj_request_put(obj_request);
3223 else
3224 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3225 PTR_ERR(obj_request));
3226
3227 ceph_osdc_cancel_event(rbd_dev->watch_event);
3228 rbd_dev->watch_event = NULL;
3229 }
3230
3231 /*
3232 * Synchronous osd object method call. Returns the number of bytes
3233 * returned in the outbound buffer, or a negative error code.
3234 */
3235 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3236 const char *object_name,
3237 const char *class_name,
3238 const char *method_name,
3239 const void *outbound,
3240 size_t outbound_size,
3241 void *inbound,
3242 size_t inbound_size)
3243 {
3244 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3245 struct rbd_obj_request *obj_request;
3246 struct page **pages;
3247 u32 page_count;
3248 int ret;
3249
3250 /*
3251 * Method calls are ultimately read operations. The result
3252 * should placed into the inbound buffer provided. They
3253 * also supply outbound data--parameters for the object
3254 * method. Currently if this is present it will be a
3255 * snapshot id.
3256 */
3257 page_count = (u32)calc_pages_for(0, inbound_size);
3258 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3259 if (IS_ERR(pages))
3260 return PTR_ERR(pages);
3261
3262 ret = -ENOMEM;
3263 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3264 OBJ_REQUEST_PAGES);
3265 if (!obj_request)
3266 goto out;
3267
3268 obj_request->pages = pages;
3269 obj_request->page_count = page_count;
3270
3271 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3272 obj_request);
3273 if (!obj_request->osd_req)
3274 goto out;
3275
3276 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3277 class_name, method_name);
3278 if (outbound_size) {
3279 struct ceph_pagelist *pagelist;
3280
3281 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3282 if (!pagelist)
3283 goto out;
3284
3285 ceph_pagelist_init(pagelist);
3286 ceph_pagelist_append(pagelist, outbound, outbound_size);
3287 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3288 pagelist);
3289 }
3290 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3291 obj_request->pages, inbound_size,
3292 0, false, false);
3293 rbd_osd_req_format_read(obj_request);
3294
3295 ret = rbd_obj_request_submit(osdc, obj_request);
3296 if (ret)
3297 goto out;
3298 ret = rbd_obj_request_wait(obj_request);
3299 if (ret)
3300 goto out;
3301
3302 ret = obj_request->result;
3303 if (ret < 0)
3304 goto out;
3305
3306 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3307 ret = (int)obj_request->xferred;
3308 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3309 out:
3310 if (obj_request)
3311 rbd_obj_request_put(obj_request);
3312 else
3313 ceph_release_page_vector(pages, page_count);
3314
3315 return ret;
3316 }
3317
3318 static void rbd_queue_workfn(struct work_struct *work)
3319 {
3320 struct request *rq = blk_mq_rq_from_pdu(work);
3321 struct rbd_device *rbd_dev = rq->q->queuedata;
3322 struct rbd_img_request *img_request;
3323 struct ceph_snap_context *snapc = NULL;
3324 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3325 u64 length = blk_rq_bytes(rq);
3326 enum obj_operation_type op_type;
3327 u64 mapping_size;
3328 int result;
3329
3330 if (rq->cmd_type != REQ_TYPE_FS) {
3331 dout("%s: non-fs request type %d\n", __func__,
3332 (int) rq->cmd_type);
3333 result = -EIO;
3334 goto err;
3335 }
3336
3337 if (rq->cmd_flags & REQ_DISCARD)
3338 op_type = OBJ_OP_DISCARD;
3339 else if (rq->cmd_flags & REQ_WRITE)
3340 op_type = OBJ_OP_WRITE;
3341 else
3342 op_type = OBJ_OP_READ;
3343
3344 /* Ignore/skip any zero-length requests */
3345
3346 if (!length) {
3347 dout("%s: zero-length request\n", __func__);
3348 result = 0;
3349 goto err_rq;
3350 }
3351
3352 /* Only reads are allowed to a read-only device */
3353
3354 if (op_type != OBJ_OP_READ) {
3355 if (rbd_dev->mapping.read_only) {
3356 result = -EROFS;
3357 goto err_rq;
3358 }
3359 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3360 }
3361
3362 /*
3363 * Quit early if the mapped snapshot no longer exists. It's
3364 * still possible the snapshot will have disappeared by the
3365 * time our request arrives at the osd, but there's no sense in
3366 * sending it if we already know.
3367 */
3368 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3369 dout("request for non-existent snapshot");
3370 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3371 result = -ENXIO;
3372 goto err_rq;
3373 }
3374
3375 if (offset && length > U64_MAX - offset + 1) {
3376 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3377 length);
3378 result = -EINVAL;
3379 goto err_rq; /* Shouldn't happen */
3380 }
3381
3382 blk_mq_start_request(rq);
3383
3384 down_read(&rbd_dev->header_rwsem);
3385 mapping_size = rbd_dev->mapping.size;
3386 if (op_type != OBJ_OP_READ) {
3387 snapc = rbd_dev->header.snapc;
3388 ceph_get_snap_context(snapc);
3389 }
3390 up_read(&rbd_dev->header_rwsem);
3391
3392 if (offset + length > mapping_size) {
3393 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3394 length, mapping_size);
3395 result = -EIO;
3396 goto err_rq;
3397 }
3398
3399 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3400 snapc);
3401 if (!img_request) {
3402 result = -ENOMEM;
3403 goto err_rq;
3404 }
3405 img_request->rq = rq;
3406
3407 if (op_type == OBJ_OP_DISCARD)
3408 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3409 NULL);
3410 else
3411 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3412 rq->bio);
3413 if (result)
3414 goto err_img_request;
3415
3416 result = rbd_img_request_submit(img_request);
3417 if (result)
3418 goto err_img_request;
3419
3420 return;
3421
3422 err_img_request:
3423 rbd_img_request_put(img_request);
3424 err_rq:
3425 if (result)
3426 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3427 obj_op_name(op_type), length, offset, result);
3428 ceph_put_snap_context(snapc);
3429 err:
3430 blk_mq_end_request(rq, result);
3431 }
3432
3433 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3434 const struct blk_mq_queue_data *bd)
3435 {
3436 struct request *rq = bd->rq;
3437 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3438
3439 queue_work(rbd_wq, work);
3440 return BLK_MQ_RQ_QUEUE_OK;
3441 }
3442
3443 /*
3444 * a queue callback. Makes sure that we don't create a bio that spans across
3445 * multiple osd objects. One exception would be with a single page bios,
3446 * which we handle later at bio_chain_clone_range()
3447 */
3448 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3449 struct bio_vec *bvec)
3450 {
3451 struct rbd_device *rbd_dev = q->queuedata;
3452 sector_t sector_offset;
3453 sector_t sectors_per_obj;
3454 sector_t obj_sector_offset;
3455 int ret;
3456
3457 /*
3458 * Find how far into its rbd object the partition-relative
3459 * bio start sector is to offset relative to the enclosing
3460 * device.
3461 */
3462 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3463 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3464 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3465
3466 /*
3467 * Compute the number of bytes from that offset to the end
3468 * of the object. Account for what's already used by the bio.
3469 */
3470 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3471 if (ret > bmd->bi_size)
3472 ret -= bmd->bi_size;
3473 else
3474 ret = 0;
3475
3476 /*
3477 * Don't send back more than was asked for. And if the bio
3478 * was empty, let the whole thing through because: "Note
3479 * that a block device *must* allow a single page to be
3480 * added to an empty bio."
3481 */
3482 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3483 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3484 ret = (int) bvec->bv_len;
3485
3486 return ret;
3487 }
3488
3489 static void rbd_free_disk(struct rbd_device *rbd_dev)
3490 {
3491 struct gendisk *disk = rbd_dev->disk;
3492
3493 if (!disk)
3494 return;
3495
3496 rbd_dev->disk = NULL;
3497 if (disk->flags & GENHD_FL_UP) {
3498 del_gendisk(disk);
3499 if (disk->queue)
3500 blk_cleanup_queue(disk->queue);
3501 blk_mq_free_tag_set(&rbd_dev->tag_set);
3502 }
3503 put_disk(disk);
3504 }
3505
3506 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3507 const char *object_name,
3508 u64 offset, u64 length, void *buf)
3509
3510 {
3511 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3512 struct rbd_obj_request *obj_request;
3513 struct page **pages = NULL;
3514 u32 page_count;
3515 size_t size;
3516 int ret;
3517
3518 page_count = (u32) calc_pages_for(offset, length);
3519 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3520 if (IS_ERR(pages))
3521 return PTR_ERR(pages);
3522
3523 ret = -ENOMEM;
3524 obj_request = rbd_obj_request_create(object_name, offset, length,
3525 OBJ_REQUEST_PAGES);
3526 if (!obj_request)
3527 goto out;
3528
3529 obj_request->pages = pages;
3530 obj_request->page_count = page_count;
3531
3532 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3533 obj_request);
3534 if (!obj_request->osd_req)
3535 goto out;
3536
3537 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3538 offset, length, 0, 0);
3539 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3540 obj_request->pages,
3541 obj_request->length,
3542 obj_request->offset & ~PAGE_MASK,
3543 false, false);
3544 rbd_osd_req_format_read(obj_request);
3545
3546 ret = rbd_obj_request_submit(osdc, obj_request);
3547 if (ret)
3548 goto out;
3549 ret = rbd_obj_request_wait(obj_request);
3550 if (ret)
3551 goto out;
3552
3553 ret = obj_request->result;
3554 if (ret < 0)
3555 goto out;
3556
3557 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3558 size = (size_t) obj_request->xferred;
3559 ceph_copy_from_page_vector(pages, buf, 0, size);
3560 rbd_assert(size <= (size_t)INT_MAX);
3561 ret = (int)size;
3562 out:
3563 if (obj_request)
3564 rbd_obj_request_put(obj_request);
3565 else
3566 ceph_release_page_vector(pages, page_count);
3567
3568 return ret;
3569 }
3570
3571 /*
3572 * Read the complete header for the given rbd device. On successful
3573 * return, the rbd_dev->header field will contain up-to-date
3574 * information about the image.
3575 */
3576 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3577 {
3578 struct rbd_image_header_ondisk *ondisk = NULL;
3579 u32 snap_count = 0;
3580 u64 names_size = 0;
3581 u32 want_count;
3582 int ret;
3583
3584 /*
3585 * The complete header will include an array of its 64-bit
3586 * snapshot ids, followed by the names of those snapshots as
3587 * a contiguous block of NUL-terminated strings. Note that
3588 * the number of snapshots could change by the time we read
3589 * it in, in which case we re-read it.
3590 */
3591 do {
3592 size_t size;
3593
3594 kfree(ondisk);
3595
3596 size = sizeof (*ondisk);
3597 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3598 size += names_size;
3599 ondisk = kmalloc(size, GFP_KERNEL);
3600 if (!ondisk)
3601 return -ENOMEM;
3602
3603 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3604 0, size, ondisk);
3605 if (ret < 0)
3606 goto out;
3607 if ((size_t)ret < size) {
3608 ret = -ENXIO;
3609 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3610 size, ret);
3611 goto out;
3612 }
3613 if (!rbd_dev_ondisk_valid(ondisk)) {
3614 ret = -ENXIO;
3615 rbd_warn(rbd_dev, "invalid header");
3616 goto out;
3617 }
3618
3619 names_size = le64_to_cpu(ondisk->snap_names_len);
3620 want_count = snap_count;
3621 snap_count = le32_to_cpu(ondisk->snap_count);
3622 } while (snap_count != want_count);
3623
3624 ret = rbd_header_from_disk(rbd_dev, ondisk);
3625 out:
3626 kfree(ondisk);
3627
3628 return ret;
3629 }
3630
3631 /*
3632 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3633 * has disappeared from the (just updated) snapshot context.
3634 */
3635 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3636 {
3637 u64 snap_id;
3638
3639 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3640 return;
3641
3642 snap_id = rbd_dev->spec->snap_id;
3643 if (snap_id == CEPH_NOSNAP)
3644 return;
3645
3646 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3647 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3648 }
3649
3650 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3651 {
3652 sector_t size;
3653 bool removing;
3654
3655 /*
3656 * Don't hold the lock while doing disk operations,
3657 * or lock ordering will conflict with the bdev mutex via:
3658 * rbd_add() -> blkdev_get() -> rbd_open()
3659 */
3660 spin_lock_irq(&rbd_dev->lock);
3661 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3662 spin_unlock_irq(&rbd_dev->lock);
3663 /*
3664 * If the device is being removed, rbd_dev->disk has
3665 * been destroyed, so don't try to update its size
3666 */
3667 if (!removing) {
3668 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3669 dout("setting size to %llu sectors", (unsigned long long)size);
3670 set_capacity(rbd_dev->disk, size);
3671 revalidate_disk(rbd_dev->disk);
3672 }
3673 }
3674
3675 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3676 {
3677 u64 mapping_size;
3678 int ret;
3679
3680 down_write(&rbd_dev->header_rwsem);
3681 mapping_size = rbd_dev->mapping.size;
3682
3683 ret = rbd_dev_header_info(rbd_dev);
3684 if (ret)
3685 goto out;
3686
3687 /*
3688 * If there is a parent, see if it has disappeared due to the
3689 * mapped image getting flattened.
3690 */
3691 if (rbd_dev->parent) {
3692 ret = rbd_dev_v2_parent_info(rbd_dev);
3693 if (ret)
3694 goto out;
3695 }
3696
3697 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3698 rbd_dev->mapping.size = rbd_dev->header.image_size;
3699 } else {
3700 /* validate mapped snapshot's EXISTS flag */
3701 rbd_exists_validate(rbd_dev);
3702 }
3703
3704 out:
3705 up_write(&rbd_dev->header_rwsem);
3706 if (!ret && mapping_size != rbd_dev->mapping.size)
3707 rbd_dev_update_size(rbd_dev);
3708
3709 return ret;
3710 }
3711
3712 static int rbd_init_request(void *data, struct request *rq,
3713 unsigned int hctx_idx, unsigned int request_idx,
3714 unsigned int numa_node)
3715 {
3716 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3717
3718 INIT_WORK(work, rbd_queue_workfn);
3719 return 0;
3720 }
3721
3722 static struct blk_mq_ops rbd_mq_ops = {
3723 .queue_rq = rbd_queue_rq,
3724 .map_queue = blk_mq_map_queue,
3725 .init_request = rbd_init_request,
3726 };
3727
3728 static int rbd_init_disk(struct rbd_device *rbd_dev)
3729 {
3730 struct gendisk *disk;
3731 struct request_queue *q;
3732 u64 segment_size;
3733 int err;
3734
3735 /* create gendisk info */
3736 disk = alloc_disk(single_major ?
3737 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3738 RBD_MINORS_PER_MAJOR);
3739 if (!disk)
3740 return -ENOMEM;
3741
3742 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3743 rbd_dev->dev_id);
3744 disk->major = rbd_dev->major;
3745 disk->first_minor = rbd_dev->minor;
3746 if (single_major)
3747 disk->flags |= GENHD_FL_EXT_DEVT;
3748 disk->fops = &rbd_bd_ops;
3749 disk->private_data = rbd_dev;
3750
3751 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3752 rbd_dev->tag_set.ops = &rbd_mq_ops;
3753 rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3754 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3755 rbd_dev->tag_set.flags =
3756 BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3757 rbd_dev->tag_set.nr_hw_queues = 1;
3758 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3759
3760 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3761 if (err)
3762 goto out_disk;
3763
3764 q = blk_mq_init_queue(&rbd_dev->tag_set);
3765 if (IS_ERR(q)) {
3766 err = PTR_ERR(q);
3767 goto out_tag_set;
3768 }
3769
3770 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3771 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3772
3773 /* set io sizes to object size */
3774 segment_size = rbd_obj_bytes(&rbd_dev->header);
3775 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3776 blk_queue_max_segment_size(q, segment_size);
3777 blk_queue_io_min(q, segment_size);
3778 blk_queue_io_opt(q, segment_size);
3779
3780 /* enable the discard support */
3781 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3782 q->limits.discard_granularity = segment_size;
3783 q->limits.discard_alignment = segment_size;
3784 q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3785 q->limits.discard_zeroes_data = 1;
3786
3787 blk_queue_merge_bvec(q, rbd_merge_bvec);
3788 disk->queue = q;
3789
3790 q->queuedata = rbd_dev;
3791
3792 rbd_dev->disk = disk;
3793
3794 return 0;
3795 out_tag_set:
3796 blk_mq_free_tag_set(&rbd_dev->tag_set);
3797 out_disk:
3798 put_disk(disk);
3799 return err;
3800 }
3801
3802 /*
3803 sysfs
3804 */
3805
3806 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3807 {
3808 return container_of(dev, struct rbd_device, dev);
3809 }
3810
3811 static ssize_t rbd_size_show(struct device *dev,
3812 struct device_attribute *attr, char *buf)
3813 {
3814 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3815
3816 return sprintf(buf, "%llu\n",
3817 (unsigned long long)rbd_dev->mapping.size);
3818 }
3819
3820 /*
3821 * Note this shows the features for whatever's mapped, which is not
3822 * necessarily the base image.
3823 */
3824 static ssize_t rbd_features_show(struct device *dev,
3825 struct device_attribute *attr, char *buf)
3826 {
3827 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3828
3829 return sprintf(buf, "0x%016llx\n",
3830 (unsigned long long)rbd_dev->mapping.features);
3831 }
3832
3833 static ssize_t rbd_major_show(struct device *dev,
3834 struct device_attribute *attr, char *buf)
3835 {
3836 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3837
3838 if (rbd_dev->major)
3839 return sprintf(buf, "%d\n", rbd_dev->major);
3840
3841 return sprintf(buf, "(none)\n");
3842 }
3843
3844 static ssize_t rbd_minor_show(struct device *dev,
3845 struct device_attribute *attr, char *buf)
3846 {
3847 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3848
3849 return sprintf(buf, "%d\n", rbd_dev->minor);
3850 }
3851
3852 static ssize_t rbd_client_id_show(struct device *dev,
3853 struct device_attribute *attr, char *buf)
3854 {
3855 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3856
3857 return sprintf(buf, "client%lld\n",
3858 ceph_client_id(rbd_dev->rbd_client->client));
3859 }
3860
3861 static ssize_t rbd_pool_show(struct device *dev,
3862 struct device_attribute *attr, char *buf)
3863 {
3864 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3865
3866 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3867 }
3868
3869 static ssize_t rbd_pool_id_show(struct device *dev,
3870 struct device_attribute *attr, char *buf)
3871 {
3872 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3873
3874 return sprintf(buf, "%llu\n",
3875 (unsigned long long) rbd_dev->spec->pool_id);
3876 }
3877
3878 static ssize_t rbd_name_show(struct device *dev,
3879 struct device_attribute *attr, char *buf)
3880 {
3881 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3882
3883 if (rbd_dev->spec->image_name)
3884 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3885
3886 return sprintf(buf, "(unknown)\n");
3887 }
3888
3889 static ssize_t rbd_image_id_show(struct device *dev,
3890 struct device_attribute *attr, char *buf)
3891 {
3892 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3893
3894 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3895 }
3896
3897 /*
3898 * Shows the name of the currently-mapped snapshot (or
3899 * RBD_SNAP_HEAD_NAME for the base image).
3900 */
3901 static ssize_t rbd_snap_show(struct device *dev,
3902 struct device_attribute *attr,
3903 char *buf)
3904 {
3905 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3906
3907 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3908 }
3909
3910 /*
3911 * For a v2 image, shows the chain of parent images, separated by empty
3912 * lines. For v1 images or if there is no parent, shows "(no parent
3913 * image)".
3914 */
3915 static ssize_t rbd_parent_show(struct device *dev,
3916 struct device_attribute *attr,
3917 char *buf)
3918 {
3919 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3920 ssize_t count = 0;
3921
3922 if (!rbd_dev->parent)
3923 return sprintf(buf, "(no parent image)\n");
3924
3925 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3926 struct rbd_spec *spec = rbd_dev->parent_spec;
3927
3928 count += sprintf(&buf[count], "%s"
3929 "pool_id %llu\npool_name %s\n"
3930 "image_id %s\nimage_name %s\n"
3931 "snap_id %llu\nsnap_name %s\n"
3932 "overlap %llu\n",
3933 !count ? "" : "\n", /* first? */
3934 spec->pool_id, spec->pool_name,
3935 spec->image_id, spec->image_name ?: "(unknown)",
3936 spec->snap_id, spec->snap_name,
3937 rbd_dev->parent_overlap);
3938 }
3939
3940 return count;
3941 }
3942
3943 static ssize_t rbd_image_refresh(struct device *dev,
3944 struct device_attribute *attr,
3945 const char *buf,
3946 size_t size)
3947 {
3948 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3949 int ret;
3950
3951 ret = rbd_dev_refresh(rbd_dev);
3952 if (ret)
3953 return ret;
3954
3955 return size;
3956 }
3957
3958 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3959 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3960 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3961 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3962 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3963 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3964 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3965 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3966 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3967 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3968 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3969 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3970
3971 static struct attribute *rbd_attrs[] = {
3972 &dev_attr_size.attr,
3973 &dev_attr_features.attr,
3974 &dev_attr_major.attr,
3975 &dev_attr_minor.attr,
3976 &dev_attr_client_id.attr,
3977 &dev_attr_pool.attr,
3978 &dev_attr_pool_id.attr,
3979 &dev_attr_name.attr,
3980 &dev_attr_image_id.attr,
3981 &dev_attr_current_snap.attr,
3982 &dev_attr_parent.attr,
3983 &dev_attr_refresh.attr,
3984 NULL
3985 };
3986
3987 static struct attribute_group rbd_attr_group = {
3988 .attrs = rbd_attrs,
3989 };
3990
3991 static const struct attribute_group *rbd_attr_groups[] = {
3992 &rbd_attr_group,
3993 NULL
3994 };
3995
3996 static void rbd_sysfs_dev_release(struct device *dev)
3997 {
3998 }
3999
4000 static struct device_type rbd_device_type = {
4001 .name = "rbd",
4002 .groups = rbd_attr_groups,
4003 .release = rbd_sysfs_dev_release,
4004 };
4005
4006 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4007 {
4008 kref_get(&spec->kref);
4009
4010 return spec;
4011 }
4012
4013 static void rbd_spec_free(struct kref *kref);
4014 static void rbd_spec_put(struct rbd_spec *spec)
4015 {
4016 if (spec)
4017 kref_put(&spec->kref, rbd_spec_free);
4018 }
4019
4020 static struct rbd_spec *rbd_spec_alloc(void)
4021 {
4022 struct rbd_spec *spec;
4023
4024 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4025 if (!spec)
4026 return NULL;
4027
4028 spec->pool_id = CEPH_NOPOOL;
4029 spec->snap_id = CEPH_NOSNAP;
4030 kref_init(&spec->kref);
4031
4032 return spec;
4033 }
4034
4035 static void rbd_spec_free(struct kref *kref)
4036 {
4037 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4038
4039 kfree(spec->pool_name);
4040 kfree(spec->image_id);
4041 kfree(spec->image_name);
4042 kfree(spec->snap_name);
4043 kfree(spec);
4044 }
4045
4046 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4047 struct rbd_spec *spec)
4048 {
4049 struct rbd_device *rbd_dev;
4050
4051 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4052 if (!rbd_dev)
4053 return NULL;
4054
4055 spin_lock_init(&rbd_dev->lock);
4056 rbd_dev->flags = 0;
4057 atomic_set(&rbd_dev->parent_ref, 0);
4058 INIT_LIST_HEAD(&rbd_dev->node);
4059 init_rwsem(&rbd_dev->header_rwsem);
4060
4061 rbd_dev->spec = spec;
4062 rbd_dev->rbd_client = rbdc;
4063
4064 /* Initialize the layout used for all rbd requests */
4065
4066 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4067 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4068 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4069 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4070
4071 return rbd_dev;
4072 }
4073
4074 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4075 {
4076 rbd_put_client(rbd_dev->rbd_client);
4077 rbd_spec_put(rbd_dev->spec);
4078 kfree(rbd_dev);
4079 }
4080
4081 /*
4082 * Get the size and object order for an image snapshot, or if
4083 * snap_id is CEPH_NOSNAP, gets this information for the base
4084 * image.
4085 */
4086 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4087 u8 *order, u64 *snap_size)
4088 {
4089 __le64 snapid = cpu_to_le64(snap_id);
4090 int ret;
4091 struct {
4092 u8 order;
4093 __le64 size;
4094 } __attribute__ ((packed)) size_buf = { 0 };
4095
4096 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4097 "rbd", "get_size",
4098 &snapid, sizeof (snapid),
4099 &size_buf, sizeof (size_buf));
4100 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4101 if (ret < 0)
4102 return ret;
4103 if (ret < sizeof (size_buf))
4104 return -ERANGE;
4105
4106 if (order) {
4107 *order = size_buf.order;
4108 dout(" order %u", (unsigned int)*order);
4109 }
4110 *snap_size = le64_to_cpu(size_buf.size);
4111
4112 dout(" snap_id 0x%016llx snap_size = %llu\n",
4113 (unsigned long long)snap_id,
4114 (unsigned long long)*snap_size);
4115
4116 return 0;
4117 }
4118
4119 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4120 {
4121 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4122 &rbd_dev->header.obj_order,
4123 &rbd_dev->header.image_size);
4124 }
4125
4126 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4127 {
4128 void *reply_buf;
4129 int ret;
4130 void *p;
4131
4132 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4133 if (!reply_buf)
4134 return -ENOMEM;
4135
4136 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4137 "rbd", "get_object_prefix", NULL, 0,
4138 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4139 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4140 if (ret < 0)
4141 goto out;
4142
4143 p = reply_buf;
4144 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4145 p + ret, NULL, GFP_NOIO);
4146 ret = 0;
4147
4148 if (IS_ERR(rbd_dev->header.object_prefix)) {
4149 ret = PTR_ERR(rbd_dev->header.object_prefix);
4150 rbd_dev->header.object_prefix = NULL;
4151 } else {
4152 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4153 }
4154 out:
4155 kfree(reply_buf);
4156
4157 return ret;
4158 }
4159
4160 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4161 u64 *snap_features)
4162 {
4163 __le64 snapid = cpu_to_le64(snap_id);
4164 struct {
4165 __le64 features;
4166 __le64 incompat;
4167 } __attribute__ ((packed)) features_buf = { 0 };
4168 u64 incompat;
4169 int ret;
4170
4171 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4172 "rbd", "get_features",
4173 &snapid, sizeof (snapid),
4174 &features_buf, sizeof (features_buf));
4175 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4176 if (ret < 0)
4177 return ret;
4178 if (ret < sizeof (features_buf))
4179 return -ERANGE;
4180
4181 incompat = le64_to_cpu(features_buf.incompat);
4182 if (incompat & ~RBD_FEATURES_SUPPORTED)
4183 return -ENXIO;
4184
4185 *snap_features = le64_to_cpu(features_buf.features);
4186
4187 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4188 (unsigned long long)snap_id,
4189 (unsigned long long)*snap_features,
4190 (unsigned long long)le64_to_cpu(features_buf.incompat));
4191
4192 return 0;
4193 }
4194
4195 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4196 {
4197 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4198 &rbd_dev->header.features);
4199 }
4200
4201 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4202 {
4203 struct rbd_spec *parent_spec;
4204 size_t size;
4205 void *reply_buf = NULL;
4206 __le64 snapid;
4207 void *p;
4208 void *end;
4209 u64 pool_id;
4210 char *image_id;
4211 u64 snap_id;
4212 u64 overlap;
4213 int ret;
4214
4215 parent_spec = rbd_spec_alloc();
4216 if (!parent_spec)
4217 return -ENOMEM;
4218
4219 size = sizeof (__le64) + /* pool_id */
4220 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4221 sizeof (__le64) + /* snap_id */
4222 sizeof (__le64); /* overlap */
4223 reply_buf = kmalloc(size, GFP_KERNEL);
4224 if (!reply_buf) {
4225 ret = -ENOMEM;
4226 goto out_err;
4227 }
4228
4229 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4230 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4231 "rbd", "get_parent",
4232 &snapid, sizeof (snapid),
4233 reply_buf, size);
4234 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4235 if (ret < 0)
4236 goto out_err;
4237
4238 p = reply_buf;
4239 end = reply_buf + ret;
4240 ret = -ERANGE;
4241 ceph_decode_64_safe(&p, end, pool_id, out_err);
4242 if (pool_id == CEPH_NOPOOL) {
4243 /*
4244 * Either the parent never existed, or we have
4245 * record of it but the image got flattened so it no
4246 * longer has a parent. When the parent of a
4247 * layered image disappears we immediately set the
4248 * overlap to 0. The effect of this is that all new
4249 * requests will be treated as if the image had no
4250 * parent.
4251 */
4252 if (rbd_dev->parent_overlap) {
4253 rbd_dev->parent_overlap = 0;
4254 rbd_dev_parent_put(rbd_dev);
4255 pr_info("%s: clone image has been flattened\n",
4256 rbd_dev->disk->disk_name);
4257 }
4258
4259 goto out; /* No parent? No problem. */
4260 }
4261
4262 /* The ceph file layout needs to fit pool id in 32 bits */
4263
4264 ret = -EIO;
4265 if (pool_id > (u64)U32_MAX) {
4266 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4267 (unsigned long long)pool_id, U32_MAX);
4268 goto out_err;
4269 }
4270
4271 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4272 if (IS_ERR(image_id)) {
4273 ret = PTR_ERR(image_id);
4274 goto out_err;
4275 }
4276 ceph_decode_64_safe(&p, end, snap_id, out_err);
4277 ceph_decode_64_safe(&p, end, overlap, out_err);
4278
4279 /*
4280 * The parent won't change (except when the clone is
4281 * flattened, already handled that). So we only need to
4282 * record the parent spec we have not already done so.
4283 */
4284 if (!rbd_dev->parent_spec) {
4285 parent_spec->pool_id = pool_id;
4286 parent_spec->image_id = image_id;
4287 parent_spec->snap_id = snap_id;
4288 rbd_dev->parent_spec = parent_spec;
4289 parent_spec = NULL; /* rbd_dev now owns this */
4290 } else {
4291 kfree(image_id);
4292 }
4293
4294 /*
4295 * We always update the parent overlap. If it's zero we issue
4296 * a warning, as we will proceed as if there was no parent.
4297 */
4298 if (!overlap) {
4299 if (parent_spec) {
4300 /* refresh, careful to warn just once */
4301 if (rbd_dev->parent_overlap)
4302 rbd_warn(rbd_dev,
4303 "clone now standalone (overlap became 0)");
4304 } else {
4305 /* initial probe */
4306 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4307 }
4308 }
4309 rbd_dev->parent_overlap = overlap;
4310
4311 out:
4312 ret = 0;
4313 out_err:
4314 kfree(reply_buf);
4315 rbd_spec_put(parent_spec);
4316
4317 return ret;
4318 }
4319
4320 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4321 {
4322 struct {
4323 __le64 stripe_unit;
4324 __le64 stripe_count;
4325 } __attribute__ ((packed)) striping_info_buf = { 0 };
4326 size_t size = sizeof (striping_info_buf);
4327 void *p;
4328 u64 obj_size;
4329 u64 stripe_unit;
4330 u64 stripe_count;
4331 int ret;
4332
4333 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4334 "rbd", "get_stripe_unit_count", NULL, 0,
4335 (char *)&striping_info_buf, size);
4336 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4337 if (ret < 0)
4338 return ret;
4339 if (ret < size)
4340 return -ERANGE;
4341
4342 /*
4343 * We don't actually support the "fancy striping" feature
4344 * (STRIPINGV2) yet, but if the striping sizes are the
4345 * defaults the behavior is the same as before. So find
4346 * out, and only fail if the image has non-default values.
4347 */
4348 ret = -EINVAL;
4349 obj_size = (u64)1 << rbd_dev->header.obj_order;
4350 p = &striping_info_buf;
4351 stripe_unit = ceph_decode_64(&p);
4352 if (stripe_unit != obj_size) {
4353 rbd_warn(rbd_dev, "unsupported stripe unit "
4354 "(got %llu want %llu)",
4355 stripe_unit, obj_size);
4356 return -EINVAL;
4357 }
4358 stripe_count = ceph_decode_64(&p);
4359 if (stripe_count != 1) {
4360 rbd_warn(rbd_dev, "unsupported stripe count "
4361 "(got %llu want 1)", stripe_count);
4362 return -EINVAL;
4363 }
4364 rbd_dev->header.stripe_unit = stripe_unit;
4365 rbd_dev->header.stripe_count = stripe_count;
4366
4367 return 0;
4368 }
4369
4370 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4371 {
4372 size_t image_id_size;
4373 char *image_id;
4374 void *p;
4375 void *end;
4376 size_t size;
4377 void *reply_buf = NULL;
4378 size_t len = 0;
4379 char *image_name = NULL;
4380 int ret;
4381
4382 rbd_assert(!rbd_dev->spec->image_name);
4383
4384 len = strlen(rbd_dev->spec->image_id);
4385 image_id_size = sizeof (__le32) + len;
4386 image_id = kmalloc(image_id_size, GFP_KERNEL);
4387 if (!image_id)
4388 return NULL;
4389
4390 p = image_id;
4391 end = image_id + image_id_size;
4392 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4393
4394 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4395 reply_buf = kmalloc(size, GFP_KERNEL);
4396 if (!reply_buf)
4397 goto out;
4398
4399 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4400 "rbd", "dir_get_name",
4401 image_id, image_id_size,
4402 reply_buf, size);
4403 if (ret < 0)
4404 goto out;
4405 p = reply_buf;
4406 end = reply_buf + ret;
4407
4408 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4409 if (IS_ERR(image_name))
4410 image_name = NULL;
4411 else
4412 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4413 out:
4414 kfree(reply_buf);
4415 kfree(image_id);
4416
4417 return image_name;
4418 }
4419
4420 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4421 {
4422 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4423 const char *snap_name;
4424 u32 which = 0;
4425
4426 /* Skip over names until we find the one we are looking for */
4427
4428 snap_name = rbd_dev->header.snap_names;
4429 while (which < snapc->num_snaps) {
4430 if (!strcmp(name, snap_name))
4431 return snapc->snaps[which];
4432 snap_name += strlen(snap_name) + 1;
4433 which++;
4434 }
4435 return CEPH_NOSNAP;
4436 }
4437
4438 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4439 {
4440 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4441 u32 which;
4442 bool found = false;
4443 u64 snap_id;
4444
4445 for (which = 0; !found && which < snapc->num_snaps; which++) {
4446 const char *snap_name;
4447
4448 snap_id = snapc->snaps[which];
4449 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4450 if (IS_ERR(snap_name)) {
4451 /* ignore no-longer existing snapshots */
4452 if (PTR_ERR(snap_name) == -ENOENT)
4453 continue;
4454 else
4455 break;
4456 }
4457 found = !strcmp(name, snap_name);
4458 kfree(snap_name);
4459 }
4460 return found ? snap_id : CEPH_NOSNAP;
4461 }
4462
4463 /*
4464 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4465 * no snapshot by that name is found, or if an error occurs.
4466 */
4467 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4468 {
4469 if (rbd_dev->image_format == 1)
4470 return rbd_v1_snap_id_by_name(rbd_dev, name);
4471
4472 return rbd_v2_snap_id_by_name(rbd_dev, name);
4473 }
4474
4475 /*
4476 * An image being mapped will have everything but the snap id.
4477 */
4478 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4479 {
4480 struct rbd_spec *spec = rbd_dev->spec;
4481
4482 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4483 rbd_assert(spec->image_id && spec->image_name);
4484 rbd_assert(spec->snap_name);
4485
4486 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4487 u64 snap_id;
4488
4489 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4490 if (snap_id == CEPH_NOSNAP)
4491 return -ENOENT;
4492
4493 spec->snap_id = snap_id;
4494 } else {
4495 spec->snap_id = CEPH_NOSNAP;
4496 }
4497
4498 return 0;
4499 }
4500
4501 /*
4502 * A parent image will have all ids but none of the names.
4503 *
4504 * All names in an rbd spec are dynamically allocated. It's OK if we
4505 * can't figure out the name for an image id.
4506 */
4507 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4508 {
4509 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4510 struct rbd_spec *spec = rbd_dev->spec;
4511 const char *pool_name;
4512 const char *image_name;
4513 const char *snap_name;
4514 int ret;
4515
4516 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4517 rbd_assert(spec->image_id);
4518 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4519
4520 /* Get the pool name; we have to make our own copy of this */
4521
4522 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4523 if (!pool_name) {
4524 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4525 return -EIO;
4526 }
4527 pool_name = kstrdup(pool_name, GFP_KERNEL);
4528 if (!pool_name)
4529 return -ENOMEM;
4530
4531 /* Fetch the image name; tolerate failure here */
4532
4533 image_name = rbd_dev_image_name(rbd_dev);
4534 if (!image_name)
4535 rbd_warn(rbd_dev, "unable to get image name");
4536
4537 /* Fetch the snapshot name */
4538
4539 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4540 if (IS_ERR(snap_name)) {
4541 ret = PTR_ERR(snap_name);
4542 goto out_err;
4543 }
4544
4545 spec->pool_name = pool_name;
4546 spec->image_name = image_name;
4547 spec->snap_name = snap_name;
4548
4549 return 0;
4550
4551 out_err:
4552 kfree(image_name);
4553 kfree(pool_name);
4554 return ret;
4555 }
4556
4557 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4558 {
4559 size_t size;
4560 int ret;
4561 void *reply_buf;
4562 void *p;
4563 void *end;
4564 u64 seq;
4565 u32 snap_count;
4566 struct ceph_snap_context *snapc;
4567 u32 i;
4568
4569 /*
4570 * We'll need room for the seq value (maximum snapshot id),
4571 * snapshot count, and array of that many snapshot ids.
4572 * For now we have a fixed upper limit on the number we're
4573 * prepared to receive.
4574 */
4575 size = sizeof (__le64) + sizeof (__le32) +
4576 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4577 reply_buf = kzalloc(size, GFP_KERNEL);
4578 if (!reply_buf)
4579 return -ENOMEM;
4580
4581 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4582 "rbd", "get_snapcontext", NULL, 0,
4583 reply_buf, size);
4584 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4585 if (ret < 0)
4586 goto out;
4587
4588 p = reply_buf;
4589 end = reply_buf + ret;
4590 ret = -ERANGE;
4591 ceph_decode_64_safe(&p, end, seq, out);
4592 ceph_decode_32_safe(&p, end, snap_count, out);
4593
4594 /*
4595 * Make sure the reported number of snapshot ids wouldn't go
4596 * beyond the end of our buffer. But before checking that,
4597 * make sure the computed size of the snapshot context we
4598 * allocate is representable in a size_t.
4599 */
4600 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4601 / sizeof (u64)) {
4602 ret = -EINVAL;
4603 goto out;
4604 }
4605 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4606 goto out;
4607 ret = 0;
4608
4609 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4610 if (!snapc) {
4611 ret = -ENOMEM;
4612 goto out;
4613 }
4614 snapc->seq = seq;
4615 for (i = 0; i < snap_count; i++)
4616 snapc->snaps[i] = ceph_decode_64(&p);
4617
4618 ceph_put_snap_context(rbd_dev->header.snapc);
4619 rbd_dev->header.snapc = snapc;
4620
4621 dout(" snap context seq = %llu, snap_count = %u\n",
4622 (unsigned long long)seq, (unsigned int)snap_count);
4623 out:
4624 kfree(reply_buf);
4625
4626 return ret;
4627 }
4628
4629 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4630 u64 snap_id)
4631 {
4632 size_t size;
4633 void *reply_buf;
4634 __le64 snapid;
4635 int ret;
4636 void *p;
4637 void *end;
4638 char *snap_name;
4639
4640 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4641 reply_buf = kmalloc(size, GFP_KERNEL);
4642 if (!reply_buf)
4643 return ERR_PTR(-ENOMEM);
4644
4645 snapid = cpu_to_le64(snap_id);
4646 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4647 "rbd", "get_snapshot_name",
4648 &snapid, sizeof (snapid),
4649 reply_buf, size);
4650 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4651 if (ret < 0) {
4652 snap_name = ERR_PTR(ret);
4653 goto out;
4654 }
4655
4656 p = reply_buf;
4657 end = reply_buf + ret;
4658 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4659 if (IS_ERR(snap_name))
4660 goto out;
4661
4662 dout(" snap_id 0x%016llx snap_name = %s\n",
4663 (unsigned long long)snap_id, snap_name);
4664 out:
4665 kfree(reply_buf);
4666
4667 return snap_name;
4668 }
4669
4670 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4671 {
4672 bool first_time = rbd_dev->header.object_prefix == NULL;
4673 int ret;
4674
4675 ret = rbd_dev_v2_image_size(rbd_dev);
4676 if (ret)
4677 return ret;
4678
4679 if (first_time) {
4680 ret = rbd_dev_v2_header_onetime(rbd_dev);
4681 if (ret)
4682 return ret;
4683 }
4684
4685 ret = rbd_dev_v2_snap_context(rbd_dev);
4686 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4687
4688 return ret;
4689 }
4690
4691 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4692 {
4693 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4694
4695 if (rbd_dev->image_format == 1)
4696 return rbd_dev_v1_header_info(rbd_dev);
4697
4698 return rbd_dev_v2_header_info(rbd_dev);
4699 }
4700
4701 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4702 {
4703 struct device *dev;
4704 int ret;
4705
4706 dev = &rbd_dev->dev;
4707 dev->bus = &rbd_bus_type;
4708 dev->type = &rbd_device_type;
4709 dev->parent = &rbd_root_dev;
4710 dev->release = rbd_dev_device_release;
4711 dev_set_name(dev, "%d", rbd_dev->dev_id);
4712 ret = device_register(dev);
4713
4714 return ret;
4715 }
4716
4717 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4718 {
4719 device_unregister(&rbd_dev->dev);
4720 }
4721
4722 /*
4723 * Get a unique rbd identifier for the given new rbd_dev, and add
4724 * the rbd_dev to the global list.
4725 */
4726 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4727 {
4728 int new_dev_id;
4729
4730 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4731 0, minor_to_rbd_dev_id(1 << MINORBITS),
4732 GFP_KERNEL);
4733 if (new_dev_id < 0)
4734 return new_dev_id;
4735
4736 rbd_dev->dev_id = new_dev_id;
4737
4738 spin_lock(&rbd_dev_list_lock);
4739 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4740 spin_unlock(&rbd_dev_list_lock);
4741
4742 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4743
4744 return 0;
4745 }
4746
4747 /*
4748 * Remove an rbd_dev from the global list, and record that its
4749 * identifier is no longer in use.
4750 */
4751 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4752 {
4753 spin_lock(&rbd_dev_list_lock);
4754 list_del_init(&rbd_dev->node);
4755 spin_unlock(&rbd_dev_list_lock);
4756
4757 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4758
4759 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4760 }
4761
4762 /*
4763 * Skips over white space at *buf, and updates *buf to point to the
4764 * first found non-space character (if any). Returns the length of
4765 * the token (string of non-white space characters) found. Note
4766 * that *buf must be terminated with '\0'.
4767 */
4768 static inline size_t next_token(const char **buf)
4769 {
4770 /*
4771 * These are the characters that produce nonzero for
4772 * isspace() in the "C" and "POSIX" locales.
4773 */
4774 const char *spaces = " \f\n\r\t\v";
4775
4776 *buf += strspn(*buf, spaces); /* Find start of token */
4777
4778 return strcspn(*buf, spaces); /* Return token length */
4779 }
4780
4781 /*
4782 * Finds the next token in *buf, dynamically allocates a buffer big
4783 * enough to hold a copy of it, and copies the token into the new
4784 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4785 * that a duplicate buffer is created even for a zero-length token.
4786 *
4787 * Returns a pointer to the newly-allocated duplicate, or a null
4788 * pointer if memory for the duplicate was not available. If
4789 * the lenp argument is a non-null pointer, the length of the token
4790 * (not including the '\0') is returned in *lenp.
4791 *
4792 * If successful, the *buf pointer will be updated to point beyond
4793 * the end of the found token.
4794 *
4795 * Note: uses GFP_KERNEL for allocation.
4796 */
4797 static inline char *dup_token(const char **buf, size_t *lenp)
4798 {
4799 char *dup;
4800 size_t len;
4801
4802 len = next_token(buf);
4803 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4804 if (!dup)
4805 return NULL;
4806 *(dup + len) = '\0';
4807 *buf += len;
4808
4809 if (lenp)
4810 *lenp = len;
4811
4812 return dup;
4813 }
4814
4815 /*
4816 * Parse the options provided for an "rbd add" (i.e., rbd image
4817 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4818 * and the data written is passed here via a NUL-terminated buffer.
4819 * Returns 0 if successful or an error code otherwise.
4820 *
4821 * The information extracted from these options is recorded in
4822 * the other parameters which return dynamically-allocated
4823 * structures:
4824 * ceph_opts
4825 * The address of a pointer that will refer to a ceph options
4826 * structure. Caller must release the returned pointer using
4827 * ceph_destroy_options() when it is no longer needed.
4828 * rbd_opts
4829 * Address of an rbd options pointer. Fully initialized by
4830 * this function; caller must release with kfree().
4831 * spec
4832 * Address of an rbd image specification pointer. Fully
4833 * initialized by this function based on parsed options.
4834 * Caller must release with rbd_spec_put().
4835 *
4836 * The options passed take this form:
4837 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4838 * where:
4839 * <mon_addrs>
4840 * A comma-separated list of one or more monitor addresses.
4841 * A monitor address is an ip address, optionally followed
4842 * by a port number (separated by a colon).
4843 * I.e.: ip1[:port1][,ip2[:port2]...]
4844 * <options>
4845 * A comma-separated list of ceph and/or rbd options.
4846 * <pool_name>
4847 * The name of the rados pool containing the rbd image.
4848 * <image_name>
4849 * The name of the image in that pool to map.
4850 * <snap_id>
4851 * An optional snapshot id. If provided, the mapping will
4852 * present data from the image at the time that snapshot was
4853 * created. The image head is used if no snapshot id is
4854 * provided. Snapshot mappings are always read-only.
4855 */
4856 static int rbd_add_parse_args(const char *buf,
4857 struct ceph_options **ceph_opts,
4858 struct rbd_options **opts,
4859 struct rbd_spec **rbd_spec)
4860 {
4861 size_t len;
4862 char *options;
4863 const char *mon_addrs;
4864 char *snap_name;
4865 size_t mon_addrs_size;
4866 struct rbd_spec *spec = NULL;
4867 struct rbd_options *rbd_opts = NULL;
4868 struct ceph_options *copts;
4869 int ret;
4870
4871 /* The first four tokens are required */
4872
4873 len = next_token(&buf);
4874 if (!len) {
4875 rbd_warn(NULL, "no monitor address(es) provided");
4876 return -EINVAL;
4877 }
4878 mon_addrs = buf;
4879 mon_addrs_size = len + 1;
4880 buf += len;
4881
4882 ret = -EINVAL;
4883 options = dup_token(&buf, NULL);
4884 if (!options)
4885 return -ENOMEM;
4886 if (!*options) {
4887 rbd_warn(NULL, "no options provided");
4888 goto out_err;
4889 }
4890
4891 spec = rbd_spec_alloc();
4892 if (!spec)
4893 goto out_mem;
4894
4895 spec->pool_name = dup_token(&buf, NULL);
4896 if (!spec->pool_name)
4897 goto out_mem;
4898 if (!*spec->pool_name) {
4899 rbd_warn(NULL, "no pool name provided");
4900 goto out_err;
4901 }
4902
4903 spec->image_name = dup_token(&buf, NULL);
4904 if (!spec->image_name)
4905 goto out_mem;
4906 if (!*spec->image_name) {
4907 rbd_warn(NULL, "no image name provided");
4908 goto out_err;
4909 }
4910
4911 /*
4912 * Snapshot name is optional; default is to use "-"
4913 * (indicating the head/no snapshot).
4914 */
4915 len = next_token(&buf);
4916 if (!len) {
4917 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4918 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4919 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4920 ret = -ENAMETOOLONG;
4921 goto out_err;
4922 }
4923 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4924 if (!snap_name)
4925 goto out_mem;
4926 *(snap_name + len) = '\0';
4927 spec->snap_name = snap_name;
4928
4929 /* Initialize all rbd options to the defaults */
4930
4931 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4932 if (!rbd_opts)
4933 goto out_mem;
4934
4935 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4936
4937 copts = ceph_parse_options(options, mon_addrs,
4938 mon_addrs + mon_addrs_size - 1,
4939 parse_rbd_opts_token, rbd_opts);
4940 if (IS_ERR(copts)) {
4941 ret = PTR_ERR(copts);
4942 goto out_err;
4943 }
4944 kfree(options);
4945
4946 *ceph_opts = copts;
4947 *opts = rbd_opts;
4948 *rbd_spec = spec;
4949
4950 return 0;
4951 out_mem:
4952 ret = -ENOMEM;
4953 out_err:
4954 kfree(rbd_opts);
4955 rbd_spec_put(spec);
4956 kfree(options);
4957
4958 return ret;
4959 }
4960
4961 /*
4962 * Return pool id (>= 0) or a negative error code.
4963 */
4964 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4965 {
4966 u64 newest_epoch;
4967 unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4968 int tries = 0;
4969 int ret;
4970
4971 again:
4972 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4973 if (ret == -ENOENT && tries++ < 1) {
4974 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4975 &newest_epoch);
4976 if (ret < 0)
4977 return ret;
4978
4979 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4980 ceph_monc_request_next_osdmap(&rbdc->client->monc);
4981 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4982 newest_epoch, timeout);
4983 goto again;
4984 } else {
4985 /* the osdmap we have is new enough */
4986 return -ENOENT;
4987 }
4988 }
4989
4990 return ret;
4991 }
4992
4993 /*
4994 * An rbd format 2 image has a unique identifier, distinct from the
4995 * name given to it by the user. Internally, that identifier is
4996 * what's used to specify the names of objects related to the image.
4997 *
4998 * A special "rbd id" object is used to map an rbd image name to its
4999 * id. If that object doesn't exist, then there is no v2 rbd image
5000 * with the supplied name.
5001 *
5002 * This function will record the given rbd_dev's image_id field if
5003 * it can be determined, and in that case will return 0. If any
5004 * errors occur a negative errno will be returned and the rbd_dev's
5005 * image_id field will be unchanged (and should be NULL).
5006 */
5007 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5008 {
5009 int ret;
5010 size_t size;
5011 char *object_name;
5012 void *response;
5013 char *image_id;
5014
5015 /*
5016 * When probing a parent image, the image id is already
5017 * known (and the image name likely is not). There's no
5018 * need to fetch the image id again in this case. We
5019 * do still need to set the image format though.
5020 */
5021 if (rbd_dev->spec->image_id) {
5022 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5023
5024 return 0;
5025 }
5026
5027 /*
5028 * First, see if the format 2 image id file exists, and if
5029 * so, get the image's persistent id from it.
5030 */
5031 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5032 object_name = kmalloc(size, GFP_NOIO);
5033 if (!object_name)
5034 return -ENOMEM;
5035 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5036 dout("rbd id object name is %s\n", object_name);
5037
5038 /* Response will be an encoded string, which includes a length */
5039
5040 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5041 response = kzalloc(size, GFP_NOIO);
5042 if (!response) {
5043 ret = -ENOMEM;
5044 goto out;
5045 }
5046
5047 /* If it doesn't exist we'll assume it's a format 1 image */
5048
5049 ret = rbd_obj_method_sync(rbd_dev, object_name,
5050 "rbd", "get_id", NULL, 0,
5051 response, RBD_IMAGE_ID_LEN_MAX);
5052 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5053 if (ret == -ENOENT) {
5054 image_id = kstrdup("", GFP_KERNEL);
5055 ret = image_id ? 0 : -ENOMEM;
5056 if (!ret)
5057 rbd_dev->image_format = 1;
5058 } else if (ret >= 0) {
5059 void *p = response;
5060
5061 image_id = ceph_extract_encoded_string(&p, p + ret,
5062 NULL, GFP_NOIO);
5063 ret = PTR_ERR_OR_ZERO(image_id);
5064 if (!ret)
5065 rbd_dev->image_format = 2;
5066 }
5067
5068 if (!ret) {
5069 rbd_dev->spec->image_id = image_id;
5070 dout("image_id is %s\n", image_id);
5071 }
5072 out:
5073 kfree(response);
5074 kfree(object_name);
5075
5076 return ret;
5077 }
5078
5079 /*
5080 * Undo whatever state changes are made by v1 or v2 header info
5081 * call.
5082 */
5083 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5084 {
5085 struct rbd_image_header *header;
5086
5087 rbd_dev_parent_put(rbd_dev);
5088
5089 /* Free dynamic fields from the header, then zero it out */
5090
5091 header = &rbd_dev->header;
5092 ceph_put_snap_context(header->snapc);
5093 kfree(header->snap_sizes);
5094 kfree(header->snap_names);
5095 kfree(header->object_prefix);
5096 memset(header, 0, sizeof (*header));
5097 }
5098
5099 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5100 {
5101 int ret;
5102
5103 ret = rbd_dev_v2_object_prefix(rbd_dev);
5104 if (ret)
5105 goto out_err;
5106
5107 /*
5108 * Get the and check features for the image. Currently the
5109 * features are assumed to never change.
5110 */
5111 ret = rbd_dev_v2_features(rbd_dev);
5112 if (ret)
5113 goto out_err;
5114
5115 /* If the image supports fancy striping, get its parameters */
5116
5117 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5118 ret = rbd_dev_v2_striping_info(rbd_dev);
5119 if (ret < 0)
5120 goto out_err;
5121 }
5122 /* No support for crypto and compression type format 2 images */
5123
5124 return 0;
5125 out_err:
5126 rbd_dev->header.features = 0;
5127 kfree(rbd_dev->header.object_prefix);
5128 rbd_dev->header.object_prefix = NULL;
5129
5130 return ret;
5131 }
5132
5133 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5134 {
5135 struct rbd_device *parent = NULL;
5136 struct rbd_spec *parent_spec;
5137 struct rbd_client *rbdc;
5138 int ret;
5139
5140 if (!rbd_dev->parent_spec)
5141 return 0;
5142 /*
5143 * We need to pass a reference to the client and the parent
5144 * spec when creating the parent rbd_dev. Images related by
5145 * parent/child relationships always share both.
5146 */
5147 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5148 rbdc = __rbd_get_client(rbd_dev->rbd_client);
5149
5150 ret = -ENOMEM;
5151 parent = rbd_dev_create(rbdc, parent_spec);
5152 if (!parent)
5153 goto out_err;
5154
5155 ret = rbd_dev_image_probe(parent, false);
5156 if (ret < 0)
5157 goto out_err;
5158 rbd_dev->parent = parent;
5159 atomic_set(&rbd_dev->parent_ref, 1);
5160
5161 return 0;
5162 out_err:
5163 if (parent) {
5164 rbd_dev_unparent(rbd_dev);
5165 kfree(rbd_dev->header_name);
5166 rbd_dev_destroy(parent);
5167 } else {
5168 rbd_put_client(rbdc);
5169 rbd_spec_put(parent_spec);
5170 }
5171
5172 return ret;
5173 }
5174
5175 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5176 {
5177 int ret;
5178
5179 /* Get an id and fill in device name. */
5180
5181 ret = rbd_dev_id_get(rbd_dev);
5182 if (ret)
5183 return ret;
5184
5185 BUILD_BUG_ON(DEV_NAME_LEN
5186 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5187 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5188
5189 /* Record our major and minor device numbers. */
5190
5191 if (!single_major) {
5192 ret = register_blkdev(0, rbd_dev->name);
5193 if (ret < 0)
5194 goto err_out_id;
5195
5196 rbd_dev->major = ret;
5197 rbd_dev->minor = 0;
5198 } else {
5199 rbd_dev->major = rbd_major;
5200 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5201 }
5202
5203 /* Set up the blkdev mapping. */
5204
5205 ret = rbd_init_disk(rbd_dev);
5206 if (ret)
5207 goto err_out_blkdev;
5208
5209 ret = rbd_dev_mapping_set(rbd_dev);
5210 if (ret)
5211 goto err_out_disk;
5212
5213 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5214 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5215
5216 ret = rbd_bus_add_dev(rbd_dev);
5217 if (ret)
5218 goto err_out_mapping;
5219
5220 /* Everything's ready. Announce the disk to the world. */
5221
5222 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5223 add_disk(rbd_dev->disk);
5224
5225 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5226 (unsigned long long) rbd_dev->mapping.size);
5227
5228 return ret;
5229
5230 err_out_mapping:
5231 rbd_dev_mapping_clear(rbd_dev);
5232 err_out_disk:
5233 rbd_free_disk(rbd_dev);
5234 err_out_blkdev:
5235 if (!single_major)
5236 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5237 err_out_id:
5238 rbd_dev_id_put(rbd_dev);
5239 rbd_dev_mapping_clear(rbd_dev);
5240
5241 return ret;
5242 }
5243
5244 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5245 {
5246 struct rbd_spec *spec = rbd_dev->spec;
5247 size_t size;
5248
5249 /* Record the header object name for this rbd image. */
5250
5251 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5252
5253 if (rbd_dev->image_format == 1)
5254 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5255 else
5256 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5257
5258 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5259 if (!rbd_dev->header_name)
5260 return -ENOMEM;
5261
5262 if (rbd_dev->image_format == 1)
5263 sprintf(rbd_dev->header_name, "%s%s",
5264 spec->image_name, RBD_SUFFIX);
5265 else
5266 sprintf(rbd_dev->header_name, "%s%s",
5267 RBD_HEADER_PREFIX, spec->image_id);
5268 return 0;
5269 }
5270
5271 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5272 {
5273 rbd_dev_unprobe(rbd_dev);
5274 kfree(rbd_dev->header_name);
5275 rbd_dev->header_name = NULL;
5276 rbd_dev->image_format = 0;
5277 kfree(rbd_dev->spec->image_id);
5278 rbd_dev->spec->image_id = NULL;
5279
5280 rbd_dev_destroy(rbd_dev);
5281 }
5282
5283 /*
5284 * Probe for the existence of the header object for the given rbd
5285 * device. If this image is the one being mapped (i.e., not a
5286 * parent), initiate a watch on its header object before using that
5287 * object to get detailed information about the rbd image.
5288 */
5289 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5290 {
5291 int ret;
5292
5293 /*
5294 * Get the id from the image id object. Unless there's an
5295 * error, rbd_dev->spec->image_id will be filled in with
5296 * a dynamically-allocated string, and rbd_dev->image_format
5297 * will be set to either 1 or 2.
5298 */
5299 ret = rbd_dev_image_id(rbd_dev);
5300 if (ret)
5301 return ret;
5302
5303 ret = rbd_dev_header_name(rbd_dev);
5304 if (ret)
5305 goto err_out_format;
5306
5307 if (mapping) {
5308 ret = rbd_dev_header_watch_sync(rbd_dev);
5309 if (ret) {
5310 if (ret == -ENOENT)
5311 pr_info("image %s/%s does not exist\n",
5312 rbd_dev->spec->pool_name,
5313 rbd_dev->spec->image_name);
5314 goto out_header_name;
5315 }
5316 }
5317
5318 ret = rbd_dev_header_info(rbd_dev);
5319 if (ret)
5320 goto err_out_watch;
5321
5322 /*
5323 * If this image is the one being mapped, we have pool name and
5324 * id, image name and id, and snap name - need to fill snap id.
5325 * Otherwise this is a parent image, identified by pool, image
5326 * and snap ids - need to fill in names for those ids.
5327 */
5328 if (mapping)
5329 ret = rbd_spec_fill_snap_id(rbd_dev);
5330 else
5331 ret = rbd_spec_fill_names(rbd_dev);
5332 if (ret) {
5333 if (ret == -ENOENT)
5334 pr_info("snap %s/%s@%s does not exist\n",
5335 rbd_dev->spec->pool_name,
5336 rbd_dev->spec->image_name,
5337 rbd_dev->spec->snap_name);
5338 goto err_out_probe;
5339 }
5340
5341 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5342 ret = rbd_dev_v2_parent_info(rbd_dev);
5343 if (ret)
5344 goto err_out_probe;
5345
5346 /*
5347 * Need to warn users if this image is the one being
5348 * mapped and has a parent.
5349 */
5350 if (mapping && rbd_dev->parent_spec)
5351 rbd_warn(rbd_dev,
5352 "WARNING: kernel layering is EXPERIMENTAL!");
5353 }
5354
5355 ret = rbd_dev_probe_parent(rbd_dev);
5356 if (ret)
5357 goto err_out_probe;
5358
5359 dout("discovered format %u image, header name is %s\n",
5360 rbd_dev->image_format, rbd_dev->header_name);
5361 return 0;
5362
5363 err_out_probe:
5364 rbd_dev_unprobe(rbd_dev);
5365 err_out_watch:
5366 if (mapping)
5367 rbd_dev_header_unwatch_sync(rbd_dev);
5368 out_header_name:
5369 kfree(rbd_dev->header_name);
5370 rbd_dev->header_name = NULL;
5371 err_out_format:
5372 rbd_dev->image_format = 0;
5373 kfree(rbd_dev->spec->image_id);
5374 rbd_dev->spec->image_id = NULL;
5375 return ret;
5376 }
5377
5378 static ssize_t do_rbd_add(struct bus_type *bus,
5379 const char *buf,
5380 size_t count)
5381 {
5382 struct rbd_device *rbd_dev = NULL;
5383 struct ceph_options *ceph_opts = NULL;
5384 struct rbd_options *rbd_opts = NULL;
5385 struct rbd_spec *spec = NULL;
5386 struct rbd_client *rbdc;
5387 bool read_only;
5388 int rc = -ENOMEM;
5389
5390 if (!try_module_get(THIS_MODULE))
5391 return -ENODEV;
5392
5393 /* parse add command */
5394 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5395 if (rc < 0)
5396 goto err_out_module;
5397 read_only = rbd_opts->read_only;
5398 kfree(rbd_opts);
5399 rbd_opts = NULL; /* done with this */
5400
5401 rbdc = rbd_get_client(ceph_opts);
5402 if (IS_ERR(rbdc)) {
5403 rc = PTR_ERR(rbdc);
5404 goto err_out_args;
5405 }
5406
5407 /* pick the pool */
5408 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5409 if (rc < 0) {
5410 if (rc == -ENOENT)
5411 pr_info("pool %s does not exist\n", spec->pool_name);
5412 goto err_out_client;
5413 }
5414 spec->pool_id = (u64)rc;
5415
5416 /* The ceph file layout needs to fit pool id in 32 bits */
5417
5418 if (spec->pool_id > (u64)U32_MAX) {
5419 rbd_warn(NULL, "pool id too large (%llu > %u)",
5420 (unsigned long long)spec->pool_id, U32_MAX);
5421 rc = -EIO;
5422 goto err_out_client;
5423 }
5424
5425 rbd_dev = rbd_dev_create(rbdc, spec);
5426 if (!rbd_dev)
5427 goto err_out_client;
5428 rbdc = NULL; /* rbd_dev now owns this */
5429 spec = NULL; /* rbd_dev now owns this */
5430
5431 rc = rbd_dev_image_probe(rbd_dev, true);
5432 if (rc < 0)
5433 goto err_out_rbd_dev;
5434
5435 /* If we are mapping a snapshot it must be marked read-only */
5436
5437 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5438 read_only = true;
5439 rbd_dev->mapping.read_only = read_only;
5440
5441 rc = rbd_dev_device_setup(rbd_dev);
5442 if (rc) {
5443 /*
5444 * rbd_dev_header_unwatch_sync() can't be moved into
5445 * rbd_dev_image_release() without refactoring, see
5446 * commit 1f3ef78861ac.
5447 */
5448 rbd_dev_header_unwatch_sync(rbd_dev);
5449 rbd_dev_image_release(rbd_dev);
5450 goto err_out_module;
5451 }
5452
5453 return count;
5454
5455 err_out_rbd_dev:
5456 rbd_dev_destroy(rbd_dev);
5457 err_out_client:
5458 rbd_put_client(rbdc);
5459 err_out_args:
5460 rbd_spec_put(spec);
5461 err_out_module:
5462 module_put(THIS_MODULE);
5463
5464 dout("Error adding device %s\n", buf);
5465
5466 return (ssize_t)rc;
5467 }
5468
5469 static ssize_t rbd_add(struct bus_type *bus,
5470 const char *buf,
5471 size_t count)
5472 {
5473 if (single_major)
5474 return -EINVAL;
5475
5476 return do_rbd_add(bus, buf, count);
5477 }
5478
5479 static ssize_t rbd_add_single_major(struct bus_type *bus,
5480 const char *buf,
5481 size_t count)
5482 {
5483 return do_rbd_add(bus, buf, count);
5484 }
5485
5486 static void rbd_dev_device_release(struct device *dev)
5487 {
5488 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5489
5490 rbd_free_disk(rbd_dev);
5491 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5492 rbd_dev_mapping_clear(rbd_dev);
5493 if (!single_major)
5494 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5495 rbd_dev_id_put(rbd_dev);
5496 rbd_dev_mapping_clear(rbd_dev);
5497 }
5498
5499 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5500 {
5501 while (rbd_dev->parent) {
5502 struct rbd_device *first = rbd_dev;
5503 struct rbd_device *second = first->parent;
5504 struct rbd_device *third;
5505
5506 /*
5507 * Follow to the parent with no grandparent and
5508 * remove it.
5509 */
5510 while (second && (third = second->parent)) {
5511 first = second;
5512 second = third;
5513 }
5514 rbd_assert(second);
5515 rbd_dev_image_release(second);
5516 first->parent = NULL;
5517 first->parent_overlap = 0;
5518
5519 rbd_assert(first->parent_spec);
5520 rbd_spec_put(first->parent_spec);
5521 first->parent_spec = NULL;
5522 }
5523 }
5524
5525 static ssize_t do_rbd_remove(struct bus_type *bus,
5526 const char *buf,
5527 size_t count)
5528 {
5529 struct rbd_device *rbd_dev = NULL;
5530 struct list_head *tmp;
5531 int dev_id;
5532 unsigned long ul;
5533 bool already = false;
5534 int ret;
5535
5536 ret = kstrtoul(buf, 10, &ul);
5537 if (ret)
5538 return ret;
5539
5540 /* convert to int; abort if we lost anything in the conversion */
5541 dev_id = (int)ul;
5542 if (dev_id != ul)
5543 return -EINVAL;
5544
5545 ret = -ENOENT;
5546 spin_lock(&rbd_dev_list_lock);
5547 list_for_each(tmp, &rbd_dev_list) {
5548 rbd_dev = list_entry(tmp, struct rbd_device, node);
5549 if (rbd_dev->dev_id == dev_id) {
5550 ret = 0;
5551 break;
5552 }
5553 }
5554 if (!ret) {
5555 spin_lock_irq(&rbd_dev->lock);
5556 if (rbd_dev->open_count)
5557 ret = -EBUSY;
5558 else
5559 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5560 &rbd_dev->flags);
5561 spin_unlock_irq(&rbd_dev->lock);
5562 }
5563 spin_unlock(&rbd_dev_list_lock);
5564 if (ret < 0 || already)
5565 return ret;
5566
5567 rbd_dev_header_unwatch_sync(rbd_dev);
5568 /*
5569 * flush remaining watch callbacks - these must be complete
5570 * before the osd_client is shutdown
5571 */
5572 dout("%s: flushing notifies", __func__);
5573 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5574
5575 /*
5576 * Don't free anything from rbd_dev->disk until after all
5577 * notifies are completely processed. Otherwise
5578 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5579 * in a potential use after free of rbd_dev->disk or rbd_dev.
5580 */
5581 rbd_bus_del_dev(rbd_dev);
5582 rbd_dev_image_release(rbd_dev);
5583 module_put(THIS_MODULE);
5584
5585 return count;
5586 }
5587
5588 static ssize_t rbd_remove(struct bus_type *bus,
5589 const char *buf,
5590 size_t count)
5591 {
5592 if (single_major)
5593 return -EINVAL;
5594
5595 return do_rbd_remove(bus, buf, count);
5596 }
5597
5598 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5599 const char *buf,
5600 size_t count)
5601 {
5602 return do_rbd_remove(bus, buf, count);
5603 }
5604
5605 /*
5606 * create control files in sysfs
5607 * /sys/bus/rbd/...
5608 */
5609 static int rbd_sysfs_init(void)
5610 {
5611 int ret;
5612
5613 ret = device_register(&rbd_root_dev);
5614 if (ret < 0)
5615 return ret;
5616
5617 ret = bus_register(&rbd_bus_type);
5618 if (ret < 0)
5619 device_unregister(&rbd_root_dev);
5620
5621 return ret;
5622 }
5623
5624 static void rbd_sysfs_cleanup(void)
5625 {
5626 bus_unregister(&rbd_bus_type);
5627 device_unregister(&rbd_root_dev);
5628 }
5629
5630 static int rbd_slab_init(void)
5631 {
5632 rbd_assert(!rbd_img_request_cache);
5633 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5634 sizeof (struct rbd_img_request),
5635 __alignof__(struct rbd_img_request),
5636 0, NULL);
5637 if (!rbd_img_request_cache)
5638 return -ENOMEM;
5639
5640 rbd_assert(!rbd_obj_request_cache);
5641 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5642 sizeof (struct rbd_obj_request),
5643 __alignof__(struct rbd_obj_request),
5644 0, NULL);
5645 if (!rbd_obj_request_cache)
5646 goto out_err;
5647
5648 rbd_assert(!rbd_segment_name_cache);
5649 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5650 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5651 if (rbd_segment_name_cache)
5652 return 0;
5653 out_err:
5654 if (rbd_obj_request_cache) {
5655 kmem_cache_destroy(rbd_obj_request_cache);
5656 rbd_obj_request_cache = NULL;
5657 }
5658
5659 kmem_cache_destroy(rbd_img_request_cache);
5660 rbd_img_request_cache = NULL;
5661
5662 return -ENOMEM;
5663 }
5664
5665 static void rbd_slab_exit(void)
5666 {
5667 rbd_assert(rbd_segment_name_cache);
5668 kmem_cache_destroy(rbd_segment_name_cache);
5669 rbd_segment_name_cache = NULL;
5670
5671 rbd_assert(rbd_obj_request_cache);
5672 kmem_cache_destroy(rbd_obj_request_cache);
5673 rbd_obj_request_cache = NULL;
5674
5675 rbd_assert(rbd_img_request_cache);
5676 kmem_cache_destroy(rbd_img_request_cache);
5677 rbd_img_request_cache = NULL;
5678 }
5679
5680 static int __init rbd_init(void)
5681 {
5682 int rc;
5683
5684 if (!libceph_compatible(NULL)) {
5685 rbd_warn(NULL, "libceph incompatibility (quitting)");
5686 return -EINVAL;
5687 }
5688
5689 rc = rbd_slab_init();
5690 if (rc)
5691 return rc;
5692
5693 /*
5694 * The number of active work items is limited by the number of
5695 * rbd devices * queue depth, so leave @max_active at default.
5696 */
5697 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5698 if (!rbd_wq) {
5699 rc = -ENOMEM;
5700 goto err_out_slab;
5701 }
5702
5703 if (single_major) {
5704 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5705 if (rbd_major < 0) {
5706 rc = rbd_major;
5707 goto err_out_wq;
5708 }
5709 }
5710
5711 rc = rbd_sysfs_init();
5712 if (rc)
5713 goto err_out_blkdev;
5714
5715 if (single_major)
5716 pr_info("loaded (major %d)\n", rbd_major);
5717 else
5718 pr_info("loaded\n");
5719
5720 return 0;
5721
5722 err_out_blkdev:
5723 if (single_major)
5724 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5725 err_out_wq:
5726 destroy_workqueue(rbd_wq);
5727 err_out_slab:
5728 rbd_slab_exit();
5729 return rc;
5730 }
5731
5732 static void __exit rbd_exit(void)
5733 {
5734 ida_destroy(&rbd_dev_id_ida);
5735 rbd_sysfs_cleanup();
5736 if (single_major)
5737 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5738 destroy_workqueue(rbd_wq);
5739 rbd_slab_exit();
5740 }
5741
5742 module_init(rbd_init);
5743 module_exit(rbd_exit);
5744
5745 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5746 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5747 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5748 /* following authorship retained from original osdblk.c */
5749 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5750
5751 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5752 MODULE_LICENSE("GPL");